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Abstract 

Polyglycolic acid (PGA) is an important polymer in the field of tissue engineering. It has 

many favorable properties such as biocompatibility, bioabsorbability, high melting point, 

low solubility in organic solvents, high tensile strength and is used in a variety of medical 

related applications. Currently there are various methods such felting, stitching, use of 

binder/adhesive for joining the non woven meshes of PGA polymer in order to make 

suitable three dimensional scaffolds. The existing methods for joining the non woven 

meshes of PGA polymer are usually time consuming and not very flexible. Thus there is 

a need for a better technique that would overcome the drawbacks of the existing methods. 

Laser welding offers potential advantages such as high welding rates, easy to automate, 

improved seam and single sided access such that welds can be performed under various 

layers of fabric. Therefore, the main objective of this research is to conduct a 

fundamental study on laser welding of non woven PGA scaffold felts. An experimental 

setup for spot welding is built that would assist in the formation of tubular structures. A 

factorial design of experiments is used to study the effects of the operating parameters 

such as laser power, beam diameter, time duration and pressure on the weld quality. The 

weld quality is assessed in terms of weld strength and weld diameter. Based on the 

parametric study, a regression analysis is carried out to form correlations between weld 

quality and the operating parameters, which could be used to select the optimal operating 

conditions. The successful welds obtained by the laser welding process have no 

discoloration and are stronger than the tensile strength of the original non woven sheets 

of PGA biofelt.  
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CHAPTER 1 – Introduction 

Atherosclerosis is one of the most severe forms of heart disease which results in 

narrowing of the arteries. Replacement of diseased arteries by cardiac bypass or 

peripheral bypass surgery is the most common method for coronary circulation [1]. There 

has been an increasing interest to develop artificial and biological replacements for such 

arteries and small diameter vascular grafts are one of the emerging discoveries in the 

treatment of this particular kind of heart disease. 

 

A vascular graft should ideally have sufficient mechanical strength, blood compatibility, 

a structure that does not permit hemorrhage through the wall, and good suture retention 

[2]. Poly (ethylene terephthalate) (polyester or Dacron) or expanded 

polytetrafluoroethylene (ePTFE Teflon) are the most common synthetic polymer 

materials used in the preparation of vascular grafts. These materials have been effective 

for large diameter grafts but are not conducive for vessels having an inner diameter less 

than 6 mm. 

 

Tissue Engineering has received considerable attention since the last few years and has 

been labeled as one of the more promising domains within the broader field of 

‘biotechnology’ [3]. The use of tissue engineered small diameter blood vessels is gaining 

wide acceptance as they overcome the limitations such as risk of infection and 

mechanical property mismatches. The tissue engineered materials such as collagen gel 

based grafts, decellularized grafts, cell-polymer constructs and completely biological 

grafts are used for replacement of diseased arteries and all these materials share a 

common goal of providing sufficient mechanical integrity in order to sustain the systemic 

arterial pressures. However, the most common tissue engineered materials for 

cardiovascular treatment are the biodegradable cell-polymer constructs.   

 

 

 



Polyglycolic acid (PGA) scaffold is a popular synthetic biodegradable polymer that is 

used in these constructs and possesses many favorable properties such as 

biocompatibility, bioabsorbability, and high tensile strength. The biodegradable scaffold 

plays a vital role acting as a matrix that provides the cells with specific tissue 

environment and architecture [4].  Polyglycolic acid (PGA) scaffolds have large void 

volumes that support cellular infiltration, cellular attachment, and extracellular matrix 

deposition. This material degrades over time and loses its mechanical integrity during the 

first 3 weeks in tissue culture or other aqueous conditions [5]. Figure 1.1 shows a non-

woven PGA scaffold structure that is used in the field of tissue engineering. Vacanti and 

coworkers [5, 6, 7] investigated the use of PGA tubular scaffolds for culturing small 

diameter vascular conduits.  The polymer scaffold degrades after 8 weeks and is replaced 

by a dense smooth muscle cell medial layer and an inner endothelial lining. The 

engineered vessels possess burst pressures of more than 2000 mmHg and also most of the 

physiological and mechanical characteristics of the native arteries. The PGA scaffolds 

can be manufactured in many forms with their required characteristics for specific 

applications. Fiber scaffolds are more commonly used in the field of vascular tissue 

engineering as the fiber meshes have large surface area, volume ratio and high porosity 

[8]. Polymer extrusion and textile processing are the traditional fabrication methods for 

creating the PGA scaffolds which are non woven in nature.   

 

 
Figure 1.1: Non-woven PGA scaffold structure [9] 
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Joining these fabricated non woven meshes of polymer scaffolds is an area of 

interest. Currently there are various methods being used, such as needling, thermal 

bonding, use of external binders, sewing, etc. Each method has its own advantages and 

disadvantages. Some of the disadvantages include limited melt viscosity at the bonding 

interface, weak inter-fiber attachments, reduced web loft, limitation of amount of 

available space for tissue in growth, properties conforming to the binder material, 

difficulty in obtaining a regular pore size and creation of complex 3-D scaffolds. 

Therefore, there is an increasing need towards developing a better joining technique that 

will overcome the limitations of the existing methods and provide a novel joining process 

that is flexible, easy, fast, and does not affect the structural and mechanical properties of 

the scaffold. 

 

  The applications of laser welding technology have been numerous and extend 

from manufacturing to biomedical engineering because of the many advantages that this 

method provides such as short process times, non contact and binderless process, absence 

of process induced vibrations and minimal contamination [10]. Since laser welding offers 

many advantages over other conventional techniques, we attempt to develop a laser 

welding technique for joining non woven polymer fiber sheets and create 3-D scaffolds 

like tubular structures. Therefore, the objective in this research is to conduct a 

fundamental study of laser welding of PGA scaffold biofelt sheets and to create tubular 

scaffold structures that would be useful in the area of vascular tissue engineering for the 

repair of damaged arteries or blood vessels.  

 

 

 

 

 

 

 

 



Chapter 2 - Literature review  

2.1   Scaffolds in Tissue Engineering 

 

Tissue engineering is a promising field and aims to purposefully induce the growth of 

new functional tissues, rather than just replacing diseased or injured tissues with 

nonviable implantable parts [11]. A matrix or scaffolding guides the tissue development 

and regeneration by assisting in the formation of new and functional living tissues using 

living cells that are associated with each other [12]. According to Ma [13], there are three 

approaches in tissue engineering: (1) the use of isolated cells or cell substitutes to replace 

those cells that supply the needed function; (2) the delivery of tissue inducing substances, 

such as growth and differentiation factors, to targeted locations; and (3) growing cells in 

three dimensional scaffolds. The three dimensional scaffold that contains these cells is 

then delivered in the patient’s body to assist in new tissue formation, after which the 

scaffold degrades over time. Figure 2.1 shows the approach in which cells are seeded 

onto the scaffold biomaterial which is then implanted with growth factors and specific 

nutrients in a bioreactor. The engineered tissue is then transplanted in the patient’s body 

to facilitate the formation of functional tissues and organs.   

 

 
Figure 2.1: Tissue engineering approach involving scaffold biomaterial [14] 
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The desirable characteristics for any type of scaffold material in the field of tissue 

engineering are biocompatibility (i.e., not to provoke any unwanted tissue response to the 

implant), high porosity and proper pore size, high surface area, structural strength and 

mechanical integrity to maintain the predesigned tissue structure, manufacturing 

feasibility and biodegradability (i.e., degradable into nontoxic products, leaving the 

desired living tissue) [12, 15, 16, 17]. The scaffold materials can be made up of natural 

polymers, synthetic polymers, ceramics, metals, or combinations of these materials [12, 

18, 19]. Naturally occurring scaffold material examples include collagen, 

glycosaminoglycans (GAGs), chitosan and alginates. Synthetic scaffold material 

examples include polymers, ceramics, glasses and bioactive glasses. The scaffolds used 

in the field of tissue engineering posses different properties such as porosity and pore 

size, biodegradability and biocompatibility, surface properties, and mechanical 

properties.  

 

The tissue engineered scaffolds are used in a variety of clinical applications like bone 

repair, cartilage repair, nerve repair, skin repair, gene therapy cells and vascular repair 

[20]. In this research we concentrate only on the PGA fiber felts that are used as vascular 

grafts in the area of vascular tissue engineering for the repair of blood vessels. Figure 2.2 

shows vascular graft used in the tissue engineering of blood vessels in an autologous pig 

model where smooth muscle cells are seeded into porous PGA tubes and cultured under 

different pulsing conditions. As a result the tissue engineered arteries last for more than 3 

weeks without occluding. 

 
 

Figure 2.2: Tissue engineered blood vessel implanted into a pig model [12]. 
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2.2  Current techniques for joining the non woven meshes 
 

Needling: 

Non woven PGA meshes are produced from the multifilament yarn by polymer extrusion, 

stretching and relaxation at high temperatures. The yarn is then crimped, cut, carded and 

needled to entangle the fibers and lock them in order to create a non woven fiber mesh. 

The sheets of non woven PGA fiber meshes are then needled together to form different 

shapes such as tubular structures with the application of heat by the heated plates and 

thereby increasing the dimensional stability of the overall structure [21]. But the main 

drawback of this method is that it is difficult to obtain a regular pore size. 

 

Spray casting: 

In this technique, non woven meshes of PGA fibers are attached to a rotating 

Teflon cylinder. The scaffolds are joined and reinforced by spray casting with a solution 

of polylactic acid (PLA) or co-polymer of PGA and PLA called (PLGA) and results in a 

thin coat that bonds the cross points of the PGA fibers [22]. The behavior of the 

transplanted cells is then determined by the PLA or PLGA coating instead of the PGA 

mesh. Mechanical strength is provided by both the coating and the fibers and is designed 

in such a way to withstand mechanical stresses or composite degradation of PLA or 

PLGA. This method is useful only for the fabrication of thin scaffolds and a major 

drawback is that this method does not allow the creation of complex three dimensional 

scaffolds as the coating is very thin. 

 

Fusion: 

The fusion technique helps in the fabrication of tubular scaffolds made of PLGA 

polymers. The porous PLGA membranes obtained from solvent casting and particulate 

leaching method are used and wrapped around a Teflon cylinder. The overlapping ends of 

the fibers are fused together with chloroform that acts as a binder. The Teflon core is then 

removed to leave a hollow tube [23]. This technique is used to shape the scaffolds into 

three dimensional 3-D structures but the drawback is that it is limited only to tubular 
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scaffolds with a low ratio of wall thickness to inner diameter because of the relatively 

brittle nature of the porous membrane used. 

 

Fiber Bonding: 

 The PGA non woven mesh obtained from textile processing is casted with a solution of 

PLLA dissolved in methylene chloride [24]. The solvent is allowed to evaporate and the 

construct is then heated above the melting point of PGA. When the PGA-PLLA 

constructs cool, PLLA is removed by dissolving in methylene chloride. This process 

results in the mesh of PGA fibers being joined at their cross points. The disadvantage is 

that this technique cannot be used to create 3-D scaffold structures. 

 

Use of external binder: 

External binders are used for the joining of fibers along with some application of 

pressure [25]. This technique results in production of complex three dimensional scaffold 

structures but the main drawback includes uniformity of binder distribution throughout 

the non woven web causing the properties of the entire web to become limited by the 

properties of the binder. 

 

Thermal Bonding: 

In one of the thermal bonding techniques, a non woven web is formed from 50% 

PGA: 50% TMC copolymer.  The web is then compressed under 0.14 MPa (20 psi) 

pressure to reduce porosity and cut into rectangles of 2.25 cm by 1.75 cm. These sheets 

are then wrapped around a 4 mm stainless steel mandrel creating a tube with an 

overlapping seam. This seam is then pressed together using moderate finger pressure 

allowing the membrane to bond at this point. The membranes and mandrels were then 

placed in an oven, preheated to 70 oC for one hour and then removed. When the resulting 

seam bond of a selected sample was checked with tweezers, it appeared to have strength 

similar to that of the starting web. The application of heat and pressure causes a localized 

melting of the fibers and allows for fusion of the non woven web filaments at the fiber 

crossover points [26].  



This technique has several limitations such as limited melt viscosity at the 

bonding interface, relatively weak inter-fiber attachments, compression under heat 

reduces web loft therefore increasing the apparent or overall density and limiting the 

relative amount of overall space available for tissue in growth. 

 

Sewing: 

The scaffold is sewn into a cylindrical construct with the help of 6-0 PGA suture (US 

Surgical, Norwalk, CT) around a cylindrical tube that acts as a support [27]. This 

technique creates an axially aligned suture line on each vessel.  The major drawback is 

that the PGA tube primarily fails by tearing along the suture line, at the region of highest 

polymer concentration and highest stress. 

 

 Use of P4HB solvent: 

In this technique, sheets of PGA having dimensions of approximately 80 x 5 x 1 

mm are wrapped around a rod having a diameter of 3 mm. The ends of the sheet are 

secured with suture and the whole setup is dip coated in a 1w/v% P4HB solution as 

shown in Figure 2.3.  

 
Figure 2.3: Formation of a tubular scaffold by P4HB solvent [28] 

 

After evaporation of the solvent, the tubular construct can be removed from the rod. The 

solvent remnants which may sometime be present can be removed by drying the scaffolds 

under vacuum [28]. The PGA sheet has to be carefully wrapped around the rod so that the 

turns are close to each other and results in a well connected uniform tube.  This technique 

results in a thick layer that helps in improving the mechanical properties of the scaffold. 

The drawback is that dense outer layer causes complications in cell seeding. 
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2.3 Laser Welding of Polymers 

 

There are various methods available for welding polymers as shown in Figure 2.4. An 

ideal welding technique should be applicable to different joint configurations, taking into 

consideration of small and large bonding areas, flexible for automation and on-line 

inspection, and providing reproducible, strong, and reliable welds at optimal cost [29]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Different joining techniques for polymers [29] 

 

Laser welding seems to be a promising technique in this sense. In laser welding of 

polymers, the energy must be harnessed and converted into heat. Laser light must be 

absorbed at the joint interface to generate enough heat to produce a weld.  The use of 

lasers in welding of thermoplastic textiles can be an alternative to the traditional method 

like sewing. The main benefits of laser welding of polymers are as follows: 

• Ability to weld all thermoplastic textiles including nylon, PP and polyester 

• Weld strength capable of reaching the strength of  the parent material 

• Clean, aesthetically pleasing seam appearance 

• Enabling the sewing and seam sealing process to be combined into one 

• High Energy – allows for high processing speeds   
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• Clean – non-contact allows total process to remain clean from debris and 

overheated material  

• Flexible – various methods of beam delivery allow for easy changeover from one 

part to the next  

• Controllable – the laser light is very easy to control and allows for precise 

delivery of the correct amount of energy  

• Easy to automate – laser can be integrated with a robot for automatic control 

 
Yousefpour [30] and coworkers investigated the laser welding of thermoplastic polymers 

and their composite parts. The laser beam passes along the bondline of the two pressed 

parts. During this process some of the polymer burns along its path and leaves a thin 

layer of molten polymer at the bond line. The whole melt is brought together under 

pressure and allowed to solidify resulting in a weld. Laser transmission welding [31, 32] 

is another technique for welding polymers like thermoplastic materials. There are two 

parts namely top (transmissive) and bottom (absorbent) part. The laser beam penetrates 

the top laser-transmissive thermoplastic and is converted into heat by either a bottom 

laser absorbent thermoplastic or by a laser absorbent dye at the weld interface. The 

pressure is applied by an external force which clamps the two parts and allows for the 

conduction of heat to form a bond.  Thermal expansion in the welding zone creates an 

internal pressure and leads to a strong weld between the parts. Figure 2.5 shows the laser 

transmission welding approach as discussed above. 

 

 
Figure 2.5: Laser transmission welding approach [32] 
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In laser welding of plastics, among the various methods like contour, quasi- 

simultaneous, mask and simultaneous welding, the most flexible method is the spot or 

contour welding. In this method, the laser is focused onto a single point that is then traced 

along the length of the weld. This spot can be anywhere from 0.6 to 5 mm in diameter 

and moved along the weld line. The workpiece can be fixed to an X-Y table or the laser 

can be attached to a robotic arm, or a combination of the two. The current trend is 

towards using diode or fiber lasers transmitting light in the 810 to 980 nanometer 

wavelength range [33].  

 

An example of laser contour welding is Globo welding as illustrated in Figure 2.6. A 

laser beam is focused at a point on the plane via an air bearing, frictionless, freely 

rotating glass sphere [34]. The glass sphere is used to focus the laser beam on the joining 

surface and also act as a clamping tool. The sphere applies continuous pressure at a point 

on the joining surface while rolling on it and the laser beam is also focused only at the 

point where the contact pressure is applied.  The glass sphere replaces the mechanical 

clamping device and expands the scope of laser welding for both continuous and three-

dimensional applications. 

 

 
 

Figure 2.6: Globo welding concept [34] 
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2.4 PGA based Biofelts 

BIOFELT(TM) as shown in Figure 2.7 is a branded absorbable 3D non-woven PGA felt 

scaffold manufactured at Concordia Manufacturing, LLC. This PGA felt scaffold can 

rapidly grow cells and form an organized 3D tissue structure. It has a porosity factor of 

>97% and excellent flexibility and softness. The standard size is 20 cm x 30 cm felts with 

thickness in the range from 1 to 5 mm and bulk density in the range from 25 to 100 mg/cc 

[35]. There are numerous uses of these felts and they can be used for ligament 

replacement, vessel replacement, localized radiation and common tissue repair. These 

felts are designed to support the growth of stem cells teased out of fat cells. The company 

makes tubular scaffolds as shown in Figure 2.8 from these PGA felts by a seaming 

process with punched needles [35]. The tubular scaffold is denser at the seams and the 

lead time to make these tubes is about 2 weeks with an additional cost of $ 200 per tube. 

This structure can be put in a bioreactor where the blood cells can be taken from a 

patient’s body and grown. The cells get differentiated and are grown into a suitable 

vascular structure. 

                                                                           
Figure 2.7: PGA based Biofelt scaffold [35] 
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Figure 2.8: Tubular PGA scaffolds [36] 

In this research, we are going to use these PGA Biofelt scaffolds with the following 

specifications: dimension of 20 cm x 30 cm felt, thickness of 1mm and mass density of 

50 mg/cc. A continuous wave (CW type) diode laser with a central wavelength of 937 nm 

will be used to create a series of spot welds in order to make a tubular scaffold.  

2.5 Research Objectives 

 
The goal of this research is to develop a laser spot welding process for PGA (polyglycolic 

acid) based scaffold felts which are non-woven. The specific objectives of this study can 

be summarized in the following way: 

 

1) To carry out a fundamental study of laser welding of PGA scaffolds. 

2) To design an experimental setup and conduct experiments for the laser welding 

of non-woven PGA fiber felts. 

3) To determine the operating process parameters and measure their effects on the 

weld quality wherein the weld quality is characterized in terms of weld diameter, 

discoloration and weld strength. 

 

This thesis is organized in the following manner. Chapter 2 gives a brief literature review 

on the background of scaffolds in tissue engineering, the existing joining techniques for 

attaching the non woven fibers, and laser welding processes of polymers. Chapter 3 deals 

with the experimental setup and laser welding experiments. The results obtained from the 

experiments will be analyzed to determine the influences of the process parameters on the 

weld quality. The weld strength will be compared with the original tensile strength of the 

PGA material. A regression analysis will be done based on the results obtained and a 

regression model thus derived will be used to help optimize the laser welding process. 

Finally, the conclusions and future work will be summarized in Chapter 4.  

 



CHAPTER 3 - Laser welding of PGA scaffold Bio Felt ser welding of PGA scaffold Bio Felt 

3.1 Experimental setup 3.1 Experimental setup 

    

Laser welding of the biodegradable PGA Biofelt is carried out with the experimental 

setup as shown in Figure 3.1. In this setup the high power diode laser system (central 

wavelength of 937 nm, continuous wave output and power range 0-500 W) is used.  

Laser welding of the biodegradable PGA Biofelt is carried out with the experimental 

setup as shown in Figure 3.1. In this setup the high power diode laser system (central 

wavelength of 937 nm, continuous wave output and power range 0-500 W) is used.  

  

 

PGA Biofelt 

Laser head 

Digital scale  

  Figure 3.1: Experimental setup for laser welding of PGA polymer scaffolds 

 

In our experiments, the sample sheets of PGA fiber felt are mounted on top of a 

silicon nitride ceramic plate that is placed on the digital scale. The scale is in turn 

mounted on the translation stage of a CNC controlled worktable and a computer controls 

its movement. The laser power is varied from 0-100 W.  A ball lens made of BK 7 glass 

having a diameter of 5 mm is used to control the spot size at the focal plane as shown in 
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Figure 3.2. The laser spot size varies from 1 to 2 mm from our measurements in Section 

3.3.1.2. The fixture is designed in such a way that the laser beam is focused vertically 

down from the ball lens onto the sample. A flat plate having a beveled hole with the 

diameter of 4 mm is attached to the setup in order to apply load on the ball lens and 

permit the laser beam to pass through the cavity. The applied load is measured using the 

digital scale. The laser beam diameter is determined with the help of a burn paper at a 

constant power of 80 W and fixed time duration of 1 sec below the ball lens at a distance 

of 0.5 mm. A stopwatch is used to record the time duration for which the laser is on at 

different levels of power. 

 

 

 

Laser 

head Pressure plate 

Silicon nitride 

ceramic plate 

Ball lens 

BK 7 
PGA Biofelt 

Digital scale 

Figure 3.2: Use of BK 7 ball lens in the experimental setup 
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3.2 Types of Experiments 
 

3.2.1 Creation of spot welds using BK 7 ball lens 

In our experiments different spot welds are created on the PGA fiber felts using 

various operating parameters. Since it is difficult to come up with proper conditions while 

welding these sensitive fibers, in order to determine the suitable conditions several 

parameters need to be considered like laser power, beam diameter, time duration and 

weld pressure. The optimal conditions for creating a successful weld with good weld 

qualities such as high strength, no discoloration and medium weld diameters are obtained 

by carrying out a design of experiment. Table 3.1 shows the operating conditions for laser 

welding experiments. 

 

Table 3.1 Operating conditions for welding experiments 

Laser welding 

parameters 

Laser power   

(W) 
              70, 75, 80 

Beam 

diameter 

(mm) 

              1, 1.5, 2 

Time duration 

(sec) 
              5, 10, 15, 20 

Pressure 

(MPa) 
             26, 29, 31 

Work Specimen 

 

Two sheets of PGA polymer felts placed on top of each other having 

dimensions of 3.1 x 2.8 mm 

Support Base 

The two sheets of PGA fibers are placed on top of a silicon nitride 

ceramic plate. 
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3.2.1.1 Design of welding experiment 

The welding conditions are selected after some initial testing such that proper 

welds without any discoloration and holes are generated. Different patterns can be 

obtained with the help of these conditions such as cylindrical tubes with a series of spot 

welds in a sequential manner. For the design of welding experiments the operating 

conditions are selected as shown in Table 3.1 and a full factorial design is carried out to 

determine the number of runs. In our experiments there are four factors out of which 

three factors namely laser power, beam diameter and pressure are at three levels and the 

last factor time duration is at four levels as shown in Table 3.2.   

 

         Table 3.2 Operating parameters at different levels 

Level Level [1] Level [2] Level [3] Level [4] 

Laser power (W) 70 75 80  

Beam diameter  (mm) 1 1.5 2  

Pressure applied (MPa) 26 29 31  

Time duration (sec) 5 10 15 20 

 
Based on the factorial design, a total of 108 experimental runs are obtained to carry out 

the experiments. However, under certain conditions, excessive discoloration, large holes 

and lens damage are noticed. These conditions are thus considered unacceptable and 

removed from the factorial design. The final experimental conditions chosen are outlined 

in Table 3.3. The values 1, 2, and 3 indicate the different levels of the various operating 

factors such as level [1], level [2], and level [3].  The runs are randomized and based on 

the ANOVA analysis and p-value statistics it is observed that the main factors are laser 

power, beam diameter, pressure and time duration. The interaction effects of the 

operating parameters are negligible and considered insignificant based on the p-values 

obtained. 
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Table 3.3 Test conditions for creating welds on PGA felt 
Std 

Order 
Run 

Order Pt Type Blocks Power (W) 
Beam 

Diameter (mm) 
Time Duration 

(sec) 
Pressure 

(MPa) 
12 1 1 1 1 2 3 2 
6 2 1 1 1 1 3 2 
17 3 1 1 2 1 3 1 
7 4 1 1 1 2 1 1 
9 5 1 1 1 2 2 1 
26 6 1 1 3 1 1 2 
22 7 1 1 2 2 2 2 
16 8 1 1 2 1 2 2 
23 9 1 1 2 2 3 1 
14 10 1 1 2 1 1 2 
19 11 1 1 2 2 1 1 
2 12 1 1 1 1 1 2 
34 13 1 1 3 2 2 2 
25 14 1 1 3 1 1 1 
1 15 1 1 1 1 1 1 
30 16 1 1 3 1 3 2 
36 17 1 1 3 2 3 2 
20 18 1 1 2 2 1 2 
24 19 1 1 2 2 3 2 
11 20 1 1 1 2 3 1 
8 21 1 1 1 2 1 2 
3 22 1 1 1 1 2 1 
27 23 1 1 3 1 2 1 
15 24 1 1 2 1 2 1 
33 25 1 1 3 2 2 1 
31 26 1 1 3 2 1 1 
4 27 1 1 1 1 2 2 
32 28 1 1 3 2 1 2 
28 29 1 1 3 1 2 2 
18 30 1 1 2 1 3 2 
5 31 1 1 1 1 3 1 
21 32 1 1 2 2 2 1 
10 33 1 1 1 2 2 2 
35 34 1 1 3 2 3 1 
29 35 1 1 3 1 3 1 
13 36 1 1 2 1 1 1 

 

3.2.1.2 Creation of cylindrical tubes 

Cylindrical tubes can be created out of these PGA felt sheets with the help of laser 

spot welding. The experimental setup as shown in Figure 3.3 is used to carry out the 

welding process. A cylindrical rod made of silicon nitride having diameters of 5 mm and 

10 mm is used as the base material, on which the PGA fiber sheet is rolled. The laser 



beam is focused using the BK 7 ball lens onto the ends of the fiber sheet in order to create 

a series of spot welds. 

 

 

Silicon nitride 

cylindrical rod 

PGA Biofelt 

Figure 3.3: Experimental setup for creating tubular PGA scaffold 
 

 
Based on the results obtained from the experiments, the conditions that are favorable in 

creating successful welds without discoloration, having adequate weld strength and 

optimal weld diameter  are used in this case for creating spot welds such that a cylindrical 

tubular scaffold is obtained as shown in Figure 3.4.  

 
 

Figure 3.4: Tubular PGA scaffold 
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Different samples (e.g. varied lengths and diameters) of these tubular PGA scaffolds are 

obtained by carrying out the laser spot welding. 

 

Table 3.4 Operating conditions for the creation of various cylindrical tubes 

Tubular scaffold 

dimensions 

Laser Power 

(W) 

Beam Diameter 

(mm) 

Time Duration 

(sec) 

Pressure 

 (MPa) 

Diameter 6 mm 70 1 5 26 

Diameter 7 mm 75 1.5 5 26 

Diameter 10 mm 75 1.5 5 29 

 

Table 3.4 gives a list of operating conditions that yield welds to form tubular 

scaffolds. The diameters of the tubular scaffolds obtained are 6, 7 and 10 mm and 

corresponds to the diameter of the cylindrical silicon nitride mandrels that we used in the 

experiment. It is possible to get dimensions of different diameters of the tubular scaffold 

based on the diameter of the cylindrical mandrel around which the PGA biofelt is 

wrapped. The laser power when used in the lower range such as 70 and 75 W along with 

other parameters gives a good weld. Higher power of 80 W with a combination of other 

factors lead to holes being burnt or discoloration and the reason is explained in the next 

section while performing the design of experiments. The beam diameter is operated at 

Level [1] and Level [2] along with other parameters and yields favorable weld conditions. 

At Level [3] the highest beam diameter corresponds to a weak weld or no weld condition 

as the distance between the laser source and the PGA specimen is too large. As the 

distance between the laser source and the target material increases the concentration of 

the laser radiation on the PGA material decreases and hence leads to weaker or no weld 

conditions. The time duration is operated at Level [1] and Level [2] in order to achieve 

good welds within a short time duration. It is desired that we operate the laser welding 

process with faster processing times.  The pressure is also operated at a low level that is 

at Level [1] since at higher levels in combination with other factors, the welds obtained 

are not favorable as they lead to holes being formed or discoloration and is explained in 

the next section. 

 



3.3 Laser Welding – a parametric study 

 

3.3.1 Laser Welding Parameters 

 

3.3.1.1 Laser Power 

Laser Power is an important parameter in welding applications. The laser power 

output from the laser system ranges from 0 to 500 W.  By turning the laser power dial 

button in a clockwise direction and operating it in a manual mode, we obtain the laser 

power in an increasing manner. The Beam On button as shown in Figure 3.5 on the front 

panel is pressed to activate the laser beam at a specified power level to carry out the 

welding operations. In our experiments the maximum laser power is 80 W. 

 

 
Figure 3.5: Laser Power Dial 

 

3.3.1.2 Beam Diameter 
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The beam diameter is measured with the help of a burn paper. The laser beam is 

focused with a ball lens on the burn paper as shown in Figure 3.6 and the distance of the 

laser source from the ball lens denoted by h mm is varied in order to obtain different 

beam diameters. The burn paper is kept below the ball lens at a distance of 0.5 mm. The 

laser power is operated at 80 W for a period of 1 sec and the holes formed on the burn 

paper as shown in Figure 3.7 are then measured with a digital microscope to get the beam 

diameter readings. In our experiments the beam diameter is varied from 1 to 2 mm.  
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                                                             h  
BK 7 

Laser source 

0.5 mm

Burn paper on 

silicon nitride ceramic 

 

 

 

 

Figure 3.6: Measuring beam diameter with burn paper 

 

  

 

 
Figure 3.7: Measuring beam diameters with burn paper 

 

 

 

                                                

 



 

3.3.1.3 Time Duration 

The time duration for which the laser beam is turned on at a specified laser power 

is measured using a stopwatch as shown in Figure 3.8. As soon as the Beam On button is 

pressed, the stopwatch is started simultaneously to determine the amount of time for 

which the material or the specimen is exposed to the laser beam. The time duration in our 

experiments is varied from 5 to 20 sec. 

 

 
Figure 3.8: Measuring time with a stopwatch 

 

 

3.3.1.4 Weld Pressure 

The pressure required for carrying out the spot welding process is determined by 

dividing the load applied on the ball lens by the area of contact on the base material. To 

determine the contact area, we follow some assumptions of the Hertz theory and perform 

calculations based on the load applied. When two smooth nonconforming surfaces 

initially come in contact, they touch at a single point [Johnson, 1985]. As the load 

increases, deformation occurs in the area of that point, the area of contact grows, and so 

does the distribution and magnitude of surface tractions.  
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During this process, Hertz theory predicts the shape and area of contact, as well as the 

distribution and magnitude of surface tractions over the surface. The relative radius of 

curvature of the two contacting bodies is given by 

 

                                         
R
1  = 

1R
1  + 

2

1
R

                              (3.1) 

where  is the radius of the BK 7 ball lens and  is the radius of the contacting 

object. 

1R 2R

 

When the ball lens and the silicon nitride base material containing the PGA non woven 

biofelt come into contact, with a known load P, the resulting contact area has a radius of 

a, 

 

                           a = 
3/1

*4
3

⎟
⎠
⎞

⎜
⎝
⎛

E
PR                              (3.2) 
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+
−                  (3.3) 

                                   
                                                                                

where  is the modulus of elasticity of the silicon nitride plate and  is the 

modulus of elasticity of the BK 7 ball lens.  v1 is the Poisson’s Ratio for the silicon 

nitride material, and v2 is the Poisson’s Ratio of the BK 7 ball lens. The values are given 

in Table 3.5.  

1E 2E
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Table 3.5 Mechanical properties of BK 7 and silicon nitride [37, 38] 

 

     Material/Property 

 

 

         E1 

     (GPa) 

 

         E2 

      (GPa) 

 

         v1 

 

       v2 

 

         R1 

        (mm) 

 

     R2 

 

       BK 7 

 

          8.2 
 

 

           - 

 

      0.206 

 

          - 

 

         2.5 

 

       - 

 

Silicon Nitride 

 

- 

 

        310 

 

 

           - 

 

       0.27 

 

- 

 

        - 

 

 

Table 3.6 Contact properties under different loading conditions 

 

Load 

 

 

4.17 N 

 

5.65 N 

 

6.95 N 

 

     Contact radius 

       a (mm) 

 

 

0.225 

 

0.249 

 

0.267 

 

     Contact area  

        A (mm2) 

 

0.159 

 

0.194 

 

0.223 

 

    Pressure applied  

         Pz (MPa) 
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Therefore from the above Table 3.6 we can see that the weld pressures needed to 

carry out the spot welding of PGA biofelts can be obtained by dividing the load applied 

on the ball lens P by the contact area A. 

 

3.3.2 Weld Quality Parameters 

 
3.3.2.1 Weld Diameter 

Weld Diameter can be measured with the help of a digital microscope and it 

usually is circular in shape because of the nature of the laser beam. The weld diameter 

can be assessed by the nature of the weld assessed in terms of (hole formed) strong weld, 

nice weld without any holes (melted region) and no holes. The weld diameter can be 

easily measured for the case when a hole is formed on the PGA biofelt as shown in 

Figure 3.9, as the boundaries of the hole are clearly visible. 
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Figure 3.9: Measuring weld diameter for strong weld with hole formed  

 

 

 

di 

Inner diameter: di 

Outer diameter: do do 



 

Average weld diameter: dw 

dw 

Figure 3.10: Measuring weld diameter for nice weld with melted region 

 

 

 

 

 

Average weld diameter: dw 

dw 

Figure 3.11: Measuring weld diameter for No hole condition 
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It becomes a little complicated in determining the exact boundaries for the 

conditions with melted as shown in Figure 3.10 and no hole region as shown in Figure 

3.11. In such cases, multiple measurements are made for the weld diameters and average 

values are used for each case to minimize the measurement error and increase the 

repeatability.  The weld diameters are measured with the help of a digital microscope that 

is calibrated to give the actual readings with a maximum percentage error of 5.75 % for 1 

mm beam diameter conditions and 6.7 % error for the 1.5 mm beam diameter conditions. 

The formula to calculate the percentage error is shown below: 

  

Maximum % Error = 100*max
⎟
⎠
⎞

⎜
⎝
⎛ −

mean

mean

x
xx

                 (3.4) 

 

where maxx  is the experimental measurement of the maximum weld diameter, 

meanx  is the average of the measured weld diameters. 

                                    ⎟
⎠
⎞

⎜
⎝
⎛ +++

=
n

xxxx n
mean

exp2exp1exp ...                 (3.5) 
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3.3.2.2 Weld Strength 

Weld strength is a useful output parameter for determining the strength of the 

weld formed on the PGA specimen. The pull-off load measurement is made with the help 

of a scale balance that can measure the load needed to pull apart the welded fibers. The 

setup for measuring the pull-off load of the welded fibers is shown in Figure 3.12, where 

the PGA welded fiber sheet is held on an aluminum plate by fixing the bottom sheet on 

the plate using a tape. The aluminum plate is then clamped on a bench vise and one of the 

ends of the top sheet is grabbed using a scale balance. The welded fiber sheets are pulled 

apart giving the reading in gram-force on the scale balance.  

 

 

 
Figure 3.12: Setup for measurement of weld strength 
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The weld strength can then be determined by dividing the pull-off load by the area 

of the weld obtained and this value is compared with the tensile strength of the original 

PGA biofelt sample to determine how strong the weld is. The tensile strength of the PGA 

biofelt is measured using an Instron testing machine and is discussed in Section 3.4.1.  

 

 For a given weld area of Aw, the pull-off load P is related to the weld strength σw 

by the following equation: 

     

    P = Aw * σw                                                (3.6) 

 

Since the welds formed are circular in cross section, the weld area Aw for the 

welds formed can be obtained by:  

 

    Aw = π * r2                                              
(3.7)

 

 where r is the radius of the circular weld formed on the PGA specimen felts.  

 

In some cases where proper boundary conditions do not exist, we take multiple 

readings and calculate the average value of the circular diameter in order to calculate the 

weld area Aw. For cases when there is a hole, the outer and inner weld diameters are 

measured and the weld area Aw is given by the following formula: 

 

 

    Aw = π * (r1
2- r2

2)                   (3.8)        

    
where r1  and r2 are the radius of the outer and inner circular welds respectively. 

                                                                
 

 



 

 

3.3.3 Effects of Operating Parameters on Weld Diameter 

 
3.3.3.1 Influence of Laser Power on Weld Diameter 

 Laser power directly affects the weld diameter and its quality. For the low 

power, weld diameter with less HAZ is obtained. As the power of the laser beam 

increases from 70 W to 80 W (other laser parameters are the same), the weld diameter 

increases with more HAZ. Tables 3.7 and 3.8 give the weld conditions and results for 

each case. 

 

Table 3.7 Weld conditions for beam diameter of 1 mm 

Power 
(W) 

Beam       
diameter 

(mm) 

Time 
duration 

(sec) 
Pressure   

(MPa) 

Weld 
diameter  

(mm) Observations 
70 1 5 26 0.400 Hole formed

75 1 5 26 0.600 Hole formed

80 1 5 26 0.850 Hole formed

 

     

 

Beam Diameter=1 mm Laser Power=70 W 

Inner diameter 

di= 0.300 mm 

 

Outer diameter

do= 0.500 mm 

Magnification=30 X 

(a) 
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Beam  Diameter=1 mm Laser Power=75 W 

  do 

  di 

Inner diameter 

di= 0.42 mm 

 

Outer diameter

do= 0.76 mm Magnification=25 X 

                                                                          (b) 

 

 

 di 

do 

Laser Power=80 W Beam Diameter=1 mm 

Outer diameter

 

di= 0.60 mm 

Inner diameter 

do= 1.10 mm 

Magnification=20 X 

(c) 

Figure 3.13 Optical images of welded holes with different laser power  
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(a) Laser Power=70 W (b) Laser Power=75 W (c) Laser Power=80 W 

 

Table 3.8 Weld conditions for beam diameter of 1.5 mm 

Power 
(W) 

Beam       
diameter 

(mm) 

Time 
duration 

(sec) 
Pressure   

(MPa) 

Weld 
diameter  

(mm) Observations 
70 1.5 5 26 0.525 Melted region 
75 1.5 5 26 0.660 Melted region 
80 1.5 5 26 0.900 Melted region 

 

 

 

        
                                                    

     

do 

di 

 d 

  dw 

  dw 

Laser Power: 75 W 

Laser Power: 70 W 

Weld diameter dw= 0.525 mm 

Laser Power: 70 W 

Laser Power: 75 W 
Weld diameter dw= 0.66 mm 
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Weld diameter dw= 0.90 mm 

Laser Power: 80 W 
di

do 

Laser Power: 80 W 

                                   (a)                                   (b) 

Figure 3.14 Optical images of weld diameters with different laser power 

(a) Beam diameter=1mm (b) Beam diameter= 1.5 mm 

 

To understand the effect of laser power, weld diameter and HAZ of the welded 

holes are directly measured from the optical images as shown in Figures 3.13 and 3.14. 

Figures 3.13 (a), (b) and (c) show the weld images for increasing laser power at a beam 

diameter of 1 mm. The inner and outer diameters are measured and the average weld 

diameter value is determined for the holes formed. The weld hole as shown in Figure 

3.13 (a) is not circular in shape. The optical images in Figure 3.14 (a) are used for 

comparison with optical images in Figure 3.14 (b). Figure 3.14 (b) shows the weld 

images for increasing laser power at a beam diameter of 1.5 mm and magnification of 40 

X. The weld regions are circular in shape and the weld diameters are measured for each 

case. In the case of melted regions, the average weld diameter value is determined for 

each case and used for comparison with other conditions. Since the laser beam follows 

Gaussian intensity profile as shown in Figure 3.15, increase in power leads to ablation of 

more surrounding materials. This makes the weld diameter on the PGA fiber felts 

increase almost linearly with laser power. The graphs are plotted in Figures 3.16, 3.17 

and 3.18. It is evident from the graph in Figures 3.16 and 3.17 that as the laser power 

increases, the weld diameter increases at different beam diameter conditions. The results 

obey the generally observed relationship between weld diameter and laser power. 
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Figure 3.15: Gaussian beam profile 
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Figure 3.16: Variation of weld diameter with laser power for beam diameter of 1 

mm 
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Figure 3.17: Variation of weld diameter with laser power for beam diameter of 1.5 

mm 
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Figure 3.18: Variation of weld diameter with laser power 

3.3.3.2 Influence of Pressure on Weld Diameter 

The pressure applied on the spherical ball lens also affects the weld diameter and 

weld strength. The weld conditions and results are listed in Tables 3.9 and 3.10. Figure 

3.19 (a) and (b) shows the weld diameters with different weld pressures at beam 

diameters of 1 and 1.5 mm respectively. The weld images for beam diameters of 1 mm 

and 1.5 mm are at a magnification of 17 X and 40 X respectively. The results are shown 

in Figures 3.20, 3.21 and 3.22. It is clear from the graphs that the weld diameter increases 

with contact pressure. The increase in weld diameter corresponds to an increase in the 

weld area for the condition when there is a hole. This is due to the fact that the molten 

polymer is squeezed as pressure is increased and this causes the weld diameter to 

increase. For the case when there is only melted region, the increase in pressure also 

corresponds to increase in weld diameter and weld area.  

 

 

Table 3.9 Weld conditions for beam diameter of 1 mm 

Power 
(W) 

Beam       
diameter 

(mm) 

Time 
duration 

(sec) 
Pressure 

(MPa) 

Weld 
diameter  

(mm) 
Weld area  

(mm2) Observations 
75 1 5 26 0.600 0.324 Hole formed

75 1 5 29 0.794 0.594 Hole formed

75 1 5 31 0.965 0.861 Hole formed

 

 

Table 3.10 Weld conditions for beam diameter of 1.5 mm 

Power 
(W) 

Beam       
diameter 

(mm) 

Time 
duration 

(sec) 
Pressure   

(MPa) 

Weld 
diameter  

(mm) 
Weld area  

(mm2) Observations 
75 1.5 5 26 0.660 0.342 Melted region

75 1.5 5 29 0.820 0.528 Melted region

75 1.5 5 31 1.01 0.801 Melted region



   

   

    
Pressure: 31 

Pressure: 26 MPa 
Pressure: 26 MPa 

Pressure: 31 MPa 

Inner diameter 

di= 0.70 mm 

 

Outer diameter

do= 1.26 mm 

Inner diameter

di= 0.42 mm 

 

Outer diameter

do= 0.768 mm

   di 

  

do 

Weld diameter dw= 0.66 mm 

Weld diameter dw= 1.01 mm 

Weld diameter dw= 0.82 mm 

Pressure: 29 MPa 
  

do 

          di 

Inner diameter 
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                                          (a)                                                         (b) 

   Figure 3.19: Optical images of weld diameters with different contact pressures 

(a) Beam diameter=1 mm (b) Beam diameter=1.5 mm 
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Figure 3.20: Variation of weld diameter with pressure for beam diameter of 1 mm 
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Figure 3.21: Variation of weld diameter with pressure for beam diameter of 1.5 mm 
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                 Figure 3.22: Variation of weld diameter with pressure 

  

Figure 3.22 compares the cases in which beam diameter is constant at 1 mm and at 1.5 

mm. The weld diameters are slightly greater for the beam diameter of 1.5 mm than 1 mm 

while other parameters being constant.   

 

3.3.3.3 Influence of Beam Diameter on Weld Diameter  

The weld conditions and results for increasing beam diameter are listed in Tables 

3.11 and 3.12. Figures 3.23 (a) and (b) show the weld diameter images with increasing 

beam diameters at power levels of 70 and 75 W respectively at a magnification of 40 X. 

Partial holes are formed at the 1 mm beam diameter conditions for 70 and 75 W laser 

power levels (other parameters being constant). The average diameter dw (mm) is 

measured since there is no proper hole. The results are plotted in Figures 3.24, 3.25 and 

3.26. It is clear from the graphs that weld diameter increases with beam diameter as the 

area of laser exposure increases.  

         

 

40 

 



 

  Table 3.11 Weld conditions for laser power of 70 W 

Power 
(W) 

Beam       
diameter 

(mm) 

Time 
duration 

(sec) 
Pressure   

(MPa) 

Weld 
diameter  

(mm) Observations 
70 1 15 26 0.79 Partial hole  
70 1.5 15 26 0.85 Melted region 
70 2 15 26 0.90 No hole 

 

 

 

Table 3.12 Weld conditions for laser power of 75 W 

Power 
(W) 

Beam       
diameter 

(mm) 

Time 
duration 

(sec) 
Pressure   

(MPa) 

Weld 
diameter  

(mm)  Observations 
75 1 15 26 0.85 Partial hole  
75 1.5 15 26 0.93 Melted region 
75 2 15 26 0.98 No hole 

 

 

 

 

  

Beam diameter: 1 mmBeam diameter: 1 mm 

Weld diameter dw= 0.85 mm 

dw 

Weld diameter dw= 0.79 mm 
  dw 
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Beam diameter: 1.5 mm Beam diameter: 1.5 mm 

Weld diameter dw= 0.93 mm 

   dw 

Weld diameter dw= 0.85 mm 

    dw 

 

 

 

 

 

   

Beam diameter: 2 mm 

Weld diameter dw= 0.90 mm 

  dw 
Beam diameter: 2 mm 

Weld diameter dw= 0.98 mm 

 dw 

                                     (a)                                                                      (b) 

Figure 3.23: Optical Images of weld diameters with different beam diameters 

(a) Laser Power=70 W (b) Laser Power=75 W 
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Figure 3.24: Variation of weld diameter with beam diameter for laser 

power of 70 W 
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Figure 3.25: Variation of weld diameter with beam diameter for laser  

            power of 75 W 
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Figure: 3.26 Variation of weld diameter with beam diameter  

 

Figure 3.26 compares the cases in which laser power level is operated at 70 and 75 W. 

For the 70 W conditions, the weld diameters increase with beam diameter and there is a 

partial hole formed with slight discoloration at the boundary for 1 mm beam diameter. 

The weld diameters are greater for 75 W conditions and increase with increasing beam 

diameter as shown in Figure 3.26.   

 

3.3.3.4 Influence of Time Duration on Weld Diameter  

Time duration affects the weld diameter and its quality. As the time duration 

increases from 5 sec to 15 sec (other laser parameters are the same), the weld diameter 

increases. Tables 3.13 and 3.14 give the weld conditions and results for each case. To 

understand the effect of time duration, weld diameter and HAZ of the welded holes are 

directly measured from the optical images as shown in Figures 3.27 (a) and (b). 
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Table 3.13 Weld conditions for beam diameter of 1 mm 

Power 
(W) 

Beam        
diameter 

(mm) 

Time 
duration 

(sec) 
Pressure   

(MPa) 

Weld 
diameter  

(mm) Observations 
70 1 5 26 0.400 Hole formed 
70 1 10 26 0.650 Hole formed 
70 1 15 26 0.790 Hole formed 
70 1 20 26 0.820 Hole formed 

 

Table 3.14 Weld conditions for beam diameter of 1.5 mm 

Power 
(W) 

Beam       
diameter 

(mm) 

Time 
duration 

(sec) 
Pressure 

(MPa) 

Weld 
diameter  

(mm) Observations 
70 1.5 5 26 0.525 Melted region 
70 1.5 10 26 0.700 Melted region 
70 1.5 15 26 0.850 Melted region 
70 1.5 20 26 0.880 Melted region 

 

 

Figures 3.27 (a) and (b) show the weld diameters with different time duration at a 

magnification of 26 and 36 X respectively. The inner and outer diameters are measured 

for the holes formed. The welded holes as shown in Figure 3.27 (a) have slight 

discoloration at the boundaries. Figure 3.27 (b) shows the weld images for increasing 

time duration at a beam diameter of 1.5 mm. The weld regions are circular in shape for 

conditions with beam diameter of 1 mm. The inner and outer weld diameters are 

measured whenever there is a hole formed. In the case of melted regions, average weld 

diameter value dw is measured for each case and used for comparison with other 

conditions. The results are plotted with weld diameter vs. time duration in Figures 3.28, 

3.29 and 3.30. It is clear from the graphs that the weld diameter increases with time 

duration. Figure 3.30 compares the cases in which beam diameter is constant at 1 mm and 

at 1.5 mm. There is no significant increase in weld diameter at different beam diameters 

with increasing time duration.  



 

    
 

    

Weld diameter dw= 0.525 mm 

   dw 

Inner diameter 

di= 0.50 mm 

Weld diameter d= 0.40 mm 

Time=5 sec Time=5 sec

Time=10 sec Time=10 sec

dw 
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do 
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Outer diameter

di= 0.64 mm 
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do= 0.80 mm 

Outer diameter 

Weld diameter dw= 0.700 mm 

Time=15 sec Time=15 sec

Weld diameter dw= 0.850 mm 

dw 



                        

Time=20 sec Time=20 secInner diameter 

 Weld diameter dw= 0.880 mm 

  dw 

di= 0.576 mm 

Outer diameter

 do 

   di 

do= 1.07 mm 

                                         (a)                                                                       (b) 

    Figure 3.27: Optical images of weld diameters with different time duration  

              (a) Beam diameter=1 mm (b) Beam diameter=1.5 mm 
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Figure 3.28: Variation of weld diameter with time duration for beam diameter of 1 

mm 
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Figure 3.29: Variation of weld diameter with time duration for beam diameter of 1.5 

mm 
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    Figure 3.30: Variation of weld diameter with time duration 
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3.3.4 Effects of Operating Parameters on Weld Strength 
 

3.3.4.1 Influence of Laser Power on Weld Strength 

Laser power directly affects the weld strength. As the power of the laser beam 

increases from 70 W to 80 W (other laser parameters are the same), the weld strength 

increases. The weld conditions and results are listed in Table 3.15. The optical images of 

weld strength vs. laser power are shown in Figure 3.31 for beam diameter of 1 mm at a 

magnification of 40 X. From Figure 3.31 it can be clearly seen that as the laser power 

increases the size of the weld diameter increases. The increase in weld diameter 

corresponds to an increase in the weld area. To understand the effect of laser power, a 

graph is plotted with increase in weld strength vs. laser power in Figure 3.32. It is evident 

from the graph that as the laser power increases, the weld strength of the welded PGA felt 

increases. The increase in laser power results in increased melting of the fibers and thus a 

strong weld is formed. The increase in the welded area is simply due to a more energetic 

heating process that spreads and covers the complete area irradiated by the laser beam.   

 

 

 

Table 3.15 Weld conditions and results for laser power 

Power 
(W) 

Beam 
diameter 

(mm) 
Time 
(sec) 

Pressure 
(MPa) 

Pull-Off  
Load    
(gf) 

Weld 
diameter   

(mm) 

Weld 
area   

(mm2) 

Weld 
Strength   

(MPa) 
70 1.5 5 26 3 0.525 0.216 0.136

75 1.5 5 26 6 0.660 0.342 0.169

80 1.5 5 26 13 0.900 0.636 0.199
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Power: 70 W
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Power: 75 W 

dw 

  dw 

Weld diameter dw= 0.66 mm 

Weld diameter dw= 0.525 mm 

  

 

 

Power: 80 W 

Weld diameter dw= 0.90 mm 

dw 

 

Figure 3.31: Optical images of weld diameter with different laser powers at 

beam diameter of 1.5 mm 
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 Figure 3.32: Variation of weld strength with laser power 

 

3.3.4.2 Influence of Contact Pressure on Weld Strength 

The contact pressure on the spherical ball lens affects the weld strength. The weld 

conditions and results are listed in Table 3.16.  The optical images of weld strength vs. 

pressure are shown in Figure 3.33 at a magnification of 17 X. It can be clearly seen that 

holes are burnt in each case with discoloration at the boundaries. The inner and outer 

weld diameters are measured and the weld area is calculated. As the pressure increases 

the weld area also increases. A graph is plotted with weld strength vs. pressure in Figure 

3.34. It is clear from Figure 3.34 that the weld strength decreases almost linearly with 

pressure. When the pressure increases from 26 MPa to 31 MPa, the flow rate of the melt 

also increases from the interface of the PGA felts. The higher weld pressures squeeze out 

the molten polymer resulting in an increase in the weld area. The heat is conducted away 

from the interface resulting in cold surfaces being brought together causing a decrease in 

weld strength. As a result it can be seen from Figure 3.34 that as the weld pressure 

increases from 26 MPa to 31 MPa, the weld strength decreases from 0.361 MPa to 0.330 

MPa.  
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Table 3.16 Weld conditions and results for contact pressure 

Power 
(W) 

Beam 
diameter  

(mm) 
Time 
(sec) 

Pressure 
(MPa) 

Pull-Off 
Load   
(gf) 

 Inner 
diameter 

di (mm) 

Outer 
diameter  

do (mm) 

Weld 
area   

(mm2) 

Weld 
Strength   

(MPa) 
75 1 5 26 12 0.420 0.768 0.324 0.361

75 1 5 29 22 0.588 1.050 0.594 0.346

75 1 5 31 29 0.700 1.260 0.861 0.330
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Figure 3.33: Optical images of weld diameter with different contact pressures 

at beam diameter of 1 mm 
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  Figure 3.34: Variation of weld strength with pressure 
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3.3.4.3 Influence of Time Duration on Weld Strength 

Time duration affects the weld strength. As the time duration increases from 5 sec 

to 15 sec (other laser parameters are the same), the weld strength decreases. Table 3.17 

gives the weld conditions and results. The optical images of weld strength vs. time 

duration are shown in Figure 3.35 at a magnification of 36 X and the weld area is 

calculated for each case by measuring the average weld diameter. The variation of weld 

strength vs. time duration is plotted in Figure 3.36. It is clear from Figure 3.36 that the 

weld strength decreases slightly with time duration. As the time duration for laser spot 

welding increases from 5 seconds to 15 seconds, the longer interaction time of the 

polymer with the laser beam results in increasing weld area with lower pull-off load 

values. This indicates weak welds being formed on the interface with large weld areas 

and consequently lower weld strengths. This makes the weld strength to decrease slightly 

with time duration.  

 

Table 3.17 Weld conditions and results for time duration 

Power 
(W) 

Beam 
diameter 

(mm) 
Time 
(sec) 

Pressure 
(MPa) 

Pull-Off 
Load   
(gf) 

Weld 
diameter  

(mm) 

Weld 
area   

(mm2) 

Weld 
Strength   

(MPa) 
70 1.5 5 26 3 0.525 0.216 0.136

70 1.5 10 26 5 0.700 0.384 0.127

70 1.5 15 26 7 0.850 0.567 0.120

70 1.5 20 26 7 0.880 0.608 0.111 

 

       

Time: 10 sec 

dw 

Weld diameter dw= 0.525 mm Weld diameter dw= 0.700 mm 

dw 

Time: 5 sec 
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Time: 15 sec Time=20 sec

Weld diameter dw= 0.850 mm 

Weld diameter dw= 0.880 mm 

  dw 
  dw 

Figure 3.35: Optical images of weld diameter with different time duration at 

beam diameter of 1.5 mm 
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Figure 3.36: Variation of weld strength with time duration 
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3.3.4.4 Influence of Beam Diameter on Weld Strength 

The weld conditions and results are shown in Table 3.18. To understand the effect 

of beam diameter, weld diameter and HAZ of the welded holes are directly measured 

from the optical images of weld strength vs. beam diameter as shown in Figures 3.37 at a 

magnification of 40 X. It can be clearly seen that the weld area increases with increase in 

beam diameter. As the distance of the laser source is moved farther to increase the beam 

diameter, the intensity of the laser beam on the PGA fiber sheets decreases gradually. 

This causes very weak welds to be formed on the interface as the beam diameter 

increases and therefore results in lower weld strength values. A graph is plotted with 

weld strength vs. beam diameter in Figure 3.38. It is clear from Figure 3.38 that weld 

strength decreases with beam diameter. It is obvious from our previous measurements 

that the increase in beam diameter directly increases the weld diameter but as the beam 

diameter increases the welds that are formed on the PGA fiber felts are not strong. The 

weld formed at beam diameter of 2 mm is not strong as the weld strength value obtained 

is very small. The graph as shown in Figure 3.38 shows that there is a negative 

relationship formed between beam diameter and weld strength. The weld strength value 

decreases as the beam diameter increases and the pull-off load needed to break the 

welded fibers apart also decreases.  

 

Table 3.18 Weld conditions and results for beam diameter 

Power 
(W) 

Beam 
diameter 

(mm) 
Time 
(sec) 

Pressure 
(MPa) 

Pull-Off 
Load    
(gf) 

Weld 
diameter   

(mm) 

Weld 
area   

(mm2) 

Weld 
Strength   

(MPa) 
70 1 15 26 15 0.790 0.490 0.300

70 1.5 15 26 7 0.850 0.567 0.120

70 2 15 26 2 0.900 0.636 0.030

 

 

 

 

 



     

Beam diameter: 1 mm

dw 

Weld diameter dw= 0.79 mm 

 

 

Beam diameter: 1.5 mm

Weld diameter dw= 0.85 mm 

dw 

 

 

dw 
Weld diameter dw= 0.90 mm 

Beam diameter: 2 mm

Figure 3.37: Optical images of weld diameter for different beam diameter  
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Figure 3.38: Variation of weld strength with beam diameter 

 

3.3.4.5 Influence of Laser Intensity on Weld Diameter and Weld Strength 

              Laser intensity is an important parameter that results from the combination of 

two factors namely laser power and beam diameter. It is defined as the ratio of laser 

power at a surface per unit area. The effect of laser intensity on weld diameter and weld 

strength is investigated and the graphs are plotted as shown in Figures 3.39, 3.40, 3.41 

and 3.42. 

 

Figure 3.39 shows that weld strength increases with increase in laser intensity (at constant 

beam diameter of 1.5 mm) and Figure 3.40 shows that the weld strength decreases with 

decrease in laser intensity (at constant power of 70 W). This indicates that the laser 

intensity has a positive linear relationship with weld strength. Figure 3.41 shows that 

weld diameter increases with increase in laser intensity (at constant beam diameter of 1.5 

mm) and from Figure 3.42 it can be seen that (at constant power of 70 W) the decrease in 

laser intensity leads to an increase in weld diameter.  
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Figure 3.39: Variation of weld strength with laser intensity 
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 Figure 3.40: Variation of weld strength with laser intensity 
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 Figure 3.41: Variation of weld diameter with laser intensity 
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Figure 3.42: Variation of weld diameter with beam laser intensity 
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3.4 Comparison of weld strength  
The weld strength of the PGA non woven felts is compared with the actual tensile 

strength of the specimen. This process determines whether the weld formed during the 

spot welding process is strong or not. The tensile strength of the PGA non woven mesh is 

found using ASTM standard test method. The weld strength values obtained should be 

equal to or more than the ultimate tensile strength of the specimen in order to be 

classified as a successful weld. 

 

3.4.1 Experimental setup for Tensile strength test of PGA non woven mesh 

The tensile strength test of biodegradable PGA Biofelt is carried out using the 

experimental setup as shown in Figure 3.43. In this setup an Instron model 4466 universal 

testing machine with a load cell capacity of 2.5 N is used. The machine has pneumatic 

fiber grips with a maximum allowable specimen thickness of 3.968 mm and a maximum 

capacity of 500 g. The machine is interfaced with a computer and the type of test method 

to be conducted can be chosen. 

 

 

 

Figure 3.43: Experimental setup for tensile test of PGA 

Computer 
Load cell

Pneumatic fiber grips

Control Panel
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        Figure 3.44: PGA Biofelt sample placed between the pneumatic fiber grips 

 

 

The PGA test sample having dimensions of 12.60 mm in width in the center and 

20 mm in width at the ends is clamped onto the pneumatic flat grips as shown in Figure 

3.44. The gauge length used for the sample is 25 mm and the thickness is 1 mm. The 

crosshead speed used in the tensile test is 5 mm/min.  

 

3.4.2 Experimental Run 

The specimen is fixed between the pneumatic grips and the test data is entered 

into the computer through the method editor button via the Instron Series IX software. By 

clicking on the Test button, the tensile test is started and the crosshead begins to move at 

the rate of 5 mm/min. The load cell calibrates and indicates the value of the tensile load 

simultaneously. The PGA specimen begins to elongate as the load increases and finally 

the fibers break at the maximum load. The computer generates the values of the 

maximum load, stress at maximum load and strain. The ultimate tensile strength of the 
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specimen is obtained once the specimen breaks at maximum load. Figure 3.45 shows the 

PGA sample specimen fibers breaking at the maximum load. 

 

 

PGA Biofelt sample 

Figure 3.45: PGA Biofelt fibers breaking at maximum load during tensile test 

 

   Table 3.19 Tensile stress values 

 
 

PGA Sample 

Displacement at 
Max. Load 

(mm) 

Maximum 
Load 
(kgf) 

Stress at Max. 
Load 

(kgf/ mm2) 

Strain at Max. 
Load 

(mm/mm) 
Sample 1 7.650 0.200 0.02 0.306 
Sample 2 9.430 0.200 0.02 0.377 
Sample 3 5.550 0.135 0.014 0.222 
Sample 4 13.660 0.083 0.008 0.546 
 

Four samples of PGA Biofelt are tested and the values of maximum load and 

tensile stress at maximum load are tabulated in Table 3.19. The average of the four 

samples is taken into account and the ultimate tensile strength of the non woven PGA 

fiber mesh is 0.015 kgf/mm2 or 0.152 MPa. 
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3.4.3 Summary and Observations 

The values of the weld strength are calculated and tabulated for different laser 

operating conditions. The welds can be categorized into two types: Strong welds with 

hole/no hole condition and weak welds based on the ultimate tensile strength (0.152 

MPa) of the PGA specimen. If the weld strength values are greater than or equal to the 

tensile strength of the specimen (0.152 MPa), then the weld obtained is treated as a strong 

weld or else it is considered to be a weak weld. Table 3.20 shows the types of weld 

obtained in comparison with the tensile strength of the PGA non woven Biofelt sample.  

 

Table 3.20 Types of Welds Obtained 

 

Power 
(watt) 

Beam diameter 
(mm) Time (sec) Pressure(MPa) 

Weld 
Strength   

(MPa) 
Type of weld Weld Images 

70 1 10 26 0.321 

Strong weld 
with a small 
hole and no 
discoloration 

 
 

 

75 1 10 26 0.349 

Strong weld 
with a small 

hole and 
slight 

discoloration 

 

80 1 10 26 0.384 

Strong weld 
with a big 

hole and no 
discoloration 

 

64 

 



75 1 5 26 0.361 

Strong weld 
with a hole 

and no 
discoloration 

at the 
boundary 

  

75 1 5 29 0.343 

Strong weld 
with 

discoloration 
at the 

boundary 

 
 

75 1 5 31 0.325 

Strong weld 
with hole 

formed and 
no 

discoloration 

70 1. 5 15 26 0.120 
Weak Weld 

With no 
discoloration 

 

70 2 15 26 0.030 
Weak weld 

with no 
discoloration 
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75 1.5 5 26 0.169 
Strong weld 

with no 
discoloration 

 
 

75 1.5 5 29 0.155 
Weak weld 

with no 
discoloration 

 

70 1 5 26 0.341 

Strong weld 
with a slight 
hole and no 
discoloration 

 

70 1 15 26 0.300 

Strong weld 
with a hole 

and 
discoloration 

 

75 1.5 15 26 0.144 

Weak weld 
with a slight 

hole and 
discoloration 
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3.4.3.1 Regression Analysis 

Regression analysis is carried out to form correlations between weld quality and the 

operating parameters. We use a linear regression model since the results obtained from 

the previous sections indicate that the operating parameters have approximately a linear 

relation with the weld diameter and the weld strength. To verify this assumption we carry 

out the regression analysis. The linear regression equation usually takes the form of  

 

nn44332211 Xb XbXbXbXbaY +…+++++=        (3.9) 

 

where Y is the dependent variable that the equation tries to predict, X is the 

independent variable that is being used to predict Y, a is the Y-intercept of the line, and 

b1, b2,…, bn are the regression coefficients. In our case Y= weld diameter (mm) and weld 

strength (MPa); X1, X3, X3, and X4 = Independent parameters such as laser power (W), 

time duration (sec), beam diameter (mm), and pressure (MPa), respectively. 

 

Regression Analysis: weld diameter versus power, time, beam diameter, and 

pressure 

A regression equation for weld diameter is calculated using Minitab. Out of the 36 

experimental conditions, a sample of 21 is taken to formulate the regression equation. A 

sample of 10 operating conditions is used to verify the output of the regression equation.  

The regression equation obtained is 
 

Dw = - 3.16 + 0.0323*Lp + 0.0230*T + 0.0854*B + 0.0464*P    (3.10)   

 

where Dw = weld diameter (mm), Lp = laser power (W) , T = time duration (sec),  B = 

beam diameter (mm), and P = pressure (MPa).   
Predictor               Coef   SE Coef       T      P 
Constant             -3.1587    0.1991  -15.87  0.000 
Power (W)           0.032282  0.001750   18.45  0.000 
Time (sec)          0.022974  0.001736   13.23  0.000 
Beam diameter (mm)   0.08536   0.02979    2.87  0.011 
Pressure (MPa)      0.046362  0.005250    8.83  0.000 
 
 
S = 0.0335661   R-Sq = 96.9%   R-Sq(adj) = 96.1% 
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Analysis of Variance 
 
Source          DF       SS       MS       F      P 
Regression       4  0.56108  0.14027  124.50  0.000 
Residual Error  16  0.01803  0.00113 
Total           20  0.57911 
 
 
Source              DF   Seq SS 
Power (W)            1  0.32299 
Time (sec)           1  0.14581 
Beam diameter (mm)   1  0.00443 
Pressure (MPa)       1  0.08785 

 

 

The operating conditions for the verification of weld diameter results are listed in Table 

3.21. The weld diameter values DE from the experimental runs and the weld diameter 

values Dw calculated from the regression equation are given in the table. A graph as 

shown in Figure 3.46 shows the plots of the weld diameter values and by comparing the 

results it can be seen that these values do not differ significantly from each other. The R-

sq value of 96.9 % is also high indicating that the linear regression model is a good fit. 

This verifies our assumption that the operating conditions have a linear relationship with 

the weld diameter.  

 

Table 3.21 Verification of regression model for weld diameter  

Power 
(W) 

Time 
(sec) 

 Beam diameter 
(mm) 

Pressure 
(MPa) 

Weld diameter DE  
(mm) from experiments 

Weld diameter Dw 
(mm) from equation 

80 15 1.5 26 1.10 1.10 
70 10 1.5 29 0.83 0.80 
70 15 1.5 29 0.98 0.92 
80 15 1.5 29 1.23 1.24 
75 15 1.5 29 1.09 1.08 
70 15 1.5 26 0.85 0.78 
75 15 1.0 29 1.04 1.04 
75 10 1.0 26 0.73 0.78 
70 5 1.0 29 0.60 0.65 
75 10 1.5 29 0.94 0.97 
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              Figure 3.46: Verification plot for weld diameter 

 

Regression Analysis: weld strength versus power, time, beam diameter and pressure 

A regression equation for weld strength is calculated using Minitab. Out of the 36 

experimental conditions, a sample of 21 is taken to formulate the regression equation. A 

sample of 10 operating conditions is used to verify the output of the regression equation.  

The regression equation obtained is 
 

Sw = 0.561 + 0.0051*Lp - 0.00289*T - 0.380*B - 0.000716*P    (3.11)    
                

where Sw = weld strength (MPa), Lp = laser power (W) , T = time duration (sec),  B = 

beam diameter (mm), and P = pressure (MPa).  
Predictor                 Coef    SE Coef        T      P 
Constant               0.56093    0.01630    34.40  0.000 
Power (W)            0.0051114  0.0001433    35.68  0.000 
Time (sec)          -0.0028925  0.0001422   -20.34  0.000 
Beam diameter (mm)   -0.380023   0.002439  -155.79  0.000 
Pressure (MPa)      -0.0071625  0.0004300   -16.66  0.000 
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S = 0.00274879   R-Sq = 99.9%   R-Sq(adj) = 99.9% 
Analysis of Variance 
 
Source          DF        SS        MS        F      P 
Regression       4  0.194783  0.048696  6444.80  0.000 
Residual Error  16  0.000121  0.000008 
Total           20  0.194904 
 
 
Source              DF    Seq SS 
Power (W)            1  0.010608 
Time (sec)           1  0.000778 
Beam diameter (mm)   1  0.181300 
Pressure (MPa)       1  0.002097 

 

 

 

The operating conditions for the verification of weld strength results are listed in Table 

3.22. The weld strength values SE from the experimental runs and the weld strength 

values Sw calculated from the regression equation are given in the table. Figure 3.47 

shows the plots of the weld strength values and by comparing the results it can be seen 

that these values do not differ significantly from each other. The R-sq value of 99.9 % is 

also high indicating that the linear regression model is a good fit. This verifies our 

assumption that the operating conditions have a linear relationship with the weld strength.  
 

Table 3.22 Verification of regression model for weld strength  

Power 
(W) 

Time 
(sec) 

 Beam diameter 
(mm) 

Pressure 
(MPa) 

Weld strength SE  
(mm) from experiments 

Weld strength Sw 
(mm) from equation 

80 15 1.5 26 0.165 0.170 
70 10 1.5 29 0.114 0.112 
70 15 1.5 29 0.100 0.098 
80 15 1.5 29 0.148 0.149 
75 15 1.5 29 0.121 0.123 
70 15 1.5 26 0.120 0.119 
75 15 1.0 29 0.310 0.313 
75 10 1.0 26 0.349 0.349 
70 5 1.0 29 0.320 0.317 
75 10 1.5 29 0.138 0.138 
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            Figure 3.47: Verification plot for weld strength 

 

 

The operating parameter such as laser power has a positive linear relationship 

with weld strength whereas time duration, beam diameter and pressure have a negative 

linear relationship with weld strength. This means that as we increase the laser power at 

certain conditions the weld strength value will increase and at certain conditions the weld 

strength value will decrease with increase in parameters like time duration, beam 

diameter and pressure. The residual plots as shown in Figure 3.48 indicate that the data 

points are independently and identically distributed (i.i.d) as the residuals are normally 

distributed and do not follow  symmetrical pattern about the x-axis.  
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Figure 3.48: Residual Plots for weld diameter and weld strength 
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CHAPTER 4- Conclusions and Future Research 

4.1 Conclusions 
Laser spot welding of PGA biofelt scaffold polymers is a novel application in the area 

of Biomedical engineering. The welding setup necessary to facilitate the creation of spot 

welds is presented. The experiments are carried out based on a factorial design and the 

experimental results obtained played a vital role in understanding the effects of the 

various operating parameters necessary to carry out the welding process. Some 

conclusions from this study are summarized in the following: 

 

1. Laser welding using CW diode lasers could be a promising technique in the area 

of biomedical engineering that offers benefits such as low costs, high efficiency, 

faster processing times and efficient weld seams.  

2. Joining the PGA biofelts is achieved through laser welding with the use of BK 7 

ball lens. The effects of various laser parameters such as laser power, beam 

diameter, time duration and pressure on the weld quality such as weld diameter 

and weld strength are studied. The operating parameters such as laser power, 

beam diameter, time duration and contact pressure exhibit a linear relationship 

with the weld diameter. The weld strength exhibits a positive linear relationship 

with laser power and a negative linear relationship with the beam diameter, time 

duration and contact pressure as observed in this study. 

3. Regression analysis is done and a regression model is obtained for the effect of 

the operating conditions on the weld diameter and weld strength. 

4. Efficient welding conditions are obtained that create a successful weld with no 

discoloration and proper weld strength. Based on these values, the welding is 

carried out to create a series of spot welds and tubular PGA scaffolds are obtained 

that can be used in the vascular tissue engineering. 
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4.2 Future research 

 
1. This research can be further continued by analyzing other parameters such as 

temperature that affects the weld quality. 

2. The whole welding process should be automated and the setup should be such that 

it facilitates continuous welding in order to produce seams. In this way the PGA 

fiber felts can be welded with continuous seams and different patterns can be 

obtained.  

3. This work can be continued on other biodegradable scaffold materials such as 

PCL, PLLA, PLGA, etc.  

4. Further research can be done to investigate the possibilities of carrying out the 

laser welding of scaffold materials in an in situ environment without affecting the 

internal tissues and organs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



75 

 

References 
 

1. Rabkin, E., Schoen, F.J., 2002, “Cardiovascular tissue engineering,” Cardio-

vascular Pathology., Vol.11, pp.305-317. 

2. Hoerstrup, S.P., Zund, G., Sodian, R., Schnell, AM., Grunenfelder, J., Turina, 

MI., 2001, “Tissue engineering of small caliber vascular grafts,” European 

Journal of Cardiothoracic Surgery., Vol.20, pp.164-169. 

3. Langer, R., Vacanti, J., 1999, “Tissue Engineering: the challenges ahead,”     

Scientific American., Vol.280, pp.62-65. 

4. Tateishi, T., Chen, G., Ushida, T., 2002, “Biodegradable porous scaffolds for 

tissue engineering,” The Japanese Society for Artificial Organs., Vol.5, pp.77-83. 

5.  Nikalson, Laura, E., Seruya, M., 2002, “Small diameter vascular grafts,” 

Methods of Tissue Engineering, Chapter 80, pp.905-913. 

6. Vacanti, J., Vacanti, C.A., 2000, “Principles of Tissue Engineering,” Academic 

Press. 

7. Langer, R., Vacanti, J., 1993, “Tissue Engineering,” Science., Vol.260, pp.920-

928. 

8. Vacanti, J., Langer, R., 1999, “Tissue Engineering: the design and fabrication of 

living replacement devices for surgical reconstruction and transplantation,” 

Vol.354, (Suppl 1):SI32-4. 

9. Ma, P, X., Kroschwitz, J, I., 2004, “Tissue Engineering,” Encyclopedia of 

Polymer Science and Technology (3rd Edition ed.), John Wiley & Sons, NJ. 

10. Friedrich, G., Bachmann., Ulrich, A., Russek., 2002, “Laser Welding of Polymers 

Using High Power Diode Lasers,” Proc. SPIE, Vol. 4637B. 

11. Kneser, U., Schaefer, D.J., Munder, B., Klemt, C., Andree, C., Stark, G.B., 2002, 

“Tissue engineering of bone,” Min Invas Ther & Allied Tech., Vol.11, pp.107-

116.   

12.  Vats, A., Tolley, N.S., Polak, JM., Gough, JE., 2003, “Scaffolds and biomaterials 

for tissue engineering: a review of clinical applications,” Clinical-Otolaryngol, 

Vol.28, pp.165-172 . 
 



76 

 

13. Peter, X., Ma., 2004, “Scaffolds for tissue fabrication,” Materials Today, Vol.7, 

pp.30-40. 

14. Fuchs, JR., Nasseri, BA., Vacanti, JP., 2001, “Tissue Engineering: A 21st Century 

Solution to Surgical Reconstruction,” Annals of Thoracic Surgery, Vol.72, 

pp.577-591. 

15. Tateishi, T., Chen, G., Ushida, T., 2002, “Biodegradable porous scaffolds for 

tissue engineering,” The Japanese Society for Artificial Organs, Vol.5, pp.77-83. 

16. Freed, LE., Vunjak-Novakovic, G., Biron, RJ., Eagles, DB., Lesnoy, DC., 

Barlow, SK., Langer, R., 1994, “Biodegradable Polymer Scaffolds for Tissue 

Engineering,” Nature Biotechnology, Vol.12, pp.689-693.    

17. Edwards, S.L., Mitchell, W., Matthews, J.B., Ingham, E., Russell, S.J., 2004, 

“Design of nonwoven scaffold structures for tissue engineering of the anterior 

cruciate ligament,” AUTEX Research Journal, Vol.4, pp.86-94. 

18. Griffith, LG., Naughton, G., 2002, “Tissue engineering-current challenges and 

expanding opportunities,” Science, Vol.295, pp.1009-1014.    

19.  Shoufeng, Yang., Kah-fai, Leong., Zhaohui, Du., Chee-Kai, Chua., 2001, “The 

Design of Scaffolds for Use in Tissue Engineering. Part I. Traditional Factors,” 

Tissue Engineering, Vol.7, pp.679-689.            

20. Peter, Ma, X., Elisseeff, Jennifer., 2006, “Scaffolding in Tissue Engineering,” 

CRC Press, Taylor and Francis Group, USA, xvi.          

21. http://web.utk.edu/~mse/Textiles/Needle%20Punched%20Nonwovens.htm         

22.  Mooney, D, J., Mazzoni, C, L., Breuer, C., McNamara, K., Hern, D., Vacanti, J, 

P., Langer, R., 1996, “Stabilized polyglycolic acid fibre-based tubes for tissue 

engineering,” Biomaterials, Vol.17, pp.115-124.        

23.  Thomson, R.C., Wake, M.C., Yaszemski, M.J., and Mikos, A. G., 1995, 

“Biodegradable polymer scaffolds to regenerate organs,” Advances in Polymer 

Science, Vol.122, pp.245-274.           

24.   Mikos, AG., Bao, Y., Cima, LG., Ingeber DE., Vacanti, JP., Langer, RB., 1993, 

“Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and 

transplantation,” Journal of Biomedical Material Research, Vol.27, pp.183-189.          



77 

 

25.  Lunenschloss, L., and Albrecht, W., 1985, “Non-woven Bonded Fabrics,” John 

Wiley & Sons Inc., New York.       

26. Self-cohering, continuous filament non-woven webs, United States Patent   

6309423                  

27.  Dahl, S.L.M., Caroline, Rhim., Ying, C. Song., and Laura, E. Niklason., 2007, 

“Mechanical Properties and Compositions of Tissue Engineered and Native 

Arteries,” Annals of Biomedical Engineering, Vol.35, pp.348-355.                   

28.  Stekelenburg, M.,   2006, “Strain-based optimization of human tissue-engineered 

small diameter blood vessels,” PhD. Thesis, Eindhoven University of 

Technology.              

29.  http://machinedesign.com/BDE/FASTENING/bdefj1/bdefj1_5.html                 

30. Yousefpour, Ali., 2004, “Fusion Bonding/Welding of Thermoplastic 

Composites,” Journal of Thermoplastic Composite Materials, Vol.17, pp.303-341.      

31.  Marcus, Warwick., and Marcus, Gordon., 2006, “Application studies using 

through-transmission laser welding of polymers,” Joining Plastics, London, 

National Physical Laboratory (NPL). 

32. Leister Systems laser welding concept, http://www.leisterlaser.com/overview.asp  

33. Friedrich, G, Bachmann., Ulrich, A, Russek., 2002, “Laser Welding of Polymers 

Using High Power Diode Lasers,” Photonics West Conference, Proc. SPIE Vol. 

4637B.                 

34. Leister Systems Globo welding concept, http://www.leisterlaser.com/globo.asp 

35. Concordia Medical’s New BIOFELT ™ Tissue Engineering Scaffolds, 

http://www.concordiafibers.com/productcapabilities/biofelt.html.         

36.  Concordia Regenerative Solution, http://concordiafibers.com/pressrelease08.pdf  

37. http://www.mellesgriot.com/products/optics/mp_3_1.htm 

38. http://www.accuratus.com/silinit.html 

 

 

 

 

http://www.leisterlaser.com/overview.asp
http://concordiafibers.com/pressrelease08.pdf
http://www.mellesgriot.com/products/optics/mp_3_1.htm
http://www.accuratus.com/silinit.html


78 

 

 

 

 

 

 

 

 

 

 

 

Appendix ‘A’: Tensile test specimen 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure 3.49: Tensile test specimen before loading 

 

 

 
Figure 3.50: Tensile test specimen after loading 
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Appendix ‘B’: Factorial Analysis 
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General Linear Model: Weld diameter, Weld Strength versus Power, Beam 
diameter, Time duration, Pressure  
 
Factor         Type   Levels  Values 
Power          fixed       3  1, 2, 3 
Beam diameter  fixed       2  1, 2 
Time duration  fixed       3  1, 2, 3 
Pressure       fixed       2  1, 2 
 
 
Analysis of Variance for Weld diameter, using Adjusted SS for Tests 
 
Source                                DF    Seq SS    Adj SS    Adj MS       F 
Power                                  2  1.011048  1.011048  0.505524  114.51 
Beam diameter                          1  0.071913  0.071913  0.071913   16.29 
Time duration                          2  0.857778  0.857778  0.428889   97.15 
Pressure                               1  0.398792  0.398792  0.398792   90.33 
Power*Beam diameter                    2  0.003515  0.003515  0.001758    0.40 
Power*Time duration                    4  0.008738  0.008738  0.002184    0.49 
Power*Pressure                         2  0.031242  0.031242  0.015621    3.54 
Beam diameter*Time duration            2  0.013993  0.013993  0.006997    1.58 
Beam diameter*Pressure                 1  0.001260  0.001260  0.001260    0.29 
Time duration*Pressure                 2  0.020066  0.020066  0.010033    2.27 
Power*Beam diameter*Time duration      4  0.050108  0.050108  0.012527    2.84 
Power*Beam diameter*Pressure           2  0.028848  0.028848  0.014424    3.27 
Power*Time duration*Pressure           4  0.013613  0.013613  0.003403    0.77 
Beam diameter*Time duration*Pressure   2  0.001863  0.001863  0.000932    0.21 
Error                                  4  0.017659  0.017659  0.004415 
Total                                 35  2.530437 
 
Source                                    P 
Power                                 0.000 
Beam diameter                         0.016 
Time duration                         0.000 
Pressure                              0.001 
Power*Beam diameter                   0.696 
Power*Time duration                   0.744 
Power*Pressure                        0.130 
Beam diameter*Time duration           0.311 
Beam diameter*Pressure                0.621 
Time duration*Pressure                0.219 
Power*Beam diameter*Time duration     0.168 
Power*Beam diameter*Pressure          0.144 
Power*Time duration*Pressure          0.596 
Beam diameter*Time duration*Pressure  0.818 
Error 
Total 
 
 
S = 0.0664430   R-Sq = 99.30%   R-Sq(adj) = 93.89% 
 
 
Analysis of Variance for Weld Strength, using Adjusted SS for Tests 
 
Source                                DF    Seq SS    Adj SS    Adj MS        F 
Power                                  2  0.025061  0.025061  0.012530    45.01 
Beam diameter                          1  0.304152  0.304152  0.304152  1092.44 
Time duration                          2  0.005618  0.005618  0.002809    10.09 
Pressure                               1  0.006373  0.006373  0.006373    22.89 
Power*Beam diameter                    2  0.000201  0.000201  0.000100     0.36 
Power*Time duration                    4  0.000054  0.000054  0.000013     0.05 
Power*Pressure                         2  0.001308  0.001308  0.000654     2.35 
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Beam diameter*Time duration            2  0.000739  0.000739  0.000369     1.33 
Beam diameter*Pressure                 1  0.001056  0.001056  0.001056     3.79 
Time duration*Pressure                 2  0.000014  0.000014  0.000007     0.03 
Power*Beam diameter*Time duration      4  0.001281  0.001281  0.000320     1.15 
Power*Beam diameter*Pressure           2  0.000067  0.000067  0.000033     0.12 
Power*Time duration*Pressure           4  0.000130  0.000130  0.000033     0.12 
Beam diameter*Time duration*Pressure   2  0.000817  0.000817  0.000409     1.47 
Error                                  4  0.001114  0.001114  0.000278 
Total                                 35  0.347985 
 
Source                                    P 
Power                                 0.002 
Beam diameter                         0.000 
Time duration                         0.027 
Pressure                              0.009 
Power*Beam diameter                   0.718 
Power*Time duration                   0.994 
Power*Pressure                        0.212 
Beam diameter*Time duration           0.362 
Beam diameter*Pressure                0.123 
Time duration*Pressure                0.975 
Power*Beam diameter*Time duration     0.448 
Power*Beam diameter*Pressure          0.890 
Power*Time duration*Pressure          0.969 
Beam diameter*Time duration*Pressure  0.333 
Error 
Total 
 
 
S = 0.0166858   R-Sq = 99.68%   R-Sq(adj) = 97.20% 
 
 
Least Squares Means 
 
                                    --Weld diameter--  --Weld Strength-- 
Power                                  Mean   SE Mean     Mean   SE Mean 
1                                   0.72008  0.019180  0.20342  0.004817 
2                                   0.90117  0.019180  0.24408  0.004817 
3                                   1.12967  0.019180  0.26725  0.004817 
Beam diameter 
1                                   0.87228  0.015661  0.33017  0.003933 
2                                   0.96167  0.015661  0.14633  0.003933 
Time duration 
1                                   0.72908  0.019180  0.25325  0.004817 
2                                   0.91467  0.019180  0.23883  0.004817 
3                                   1.10717  0.019180  0.22267  0.004817 
Pressure 
1                                   0.81172  0.015661  0.25156  0.003933 
2                                   1.02222  0.015661  0.22494  0.003933 
Power*Beam diameter 
1     1                             0.67617  0.027125  0.29383  0.006812 
1     2                             0.76400  0.027125  0.11300  0.006812 
2     1                             0.84400  0.027125  0.33417  0.006812 
2     2                             0.95833  0.027125  0.15400  0.006812 
3     1                             1.09667  0.027125  0.36250  0.006812 
3     2                             1.16267  0.027125  0.17200  0.006812 
Power*Time duration 
1     1                             0.52625  0.033221  0.21750  0.008343 
1     2                             0.74150  0.033221  0.20450  0.008343 
1     3                             0.89250  0.033221  0.18825  0.008343 
2     1                             0.71850  0.033221  0.25775  0.008343 
2     2                             0.90000  0.033221  0.24600  0.008343 
2     3                             1.08500  0.033221  0.22850  0.008343 
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3     1                             0.94250  0.033221  0.28450  0.008343 
3     2                             1.10250  0.033221  0.26600  0.008343 
3     3                             1.34400  0.033221  0.25125  0.008343 
Power*Pressure 
1     1                             0.65250  0.027125  0.22517  0.006812 
1     2                             0.78767  0.027125  0.18167  0.006812 
2     1                             0.76167  0.027125  0.25217  0.006812 
2     2                             1.04067  0.027125  0.23600  0.006812 
3     1                             1.02100  0.027125  0.27733  0.006812 
3     2                             1.23833  0.027125  0.25717  0.006812 
Beam diameter*Time duration 
1            1                      0.69400  0.027125  0.34600  0.006812 
1            2                      0.88783  0.027125  0.33583  0.006812 
1            3                      1.03500  0.027125  0.30867  0.006812 
2            1                      0.76417  0.027125  0.16050  0.006812 
2            2                      0.94150  0.027125  0.14183  0.006812 
2            3                      1.17933  0.027125  0.13667  0.006812 
Beam diameter*Pressure 
1            1                      0.76111  0.022148  0.34889  0.005562 
1            2                      0.98344  0.022148  0.31144  0.005562 
2            1                      0.86233  0.022148  0.15422  0.005562 
2            2                      1.06100  0.022148  0.13844  0.005562 
Time duration*Pressure 
1            1                      0.65583  0.027125  0.26633  0.006812 
1            2                      0.80233  0.027125  0.24017  0.006812 
2            1                      0.80167  0.027125  0.25150  0.006812 
2            2                      1.02767  0.027125  0.22617  0.006812 
3            1                      0.97767  0.027125  0.23683  0.006812 
3            2                      1.23667  0.027125  0.20850  0.006812 
Power*Beam diameter*Time duration 
1     1            1                0.46500  0.046982  0.30450  0.011799 
1     1            2                0.70850  0.046982  0.31050  0.011799 
1     1            3                0.85500  0.046982  0.26650  0.011799 
1     2            1                0.58750  0.046982  0.13050  0.011799 
1     2            2                0.77450  0.046982  0.09850  0.011799 
1     2            3                0.93000  0.046982  0.11000  0.011799 
2     1            1                0.69700  0.046982  0.35350  0.011799 
2     1            2                0.81000  0.046982  0.33800  0.011799 
2     1            3                1.02500  0.046982  0.31100  0.011799 
2     2            1                0.74000  0.046982  0.16200  0.011799 
2     2            2                0.99000  0.046982  0.15400  0.011799 
2     2            3                1.14500  0.046982  0.14600  0.011799 
3     1            1                0.92000  0.046982  0.38000  0.011799 
3     1            2                1.14500  0.046982  0.35900  0.011799 
3     1            3                1.22500  0.046982  0.34850  0.011799 
3     2            1                0.96500  0.046982  0.18900  0.011799 
3     2            2                1.06000  0.046982  0.17300  0.011799 
3     2            3                1.46300  0.046982  0.15400  0.011799 
Power*Beam diameter*Pressure 
1     1            1                0.61333  0.038361  0.32267  0.009634 
1     1            2                0.73900  0.038361  0.26500  0.009634 
1     2            1                0.69167  0.038361  0.12767  0.009634 
1     2            2                0.83633  0.038361  0.09833  0.009634 
2     1            1                0.72667  0.038361  0.34767  0.009634 
2     1            2                0.96133  0.038361  0.32067  0.009634 
2     2            1                0.79667  0.038361  0.15667  0.009634 
2     2            2                1.12000  0.038361  0.15133  0.009634 
3     1            1                0.94333  0.038361  0.37633  0.009634 
3     1            2                1.25000  0.038361  0.34867  0.009634 
3     2            1                1.09867  0.038361  0.17833  0.009634 
3     2            2                1.22667  0.038361  0.16567  0.009634 
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Power*Time duration*Pressure 
1     1            1                0.46250  0.046982  0.23850  0.011799 
1     1            2                0.59000  0.046982  0.19650  0.011799 
1     2            1                0.67500  0.046982  0.22400  0.011799 
1     2            2                0.80800  0.046982  0.18500  0.011799 
1     3            1                0.82000  0.046982  0.21300  0.011799 
1     3            2                0.96500  0.046982  0.16350  0.011799 
2     1            1                0.63000  0.046982  0.26500  0.011799 
2     1            2                0.80700  0.046982  0.25050  0.011799 
2     2            1                0.76500  0.046982  0.25250  0.011799 
2     2            2                1.03500  0.046982  0.23950  0.011799 
2     3            1                0.89000  0.046982  0.23900  0.011799 
2     3            2                1.28000  0.046982  0.21800  0.011799 
3     1            1                0.87500  0.046982  0.29550  0.011799 
3     1            2                1.01000  0.046982  0.27350  0.011799 
3     2            1                0.96500  0.046982  0.27800  0.011799 
3     2            2                1.24000  0.046982  0.25400  0.011799 
3     3            1                1.22300  0.046982  0.25850  0.011799 
3     3            2                1.46500  0.046982  0.24400  0.011799 
Beam diameter*Time duration*Pressure 
1            1            1         0.61667  0.038361  0.36467  0.009634 
1            1            2         0.77133  0.038361  0.32733  0.009634 
1            2            1         0.77667  0.038361  0.34800  0.009634 
1            2            2         0.99900  0.038361  0.32367  0.009634 
1            3            1         0.89000  0.038361  0.33400  0.009634 
1            3            2         1.18000  0.038361  0.28333  0.009634 
2            1            1         0.69500  0.038361  0.16800  0.009634 
2            1            2         0.83333  0.038361  0.15300  0.009634 
2            2            1         0.82667  0.038361  0.15500  0.009634 
2            2            2         1.05633  0.038361  0.12867  0.009634 
2            3            1         1.06533  0.038361  0.13967  0.009634 
2            3            2         1.29333  0.038361  0.13367  0.009634 
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Figure 3.51: Main Effects plot for Weld diameter 
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Figure 3.52: Main Effects plot for Weld Strength 
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Figure 3.53: Interaction plot for Weld diameter 
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Figure 3.54: Interaction plot for Weld Strength 
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