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Chapter One

1.0 INTRODUCTION

In the past ten years, research in Office Automation has focused on

mechanizing office tasks. This includes such tasks as creating word proces-

sors, spread sheets, etc. Little attention has been given to automating the

functions in an office, for instance automating the procedures that a form

goes through to be completed. An office encapsulates many different infor-

mation concepts, data processing technologies, and communications

methods.

There are four distinct problem areas in current OAS research. The

first is that of creating a unifying concept for information now found in the

office. This problem deals with the intergration of current mechanized sys-

tems. The next problem is that of automating the office place, and dealing

with unstructured problems. This problem implies that an OAS system

must assume more responsibility. The next problem deals with distribution

of the system throughout an office. Each node in the network must share

common global functions yet retain those functions which make them

unique. The last problem area deals with the adaptability of the system to

change over time. The system must be flexible enough to expand as the

office does. The technology needed to automate an office implies a different

kind of knowledge, a higher degree of knowledge than the technology of

mechanization.

To solve these four problems found in office automation an integration

of current concepts found in Computer Science, AI, and Programming

languages is necessary. The primary focus must be on shifting the responsi-

bility off the user onto the system. The responsibility in this model will



-2-

fall upon the systems objects. This implies that the objects, which inhabit

the system, will have to have enough knowledge to drive the system.

The technology to solve these problems is currently available. The

problem is that the concepts needed to create an effective OA environment

are spread throughout the Computer Science field. The components which

are needed to create the necessary OAS can be found in AI, Programming

Languages, Distributed Systems, Object Oriented Programming, and current

OAS research. Each of these fields has some piece of knowledge and infor-

mation to contribute to the development of such an OAS. As of yet, the

knowledge in these fields have not been combined to create a system which

puts the emphasis on automation. Perhaps one obstacle is the complexity of

such a task but the existence of such a system also implies a shift of some

responsibility (power) from the user to the system.

In this thesis proposes a system is proposed which is a collection of

knowledge integrated in such a way as to shift the responsibility from the

user to the system, and is designed to allow an evolutionary movement of

knowledge. The responsibility of system execution is placed upon the

objects which inhabit the system. Integration of these concepts will create a

system where objects have sufficient knowledge to guide there own compu-

tation and navigation through a network. The objects will be able to

modify themselves, and make decisions based upon their current state. The

objects are in essence controlling the office process which a person may now

control, i.e., filling out a form, and following the procedures for its comple-

tion. The objects will utilize system blackboards, and message passing to

communicate with other objects and the outside world as a source of exter-

nal knowledge and guidance. For a system to achieve this level autonomy it

will take the integration of several sources of knowledge.
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The field of programming languages will contribute several concepts to

the definition of this OAS system. Procedural languages 'will lend the con-

cept of variable state, i.e., Pascal variable. The concept of evaluation of

functions will be drawn from functional programming languages [9, 34].

The concept of a data driven machine will be used from the data flow

languages [5]. Concurrent Languages will such as C-Pascal and Concurrent

C will lend the concepts of resource allocation, and monitors [32]. Object

oriented programming will contribute the concepts of abstract data types,

and message passing for the encapsulation of objects and object communica-

tion respectively [28, 16, 17, 18]. The form of system control will come

from knowledge representation languages which use agendas, and black-

boards [31, 13] for system execution.

Concepts from the field of AI have had a large impact on the the design

and implementation of this system. The concepts come from the area of AI

known as Knowledge Engineering, where the important concept of

Knowledge Representation is used. In the last fifteen years researchers in

AI have spent a great deal of time studying knowledge representation.

They have explored many representations for knowledge, and have pro-

duced several conclusions about the representation of knowledge in a com-

puter system. First, the correct representation of knowledge for some prob-

lem will facilitate an easier solution to that problem. Second, it is also

concluded that real world knowledge comes in two distinct types declara-

tive, and procedural. The proposed model in thesis captures both types of

knowledge.

The form of knowledge representation chosen for this thesis is called

frames. The frames scheme of knowledge representation was developed by

Minsky in 1975 as a theory to explain vision. Frames represent declarative
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knowledge well, but are less adept at representing procedural knowledge.

Frames are used by this thesis to integrate system knowledge with the

representation of the system data and action objects. To capture procedural

knowledge this thesis will use a later development called procedural attach-

ments. A procedural attachment can be considered a semantic action

attached to some data value or operation. The procedural attachment is

executed when some condition defined in the attachment is met [10]. The

procedural attachments will be used to facilitate object communication, and

modification of system objects. The structured use of procedural attach-

ments will lend itself to a programming paradigm for this OAS model.

The field of object oriented programming also plays an important role

in the definition of this OAS. Object oriented programming concepts are

derived from the programming language Simula [5]. The first objected

oriented programming language was designed by Alan Kay at PARC [28,5].

Kay's language is called Smalltalk. Kay used the class concept from Simula

[36] and constructed a language based upon it. In Smalltalk, type

definitions are called classes and an instance of a class is an object. A class

is an encapsulation of data objects and operations which can be performed

upon those objects. The way computation is performed is that objects pass

messages back and forth. Classes can be subclasses of a previously defined

class, thus hierarchies of classes can be constructed. Objects when they

receive a message have an associated method (procedure) which will fulfill a

request by another object. If that method is not found in the current

object, the object will search up the hierarchy until it locates the appropri-

ate method. These two concepts data abstraction, and message passing will

be used extensively throughout the system.

Current object oriented languages will contribute two other concepts -



daemons, and access oriented programming. These are similar in physical

representation to procedural attachments but are used differently. The two

language which make use of these concept are Flavors, and LOOPS. Dae-

mons as represented in Flavors are associated with some method defined for

the object. There are two kinds of daemons in Flavors - passive, and active.

The passive daemons react to messages sent to an object. Active daemons

can stop messages from activating a method, or alter the message sent to the

object. In Flavors the active daemons are called Wrappers and Whoppers

[17].

The LOOPS language has a different sort of daemon. The LOOPS dae-

mon is activated whenever the object's value is accessed. These daemons are

divided into two groups get, and put daemons. The put daemons are

activated when a message attempts to put a value in an object. The get dae-

mon is activated when an object attempts to get a value from the object.

These two sorts of access oriented daemons from LOOPS, along with the

daemons as defined by the Flavors programming language constitute the

attached procedural programming paradigm.

The last object oriented model which is utilized by this thesis is the

ACM model defined by Unger [1]. The ACM model is the foundation for

the definition of this OAS system. Objects as defined in ACM are extended

to reflect the knowledge needed to drive the OAS. ACM gives a basic

definition to both data objects and operations. This definition is used to

define all objects and operations in the extended ACM system (E-ACM).

The other central concept which ACM utilizes is the concept of Petri nets

for control. Petri nets capture the concept of data flowing through a net-

work of operations, thus enforcing the idea of an object which is in control

of it's own computation. The Petri net concept is utilized as this system's
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model for computation.

The concepts from object oriented languages are used extensively in this

model, however, the generic definition of this model's data objects and

operations are derived from Unger's ACM model. The frame concept will

be used to represent the data objects and actions defined in the ACM model.

The concepts of data abstraction, and message passing as defined in an object

oriented environment are incorporated into the model proposed herein. Dae-

mons are used primarily by this model as a means of communication to

implement the attached stimulation and termination conditions of the

objects as defined in ACM.

Distributed systems add needed knowledge about networks and process

communication. The Petri net concept is utilized in ACM to help control

overall system interaction. This technique allows partial ordering,

expresses implicit parallelism, and relational dependencies which exist in

the system [2]. Two other forms of system control which are used in this

system, are the agenda, and the blackboard. The agenda is an ordering

mechanism which orders the operations for execution in the system. The

agenda controls the priority system which gives each operation a rank, to

designate its order in the execution list. The agenda mechanism controls the

ready list and the firing list for execution [31]. The blackboard concept is

utilized to help facilitate communication in the system. The blackboard

will maintain correspondence (stimulation, and termination conditions for

objects and operations) for objects and operations [13, 9, 10]. The black-

board enforces mutual exclusion by allowing only access to it by one object

at a time. Our system integrates both these concepts to form a powerful

system of communication at not only the network level but at the lower

levels of computation as well.



A previous implementation of ACM system in a network, of CORVIS

machines was accomplished by Catherine Carter at the University of Kan-

sas. Carter implemented a simplified version of ACM which did not include

the termination condition as part of the object's definitions. Her system is

used in this work, as a guide and as a comparison system for this extended

version of ACM as defined in this thesis.

Several problems found in office automation are amenable to solutions

using the extended ACM model represented as frames. In the past ten years

office automation has focused on mechanizing the office. A functional

approach which results in an integrated system appears to be superior.

Automation encompasses mechanization, but also address's the unstruc-

tured problems, and procedures found in an office, i.e., processing a form -

getting the correct people to work, on it, getting management to sign it, and

getting the form out on time. Any good OAS should be able to handle such

situations. An OAS should not only mechanize the task of a typewriter to

a word processor, but also use technology to know when that task should

be executed and under what conditions the word processor should be

instructed to produce a specific document [22].

Any OAS constructed dealing with automation will have to deal with

two problems related to automation[22]:

- As automaticity increases, the control sources moves
from an external source to technology.

- As automaticity increases, integration of functions
increase.

Office automation systems encompass distribution. A main problem with

distributed systems is interprocess communication. The office could be phy-

sically spread throughout a floor or and entire building. Each component of

the OAS should have shared access to global functions yet each must have



its own set of unique capabilities. The problem is getting all the com-

ponents to communicate with each other. A related problem to this is that

any office has the potential to expand. This includes an office adapting new

functions, operations, or the addition of a new office unit to the system. An

OAS must be flexible enough to allow the system to expand with the office,

the OAS should reflect the evolution of the office place.

The extended ACM model allows both objects - data objects and opera-

tions, to have stimulation and termination conditions. These conditions

will initiate and terminate actions in the systems. Objects now have the

ability to set in motion the process of computation, thus facilitating a form

of automation. For instance in filling out a form, the data object (the form)

will know when to initiate its process (stimulation condition), where in the

network it must go, what users are allowed to access it, and when it must

be stopped (termination condition).

This model is designed to solve some of the problems found in OAS

today. The concepts used to create this model are current ones found in

several fields of Computer Science. This thesis discusses a method for the

implementation of the termination and stimulation condition as defined by

the Unger model. The system will integrate an agenda and a blackboard

mechanism to control computation, and process communication. The object

oriented concepts of data abstraction, message passing, multiple inheritance,

and daemons are used extensively throughout the system. The objects are

represented physically by the frame knowledge representation scheme, and

treated conceptually as an independent unit. This unit is an encapsulation

of objects and operations, and knowledge (see Figure 1.1.1).

The frame representation technique enforces the concept of abstract

data typing found in object oriented programming, and the ACM model.
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Frame theory also allows for the use of procedural attachments. These

attachments and the daemons as defined by object oriented programming,

are used to define a programming paradigm. The goal of this thesis is to

capture the knowledge necessary to create an intelligent data object, which

will function in the office environment. This thesis will also discuss a par-

tial implementation of the E-ACM model.

Summary of E-ACM Concepts

E-ACM

Object
Definition

i

ACM

Object
Representation

Operating
System

I ! !
Petri

! ! !
Nets

Frames Object Procedural
Oriented Attachments

Programming

Black Agenda
Board

Abstract
Data Types

Message
Passing

Figure 1.1.1
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The discussion of the implementation will cover the problems encountered,

and the extension that the implemented system needs to be a complete E-

ACM model (OAS).

The following is a break, down, chapter by chapter, of the contents of

the rest of the thesis:

Chapter 2.0 : This chapter is divided into two sections. The first

section is a review of the original ACM as defined by Professor
Unger. The second section is a review of an Implementation of the
ACM as done by Catherine Carter.

Chapter 3.0 : This chapter defines the representation concepts for
E-ACM, it is divided into three sections. The first discusses
Knowledge Representation and in particular Frame systems. The
second section discusses object oriented concepts. The third section

discusses the use of procedural attachments in this model.

Chapter 4.0 : This chapter defines the E-ACM model. It defines

the Data Objects, Actions, and Operating System.

Chapter 5.0 : This chapter discusses a partial implementation of
the E-ACM model as implemented in the Pearl frame system.

Chapter 6.0 : This chapter is divided into three sections. The first

gives a summary of this research. The second provides some con-
clusions about the E-ACM model. The last section discusses future
work, for this model.
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Chapter Two

2.0 BACKGROUND for E-ACM

The ACM model was first proposed by Professor Beth Unger in her

dissertation [l]. The model was designed to fulfill two goals: (1) represent

information in one encompassing structure, and (2) encourage structured

program development [1]. ACM was conceived in such a way that the data

objects provide useful and essential properties needed to operate in a con-

current environment. The purpose of this Chapter is to review the back-

ground and original concepts which lead up to the design of the E-ACM

system. This Chapter is divided into two sections. The first is devoted to a

summary of Unger's original data object and action definition. The second

section is a review of the ACM system as implemented by Catherine Carter

at the University of Kansas [4].

2. 1 A Concurrent Model

The initial model concept for a concurrent environment, called ACM,

was defined by Professor Unger in the dissertation. This section will review

her theory, and define the model's objects and operation. The theory is

built around two concepts: data-flow, and Petri nets.

ACM was designed around the control concept of Petri nets. Petri net

theory allows objects to flow through a bipartite network of nodes and

transitions. The transition in the net represents actions which operates on

its input. The operation then generates output. Figure 2.1.1 provides an

example Petri net:
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A Simple Transition Petri Net
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Conceptually, Petri nets allow for concurrent execution, with the restriction

that the transitions only fire if their input arcs each contain a token [2].

Petri nets are also characteristically non-deterministic. For more on Petri

net theory see [2, 3].

The second concept used in the design of ACM is the idea of data drive

from data flow theory. Data drive contributed two characteristics. The

first is that of a data driven machine. This means that the data flows

through some set of operations (transitions). The second characteristic is

the data flow concept of the single assignment rule. This rule restricts the

value of a data object to just one value during the execution of a program.

Another definition given for the single assignment rule is that an object may

only appear once on the left hand side during the execution of a program

[5]. The characteristic that the data flow model shares with Petri nets is

that a data flow system exposes inherent parallelism. Here is an example

data flow graph [6]:

Reservation Data now Graph

Reservation
>

! Airline

Travel Agent !<
!<-

> I Hotel
Reservation

| | >| Mall
|

v v
I Reservations

|

Client File

Figure 2.1 .2

The data flows into the travel agent, and from there it flows through the

rest of the system. This data flow graph captures the inherent concurrency

in the system. The second attribute which the data flow model and Petri

nets share is that both are very modular in structure.
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The ACM model has two primary actors: data-objects and actions. The

system is uniform in that every object despite its complexity is defined

from the same meta-object. Actions are defined in the same way. A meta-

action definition is given from which all actions are defined. The functions

can be extremely complex but the ACM model is flexible enough to define

any operation completely. The first actor to be reviewed will be the data-

object, since this is the active entity (moves from operation to operation) in

the system.

2.1.1 Data Object

A data object in ACM is defined as a seven tuple. The Object consists

of a Designator, an Attribute, a Representation, a Corporality, a Value, a

Stimulation condition, and Termination condition. Collection of these

tuples together compose any object defined in an ACM environment. These

characteristics allow any data object of any complexity to operate

effectively in a concurrent environment.

2.1.1.1 Designator

The Designator of an object consist of a four tuple. This tuple is an

environment context, user name, instance name, and an alias. The context

component is used as an index to a data object if it is operating in a

different environment. Context names are generated as an object moves

from one environment to the next. These names are concatenated as the

object moves to outer environments. As the data object moves from the

outer environment back, to the original environment the names are uncon-

catenated respectively.
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The user name is simply a name given to the object when it is created.

This is done when the program is defined.

The instance component is used to keep track of replicated objects. The

system must assign to each duplicate an individual name to maintain the

integrity of the system, and reduce the possibility of ambiguity. The

instance component of an object consists of a three tuple: (s,t,o). Where

s is the name or notation for spatial position.

t is the chronological identity generated by a user
and specified by a clock. The clock produces
monotonically increasing sequences of values.

o is an integer sequence number that is generated
starting with an initial value, specified by the
user.

The last component of the Designator is the alias. This tuple is only

used when the object needs to be referenced in another context. The syntax

Designator tuple is:

<Designator> ::= <Context> .. <User Name> .. <Instance> ..

<Alias>

An example of an Object's Designator is:

machinea .. budget .. 1980 .. 10

The first name corresponds to the context the data object resides in: name =

machinea. The second name represents the name given by the user: budget.

The third tuple represented is the instance tuple, 1980, and the last com-

ponent, alias, equals 10. The alias represents how this data object is refer-

enced outside the current environment.
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2.1.1.2 Attribute

The Attribute component of an Object tuple is defined by three com-

ponents: Object type, physical data representation, and relationships the

object has with other objects and actions. The first attribute, type, can be

broken into two classes: simple and complex. The simple types are integers,

reals, booleans, and characters. The complex structures correspond to

arrays, records, files, and combinations of the above. The physical data

representation is restricted by the hardware used to implement the ACM

model. The last component of Attribute is the relationships it holds with

other objects in the system. These other objects are either Actions or other

Data Objects.

2.1.1.3 Representation

Representation is the third component used to define an Object. This

component is defined by three attributes: Object location, coding scheme,

and packing considerations. The user is not allowed to manipulate the

representation component of the data Object, giving the Object a data-

abstraction quality. The location component of the Representation tuple is

the physical location of the Object in the system. The coding scheme corre-

lates to the type of character set being used to represent the objects, i.e., 7-

bit ASCII. The last component of the Representation is packing considera-

tion. The packing information is used to transmit an object from one

environment to another. This allows an environment to transform an

object into the correct representation, so that the object can function in the

next environment properly.
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2.1.1.4 Corporality

The fourth tuple component is Corporality. This component is defined

by four components: longevity, location, replication, and authorization. The

longevity attribute expresses the durability of an object in a given environ-

ment. This component allows the Object to exist in one of four states:

fixed, static, dynamic, or fluid. A fixed Object receives its value during the

inception of the model (program). This state is similar to the constant

declaration in a standard Von Neumann Language. Static Objects receive

their values once during the execution on the model. This type of Object

value may not change again during the existence of the model. Objects of

this state are similar to the data flow concept of single assignment. The

dynamic Object is denned by the system and is history sensitive. This type

allows an Object's value to change the name by a temporal or sequential

identification, and all past values must be recorded. The last state is fluid.

A fluid Object can change in value but its past values aren't recorded. The

fluid state is similar in purpose to the standard concept of a variable in

traditional languages such as Pascal, PL/C and Fortran. These four states -

fixed, static, dynamic, and fluid - define the longevity component of Cor-

porality.

The second attribute of Corporality is location; where the object can be

found. The Replication attribute stores the number of replications that

have been made of the object. The last tuple is authorization. This tuple

restricts the kinds of operations which are allowed work upon the object.

Thus the object has another similarity to an abstract data type in that only

operations specified by the object may be allowed to operate on it. The four

tuple - longevity, location, replication, and authorization - composes the

Corporality characteristic.
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2.1.1.5 Value

The fifth component of an Object is its Value. The Value component

represents the informational unit which the object was created to represent.

Value types come in two forms - simple atomic values and aggregations. A

simple atomic value is an integer, real, boolean, or character. Other simple

atomic values are sets, ordered collections, and actions. These simple types

are embedded in the system.

The aggregation type is the data abstraction facility in ACM. An aggre-

gation allows the user to define a structure composed of one or more objects.

Once composed, the basic operations which can be applied to the structure

must also be defined in the object. A structure is composed of a three tuple:

a structure, a set of partitions, and a set of legal actions where [l]:

structure - is a structure (designator, attribute,

representation, corporality, value) composed
of n objects oi = (designatori , attributei,

representation, corporality, value),

1 <=i <= n .

partition - is a set of subcollections or partitions which
can be referenced as a structure.

legal actions - is a set of legal action which can be
preformed on the structure.

The one restriction placed on the user employing such an aggregation is that

he/she does not have access to the underlying data object representation.

The restriction on giving an Object a Value is that a Value given to an

object can only be defined after the Designator is defined.

2.1.1.6 Stimulation and Termination
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The last two components of an Object are the Stimulation and the Ter-

mination conditions. The Stimulation component is used to activate an

inactive Object. This may mean moving the object from one environment to

the next, or that its value is now needed for some operation to be formed.

The Termination component signals an object cease to exist in the system or

in an operation.

2.1.1.7 Object Summary

The Data Object in ACM is composed of a seven tuple: Designator,

Attribute, Representation, Corporality, Value, Stimulation, and Termina-

tion. All data objects must be defined by the meta-object just described.

Some of the components which make up the data object are allowed to be

empty. A conceptual graph of the whole object may be found in Appendix

One. This data object is very flexible, and uniform in its treatment of data

representation. It is also analogous to an abstract data type defined by [5].

2.1.2 Action

The Action definition is the form operations take in the ACM model.

Actions are needed by every language to accomplish some task. Action in

the ACM system is represented by the five tuple: Stimulation, Material,

Action, Request, and Termination. The Stimulation and Termination condi-

tions in the Action object are similar to the Stimulation and Termination

tuples in the Data Object. The Stimulation tuple is simply a conditional

expression used to trigger the Action to perform its function and operate on

the data objects present in the system. When a termination condition is

met, it causes the Action to cease execution. A Termination condition may
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also cause other actions to cease execution, or stop other actions from

triggering execution.

The second tuple, Material, is a list of necessary data objects which the

Action 'will operate on. These data objects are similar to the in/out vari-

ables in an Ada procedure header.

The third tuple which defines the form of an object is Action. The

Action component is the actual definition of the operation which performs

on the data object(s). For example, this could be a simple add operation, or

a complex sort operation.

The fourth component of the Action definition is Request. The Request

tuple is a list of requests the Action spawns either after it executes or

before it can execute.

The five tuple - Stimulation, Material, Action, Request, and Termina-

tion - defines the meta-object for an ACM Action. This means that any

Action defined in the model will have these components. Not all the

Actions will have values for all the components. For example, the Stimula-

tion and Termination conditions may be null. The full definition of an

Action Object can be found in Appendix One.

2.1.3 ACM Control Constructs

The ACM model contains objects which can be uniquely identified, and

operations which perform some action on those objects. This section looks

at flow of control, and how constructs are created. A construct in ACM is a

"systematically organized set of requests used to control the flow of a com-

putation." [1] Constructs operate in three ways [1]:
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i) Support conditional computations on any basis.

ii) Support alternation computations based on context, iii) Allow for
partial computation on incomplete

material.

The conditional computation is represented by the Stimulation condition of

the request. The conditions allow the system to choose between two actions

with stimulated conditions, indicating that the system allows for the con-

cept of alternation. The action's stimulus condition, however, must be

mutually exclusive. Here is an example of the alternation condition in

ACM:

An ACM Alternation Action

[type = 'MEDICINE'] : MEDTAX (total ; sale)
[type = Not 'MEDICINE'] : TAX (total ; sale, 1)

Figure 2.1.3

The ACM system extends the alternation construct by allowing caseation.

Caseation is a construct which provides for the selection of one and only

one path from a set of computational paths [1]. The caseation in ACM
relies on the stimulation condition of a data object and action just as the

alternation construct does. This ensures consistency and the integrity of

the system.

The ACM model not only allows forms of decision structures but also

repetition. Repetition in ACM takes two forms: repetition and iteration.

Repetition is defined as a construct consisting of one request (Si,Mi,Ai,Ri,Ti)

where there exists one or more objects in the component Mi [1]. The itera-

tion construct "is expressed as a single request in which the termination

condition is present." [l]

The last form of control constructs which will be touched on is that of

partial computation. The computation continues until a missing object of

material is needed.
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2.1.4 ACM Summary

This concludes the review of the ACM theory. In this section the

impact of Petri net and data flow theories on the ACM model was dis-

cussed. The definitions for both the Data and Action Objects were given.

The Data Object is defined as a seven tuple - Designator, Attribute,

Representation, Corporality, Value, Stimulation, and Termination. The

Action is defined by a five tuple - Stimulation, Material, Action, Request,

and Termination. This section also covered the key concepts in control con-

structs - alternation, caseation, repetition, iteration, and partial computa-

tion. For a more in-depth view of the total ACM theory, the reader is

directed to dissertation Professor Elizabeth Unger's [1].

2.2 An Implementation of ACM

This section is devoted to a review of the version of the ACM model

implemented by Catherine Carter at the University of Kansas [4]. The fol-

lowing three sections will discuss - the Corvus Machine, the operating sys-

tem she designed for her thesis, and how she represented her Actions and

Data objects.

2.2.1 ACM on a Network, of Personal Workstations

The ACM model Carter implemented, like the ACM theory, used two

Data Flow concepts. The first, the data driven machine meant that the sys-

tem implemented was driven by the data introduced into it [5]. The second

concept, the single assignment rule, restricted all data objects to be either

Static or Fixed (according to the ACM theory). Carter's system was con-
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structed of six parts:

1) Operating System - resource management.

2) Editor - for program entry.

3) Display - for monitoring the

progress of an executing

program.

4) Interface - for conventional programs.

5) Communication - facility among the network

of Computers.

6) Ability to implement concurrent processing.

The major restriction imposed upon the implementation was that no

master/slave relationship could exist. The control mechanism used in this

implementation was called a Task. Tree.

The Task Tree represents conceptually and physically the different lev-

els of computation in the system. At the highest level of the Task Tree is

the abstract concept, and the next level down is used to represent all indivi-

dual processors. When a user signs onto the system a Task Tree is created

for that user on a certain processor. As the user generates requests the sys-

tem in essence hangs each request on the tree. This makes each request a

new branch in the tree. All requests have a path back to the root node.

This tree represents the execution data structure, the execution of the tree

nodes being done in an in-order manner.

Carter's system utilized the token storage concept, which is used in

current data flow machines [5]. This storage technique allows for mainte-

nance of the operand values. There are three trade-offs in by using this
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storage technique [4]:

1

)

It requires more memory space for each request.

2) Less firmware is needed since a separate matching
unit is not requested.

3) It fits the model being used.

These last two paragraphs outline the basic principle of the Carter imple-

mentation. The next two sections give an in-depth view of the Operating

system, and internal representation of system objects.

2.2.2 Operating System

Catherine Carter's operating system is similar to the standard definition

given for an Operating system. Her OS fulfills four needs of the ACM

model:

i) Scheduler - Both long and short term.
ii) Load Balancer - Distributes work. load,

iii) Command Interpreter
iv) Message handler for communication between

processors.

The long and short term scheduling dictates when a process can execute, or

where a request shall be placed on the Task Tree. The long term scheduler

is responsible for activating stimulated Actions, and scheduling when the

actions will fire. A dispatcher, which is associated with the Scheduler,

selects which of the triggered Actions will fire. This decision process takes

place when the actions are passed to the processor for execution.

The structure of the system is a Task Tree, and as such it could become

an unbalanced Tree. The main function of the load balancer is to detect an

overloaded processor. The balancer also decides which Action will be han-

dled by which processor. It selects nodes in the Tree which will be sent to

other processors in the network. The system can balance a Task Tree
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because each action is labeled with a tag. This tag marks which program,

location in the task Tree, and processor the action is attached to. This

allows a foreign task to executed by another processor, and allowing the

processor to check the tag and send the action back to the appropriate pro-

cessor with the appropriate results. The balancing of a Task Tree takes

place periodically, as timed by the OS.

In the ACM theory the designator component of the data object must

receive a unique name; in Carter's system this is done by the OS. When a

user signs onto the system, the OS gives that user a unique i.d.. The i.d. is

used as a preface to all objects and operations in the user environment.

This naming mechanism is used by the graphic package to illustrate the exe-

cution path of a Tree.

The next important component of the Carter implementation is the

representation of the objects and operations.

2.2.3 Object and Operation Representation

The implementation language chosen was Pascal. Pascal was chosen

because on the Corvus, it has a data abstraction facility. Another reason

Pascal is chosen was because it automatically checks type. The ASM68K

language was used for reading the keyboard and converting bytes to real

numbers during transmission between processors.

The representation of the Task Tree consists of three logical types of

nodes. The first node is the user's node. It includes the user's name and the

amount of work he/she needs done. The second node is called the interior

node and is primarily a place holder. It contains requests for actions, and it

passes values up and down the Tree. The last node is the terminal node,
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which can't be further refined (i.e., arithmetic operations). These three

nodes all share the same representation, but have different functions in the

system.

The representation scheme used to represent nodes (actions) and data

objects is the record. This structure depicts two concepts -well. The first is

that a record represents a conceptual unit or packet of information. This

allows each packet to be equated with individual processes. The record

maintains the packet state whether it is enabled or disenabled. Thus, if this

packet has to be sent to another process, everything it needs can be packed

up and sent to the other processor as one physical unit.

The second concept the record structure handles nicely is that tokens

can be easily stored as subrecords in actions. These substructures can indi-

cate if the material needed for execution has been received or not. Each

piece of material (needed data objects) and request name is assigned to a

separate subrecord. The record data structure, a Pascal record, is the

mechanism used to represent the action, data objects, and nodes of the Task

Tree.

Carter made three modifications to the original ACM model in the

representation of the action and data object. The first modification was an

extension of the Action definition to include a Path tuple. This tuple is

used to keep a record of the path from the current node to the root node.

The record is used by the system to transfer data objects up the Tree. The

second modification was to make the Data object was a subrecord not an

individual entity. The third modification was that the Termination tuple

for both the data object and the action Thus, Carter implemented a subset

of the original ACM model.
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2.2.4 Implementation Summary

This section reviewed one implementation of the ACM model as done

by Catherine Carter at KU. Her system used two data flow concepts - a

data driven machine, and the single assignment rule. The operating system

in her version used a token match scheme to match tokens to operations.

This system could balance one processor's Tree by shifting the work load to

other processors. The basic representation used in Cater's system was a

Task Tree consisting of Pascal records. The record fulfilled two purposes:

1) It treated all actions as conceptual processes, and 2) objects could be

stored as subrecords in the action record. In the implementation ACM was

modified in three ways. The action definition was extended to include a

Path tuple, the data object was embedded inside an action, and the Termi-

nation tuple wasn't implemented on either the action or the data object.

2.3 Summary

The main function of this Chapter is to give the background material

for the ACM concept designed by Professor Elizabeth Unger. This material

covers both the original concepts and one successful implementation. The

ACM model objects are the data objects and the actions which operate on

the data objects. The definition for these objects gives ACM a data abstrac-

tion facility. The constructs inherent in ACM are alternation, caseation,

repetition, iteration, and partial computation.

The second section illustrates that the ACM model is a feasible system.

An implementation by Catherine Carter at KU is currently being used by

the CS department there for the undergraduate operating systems course.

This section also gives some characteristics of ACM which were modified
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and not implemented. For instance the Action definition of ACM was

altered to include a Path tuple. This tuple is used to keep a list of its

ancestors. Also, the data objects were embedded inside the actions, instead

of treating them as separate entities. The implementation didn't include the

Termination tuple in either the action or the data object.

This paper then poses the question: What effect can knowledge have

upon the ACM model?
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Chapter Three

3.0 KNOWLEDGE REPRESENTATION FOR E-ACM

"All men by nature desire to know"

ARISTOTLE, METAPHYSICS

What is meant by the phrase "to know"? Does it mean that people

desire to know facts about the world or that they want to know how to

accomplish some task, or both? Computer Science, and A.I. in particular,

have come to realize over the past 25 years that how a problem is

represented can make that problem easier or more difficult to solve. If a

problem is poorly represented, finding the solution to that problem will be

difficult, if not impossible. Consequently finding the correct representation

for a given problem is itself the major problem.

In the past 15 years a subfield of Artificial Intelligence called

Knowledge Engineering has struggled to find one general-purpose form of

knowledge representation. Knowledge Engineering has produced at least

five forms of knowledge representation - Semantic Network, Rule-Based

system, Logic, Conceptual Modeling, and Frame Theory. However, it is the

conclusion of this research that there currently is no one general purpose

form of knowledge representation [10].

Knowledge is power and how that knowledge is represented in a com-

puter system is paramount. This chapter covers three topics of vital impor-

tance to the E-ACM model. These topics are knowledge representation,

object oriented concepts, and programming with procedural attachments.
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3.1 Knowledge

Knowledge about the world can be divided into two types- declarative

and procedural. Declarative knowledge is simple fact, discernible in the real

world. Declarative knowledge is "knowing that" about something. Pro-

cedural knowledge, on the other hand, isn't a simple fact but rather a col-

lection of heuristics which, when integrated together in a certain way,

represent working knowledge. Procedural Knowledge is generally called

"knowing how" to do something.

This chapter will define declarative knowledge as knowing that, and

procedural knowledge as knowing how. To further illustrate the difference

between the two types of knowledge consider, the following. An example

of "knowing that" is when someone knows for a fact that Kansas State

University, in the year 1985, lost all but one of its football games. This

sad fact can be verified by looking up the KSU football records for 1985,

and therefore is declarative knowledge. Procedural knowledge is "knowing

how" to do something, and is harder to represent in a system than declara-

tive knowledge. For an example of procedural knowledge, consider how

someone swims. Then think about trying to teach someone to swim. The

person wanting to learn how to swim could go to the library and read a

book on swimming, but that wouldn't mean the person knows how to

swim. It would only teach that person about how to swim. Knowing

about and knowing how are two different things. To know how to swim

the person would need to take swimming lessons, or perhaps try the sink or

swim method.

Artificial Intelligence, and in particular Knowledge Engineering, has

explored and experimented with many forms of knowledge representation.

The topic of knowledge representation has evolved over the last 15 years
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into one of the biggest issues in A.I. It is an accepted fact now that the

correct knowledge representation will facilitate the success of a system [35].

Consequently, There have been several knowledge representation schemes

generated over the last 1 5 years. These systems are very good at represent-

ing declarative types of knowledge. The weak point in all of them, though,

is that they do not represent procedural knowledge very well.

3.1.1 Knowledge Representation

It has been determined that the right representation of knowledge for a

given system will allow that system to function more efficiently [10, 35].

If the chosen representation of knowledge is poor, the system is doomed to

failure [35].

Researchers have created several types of knowledge representation

models. These models can be broken down into five categories [7]:

- Semantic Networks
- Logic
- Rule-Based systems
- Frames
- Conceptual Modeling

The representation scheme which is utilized for the E-ACM system is the

Frame representation concept. For further reading on the other four types

of representation schemes, the reader is directed to [8] for a Semantic Net-

work discussion, [9] for a review of Logic representations, see Newell and

Simons' book entitled "Human Problem Solving", 1972 for Rule-Based sys-

tems, and [14] for Conceptual Modeling. For a survey of all the current

forms of knowledge representation, the reader is directed to [10, 13]. The

rest of this section will be devoted to an in-depth look at Frame theory.

3.1.1.1 FRAMES



-31

There is abundant psychological evidence that people use a large, well-

coordinated body of knowledge from previous experience to interpret new

situations in their everyday cognitive activity [Bartlet 1932, 10]. With this

in mind, Minsky (1975) [10] proposed a model called Frames. This, he

theorized, was the basis for holding the information necessary to under-

stand visual perception, natural language dialogue, and other cognitive

behavior.

According to Patrick. Winston of MIT, a "Frame is a collection of

semantic net nodes and slots that together describe a stereotypical object,

act, or event" [9]. This means that a frame collects all the relationships

present in a semantic node, and treats them as slots in a frame structure.

A Frame consists of four components: designator, slots, fillers, and

facets. A definition for each component is given as follows [7]:

Designator : A conceptual name given to uniquely
identify a Frame.

Slot : Attribute of the concept given in
the Frame.

Filler : The value contained in the slot
component.

Facet : The restriction on the type of filler

for a given slot.

Conceptually, a Frame can be considered a box with the following form:

An Example Frame Definition

i Designat or

1 Slot Facet Filler |

! Slot Facet Filler |

j
n it n n It n l

1 Slot Facet Filler
J

Figure 3.1 .1
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A Frame allows inheritance, deamons, default values, and perspectives [see

section 3.1.1.2]. When Frame representations are designed, they usually

have the characteristic of being hierarchical in structure. Thus a Frame is

either a subclass, superclass, or a terminal node in a tree-like structure. The

links between frames in the tree-like structure facilitate inheritance of

superclass properties to subclasses. When designing a system with a

hierarchical structure it is important to push the knowledge as high up in

the hierarchy as possible. This type of design allows the knowledge in the

tree to be accessible by more subclasses via the inheritance mechanism.

There are four types of Frames [7, 14]:

1) Class Frames - this type of frame is a
template frame which describes a class
of information.

2) Individual of a class - This frame is

an instance of a class frame.
3) Perspective Frame - This frame defines the

context for how a class of frames will be
viewed.

4) Prototype frame - Specialized concepts in one
or more schemata to show the form of a typical
individual. Unlike aggregation, a prototype
specifies defaults that are true of a typical
case, but not necessarily of any particular
case.

The following is an example of converting a representation from a semantic

network to a frame model [9]:
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A simple Semantic Net

( ) -> denotes a concept

(BLOCK)

ako /

/

(WEDGE)
(BRICK)-

color

is-a

weight

(WEDGE 18) (BRICK 12)

->(RED)

-X12.2 LBS)

Figure 3.1 .2

A frame system

! BLOCK

WEDGE

ako
| BLOCK

child | WEDGE 11

! WEDGE 18
|

! is-a
j WEDGE |

! BRICK |

I
color RED |

I weight 12.2 lbs!

! child BRICK 12|

I
ako BLOCK

i

! BRICK 12 |

I is-a
1 BRICK !

Figure 3.1 .3
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The frame system reduces the number of links in a semantic network, while

still retaining the meaning of the original structure. A frame can then be

treated as a conceptual unit instead of as a semantic node with its associated

links. In keeping with the concept of inheritance, frames are specializations

of Semantic networks.

3.1.1.2 Inheritance, Daemons, Defaults, Perspectives.

Frames utilize the concepts of inheritance, daemons, defaults, and per-

spectives. This section will define the context of these concepts with respect

to the frame representation scheme.

Inheritance

The concept of inheritance was first introduced by Aristotle in his

theory of categories and syllogism [14]. He constructed a type hierarchy to

represent many things known to man. Every class type in the hierarchy

was derived from a set of ten primitive types, such as fire and water. He

defined new types by the method of genus and differentia utilizing the ten

primitive types. He used the method of syllogism for analyzing the inheri-

tance of properties.

Inheritance allows description movement from classes to instances and

subclasses [9]. It should be noted that without a hierarchy, this concept

could not exist. Inheritance is demonstrated by the way humans assert

things about something once its identity is known. For example, if one sees

a robin sitting in a tree, the observer can assert many things about that

robin. The observer knows the robin is an instance of the general class of

birds. The robin inherits many of the properties (characteristics) from the
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class of birds, such as the physical attribute of wings and the ability to fly.

The robin, it is said, inherits the properties of wings and the ability to fly

from the general class called birds. The only time people fail to assume a

correct inheritance property is when an exception is being observed, e.g., a

penguin.

Daemons

Daemons are also called attached procedures, active values, hooks, if-

added and if-needed procedures [9, 13, 15]. Daemons were first introduced

by a physicist named Maxwell, and are sometimes called Maxwell's dae-

mons [7]. Maxwell used the idea of a deamon to illustrate a point about

pressure equilibrium in a gas system. Graphically the gas system looks like

this :

A Gas Equilibrium system

GAS 1

±
GAS 2

Figure 3.1 .4

Inside this system was a little fellow who could alter the pressure in either

chamber. He was called a deamon. This deamon controls the gate between

the two chambers and if he wanted he could open the gate, and pluck atoms

out of one chamber and put them in the other. This theory is contrary to

the the gas laws. The gas laws state that when such a gate is opened the



-35-

pressure in the two chambers will after a time reach equilibrium. The main

point of the deamon was to illustrate that something, unseen to the user,

could monitor the current state of a system. It could also has the ability to

alter values if it so desires.

In the field of Artificial Intelligence daemons are used for a similar sort

of job. They monitor the state of a computation, and by various means can

cause actions to take place that effect the state of a computation. In frames

these are either called if-needed procedures or hooks. In object oriented pro-

gramming they are called daemons, wrappers, whoppers, or active values

[16, 17, 18]. In section 3.3, a full description will be given about the impact

daemons have on the E-ACM model.

DEFAULTS

Default reasoning is used in computer systems when there is an absence

of information about something, and no daemons exist. When no informa-

tion is available it is accepted practice to make a sensible guess, as long as

there is no evidence to contradict it [19]. This type of reasoning is called

nonmonotonic. Monotonic reasoning states that if a conclusion is derivable

from a certain collection of facts, the same conclusion remains derivable if

more facts are added [10]. Nonmonotonic, or default reasoning, states that

the addition of one piece of information may force the deletion of another

[19].

Default reasoning is used in the construction of a knowledge base to fill

in the gaps of absent knowledge. The values used for default values are

defined as general case knowledge, and most the probable choice. For

instance, here are some default examples:
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• Most people like flowers.
- Most dogs have tails.

- The most common hair color
for a Swede is blond.

The reader should make two observations about these assertions: 1) The

default values are for classes of objects, and 2) these assertions are based on

commonly believed facts. The important concept to remember is that these

assertions are made in the absence of complete information.

PERSPECTIVE

An object can play many roles, depending upon how that object is

viewed. Each role is called a perspective. A racing bicycle may be fast for a

bicycle but slow as a means of transportation. Perspective deals with what

context an object is in, or can be in. A person can be a parent, an instructor,

and also a professional bowler, and depending upon the context he appears

in, that person can be viewed differently [7].

A perspective is represented in an A.I. system in something a bundle.

The object or concept which can be viewed a certain way is associated with

a particular bundle, each bundle representing a different perspective. One

object can be connected to several different bundles, as was illustrated by

the previous example of a person. An object may have several perspectives

that may overlap, or even be in conflict. For a more in depth view of per-

spectives see [9].

3.2 Object Oriented Concepts

The frame representation scheme is integrated with object-oriented con-

cepts to create a powerful representational tool. The central concepts of
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object oriented programming originated from the programming language

Simula [36], the fundamental being those of objects and classes [28]. The

Simula programming language, however, uses the standard data/procedure-

oriented approach for communication and control. The first object oriented

language was designed at the Xerox Learning Research Group by Alan Kay

[5, 28]. The system Kay developed is called Smalltalk. The Smalltalk sys-

tem is composed of objects which interact by sending and receiving mes-

sages. The sending and receiving of messages cause computation to be per-

formed in the system. Flavors and LOOPS are currently two of the more

powerful object oriented languages to arise from the concepts established by

Smalltalk [17, 18].

In object oriented languages, class represents data type and data objects

are instances of the class. The operations are defined inside the class and are

referred to as methods. Methods have two functions - to respond to a mes-

sage by operating on the values defined in the class, or te send messages to

other objects [30]. The methods defined by the class constitute the class

protocol. This protocol defines the responses of a class to the type of mes-

sages received.

The two concepts object oriented language concepts this work utilizes

are abstract data types and message passing. The data abstraction facility

used by Smalltalk, Flavors, and LOOPS is captured by the class definition.

An object class is an encapsulation of data objects and operations, and is

captured by the E-ACM system through the use of frames to represent

objects. The standard frame representation is extended to include slots

which contain executable operations. These operations, in effect, are

equivalent to the object-oriented concept of methods. The slots contain the

actual code which will respond to messages, or perform some computation.
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These methods also can have procedural attachments, which will help facil-

itate the methods' function (see section 3.3 on procedural attachments).

The primary purpose of the methods is to facilitate a message passing

mechanism in E-ACM, creating an interprocess communication facility.

Message passing supports the concept of abstract data types, because an

object is considered a distinct entity which can communicate with other

objects [30]. The only way to communicate with an entity is to send it a

message and prompt it for a response. A simple example is the termination

of the payroll system due to lack, of money to pay the employees. If the

company runs out of money (money is a data object), then certain messages

must be sent to all concerned objects. The money object must first send a

message to the system that it has reached a critical value. The system will

then broadcast the message of the termination condition throughout the

system. The file which holds the list of employee records will receive the

message via a method and either delegate the message, or perform some

form of computation upon that message, or both.

3.3 Programming with Procedural Attachments

The idea of procedural attachments comes from recent work, in pro-

gramming languages. The procedural attachment was initially used as a

device to patch up program code [7]. If the designer or programmer forgot

some procedure or function, they would attach a procedure which carried

out that function to the correct location in the program. In the last year

XEROX PARC has introduced a structured way to program with access-

oriented procedures. Access-oriented procedures are a subclass of pro-

cedural attachments.
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This work, defines a broader scope for procedural attachments which

includes access-oriented programming and daemons. Procedural attach-

ments are used by this model to represent procedural knowledge, or that

form of knowledge which is hard for the frames to capture and represent.

The procedural attachment is used to facilitate three operations in E-ACM:

communication between objects, self modification of objects, and as a

method for implementing the stimulation and termination conditions as

defined for the object in ACM. This section will discuss the definition of

procedural attachments, and how they are utilized in the E-ACM system.

The procedural attachment in E-ACM is constructed from two distinct

groups: access-oriented attachments and daemons. The procedural attach-

ment defined by this work is a simple algorithm which represents some

piece of procedural knowledge integral to the operation of the system. The

seductive aspects of procedural attachments are that they run in the back-

ground and are unseen by the user, and possess low execution overhead.

The difference between the types of procedural attachments is determined

by how they will be attached to a particular object or operation. All pro-

cedural attachments will have some associated condition which must be

triggered (met) before they will fire (execute). There is one exception to

this rule - the inactive deamon.

Daemons are the first type of procedural attachment which E-ACM

utilizes. The daemons can be divided into two classes: inactive, and active.

The inactive daemons used in E-ACM are derived from two areas: frame

systems and object-oriented languages (in particular the MIT version of

Flavors). Daemons in frames are used for nonmonotonic reasoning. Dae-

mons will calculate information from the lack of information. This use of

daemons is a form of default reasoning. Any slot in the frame can have an
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attached deamon. Classes also have the ability to inherit daemons from

their superclass. This form of inactive deamon defines the first component

of the procedural attachment definition in E-ACM.

Inactive and active deamons are derived from the use of daemons as

defined in the Flavor's object-oriented programming language. These dae-

mons are attached to methods defined in the object's class. The inactive

daemons are called "before" and "after" daemons. Before and after daemons

are inactive because they react to any message sent to the attached method,

not to a condition. The execution sequence for a method which has attached

before and after daemons is the following [16]:

- The before deamon fires first

- The primary method fires

- The after deamon fires

- The value returned is that of the

primary method

Each method may have more than one associated before and after deamon.

If the method has a list of before daemons, then they are executed in a

last-in first-out order. This means that the last attached before daemon

will fire first. If the method has a list of after daemons, then they are also

executed in a first-in first-out manner [16, 17]. An object can also inherit

any before or after daemons defined for a method with the same name, and

these daemons are put on the before and after deamon lists.

Active daemons also derive their definition from the Flavors language.

These daemons are more powerful because they have conditions attached to

them, and they manipulate the message passing facility in Flavors. Flavors
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divides these daemons into two types, wrappers and whoppers [17].

Wrappers and Whoppers are associated to methods defined by the object in

its class definition. The purpose of the wrapper is to censor incoming mes-

sages arguments. The wrapper can test the arguments of a message sent to

its associated method, and if the arguments fail to meet the specified condi-

tions, the wrapper stops the message and returns some predefined value.

This means the message will not cause the method to fire. This also causes

any associated before and after daemons not to execute.

The whopper is similar to the wrapper except that it can alter the mes-

sage sent to the method. A whopper is a procedural attachment which is

associated with a method. The whopper examines the contents of every

message sent to its associated method, and if the arguments in the message

fail to meet the predefined condition, the whopper can alter the contents of

the message or stop the message altogether, depending on the whopper's

conditional expression. Both the wrapper and the whopper can also be used

to cause the system to take some action before the method fires, even if nei-

ther wrapper nor whopper allows the method to fire. The full order of a

method's execution with all attached daemons is [17]:

• Wrapper checks message sent to method.
The wrapper carries out some predefined
operation.

If message meets wrapper condition,
then:

- Fire before daemons
- Fire primary method
- Fire after daemons
- Return value of primary method

Else ignore message

- Whopper checks message sent to method.
The whopper carries out some predefined
operation.
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If message meets whopper condition,
then:
- Fire before daemons
- Fire primary method
- Fire after daemons
- Return value of primary method

Else Alter message contents
Then carry out method

These two powerful daemons are used to facilitate communication between

objects, and between objects and the system. Daemons, as defined by Fla-

vors, and frame systems make up the first half of the procedural attach-

ment definition in E-ACM.

Access-oriented procedures complete the definition of procedural

attachments in the E-ACM system. The purpose of the access-oriented pro-

cedure is to monitor the object's value, and communicate with the stimula-

tion and termination conditions as defined by this system's objects. The

researchers at XEROX PARC have proposed a way to structure the use of

access procedures in a programming environment [20]. Following is the

abstract from their paper describing access-oriented programming [20]:

Abstract: In access-oriented programming, the fetching or storing
of data causes user defined operations to be invoked. Annotated
values, a reification of the notion of storage cell, are used to imple-
ment active values for procedural activations and properties for
structure annotation. The implementation satisfies a number of
criteria described for efficiency of operation, and non-interference
with respect to other paradigms of programming. The access-
oriented programming paradigm has been intergrated with the
Loops multi-paradigm knowledge programming system which also
provides function-oriented, object-oriented and rule-oriented para-
digms for users.

The access-oriented approach attaches procedures to data values, unlike the

daemons which attach procedures to methods (operations). Access pro-

cedures are triggered by an object, or operation on the object's value, facili-

tated by either a get and a put on the object's value. An object may have
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both a get or a put access procedure attached to its value, and there can be

any number of these procedures attached to an object.

These attached operations have conditions which monitor the value of

the data object. When the value of the object reaches a certain value the

attached procedure will cause a certain action to occur. An example of this

type of approach is found in the LOOPS language. In LOOPS there are

graphics software devices called gauges. With access procedures these

gauges are attached to the values of data objects. The gauge is updated on

the screen by the access procedure as the data value is altered [30].

These two types of procedural attachments, daemons and access pro-

cedures, are integrated into one procedural attachment definition. This

work utilizes the inactive deamon as a nonmonotonic reasoning mechanism.

Each slot in the frame which defines an object can have inactive daemons

associated with it. The wrapper and whopper daemons are utilized by E-

ACM to monitor messages sent to the object, and can alter the state of the

message and computation if certain conditions, defined by the wrapper or

whopper, are met. Access-oriented procedures are used by E-ACM to moni-

tor the value of an object. If an object's value meets some condition defined

in an access procedure, an associated action will be carried out.

The access-oriented procedures will be used to facilitate the stimulation

and termination conditions as defined for E-ACM objects (see Chapter

Four). When the object's value triggers the access's condition, the attached

procedure will notify the stimulation and termination conditions for

further action. The procedural attachments as used in this form can be con-

ceptually viewed as interobject communication. The definition for the use

of procedural attachments as defined in E-ACM is given in Chapter Four.
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3.4 Summary

This chapter discusses and defines the knowledge representation scheme

used to define objects in E-ACM. The chapter reviews the knowledge

representation scheme of frames, object-oriented programming, and pro-

cedural attachments. It also discussed how Frames, the object-oriented

concepts of data abstraction, and message passing are integrated to represent

the E-ACM system objects. The object-oriented concept of data abstraction

treats each object as an encapsulation of information and knowledge.

Objects can thus be considered separate entities, and treated in a uniform

manner. The Frame scheme is the encapsulation of an object and holds its

definition for the data object, including the operations which can be per-

formed upon it. Message passing enforces the concept of data abstraction.

The E-ACM model utilizes the message passing concept for interprocess

communication. The message passing mechanism is facilitated by the use of

code segments defined as methods in the frame, and procedural attachments.

Procedural attachments are defined in E-ACM as a piece of procedural

code representing some procedural knowledge. Procedural attachments have

a low overhead for execution, and run unseen by the user. Procedural

attachments in E-ACM occur in two distinct types: daemons, and access

procedures. The procedural attachment facility in E-ACM facilitates inter-

object communication, interaction with the system, and object modification.



-45-

Chapter Four

4.0 EXTENDED ACM MODEL

This chapter defines the objects, operations and operating system which

constitute the E-ACM model. The data objects and operations are defined

by the ACM model [1], and are reviewed in Chapter Two of this work. The

extensions of the model are defined in depth in this chapter. The concepts

for the operating system are derived from recent research done in machine

learning [31] and natural language processing [10, 13]. The operating sys-

tem enforces the data driven concept by using the Petri net model as a

model for system control. The Petri net model is enforced by an agenda

system, and a blackboard mechanism which is used to control system mes-

sages. The integration of the blackboard mechanism and the agenda mechan-

ism constitutes the operating system.

4.1 Fundamental Data Object Definition

This section is devoted to the definition of the data object which inha-

bits the E-ACM model. The first few sections are dedicated to a review of

the generic data object definition given in [l], and defined in Chapter Two of

this work. The last three sections are dedicated to the extensions made to

the Unger model.

The central definition for the data objects in E-ACM can be found in

Unger's model, which takes this definition and extends and modify it. The

data object in E-ACM is built around the concept of an abstract data type

as defined in the object oriented programming languages [28, 17, 18]. These
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objects have lists of authorized operations, the protocol to access system

data and knowledge bases, and the protocol necessary to communicate with

other objects, i.e., data objects, operations, blackboards, agenda, and the

user. The objects also maintain destination lists which hold the paths of

execution for particular computations. The objects have the ability,

through the use of procedural attachments, to modify themselves. The data

abstraction concepts allow the data objects in this model to be treated as a

unit, an encapsulation of information and knowledge.

The basic definition of the E-ACM data object is a ten tuple which

includes stimulation, designator, attribute, representation, corporality,

value, path, history, methods and termination. The extensions to the ACM
data object is the path, history, and methods components. The designator,

attribute, representation, value, stimulation, and termination components

remain intact. The corporality component, specifically the authorization

component of corporality, has been extended to include protocols for access

to data and knowledge bases.

The designator component is represented physically as a sequence of

alphanumeric names which uniquely identifies an object. The designator

consists of a four tuple which includes context name, user, instance, and

alias. For the E-ACM system only the context name, user, and instance

identifiers will be used. Each have a unique meaning related to the physi-

cal name. The context of an object's name relates to the environment the

object is currently in. The user name is supplied by the user of the system.

The instance is used to designate objects which have identical contexts and

user names. The designator component is physically represented in E-ACM

as a frame:



-47-

(Designator
(Context lisp user-defined)
(User lisp user-defined)
(instance lisp user-defined) )

The user-defined facet connected to the slots of the designator are where

default values defined by the systems programmer or the user are placed.

Thus if the user fails to give the created object a name, the system will use

the predefined (user-defined) value for that slot in the data object. For tem-

porary data objects used by the system, the system will assign the tem-

porary data object designator values.

The next component which defines the E-ACM data object is attribute.

A data object's attribute has three components: type, structure, and rela-

tionships. Type defines the actual data type the object will be defined as,

i.e., integer, boolean, or form. The structure component defines what struc-

tures will be used to represent that object. The relationship component is

used to define how the current object is related to other objects, i.e., isa, or a

kind of (ako) to another object; and define the protocol to communicate

with other related objects. The attribute component of the data object is

represented in E-ACM by the frame:

(Attribute
(Type lisp (daemon to check

for valid types))
(Object-structure struct )

(Relationships lisp ) )

The daemon attached to the type component insures that the type assigned

to the data object is a valid type.

The third component of the data object is representation. The represen-

tation of a data object consist of a three tuple: location, coding scheme, and

packing information. The location of an object corresponds to the
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environment in which it was created. The coding scheme represents how

the object is physically represented in the system, and is related to the con-

cept in abstract data type definitions which specifies how the object is

represented [5]. The coding scheme is defined as one of several types, i.e.,

list, integer, frame, form, or even file, and must agree with the attribute

component type. The packing component stores knowledge about how the

data object can be packed for transportation between environments and

machines in the network [4]. The representation tuple is represented in E-

ACM by the frame :

(Representation
(Location lisp )

(Coding-scheme set-of-struct (daemon assigns struct
depending on assigned
type from Attribute
component ))

(Packing lisp ) )

When an instance of a data object is created, the system will fill in the

Location slot and the Coding-scheme. The packing information is inherited

from the type of structure the data object was defined as. For example, an

integer is packed differently than a form. The knowledge about how each

type is packed is stored in that type.

Corporality is the fourth component of the E-ACM data object

definition. This component is defined by the four tuple - longevity, loca-

tion, replication, and authorization. The longevity component defines how

long the value of an object will be bound to that object. The ACM model

defines four longevity types:

Static - value fixed at data object creation,
i.e., Data flow models.

Fixed - value fixed at run time,
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i.e., Pascal variable.
Dynamic - value may change over time, but a

record of past values is kept.
Fluid - value may change over time, but no

record of previous values is kept.

A data object can only have one of these longevity types.

The second component of corporality is authorization. ACM defines

authorization as the operations which the data object will allow to use its

value. The E-ACM model retains that concept, but expands the responsibil-

ity of authorization to include protocol information. Protocols define the

means for accessing, associated data bases, or knowledge bases. The proto-

col component holds the information about which data bases, knowledge

bases, objects, and system blackboards the current object can access. The

protocol component also records how each of the specified objects can be

accessed, or communicated with. For example, the data object may have

dynamic longevity, meaning a record of past values must be kept. If there

are enough values then the data object must have an attached data base.

The method for accessing this data base is stored in the protocol component

of corporality. The corporality component of the data object is represented

in E-ACM by the frame:

(Corporality
(Longevity lisp (daemon check for

static, fixed,

dynamic, fluid))
(Location lisp)

(Replication lisp)

(Authorization
(Security lisp )

(Protocol
(Data-base lisp)

(Knowledge-base lisp (default protocol))) ) )

The knowledge base associated with the object is a system knowledge base

which contains, among other things, knowledge regarding the layout of the
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offlce system. This knowledge base will assist the data object if it happens

to get lost in the network.

The fifth tuple component defined in ACM is the value component.

This component is defined by the ordered pair, information and actual

value. The information component is used to store the kind of value this

object has such as atomic or aggregation (composite). The atomic types are

individual values, i.e., integers, reals, arrays, list. Aggregations are large

structure values such as other data objects, combined data objects and

operations, forms, and files. An aggregation in this system is analogous to

the object oriented concept of a composite object. The information slot is

important because atomic structures are handled differently than aggrega-

tions.

The actual value component is the actual value stored for the data

object if it is an atomic structure. The actual value of an aggregation is the

definition for the composite data object. The value component for E-ACM

is represented by the frame:

(Value
(Information lisp (daemon checking for

atomic or aggregation
structures)!

(Actual-value lisp ) )

The daemon attached to the Information slot is designed to check for valid

value types.

The last two components defined in ACM are the stimulation and ter-

mination conditions. The stimulation and termination components are simi-

lar in that the function of both is to monitor the value of the data object in

the actual-value slot of the data object's value component. Stimulation and

termination are also similar in that they can cause actions to occur in the
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system and can send messages to the system blackboard and other objects.

The stimulation and termination components are dissimilar in the kinds of

actions -which they can cause. The stimulation condition is used by the

object to set itself and other objects in motion. This could be to make an

object to perform some computation, or for the object for which the stimu-

lation condition was met to perform an action.

When the termination condition is met, it designates the data object's

value as no longer valid and not to be used any further in this environment.

The a data object, all of its copies, and any children which it spawned must

either cease computation or cease to exist, depending on the data object. In

the E-ACM model the stimulation and termination conditions are

represented by the frame slots :

(Stimulation lisp (procedural attachment))

(Termination lisp (procedural attachment))

The procedural attachment connected to the stimulation or termination con-

dition may be null. The purpose of the procedural attachment is to carry

out the necessary operations (i.e., communication) when the condition

defined by the stimulation or termination is met.

The E-ACM model defines three new components: path, history, and

methods. The path component maintains the execution list for a data

object. A data object which has a null path value is an idle, or nonexistent,

data object. The object has associated procedural attachments which

modify the path list as the object moves through the network of operation

nodes. The path component also maintains the path that a data object must

follow to traverse the network of work stations in order to complete its



-52-

computatiorh

The path component works in conjunction with the history tuple. The

history tuple maintains a recent history of operations carried out on the

data object. The history component is also able to record the user who

manipulated the object, and if the object's value was altered. "When an

object visits the first node on its path list, the path list notifies the history

component that a computation is about to take place and to take notes. The

history records the data object's values prior to execution, and the resulting

effects the operation has upon the data object. The path and history com-

ponents of an E-ACM data object are represented by the frame slots :

(Path lisp (Procedural attachments))

(History lisp (Procedural attachments))

Once the data object has completed its path list for execution, the history

component will dump the history of the object into a specified file for

inspection by a system coordinator. If an unauthorized access is attempted

on the object the history component captures the user's name, and immedi-

ately dumps that illegal attempted access into a special error file.

The methods component completes the definition of the E-ACM data

object. A data object can have many methods defined for it. The number

of methods defined for a particular data object depends upon the types of

messages that object is expected to handle. The main purpose of the

methods are to handle any message sent to a data object. The object

receives messages from other object's by a message sent to one of its defined

methods. The collection of the data objects methods defines its protocol and

the type of messages it will accept. The methods component of the data
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object is represented by the frame slot:

(Methods struct (Attached procedures) )

Methods are defined when a new data object definition is added to the sys-

tem, or may be attached dynamically as a data object's responsibility

changes. The slot contains a struct which is necessary for the handling of

some messages. The attached procedures are before and after daemon

wrapper and whopper - type daemons. The before and after daemons help

communication with other objects. The wrappers and whoppers are used to

monitor the data object's values and announce changes. All daemons facili-

tate data object modification and inter-object communication.

The representation for the whole data object definition as represented in

E-ACM is the frame:

E-ACM Data Object Definition

(Data-object
(Designator
(Context lisp system-defined)
(User lisp user-defined )

(instance lisp system-defined)
(Alias lisp system-defined) )

(Attribute
(Type lisp (Daemon to check

for valid types))
(Object-structure struct)
(Relationships lisp ) )

(Representation
(Location lisp )
(Coding-scheme set-of-struct (Daemon assigns

struct depending
on assigned type
from Attribute

component))
(Packing lisp ) )

(CorporaHty
(Longevity lisp (Daemon to check

for Static,
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Fixed, Dynamic, or
Fluid))

(Location lisp)

(Replication lisp)

(Authorization
(Security lisp)

(Protocol
(Data-base lisp)

(Knowledge-base lisp (Default protocol))) ) )

(Value
(Information lisp) (Daemon to check

atomic or aggregation))
(Actual-value lisp)

)

(Stimulation lisp (Procedural
attachment))

(Termination lisp (Procedural
attachment))

(Path lisp (Procedural
attachment))

(History lisp (Procedural
attachment))

(Methods lisp (Procedural
attachments)) )

Figure 4.1.1

The following is an instantiation of a personnel file data object.

An Example Data Object

(Personnel-file

(Designator
(Context VAX 11/780)
(User nil

)

(Instance nil )

(Alias nil

)

(Attribute
(Type File)

(Object-structure DBase II)

(Relationship Payroll)
(Representation
(Location VAX 11/780)
(Coding-scheme ASCII)
(Packing nil)

(CorporaUty
(Longevity Dynamic)
(Location VAX 11/780)
(Replication 0)
(Authorization
(Security (Robin, Sally, George))
(Data-base nil)
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(Knowledge-base System-KB)
(Value
(Information Aggregation)
(Actual-value Personnel-file-DBII)

(Stimulation nil)

(Termination end-of-file)
(Path (Payroll) )

(History nil)

(Methods
(Read (source code))
("Write (source code))
(Update (source code))
(Delete (source code)) ) ) )

Figure 4.1.2

This is a data base which holds all a company's personnel records. The per-

sonnel file resides on the VAX 11/780, and at present has no user. It has

one object relationship, with the action object Payroll.

This data object has a longevity type of Dynamic, because it will allow

users to modify it. The Authorization component of the data object res-

tricts access to Robin, Sally, and George. These names are compared to the

User component of the Designator for validity. The personnel data object

also has access rights to the system-KB. The protocol for accessing the

system-KB is stored in the object as a default value. The information value

for the data object is an aggregation. The actual value for the Personnel-file

is the data-base itself.

4.2 Action Object Definition

Actions in E-ACM are operations which function on the previously

defined data objects. The actions represent nodes in the network which the

objects must visit. The definition of the actions are based upon the actions

defined in ACM [1]. This section gives a brief review of the action

definition as defined in ACM [1] and Chapter Two.
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The definition of an E-ACM action is a six tuple - stimulation,

material, action, request, termination, and priority. The priority component

is the extension to the ACM definition of the action.

The stimulation component is similar to the stimulation component of

the data object. The stimulation condition signals an action to start when it

should, and works in conjunction with the material component which

detects the presence of data objects. The stimulation condition, when met,

signals the blackboard, which in turn broadcasts the global state changes to

the action and data object. Once the action's stimulation condition is met,

the action is placed upon the firing list by the agenda, and its priority is

updated. The stimulation is represented in the E-ACM model by the frame

slot:

(Stimulation lisp (Communication Daemon))

The communication daemon is responsible for the interaction between the

action, the blackboard, the stimulation condition, the priority component,

and the material component. The stimulation condition may be null.

The stimulation component must work with the material component.

The purpose of the material component is to detect the presence of any data

objects the action needs before it can fire. The presence of data objects in

the material component triggers the action, if its stimulation condition is

met. The number of objects an action requires before it will trigger is fixed,

but many data objects may use the operation. This material component is

represented in E-ACM by the frame slot:

(Material lisp (Communication Daemon))
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The purpose of the communication daemon on the material component is to

communicate to the agenda that this action can be placed on the trigger list,

and to signal to the stimulation condition that the operation has been trig-

gered.

The action component is the third tuple in the action object definition.

The action component is the actual function which performs an operation

upon the data objects present in the material list. It is made up of two

components - an argument list and the function code. The argument list

matches the correct number of data objects found in the material list to the

actual function code defined by the action component. It is represented in

E-ACM by a special frame called a functional frame. This frame has two

slots ; the first holds the argument list for the function, and the second

holds the actual arguments needed by the function. The action component

is represented by the frame:

(Action
(Operation

(Argument-list lisp (Access match))
(Argument 1 lisp)

(Argument2 lisp)

(Argumentn lisp)

)

The number of arguments are defined when the function frame is created.

Thus when an action object is created, the function frame is attached to the

action component slot in the action object frame. The access match is a pro-

cedural attachment which, when the operating system tries to retrieve the

value from the action slot, fires and matches the material list to the argu-

ments defined by the argument slots. The operation frame then executes

the operation and returns a value.
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The fourth component in the action definition is the request. The

request component defines the list of action which the current action needs

to have executed before it can complete its own computation. This list

doesn't have to be ordered, because the agenda mechanism handles the ord-

ering of actions. One restriction placed upon the request component is that

a child may not request the action of an ancestor. A request will also

trigger an action's stimulation condition. The request component is

represented by E-ACM as the frame slot:

(Request lisp)

The request component has a default list of null.

The fifth component in the action definition is termination. This com-

ponent monitors the state of the computation, the blackboard, and its

materials component. If the termination condition is met, several actions

can be taken by the action object. It could mean that the action is no longer

necessary for completion of some computation. If this is the case, the action

must signal all actions on its request list to abort. The termination condi-

tion may be met by one of the data objects in its material list reaching some

critical value, in which case the current action may not be able to use it and

must cease computation. The termination component is represented in the

E-ACM model by the frame :

(Termination lisp (Communication Daemons))

The communication daemon represents the protocol for the action to broad-

cast messages to all requested actions, and to communicate the termination

of this action to the system blackboard.

The priority component is an extension of the action definition in ACM.
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Its purpose is to hold the value of the action's priority. The agenda

mechanism uses this component to order and prune the firing and trigger

lists. The priority component is represented in this work by the frame slot

(Priority lisp (deamon modifier))

The procedure attached to the Priority slot is used by the object to keep its

priority value current, relative to the rest of the system. For instance, if

the action's termination condition is met then the operation updates its

Priority slot to allow the operating system to prune it from the list of firing

or triggered operations.

The action object definition is represented in the E-ACM model by the

following frame:

E-ACM Action Definition

(Action
(Stimulation lisp (Communication Daemon))
(Material lisp (Communication Daemon))
(Action
(Operation
(Argument-list lisp (Daemon match))
(Argument 1 lisp)

(Argument2 lisp)
|| it ff 11 n ii ii

r

(Argumentn lisp) ) )

(Request lisp)

(Termination lisp (Communication Daemons))
(Priority lisp (Daemon modifier) )

Figure 4.2.1

An example action is illustrated below. This action is a request by the user

for some action :

Payroll: an Example E-ACM Action

(Payroll
(Stimulation (date = Fri))
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(Material (Personnel-file Company-Payroll))
(Action (Read Personnel-file))
(Request (Check-Print State-tax Fed-tax

Social-security))
(Termination ( (Company-Payroll < 100.0) or

(Personnel-file = end-of-file))
(Priority 785)

)

Figure 4.2.2

This example defines an operation which will perform the Payroll function

to be carried out. The stimulation condition for the Payroll object is that it

must run when the date equals any Friday. The material which must be

present are the Personnel-file, and Company Payroll. The action that the

Payroll preforms is to read records from the Personnel-file, and send them

off for further processing. Payroll requires the actions Check-Print, State-

tax, Fed-tax, and Social-security. All these actions carry out some compu-

tation, and are defined in the system. The Payroll will terminate if either

the Company-payroll runs out of money (money < 100.0), or Personnel-

file end-of-file is met. The predefined priority for the Payroll action is 785.

4.3 Operating System Definition

The operation system in E-ACM is based on three concepts: Petri nets,

an agenda mechanism, and a blackboard mechanism. The agenda mechan-

ism is integrated with the blackboard system to facilitate the Petri net con-

cept of control. The Petri net concept is utilized in this model to represent

the flow of objects through a system of operations and a network of com-

puters. The Petri net model is also chosen because it represents the concept

of a data driven model, which is the basis of ACM and E-ACM system con-

trol.

Petri nets are utilized on two levels in the E-ACM model. The first

level is the network level. Petri nets are used to direct the flow of a data
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object through a network of computers. An example will help illustrate

this point. Assume a form (which in this model is a data object) in an

insurance company must move from the secretary's work, station to the

agent's work station and back again. The flow of this form through the

network can be captured and represented by a Petri net as follows:

Simple Office Network

(
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! /
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( Agent ) Printer )

Figure k .3
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The nodes in this net represent the stations that the form must visit in a

certain order at a certain specified time. All this information is stored

internally in the path slot of the data objects definition.

The second conceptual level Petri nets are utilized on is the object level,

or the level at which data object interaction with operations and computa-

tion occurs. The Petri net at this level illustrates how the objects will

interact with operations to perform some computation. To further illus-

trate this point, consider the previous example of a form at the object level

(the form is at the secretary's workstation). This form must have an esti-

mate slot filled in, and a tax calculated from that slot. The secretary must

also fill in some information directly on the form, such as company name,

date, etc. Here is a Petri net which captures this concept:

An Example Petri net for a Form

FORM
!

V

C Enter )

C Text )

(Calculate)

( Estimate)

(Calculate)

( Tax )

V V

Figure l).3.2
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This net defines the route the form must take while at the secretary's work,

station. This includes a replication of itself, and a join operation once the

operations are completed. The data object stores the object Petri net, with

the office network., in its path slot.

The Petri nets are an easy device for a designer to utilize in creating an

ordering for a document to follow. The Petri net once designed can then be

interpreted by the machine and stored in the respective object's path slot.

The agenda and the blackboard concept are integrated to enforce the Petri

net design on the system level. The agenda is used to establish an execution

order for operations and objects, and uses the blackboard to communicate

with the system's objects and the user of the current node (work station) in

the network.

The agenda mechanism orders things in a breadth-first manner [10, 13].

The agenda mechanism used in this model is similar to the one used by

Lenat to implement his AM and EURISKO systems [31]. In E-ACM it is

used for both long and short term scheduling. The agenda mechanism con-

structs a tree for execution, executing the terminal nodes of the tree first.

This execution takes place in a breadth-first manner, depending on the

priority mechanism used to order the processes. The function used to calcu-

late an operation's priority in E-ACM depends upon the data objects' avai-

lability, the operation's stimulation and termination conditions, the length

of the operation from the root operation and a CPU time slice.

The Agenda maintains a firing queue and a trigger queue. The trigger

queue is used for long term scheduling. These are operations which objects

have requested for use but need the presence of other data objects before

they can be fired. The firing queue is used for short term scheduling, and is

ordered according to the priority function.
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The agenda uses the blackboard mechanism to communicate with the

objects in its system and the user using its node in the network. It is parti-

tioned into three regions - system, objects, and user. The blackboard has a

controller which only allows access by one user at a time; in other words

only one piece of chalk is available. This enforces mutual exclusion of the

shared data resource - the blackboard. This use of the blackboard comes

from its utilization in the HEARSAY - HEARSAY IV [13, 10], a natural

language expert system. The blackboard logically coordinates message

traffic in the system. The agenda mechanism, system objects and user com-

municate to the blackboard via message passing, and the blackboard con-

troller knows where to post the messages.

Conceptually a blackboard mechanism is analogous to a monitor in C-

Pascal. The blackboard can handle multiple messages sent to it via a mes-

sage buffer. The messages that are sent have tags which tell the blackboard

who sent which message. The blackboard, like the data object, is an encap-

sulation of data objects and operations. The blackboard also has methods,

which can respond to messages sent to it. The blackboard has associated

procedural attachments which help the blackboard maintain its regions and

the message buffer. The following is the representation of the blackboard in

the E-ACM system:

Frame Representation for the Blackboard

(BLACKBOARD
(Message-buffer lisp) (Daemon to control buffer

access, and size))
(User-region lisp) (Daemon to control user

buffer))
(Agenda- region lisp) (Daemon to control agenda

buffer))
(Object- region lisp) (Daemon to control objects

buffer))
(Methods struct) (Daemons)) )

Figure 1.3.3
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The blackboard controller is defined by the collection of procedural

knowledge. Thus, its definition is constructed from the blackboard's proto-

col and procedural attachments.

The priority list for accessing the blackboard is user, agenda, and then

system objects. Highest priority is given to the user, and allows the user to

interrupt the system any time to issue a new command or add objects to

the system. The agenda uses the blackboard to announce system changes,

such as an operation no functioning correctly, by writing messages on the

blackboard in the agenda region. Data objects must be made aware of such

a change so that they can decide whether or not they need to leave the

current system or allow the faulty operation to operate upon them. If the

agenda needs to announce an action object failure, it does so by placing the

action's name and an attached message, which states the action is not work-

ing, upon the blackboard for the system objects to see. The objects use the

blackboard to post termination conditions. These conditions are posted by

both data objects and operations. The blackboard mechanism broadcasts

termination conditions so the agenda may prune terminated operations from

its trigger and firing lists and allows data objects to make the correspond-

ing adjustments to the message.

4.4 Summary

The E-ACM system allows for the definition of an intelligent data

object model. This chapter has covered the definition for the objects which

make up the E-ACM system. The data object and operation receive their

definitions from the ACM model. E-ACM extends the ACM data object by

adding the components path, history, and methods, and by expanding the

responsibility of the authorization component to include the protocol and
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access rights to system and network data and knowledge bases. The data

object definition is used by the system as a template to create any data

object needed in the system. This allows for a consistent system which

treats all data objects in a uniform manner.

Operations like the data objects also have a generic definition in this

model. The operation definition as defined by ACM was extended by this

work to include the priority component. The priority component enables

the agenda mechanism to order the operations in a sequence. The operating

system is composed of an agenda mechanism and a blackboard mechanism.

The agenda and the blackboard mechanism are integrated to enforce the sys-

tem control concept of a data driven machine based on Petri nets. The

blackboard is partitioned into three regions: user, agenda, and objects. The

blackboard has a controller which controls access to the three regions, and

handles and sorts message traffic to the blackboard. The blackboard and the

system objects use a combination of methods and procedural attachments to

communicate and modify themselves.
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Chapter Five

5.0 Extended ACM Model: An Experimental Environment

This Chapter contains is a description of a partial implementation of

the E-ACM model. This implementation is done in the knowledge represen-

tation language Pearl, and implemented on the VAX 11/780. Pearl is a

frame representation language designed at Berkley [15], and is designed to

run under either UCI or Franz Lisp. The concepts from the E-ACM model

implemented in this system are the use of frames to represent system

objects, the use of a coordinated approach in using procedural attachments,

and the system concept of an agenda integrated with a blackboard mechan-

ism. The goal of this implementation is to test the above concepts

integrated into a system, and simulate the implementation done by Carter

[4]. The problem domain is that of simple arithmetic equations. Following

is an account of the implementation definition, including system data

objects, operations, and operating system; an example of how the system

works; and the problems and questions which the system implementation

raises.

5.1 System definition

The partial implementation of E-ACM consists of a data object

definition, action definition, and an agenda mechanism integrated with the

blackboard mechanism. The agenda integrated with the blackboard

mechanism constitutes .the operating system for E-ACM. The implementa-

tioaconcentrates on the integration of the agenda and blackboard, and the
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use of procedural attachments for inter-object communication and object

modification. The problem areas used for testing the implementation are

simple Petri net models of mathematical computations. The objects are

represented by frames as defined by the Pearl frame system.

The Pearl system is embedded in Franz Lisp. It has one basic structure

by which objects are defined and that is the frame. The Pearl frame con-

sists of a frame name and a collection of slots. Each slot must have a name

and a type. The allowable types in Pearl are int, Lisp, symbol, struct, and

set-of [symbol I struct]. The int type allows only values of type integer to

be stored in its slot; its default value is 0. The Lisp type allows any valid

s-expression in Lisp to be stored in a slot of this type (i.e., atoms, lists,

integers, strings, arrays, etc.).

The symbol type in Pearl is a special structure, and any atom defined as

this type must be defined by the function "symbol". A Pearl symbol is

analogous to a Pascal constant or literal string, except that the value of a

Pearl symbol is the name itself, i.e., (symbol John) defines a symbol whose

value is John. Slots of the symbol type have a default value of nilsym.

The slot type of struct allows frames to be embedded in frames,

because the generic definition in Pearl for a frame is struct. The default

value for a struct is nilstruct.

The last slot type is called set-of. This special type can be used to res-

trict the slot to a set of valid symbols or structs for that slot. A meta

definition for a frame in Pearl is:

Example Pearl Frame

(frame-name
(Int-slot int)

(Lisp-slot Lisp)
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(Symbol-slot symbol)
(Struct-slot struct)

(Set-slot setof [symbol I struct]) )

Figure 5.1.1

Each slot may have many procedural attachments to it. For example, when

the user defines a frame, he may specify the default value instead of using

the defaults defined by the system. The only restriction placed upon the

user in defining defaults is that a slot default must correspond to the slot

type. Here is the frame definition with user denned defaults:

Pearl Frame with User Defined Defaults

(Frame-name
(Int-slot int 25)
(Lisp-slot Lisp (a list))

(Symbol-slot symbol John)
(Struct-slot struct Frame-name-2) )

Figure 5.1.2

The defaults are useful to define prototype frames for objects.

To define a meta-frame (description frame), the function "create base" is

used. This function binds an atom to a frame defined by the user. The

atom thus becomes a frame type, (i.e., like Pascal type definition) with its

definition being a structure (frame). The user can then explicitly define

default values for the slots. When a base frame is created then any number

of instances of that frame may be instantiated, using the "create individual"

function. When the user defines an individual frame, that user has the

option of specifying which slots he/she will define values for. When an

individual frame is created, the slots which receive values override the

default values specified for that slot. If the user doesn't specify a value for

a given slot, then that slot will use the default value defined for that slot

type. For example:
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An Example Pearl Class Frame

(create base Dog
(Eye-color symbol brown)
(Legs int four

)

(Color symbol
(Type Lisp )

(create individual Dog Tucker
(Legs 3)*
(Type cross-bred) )

Figure 5.1.3

The first frame defines a frame for a class of objects called dogs. Notice

Eye-color, Legs, and Color all have a default value. The second frame

defines one individualization of the class of objects called dogs.

bound to the atom Tucker. The Tucker frame has defined the slots Legs as

three, and Type as cross-bred. When the Tucker frame is queried for

number of Legs it will return the integer value three. If the Tucker frame

is queried for its slot value of Eye-color then the default value of green will

be returned.

Pearl has a built-in data base system where frames can be stored. This

data base uses a hashing scheme to store the frames in buckets. Frames are

hashed according to their defined base type. Thus, all frames of type Dog

will be stored in the hash bucket associated with the base type Dog. This

data base stores individualizations as well as base types.

The Pearl system has a built-in mechanism to handle procedural

attachments. These procedural attachments are called "hooks", or "if-added"

procedural attachments. Hooks are allowed on both base types, as well as

on individualizations. The Pearl procedural attachments, as in LOOPS are

* Question What do you call a Dog with no legs - Answer It doesn't matter he
won't come anyway [39].
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related to access oriented programming, in that they execute when a frame

slot is accessed. The base and individual hooks are listed in [15]. The hooks

are triggered when some function tries to operate on the frame. The base

hooks can execute either before or after a hooked operation executes. It is

up to the system designer to create the conditions which will cause a hook

to fire. The designer can stop the operation from executing on that frame if

the condition specified by the procedural attachment is not met.

The one restriction placed upon procedural attachments in Pearl is that

they must be predefined before they can be used. The following is an exam-

ple of the use of a base hook and a individual hook.

Pearl Base and Individual Hooks

(create base Letter
(if > individual (putpath * 'Date ate-function)))

(Date Lisp)
(Writer Lisp)
(Text struct) )

(create individual Letter Personal
(Text " hook <put (letter-security * ** =Writer))

Figure 5.1.4

This example uses a base hook and an individual hook. The base hook is

triggered whenever an individual of the type letter is created. This base

hook runs after the individualization is created (">" specifies an after

hook). The function of this hook is to put the current date into the indivi-

dualized Letter just created. The hook used on the individual is placed on a

slot; thus, it will only trigger when a certain function tries to access that

slot. Individual hooks are associated with slots, whereas base hooks are

associated with the entire frame. The hook placed on the Text slot is used

only when a put operation is attempted upon that slot. The procedural
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attachment associated with Text will execute before the put operation is

carried out ("<" specifies before hook).

The purpose of the Text hook, is to insure that the user has the correct

authorization for using this type of a letter. The "*" means that the

attached procedure has access to the current Text slot value. The "**" means

that the procedural attachment is dealing with the current frame - Personal.

The =Writer allows the hook access to the Writer slot in the Personal

frame. The name letter-security is a label for a Lisp function which

represents the body of the procedural attachment.

This is a simple introduction into the Pearl frame system. The impor-

tant components taken from Pearl are the use of defaults, creation of base

frames and individual frames, and the intrinsic capability of Pearl to han-

dle base and individual procedural attachments. These components, along

with the Lisp environment, were used to create a partial implementation of

the E-ACM model. The following section defines the data objects and

operations in the Pearl system.

5.2 Object Definitions

The objects defined in E-ACM are only partially used in this implemen-

tation. The data objects and operations are represented as Pearl frames.

The agenda mechanism is also implemented in Lisp code, and the blackboard

is implemented as a Pearl frame. The data object is defined as an eight

tuple: designator, attribute, representation, corporality, value, stimulation,

termination, and history. The base frame derives its default values from

the conceptual graph in Appendix Two. The frame representation of the

data object is illustrated in Appendix Four, and is constructed from several

frames, creating a composite object. Every component in the E-ACM data
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object definition defined by sub-tuples is represented by a base frame.

These subcomponents define a template which the user and the system use

when creating an individual data object. For instance, the designator slot is

defined by the tuple context, user, instance, and alias. It is represented in

the implementation by the following frame:

Designator Frame

(create base Designator
(If individual (putpath « 'Context (systemid)) )

(If individual (putpath « 'User ?userid)))
(If individual (putpath * 'Instance (ci Instance)))

(Context Lisp )

(User Lisp )

(Instance struct)
(Alias Lisp ) )

(create base Instance
(Spatial int)
(Time int)

(0 int) )

Figure 5.2.1
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When an individual data object is created, the designator component utilizes

three base hooks to fill in its frame slots. The hooks execute after an indi-

vidual of the designator is made. The first hook puts the system identifier

in the Context slot, i.e., KSUVAX1. The second hook stores the user's name

in the User slot. When the user signs onto the system, he/she is prompted

for an i.d. This i.d. is bound to the system variable Suserid. (Pearl denotes

variables by attaching a "$" prefix to an atom.) The third hook creates an

individualization of the Instance frame, is defined by a three tuple - Spa-

tial, Time, and 0. These components have default values of O.

The full data object representation is a frame as illustrated in Appendix

Four. The action object, like the data object, is also represented in the sys-

tem as a Pearl frame. In E-ACM the action object is defined with one addi-

tional component - Path. The action is thus defined in the implementation

as a seven tuple - Stimulation, Material, Action, Request, Termination,

Priority, and Path.

The Path component allows the operation frames to conceptually be

considered subprograms. This also shifts the burden of execution from the

data object as defined in E-ACM, and back to the operation. The Path com-

ponent was added to simulate the work done by Carter [4].

The Path slot in an action frame stores the execution path for that

operation. The slot itself contains a list of ancestor operations which

requested the services of the current action. When the current action exe-

cutes it uses the Path list as a reference to determine which action will

receive those generated values. The Path slot is also used to calculate each

action's priority. The action object is represented by the following Pearl

frame:
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Action Frame Representation

(create base Action-Object
(If > individual (putpath * 'Stimulation (Stim-function)) )
(If > individual (putpath * 'Action (Kernel-function)) )
(If > individual (putpath * 'Termination (Term-function)) )

(Stimulation Lisp (Blackboard daemon))
(Material Lisp (Communication daemon))
(Action struct Kernel)
(Request Lisp (Communication daemon))
(Termination Lisp (Blackboard daemon))
(Priority int

)

(Path Lisp) )

Figure 5.2.2

This frame utilizes three base hooks and two defaults. The base hooks are

all associated with the creation of an individual Action object. The indivi-

dual hooks will all fire after the individualization process has been exe-

cuted. The first hook (Stim-function) is used to prompt the user for all

information concerning what factors will cause that particular action to be

triggered. The default stimulation in this implementation is nil, which

means that only the presence of the correct number of data objects appear-

ing in its material list is requested. The second hook stores an individuali-

zation of an operation from the library of operations. The functions are

stored as frames in a system data base. For example, when an add action

object is created, the operation-function queries the user for the operation

this object is supposed to perform. It then pulls that definition from a data

base of action objects and creates an individualization of the frame. The

function then stores that frame individualization into the Action slot of the

current frame.

The object with which the data object daemons communicate most is

the system blackboard. This blackboard coordinates message traffic from

Users, the agenda, and system objects. The blackboard daemons specified

for both the stimulation and termination components of the data object are
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communication daemons. These two daemons communicate to the black-

board the needs of the action. For instance, if its stimulation condition is

met then the action must be moved from the trigger list to the firing list.

The agenda reads that an action has been triggered and will then move the

action. The material daemon informs the stimulation component that the

arguments have arrived and that the action may be triggered, thus facilitat-

ing a form of inter-object communication. The stimulation daemon then

communicates to the blackboard that this action is ready to be placed upon

the firing list.

The communication daemon on the Request slot works in coordination

with the Agenda to help identify needed actions, which help the actions

perform their functions. This daemon issues messages to relevant actions

that are present in the system, and communicates to the Agenda (via black-

board) which actions must be pulled from the data base. The procedural

attachments attached on the action object are used in a coordinated manner

to modify and facilitate action communication with the blackboard, and

agenda mechanisms.

The kernel operations are represented by a special frame in the Pearl

system, called a functional frame. This frame uses the slots as values for

the function which has the same name as the frame type. The base type for

Kernel is defined by the following Pearl frame:

(create base Kernel
(Args Lisp )

(Operation struct) )

This is the base structure the Kernel function manipulates. The args slot in

Kernel stores the protocol necessary to match the data objects in the

material slot to the arguments needed for the operation frame. The
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operation frame is a functional frame pulled from the operation library. It

executes the associated function when it is accessed via the kernel frame.

The last object defined in this implementation is the blackboard. The

blackboard object is represented by the following Pearl frame:

Blackboard Frame Representation

(cb BLACKBOARD
(User-region Lisp (Communication Daemon)

(Security Daemon)
(Agenda-region Lisp (Communication Daemon)

(Security Daemon)
(Object-region Lisp (Communication Daemon)

(Security Daemon)
(Methods Lisp (Attached Daemons) ) )

Figure 5.2.3

This frame consists of four slots. The first three divide the blackboard into

three regions. The Methods slot responds to messages sent by the user,

agenda, and system objects by directing access to one of the three regions.

The User region allows the user to interact with the environment. When

the blackboard is accessed the user can view the current state of the

environment. The user can then alter the current state by sending messages

to the system's objects which will change their stimulation and termination

conditions. By accessing the blackboard the user may also inspect an object,

or issue new commands to the system.

The agenda slot is utilized by the blackboard to store current system

information. This information includes notices about disabled nodes in the

office network, failure of an action to complete its function, and the

announcement of arrival of new data objects into the current environment.

The blackboard only allows the agenda to modify the slot, but allows other

objects to read it. This is also true of the user slot; only the user may
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modify the User region, but other objects may read from it. The data

objects and operations use the Object-region to store information and com-

municate.

The object region's primary purpose is to store announcements about

state changes which directly effect stimulation and termination conditions

of system objects. This slot is used, for example, when a data object has

reached some critical value which triggers its termination condition. The

data object writes the occurrence of the met termination condition onto the

blackboard, and all actions with that object in their material lists are

pruned from the firing list. The blackboard will announce (by passing mes-

sages) that a termination or stimulation condition has been met. This

allows for effected data objects and actions to react to the broadcast. How-

ever, The blackboard restricts access to this slot to one user at a time.

The method slot is not restricted to one method but to a series of

methods. Physically, the methods slot are filled with Lisp code, which is

executed when the appropriate method is accessed. Conceptually the

methods represent messages the blackboard will respond to and transmit

from. Collectively, the messages represent the objects' protocol. The black-

board methods' have two functions in this implementation. The methods

primary use is for communication and interaction with system objects

(agenda and user included). The second function the methods fulfill is the

self modification of the blackboard and its regions. The methods execute in

conjunction with procedural attachments.

The procedural attachments are specified in the preceding frame

representation of the blackboard. They fulfill three functions. The first

function of the blackboard procedural attachments is restriction of access to

the three regions. The daemons in charge of security allow only those
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objects with proper authorization to modify a particular region. If the

object only wishes to read from the region there is no security check. The

second function of the procedural attachments is to work, with the methods

to coordinate the processing of messages sent to the blackboard. The

methods and the procedural attachments used in the blackboard collectively

define the blackboard controller. This includes sorting the incoming mes-

sages, and sending them on to the correct region for processing.

The blackboard is the first component of implementations control sys-

tem. The second component of the control system is the agenda mechanism.

The agenda mechanism conducts a breadth-first search of the action nodes.

It gives actions priorities for execution, and then sorts them by decreasing

priority values. The agenda then hands up the action with the highest

priority to the CPU for execution. The only exception is for actions to be

pruned off the firing and trigger lists. The 800 to 850 priority range is

reserved for action objects whose termination conditions are met and are no

longer needed in the current environment. Any action whose has a priority

in that range is pruned from the list by the agenda before all priorities

between 100 and 799 which are valid executable actions. The priority

function, when applied to the action, constructs an execution tree similar to

Carter's implementation.

The nodes of the execution tree are directly related to the priorities

given to each action. The priority function is based upon the the presence of

data objects, and the distance of the node from the root action. The dis-

tance from the root is calculated from the path slot in the action. The path

slots are constructed when the user issues a command action. The action is

parsed, and stimulation and termination conditions are established. The

command action then has its request slot read, and all requested actions are
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instantiated, given a priority, and placed on either the trigger or firing list.

This investigation of the request slot is recurrent because it happens for

each new action as requested until all requested actions have been placed

upon the firing or trigger list. The firing list, if given a form, resembles a

tree structure, with the request being the links between nodes and the ini-

tial command action being the root. This tree is then executed by the

agenda mechanism in a breadth-first manner. The agenda also interacts

with the blackboard to store information about the action request and sys-

tem state. This is useful for actions with long list because the agenda can

write the name of the action upon the blackboard and reference it later on

when it is needed.

When a command action requests a list of actions most actions are

called from the data base, unless they are already present in the system.

The command action is analogous to a Pascal program, in that if has a list

of requests which are similar to procedure calls in the main program of a

Pascal program. The command action has an added dimension: When all

procedures have executed, then the program has fulfilled the requirement

and is complete. This command action has another dimension which Pascal

programs do not have, and that is the stimulation and termination condi-

tions placed on it to specify invocation and termination of the current com-

putation. In a Pascal program, and most other languages, a program must

run to completion before it can be normally terminated. In the E-ACM

model, including this implementation the termination condition can stop the

computation whenever it is met.

The command action posts its termination condition upon the black-

board, and allows the agenda mechanism to prune its firing and trigger lists.

The control system in this implementation is constructed from an agenda
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mechanism interacting with a blackboard object. The following section is an

example of the system working through the execution of a user action com-

mand. The listing for this implementation is in Appendix Five.

5.3 Example of system at work

The problem domain, as stated earlier, comes from the field of

mathematics. The example problem is the implementation of the quadratic

equation. In mathematical form the quadratic equation looks like this:

x1 = -b + SQRT( b*«2 - 4 • a * c )

2 « a

x2 = -b - SQHT( b*«2 - II « a » c)

2 » a

The first step in the experimental ACM system is to construct a Petri net to

capture the data flow through the operations. The Petri net for the qua-

dratic formula is:
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Square Root Petri Net
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This Petri net is then translated into the objects needed to execute this net.

There are 17 data objects and 12 actions which are utilized to execute this

Petri net.

The definitions begin with of the input and output data objects for each

action. The first action defined is the NEG operation. This action is

represented by the following command:

([] NEG (negb : b) [])

The empty brackets represent null stimulation and termination conditions.

The NEG command represents the action frame NEG where its definition is

stored.

The parentheses enclose the data objects this function will operate on.

The null stimulation condition implies that only the presence of the data

objects in its material list is needed to trigger (stimulate) this action. A

null termination condition implies that the action will only execute once.

The negb data object is the data object which will receive the result of the

NEG action. The b data object is the data object which the NEG action will

operate on. The updated NEG definition frame after this translation is:

Negative Action Definition

(NEC

(Stimulation nil)
(Material ((negb) b)
(Action NEGATIVE)
(Request

( ([] Subtract ( r1 : negb rad) [])
([] Add ( r2 : negb rad) []) )

(Termination nil)
(Priority nil)
(Path (Quadratic) ) )

Figure 5.3.2



-83-

The system, when this Petri net is called to execute, assigns the action its

priority. The other actions are also defined in this manner (for simplicity,

only the NEG action definition is illustrated). These definitions are either

created when the Petri net is designed or are already present in the system.

The data objects are also created from the original Petri net if not

already present in the system at translation time. For example, if the c

data object did not exist then it must be created. The following is a possi-

ble definition for the data object c. The system must create an instance of

the Data-object frame definition appearing in Appendix Four:

Data Object Individualization - C

(ci Data-obiect c

(D
(Designator
(Context VAX/780)
(User randy)

(A
(Attribute
(Type real)

(Obj-struct Lisp-atom)
(Relationship (Multiply))

(R
(Representation
(Location VAX/780)

(C
(Corporality
(1 Fixed)
(e (Quadratic))) )

(V
(Value
(Actual-value 20.0)) )

(Termination (a * c * 4 > = b*b))
(History nil) )

Figure 5.3.3

This data object definition defines a data object of type real, representing the

value 25.0. The slots which are omitted use the default values defined in

the base Data-object definition. The termination condition for this object

depends upon the result of 'a' times 'c' times 4 being greater than or equal
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to 'V squared. Thus if this condition is met then the system will not use

this data object. Like the action objects the data objects are called from the

data base first, then created if needed.

The whole Petri net is given a name, analogous to a program name.

This occurs after the net has been defined in terms of the data objects and

actions. The form of the command action is:

([] Quadratic( rl r2 : b c a) [a * c *4 > = b*b])

This is the command action which represents the preceding Petri net. When

the user issues this command action, the system will retrieve all necessary

actions and objects needed to execute the net. This command action has no

stimulation condition; thus, its stimulation is that of being called. The ter-

mination condition checks the input to insure that the root will produce

real values, instead of imaginary values. This one command will cause the

associated Petri net to execute, and return the two roots through rl and r2.

The Petri net can also be initiated by issuing each command individually,

specifying the input as well as output data objects. This form is

represented as a series of commands:

Square Root Command Sequence

NEG ( negb : b) [])

SQR ( bb : b) [ b < 0])
Subtract ( rads : bb ac4) [ ac4 > bb])
Multiply ^ac : a cO

[J)

IB

J
Multiply fa2 : a 2) [])

Multiply (ac4 : ac 4) [])

Divide (rl :rlla2)
Divide (r2 : rl2 a2J
Root (rad : rads) [])

, Subtract (rl2 : negb) [])

] Add (r 11 : rad negb) [J)

Figure 5.3.4
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In this form, however, all actions and data objects must be present in the

system. If any of the necessary objects are missing they are dynamically

created.

5.4 Conclusions

5.4.1 Problems

The most severe limitation of this implementation is that it focuses

almost entirely on the action object of the system. The data objects flow

through the operations, but they do not determine their own course of

action. Another limitation is that the problem domain is too simple. It

would be interesting to extend the implementation to include an office form

as it is being processed. Also, the problem of networking several computers

together was not addressed by this implementation. Another limitation is

that of type checking, since Pearl has a very limited type checker. Pearl

can't tell the difference between a char, integer, real, or boolean. The type

restrictions must be defined and implemented in the system. This imple-

mentation didn't attempt to deal with the issue of garbage collection - in

particular that of data objects and operations.

The function in the agenda which calculated the priority is rather

simplistic for large applications. The problem faced by a large application is

that as the request list grows and the requested operations are put on the

firing list, the priority function is biased toward the nodes farthest away

from the root. This can lead to an unbalanced tree. This priority system

also allows an operation to get exclusive control of the CPU. A better

priority would include distance from root and some predefined CPU time

slice (depending on the operation).
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5.4.2 Extensions

Several extensions need to be made to this implementation to make it

user friendly and a complete E-ACM model. The system needs a Petri net

editor/translator. An editor/translator removes the burden of having to

translate the graph by hand into the frame representations necessary to

represent the desired net. The system also needs an editor which would

allow modification of the predefined system data objects and operations.

This editor could translate a conceptual graph defined by the user into a

frame representing the new data object or operation. The editor should also

have a graphics interface so that as the actions fire and the objects move

through the network., a user can view the execution.

The knowledge base which will contain the needed information about

system navigation and access protocol for data bases objects, operations, and

other knowledge bases must be designed, and the correct protocol for invo-

cation must be established.

5.4.3. Conclusion

The implementation, though only a partial implementation of the E-

ACM model, did bear fruitful results. The frame representation of the sys-

tem objects worked out effectively, and efficiently. It allowed for easy crea-

tion of system objects. The coordination of procedural attachments and

methods worked out as planned for object self modification and inter-object

communication. The procedural attachments, by being responsible for

object modification, removed that responsibility from the operating system.

The operating system was constructed from the integration of an

agenda mechanism and a blackboard mechanism. This integration was



-87-

easier than anticipated. The implementation also raised many questions

which must be answered by further research before a full implementation

of E-ACM is attempted. The implementation also illuminated some weak

points and components which need to be included in any E-ACM system,

i.e., an editor.
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Chapter Six

6.0 SUMMARY

This thesis attempts to utilize current concepts in Computer Science,

and in particular Artificial Intelligence, to create an office automation tool.

A model was constructed by extending the work, done by Unger in the

ACM model. This thesis uses a Knowledge Engineering approach to extend

ACM, resulting in an E-ACM model. This model is a basis for an intelli-

gent data object environment to be used in the office. The intelligent data

object system puts the responsibility for system computation upon the data

object, and removes it from the system operations and office workers. The

following two sections draw conclusions about the thesis, and point out

areas of future work for the E-ACM model.

6. 1 E-ACM Conclusions

This thesis discusses a method for implementing the termination condi-

tion as defined by the ACM model. It discusses a way to integrate the con-

trol concepts of an agenda mechanism and a blackboard mechanism to con-

trol execution and system communication. The concepts of object oriented

programming are used to design and implement the system objects and

communication facility (message passing). The object oriented approach

creates abstract data types for the E-ACM data objects and actions.

The knowledge representation concept of Frames is used to represent

the objects in E-ACM, further enforcing the concept of data abstraction. A
Frame creates an encapsulation of information and knowledge which
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represents each object. The definition of procedural attachments and a sim-

ple programming approach is discussed as a means to facilitate communica-

tion and object modification. These concepts integrated together constitute

the basis for an office automation system with two characteristics: no mas-

ter slave relationships exist in the system because the data objects are free

to move through the system independently and concurrent operations are

accommodated.

6.2 Future Work

This model is not complete. The command interpreter needs to be

extended, including the listing of protocols necessary to access the system

data and knowledge bases. The model also needs an editor which will

allow easy programming of the system. One possible solution is to design

an editor with which the user can create Petri nets, and that allows the sys-

tem to translate a Petri net into system data objects and operations.

Another desirable facet of the editor is that it be able to modify system

objects and allow for extensions to the system. For example, if the office

has a new form to process, the user needs an editor to create that the new

form and install it into the system. One possible solution is to have a con-

ceptual language used by both the machine and the user as an interface for

creating the objects. The language suggested and utilized in this work is

Sowa's conceptual graphs concept. The editor could then take the graph as

designed by the user and translate it into a system object. A translator that

could be used is the one created by Gary Shultz. The types of attached data

base must also be considered. Once the right data base is chosen, then the

protocol must be integrated into the E-ACM model.
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The paradigm of programming with procedural attachements should be

expanded by defining a structured approach to using procedural attachments

in a system. The model also needs to be expanded to include the partition

of knowledge, and how that knowledge is to be distributed throughout the

system. A possible solution is to partition the knowledge in terms of office

functions. The division of knowledge by office function would be easier for

the users of the system to understand. The loss of object meaning as it is

passed from one environment to the next is also a concern. If any com-

ponent has to be stripped from the data object before it can be sent to the

next environment, the object will lose some of its conceptual meaning. This

problem is analogous to the problem of translating the intrinsic meaning of

natural language into program statements; as the natural language is pro-

cessed the original meaning becomes less meaningful.

The use of the E-ACM model also lends itself to the concept of pro-

gram proving. This is facilitated by the use of the stimulation and termina-

tion conditions which are placed on data objects and actions. These condi-

tions are similar to the assertions that are placed on segments of code to be

proven correct. The author plans to investigate the application of program

proof techniques to the E-ACM model.
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APPENDIX 1 ACM Definition

Context: nil]

User: nil]

Instance:*y]-
r

Spatial: 0]

Time: 0]

: 0],

prototype for Data-Object: x is

[Data-Object: *x] -

(Char)-> [Designator] -

CAttr)->
r ~

(Attr)->
(Attr)->

(Cont)->
(Cont)->
(Cont)->

(Attr)-> [Alias: nil],

(Char)-> [Attribute]-

(Attr)-> [Type: {Int I

Char I

Real I

Boolean I

Aggregation}]
(AttrJ-> [Object-structure]-

(Contj-> [Structures
(Attr)-> [Relationship: nil],

(Char)-> [Representation]
(Attr)->
(Attr)->
(Attr)->

Location: nil]

Coding-scheme: nil]

Packing: nil-struct],

(Char)->[Coporality]
(Attr)-> [Logevity: {Static!

Fixedl

Dynamic!
Fluid}]

(Attr)-> Location: nil]

( Attr)-> .Replications: 0]
(Attr)-> [Authorization]-

(Cont)-> [Security: lisp]

(Char)->[Value]-
(Attr)-> [Information: {*}]

(Char)-> [Stimulation: nil]

(Char)-> [Termination: nil]

prototype for Action-Object :*y is

[Action: *y]-

(Char)->
(Char)->
(Char)->
(Char)->
(Char)->
(Char)->

Stimulation: nil]

Material: nil]

Action: struct]

Request: nil]

Termination: nil]

Priority: nil].
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APPENDIX 2 E-ACM Conceptual Graphs

Context: nil]

User: nil]

Instance:*y]-

"Spatial: 0]
Time: 0]

0:0],

prototype for Data-Object: x is

[Data-Object: *x] -

(Char)-> [Designator]
(Attr)->
(Attr)->
(Attr)->

(Cont)->
(Cont)->
(Cont)->L

(Attr)-> [Alias: nil],

(Char)-> [Attribute]-

(Attr)->[Type:{Intl
Charl
Reall

Booleanl

Aggregation}]
(Attr)-> [Object-structure]-

(Cont)-> [Structures: {*}],

(Attr)-> [Relationship: nil],

(Char)-> [Representation]-
(AttrV> [Location: nil]

(Attr)-> .Coding-scheme: nil]

(Attr)-> [Packing: nil-struct],
(Char)-> [Coporality]-

(Attr)-> [Logevity: (Statid

Fixedl

Dynamid
Fluid}]

(Attr)-> [Location: nil]

(AttrV> Replications: 0]
(Attr)-> [Authorization]-

(Cont)-> [Security: lisp]

(Cont)->[Potocoi]-
(Cont)-> [Data-base: *d]
(Cont)-> [Knowledge-base: *k],

(Char)-> [Value]-
(Attr)-> [Information: {*}]

(Attr)-> [Actual-value: struct],
(CharV>
(Char)->
(Char)->
(Char)->

Stimulation: nil]

Termination: nil]

Path: nil]

History]-

(Attr)->
(Attr)->
(Attr)->

(Char)-> [Methods: {*}].

Operations: nil]

Past-values: nil]

PVDB: *do]
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prototype for Action-Object :*y is

[Action: *y]-

(Char)-> [Stimulation: nil]

(Char)-> Material: nil]

(Char)-> [Action: struct]-

(Cont)-> [Kemal: struct]-

(Cont)-> [Arg-Protocol]
(Cont)-> [Operation: {*}],

.Request: nil]

Termination: nil]

Priority: nil].

prototype for BLACK-BOARD :*z is

[BLACK-BOARD: *z]-

(Char)->
(Char)->
(Char)->
(Char)->

User-Region: nil]

Agenda-Region: nil]

Object: nilf
Methods: {*}].



-97-

APPENDIX 3 E-ACM Frame Representation

;Object Definition ;This is the frame representa-
tion for the ; E-ACM model data object

;Designator tuple definition

(cb Instance
(Spatial int)

(Time int)

CO int) )

(cb Designator
(If > individual (putpath * 'Context (systemid)) )

(if > individual (putpath * 'User ?userid)) )

(If > individual (putpath * 'Instance (ci Instance)) )

(Context lisp)

(User lisp)

(instance struct)
(Alias lisp) )

;end Designator-

;Attribute tuple definition

(cb Attribute
(Type symbol)
(Obj-struct setof struct)
(Relationship lisp) )

;end Attribute

;Representation tuple definition-

(cb Representation
(Location lisp

)

(Coding-scheme lisp)

(Packing struct) )

;end Representation

;Coporality tuple definition-

(cb Longevity
(Static lisp)

(Fixed lisp)

(Dynamic lisp)

(Fluid lisp) )
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(cb Authorization
(Security lisp)

(Protocol struct) )

(cb Protocol
(Data-base setof struct)
(Knowledge-base setof struct) )

(cb Corporality
(1 struct Longevity)
(loc lisp)

(r int 0)
(e struct Authorization) )

.sp 2 ;end Corporality

;Value tuple definition

(cb Value
(Information setof struct)
(Actual-value struct) )

;end Value-

;History Defmiton-

(cb History
(Operations lisp

(Past-values lisp

(PVDB struct')

)

;end History-

;Data-Object Definition

(cb Data-Object
(if > individual (putpath * 'D (ci Designator) )
> individual (putpath * 'A (ci Attribute) )

> individual (putpath * 'R (ci Representation) )
> individual (putpath * 'C (ci Corporality) )

> individual (putpath * 'V (ci Value)) )
(D struct

)

(A struct

)

(R struct )

(C struct

)

(V struct

)

(Stimulation lisp )

(Termination lisp )

(Path lisp )

(History lisp

)

(Methods setof struct) )
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;end Data-Object Definition

;Action definitions —

(cb Kernal
(Args lisp)

(Operation struct) )

(cb Action-Object
(If > individual (putpath * 'Stimulation (Stim-function))
> individual (putpath * 'Action (Kernal-function) )

> individual (putpath * 'Termination (Term-function)))

(Stimulation lisp)

(Material lisp)

(Action struct Kernal)
(Request lisp)

(Termination lisp)

(Priority int) )

;end Action-

;Black.board definition-

(cb Blackboard
(User-region lisp)

(Agenda-region lisp)

(Object-region lisp)

(Methods setof struct) )
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APPENDIX 4 Implementation Object Representation

;Object Definition ;This is the definition for the
ACM model ;data object

{Designator tuple definition-

(cb Instance
(Spatial int)

(Time int)

CO int) )

(cb Designator
(Context lisp)

(User lisp)

(Instance struct)

(Alias lisp) )

;end Designator

{Attribute tuple definition

(cb Attribute
(Type symbol)
(Obj-struct setof struct)
(Relationship lisp) )

;end Attribute

{Representation tuple definition-

(cb Representation
(Location lisp

)

(Coding-scheme lisp)

(Packing struct)

)

;end Representation-

jCoporality tuple definition-

(cb Longevity
(Static lisp)

(Fixed lisp)

(Dynamic lisp)

(Fluid lisp) )

(cb Authorization
(Security lisp) )
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(cb Corporality
(1 struct Longevity)
(loc lisp)

(r int 0)
(e struct Authorization) )

;end Corporality-

;Value tuple definition

(cb Value
(Information setof struct)
(Actual-value lisp) )

;end Value-

;History Definiton-

(cb History
(Operation lisp

(Past-value lisp

(PVDB struct ) )

;end History-

;Data-Object Definition

(cb Object
(if > individual (putpath * 'D (ci Designator) )

> individual (putpath * 'A (ci Attribute) )
> individual (putpath * 'R (ci Representation) )

> individual (putpath * 'C (ci Corporality) )

> individual (putpath * 'V (ci Value)) )

(D
(A
(r
(C
(V
(Stimulation lisp )

(Termination lisp )

(History lisp ) )

;end Data-Object Definition-
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;Action definitions

(cb Kernal
(Args lisp (Argl Arg2))
(Operation struct) )

(cb Action
(If > individual (putpath * 'Stimulation (Stim-function))
> individual (putpath * 'Action (Kernal-function))
> individual (putpath * 'Termination (Term-function)))

(Stimulation lisp)

(Material lisp)

(Action struct Kernal)
(Request lisp)

(Termination lisp)

(Path lisp)

(Priority int) )

;end Action

;Black-board Definition

(cb B1ACK-BOARD
(User-region lisp)

(Agenda-region lisp)

(Object-list lisp)

(Methods lisp) )

;end Black-board definition
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APPENDIX 5 Implementation Control System

;This function creates and updates actions

(defun execute-action (action)
(putpath (eval (caar (getpath (eval action) 'Material)))

'(V Actual-value)
(fire-action action))

(putpath (eval (caar (getpath (eval action) 'Material)))
'History
action) )

;This function evaluates (fires) the action

(defun fire-action (action)
(evalfcn (getpath (eval action) '(Action Operation))) )

;This function creates a new object dynamically during program execution.

(lambda (action-name)
(set (implode (getpath action-name 'Material))

(ci Object)) J

;This is a predicate which test for priority ranges between 800 and 900

(defun priority-prun (action)
(cond ((and (< 799 (getpath (eval action)

'Priority))

(> 900 (getpath (eval action)
'Priority))) t) ) )

;Agenda which drives the execution of a program

(defun Agenda-aux (pgm-list)
(cond ((null pgm-list) nil)

((priority-prun (car pgm-list))
(Agenda-aux (permute-action *pgm-list*)))

((materialp-in (car pgm-list) *obj-hst*)
(car pgm-list))

((materialp-out (car pgm-list) *obj-list*)
(getpath (eval (car pgm-list)) 'Action)
ml)

(t (Agenda-aux (reprioritize pgm-list))) ) )
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(defun Agenda (pgm-list)
(setq *pgm-list* pgm-list)
(prog

loop (let ((action (Agenda-aux *pgm-list*)))
(black-board action 's)

(cond ((eq action nil) (return 'done))
(t (retrieve-value action)

(execute-action action)
(permute-alist *pgm-list*)
(permute action)) )

(black-board action 't) )

(go loop) ) )

;This function retrieve the values for the action to fire

(defun retrieve-value (action)
(retrieve-vaux action

(getpath (eval action)
'(Action Args))

(cdr (getpath (eval action)
'Material))) )

(defun retrieve-vaux (action arg-list obj-list)
(cond ((null arg-list) t)

(t (putpath (eval action)
'(Action Operation ,(car arg-list))
(cond ((numberp (car obj-list))

(car obj-list))

(t (getpath (eval (car obj-list))

'(V Actual-value)))) )
(retrieve-vaux action (cdr arg-list)

(cdr obj-list)) ) ) )

;This is the initial black-board definition

(defun black-board (action type)
(cond. ((eq type 's) (black-board-s action))

((eq type 't) (black-board-t action))) )
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(defun black.-board-s (action)
(apply (cadr (getpath (eval action) 'Stimulation))

(list (getpath (eval (car (getpath (eval action)
'Stimulation)))

'(V Actual-value))
(getpath (eval (caddr (getpath (eval action)

'Stimulation)))
'(V Actual-value)) )

(defun black-board-t (action)
(cond ((cond-test action)

(send-term (cons action
(append (getpath (eval action)

'Path)
(getpath (eval action)

'Request))) ))
(t nil)) )

(defun cond-test (action)
(apply (cadr (getpath (eval action) Termination))

(list (getpath (eval
(car (getpath (eval action)

Termination)))
'(V Actual-value))

(getpath (eval

(caddr (getpath (eval action)
Termination)))

'(V Actual-value)) ) ) )

(defun send-term (action-list)
(cond ((null action-list) nil)

(t (putpath (eval (car action-list))

'Priority

850)
(send-term (append (cdr action-list)

(getpath (eval
(car action-list))

'Request)) ) ) ) )
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; This an example of how to use the function frames

(de Add-one (al a2)
(+ al a2))

(cf Add-one
(Argl lisp)

(Arg2 lisp))

(ci Add-one plusl
CArgl 34)
(Arg2 10))

(ci Add-one plus2
(Argl 19)
(Arg2 100))

(de Mult (al a2)
(* al a2) )

(de Subt (al a2)
(- al a2) )

(de Div (al a2)
(/ al a2) )

(cf Mult
(Argl lisp)

(Arg2 Usp) )

(cf Subt
(Argl lisp)

(Arg2 Usp) )

(cf Div
(Argl Usp)
(Arg2 Usp) )

;This hook, prints out the the final output for a program

(defun print-output (m-Ust)
(msg "The values from this program are")
(terpr)

(print-outaux (car m-Ust))
'(*done* (program completed)) )



107

(defun print-outaux (m-list)
(cond ((null m-list) t)

(t (msg " " (car m-list) " = "

(getpath (eval (car m-list))
'(V Actual-value)) )

(terpr)

(print-outaux (cdr m-list)))) )

;This hook update an objects History slot

(defun history-update (object h-list)
(putpath object 'History (cons action h-list)) )



108

(defun op-system ()

(msg "Welcome to the E-ACM system") (terpr)
(msg "Date created 1 Feb 1986") (terpr)
(exec date) (terpr)

W-> ")

loop (let ((command (read)))
(cond ((quitp command)

(return (final-message)))
((equal command 'diagnostic)

(diagnostic)

'(we now return you to the system))
(t (parse command)
(system (getpath (eval

(cadr command))
'Request)

(cdr (getpath (eval
(cadr command))

'Material)))
(getpath (eval (cadr command))

'Action))

(terpr)

(msg <-> ")

(go loop) ) )

(defun quitp (command)
(caseq command

(quit t)

(dt)
(done t)

(exit t) ) )

(defun system (act-list obj-list)

(global *obj-list*)

(setq *obj-list* obj-list)

(prioritize act-list)

(let ((action-list (sort act-list 'comp-fnc->)))
(Agenda action-list)) )
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;THs function intializes all action on the act-list

(defun prioritize (pgm-list)
(mapcar 'priority-fill pgm-list))

;This function calculates an actions priority

(defun priority-nil (action)
(putpath (eval action) 'Priority

(* (+ (* (length (getpath (eval action)

'Path))

, 10)
(if (materialp-in action *obj-list*)

then (+ (length (getpath (eval action)
'Material))

10)
else (length (getpath (eval action)

'Material))))

. 10))
action )

; This is the compare function used to prioritize the agenda's active list

(defun comp-fnc-> (framel frame2)
(> (getpath (eval framel) 'Priority)

(getpath (eval frame2) 'Priority)) )

;This function is designed to search for the presence of data in a list

(defun materialp-in (frame data-list)
(let ((needed-mat (cdr (getpath (eval frame)

'Material))) )
(cond ((null needed-mat) nil)

(t (materialp-aux needed-mat data-list))) ) )

(defun materialp-out (frame data-list) t)

(let ((needed-mat (car (getpath (eval frame)
Material))) )

(cond ((null needed-mat) nil)
(t (materialp-aux needed-mat

data-list))) ) )
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(defun materialp-aux (needed-mat data-list)

(cond ((null needed-mat) t)

((numberp (car needed-mat))
(materialp-aux (cdr needed-mat)

data-list))

((memq (car needed-mat) data-list)

(materialp-aux (cdr needed-mat)
data-list)) ]

;This is the function which reads in a command from the key- board and
parses it

(defun test-r ()

(let ((command (read)))

(parse command)) )

(defun parse (command)
(let ((action (cadr command)))

(cond ((null command) nil)

(t (stim-parse (car command) action)

(term-parse (cadddr command) action)
(action-parse (caddr command) action)) )

action ) )

(defun stim-parse (stim action)
(putpath (eval action) 'Stimulation stim) )

(defun term-parse (term action)
(putpath (eval action) 'Termination term) )

(defun action-parse (ob-list action)
(putpath (eval action)

'Material

(cons (output-value-parse ob-list)

(input-value-parse ob-list))) )

(defun output-value-parse (l)

(cond ((null 1) nil)

((eq (car 1) ':) nil)

(t (cons (car 1)

(output-value-parse (cdr 1))) ) ) )

(defun input-value-parse (1)
(cond ((null 1) nil)

((eq (car 1) ':) (cdr 1))

(t (input-value-parse (cdr 1))) ) )
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(defun final-message ()

(msg "Have a good day") (terpr)
(exec date) (terpr))

(defun permute (action)
(setq *obj-list* (append *obj-list*

(car (getpath (eval action)

'Material)) ) ) )

(defun diagnostic ()
(prog
loop (msg" Select one of the following ")

(terpr)

(terprj)

(msg ' l) Show-object 2) Show-action 3) exit")
(terpr^)

(msg ' Enter choice :
")

(let ((choice (read)))
(caseq choice
(1 (show-object))
(2 (show-action))
(3 (return nil)) ) )

(go loop) ) )
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ABSTRACT

Knowledge representation is currently a central research issue in Computer Sci-

ence. Knowledge properly represented and integrated into a computer system can

enhance its processing capability. In fact, the ideal computer system may be one in

which the user issues commands to the system, and the system carries out those com-
mands with out any further assistance. Such a system could also handle many tasks

at once and communicate with other computers to accomplish other tasks.

In this work a new model for representation of knowledge through data objects

which have inherent intelligence is developed. The data objects are extended to util-

ize processing instructions, routing information among computing agents, with the

option of protocols to access system wide knowledge bases. The knowledge bases are

based upon the Artificial Intelligence techniques developed from Knowledge Engineer-
ing, and semantic graphs. Objects will communicate via message passing or through a

common blackboard. A prototype form of this model has been implemented in the

PEARL frame system on the VAX 11/780. The model and prototype implementation
begins to assume the feasibility of an autonomous data object approach to distributed

system design.


