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ABSTRACT 
 This paper presents an experimental and an analytical investigation of the behavior of 

Reinforced Concrete (RC) beams strengthened in flexure by means of different combinations of 

externally bonded hybrid Glass and Carbon Fiber Reinforced Polymer (GFRP/CFRP) sheets. In 

order to obtain the mechanical properties of the hybrid sheets, multiple tensile coupon tests were 

conducted. In addition, an experimental program consisting of a control beam and four beams 

strengthened in flexure with GFRP, CFRP and hybrid FRP sheets was conducted. The series of 

the RC beams were tested under four point bending to study the flexural effectiveness of the 

proposed hybrid FRP sheets. The load-deflection response, strain readings at certain locations 

and associated failure modes of the tested specimens had been recorded. It is observed that the 

increase in the load capacity of the strengthened beams ranged from 30% to 98% of the un-

strengthened control RC beam depending on the combination of the Carbon/Glass sheets. It was 

also observed that the ductility at failure loads of the beams strengthened with glass and hybrid 

sheets is higher than that with a single carbon sheet. Hence, the selection of the optimum 

combination of hybrid sheets can lead to a strengthening material which provides an improved 

ductility and strength in beam behavior. The load carrying capacity of the tested specimens was 

then predicted by the ACI 440.2R-08 guidelines. The predicted and measured results were in 

good agreement, within 5% for the control beam and for beams with one layer of strengthening 
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sheet and between 13%-17% for beams with two or more layers of hybrid strengthening sheets. 

Furthermore, an analytical model was developed to predict the load-deflection response of the 

tested specimens and the results were compared with the measured experimental data. The 

results showed that the developed analytical model predicted the response of the tested beam 

specimens with reasonable accuracy.  

Keywords: hybrid systems; Fiber Reinforced Polymer; externally bonded sheets; flexural 

strengthening; Carbon; Glass. 

 
 
1. Introduction 

 The use of externally bonded Fiber Reinforced Polymer (FRP) systems has been proven 

to be an effective technique to rehabilitate and strengthen deficient and deteriorated structural 

members [1-5]. The FRP materials are known to have high stiffness, high strength to weight 

ratio, resistance to corrosion and ease of installation. In this external strengthening technique, the 

FRP materials are attached to the tension side of RC beams or girders to carry the tensile stresses 

by means of the epoxy adhesive [6-8]. In general, the FRP plates are bonded to the soffit of the 

beams and the sheets are attached at anchorage zones to provide a locking mechanism that would 

increase the load carrying capacity of the structural member. It should be noted that the 

externally bonded systems were produced in the early 1940s [9] in which steel plates were 

bonded to bridge girders to carry extra tensile forces introduced by the increasing number of 

users and vehicles. However, the introduction of FRP materials showed better performance than 

the conventional methods due to the several mechanical advantages of the FRP materials. 

Many experimental programs and numerical studies investigated different strengthening 

techniques in which multiple arrangements of FRP plates and sheets were used [10-19]. Among 

them, Akbarzadeh and Maghsoudi [10] experimentally investigated the performance of 
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continuous high-strength reinforced concrete beams externally strengthened with CFRP and 

GFRP sheets. The authors also developed an analytical model based on moment curvature that 

was able to predict the response and load-carrying capacity of the tested specimens with 

reasonable accuracy. It was concluded that as the number of CFRP sheets increases, the load-

carrying capacity of the tested specimens increases, while the moment redistribution and 

ductility decrease along with a decrease in the CFRP ultimate strain at failure. Similarly, for the 

specimens strengthened with GFRP sheets, test results showed that by increasing the number of 

GFRP sheets, the moment redistribution and ductility would decrease without a significant 

increase in the load-carrying capacity. Zhou et al. [11] experimentally investigated the 

performance of reinforced concrete beams externally strengthened with friction hybrid bonded 

FRP (FHB-FRP) systems. The performance of the proposed system was mainly attributed to the 

improve bonding and sliding displacement of the CFRP sheets to the adjacent concrete surfaces. 

Test results have showed that debonding could be prevented by using the proposed FHB-FRP 

strengthening technique. In addition, the load-carrying capacity, cracking and yield loads of the 

beams strengthened with the FHB-FRP system outperformed specimens that were strengthened 

using the conventional U-Jacketing technique. A finite element model was also developed that 

was able to capture the response of the strengthened specimens with the proposed (FHB-FRP) 

system. Rabinovitch and Frostig [14] tested five strengthened and retrofitted existing reinforced 

concrete beams with externally bonded FRP materials with different edge wrapping 

configurations. The results revealed that the proposed strengthening method is suitable for 

repairing severely damaged reinforced concrete beams. Toutanji et al. [15] tested seven 

reinforced concrete beams externally strengthened with three to six layers of CFRP sheets via an 

organic epoxy, in addition to a control unstrengthend specimen. Their results indicated a 
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significant increase in the load-carrying capacity up to 170.2% of the control beam specimen. 

However, the ductility of the strengthened specimens has been reduced significantly. Further, the 

beam specimens strengthened with three and four layers of CFRP sheets failed by FRP rupture, 

while specimens strengthened with five and six layers of CFRP sheets failed by concrete cover 

delamination.  

   There have been some attempts to study the effect of using hybrid carbon and 

glass sheets as external strengthening material. Grace et al. [20] developed a uniaxial ductile 

hybrid FRP fabric composed of two types of carbon fibers and one type of glass fiber. Eight 

concrete beams were strengthened and tested under flexural load to examine the effectiveness 

and ductility of the developed fabric. The results were compared with similar beams 

strengthened with CFRP sheets, fabric, and plates. It was observed that the beams strengthened 

with the developed hybrid fabric achieved higher ultimate strength and ductility indexes 

compared to those beams strengthened with the available CFRP systems. Grace et al. [21] also 

developed a pseudo-ductile FRP fabric composed of carbon and glass fibers braided in three 

different directions (0, 45, and -45). It was observed that the developed fabric offered 

strength, stiffness and achieved ductile pseudo plateaus similar to steel reinforcement when 

loaded axially or diagonally. 

  Xiong et al. [22] conducted a test program on the behavior of two strengthening systems 

namely; a conventional CFRP system as well as a hybrid CFRP/GFRP system. The beams were 

tested under four point bending. It was observed that the hybrid combination showed an 89.7% 

increase in the deflection response over the CFRP system. In addition, the hybrid system dropped 

by 10 and 38% in stiffness and cost compared to the carbon FRP system. Also, it was observed 
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that the ductility of the RC strengthened beam using the hybrid system was only 16.2% less than 

the reference control RC beam. 

 Similarly, Wu et al. [23] studied the effect of combining high strength and high modulus 

carbon sheets to form a new hybrid system. In addition, they conducted a full scale experimental 

program on fifteen RC beams strengthened with different configurations of the proposed hybrid 

system and tested monotonically under three point bending. Furthermore, the pre-cracking effect 

was also studied, and introduced at a preloading of 40% and 60% of the steel reinforcement 

yielding level. It was found that the best hybrid combination is using a high strength to high 

modulus ratio of 2:1. The use of high modulus carbon sheets in the hybrid system showed a large 

increase in the flexural stiffness, yielding load, ductility and reduction in the crack propagation 

within the tested RC beams. It was also found that the flexural capacity of the pre-cracked 

specimens can be fully restored to its original designed level using the externally bonded hybrid 

system.  

Li-juan et al. [24] investigated numerically the interfacial stress between hybrid CFRP 

and GFRP sheets using the nonlinear finite element method. It was concluded that the hybrid 

FRP strengthening method could reduce interfacial shear and normal stresses at the cut-off point 

of the FRP sheets that would delay the initiation of debonding. They also performed a parametric 

study to investigate the effect of the load, elastic modulus, thickness of epoxy adhesive layer and 

FRP sheet width. It was observed from the results of the parametric study that interfacial stresses 

increase with the increase in the elastic modulus and loads, and decrease with the increase in the 

epoxy layer thickness. They concluded that, the width of the FRP sheet on the other hand has no 

significant influence on the interfacial stresses at the FRP ends.   
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Choi et al. [25] recently developed a fabric produced by combining carbon and glass 

fibers with a glass to carbon ratio of 8.8/1.0 to strengthen nonductile flexural members. They 

tested plain RC beams and RC beams strengthened with the produced FRP fabric sheets in four-

point bending to examine the effect of the designed 8.8/1.0 volume ratio. It was observed that the 

strengthened beams with a glass to carbon fibers ratio of 8.8/1.0 exhibited higher strength than 

the unstrengthened beams by 20% and were able to sustain the ultimate loads without 

degradation demonstrating a pseudo-ductile behavior. They also conducted six bond tests to 

study the bond-shear stress between the hybrid sheet and concrete. It was observed that the bond 

behavior to concrete of the hybrid sheet is similar to that of the commonly used carbon sheet. It 

was found that the effective bond length and bond shear strength of the hybrid sheet is about 200 

mm and 3 MPa, respectively.  

  This paper investigates experimentally and analytically the performance of RC beams 

externally strengthened in flexure with different combinations of CFRP and GFRP sheets. The 

first stage of this study was to obtain the mechanical properties of the hybrid sheets by 

conducting multiple tensile coupon tests on different arrangements of the hybrid sheets. Then, 

four RC beams strengthened with GFRP, CFRP and hybrid FRP sheets were tested under four-

point bending. The load-deflection response, strain readings at certain locations and associated 

failure modes of the tested specimens was recorded. The results were compared with an 

unstrengthened control beam. Also, an analytical model was developed to predict the load-

deflection response and load-carrying capacity of the beams and the results were compared with 

the experimentally measured values and the ACI 440.2R-08 [26] predictions. 

2. Experimental program 
 
 2.1. Details of the Tested Beams  



7 
 

Five RC beams were cast using a single batch of Self-Consolidating Concrete (SCC) with 

average compressive 28-day cylinder strength of 50 MPa. The beams were 1840 mm long, 120 

mm wide, 240 mm deep with 25 mm cover on top, bottom and sides. The flexural reinforcement 

of the beams consisted of two 10 mm diameter steel bars (No. 10, area = 154 mm2) located at a 

depth of 202 mm from the compression face of the beam’s cross-section, and two compression 8 

mm diameter steel bars (No. 8, area = 98 mm2) located at a depth of 37 mm from the 

compression face. The beams were over-reinforced for shear with 8 mm diameter (No. 8) closed 

stirrups spaced at 80 mm center to center to avoid shear failure. Figure 1a shows the geometry, 

dimensions and reinforcement details of the tested RC beams. The beams were cured for 28 days 

and kept in a controlled lab environment prior to testing.  

The beams were loaded in four-point bending as shown in Figs. 1b-1c and tested until 

failure using a controlled Universal Testing Machine (UTM) that has a static loading capacity of 

2500 kN. The loading was applied in terms of displacement control at a slow rate of 2mm/min to 

capture the propagation of cracks and response of the tested specimens. The clear span of the 

beams was 1690 mm and the two loading points were 567 mm apart located symmetrically about 

the beam’s mid-span location. Electrical strain gauges were attached on the surface of the FRP 

sheets at mid-span to measure the FRP strains. The strain gauges were connected to a data 

acquisition system to record the strain readings. Uniaxial coupon tests were conducted on the 

steel reinforcement bars to measure their tensile mechanical properties. The average obtained 

elastic modulus and yield strength for the bars were 202 GPa and 540 MPa, respectively. 

 
2.2. Test Matrix: Control and Strengthened Beams  
 

 A summary of the test matrix including the configuration of external hybrid FRP is given 

in Table 1. One beam was left unstrengthened to serve as a control specimen (B) and the 
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remaining four beams were strengthened on the tension side at the soffit of the RC beams with 

externally bonded Carbon (BC), Glass (BG), Glass-Carbon (BGC), and Glass-Carbon-Glass 

(BGCG) sheets, respectively. All the installed FRP sheets have a width of 112.5 mm and length 

of 1520 mm (90% of the beam’s span length), centered along the length of the beams as shown 

in Fig. 1b. The dry CFRP and GFRP sheets used in the experimental program were 

“SikaWrap®-300 C/60” and “ReCon Wrap GF”, respectively. Sikadur®-330 two parts epoxy 

adhesive was used to attach each FRP layer. The Sikadur®-330 has a tensile strength, modulus of 

elasticity and elongation at break as reported by the manufacturer of 30 MPa, 4.5 GPa and 0.9%, 

respectively. 

2.3. Material Properties of the Fibrous Sheets 
 
 The manufacturer's mechanical properties (modulus of elasticity, tensile strength, and 

elongation) of the dry carbon and glass fiber sheets are given in Table 2, respectively.  

It should be noted that the final composite laminate product properties are much lower than those 

of the dry fiber characteristics, as reported by Okeil et al. [27] due to the effects of the epoxy 

adhesive. In order to obtain the mechanical properties of the bonded sheets, sixteen tensile 

coupon tests were conducted at a displacement rate of 2 mm/min using a 100 kN universal 

testing machine in accordance with the ASTM: D 3039/D 3039M-08. The FRP laminate 

composite samples had the same arrangement as the sheets used to strengthen the RC beam 

specimens. Each coupon specimen had a length and width of 250 and 40 mm, respectively. The 

measured average composite laminate thickness for each composite type is provided in Table 3. 

Four coupon tests were made for each arrangement and the average tensile results are presented 

in Table 3.  
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 Figure 2 shows representative stress-strain relationships of the CFRP, GFRP and hybrid 

FRP sheets. It is clear from Table 3 and Fig. 2 that the carbon fiber material exhibited higher 

tensile strength and modulus of elasticity, and lower rupture strain compared to that of the glass 

fibers. When the carbon and glass fibrous materials are bonded together in a composite laminate, 

progressive failure initiates in the carbon fibers that has a lower rupture strain. Figure 2 depicts 

the phenomenon of the hybrid system when carbon and glass sheets work together. As expected , 

when glass and carbon fiber sheets are stacked together with epoxy adhesive, the glass fibers that 

have higher elongation compared to the carbon fibers will stand the extra deformation due to the 

initiation of rupture in the carbon fibers at the onset of a drop in the stress-strain curve as shown 

in Figure 2. The consequent fluctuating in the load is caused by the gradual rupture of the carbon 

fibers. The glass fibers will retard the progress of fracture of the carbon fibers, which will lead to 

a significant increase in the elongation of the composite laminate with an interesting ductile-

bilinear behavior similar to that of the steel reinforcement, hence providing both strength and 

pseudo-ductility at the same time. 

2.4. Strengthening Technique  
 

 The strengthening procedure used to bond the FRP sheet to concrete involved surface 

preparation, epoxy resin undercoating, application of the FRP sheet and epoxy overcoating. 

Special consideration was given to surface preparation before applying the epoxy adhesive. 

Uniform mechanical grinding was used to roughen the surface of the concrete substrate and 

remove the surface grease and smoothness. The free particles and dust on the beams’ concrete 

surfaces were vacuum-cleaned with compressed air after grinding. Once the exposed surface had 

been prepared, the two parts Sikadur®-330 epoxy adhesive was mixed in accordance with the 

manufacturer's instructions and applied to the concrete surface using a spatula. For the beams 
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strengthened with the hybrid sheets, the second FRP layer was applied on the surface of the first 

FRP layer which was overcoated with the epoxy adhesive. The sheets were applied with a 

constant pressure with rollers to ensure complete bond between the concrete and the CFRP 

sheets and avoid any entrapped air bubbles at the epoxy/concrete or epoxy/sheet interface. The 

beam specimens were allowed to cure under laboratory conditions for at least 2 weeks prior to 

testing.  

3. Results and Discussion 
 

The obtained experimental results are presented in the subsequent sections in terms of the 

observed failure modes, load versus mid-span deflection, load-FRP strain relationships at mid-

span and beams’ ductility. 

 
3.1. Failure Modes  

 
The tested RC beams showed different local and global failure modes including concrete 

crushing, flexure cracks, debonding, and delamination. Figure 3 shows the tested specimens at 

failure. Table 4 provides the measured ultimate load-capacity and a summary of the type of final 

failure for each beam specimen.  

The control beam failed in a flexural mode by yielding of the flexural steel followed by crushing 

of the concrete (compression failure) at mid-span as shown in Fig. 3 (a). The BC beam specimen 

failed by steel yielding followed by debonding of the externally bonded CFRP sheet. It should be 

noted that the debonding of the CFRP sheet is due to the development of vertical shear cracks 

from both sides of the beam in the shear span close to the location of the point loads. The BG 

beam specimen failed by steel yielding followed by GFRP debonding in the vicinity of the mid-

span that caused two major flexural cracks to develop and concrete crushing at the loading 

support to take place, as shown in Fig. 3 (c). Similarly, the BGC beam specimen failed by steel 
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yielding followed by partial debonding of the FRP hybrid sheets that caused a major flexural 

crack to develop and concrete crushing below the loading supports as shown in Fig. 3 (d). The 

BGCG specimen failed interestingly in a flexural mode by steel yielding followed by concrete 

crushing in the vicinity of the constant moment region between the two loading supports as 

shown in Fig. 3 (e). Furthermore, FRP debonding during testing was not observed in specimen 

BGCG. 

3.2. Load-Deflection Responses 

Figure 4 shows the load-mid-span deflection responses obtained from the tests.  Table 5 

summaries the experimental results in terms of the ultimate load (Pu), mid-span deflection at 

yielding of the flexural steel (δy), deflection at ultimate load (δu), and deflection at failure load 

(δf). The ultimate load and the maximum deflection of the control (B) and the CFRP (BC) beam 

specimens are used as benchmarks for measuring the performance of other beams. Table 5 also 

provides the percent decrease of deflection at ultimate loads (%δu) compared to that of the 

control beam, percent increase of deflection at ultimate loads (%δu) compared to that of the BC 

specimen, and the percent decrease of deflection at failure (δf) compared to that of the control 

beam. 

It is clear from Fig. 4 and Table 5 that the strengthened beams have larger post cracking stiffness 

and load capacity than those of the control beam. It is observed that the increase in the ultimate 

(peak) load of the strengthened beams ranged from 30% to 98% of the un-strengthened control 

RC beam. Such increase in the load-carrying capacity is in agreement with other experimental 

studies [1-2, 8, 10, 11, 14-15]. In addition, the RC beams strengthened with hybrid sheets 

achieved higher ultimate load capacities than both RC beams strengthened with a single layer of 

CFRP or GFRP sheets. This was also observed in the experimental study of Grace et al. [20-21] 

and Xiong et al. [22]. Among the two beams (BC and BG) strengthened with one layer of FRP 
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sheet, the BC specimen achieved a higher load capacity compared to the BG specimen but failed 

at a lower mid-span deflection (less ductile). The beams strengthened with the hybrid sheets 

(BGC and BGCG) achieved higher maximum load and deformation at failure than those of the 

BC specimen. The BGCG specimen achieved the highest ultimate load and mid-span deflection 

(highest ductility) among the strengthened beam specimens. This shows that strengthening RC 

beams with hybrid FRP sheets would achieve a higher load capacity and ductility than those 

strengthened with conventional CFRP sheets. Such observations are in agreement with the 

findings observed by grace et al. [20-21] when strengthening RC beams with externally bonded 

FRP fabric composed of carbon and glass fibers braided in three different directions of 0, 45, 

and -45, respectively.    

3.3. Load-FRP Strain Relationships 
 

Strain readings in the FRP at mid-span were recorded from the attached strain gages during 

testing using a data acquisition system. Figure 5 shows the load versus FRP strain for the BC and 

hybrid (BGC and BGCG) strengthened specimens. The FRP strain at failure for the BC, BGC, 

and BGCG specimens is 0.70%, 1.64%, and 1.11%, respectively. This indicates that 41.18%, 

63.08%, and 39.64% of the capacity of the BC, BGC, and BGCG laminates was utilized. The 

BGCG FRP strain at failure was lower than that of the BGC specimen due to concrete crushing 

(flexural failure) in the constant moment region. 

3.4. Ductility Indices  

An attempt is made to estimate and quantify the ductility of the tested RC beams from the load-

deflection relationships shown in Fig. 4. The mid-span deflection value at yielding of the flexural 

steel (y) is used as a reference benchmark to define ductility of the tested specimens. In this 

study, the ductility is evaluated by computing the deflection ductility indices at ultimate load (
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  ) and failure load (
y

f
f 


  ), respectively. The y, u, and f values are shown in 

Table 5 and the calculated ductility indices are listed in Table 6. Table 6 also provides the 

ductility ratios of the tested specimens to those of the control (B) and BC specimens. 

It is found from Table 6 that the ductility at ultimate and failure loads of the externally 

strengthened RC beams with FRP and hybrid FRP laminates are less than that of the control 

beam by 20-54% and 13-29%, respectively.  The ductility at failure loads of the beams 

strengthened with glass and hybrid sheets (BG, BGC, and BGCG) is higher than that with a 

single carbon sheet (BC). The failure ductility of the beam strengthened with a single glass sheet 

(BG) is the highest among all the strengthened beams. In addition, the BGCG specimen achieved 

failure ductility higher than that of the BGC specimen by 17.8%. In conclusion, the beams 

strengthened with hybrid sheets have a higher strength and ductility than the beam strengthened 

with a single carbon sheet. 

4. The predictions of ultimate load-carrying capacity based on ACI 440.2R-08 

The nominal moment strength of the tested beam specimens is computed according to the ACI 

440.2R-08 [26] design guidelines as follows: 


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
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 






 

22
11 c

hfA
c

dfAM feffssn


       (1) 

where As and fs are the cross-sectional area and stress of the steel reinforcement at section failure; 

d is the effective depth measured from the top compression fiber to the centroid of flexural steel 

reinforcement; 1 is the depth factor of the rectangular stress block; c is the depth of the neutral 

axis; f is an additional reduction factor applied to the flexural contribution of the FRP 

reinforcement to account for bond deterioration and other uncertainties inherited in FRP; Af and 

ffe are the cross-sectional area and effective stress in the FRP sheets; and h is the depth of the 
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member. In addition, the design procedure limits the effective strain value in the FRP (fe) to the 

debonding FRP strain (fd) using Eq. 2 to check if intermediate crack-induced debonding 

mechanism failure mode governs. 

 fu
ff

c
fdfe tnE

f  9.041.0 


         (2) 

where n is the number of FRP sheets, f’c is the concrete compressive strength, Ef is the elastic 

modulus of FRP, and tf is the nominal thickness of FRP laminate. It should be noted that the 

values listed in Table 3 of the measured and obtained material properties for the coupon tests are 

used herein to predict the nominal load capacity of the beam specimens. The ultimate load 

capacity of the control beam (B) is computed according to the ACI 318-08 [28] design 

guidelines. 

Table 7 compares the measured and predicted ultimate load capacity of the tested beam 

specimens. The predicted strength utilized the as-measured material properties. Table 7 also 

provides the ratio of the predicted to the measured ultimate load capacity. It is clear from Table 7 

that the predicted results for the control beam (B), BC and BG are very close to the measured 

experimental values with a maximum deviation of 5%. The ACI 440 provisions give slightly 

conservative estimates of the ultimate load capacity (Pu) for the hybrid specimens by margins of 

13% and 17% for the BGC and BGCG specimens, respectively. 

5. Analytical Model and Verifications 
 
A nonlinear analytical model is developed to analyze RC beams strengthened with hybrid FRP 

laminates up to failure, Figure 6-8. The well-known incremental deformation technique is used 

for section analysis using 1000 thin concrete layers to locate the neutral axis for each top 

compression fiber strain using strain compatibility, force and moment equilibrium, Figure 9. The 
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resulting moment-curvature response is numerically integrated to yield the load-mid-span 

deflection behavior using 50 beam segments along half the span, Figure 10.  

/ 2
1 1
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2 2
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x x
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 
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The predicted failure modes in the analysis are the typical flexural failures of FRP rupture when 

the CFRP sheet reaches its ultimate strain, FRP debonding when the FRP strain reaches that of 

fd  from equation (2) above or concrete crushing after yielding of the tension steel when the 

extreme compression fiber strain reaches 0.003. Once the CFRP reaches rupture by attaining the 

smaller of fu  and  fd  which represents  the early failure due to the stress concentration at the 

intermediate induced cracking, the CFRP sheet is entirely removed from the analysis leaving just 

the GFRP sheet(s) and causing a drop in the load-deflection response. 

Figure 11 presents the experimental and predicted response load versus mid-span deflection 

curve for the unstrengthened control beam, while Figure 12 presents the experimental and 

predicted response curves for the beams externally strengthened with FRP laminates. It is evident 

from Figure 11 that the two curves are corresponding reasonably well. The analytical failure 

mode is by yielding of the tension steel followed by concrete crushing. Figure 12a shows the 

experimental and the analytical load-deflection results of Beam BC with a CFRP sheet only. It 

can be seen from Figure 12a that the two results are in a very good agreement. The analytical 

failure mode is debonding of the CFRP sheet ( fd =
348.0100025.119

50
41.0

xx
= 0.0142, see 

Table 3) which matches the experimental observation. Figure 12b demonstrates the comparison 

of the experimental response and the analytical prediction for Beam BG with a single GFRP 

sheet. The excellent correspondence between the two curves is evident. The analytical failure 

mode is by concrete crushing which is similar to the concrete crushing observed under the point 
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loads even though local debonding failure is evident experimentally (Figure 3c). The comparison 

between the test response and analysis response for Beam BGC with a hybrid GFRP and CFRP 

layers is shown in Figure 12c. The two responses are in excellent agreement with each other. The 

analytical failure mode is first partial debonding of the CFRP in the hybrid layer ( fd =

7.010003.86

50
41.0

xx
= 0.0118, see Table 3) upon which the CFRP layer is completely removed, 

yielding a drop in the load-deflection response similar to the experimental observation, followed 

by concrete crushing similar to the experimental concrete crushing observed under the point 

loads, (Figure 3d), with partial debonding also evident experimentally. Figure 12d illustrates the 

correspondence between the experiment and analysis results for Beam BGCG with a hybrid 

GFRP-CFRP-GFRP laminate. The analytical failure mode started by partial debonding of the 

CFRP sheet ( fd =
052.1100025.65

50
41.0

xx
= 0.0111, see Table 3) upon which the CFRP layer is 

completely removed, yielding a drop in the load-deflection response. The progressive failure 

ended by debonding of the remaining two Glass layers at ( fd =
352.0100013.342

50
41.0

xxx
= 

0.0187, see Table 3) unlike the concrete crushing failure observed experimentally. Nevertheless, 

it is important to note that the extreme compression fiber strain at failure was 0.0028 which is 

very close to the 0.003 strain used by ACI to indicate concrete crushing. 

6. Conclusions 

Experimental and analytical results to investigate the behavior of RC beams strengthened in 

flexure by means of different combinations of externally bonded hybrid GFRP and CFRP sheets 

are presented. Four beams externally strengthened in flexure with GFRP, CFRP, and hybrid 

combinations of GFRP/CFRP sheets, in addition to an unstrengthened reference beam were 
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tested under four point bending and the flexural effectiveness of the proposed strengthening 

technique with hybrid FRP sheets were investigated. It is observed that the ultimate load-

carrying capacity using ACI440.2R-08 is close to the experimentally measured values. Also the 

analytical model predicts the behavior of the tested beams very accurately.  The following 

conclusions are obtained: 

1) The increase in the load capacity of the strengthened beams ranged from 30% to 98% of 

the un-strengthened control RC beam depending on the combination of the Carbon/Glass 

sheets.  

2) The ductility at failure for the beams strengthened with glass and hybrid sheets is higher 

than that with a single carbon sheet. The ductility at failure of the beam strengthened with 

a single glass sheet is the highest among all the strengthened beams. 

3) The use of hybrid systems combines the lower stiffness of the GFRP sheets with the high 

strength of the CFRP sheets to result in a material, which provides an improved strength 

and ductility in beam behavior as observed in BGC and BGCG beams.  

4) From the reading of the strains in the FRP, around 40% or more of the FRP strength have 

been utilized. Specifically, 41.18%, 63.08%, and 39.64% of the capacity of the BC, BGC, 

and BGCG laminates were utilized, respectively.  

5) The ACI 440 provisions gave very accurate prediction of the ultimate load capacity for 

the beams with one layer of strengthening sheet (BC and BG) but slightly conservative 

estimates of the ultimate load capacity for the hybrid specimens by margins of 13% and 

17% for the BGC and BGCG specimens, respectively. It can be concluded that, ACI 

prediction is less accurate for hybrid specimens and also as the number of strengthening 

layers increases. 
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6) The failure modes for the tested beam specimens showed different local and global 

failure characteristics including concrete crushing, flexural cracks, debonding, and 

delamination. 
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Table 1. Test Matrix 

Name Description 

B Control Beam 

BC One layer of CFRP 

BG One layer of GFRP 

BGC One layer of GFRP and one layer of CFRP bonded in sorted order 

BGCG One layer of GFRP, one layer of CFRP, and one layer of GFRP 
bonded in sorted order 
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Table 2. Manufacturer's mechanical properties 
FRP Sheet Modulus of 

Elasticity (GPa) 
Ultimate tensile 
strength (MPa) 

Strain at rupture (%) 

Carbon 230 3450 1.5 
Glass 72 3400 4.5 

 

 
 
 
Table 3. Measured Mechanical Properties of Different FRP Laminates 

FRP 
Designation 

 Measured 
Thickness 

(mm) 

Tensile Strength 
(MPa) 

Modulus of 
Elasticity (GPa) 

Elongation 
(%) 

C   0.348 2089.4 119.25 1.7 
 G   0.352 786.5 34.13 3.5 

 GC   0.700 1622.7 86.30 2.6 
 GCG   1.052 1186.9 65.25 2.8 
 

  

 
 
Table 4. Ultimate load capacity and mode of failure  

Specimen Pu (kN) Mode of Failure 

B 58.78 Flexural (Steel yielding, concrete crushing) 

BC 92.44 Steel yielding followed by FRP debonding  

BG 76.84 
Steel yielding followed by Local FRP debonding and concrete 

crushing at loading support  

BGC 107.59 
Steel yielding followed by FRP partial debonding, major flexural 

crack and concrete crushing at loading support 

BGCG 116.41 Flexural (Steel yielding, concrete crushing) 
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Table 5. Summary of ultimate load and deflections   

Specimen 
Pu 

(kN) 

% Pu 
Increase 
over B 

% Pu 
Increase 
over BC 

δy 

(mm) 
δu 

(mm) 

% δu 
Decrease 

over B 

% δu 
Increase 
over BC 

δf 

(mm) 

% δf 
Decrease 

over B 

B 58.78 - - 9.36 32.74 - 76.50 33.75 - 

BC 92.44 57.26 - 8.59 18.55 43.34 - 19.39 42.55 

BG 76.84 30.72 -16.88 7.40 20.69 36.81 11.54 23.21 31.23 

BGC 107.59 83.04 16.38 7.80 15.75 51.89 17.78 20.10 40.44 

BGCG 116.41 98.04 25.93 8.86 14.11 56.90 31.47 26.90 20.30 

 
 
 

 
Table 6. Summary of ductility indices at ultimate and failure loads     

Specimen µu 
Ratio to B 
specimen 

Ratio to BC 
specimen 

µf 
Ratio to B 
specimen 

Ratio to BC 
specimen 

B 3.50 1.00 1.62 3.61 1.00 1.60 
BC 2.16 0.62 1.00 2.26 0.63 1.00 
BG 2.80 0.80 1.29 3.14 0.87 1.39 

BGC 2.02 0.58 0.94 2.58 0.71 1.14 
BGCG 1.59 0.46 0.74 3.04 0.84 1.35 

 

 
 
 
 
Table 7. Comparison of predicted ultimate load capacity with experimental results   

Specimen 
Pu 

(kN) 
Pu 

Predicted  
(Pu)pred./ (Pu)exp. 

B 58.78 58.85 1.00 
BC 92.44 88.03 0.95 
BG 76.84 74.46 0.97 

BGC 107.59 93.98 0.87 
BGCG 116.41 96.25 0.83 
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Fig. 1a. Longitudinal and cross-section reinforcement details 

 

 
 
 
 
 
 
 
 
 
 

Fig. 1b. Details of tested Beams 
 

 
Fig. 1c. Test Setup 

Fig. 1. Details of strengthening technique and load condition  
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  Fig. 2. Measured stress-strain curves for FRP and hybrid sheets 
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 (a) Control Beam (B) at failure (b) BC Beam at failure 

 

(c) BG Beam at failure (d) BGC Beam at failure 

 
(e) BGCG Beam at failure 

  Fig. 3. Tested Beams at Failure  
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  Fig. 4.  Load versus Mid-Span Deflection  
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