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NOTATION

cross sectional area.

area of bottom longitudinal steel.

area of core enclosed by stirrups.

cross sectional area of one leg of stirrup.

total area of longitudinal steel.

area of top longitudinal steel.

area of steel located near one vertical side of beam.
bottom cover for steel.

side cover for steel.

width of rectangular beam.

smaller center to center dimension of the rectangular
spiral reinforcement.

total flexure compression.

diameter of circle.

longer center to center dimension of the rectangular spiral
reinforcement.

depth of core area.

depth from extreme compression fiber to centroid of temsion
reinforcement.

yield stress for pure shear.

horizontal normal stress (compressive) due to the applied bending

moment.
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stress in bottom longitudinal steel.

uniaxial compressive strength of concrete.

ultimate compressive strength of 6 in. concrete cube at 28 days;
stress at microcracking.

ultimate compressive strength of 6x12 in. cyclinder at 28 days.
stress in concrete.

modulus of ruputre of concrete.

stress in bottom longitudinal steel due to flexure.

stress in top longitudinal steel due to flexure.

stress in longitudinal steel near the vertical face.

yield strength of web steel.

stress in transverse steel.

uniaxial tensile strength of concrete.

tensile strength of concrete with perpendicular compression
of equal magnitude.

ultimate tensile strength of concrete.

stress in steel Avl'
yield stress of bottom longitudinal steel.

yield stress of top longitudinal steel.

height of rectangular beam.
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stiffness.

bending moment.

moment, due to force in bottom longitudinal steel.
flexure capacity of a beam under pure torsion,

moment, due to compressive force in concrete.

moment, due to force in horizontal stirrups.

ultimate bending moment in combined bending and torsion.
ultimate moment in pure bending.

moment, due to force in vertical stirrups.

fully plastic moment.

number of ties intersected by a potential failure crack on

the longer side of the beam.

number of ties intersected by a potential failure crack on

the shorter side of the beam.

perimeter.

ratio of force in transverse steel to that of bottom longitudinal
steel.

percentage of reinforcement.

ratio of force in transverse steel to that of Avl'

ratio of area of tension steel to the effective area of concrete.
angle of twist at failure.

lateral force developed by longitudinal bar.
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ratio of top to bottom longitudinal steel.

radius.

distance of longitudinal bar from the axis of the beam.

spacing of stirrups.
torque.

3= torsional strength of the section in combined bending and

torsion by mode 1,2 and 3 respectively.

bending component of torque.

torque carried by concrete based on elastic theory.
contribution of compressed concrete to torsional strength.
contribution of non-compressed concrete to torsional strength.
torque at microcracking.

torsional strength of corresponding plain concrete section.
torque resisted by concrete given by elastic theory,

torque resisted by concrete given by plastic theory.

torque resisted by inside core.

torque resisted by outside ring.

plastic torque;

torsional moment carried by concrete.

torsional strength contributed by transverse steel.

torsional strength contributed by longitudinal steel.
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= torsional strength contributed by reinforcement.

= twisting component of torque.

= ultimate torsional strength of concrete section.

= ultimate torque of plain concrete beam in pure torsiom.
= ultimate torque in combined bending and torsion.

= transverse shear.
= ghear strength based on cracking in combined bending and
torsion.

= shear strength based on diagonal cracking in pure shear.

= static moment of compression zone about the neutral axis,
= relationship between transverse and longitudinal steel.
= ratio of height to width of beam.

= angle of inclination of crack.

= elastic torsional shear stress coefficient corresponding to the

middle of the shorter sides of the rectangular beam.

=/1+ (¢)?

= Bv/2T.

= strain in concrete.
= angles of inclination of cracks.

= 21/f¢
= compressive stress due to flexure.

= principal compressive and tensile stress respectively.

vii



shear stress.

unit torsional strength of concrete in pure torsionm.
maximum torsional stress.

unit torsional strength of compressed concrete.
T/M.

capacity reduction factor.

P fy/fc'
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INTRODUCTION

STATEMENT OF THE PROBLEM

There is an uneasy awareness among designers that torsion is indeed
becoming important in the design of concrete structures. Not only are
architects demanding new forms in which torsion is an important con-
sideration, but also the advent of ultimate strength design has resulted
in members with greater slenderness, in which secondary torsion effects
are no longer negligible. Usually torsion is a secondary effect, but
it is very prominent in structural members such as spandrel beams,

orthogonal shells, spiral staircases etec.

SCOPE OF THE STUDY

The scope of this report is limited to a review of current liter-
ature on the topic of torsion effects in plain and reinforceﬁ concrete
beams. This topic has been previously studied by Pai.lo* This réport
will describe different aspects of this problem which were not contained

in this previous report. An example is presented to illustrate the ap-

plication of two of the design methods described.

*
Superscripts denote references listed in Bibliography



1. PLAIN CONCRETE SUBJECTED TO PURE TORSION

INTRODUCTION

In plain concrete subjected to pure torsion, failure occurs when
the tensile component of the torsional shear exceeds the tensile strength
of concrete. The torsional shear is usually calculated by one of two
classical theories; the elastic and the plastic theory. The former as-
sumes concrete to be linearly elastic, and the latter assumes concrete
as fully plastic. Because neither is true the elastic theory under-
estimates and the plastic theory overestimates the torsional strength of
a concrete member.

To account for the inelastic behavior of concrete, theories were
developed by Miyamoto7, Turner and Davisl6 and Marshall and Tembe16 on
the basis of different idealized non-linear stress strain curves for
concrete. These theories may be categorically called semi-plastic
theories. Although all these theories differ in assumptions concerning
the behavior of concrete, they all employ the maximum tensile stress
theory to predict the failure torque of a beam. In each case, it is
assumed that failure occurs when the maximum tensile stress becomes
equal to the temsile strength of concrete.

According to T.C. Hsu13 all these theories are less than satisfactory
and indicate that the maximum tensile stress assumption which is the
basis of all the theories, may be incorrect. Therefore, the basic
mechanism of failure was re-examined. It was found that plain concrete
beams subjected to pure torsion actually fail by bending. Hsu developed

a new theory based on the contention that failure is reached when the



tensile stresses induced by a 45-deg bending component of torque on the
wider face reach the modulus of rupture. All of these theories will be

examined in this chapter.

PLASTIC THEORY-SAND HEAP ANALOGYB

If a concrete beam is severely twisted, certain parts will undergo
plastic deformation. The states of stress in the small elements of a
prismatic bar subjected to pure torsion are taken as states of simple
shear. As long as the shearing strains are quite small the assumption
will be made that no components of normal stress act in the sections
normal or parallel to the bar axis. Also the resultant of the two com-
ponents of the shearing stress T and Tyz, which are the only components
acting in the cross section perpendicular to the axis of the bar every-
where in the section where the yield point has been reached, has a comnstant
value k (See Fig 1-1)., The constant k is equal to ft/2 if the maximum
shear stress theory is assumed and equal to ft//g_ if an ideally plastic
substance is postulated, where ft is the yield point for tension.

At a certain point of the cross section at which the shearing stress
T has reached the yield point, both shear-stress components L. and T

YZ

must satisfy the condition of plasticity:

T 2 + 1 I k2 = constant (1-1)

The above equation states that of all shearing stresses occuring at
various cross sections of the bar, the largest, which in this case is

T, has at the yield point a constant value of k. These components Tz



and Tyz must satisfy the condition of equlibrium,

a;xzfax + BTyz/ay = q (1-2)

This equation is again satisfied if one substitutes

T ™ aF/3y, Tyz = =3F/dx (1-3)

The function F(x,y) determined by these relations may again be repre-
sented as a surface over the cross section. F(x,y) is called the plastic
stress function of the cross section. 1In those parts of the cross section
in which plastic flow occurs, the function F must satisfy, according to

Egs. (1-1) and (1-3), the following equation:

(aF/ax)2 + (3F/3y)2 = kz. (1-4)

The differential expression on the left side of this equation is the
square of the absolute value of the gradient - grad F (of the maximum
slope of the surface F). Everywhere in the cross section where flow

occurs the following gquation holds true:
|grad F| = k = constant
This property and the further condition
_Tyzdx + szdy = 3F/3x.dx + 3F/dy.dy = 0 (1-5)

implies that the shearing stress T at each point along the edge of a
plastically distcrted part of the cross section is directed tangentially

to the edge y = £(x) or the condition that along the edge F = constant,



the plastic stress function F of the section is determined. Since an
additive constant in F does not affect the value of the stresses along
the edge, F may be taken equal to zero.- From these properties of F it
has been seen that the plastic stress function is a surface of constant
maximum slope which one may construct over the edge of the cross section.

If the contour of the cross section is thought of as cut out of a
piece of stiff paper and covered with sand while lying horizontally,
there results a heap whose natural slope gives a picture of the surface
F. 1Its form is independent of the amount of twist. The conditions in
which all parts of a twisted bar yield, may be designated as the com-
pletely plastic state. The volume of the sand heap is numerically equal
to half the plastie torque.8

The twisting moment of a circular bar can be calculated by con-
sidering the plastic stress surface. The plastic stress surface is a

circular cone having the equation:

F=f (r-a)
where f = yield stress for pure shear;
a = radius of the bar.

For r = 0, F = -fa and the cone has the height h = fa. The volume of
the cone is nazh/3, or wa3f/3. The plastic torque is equal to twice the

volume of the cone.

TP = 2 x volume = 2wa3f/3 (1-6)
For the rectangular cross section, the plastic torque is:

= #5773 + o (b-K)/2

=
I

or T %bz(h-b/s)f



where h is the height and b is the width of the rectangular cross section.

SEMI-PLASTIC TI:IEORIEST"16

Besides elastic and plastic theories, there are theories developed
7 . 16 16 ;

by Miyamoto , Turner and Davis and Marshall and Tembe, known as semi-
plastic theories. Miyamoto considered the stress-strain curve for con-
crete in torsion as second degree parabolic. It is interesting to note

that all the theories described here can be expressed in a basic form.

T, = T/KAD or T = TlKAD
where,

T = torque;

T = maximum torsional sfress;

b
]

cross sectional area;

=]
]

diameter of inscribed circle;
K = coefficient depending upon cross sectional

shape. (See Table 1-1)

It is clear that the plastic torque and elastic torque are the upper
and lower bounds, respectively, for the torque determined by any semi
plastic theory. The Turner and Dav1516 theory is not valid for h/b > 2.5.

A1l the theories discussed postulate that the failure mechanism of
a plain concrete section under pure torsion is in the form of helical
cracks as shown in Fig. 1-3. However latest results show that helical
cracks do not fully develop. Instead, when cracks develop on three sides,
failure proceeds in the form of skewed bending with the neutral axis paral-
lel to the long side of the section, and inclined to the axis of the twist

as shown in Fig, 1-kL.



HSU'S THEORY: ULTIMATE STRENGTH ANALYSIS: >»1%

This theory is based on the contention that failure is reached when
the tensile stresses,induced by a 45-deg bending component of torque on
the wider face, reach a reduced modulus of rupture.

The failure surface for a rectangular section is actually bounded
on its side as shown in Fig. 1-4. The longer edge of the failure surface
shown in the foreground is inclined at 45-deg to the axis of the beam,
while two shorter edges are curves inclined at various angles to the beam
axis. The second longer edge in the background is a straight line con-
necting the ends of the two short curves. The direction of this straight
edge is contrary to the spiral form.

Hsu derived an equation for ultimate torsional strength. Refering
to Fig. 1-5, the applied torque can be divided into two components acting

.on the failure surface - the bendiﬁg component Tb, and the twisting com-

ponent Tt‘ According to the elastic bending theory

2
_ _b"h Csc ¢
Tb—TuCos¢—————6 fr.
Tb = bending component of torque;
Tu = ultimate torsinal strength}

¢ = angle between tensile crack on the wider face and
the axis of the beam;

f_ = modulus of rupture of concrete;
b = shorter side of the rectangular beam;

h = 1ongér side of the rectangular beam.



The above may be written as

i fr (Sec ¢ Csc $).

Minimum torque resistance occurs when ¢ = 45 deg.

2
Hence, T = EEE f

u r

An element 'A' is considered (See Fig. 1-5). Compression is caused
by the twisting component of the torque Tt' By using Mohr's straight line

failure theory one obtains,

= 0.8
ftc 0.85 ft
where, ftc = the tensile strength of concrete with
perpendicular compression of equal magnitude;
ft = unaxial tensile strength of concrete.

The modulus of rupture should be reduced in the same proportion

because of the perpendicular compression.

2

_b’n _
Therefore Tu =3 (0.85 fr) (1-6)

In order to simplify the application, Eqn. (1-6) has been trans-

formed into an expression using the compressive strength.

T = 6(b2+10)h VE_ (1-7)
u (o4
q = 2222 1+ (1-8)

Y Jbh b



where, Qu = angle of twist at failure.
h = 3.5 b should be used when ever h > 3.5b.
Kt = Tu/Qu, where kt is the stiffness.

V. NAVARATNARAJAH'S THEORY9

Results obtained by this author on torsion in beams support the
hypothesis that the concrete behaves elastically up to micro-cracking
and non-elastically thereafter up to the ultimate failure of the beam.
Mambers subjected to pure torsional loads develop diagonal tensile
stresses due to the torsional shear stresses. Hence, the study of failure
of concrete in pure torsion is primarily dependent on the behaviour of
concrete in tension.

Strain at initiation of cracking or microcracking is not a constant
value of lOOxlOm6 but varies with strength. It was also observed that
the stress-strain relationship for concrete in tension is linear up to
this strain at microcracking. Studies of torque-twist curves for plain
circular sections, showed deviation from linearity at about 80% of the
ultimate torque. The reason for this behavior is initiation of micro-
cracking in the outer concrete at this value of the torque. Beyond this
torque, the outer concrete continues to crack with an elastic core at the
center until the maximum tensile strength of the concrete is reached in
the outermost fiber, when the specimen ruptures. Brandtzaeg, et al9
found from tests on plain concrete cylinders in compresssion that a
serious breakdown in continuity of the specimens occured at about 70
to 80 percent of the ultimate load and at failure an outer concrete

shell spalled off.
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Prompted by these observations, Navaratnarajah estimated the diameter

of the inside elastic core to be three-fourths of the diameter of the
section. Only one-eighth of the diameter of the outer section is in a
state of failure between.microcracking and ultimate tensile failure but
it is assumed that the outer ring is completely microcracked.

Navaratnarajah showed experimentally that

1
]

O.B(Te + TO) = 0.8 (ultimate torque)
where Te = torque contributed by concrete core;
T = torque contributed by outside shell;

T = torque at microcracking.

cm
ﬂfcmr3
Tcm = --——2 (1_9)
1Tfcm 3
T = 0.67nf_(r° - (0.75r)°) (1-11)
o ' cm '
r = radius of the cyclinder;

f = stress at microcracking.

Rectangular Plain Concrete Beams

Initially the section behaves elastically, but as more torque
is applied, the behaviour becomes non-elastic. When torque is increased,
sections close to the middle of the longer sides behave non-elastically
due to microcracking. Non elastic behaviour extends until the middle

of the shorter sides develop microcracks.
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Torques may be calculated assuming a plastic stress distribution
over the entire cross section and assuming first a stress value equal
to the stress at microcracking and then a stress value equal to the
ultimate tensile strength. The mean of the two torques gives the ulti-
mate torsional strength. The ultimate tensile strength fut is calculated

as

_ 0.75
foe = 0-68(F )

This equation is given by Gonnerman and Schuman,g fcy being the 6 x 12
inch cyclinder strength obtained from 6 inch cube strength at 28 days,

fcc,using L'Hermitesg formulas.

f
_Ez-g —.cc—=
7 0.76 + 0.20 log 3844 0.80
cc _
where fcc = ultimate compressive strength of 6 inch concrete
cube at 28 days;
fcy = ultimate compressive strength of 6 x 12 inch

concrete cyclinder at 28 days.

For plastic torsion in rectangular sections, the torque is given

by the sand heap analogy eqﬁation of Nadia.8

= 0.5 bZ(h - b/3)£.

T —
p
where Tp = plastic torque;
h = longer side of the section;

b = shorter side of the rectangle;

f = maximum stress for pure shear.
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If the section is microcracked and the torque then is designated

T , one obtainms,
cm
- 2, -
Tcm = 0.5b" (h b/3)fcm (1-12)

and if the section has a plastic stress distribution, the stress is
equal to the ultimate tensile strength fut' The torque is:

" 2 i
Tct = 0.5b" (h b/3)fut (1-13)
Hence the ultimate torque

M O.S(Tcm + Tct) (1-14)
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2. REINFORCED CONCRETE SUBJECTED TO PURE TORSION

INTRODUCTION

It is generally agreed that in reinforced concrete subjected to
torsion, the reinforcement has no appreciable effect on the stiffness
before cracking. Similarly, the longitudinal or transverse reinforce-
ment acting alone provides little additional strength beyond the capacity
of plain concrete. However, if the longitudinal and the transverse steels
are combined, the torque corresponding to first cracking is usually some-
what increased. After cracking, the stiffness is markedly reduced but
a considerable increase in strength and a large amount of plastic de-
trusion are possible, depending upon the amount and disposition of the
reinforcement.

A common premise of ﬁost theories is that the torsional strength of
a reinforced concrete member is the sum of the strength of plain concrete

and the strength of reinforcement, namely,

T =T +T
u cu su

where Tu ultimate torque of a reinforced concrete section;

Tcu= torsional strength of corresponding plain concrete
section based on elastic theory;

Tsu= torsional strength contributed by reinforcement.

It is important to note that this hypothesis satisfies the con-
dition of equilibrium but not necessarily the condition of compatibility.
The principal difference among various theories is the method of cal-

culation of T .
su
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TURNER - DAVIS AND MARSHALL - TEMBE THEORIES]'6

These authors conducted some experiments on plain and reinforced
concrete in torsion and proposed certaiﬁ formulas, which are basically
empirical. The term Tcu is based on the elastic theory and the ratio
T !Tcu is expressed as a function of the total percentage of steel, Py-

su

Turner and Davis gave, for equal longitudinal steel and ties Tsu/TCu =
0.25p, swhen Py = 1.5, and for spirals Tsu/Tcu = 0.5p1, when 0.6 < Py < 2.
Marshall and Tembe gave, for equal longitudinal steel and ties, Tsu/Tcu =
0.33 + 0.1p, ,when 1.5 2Py 235 The fact that these formulas are
derived from rather limited test data and that they require equal per-

centages of longitudinal and transverse steels greatly reduces their

practical significance.

RAUCH - ANDERSON - COWAN - ERNST THEORY2

In contrast to the empirical formulas, the theories given by these
above authors are rational, and are all except the one given by Ernst, based
on the elastic concept. It has been shown by Cowan that these

theories can be stated in the form

T=T +T =T +KA A f /s, (2-1)
c r e e s 8y
where
T = total torsional moment;
Tc = torque carried by concrete based on elastic theory;
'I‘r = torsional moment carried by steel;
A = cross sectional area of one leg of steel;
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fsy = yield strength of web steel;

Ae = area of core enclosed by stirrups;

s = spacing of stirrups in the direction parallel to the
longitudinal axis;

K = a constant given in Table 2-1.

The web reinforcement As in equation (2-1) must be augmented by an

equal volume of longitudinal reinforcement as determined by

At = 2 T, (bc + dc)/fsy Aé K (2-2)
where

At = total area of longitudinal steelj;

bc = width of the core area;

dc = depth of the core area.

Although the theories by Rauch, Anderson, and Cowan are nearly
indistinguishable in form, they are far apart in some of their basic
assumptions. Rauch assumed that both steel and concrete are elastic,
the lateral reinforcement is to take the full amount of the principle
tension, and all the bars in the section reach their yield stress. Rauch
devised a network of bars to represent the action of a reinforced con-
crete member. In the model the concrete is represented by compression
bars and the reinforcement by tension bars. For the case of 45° spiral
reinforcement, Rauch used K = 2/2 in the torque equation.

For beams with longitudinal and transverse reinforcement, Rauch's

theory requires equal volume of longitudinal and transverse reinforcement.
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Each part of the reinforcement resists a 45° component of the diagonal
force. For this case it was found that K = 2 for all shapes of cross
section. Rauch's formula is based on circular section theory of torsiom,
and when applied to non-circular sections, he assumes that the stress
in the reinforcement at any point is directly proportional to the dis-
tance from the center of twist. By Saint-Venent's theory for rectangular
sections, the reverse is really true in the rectangular section, maximum
stress at the middle of the longer sides and minimum at the cormers.
Since concrete is badly cracked near ultimate load, Rauch assumes that
plain concrete is unable to carry torque, so that Tc is assumed to be
Zero.

The Anderson-Cowan theory is based on Saint-Venant's classical theory.
It assumes that plain concrete fails under torsion when the maximum
principal tensile stress reaches the tensile strength of concrete. In
developing the theory, a circular section with 45° spiral reinforcement
was tested. Principal tension and compression are numerically equal
on an element which is inclined at 45° to the longitudinal axis. They

calculated as follows:
T =2/2A A f_ /s (2-3)
r e s 8y

Anderson assumed that the reinforcement takes only the part of the
principal tension in excess of the allowable stress taken by the con-
crete. For the analysis of the rectangular section, Anderson made
use of an equivalent circular section. His theory overlocks the vari-

ation in distance of the steels from the center of twist and, consequently,
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it fails to account for the difference in their torque resistance.

Cowan's theory has been developed by equating the external work
done by the applied torque to the strain energy stored in steel and
the concrete. The total strain energy is assumed to be equally divided
between the tensile strain energy in the steel and the compressive strain
energy in the concrete. It is implied that concrete has no tensile
strength. However, in the analysis of a rectangular section, the strain
energy is determined on the basis of Saint-Venant's elastic theory, which
is applicable to an elastic, homogeneous, and uncracked section. This
shows that the tensile strength of concrete is first neglected and then
included which is an obwvious inconsistency.

For circular sections with 45° reinforcement, Cowan obtained K = 22,
In the rectangular section case, he got K = 1.59v2 - 1.689vY2 within the
range of d'/b' = 1.00 to 3.00. He suggested K = 1.6 for all values of
b'/d', in which b" is the smaller center to center dimension of the
rectangular spiral reinforcement, and d' is the larger one. Cowan's
theory, though developed primarily for working stress design, is believed
to be applicable also to ultimate strength. According to Cowan, "the
inelastic deformation in the concrete does not immediately produce plastic
strains in the steel. The steel, therefore, remains elastic almost up
to the point of failure; the beam may sometimes fail before the steel
yields." Hence the ultimate strength is obtained by a formula analogous

to equation (2-1)

,Tu = Tcu + K Ae As fsy/s (2-4)



18

Cowan's procedure is probably acceptable if the mode of failure

is dominated by crushing of the concrete. It has been shown by Ernst
however that failure may result from excessive yielding of steel. In
such a case, the ultimate torque must be resisted by the forces in the
closed stirrups. Let bc and dc be the width and the depth, respectively,
of the core enclosed in the closed stirrup, and assume that the torsional
cracks on each side of the rectangular section are inclined at 45°. The
torque resisted by the vertical legs of stirrup crossing the torsional

d
. c
crack is As fsy ( s) Kh bc

where d /s number of stirrups crossing the crack on the

c

long side of the rectangle;

a coefficient defining the internal moment arm of

at

the force in the vertical leg of stirrups.

Likewise, the torque resisted by the horizontal legs of the stir-
b
rups crossing the torsional crack is A £ (—59 K d . Combining these
s sy s v ¢

two torques

H
I

0= A fy b4 (K +R)/s

(Kh + Kv) AS Ae fsyls (2-5)

It is clear that the constant (Kh + Kv) defines the internal moment
arms of the stirrup forces. Its value will depend on the arrangement of
the reinforcement and the shape of the member. However, it must be noted

that it is arrived at empirically. At present, there is no sufficient



19

test data for the determination of this quantity.

It is often argued that at ultimate torque the cracked concrete
is incapable of producing the torque resistance, and therefore the steel
must resist the entire amount of applied torque. A series of tests con-
ducted at Portland Cement Association Structural Laboratory indicated
that the core action is not an acceptable explanation of the torque
resistance attributed to concrete. Rather, it seems that the strength
corresponding to Tcu is the shear resistance of the compression zone

when skewed bending takes place.

IYENGAR AND RANGAN THEOR.Y5

These authors have made an attempt to establish a simple and at the
same time a ratiomnal solution to the problem. The analysis is based upon
the state of stresses existing at the critical point of failure and upon -
a failure criterion for concrete under compressive-tensile stresses.

The following assumptions are made in the theory:

1) Concrete in the tension zone of the beam is neglected in the calculation
of bending stresses.

2) The torsional rigidity of the beam is obtained by using a semiplastic

concept in the case of beam failure in tension.

3) The transverse steel yields before torsion failure of the beam and

hence the stress is assumed to be at the yield point.

4) The contribution of the horizontal legs of the hoops toward the

torque capacity of the beam is neglected.

5) The contribution from the dowel action of the longitudinal steel

is negligible.
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In the beam under pure torsion, torsional shear stresses are pro-
duced by the applied torque. Every element in the cross section is
subjected to a state of simple shear. This gives rise to two unlike
principal stresses, each of which is equal in magnitude to the shear
stress. Thus, failure is caused by destruction of concrete when the
principal stresses satisfy a failure criterion for concrete under
compressive-tensile stresses.

In 1964 Krishnaswamy5 developed a failure criterion for concrete

under compressive-tensile stresses. It can be put in the following

form:
(0,/£) + (0,027 =1 (2-6)
1" e 27t

where

Gl = principal compressive stress;

02 = principal tensile stress;

fc, ft = usual compressive and tensile strengths of concrete,
respectively,

and Gl = —02 = T where 1 is the shear stress. Substituting these into

equation (2-6) we get
(e/£) + (/£)% =1 (2-7)

Letting fc/ft = K, and putting this in equation (2-7) and then solving

for 1 one obtains

~
T =

[(2K—1)/2K]ft (2-8)

In beams with transverse reinforcement, the torque will be resisted by



both the concrete and the steel., The torque capacity of such beams is

taken approximately as follows:

= -+ -—
T T I (2-9)
where T = total torque;
Tc= torque resisted by concrete;

Tr= torque resisted by steel.

In Tr’ the contribution due to longitudinal steel has been ne-
glected, as the force in the longitudinal steel is neglible.

The above approximation has also been considered by Cowan in the
evaluation of the torque capacity of such beams. The contribution of
the concrete is obtained by using the semiplastic approach. The elastic
theory gives good results at higher ranges of concrete strength and the
rigid-plastic-theory gives good results when the concrete strength is
very low, because the plasticity ratio is high so as to cause the major
portion of the cross section to attain the plastic state of failure.

For normal strengths of concrete, only the semi-plastic theory can give

the results nearer truth as suggested by Ernst4.

=1 (r® 4 7P
Hence Tc -5 (Tc + Tc)
or T =b2 he_t (2-10)
c s
where Ti = torque given by elastic theory,

Tz = torque given by rigid plastic theory,

™
]

semiplastic coefficient as given in Table 3-1.
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b

width of rectangular beam,

h

L}

total depth of rectangular beam.

Experiments3 have shown that the transverse steel yields at failure
of the beam; thus the axial stress in the vertical legs of the transverse
hoops can be assumed to be equal to the yield stress of the transverse
steel. Ignoring the contribution of horizontal legs, the torque resisted
by one hoop is A_ fEy b', where b' is breadth of the fransverse steel
cage (center to center distance of vertical legs of the transverse steel
cage). The failure crack travels along the periphery like a helix with
an inclination of 45° to the longitudinal axis. Let the depth of the
transverse steel cage be d' then the projected length of the crack along
the longitudinal axis is d' cot 45°= a'. The torque resisted by the

transverse hoops is

= 1o —
Tr = AB fsy b' d'/s. (2-11)

Substitute the values of TC and Tr in equation (2-9) to obtain

- 2 1 30 -
T b th + AB fsy b' d' / s (2-12)

If failure is to occur, T in equation (2-12) should satisfy the
failure criterion for concrete as discussed earlier.:
Substituting the value of 1 from equation (2-8), the failure

torque in pure torsion is
= _ 2 1 ' -
T = [((k 1)/(21())381; h £ +A £ b'd /s] (2-13)

Thus torque can be calculated by using Table 3-1.



3. REINFORCED CONCRETE SUBJECTED TO TORSION AND BENDING

INTRODUCTION

Even though torsional stresses are rarely high enough to have con-
trol over designs, their influence on the flexural capacity of beams is
not small. A number of investigatiﬁns have been carried out on the
strength of reinforced concrete beams under combined loading. Iyenger
and Rangans, Pandit and Warwarukll and Collin, Walsh, Archer and Ha112

have proposed solutions to predict the ultimate strength of beams under

combined bending and torsion.

PANDIT AND WARWARUK THEORY' '

This analysis gives the conditions under which the increase in
torsional strength may be obtained under combined bending and torsional
action and provides means of determining the limit of flexural moment
beyond which the torsional strength drops with increase in flexural
moment. The torsional strength of a reinforced section consists of

the contribution to the strength of both steel and concrete as given

here:
T =T +T (3-1)
u c r
where Tu = ultimate torsional strength of reinforced concrete
section in combined bending and torsion;
Tc = contribution of concrete to torsional strength;
Tr = contribution of steel to the torsional moment.
and T =T . +T (3-2)

c cl c2
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where T

el torsional moment resisted by compressed concrete;

3
|

o2 - contribution of non compressed concrete to the

torsional strength.

The authors consider that only about one fourth of the cross
sectional area of a beam is in compression because of the flexural
compressive stress and the area of compressed concrete is not signifi-
cantly changed by torsion. The main effect of torsion is to shift the
zone of flexural compression towards the center of the cross section of
the beam (See Fig. 3-~1). This has the effect of reducing the lever arm,
jd, of the internal flexural moment as shown in Fig (3-1). The shaded
area represents the uncracked concrete which carries flexural compres-
sion. For the case of pure bending, the value of j is 0.9. It is as-
sumed that the value of j for the case of combined bending and torsiomn

depends upon the ratio:

M /M

-
]

1 u’ uo
where Hu = ultimate bending moment in combined bending & torsion;
Hﬁo = ultimate moment in pure bending.

If the ratio of the effective depth to over-all depth of the beam

cross-section is 0.9, then

Lia (1) = 0.50?90.1

kl+0

= 0.45

Hence, the value of j varies from 0.45 to 0.9 as kl varies from 0 to 1.



25

The exact nature of the variation of j is not known, but for simplicity

a linear relationship is assumed.

3 = 0.45 (1+k))

From statics,

Cc= Mu/jd (3-3)

Ablfs

where Abl = area of bottom longitudinal steel;
fS = stress in bottom longitudinal steel
due to flexure;
C = total flexure compressiomn.

It is assumed that one-fourth of the cross sectional area carries

flexural compression, hence the compressive stress is
o = 4C/hb

where h and b are over-all dimensions of the cross-section.

The torsional resistance of a portion of concrete carrying flexural
compression is generally higher than that of the equivalent concrete
subjected to pure torsion, and the torsional resistance of concrete
which carries flexural tension is lower than that of the equivalent con-
crete subjected to pure torsion. The unit torsional strength of compressed
concrete may be determined by using one of the failure theories for con-
crete under combined stresses. According to Cowan's theory,ll the com-
pressed concrete may fail by cleavage (tension) failure, or shear (com—

pression) failure, depending upon the magnitude of 0. The critical value
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of o, at which the failure changes from one type to another, is given as

210
Ocr T fc ) (3-4)
1-sin 37
where fc = compressive strength of concrete;
T = unit torsiomal strength of concrete in pure torsion.

o

The unit torsional strength of concrete (compressed) is given as

1. =V(0o + 1)1 (3-5)
1 o° o

for cleavage failure, or

x, =/ % -(0/2)2 (3-6)

for shear failure,

R = (.-322 fc (cosec 370 - 1) + U/Z]Siﬂ 370.

The sand-heap analogy, proposed by Nadai for the case of pure torsiom,
is extended here for the case of combined bending and torsion. The analogy,
as used here, is approximate since it involves a stress discontinuity at
the junction of the compressed concrete and the non-compressed concrete.
Also, the shifting of the zone of compressed concrete due to torsiom is
ignored, for simplicity, in the derivation of TC. Modified sand-heap
analogy is shown in Fig. 3-1b. Taking the torque equal to twice the volume
of the sand heap and replacing the slopes, Bl and 62, by the analogous

unit torsional strengths, T and 12, for the compressed concrete and the

non-compressed concrete, respectively, TC is:
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2 2
= b 5 B _b
=T34 -9+t -9
vhen d; > b/2
2 2
- | b - S 3 b_ _b
sad T = | -9 +3z7 (b-2d) ] ST B C Rl Y
when dl < b/2

where dl and d2 are the depths of the compressed and the non-compressed
concrete, respectively. The torsional resistance of the non-compressed

concrete is reduced by the flexural tension. Hence

0<T, <1
o

2

Therefore, if K, = TZITO, then the wvalues of K2 equal to zero and unity

2
give, respectively, the theoretical lower and upper bounds of the unit
torsional strength.

The contribution of steel to the torsional strength is the sum of
the contributions of the transverse and longitudinal reinforcement,
respectively.

namely T . and T
s s

1 2

T =T, +E, | (3-7)

Since the twisting moment produces a state of pure shear giving rise

to diagonal tension at 45° to the axis of the beam, it is necessary to
have steel in both longitudinal and transverse directions to resist the
components of diagonal tension in these directions.

The term Tsl is determined from the number of ties intersected by
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a potential crack on the faces of the beam. Ties intersected by a po-

tential failure crack yield at failure, provided enough longitudinal

steel exists both at the top and bottom faces to resist the longitudinal

component of diagonal tension. If enough longitudinal steel does not

exist, the ties can not be stressed to the yield point and the contri-

bution of transverse steel to torsional strength is assumed to be linearly

reduced.

where

Also,

and

In the above,

- 1 ] o
Tsl nlAsfstb + nzﬁéfstd (3-8)
n, = number of ties intersected by a potential failure
crack on the longer side of the beam;

n, = number of ties intersected by a potential failure
crack on the shorter side of the beam;

As = area of cross section of one leg of the tie;

fSt = stress in the transverse steel.

fst = fsy’ the yield stress of transverse steel, only if

Abl(fy—fs) > (n1+n2)A.$fSy (3-9)
1 1 -

Atl(fyifs) > (nl-l-nz]Asty. (3-10)

b1

By

n

area of bottom longitudinal steel;

area of top longitudinal steel;

yield stress of bottom longitudinal steel;
vield stress of top longitudinal steel;

stress in bottom longitudinal steel due to flexure;



f; = stress in top longitudinal steel due to flexure.

In Eqn. 3-10, the (+) sign applies for cleavage failure and the
(-) sign for shear failure. However, if either or both of the above two

inequalities are violated, then

{ (f -f )
fst [(n +n )A f fsy (3-11)
A {f'+f'
or fst = (n )A f fsy (3-12)

whichever is smaller. Eqns. 3-11 and 3-12 indicate that the stress de-
veloped in the transverse steel is governed by yieiding of the bottom
steel or the top steel, whichever occurs first.

The twisting moment has the tendency to bend the longitudinal bars
in the lateral direction, giving rise to lateral forces. The contri-
bution of the longitudinal steel to torsional strength, TSz appears
mainly to be a function of the size and poéition of longitudinal bars

and the tie spacing. The term TsZ is determined as described:

T, = IRr; (3-13)
where R = lateral force developed by longitudinal
bar;
r, = distance of a longitudinal bar from the

axis of the beam.

28
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The summation is taken for all of the longitudinal bars. Assuming that
the total lateral force which a bar develops is uniformly distributed

and that its magnitude is governed by the full plastic moment of the

bar, then

R = 2mp/s (3-14)
where mp = fully plastic moment of a longitudinal bar;

s = spacing of ties.

The value of R is limited by this equation to

1
R (AE / Y3) _ (3-15)

The action of the longitudinal bars in resisting torsion has been
idealized, the actual action is more complex. 'I‘52 is usually small

compared to TS and Tc, so it is often ignored.

1

IYENGER AND RANGAN THEORY5

These authors have made an attempt to establish a simple, and at
the same time rational, solution to the problem. The analysis is based
upon thé state of stress existing at the critical point of failure and
upon a failure citerion for concrete under compressive tensile stresses.
The assumptions of the theory are given in the Chapter 2,

In a beam subjected to combined bending and torsion, there are two
possible causes of failure.

(a) Flexure failure by crushing of concrete in the compression
zone after yielding of longitudinal steel;

(b) Torsion failure by diagonal splitting.
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Flexure failure

At the critical point of failure, let flbe the horizontal normal
stress (compressive) due to the applied bending moment, and T be the
shear stress due to the applied torque at the same point.

0, ,=3 |1+ E+1 (3-16)

I

Taking ¢ as the ratio of the applied torque to applied bending

[}
¥

moment, designating

T
£

and 1+ )% =y (3-17)

and substituting into Eqn. (3-16) one obtains

2 = A

f (+) compressive
(-) temsile

substituting the values of oqs and ¢, into Egn. (2-6)

2

F £ 2 Zf 2

1_ el yH [ ¥-1 c]
- = (=) 1+ | — -1 (3-18)
T on? G £

The depth of the compression block of a beam subjected to pure bending
and the one under combined bending and torsion is almost the same, so

that we can equate the ratio.
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H_ %
fc Moo
where Mﬁ = ultimate flextural capacity of a beam under combined
bending and torsion;
Muo = flexural capacity of same beam under pure bending.
Hence
2
M £ 2 9 £
+ -
2= 1+{<——*i) f—c} ~1 (3-19)
uo c  (y-1 t

Variation of Mu/Muo with 1/A¢ has been drawn (See Fig 3-3).

Determination of A¢

The most critical point for a flexure failure isrthe extreme fiber
in the compression zone of the beam (top of beam) where the effect of
shear stresses on the bending stresses is maximum. Torsional shear
stresses can be calculated using the elastic theory, when the beam fails
in flexure by crushing of concrete as the torsional stresses are in the
elastic range and the axial stresses in the transverse hoops are very
small. Although the maximum shear stress does not occur at the middle
of the shorter side, it is still considered here as this is the critical
section for a flexure failure. So the shear stress corresponding to the

middle of the shorter sides is considered in the analysis. Then

T = Bebth (3-20)



=3
[l

where applied torque;

elastic torsional shear stress coefficient corres-

w
]

ponding to the middle of the shorter sides of the

rectangular beam.

Since the axial stress in the transverse hoops is small in a beam failing
in flexure, its contribution to the torque, is neglected.
Assuming a nonlinear stress block for the compression zone of the

beam, (see Fig. 3-4),

- '
M, = kjkbef'jd
or £' = Mu/k1k3bcjd (3-21)
where f' = maximum stress.

Assuming the stress at the extreme fiber as k'f',
= LV1f = 1! s -
fl k'f k Mﬁ/klk3bc3d (3-22)

Now, as previously defined,

A = 21/f1
Substituting for T and flfrom Eqns. 3-20 and 3-22, and observing that
b = T/Mu and kzc T d- jd,2
2klk3bd F(1-3)
A= 5 (3-23)
]
k Beb hk2

Further, putting h = 1,2d, j = 7/8, and k' = 0.9 (based on the ideal
stress—strain curve of concrete corresponding to a maximum concrete

strain of 0.3%, Eqn. 3-23 reduces to

32
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) 1
A = (b/b) 68, (e, [k )

Taking kE/klkB = 0.525, and observing thét the value of X is a function

of h/b ratio, A has been tabulated for different values of (h/b). These
values are given in Table 3-1, Now using the tabulated values of A, for
a given value of fc/ft’ the calculation of Mu/Mun with the help of Fig.

3-3 can be easily done.

Torsion failure: This occurs in the case of a large value of ¢. The

critical point for failure in torsion is that point where the influence

of bending stresses on shear stresses is minimum. So the critical point
for torsion failure is at the level of the neutral axis where the bending
stresses are zero. The concrete element at the level of the neutral

axis is subjected to a state of simple shear. This results in two
principal stresses of equal magnitude and, hence, the problem is the

same as that of a beam under pure torsion. Therefore, the torque capacity
of a beam failing in torsion, under combined bending and torsion, is as-

sumed equal to its torque capacity under pure torsiomn,

COLLINS, WALSH, ARCHER AND HALL THEORY2

From the experiments carried out by the authors, it seems likely
that the ratio of top to bottom steel has a marked effect on the inter-
action behavior. An attempt has been made to develop equations which
would have the merit of simplicity without undue loss of accuracy. Just
prior to the failure of any reinforced concrete member sustaining torsion
and/or bending, a cracked tensile zone develops on one side of a neutral

axis, and a zone of compression on the other. With pure bending the



compression zone is normal to the axis of the beam, and the tensile
crack forms a plane below the neutral axis. In the presence of torsion,
the tensile crack forms a warped surface which intersects the three
exterior faces of the beam in a rectangular helix; the compression zone
on the fourth face joins the two ends of this helix and is consequently
inclined to the axis of the beam.

Most recent investigators have alluded to the "failure mechanism"
in describing the behavior of the member as failure ensues and relatively
large displacements occur. The opening of the tensile crack permits
rotation of the member about an axis in the compression zone, generally
referred to as the "compreésion hinge". The failure with the compression
hinge on the top surface is referred to as a mode 1 failure, while a
mode 2 failure will indicate that the hinge forms on a side surface.
Sometimes the hinge develops on the bottom surface, and this is called
a mode 3 failure. The appearance of these failure surfaces is shown
in an idealized form in Fig. 3-2.

Mode 1

The total moment of the internal forces about the "compression
hinge" is equated to the moment of the external forces. For a mode 1
failure, the only intermal férces which have a significant moment about
this axis are the forces in the bottom longitudinal steel and the forces
in the bottom branches of the transverse steel. As the forces in the
vertical leg of the stirrupé have small effect, they have been ignored.
The level of the bottom branches of the stirrups is assumed to be the

same as that of the longitudinal steel.

34



If the angle between the "compression hinge" and the normal cross-
section is Bl (see Fig. 3-2), the total moment of the external forces

about the compression hinge is

Héxt M cos Gl + T sin Bl

]

T (cos Bllw + sin Bl).

bending moment in combined bending and torsion

In the above, M

(at failure):

T = torsional strength of reinforced section in
combined bending and torsion (at failure);
Y = ratio T/M.

If the bottom branches of the stirrups were distributed as a continuous

layer, the area of such steel intercepted by the failure surface would

be
(Asls) .b% tan 8,/ (b+2h)
where As = cross sectional area of one leg of transverse steel;
b = width of the rectangular section;
h = height of the rectangular section;
s = spacing of the stirrups in the direction parallel

to the longitudinal axis.
However, the stirrups occur at discrete intervals and only an integral
number are intercepted. For this reason the total area intercepted
may be taken as 0.8 of the above value.
The total moment of the internal forces about the compression hinge

is then

35
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2
Asfst b” tan Bl

Moe = Ablfb(h-al*xl)cos 6, + 0.8 S anec (h—al-xl) sin 91

(3-26)

Abl = area of bottom longitudinal steel;

f. = stress in bottom longitudinal steel;

a, = distance of bottom longitudinal steel from the
bottom surface of the rectangular sectionj
x, = distance between the top surface of the concrete
section and the center line in the compression zone;
fst = stress in bottom transverse steel.

The relationship between transverse steel and longitudinal steel may

be expressed by a parameter, z, where

Equating Hin

O.BAsfst

b
zZ = . . (3-27)
s Ap1%s
to HEXt’ and substituting « = h/b one obtains
z 2
1+ 1+ 7= tan 61
(3-28)

T= A -a %) \—o T Ta 5

The inclination, Bl, of the hinge will be such as to make the failure

torque a minimum. If dT/dBl, is equated to zero, it is found that T is

a minimum when
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tan 8, = - 1/y +/(1/\b)2 + (1 +2=)/z (3-29)

When this value is substituted into Eqn. 3-28, the failure torque for

a mode 1 failure is obtained as

= u T2 fam? + a2z - @) (3-30)

where Mﬁo = the ultimate capacity of the member in flexure alone;
= Ay fp(h-aymxy)s
Tl = torsional strength of the section in combined
bending and torsion (by mode 1 failure).
Mode 2

The compression zone is located along one side (Fig. 3-2) and the
compression hinge is at a distance X, from the side face. The external
bending moment has no component about this hinge axis, but the shear

force does exert a moment about this axis. The total moment of the

external forces is

=
I

v(b/2 - xz) sin 62 + T sin 82

I

T (8Q1 - 2x,/b) sin 6, + sin 0,) (3-31)

]

where 8 Vb/2T;

<
n

shear force (at failure).
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The internal moment is mainly provided by the longitudinal steel near
the side face remote from the hinge and by the vertical legs of the
stirrups on that face. The same assumptions are made as in mode 1 and

the internal moment is

O.BAEfst hztan e
Mint = Avlfv(b—az-xz)cos 32 + = ¥ 9 (b-az—xz) sin 62.

(3-32)

By the same procedure as used for mode 1, the failure torque for a mode

2 is found to be

2x2 O.SAstth
T, |1 +§(1 - 7| = 28 1 £ (b-ay-%)) | T—F e 1o375 (3-33)
vl'v
where Avl = cross sectional area of longitudinal steel located

near one vertical side of the beam;
f = stress in steel A _;
vl
a, = distance of the longitudinal steel from the ver-

tical face of the section;

X = distance between the vertical side of the section
and the center line of the compression zone.

The ratio of the forces in the top and bottom longitudinal steels is 'Rl'-

Ry =a,f 7 45

and Atl = area of top longitudinal steel;

ftl = stress in top longitudinal steel.
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For most beams, the forces in the side longitudinal steel may be taken

as _
A _f = l-( £, + A £ )
vli'v 2 Abl b tltl
o Avlfv ) l+ Rl
S T
h—al—x1 . h—al
Let b-a,-x,  b-a, B
272 2
as xy is nearly equal to Xy

The expression for the failure torque in the second mode takes the form

2(1 + Rl)z
- 1 2_/_._______ "
T2 - Huo 1+46 B8 2+ @ (3-34)

Mode 3

In a mode 3 failure the compression zone forms along the bottom
face of the beam (Fig. 3-2), the face on which bending moment alone would
cause tension. The analysis is very similiar to that of mode 1, except
that the bending moment now opposes the rotation occuring during failure
in this mode. Assuming that the cover to the top and bottom longitudinal
steel is the same, the following expression for the failure torque is

obtained:

(1 + 2=)R
2z 2 1
T, =M T /(mo F——t (/) (3-35)
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For a given value of { and known beam dimensions, the three torques
Tl’ T2 and T3 can be computed from Eqns. 3-30, 3-34 and 3-35. The
smallest of these values gives the twisting moment at failure, for beams
in which both the longitudinal and the.transverse steel yield.

The effect of compression reinforcement has been ignored in the
analysis, as it has little or no effect on the solution. Under certain
ratios of load and certain arrangements of steel, failure may occur be-

fore both the longitudinal and the transverse steel have yielded. The

range of applicability of this theory excludes the above case.
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4, REINFORCED CONCRETE SUBJECTED TO COMBINED TORSION, BENDING AND SHEAR

INTRODUCTION

There is a widespread occurance of members subjected to torsion,
and in almost every case torsion occurs in combination with bending
and shearing resultants. Thus, the problem of combined loading, while
being the most difficult to analyze, is, nevertheless, the most important,
The importance of the interaction of shear on torsional strength is
now reflected in the 1971 ACI Codel. A few attempts have been made
to introduce a rational theory for concrete members under combined
loadings. Although the methods presented are probably not the final
solution of this complicated problem, the trends shown may be useful
to the design engineer as a guide until improved methods are available.
In this chapter the combined torsion, bending and shear analysis by

6 . .
Lessig and the interaction surface as plotted by Hsula are presented.

LESSIG'S THEORY6

According to Lessig there are two possible modes of failure for
rectangular reinforced concrete beams under combined torsion, bending
and shear loads. When torsion and bending predominate, the neutral axis
of the failure surface that occurs, intersects both the vertical sides
of the beam and the failure is known as the first mode of failure. 1In
the case of the rectangular section subjected to torsion and shear pre-
dominantly the neutral axis of the failure surface intersects both
horizontal sides of the beam. This is called the second mode of failure.

Lessig made the following assumptions:
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1). The tension capacity of the concrete in the failure surface is zero.

2). When the plastic hinge is formed, all the reinforcing steel inter-
secting the tension part of the failure surface reaches its yield
point.

3). The transverse reinforcement is uniformly distributed over the
beam.

4). The concrete stress in the compression zone of the failure surface
reaches the ultimate strength as in the pure flexure compression.

5). No external loads are applied within the section in which the beam

fails.

First Mode
The external and the internal moments with respect to the neutral

axis, acting on a plane perpendicular to the neutral axis are equated.

Hﬁxt = Mb/L + Tc/L
where M = bending moment;
T = torsional moment;

b,c and L are the beam dimensions (see Fig. 4-3).
The direct shear V, does not contribute to the external moment because
it lies in the plane of the axis of rotation.
+ + W
int Hc t M1 Mﬁs M'1.'rs

moment, due to normal compression forces in the concrete.

=
[l

=
]

moment, due to the forces in the bottom longitudinal steel.

o

moment, due to the forces in the horizontal stirrups.

4

=
]

s moment, due to the forces in the vertical stirrups.



All these terms are ev

M =f Z

D. c c

where fc =

and tor

aluated and summed up to get the internal moment.

compressive strength of concrete in combined bending

sion and has been assumed approximately equal

to the ultimate strength of concrete in flexure;

axis.

Referring to Fig. 4-3,

static moment of compression zone about the neutral

and
X, /c2 + b2 + (xl-xz)y
x = x, + (x-%, J = (4-1)
J c2 + b2 c2 + b2
Therefore,
1 I Pp” [2 .2 2
Z = —— f (x ¢+ b+ (x,-x )y] dy
/7. 20 s ol
2L/ ¢ + b
2 2
_ ¢ +b 2 2
=~ (xl + XX, + x2)
L, ¢, x,, ¥, and y are shown in Fig 4-2 and 4-3.

1° 72
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Hence
fc(c2 + b2) 2 5 4
Mc e (xl + X, + xlxz) (4-2)
X.+x
- 172 b -
2Y. M, = Ablfb(do = g ) I (4-3)

where Abl = cross-sectional area of all bottom longitudinal steel;

Hh
[}

tensile yielding stress of the longitudinal steel;

d is shown in Fig 4-2.

o
cB x. +x
_ 1 -1l 2 ¢

3. Mhs = fSyAS = (h d3 3 ) I (4-4)
where fsy = yield stress of stirrup;

As = cross sectional area of one leg of stirrup;

s = spacing of stirrups;

d3 = bottom cover for steel.

4). Assume the angle Bl between the cracks on both vertical faces of

the beam with respect to the vertical axis are equal,

c{l—el)
2h - (x1+xz)

so cot Bl =

The lever arm of the total stirrups on the front face is

h-x
2 b c
[( 7 cot By) T by ¢

Then the resisting moment Mic, due to the total stirrups on the front

face is

bg
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£ e h=x, a
ch = fsy = (h-xz) cot Bl ( 5 cot Bl- bl) 1

Similarly, the resisting moment, Mic, due to the total stirrups on the

rear face is found and added to Hf y to get M_ .
ve ve

b

A, c2(1-el) [ (h-xl)2 + (h—x2)2 . }
1

Mvc - fsy s L 2 (1—91) 2 (4-3)
(Zh—xl-xz)
Summing up equations 4-2 to 4-5 one obtains
fc(cz + %) 2 2 X%,
M.b + T.c = ET——— (x1+x1x2+x2) + fbAbl(do - _Q'_)b
2 2 2
. fsyAsc (1—81) E-(l_e ; (h—xl) + (h—xz) -
s 2 1 (2h-x.-x 1
172
czel x1+x2‘
+ fsyAS (h-dy - =) (4-6)

The parameters X, and x, are symmetrical in Eqn. 4-6. Therefore
differentiating it first for term %y and then for X, yields identical

results if x.=x,. The minimum value of torque is obtained when it is

172
assumed that X=X, Substituting x for Xy and X, into Eqn 4-6 and dif-
ferentiating it for x one obtains
5. .0 Czel
fc(c +b7)x - fbAblb - fsyAs =0 (4-7)

This is the equation of the projections of all forces acting in the
direction normal to the plane of the compression zone. From this

equation one can determine x.



£ 2
ne 2Bl e, @-o
f (e™+b%) '
c
fS Ash
in which P = =
% S
Let ¢ = T/M

and substituting x, p and ¢ into Eqn 4-6, noting that X) T Xy =X,
one obtains

X 202 X
-3t (81(h-dy - 5)

o 2

c = =

4b
b 1
+'Z (1—31)(1—81 - —TTQ] (4-9)

Based on tests, Lessig suggests that the failure crack on three sides

of beam can have the same angle of inclination, so 6, can be

1
b

% = %mp ° (4-10)
Introducing the designations

dj = do - x/2

b 4b1
and J = Bl(h—dl—x/2) +'Z (1-81)(1-61 - —g—ﬁ (4-11)
and substituting into Eqn. 4-9 one gets a simple equation
2
dj + pJc”/bh
T=dM= A& 5 375 + cfp (4=12)

46
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Theoretically the least favorable direction of the neutral axis must

correspond to minimum value of T or M for a given ratio ¢. The value

¢, corresponding to the theoretical minimum value of T or M, can be de-

rived by setting dT/dc or dM/dc equal to
are affected relatively little by x, are

c to b is given as

1 *

¢

A e
o'

e/b=-1/¢ +

The value of ¢ from this formula is
value, because of the difference between

actual condition of the failure surface.

zero, while d, and J, which

A

assumed constant. The ratio

(4-13)

usually higher than the actual
the assumptions used and the

Through experimental obser-

vation, Lessig suggests the following formulas to determine Chax and J.

c < 2h+ b
max —

[
I

and = Bl(h - dl - x/2) = Bldj

Substituting Eqn. 4-15 in Eqns. 4-12 and

1+ pBlczlbh
= = d-
x o Ablfb 1/¢ + c/b ]

/1 1 h
1/¢ + ¢2 + pelb

and ¢/b

(4-14)

(4-15)

4-13, one obtains

(4-16)

(4-17)

For solving practical problems Lessig suggests the following

procedure.

1). calculate 91 and ¢ from Eqns. 4-10 and 4-14 or 4-17.

2). Determine x and dj from Eqns. 4-8 and 4-11.



3). Compute values of M and T from Eqn. 4-16.

Second Mode

When a rectangular section is subjected to torsion and shear, the
neutral axis of the failure surface intersects both horizontal sides of
the beam. The final equation for the second mode of failure can be de-

rived by the procedures used in deriving the first mode of failure.

2
bih 1+ p,6,c5/bh

= A'vlfv ¢y 1+ Yo 8)
and Y = Vb/2T;
V = transverse shear;
Avl = the area of longitudinal steel located near one vertical
side of the beam;
bj = (b - b2 - x/2);
1l b
c,=h/[———=<2b+ h;
2 p292 h — ?
6, = h/(2b+h) ;
Af b
o . s
P27 A £’
vl'v
A _f (h+ p,8,c 2/b)
x = v1l'v 27272

2 2
fc(c2 + h°)

The capacity reduction factor for torsion be taken as 0.85. One can

48



calculate the ultimate torsional capacity of the beam by choosing the
lower wvalue of the torque from those obtained, from these two different
modes of failure. In tﬁe practical design, the yield stress of stirrups
aré multiplied by 0.8, which takes into consideration that transverse
bars are placed at certain intervals, contrary to the assumption of
constant intensity of transverse steel used while deriving the torque

equation.

INTERACTICON SURFACEl4

The effect of simultaneous application of two different types of
forces on the strength of a member can often be expressed by an inter-
action curve. For example, the interaction of torsion and bending can
be represented on a rectangular co-ordinate system. One axis represents
torsion and the other bending. To study combinations of three different
types of forces, however, the interaction must be expressed in a three
dimensional rectangular co-ordinate system. For combined torsion shear
and bending, each axis represents one type of traction. The strength of
a beam subjected to a certain magnitude of torsion, shear and bending
is then represented by a point on an interaction surface.

The torsion-bending, shear-bending and torsion-shear interaction
curves are actually special cases of the torsion-shear-bending inter-
action surface. Two of these three special interaction curves, torsion-

bending and shear-bending, can be obtained directly from tests. However,

49

the torsion-shear interaction curve can not be obtained in this way because

it is impossible to obtain a constant shear in a finite length of a mewmber,

without the simultaneous presence of bending moment.
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Torsion-Bending Interaction Curve

An extensive study of combined torsion and bending without shear in
reinforced concrete beams has been reported by Nylanderla and Ramakrishnan
and Vijayaranganla. Ultimate strengths of 53 beams of square and rectangular
sections were evaluated. Fig 4-4 shows a nondimensional presentatibn of
these data. The ordinate of this diagram shows the ratio of torque T,
to pure torsional strength Tuo' On the abscissa, the ratio of the bending
moment M to the pure flexural strength Mﬁo is shown. The figure shows
that T/Tuo increases slightly with increasing values of M/Muo upto about
0.5 H/Muo‘ This increase ‘is hardly noticeable. Beyond H/Muo = 0.5,

T/Tuo decreases significantly with the increasing MjMﬁo.

Mathematical expression for these lines are:

BT %1 for M/M < 0.5
T/T,, = 1.7 - L.4M/M_ for M/M <1 (4-19)
MM =1 for T/T < 0.3

uo uo —

Values obtained from these equations are believed to be satisfactory
for use in design.

Shear-Bending Interaction Curve

The next step in the construction of the interaction surface is to
define the interaction curve of combined shear and bending. An inter-
action equation is available in the Joint Committee Report14 and has
been incorporated into the 1963 ACI Code. It is based on diagonal
cracking instead of failure, because the post-cracking capacity has been

found unreliable in certain cases. For beams without web reinforcement,
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the Joint Committee interaction equation is:

2
pSVbd0 .
V=1.9Yf bd + 2500 ——— < 3.5¥f bd (4-20)
c o M - c o

for M > Vd
- o

where V = total shear force at diagonal tension cracking on the

section considered;

b = width of cross-section;

d = distance of extreme compression fiber to centroid of tension
reinforcement;

Py = ratio of area of tension reinforcement to effective area
of concrete, AS/bd;

f = compressive strength of concrete;

ratio of shear to moment at section considered.

<]

~

=
]

The Joint Committee Report limits the maximum value of V to
3.5Vfc bdo' The shear strength based on diagonal cracking in pure shear,

Vco’ can be defined as 3.5/?: bdo' Putting Py in terms of the dimensions

of the cross section in equation 4-20, rearranging the terms and utilizing

Vco and Muo’ Eqn. 4-20 can be changed into the form:

0.543 M/M
v _ uo (4-21)
Vv 2500

co M/M - ———
uo fy(l—af2do)

]

where fy yield strength of tension reinforcement.

With (1 - a/2d0) = 7/8, the interaction curve has been plotted in

Fig. 4-5. This interaction curve is also a function of fy' The shape
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of the curve for different values of fy is almost identical.

Torsion-Bending and Shear Interaction Surface

Three mutually perpendicular axis representing parameters, T/Tuo’
V/Vco and M/Hﬁo are shown in Fig. 4-6. In the plane formed by the
torsion and bending axis, the interaction curve shown in Fig. 4-4 has
been drawn. Similarly, in the plane formed by shear-bending axis, the
interaction curve shown in Fig, 4-5 can be plotted.

From Fig 4-6 it is clear that for each value of M/Mﬁo an interaction
curve between torsion and shear exists. It is possible to express the

series of torsion-shear interaction curves by the equation representing

the interaction surface.

(T/T )" + (Vv )" = 1 (4-22)

In this equation, m and n are exponents to be determined from the tests.
Tub is the ultimate torque in combined torsion and bending. Vcb is the

shear strength based on cracking in combined shear and bending, Tub and

Vcb can be derived from the boundary conditionms.

1f Vv=20 T =T for M/M < 0.5
ub uo uo —

L
[}

Tuo (1.7 - 1.4 M/Muo)

for 0.5 < M/M < 1.0
uo —

If T

0, the interaction surface becomes identical with the shear-
bending interaction curve. In this case, Eqn 4-22 reduces to either
Eqn. 4-20 or 4-21. Since the latter equation is much simpler, it is
chosen for design purposes. Comparing Eqn. 4-22 with Eqn. 4-20 results

in:
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_ 2
V- 1.9/E: bd_ + 2500 p,Vbd_ /M

where the previous limits and definations still apply. The surface
is plotted in Fig. 4-6. Nylanderll‘ suggested a conservative interaction

surface for design defined by the equation:
(/T )2+ (v )t =1 for WM < 0.5
ub cb uo —

Farmer and ErsoyM suggested an interaction surface, which is very useful

for design purposes for case where 0.5 < M/Muo < 1.0

2 2
(T/T )" + Vv =1 for 0.5 M/M < 1.0,

Substituting the values, one obtains

I 2 + VI =1
T (1.7 - 1.4 M/Mho)J cb

for 0.5 ¢ M/Muc < 1.0

This surface is plotted in Fig. 4-7.
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§. DESIGN EXAMPLE

In this chapter the design of a concrete beam subjected to combined
torsion, shear and bending has been described using two different methods,
namely, the ACI design approach and Lessig's method. The minimum re-
quirements for ultimate strength design of members subjected to combined
torsion and shear have been recently proposed in the ACI Building Code,
ACI 318-71.1 In this method, the steel requirement for bending moment
has been separately evaluated by the conventional methods and then added
to the steel required to resist the shear and torsion.

Lessig's method is the finest approach to this complicated problem.
The ratio of torque to bending moment being used in the design shows
that Lessig has actually considered the combined action of these two
tractions, whereas, ACI 318-71 still has not provided any interaction
equation for torsion and bending. Lessig is the one who has derived
the design equations taking into consideration the combined effect of
torsion, shear and bending. The writer therefore feels that Lessig's
method will give an economical section as compared to the other method.

In the example, a fixed end beam (Fig 5-1), with a 4 %' cantilevered
slab supports a live load of 80 psf. The torsional moment, bending
moment and shear diagrams are shown in Fig. 5-2. The problem is to
design the reinforcement for 15"x24" rectangular section beam. Concrete
of fc = 4 ksi and steel of f}T = 60 ksi have been used. The beam has been
designed at a section d away from the fixed end only. As for shear, the

capacity reduction factor for torsion is taken as 0.85.



ACI METHOD OF DESIGN1

(a) Allowable torsion stress without considering torsion effect:
= " f_ = “ = 3
Viu 1.5 fc 1.5 Y4000 = 95 psi

(b) Calculate Vtu:

_ 2
L. Tu/¢Ex y

(For slab portion) y = 3 x slab thickness = 3x6 = 18"

Tx%y = (15)%x 24 + (6)% x 18 = 6048 in.’
Therefore
_ 3 x 41.4 x 12000 _ 290 psi g 95 psi
Veu 0.85 x 6048

So, torsion reinforcement must be considered

(¢) Ultimate shear stress, v, has been calculated.

- 1_ ., L
d_=24-25=213".
v, = V_/¢bd_ = 22000/0.85 x 15 x 21.5 = 80.3 psi

(d) Maximum v, _ allowed, is calculated

tu
12/?2
Max. v =
tu 2
1,2 v
1+ [ “]



_ ___12/%000 _ 720 psi > 290 psi

2
1.2 x 80.3
[re 2z

(e) Torsion stress carried by concrete vtc is calculated.

2'AJE: _ 144 psi < 290 psi

1.2 v 2
1+[v“]
tu

Therefore torsion reinforcement is required.

(f) Shear stress carried by concrete is calculated.

2v4000

1+ 290 4
1.2 x 80.3

(g) Shear reinforcement

= 39.9 psi < 80.3 psi

Vw = (vu - vc) bdo

where Vw is the shear taken by the stirrups

_ 15 x 21.5 _ .
Vw_ (80.3 - 39.9) x 1000 13 kips

Av/s= vw/dofy = 13/21.5 x 60 = ,0101 sq. in./in.



(h)

(1)
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s =d /2 = 21.5/2 = 10.75" nor > 24"
max o

Torsional web reinforcement:

2
Ak ) (vtu - vtc)st y
3wtx1y1fy

= area of web reinforcement

xl =15 - (2 x 1.75) = 11.5"
¥y = 258 - (2 x 2) = 20"
e = (0.66 + 0.33 yl/xl) but not > 1.5

1.235

_ (290 - 144) 6048
3 x 1.235 x 11.5 x 20 x 60000

e

= ,01725 sq. in./in.

*17 Y1 11,5 + 20

= 7.9" < 12"
4 4

Max s =

Total web reinforcement:
Closed stirrups have been used for shear and torsional web

reinforcement.
Try No. 3 Stirrups:

+ l-A = 0.11 in
Ak 5 A, ” sq. .
Ak A

— 4+ 0.5 —~
S S

]

0.01725 + 0.5(0.0101) = .0223 sq. in.



s = 0.11/0.0223 = 4.92" < 7.9"

Try No. 3 stirrups @ 4 %" throughout.

(j) Check minimum web steel:

Closed stirrups = 2 Ak * b - 50b s / fy

_ 50 x 15 x 4.5 - 0.0563
60000

2 Ak +A =2x0.11 = 0.22 > 0.0563 OK
v

use No 3 stirrups at 4.5" centers

(k) Torsional longitudinal reinforcement:

(xl + yl)

- Bl e e

or by:

T an0 xw  Vin XYy
A = [ E v A (=
tu u

¥

whichever is greater.

2 x 0.,01725 x 4.5 = 0.155 sq., in.

28y

Ay

0.155(11.5 + 20) /4.5 = 1.08 sq. in.

_ [ 400 x 15 x 4.5 290 _ 11.5 + 20
. { 80000 290 + 80.3 0‘155] 55 )

1.38 sq. in.

Maximum spacing of longitudinal torsion steel is 12"

58

(1) Before choosing bar dimensions, the steel requirement for the bending



moment has been calculated, and bars to resist both torsion and

bending moment are choosen thereafter

Mu / ¢cr fc b do

=8 x12 /0.9 x 4x 15 x (21.5)2 = 0.0404
From Table - 2 Section 8-28 PCA workbook.12

2
o

w=0.0414 for M /¢ _ £ bd" = 0.0404.
u ‘er c

and p = o £ /£ = 0.414 x 4/60 = .00276

Prom Tahle = 1 Section 8-27 PCA workbook, 2

P = 0.75 Py = .0214 > .00276 OK

max

No compression steel needed
As = 0.00276 x 15 x 21.5 = 0.89 sq. in.

For complete details of the section refer to Fig 5-3.

The area of longitudinal steel at bottom should be

l§§§ + 0.89 = 1.32 sq. in.

The total longitudinal steel area required is 1.38 + .89 = 2.27 in.
Use 2 #7 and 2 #3 bars at bottom and 4 #4 bars one at each top
corners and midpoints of the steel cage and 1 #3 bar at top.

The total longitudinal steel provided is 2.33 sq. in.

LESSIG'S METHOD6

First Mode

According to Lessig the most economical value of p is:
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PICPUIS Y i

14 z/EI /4 B

and 8, = b/(2h + b) = 15/(2 x 24.0 + 15) = .238
¢ = T/M = 41.4/84 = ,492
1 24.0

p = = 0539

L 4 20238 13

492

o=
- |o

oo [Tt
- P11

1 24.0 15
15 + =
q//;'492)2 539 x .238 x 15  .492

30.7 in. < (24.0) 2 + 15,

By trial and error.

Assume Abl = 1.39 sq. in.

£
x = {—bibl——-z—] (b + pelczlh)
fc(c +H") -

_ 60000x 1.39
" 0.85 x 4000 x (940 + 225)

(15 + .539 x .238 x 940/24)

= o£|-22 ino ! : ' I
dj = 21.5 - .422/2 = 21.29 in.
A = T(1/¢ + c/b)
1

2
¢crfbdj(l + pﬁlc /bh)
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41.4 x 12 x 1000 (1/.492 + 30.7/15)

940 )

0.85 x 60000 x 21.29 (1 + .539 x .238 x 2% % 15

1.3% sq. in. OK

PXA, 539 %1.39

2,
0.8 xh _ 0.8 x 24,0 0390 in."/in.

mlmb

Try No 4 stirrups:

-
I

0.20 sq. in.

72
I

As/0.0390 = 0.20/0.0390 = 5.14"

Try No 4 stirrups @ 5",

Second Mode

92 = hf(2b + h) = 24/(2 x 15 + 24) = 0.445
_ . 22x=15 _
= V/2T = 3 14 x 12 - 00332
By trial and error.
Assume Avl = 0.74 sq. in.
Py = O'styAsb / AVlfvS
_ 0.8 x 0.0390 x 15 _
= 0. 74 = 0.633
_ b
8 = & h



) 15
= 2“‘?//.633 * 445 x 24

= 35.8 in.

2
vavl(h + p262c2/b)

2 .2
£ (c5 + n°)

60000 x 0.9 x (24.0 + .633 x .445 x 1280/15)
0.85 x 4000 x (1280 + 576)

= .337 in.
b, =15 - 1.75 — 2332 = 13,08 in.
i 2
[o]
A T ] 1+ ¢
vl f

$er vbj h (l+p282c§/bh)

41.4 x 12000 35.8 1 + .332

.633 x 445 x 1280)
15 x 24

.85 x 60000 x 13.08 x 24 (1 +

0.74 sq in OK

The details of the section are shown in the Fig. 5-4. Use 2 #7 and
2 #3 bars at bottom and 4 #3 bars one at each top corner and the two
midpoints of the steel cage. The total longitudinal steel provided

is 1.86 sq. in.

COMPARISON
1). ACI method

Total longitudinal steel area provided = 2.33 sq. in.
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2).

Volume of longitudinal steel per foot = 2.33 x 12 = 27.96 in3.

(20 + 11.5)lx 0.11 x 12 = 9.25 in3.
43

Volume of stirrups =

Total volume of steel = 27,96 + 9,25 = 37.21 ina.

Lessig's method

Total longitudinal steel area provided = 1.86 sq. in.

Volume of longitudinal steel per foot = 1.86 x 12 = 22,32 in3.

Volume of stirrups per foot = 1.3 = 0'§ . 15.25 in3.

Total volume of steel = 22.32 + 15.25 = 37.67 in3.

The wolume of steel required is almost the same in both the methods

of analysis.
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6. CONCLUSIONS

The classical elastic, plastic and semi-plastic theories employ the

maximum tensile stress theory to predict the failure torque of a

beam, subjected to pure torsion. Hsu's theory is based on the con-
tention that failure is reached when the tensile stress induced by

a 45° bending ccmppnent of torque on the sider face of the beam
reaches the modulus of rupture. Navaratnarajah assumes that the
concrete behaves elastically only up to 80% of the ultimate torque,
after which microcracks occur.

In the case of reinforced concrete beams subjected to pure torsion,
the longitudinal or transverse reinforcement acting alone provide
little additional strength beyond the capacity of the concrete. The
theories of Rauch, Anderson and Cowan are based on the elastic con-
cept, whereas Ernest's theory is based on the ultimate strength an-
alysis. The constant k used for evaluating the contribution of
steel to the total torque capacity differs in all the above theories.
Iyenger and Rangan's theory assumes the semi-plastic behavior of
concrete.

The reinforced concrete beam under combined torsion and bending is
explained by theories, all of which are based on ultimate strength
analysis. Pandit and Warwaruk consider that the main effect of
torsion is to shift the zone of flexure compression toward the center
of the beam. Collins et al have shown that the ratio of top to
bottom steel has a marked effect on the interaction behavior. There

may be a slight increase in the torsional strength of the beam under



4).

3

combined bending and torsion action, which drops with increase

of flexure moment.

Lessig's theory for torsion, shear énd flexure is a good method
of analysis out of the ones available until now. Lessig has con-
sidered the moment vectors along only one axis, which is to some
extent inadequate. Moreover Lessig's theory is not applicable to
the special condition of pure torsion. The theory put forward by

Collins et al can be satisfactorily used for the combined torsion,

shear and bending case. The ACI Code does not provide the designer

the interaction behavior of torsion and flexure. The interaction
surface as plotted by Hsu for the combined tractions provides at
a glance how much amount of each traction a particular beam can
withstand.

The method by Lessig and the ACI method give almost equal volumes
of steel. The fact that there are no interaction equations for
the combined torsion and bending should have resulted in somewhat
higher steel percentages, in the latter method. In the design

example presented, the steel requirement in Lessig's method is

‘controlled by the minimum requirements given by the ACI method.

The reason for this is that the torque to be resisted by the beam is

too low.
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Table 1-1

Summary of Torsion Theories for Plain Concrete.

Type of Assumption on stress Circular Rect
theory strain curve for con- section section
crete in torsion
Elastic Linearly elastic T, lﬁ% T, < T2
D K b"h
e
g 7
€] Miyamoto Second degree Parabolic _ 14T :
m 6 T, 53 Not given
i| Turner & fD = 244-450X10 1.5 D
Davist® (0.000067 - €)™
1 0.854(2D*
s _1aer | 8GR T
L S R L R W
s
: mD Keb h
i W
€| Marshall (£ )™ (12+£)T
& Tembel® g, = , =1.1 to 1.6 T, = ——— Not given
t E 1 3
7D
Plastic Fully plastic T 12T T = T
S L % by
P
Here:

Values of Ke’ Kp depend on the ratio % - (see Fig. 1-2)

(%% is the shape factor;

%#0,854 accounts for the effect of plasticity;

f0 = stress in concrete;

P = Perimenter;

D = inscribed circle diameter;
A = Area of cross section;

Strain of concrete.

™
]
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TABLE 2-1
Values of K.
Theory Circular section Rectangular section
with Spirals with ties
Rauch 2.83 2.0
Anderson 2,83 1.33
Cowan 2.83 1.60
TABLE 3-1
Values of Coefficient Bs‘ A, ét and « for Rectangular Beams.
h/b 1 1.2 1.5 2.0 2:5 3.0 4.0 5.0 | 10.0
BS 0.271| 0.285 0.310f( 0.332) 0.346| 0.3561 0.370| 0.379| 0.400
A 1.528) 1.640| 1.762| 2.060| 2,460 2,690 3.355| 4.060| 7.600
¢t 0.865( 0.804| 0.748| 0.640) 0.55 | 0.490| 0.393( 0.324) 0.173
© 1.186| 1.225| 1.381| 1.820| 2.429| 3.170| 5.049} 7.436|26.367




Fig. 1-2.

Yy = £(x)

Fig. 1-1. Section through Twisted Bar

0.6 r

005 r

0.4 ¢t

Value of K

0.3 ¢t

-
-

-
-~ Semi-plastic
(Turner & Davies)

Plastic

Elastic

0.2 —
0 2 &

h/b
6 8 10

Values of K for Elastic, Semi-Plastic and Plastic Theories of

Torsion of Rectangular Section
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Fig., 1-3. Helical Cracks of Plain Concrete Section under Pure Torsion

Compression Zone

Neutral Axis

Fig. 1-4. Skewed Bending Failure of Rectangular Section Subject to Pure
Torsion



Fig. 1.5, Components of Applied Torque and Stresses on Element in Face
of Beam

I
g - o
|
|4 |1
|
j=0.9 0.45<3<0.9 j = 0.45
Pure Bending Bending and Pure Torsion
Torsion
Mll
Mu/Muo -1 0 < ﬁ;; <1 Mu/Huo + 0

Fig. 3.1la. Effect of Torsion on Internal Lever Arm

or



- 0, — — _
b b
ot d —
2 1 T 2
S b "4 —_—
d
d
8y
b — } b -
b %
23 d; <3

Fig. 3-1b. Modified Sand-Heap Analogy

70a

|



Compression

Fig. 3-2a. Mode 1 Failure

vV M
‘+j/{;//?_ Compression
T+%

}.._35"

Fig. 3-2b. Mode 2 Failure



72

7

=3

Compression

Fig. 3-2c. Mode 3 Failure

1.2

3 4
(1/24)

Fig. 3-3, Variation of Mﬁlﬂbo with 1/A¢



73

p— b — et

- ]
C—klkaCE

.q—--ﬂ.-—qi

. * = Neutral
h d Axis

Fig. 3-4. Rectangular Beam under combined Bending and Torsion.

Fig. 4-1. Section of a Reinforced Concrete Beam at First Mode of
Failure.



=\
I AN
N.A.

T o M &
1

Pll szl
[l B ]

74

Fig. 4-2. Position of the Fig. 4-3. Determination of Static
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T/T =1
uo
100
0.81
i T/Tuo =1.7 - 1.4 M/Mu0

T/Tuo 0.6

0'4

0.2 L M/M =1

uo
0.2 0.4 0.6 0.8 1.0
M‘,Muc:
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ABSTRACT

This report presents an investigation of torsional effects on

rectangular reinforced concrete beams. As torsion hardly acts alone

in civil engineering structures, its effect combined with those of

flexure and shear has been studied, to enable the designer and engineer

to understand the torsional effects more clearly. The advent of ultimate

strength design has resulted in members with greater slenderness in which

the so called secondary torsion effects are no longer negligible. The

report summarizes the following:

1).

2).

3).

4).

5).

a review of

Plain concrete subjected to pure torsion
the classical plastic theory; semiplastic theories by Miyamoto,
Turner and Davis and Marshall and Tembe; ultimate strength

analysis by Hsu and Navaratnarajah's method.

Reinforced concrete subjected to pure torsion a review
of the theories of Turner and Davis, and Marshall and Tembe,

and a review of the theories of Rauch-Anderson-Cowant-Ernst,

and Iyenger and Rangan.

Reinforced concrete subjected to torsion and bending a

review of the theories of Pandit and Warwaruk; Collins, Walsh,
Archer and Hall; and Iyenger and Rangan.

Reinforced concrete subjected to combined torsion, bending

and shear a review of the theory of Lessig and inter-
action surface by Hsu.
A design example is presented to illustrate the theory given

by Lessig and to compare it with the current ACI method.



