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Abstract: Prescribed rangeland burning in April is a long-standing practice in the Flint Hills region of
eastern Kansas to maintain the tallgrass prairie ecosystem. The smoke plumes originating from these
fires increases ambient PM2.5 concentrations and potentially contributes to ozone (O3) exceedances in
downwind communities. Source apportionment research using Unmix modeling has been utilized to
estimate contributions of Kansas rangeland burning to ambient PM2.5 concentrations. The objective
of this study was to investigate the potential correlations between O3 and various sources of
PM2.5 that are derived from receptor modeling, and then to specifically estimate contributions
of Kansas rangeland burning to ambient O3 concentrations through regression analysis. Various daily
meteorological data were used as predictor variables. Multiple regression models were developed
for the eight-hour daily maximum O3 as well as the daily contributions of the five PM2.5 source
categories that were derived from receptor modeling. Cross correlation was analyzed among residuals
of the meteorological regression models for O3 and the daily contributions of the five PM2.5 source
categories in order to identify the potential hidden correlation between O3 and PM2.5. The model
including effects of meteorological variables and episodic contributions from fire and industrial
emissions can explain up to 78% of O3 variability. For non-rainy days in April, the daily average
contribution from prescribed rangeland burning to O3 was 1.8 ppb. On 3% of the days in April,
prescribed rangeland burning contributed over 12.7 ppb to O3; and on 7% of the days in April, burning
contributed more than 7.2 ppb to O3. When the intensive burning activities occur in days with high
O3 background due to high solar radiation or O3 carryover from the previous day, the contributions
from these episodic fire emissions could result in O3 exceedances of the National Ambient Air Quality
Standards (NAAQS). The regression models developed in this study demonstrated that the most
valuable predictors for O3 in the Flint Hills region include the O3 level on the previous day, total solar
radiation, difference between daily maximum and minimum air temperature, and levels of episodic
fire and industrial emissions. The long term goal is to establish an online O3 forecasting tool that
can assist regulators and land managers in smoke management during the burning season so that
the intensive burning activities can be planned to avoid forecasted high O3 days and thus prevent
O3 exceedance.
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1. Introduction

Prescribed rangeland burning is a long-standing practice in Kansas. Burning is used to enhance
the nutritional value of native grasses, control woody plants, and is vital to the maintenance of the
tallgrass prairie ecosystem. The Flint Hills tallgrass region of eastern Kansas covers 13 Kansas counties,
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and approximately 2 million of the 7 million acres of rangeland in the region are burned each year,
mostly in April. The smoke from these burnings has contributed to air quality concerns [1,2]. Precursors
for ozone (O3) and PM2.5 (particulate matter that less than 2.5 µm in equivalent aerodynamic diameter)
are the smoke constituents of concern. In past years, the Kansas Ambient Air Monitoring Network
has recorded elevated concentrations of both O3 and PM2.5 in air during the periods of intensive
rangeland burning, and the smoke has contributed to O3 exceedances. The National Ambient Air
Quality Standards (NAAQS) are evolving for O3 and PM2.5. In 2012, the primary annual standard
of PM2.5 was reduced from 15 to 12 µg/m3. In 2015, the eight-hour O3 standard was reduced from
75 to 70 ppb. The continued lowering of O3 and PM2.5 standards, together with the Regional Haze
Regulations, requires changes in air quality management. Air quality regulators are under pressure to
quantify all contributing sources at a time of ever-tightening air quality standards. Modeling tools are
being developed for better smoke management related to prescribed fires [3,4]. However, management
and modeling efforts are limited by a lack of detailed local source profiles of smoke emissions as well
as knowledge gaps in formation of O3 and secondary organic aerosols.

Various receptor modeling approaches have been developed to resolve the contributions of
important emission sources to ambient concentrations, such as chemical mass balance (CMB) [5],
positive matrix factorization (PMF) [6], and Unmix [7]. Unlike CMB, the Unmix and PMF models do
not require externally supplied source profiles, though they require large data quantity for multivariate
analysis. When long-term observational data are available, Unmix and PMF have been shown to
be able to generate realistic and interpretable results. Our source apportionment research using
Unmix modeling has successfully demonstrated that Kansas rangeland burning contributed 39% of
the average PM2.5 concentration in April [8].

For decades, ground level O3 has been the most persistent and perhaps the most dangerous air
pollutant in the U.S. [9]. Despite huge expenditures for emission control, violation of the air quality
standard for O3 is not rare. Discernible spikes in O3 concentrations were observed starting around
April each year at Konza Prairie, Wichita, and Kansas City, indicating the effects of the annual burning
activities occurring in the Flint Hills. At the Konza Prairie monitoring site, there were 23 days which
had daily maximum eight-hour O3 concentration above 70 ppb during the burning season from 2002
to 2013. However, the correlations between O3 and smoke from Kansas rangeland burning are not well
documented. The actual contributions from burning activities and how O3 concentrations respond to
smoke emissions under different meteorological conditions are not well understood. This information
is essential for making an effective smoke management plans, air quality policy, and health warnings.
Regression analysis has been successfully used in O3 modeling in many studies [10–17].

O3 is a secondary pollutant that is formed through reactions between precursor species such as
nitrogen oxides (NOx) and volatile organic compounds (VOCs). O3 and PM2.5 controls are traditionally
considered separately because their high pollution periods are not concurrent on seasonal timescales,
with O3 usually peaking in summer and PM2.5 often peaking in winter [18]. Temperature and relative
humidity (RH) exert opposite effects on O3 and nitrate aerosols. Higher temperature and lower RH
promote O3 formation but cause volatilization of nitrate aerosols. Our hypothesis is that after source
contributions to PM2.5 are resolved through receptor modeling, the time series pattern of individual
source contributions can be characterized and the effects of metrological variables on each individual
source contribution can be modeled. In addition, after seasonal and meteorological effects are removed,
the hidden correlation between O3 and PM2.5 contributed from smoke will be revealed, since they
share precursor compounds in smoke emissions. As a result, the smoke contributions to O3 can be
estimated from the resolved smoke contributions to PM2.5 under given meteorological conditions.

The objective of this study is to investigate the potential correlations between O3 and various
sources of PM2.5 that are derived from receptor modeling, and then to specifically estimate
contributions of Kansas rangeland burning to ambient O3 concentrations through regression analysis.
The long term goal is to establish an online O3 forecasting tool that can assist regulators and land
managers in smoke management during the burning season in an effort to avoid air quality problems.
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2. Materials and Methods

2.1. Site and Data

The study utilized data from routine monitoring networks that provide long-term observations
of ambient concentrations of PM2.5 (including chemical speciation) and O3, including one IMPROVE
(Interagency Monitoring of Protected Visual Environments) [19] site, and one CASNET (Clean Air
Status and Trends Network) [20] site. The Konza Prairie CASNET site (providing O3 data) is about
60 miles north of the Tallgrass IMPROVE site (providing speciated PM2.5 data). The two sites are
located near the center of the Flint Hills region (Figure 1), and thus are ideal for evaluating the effect
of prescribed rangeland burning on local air quality. The IMPROVE particulate sampler has four
sampling modules. Three modules collect PM2.5 using Teflon, nylon, and quartz filters; and the other
module collects PM10 using a Teflon filter. Every three days, a 24-hour filter sample set (Teflon, nylon,
and quartz filters sampling in parallel) was collected. A total of 1428 valid filter sample sets from
26 September 2002 to 31 December 2014 at the Tallgrass site were collected and included in the receptor
model analysis. All filter samples were analyzed using the IMPROVE protocols [21]. The Teflon
filters were analyzed at the University of California-Davis for gravimetric mass and for analysis of
elements in PM2.5 using Cu-anode X-ray fluorescence (XRF). The denuded nylon filters were analyzed
by Research Triangle Institute for nitrate, sulfate, and chloride using ion chromatography. The quartz
filters were analyzed by Desert Research Institute for organic and elemental carbon (OC and EC) using
the Thermal/Optical Reflectance method. The daily O3 data from 26 September 2002 to 14 July 2011
at the Konza Prairie site was used in the regression analysis (n = 1071). Daily meteorological data
included in the regression analysis were from the MHK airport (Manhattan Regional Airport), which
is about 5 miles north of the Konza Prairie site.
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Figure 1. Map showing National Oceanic and Atmospheric Administration (NOAA) satellite image
of Kansas Flint Hills burning activities in 2014 and location of the Konza Prairie and the Tallgrass
sampling site (the approximate perimeter of the Flint Hills region is indicated in red lines; the wind
rose is from the weather station at MHK airport).

2.2. Summary of Previous Results of Receptor Modeling

The U.S. Environmental Protection Agency (US EPA) Unmix6.0 receptor model was applied to
the speciated PM2.5 data (n = 1428) from the Tallgrass site. The modeling identified the following
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five source categories (S1 to S5) that contribute to local ambient PM2.5: S1-nitrate/agricultural
(22%), S2-primary smoke particles (5%), S3-secondary organic aerosol (29%), S4-sulfate/industrial
(30%), and S5-crustal/soil (14%). S2 was characterized by non-soil potassium and OC/EC. S3 was
characterized by large OC components indicating a secondary formation. S2 was identified as smoke
emissions and mostly included primary smoke particles from vegetative burning. S3 was identified as
secondary organic aerosols that can be generated from biogenic, mobile or smoke sources, in which
rangeland burning emission was a major contributor. S1 was characterized by high nitrate, which
is expected to be fully neutralized ammonium nitrate because of sufficient precursor ammonia from
agricultural sources. S4 was characterized by high sulfate and represented secondary sulfate from
regional SO2 emissions including coal-fired power plants and industrial processes. S5 represents
resuspended soil particles. The contribution of April burning was estimated to be 0.93 µg/m3 as
primary smoke particles and 3.79 µg/m3 as secondary aerosols, which in total contributed 39% of the
average 24-h PM2.5 concentration in April (12.12 µg/m3). Details can be found in [8]. Comparison
analysis of source apportionment using PMF and Unmix models at the Tallgrass site demonstrated
that the results from the two models were in general agreement [22].

2.3. Methods of O3 and PM2.5 Regression Analysis

Metrics of eight-hour daily maximum O3 and 24-hour average PM2.5 species were used in the
regression analysis because they are closely related to the NAAQS regulated by the US EPA. Various
daily meteorological data were used as predictor variables, including daily maximum air temperature,
daily minimum air temperature, precipitation, solar radiation, wind speed, wind direction, etc.
Multiple regression models were developed for the eight-hour daily maximum O3 as well as the daily
contributions of the five PM2.5 source categories (S1 to S5) that were derived from receptor modeling.
Sinusoidal terms were included in the regression models to describe the long term seasonal effects in
addition to the daily effects of various meteorological variables as suggested in Zvyagintsev et al. [23].
A persistence term was included in the O3 modeling as suggested by the US EPA [24]. Residual
analysis was conducted for model validation and for potential needs for data transformation. Cross
correlation was analyzed among residuals of the regression models using only meteorological data
as predictor variables for O3 and the daily contributions of the five PM2.5 source categories in order
to identify the potential hidden correlation between O3 and PM2.5. The O3 simulation models were
then enhanced by including identified episodic contributions from PM2.5 sources in addition to the
effects of meteorological variables The regressions were done stepwise to add and delete terms based
on Akaike Information Criterion (AIC) statistics to limit the number of variables by identifying the
most important ones and to obtain the best model fit [25]. The REG and MIXED procedures of SAS
(SAS for Windows, Version 9.4, SAS Institute, Cary, NC, USA) were used. Significant effects were
declared at p < 0.05.

3. Results

3.1. Regression Models Using Meteorological Data as Predictor Variables

The environmental and meteorological data used in the regression analysis are presented in Table 1.
The O3 data demonstrated a sinusoidal seasonal pattern with a peak in summer and discernable spikes
in April. Opposite seasonal patterns were observed for PM2.5 from individual source categories S1 and
S4. S1 contributions were generally high in winter, possibly due to meteorological drivers such as low
wind speeds, low temperatures, high pressures and stagnant conditions. In contrast, S4 contributions
were generally high in summer and low in winter, which is consistent with the effect of photochemistry
and the presence of oxidants on the formation of secondary sulfate. A long-term decreasing trend was
observed for S4, which was likely due to continuous reductions in regional SO2 emissions following
the rules such as the Clean Air Nonroad Diesel Rule and the Acid Rain Program for utilities. Both S2
and S3 had consistent spikes in April when intensive prescribed rangeland burning in the Flint Hills
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is conducted. From March to October, the prevailing wind direction was from the south, while from
November to February, north wind was almost equally frequent.

Table 1. Environmental and meteorological data used in regression analysis (2002 to 2011).

Variable Mean Standard Deviation Range
1 8-h daily maximum O3 concentration (ppb) 42.4 13.0 4.0 to 81.0

2 Daily (24-h) average PM2.5 concentration (µg·m−3) 7.82 5.41 0.73 to 58.9
2 Daily PM2.5: contribution of S1-nitrate/agricultural (µg·m−3) 1.80 2.59 0 to 21.8

2 Daily PM2.5: contribution of S2-primary smoke particles (µg·m−3) 0.39 0.78 0 to 13.4
2 Daily PM2.5: contribution of S3-secondary organic aerosol (µg·m−3) 2.25 3.62 0 to 72.1

2 Daily PM2.5: contribution of S4-sulfate/industrial (µg·m−3) 2.48 2.66 0 to 19.4
2 Daily PM2.5: contribution of S5-crustal/soil (µg·m−3) 0.98 1.47 0 to 19.5

3 Daily maximum air temperature: Tmax (◦C) 18.9 11.6 −13.2 to 42.3
3 Daily minimum air temperature: Tmin (◦C) 6.0 10.9 −25.0 to 26.3

3 Difference between Tmax and Tmin: Tdiff (◦C) 12.9 4.8 0 to 30.4
3 Daily precipitation (mm) 2.5 9.7 0 to 128.8

3 Daily total solar radiation: L (Langley) 323.2 172.6 24.2 to 780.4
3 Daily average wind speed: V (m·s−1) 3.8 2.1 0.6 to 16.0

3 Daily prevailing wind direction in degrees 0 to 360
1 O3 data are from the Konza Prairie CASNET [20] site; 2 PM2.5 data are from the Tallgrass IMPROVE [19] site ,
daily contributions of S1–S5 are results of receptor modeling; 3 Meteorological data are from the MHK airport.

Regression models for O3 and individual PM2.5 source contributions using meteorological data as
predictor variables are listed in Table 2. For both O3 and PM2.5, significant differences were observed
between days with and without precipitation. Therefore, regression models were developed for
non-rainy days (daily precipitation = 0 mm) and rainy days (daily precipitation > 0 mm). Relatively
higher r2 was achieved for models of S1 in comparison with other source categories indicating that
S1 is mainly driven by meteorological variables. In addition to the long term seasonal cycle (the sine
terms were highest in March and lowest in September), S1 was negatively affected by daily total
solar radiation, daily maximum air temperature, and daily average wind speed. Models of S2 and
S3 had relatively low r2 since variation of S2 and S3 were mainly caused by episodic emissions of
smoke instead of meteorological variables. S2 had very low background and very weak seasonal
effects. In contrast, S3 demonstrated a similar long-term seasonal cycle as S1, indicating that secondary
organic aerosols and nitrate aerosols may share some common causes. S3 was found to be more
sensitive to temperature than S2. S4 exhibited a different long term seasonal cycle (the sine terms
were highest in July and lowest in December). For non-rainy days, S4 was negatively affected by daily
total solar radiation and daily maximum air temperature as S1, but S4 also increased with increasing
daily minimum air temperature. In a simpler model, S4 actually increased with decreasing difference
between daily maximum and minimum air temperature. The O3 concentrations were not only affected
by weather conditions on the same day, but also significantly affected by the O3 concentration from the
previous day. In the O3 models, the persistent term and the sine term determined the background O3

level. The sine terms were highest in June and lowest in November, reflecting the combined effects of
seasonal patterns of O3 precursors and climate conditions. The daily variation of O3 was significantly
affected by daily total solar radiation and the difference between daily maximum and minimum air
temperature. Higher solar radiation and higher temperature difference resulted in higher O3 increase
in addition to the background O3. Solar radiation and temperature difference were partially correlated
(r2 = 0.13) since air was heated by solar radiation, while their relationship was likely to be affected
by conditions of air such as moisture content. On rainy days, the effect of the previous day’s O3 was
much lower than on non-rainy days, while the sensitivity of O3 to solar radiation and air temperature
was similar or higher.
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Table 2. Regression models using meteorological data as predictor variables.

Regression Models r2 p

For non-rainy days (n = 799)
S1(d) = 6.09 + 1.39 sin

(
2π(d+32)

365

)
− 0.050Tmax − 0.010L + 1.06 × 10−5L2 − 0.47V + 0.028V2 0.40 <0.01

S2(d) = 0.04 + 0.37 sin
(

2π(d+22)
365

)
+ 0.019Tmax 0.08 <0.01

S3(d) = 0.07 + 1.27 sin
(

2π(d+31)
365

)
+ 0.12Tmax 0.08 <0.01

S4(d) = 3.72 + 0.43 sin
(

2π(d+304)
365

)
− 0.13Tmax + 0.15Tmin − 1.39 × 10−5L2 + 3.03 × 10−4LTmax 0.24 <0.01

S5(d) = −0.01 + 0.38 sin
(

2π(d+76)
365

)
+ 0.0020T2

max 0.21 <0.01

O3(d) = 0.51O3(d)0 + 12.6 + 4.31 sin
(

2π(d+283)
365

)
+ 0.026L − 4.62 × 10−5L2 + 0.00152LTdi f f 0.75 <0.01

For rainy days (n = 272)
S1(d) = 3.47 + 0.95 sin

(
2π(d+32)

365

)
− 0.094Tmax − 0.0078V2 0.53 <0.01

S2(d) = 0.01 + 0.20 sin
(

2π(d+22)
365

)
+ 0.017Tmax 0.06 <0.01

S3(d) = 0.44 + 0.020 sin
(

2π(d+31)
365

)
+ 0.068Tmax 0.20 <0.01

S4(d) = 2.05 + 0.25 sin
(

2π(d+304)
365

)
− 2.10 × 10−5L2 + 4.03 × 10−4LTmax 0.10 <0.01

S5(d) = −0.02 + 0.13 sin
(

2π(d+76)
365

)
+ 0.0020T2

max 0.15 <0.01

O3(d) = 0.39O3(d)0 + 13.9 + 3.58 sin
(

2π(d+283)
365

)
+ 0.029L − 5.16 × 10−5L2 + 0.00186LTdi f f 0.65 <0.01

Note: S1(d) to S5(d) are daily PM2.5 contributions of each of the five individual source categories in µg·m−3; O3(d)
is eight-hour daily maximum O3 concentration in ppb; O3(d)0 is eight-hour daily maximum O3 concentration on
the previous day in ppb; d corresponds to the day of the year; Tmax is the daily maximum air temperature in ◦C;
Tmin is the daily minimum air temperature in ◦C; Tdiff is the difference between the daily maximum and minimum
air temperature in ◦C; L is daily total solar radiation in Langley; and V is daily average wind speed in m·s−1.

3.2. Residual Analysis

Occasional high positive residuals were observed for the above regression models of S2, S3, S4
and S5, indicating that contributions of these source categories were largely affected by strength of
episodic emissions of these sources which was not accounted in the above models. The strength of
episodic emissions of these sources can be measured by the residuals of these models. Occasional high
positive residuals were also observed for the regression models of O3. It was found that the residuals of
O3 significantly increased with increasing residuals of S3 and S4, indicating that the episodic emissions
of S3 and S4 both significantly contributed to the variation of O3. The high positive residuals of S2 and
S3 both occurred consistently in April, the burning season (Figure 2), confirming that S2 and S3 were
both heavily associated with emissions from rangeland burning. S3 correlated with S2 with a Pearson
correlation coefficient of 0.49 [8]. The spikes in S3 and S2 did not always occur on the same day because
the secondary aerosols have different pathways with the primary smoke emissions. The residuals of
O3 correlate well with the residuals of S3 but not the residuals of S2, reflecting the fact that both O3 and
secondary aerosols are highly dependent on emissions of volatile organic compounds. High positive
residuals were also consistently observed in early July for S2 but not for S3, which may suggest that
the Fourth of July fireworks contributed a lot of primary aerosols but not as much secondary organic
aerosols. For S4, high positive residuals were mainly observed in summer, from late June to late
September. Figure 3 demonstrated that the residuals of S2 and S3 were relatively low when wind
direction was SW, W, and NW, suggesting rangeland burning had limited impact on the Tallgrass site
under these wind directions. This is reasonable since the Tallgrass site is located near the west edge of
the Flint Hills burning area. For S4, high positive residuals were mainly observed when wind direction
was E, SE, or S. This was in agreement with the fact that seven out of the eight existing coal-fired
power plants in Kansas are located to the east or southeast of the Flint Hills region. Industrial sources
in Wichita could also affect the Tallgrass site under south wind conditions.
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3.3. Modeling O3 by Integrating Episodic Contributions of S3 and S4

The following O3 prediction models were developed by integrating episodic contributions of
S3 and S4 into the meteorological-based O3 models in Table 2. In the following models, O3(d) is the
eight-hour daily maximum O3 concentration in ppb; d corresponds to the day of the year; Tdiff is the
difference between the daily maximum and minimum air temperature in ◦C; L is daily total solar
radiation in Langley; R3 is the residual of the meteorological S3 models; and R4 is the residual of the
meteorological S4 models. R3 and R4 were used to estimate episodic contributions of S3 and S4 on
O3. The interaction term R3 × R4 was found to be significant (p < 0.01) and thus was included in the
models, which represented the contribution of the interaction between fire emissions and industrial
emissions in the process of formation of O3.

For non-rainy days (n = 799),

O3(d) = 0.44O3(d)0 + 16.0 + 5.17 sin
(

2π(d+283)
365

)
+ 0.021L − 4.19 × 10−5L2

+0.00161LTdi f f + 0.525R3 + 0.424R4 + 0.0208R3 × R4 r2 = 0.78, p < 0.01
(1)

For rainy days (n = 272),

O3(d) = 0.36O3(d)0 + 14.1 + 4.17 sin
(

2π(d+283)
365

)
+ 0.037L − 5.73 × 10−5L2

+0.00161LTdi f f + 0.772R4 r2 = 0.69, p < 0.01
(2)

For non-rainy days, the model obtained an r2 as high as 0.78. Measured and predicted O3 at the
Konza Prairie site are compared in Figure 4, which demonstrated that the models performed well in
predicting the O3 spikes during the burning seasons. Contributions of different terms in the O3 model
for non-rainy days were estimated in Table 3. Based on the model, on a typical non-rainy day in April
with average previous day O3 level and average total solar radiation, the background eight-hour daily
maximum O3 without episodic fire contribution is 50.9 ppb. When the daily solar radiation is higher
than 660 Langley, the background O3 will be more than 62.2 ppb. The average daily contribution
of episodic fire emissions to O3 was estimated to be 1.8ppb. However, on an intensive burning day,
the daily contribution of fire emissions to O3 was much higher. When R3 > 24.2 µg·m−3 (two-sigma
uncertainties from the average), the daily contribution of fire emissions to O3 was estimated to be
more than 12.7 ppb. When R3 > 13.8 µg·m−3 (one-sigma uncertainty from the average), the daily
contribution of fire emissions to O3 was estimated to be more than 7.2 ppb. Contributions from these
episodic fire emissions could result in O3 exceedance when solar radiation on the same day is high.
When O3 levels from the previous day are high, or when there is also contribution from episodic
industrial emissions, the total O3 level will be higher. From 2003 to 2011, 3% of the days in April had
R3 higher than 24.2 µg·m−3, and 7% of the days had R3 higher than 13.8 µg·m−3 as results of intensive
prescribed burning. In June, the background O3 was about 3 ppb higher than in April due to seasonal
effect, and episodic industrial emissions are a major cause of daily variation of O3. Around 5.5% of the
days in June had R4 higher than 6.33 µg·m−3 (two-sigma uncertainties from the average), which could
contribute over 2.7 ppb to O3 levels, and increase chances of O3 exceedance when solar radiation and
O3 on the previous day are high.
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Table 3. Contributions of different terms in the model to the eight-hour daily maximum O3 concentrations for non-rainy days at various scenarios.

Scenarios O3 Due to Previous Day
and Seasonal Effect (ppb)

O3 Due to Solar
Radiation (ppb)

O3 Due to R4 (Episodic
Industrial Emissions) (ppb)

O3 Due to R3 (Episodic
Fire Emissions) (ppb)

O3 Due to Interactions
of R3 and R4 (ppb)

Total O3
(ppb)

Average in April: O3(d)0 = 51.6 ppb,
L = 358 Langley, Tdiff = 13.8 ◦C,

R3 = 3.52 µg·m−3, R4 = 0 µg·m−3
40.7 10.2 0 1.8 0 52.8

Average plus two-sigma uncertainties in April:
O3(d)0 = 73.4 ppb, L = 660 Langley, Tdiff = 24.2 ◦C,

R3 = 24.2 µg·m−3, R4 = 6.01 µg·m−3
50.3 21.5 2.5 12.7 3.0 90.1

Average in June: O3(d)0 = 51.1 ppb,
L = 494 Langley, Tdiff = 12.6 ◦C,
R3 = 0 µg·m−3, R4 = 0 µg·m−3

43.6 10.3 0 0 0 53.9

Average plus two-sigma uncertainties in June:
O3(d)0 = 70.8 ppb, L = 777 Langley, Tdiff = 19.8 ◦C,

R3 = 2.18 µg·m−3, R4 = 6.33 µg·m−3
52.3 16.0 2.7 1.1 0.3 72.4
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4. Discussion

Smoke from rangeland burning is unlike most other pollutant sources that can use a control device
to reduce emissions. Burn management is the key to reduce impact of smoke. There is a significant
need for air quality modeling in a collaborative smoke management and an air quality plan. Practical
smoke modeling and air quality forecasting tools can assist regulators and land managers to determine
timing and size of a burn to avoid air quality problems.

Results of regression analysis demonstrated that ambient O3 was significantly affected by episodic
fire and industrial emissions. The regression model including effects of meteorological variables and
episodic fire and industrial emissions can explain up to 78% of O3 variability. The average of the
eight-hour daily maximum O3 in April from 2002 to 2011 at the Konza Prairie site was 51.6 ± 11.0 ppb.
For non-rainy days in April, the daily average contribution from prescribed rangeland burning to O3

was only 1.8 ppb. Variation of background O3 without burning contributions was mainly determined
by solar radiation and O3 carryover from the previous day. Based on regression analysis of the historical
data, on 3% of the days in April, prescribed rangeland burning contributed more than 12.7 ppb to O3;
and on 7% of the days in April, burning contributed more than 7.2 ppb to O3. When intensive burning
activities occur in days with high O3 background due to high solar radiation or O3 carryover from the
previous day, the contributions from these episodic fire emissions could result in O3 exceedances of the
NAAQS. Smoke management will be significantly improved if the intensive burning activities can be
planned to avoid forecasted high O3 days by using practical forecasting tools. The regression models
developed in this study demonstrated that the most valuable predictors for O3 in the Flint Hills region
include the O3 level on the previous day, total solar radiation, difference between daily maximum
and minimum air temperature, and levels of episodic fire and industrial emissions. Depending on
availability of data, the predictor of difference between daily maximum and minimum air temperature
may be replaced by a measure of air moisture content, since temperature is actually determined by
solar radiation and air moisture content, and RH has been identified as a successful predictor in other
statistical O3 models [23]. In a practical forecasting model, O3 level on the next day can be predicted
based on current measurements of O3 concentrations, and forecasts of weather conditions. Forecasts of
episodic fire and industrial emissions are also critical in O3 forecasting during the burning season.

Research is ongoing to expand the regression study to include environmental datasets at more
monitoring sites that may be affected by rangeland burning in Kansas, such as Kansas City and
Wichita. More relevant variables, such as measures of air stability and air moisture content, may be
added to the regression models. In some sites, data may be stratified by seasons or meteorological
variables, such as wind direction to improve regression performance. Various modeling techniques,
such as machine learning with random forest algorithm, will be utilized to research the best models.
Satellite data on fire radiative power have been used to estimate burn area of large-scale open
fires [26,27]. Aerosol products retrieved from satellite data, such as aerosol optical depth (AOD)
from Geostationary Operational Environmental Satellite (GOES) and Moderate Resolution Imaging
Spectroradiometer (MODIS), aerosol composition, and aerosol vertical distribution from Cloud Aerosol
Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), have been used to evaluate results
of air quality forecasting [28–30]. Future directions will be focused on improving the performance of
the regression forecasting models by incorporating real-time satellite data as model input so that the
long-term goal of establishing an online O3 forecasting tool can be achieved.

5. Conclusions

The contribution of Kansas rangeland burning to ambient O3 was estimated by establishing an
O3 simulation model through receptor modeling and regression analysis. The results confirmed the
hypothesis and revealed the significant correlations between O3 and secondary PM2.5 from smoke
after seasonal and meteorological effects were removed. The necessity of O3 forecasting during the
burning season was demonstrated. The regression analysis identified the O3 level on the previous
day, total solar radiation, difference between daily maximum and minimum air temperature, emission
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levels of episodic fire, and industrial emissions as the most valuable predictors for ambient O3 in the
Flint Hills region, and thus established a foundation for future efforts of O3 forecasting in the region.
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