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Artificial Neural Network Modeling of Distillers Dried Grains with Solubles 
(DDGS) Flowability with Varying Process and Storage Parameters 

Rumela Bhadra,1 K. Muthukumarappan,1 and Kurt A. Rosentrater2,3 

 ABSTRACT Cereal Chem. 88(5):480–489 

Neural network (NN) modeling techniques were used to predict flow-
ability behavior of distillers dried grains with solubles (DDGS) prepared 
with varying levels of condensed distillers solubles (10, 15, and 20%, wb), 
drying temperatures (100, 200, and 300°C), cooling temperatures (–12, 25, 
and 35°C), and storage times (0 and 1 month). Response variables were 
selected based on our previous research results and included aerated bulk 
density, Hausner ratio, angle of repose, total flowability index, and Jenike 
flow index. Various NN models were developed using multiple input vari-
ables in order to predict single-response and multiple-response variables 
simultaneously. The NN models were compared based on R2, mean square 
error, and coefficient of variation obtained. In order to achieve results with 

higher R2 and lower error, the number of neurons in each hidden layer, the 
step size, the momentum learning rate, and the number of hidden layers 
were varied. Results indicate that for all the response variables, R2 > 0.83 
was obtained from NN modeling. Compared with our previous studies, 
NN modeling provided better results than either partial least squares 
modeling or regression modeling, indicating greater robustness in the NN 
models. Surface plots based on the predicted values from the NN models 
yielded process and storage conditions for favorable versus cohesive flow 
behavior for DDGS. Modeling of DDGS flowability using NN has not 
been done before, so this work will be a step toward the application of 
intelligent modeling procedures to this industrial challenge. 

 
Because fossil fuels are not replenishable, the global population 

is becoming more aware of the need to use alternative renewable 
energy sources and to develop greener sources of fuel. Bioethanol 
has become a major source of alternative fuel during the past dec-
ade. The U.S. fuel ethanol industry has shown remarkable growth 
in the past few years, and it is estimated that by 2015, U.S. etha-
nol production will exceed 15 × 109 gal/year (56.77 × 109 L/year) 
(Denicoff 2007). Distillers dried grains with solubles (DDGS) is 
the primary coproduct from the corn-based ethanol industry, and 
it has high market demand as livestock feed for ruminants and 
nonruminants. 

DDGS is produced by mixing distillers wet grains (DWG) 
(containing nonfermentable solids) and condensed distillers 
solubles (referred to as CDS or “syrup” in the industry), which is 
produced by centrifuging the whole stillage after fermentation 
and evaporating the centrifuge stream. After the DWG and CDS 
are combined, the mixture is then subjected to drying at high tem-
peratures, often having 1000°F inlet and 300°F outlet tempera-
tures (Bhadra et al in press b). The resultant golden-brown pow-
der or bulk solid is called DDGS. After drying, the DDGS is often 
placed in piles in flat storage buildings to cool under ambient 
conditions. 

The drying process forms an integral part of DDGS production, 
and it affects the flow behavior and physical and chemical proper-
ties of the DDGS. Precise drying and cooling conditions for 
DDGS are not standardized in the industry, however, and there is 
much variability in this process among ethanol plants. However, 
the final moisture content of DDGS is often targeted to be 5–10% 
(dry basis, db) (Bhadra et al in press b). 

DDGS is an excellent source of protein (32%, db), fiber 
(35%, db), and fat (10%, db) (Bhadra et al 2010b) and an 
important source of vitamins and minerals for livestock feed. 
With the rapid growth in the ethanol industry, the production of 
DDGS has also increased. It is reported that more than 30 mil-
lion metric tons of DDGS was produced in the United States in 
2010 (RFA 2010). Thus, increasing the effective use of this 

product in domestic and international markets is important to 
the ethanol industry. DDGS is mostly transported in rail cars or 
trucks and is even shipped overseas by barge or container. 
DDGS can be subjected to diverse environmental conditions 
(such as variations in temperature, humidity, and amount of 
vibration) and can harden and agglomerate during transport and 
shipping. Agglomeration, stickiness, and caking of DDGS parti-
cles during transport cause unwanted flow problems, which are 
a major economic concern to the industry because of fines, 
costs, and labor involved in unloading (AURI and MCGA 
2005). Thus, understanding the flow behavior of DDGS under 
diverse environmental and processing conditions is important 
for improving handling and storage operations. 

Reliable flow of granular solids from storage vessels is a major 
concern in the agricultural, food and dairy, mineral and mining, 
and pharmaceutical industries. A thorough knowledge of powder 
flow is necessary for developing processing and handling tech-
niques, including storage, flow from hoppers and silos, trans-
portation, mixing, drying, compressing, packaging, and other 
operations (Knowlton et al 1994). Industrial bulk solids are gener-
ally cohesive, and thus physical and flowability properties will 
determine whether the mass will compress, mix, segregate, cake, 
or flow out of hoppers (Faqih et al 2007). Design and operation of 
unit operations depend on flowability (Santomaso et al 2003). 
Despite advances in characterizing and quantifying the flow be-
havior of cohesive systems, flow behavior tends to be poorly 
understood (Faqih et al 2007). Developing numerical models of 
flowability using empirical data is needed. 

Neural network (NN), also known as artificial neural network 
(ANN), analysis is a powerful tool for data modeling (Batchelor 
et al 1997; Kachrimanis et al 2003; Baawain et al 2007; Marini 
et al 2007; Ochoa-Martinez et al 2007; Sofu and Ekinci 2007; 
Olajos et al 2008; Riahi et al 2008). NN is a type of computer-
algorithm architecture that is able to relate inputs and outputs 
through training, or of learning through iteration, even though 
no prior knowledge about the relationships between input and 
output parameters exists. The main advantages of NN are that it 
is able to adapt to a new or changed environment, to calculate 
faster, and to model unlearned data (Torrecilla et al 2005). NN 
models consist of an input layer, a hidden layer, and an output 
layer that can arbitrarily provide accurate approximations by 
utilizing an adequate number of hidden layers (Olajos et al 
2008). NN modeling is based on the human brain structure, with 
neurons containing a weight factor (produced by the transfer 
function used) for each of the inputs (Olajos et al 2008). Evi-
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dence has shown that NN can work well for cases in which there 
are inconsistencies or noise in the dataset (Biollereaux et al 
2003). Because NN models are developed through learning by 
iteration and adaptive training, it is expected that these models 
will lead to more robust predictive models, with multiple input 
variables obtained from multiple sets of experiments, as com-
pared with regression modeling. For example, Linko et al 
(1992), Ganjyal et al (2006), and Chevanan et al (2007) used 
NN modeling for food extrusion processing and proved that NN 
modeling techniques resulted in better models than did nonlin-
ear regression. 

Regression modeling is commonly used for predicting relation-
ships between input and output variables. Most regression model-
ing is done using either linear or nonlinear models and can yield 
higher-order terms and cross-products. But higher-order interac-
tion terms and a large number of cross-products in the models 
may lead to large error terms when there is actually less variation 
in the data. Thus, sometimes regression modeling can increase the 
chance of an incorrect prediction (Chevanan et al 2007). 

With respect to modeling the flow properties of powders, 
several attempts have been made over the years. Mikami et al 
(1998) and McCarthy et al (2001) modeled cohesion phenom-
ena resulting from moisture in powders. Yang and Hsiau (2001) 
developed simulation models for liquid bridge strength in a 
vibrated bed of wet glass beads. Weir (2004) modeled the flow 
of noncohesive powders in steep-wall hoppers with variable 
density. McCarthy and Ottino (1998) used discrete element 
modeling to simulate flow in rotating drums. Faqih et al (2007) 
simulated the dynamic behavior of cohesive and noncohesive 
powders in a rotating drum. 

Several studies dealing specifically with DDGS flowability 
have examined the Carr (1965) and Jenike (1964) properties using 
varying experimental variables, such as soluble solid and moisture 
content levels (Ganesan et al 2007, 2008a), as well as CDS, dry-
ing temperature, and cooling temperature levels (Bhadra et al 
2010a, 2010c). Further, moisture content, water activity, and spe-
cific weight are properties that can indirectly measure the 
flowability of powders (Ilari 2002). In terms of modeling the 
flowability of DDGS, data mining techniques and nonlinear 
regression modeling have been used before. A study by Ganesan 
et al (2007) yielded flowability plots with R2 > 0.90, and Bhadra 
et al (2010c) developed models with R2 > 0.70 for predicting 
DDGS flowability with varying process and storage variables. 
However, DDGS flow modeling using NN techniques has not 
been examined yet. NN is a powerful modeling tool, and the 
application of NN techniques for modeling DDGS flowability 
would be an essential step forward. 

Thus, the objective of this study was to model DDGS flowabil-
ity via NN by selecting several key flow properties, including 
angle of repose (AoR), Hausner ratio (HR), aerated bulk density 
(ABD), Carr compressibility (CC), total flowability index (TFI), 
and Jenike flow index (JFI). The DDGS samples were prepared 
under laboratory conditions with different levels of process vari-
ables (CDS and drying temperature) and storage variables (cool-
ing temperature and storage time), as described in Bhadra et al 
(2010a). The best NN models were then compared with results 
obtained from other studies, specifically partial least squares 
(PLS) modeling (Bhadra et al 2010a), and then our optimal mod-
els were validated with previous data, specifically the DDGS flow 
property dataset of Ganesan et al (2007). This paper will provide 
a step toward understanding DDGS flow using intelligence-based 
modeling tools. 

MATERIALS AND METHODS 

Data Pooling and Compilation 
Data for Carr (1965) and Jenike (1964) shear test flow 

properties were obtained from our previous study (Bhadra et al 

2010a) and then compiled with new flow data for samples 
stored for one month (data not published). DDGS samples were 
prepared in the laboratory with multiple CDS levels (10, 15, 
and 20%, wb) and drying temperatures (100, 200, and 300°C) 
and then cooled at varying cooling temperatures (–12, 25, and 
35°C). DWG samples collected from a commercial ethanol 
plant were mixed with the appropriate CDS levels (also pro-
cured from the same ethanol plant). Drying was done for about 
60 min (100°C), 30 min (200°C), or 10 min (300°C) in a con-
ventional laboratory oven so that the final DDGS moisture con-
tent for all samples was 8% (db), which is close to industry 
practice. Details on drying equipment and procedures can be 
found in Bhadra et al (2010a). The drying temperature, CDS, 
and cooling temperature ranges used in this study were based 
on Bhadra et al (2010a) and on interviews with industry ex-
perts. A second set of samples, prepared with similar CDS, 
drying temperature, and cooling temperature levels, were stored 
for one month after production, and then Carr and Jenike shear 

TABLE I 
Independent and Dependent (Response) Variables Used 

for the Neural Network Modeling in This Study 

Independent Variables Level 

Condensed distillers solubles (%, wb) 10 15 20 
Drying temperature (°C) 100 200 300 
Cooling temperature (°C) –12 25 35 
Storage time (month) 0  1 

Dependent (Response) Variables Units 

Angle of repose  ° 
Hausner ratio  - 
Aerated bulk density  g/cm3 
Carr compressibility  % 
Total flowability index  - 
Jenike flow index - 

TABLE II 
Experimental Design Used in This Study, Based on Taguchi’s Orthogonal 

Array (L27), to Examine Various Neural Network Structuresa 

 
 
Trial 

 
 

PE 

Step Size 
(Hidden 
Layer) 

Mom Rate 
(Hidden 
Layer) 

Step Size 
(Output 
Layer) 

Mom Rate 
(Output 
Layer) 

1 4 0.10 0.30 0.10 0.30 
2 4 0.10 0.30 0.10 0.50 
3 4 0.10 0.30 0.10 0.70 
4 4 1.00 0.50 1.00 0.30 
5 4 1.00 0.50 1.00 0.50 
6 4 1.00 0.50 1.00 0.70 
7 4 2.00 0.70 2.00 0.30 
8 4 2.00 0.70 2.00 0.50 
9 4 2.00 0.70 2.00 0.70 

10 8 0.10 0.50 2.00 0.30 
11 8 0.10 0.50 2.00 0.50 
12 8 0.10 0.50 2.00 0.70 
13 8 1.00 0.70 0.10 0.30 
14 8 1.00 0.70 0.10 0.50 
15 8 1.00 0.70 0.10 0.70 
16 8 2.00 0.30 1.00 0.30 
17 8 2.00 0.30 1.00 0.50 
18 8 2.00 0.30 1.00 0.70 
19 12 0.10 0.70 1.00 0.30 
20 12 0.10 0.70 1.00 0.50 
21 12 0.10 0.70 1.00 0.70 
22 12 1.00 0.30 2.00 0.30 
23 12 1.00 0.30 2.00 0.50 
24 12 1.00 0.30 2.00 0.70 
25 12 2.00 0.50 1.00 0.30 
26 12 2.00 0.50 1.00 0.50 
27 12 2.00 0.50 1.00 0.70 

a PE = number of processing elements; Mom Rate = momentum learning rate;
one hidden layer was used for all trials. 



482 CEREAL CHEMISTRY 

test properties were measured. Thus, there were four inde-
pendent variables (CDS, drying temperature, cooling tempera-
ture, and storage time) in the combined data set. Cooling tem-
perature and storage time were the “storage” variables for this 
paper. Carr and Jenike shear flow properties, including AoR, 
HR, ABD, CC, TFI, and JFI, were selected as the response 
(dependent) variables for the NN modeling. Details for all of 
the Carr test procedures and properties can be found in Carr 
(1965) and Bhadra et al (2009a). Similarly, details of Jenike 
shear test procedures and properties can be found in Jenike 
(1964) and Bhadra et al (2009a). The list of independent and 
dependent (response) variables is given in Table I. 

Experimental Design and Network Parameter Selection 
One challenge of this study was in selecting appropriate  

network parameters for the modeling process. According to 
Chevanan et al (2007), a generalized feed-forward architecture, 
momentum rate from 0.2 to 0.7, initial step size from 0.1 to 0.3, 
one hidden layer, and default decay weight of 0.01 yielded mod-
els with high R2 for modeling of extruded feed properties. Also, it 
has been recommended by commercial software (Neurodimen-
sions, Gainesville, FL) to use one hidden layer and a multilayer 
perception (MLP) network in the beginning. Hence, based on 
Chevanan et al (2007) and software recommendations, we carried 
out some preliminary trials for modeling using Neurosolutions 
version 6 (Neurodimensions). On the basis of several preliminary 
trials (data not shown), we found that for hidden and output lay-
ers, processing elements from 4 to 12, step sizes from 0.1 to 2.0, 
and momentum rates from 0.3 to 0.7 yielded high R2 and low 
coefficients of variation (CV). However, in the output layer, the 
number of processing elements was not varied and was kept at the 
default values (depending on the given network structure) gener-
ated by the software itself. 

For all models, we used 70% of the data to generate the models, 
the training set held 10% of the data for cross-validation (or stop-

ping criteria), and the testing set held 20% of the data. The data 
were allocated randomly. Each of the models was trained for three 
times with standard training steps of 1,000 epochs, using a super-
vised learning process. The TanhAxon transfer function was used 
for all trials. This procedure incorporates a layer of processing 
elements with hyperbolic nonlinear transfer functions, and the out-
put range is from –1 to 1. Also, we used MLP network architecture 
for all the trials; MLP is considered the most widely used NN for 
general classification and regression. MLP feed-forward networks 
are typically trained with a static back-propagation algorithm. The 
main advantage is that they are easy to use and can approximate 
any input-output maps. All NN modeling trials were done with one 
hidden layer because more than one hidden layer may lead to the 
problem of local minima (Ochoa-Martinez et al 2007). 

We developed a formal experimental design based on our pre-
liminary trials, one that would vary each of the network parame-
ters. We used a Taguchi orthogonal array (L27) with five network 
variables, including number of processing elements (hidden 
layer), step size (hidden layer), momentum rate (hidden layer), 
step size (output layer), and momentum rate (output layer). For 
these five variables, we used an equidistant three-level design, 
which yielded the L27 orthogonal array. The experimental design 
is given in Table II. This design was used to develop models for 
each dependent variable with multiple inputs and single output, in 
which a single response variable was a function of all independent 
variables. The results of the best NN model for each response 
variable were then compared with the results of PLS modeling 
obtained from Bhadra et al (2010a). The DDGS flowability data-
set obtained from Ganesan et al (2007) was then used to validate 
the optimal NN model parameters. Finally, through TableCurve 
3D software (version 4.0.01, SYSTAT Software, San Jose, CA), 
the predicted values of flow properties obtained from the optimal 
NN modeling output were graphically displayed against varying 
CDS levels and the ratio of cooling temperature to drying tem-
perature (C/D). 

TABLE III
Neural Network Modeling Output for Angle of Repose (AoR), Hausner Ratio (HR), and Aerated Bulk Density (ABD) 

with Multiple Input Single Outputa 

 AoR HR ABD 

Trial R2 MSE CV (%) R2 MSE CV (%) R2 MSE CV (%) 

1 0.75 2.33 2.76 0.09 0.005 4.16 0.40 0.0005 4.02 
2 0.75 2.29 2.66 0.30 0.005 5.00 0.57 0.0004 3.48 
3 0.76 2.18 2.54 0.30 0.005 4.04 0.55 0.0004 3.56 
4 0.71 2.46 2.85 0.20 0.005 4.41 0.55 0.0004 3.64 
5 0.73 2.39 2.83 0.38 0.011 6.46 0.56 0.0004 3.63 
6 0.73 2.35 0.48 0.68 0.002 3.27 0.57 0.0004 3.41 
7 0.75 2.22 2.64 0.65 0.005 3.09 0.46 0.0005 3.88 
8 0.81 2.04 2.47 0.64 0.005 3.13 0.54 0.0004 3.61 
9 0.77 2.09 2.49 0.63 0.005 3.86 0.50 0.0004 3.69 

10 0.75 2.24 2.66 0.48 0.005 4.13 0.57 0.0004 3.58 
11 0.76 2.17 2.60 0.51 0.004 3.57 0.53 0.0004 3.71 
12 0.79 2.05 2.55 0.32 0.004 3.30 0.52 0.0004 3.71 
13 0.75 2.25 2.60 0.46 0.006 4.40 0.57 0.0004 3.48 
14 0.76 2.20 2.60 0.39 0.005 3.76 0.57 0.0004 3.51 
15 0.75 2.26 2.48 0.68 0.005 3.12 0.58 0.0004 3.56 
16 0.87 1.69 2.16 0.42 0.003 3.44 0.57 0.0004 3.41 
17 0.79 1.97 2.47 0.36 0.005 3.82 0.83 0.0004 3.32 
18 0.76 2.19 2.57 0.65 0.003 3.40 0.55 0.0004 3.60 
19 0.76 2.19 2.59 0.29 0.005 3.79 0.59 0.0004 3.50 
20 0.77 2.11 2.65 0.61 0.004 3.69 0.59 0.0004 3.46 
21 0.78 2.02 2.60 0.41 0.01 4.70 0.54 0.0004 3.63 
22 0.74 2.25 2.68 0.66 0.002 3.28 0.49 0.0004 0.48 
23 0.80 1.79 2.44 0.76 0.003 3.77 0.51 0.0005 3.75 
24 0.78 1.88 2.39 0.46 0.006 4.38 0.58 0.0004 3.53 
25 0.77 2.09 2.57 0.25 0.004 4.00 0.59 0.0004 3.48 
26 0.78 1.93 2.39 0.84 0.002 2.30 0.57 0.0003 3.50 
27 0.77 2.05 2.42 0.78 0.004 3.83 0.60 0.0004 3.51 

a R2 = coefficient of determination; MSE = mean square error; and CV = coefficient of variation. Bold font indicates that this neural network combination was best 
for modeling the response variable. 
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RESULTS AND DISCUSSION 

NN Models 
Tables III and IV present the modeling output for each response 

variable (listed in Table I), with CDS (%, wb), drying temperature 
(°C), cooling temperature (°C), and storage time (months) as the 
independent variables. For each dependent variable, the best model 
and its corresponding network architecture was chosen based on 
highest R2, lowest CV value, and low MSE (mean square error). 
From Table III, for AoR, trial 16 (eight processing elements) 
yielded the best model (R2 = 0.87, CV = 2.16%, MSE = 1.69). For 
HR, trial 26 (12 processing elements) yielded the best model (R2 = 
0.84, CV = 2.30%). For ABD, trial 17 (eight processing elements) 
yielded the best model (R2 = 0.83, CV = 3.32%). From Table IV, for 
CC, trial 26 (12 processing elements) yielded the best model (R2 = 
0.86, CV = 15.05%); even though trial 21 yielded 13.79% CV, it 
was not selected as the best model because of its lower R2 (0.74). 
For TFI, trial 26 (12 processing elements) yielded the best model 
(R2 = 0.87, CV = 1.22%, MSE = 1.31). For JFI, trial 4 (four 
processing elements) yielded the best model (R2 = 0.83, CV = 
23.50%, MSE = 0.96). Except for CC and JFI, the CV values were 
below 10%, indicating that the NN models were a good fit with 
observed values. Chevanan et al (2007) also showed mixed results; 
for some of the response variables, CV was below 10%, and for 
other variables the CV ranges were higher (15%). For Chevanan et 
al (2007), increasing the number of input variables increased the R2, 
decreased CV, and provided better accuracy for predicted models. 
However, for the current study, such behavior did not occur. 

Figure 1 is the graphical representation of the optimal NN 
model performance for all response variables in Table I (with 
CDS, drying temperature, cooling temperature, and storage time 
as the independent variables). AoR, HR, ABD, and TFI showed 
good fit between observed (solid line) and predicted (dashed line) 
values for every exemplar. Exemplar is a complete pattern of sam-
ples in NN modeling, and it is related to the number of indepen-

dent variables. It was calculated as the total number of data points 
in the input file divided by the number of processing elements. 
For CC, there was some scatter between observed and predicted 
values for exemplars 1 and 4; however, the rest of the graph 
showed close resemblances between observed and predicted val-
ues. On the other hand, the JFI and TFI/JFI graphs showed differ-
ences between observed and predicted values. Figure 2 is the 
graphical representation of AoR, JFI, TFI/JFI, and HR NN mod-
els, but without storage time as one of the independent variables 
(this was done to subsequently compare PLS model results with 
those of Bhadra et al (2010a), which did not use storage time as a 
factor). From Figure 2, it is noted that for AoR, TFI/JFI, and HR, 
the NN models yielded a good fit between observed (solid line) 
and predicted (dashed line) plots. 

Moving a step further, with the best NN model combinations 
obtained for each of the dependent variables, we compared results 
with PLS multivariate modeling results obtained from our previ-
ous study (Bhadra et al 2010a), which had the same CDS, drying 
temperature, and cooling temperature levels. In order to have an 
ideal comparison between NN and PLS, we did not include stor-
age time as an independent variable, because in Bhadra et al 
(2010a) storage time was not part of that study. Table V represents 
the comparison of NN modeling with PLS modeling results ob-
tained from Bhadra et al (2010a). AoR yielded R2 = 0.89 for both 
NN and PLS modeling; however, PLS modeling required nine 
principal components to build the model, indicating a complex 
multidimensional network. Thus, the NN procedure yielded a 
better model for AoR. JFI yielded lower R2 (0.73) compared with 
the PLS model (R2 = 0.94). In this case, the PLS modeling used 
only two principal components. This result indicates that for JFI, 
the PLS procedure was better than NN. The dimensionless 
parameter TFI/JFI yielded a better model with NN (R2 = 0.87) 
compared with PLS modeling (R2 = 0.80, 10 principal compo-
nents). For HR, NN also yielded a better model (R2 = 0.88) com-
pared with 3D nonlinear modeling (R2 = 0.60). 

TABLE IV
Neural Network Modeling Output for Carr Compressibility (CC), Total Flowability Index (TFI), and Jenike Flow Index (JFI) 

with Multiple Input Single Outputa 

 CC TFI JFI 

Trial R2 MSE CV (%) R2 MSE CV (%) R2 MSE CV (%) 

1 0.35 10.39 24.60 0.59 14.72 4.98 0.68 1.44 27.42 
2 0.78 5.33 16.99 0.69 11.74 4.17 0.62 0.94 22.72 
3 0.47 9.99 21.22 0.38 6.48 2.19 0.58 7.92 19.80 
4 0.55 10.18 30.23 0.55 4.89 2.41 0.83 0.96 23.50 
5 0.69 6.22 14.84 0.34 6.47 2.88 0.70 0.84 21.83 
6 0.56 6.35 16.99 0.50 5.41 2.51 0.51 1.22 24.57 
7 0.64 7.63 19.91 0.44 5.85 2.58 0.44 1.32 28.38 
8 0.66 7.66 23.43 0.03 7.32 2.87 0.58 1.31 31.66 
9 0.67 7.96 22.43 0.34 6.39 2.76 0.56 1.29 29.02 

10 0.65 9.44 20.46 0.40 6.39 2.68 0.63 0.97 27.95 
11 0.78 6.94 19.12 0.36 6.81 2.80 0.73 1.14 26.96 
12 0.59 10.14 21.20 0.71 3.77 2.11 0.72 1.05 31.34 
13 0.68 6.77 17.55 0.75 3.05 1.73 0.79 0.68 27.18 
14 0.55 8.92 19.62 0.65 4.12 2.17 0.57 1.52 35.31 
15 0.68 5.45 16.36 0.64 4.05 1.94 0.12 3.62 54.19 
16 0.63 5.04 15.74 0.76 3.10 1.78 0.62 1.07 27.09 
17 0.73 6.01 18.53 0.76 3.07 1.68 0.68 0.97 22.67 
18 0.63 6.07 19.54 0.67 3.98 2.11 0.57 1.26 26.23 
19 0.32 9.25 21.68 0.59 4.84 2.17 0.75 0.70 24.59 
20 0.62 7.63 16.47 0.09 5.41 2.31 0.57 1.16 32.75 
21 0.74 4.40 13.79 0.13 5.87 2.49 0.51 1.26 26.61 
22 0.62 8.85 24.02 0.55 3.75 1.91 0.50 1.57 27.20 
23 0.58 9.41 20.40 0.80 2.46 1.63 0.12 2.38 32.00 
24 0.68 4.97 16.16 0.79 2.24 1.51 0.54 1.31 26.36 
25 0.74 6.03 15.11 0.86 1.40 1.23 0.56 1.12 25.71 
26 0.86 4.06 15.05 0.87 1.31 1.22 0.61 1.18 23.92 
27 0.63 8.01 21.94 0.84 1.56 1.32 0.53 1.33 26.20 

a R2 = coefficient of determination; MSE = mean square error; and CV = coefficient of variation. Bold font indicates that this neural network combination was best 
for modeling the response variable. 
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Model Validation 
Another objective of this study was to validate the optimum 

NN models with external data, specifically that of Ganesan et al 
(2007), with moisture content as the independent variable (10, 15, 
20, 25, and 30%, db). Table V represents the validation results 

using the Ganesan et al (2007) dataset. From Table V, HR (R2 = 
0.94, CV = 0.62%), ABD (R2 = 0.83, CV = 3.32%), and CC (R2 = 
0.89, CV = 24.62%) validated the dataset of Ganesan et al (2007) 
with relatively high fit. JFI (R2 = 0.63, CV = 27.36%) and TFI/JFI 
(R2 = 0.63, CV = 24.51%), however, only yielded moderate fit, 

Fig. 1. Predicted output for flow properties using optimal neural network with condensed distillers solubles level (%, wb), drying temperature (°C), 
cooling temperature (°C), and storage time (months) as the independent variables. Exemplar was calculated as the total number of data points in the input 
set divided by the number of processing elements. Solid lines are observed output; dashed lines are predicted output. 
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indicating that the models did not do an excellent job of describ-
ing Ganesan et al (2007) data. However, AoR (R2 = 0.38, CV = 
3.56%) and TFI (R2 = 0.29, CV = 2.47%) did not fit well, even 
though CV values were below 4%. 

Figure 3 presents the predicted values for each response vari-
able using the Ganesan et al (2007) data. Graphical represen-
tation also confirms that for AoR and TFI, there were wide 
differences between observed (solid line) and predicted (dashed 
line) values, indicating that our optimal NN models did not fit 
Ganesan et al (2007) data well. Ganesan et al (2007) data used 
moisture content as the independent variable and used 100  
and 25°C for drying and cooling temperatures, respectively, 
throughout all experiments. So, possibly because of this differ-
ence in the number of input variables, there were some differ-

ences between predicted and observed values of AoR and TFI, 
as depicted in Figure 3. 

Surface Plots of Predicted Flow Variables 
Obtained from the Optimal NN Models 

In the last phase of this study, we graphically displayed the pre-
dicted values of each response variable obtained from the optimal 
NN models according to CDS level and C/D. Figure 4A gives the 
optimal predicted surface for AoR. For DDGS, a lower AoR, 
42°, would indicate fair to passable flow behavior, but a higher 
AoR, 48°, would signify cohesive DDGS flow behavior (Carr 
1965). Thus, according to the AoR prediction plot, it is clear that 
lower CDS levels (<13%, wb) combined with a 0.2–0.4 C/D 
would create DDGS with better flowability (AoR 42°). A C/D of 

Fig. 2. Predicted output for flow properties for data obtained from Bhadra et al (2010a) using an artificial neural network with the optimal network
structure indicated in Table V without storage time as an independent variable. Exemplar was calculated as the total number of data points in the input set 
divided by the number of processing elements. Solid lines are observed output; dashed lines are predicted output. 

TABLE V
Comparison of Optimal Neural Networks (This Study) with Bhadra et al (2010a) Results 
and Model Validation with Ganesan et al (2007) Data for Key Flow Properties of DDGSa 

 Optimal NN Models 
(with storage time included  
in independent variables) 

Optimal NN Models  
(without storage time included  

in independent variables) 

 
Modeling Results  

of Bhadra et al (2010a) 

NN Modeling  
with Ganesan et al (2007)  

Data Set 

Response 
Variables 

 
R2 

 
CV (%) 

Optimal 
Structure 

 
R2 

 
CV (%) 

Optimal 
Structure 

 
R2 

Optimal 
Structure 

 
R2 

 
CV (%) 

Optimal 
Structure 

AoR (°) 0.87 2.16 Trial 16  0.89 3.14 Trial 16  0.89 9 components 
(PLS modeling) 

0.38 3.56  Trial 16 

JFI (-) 0.83 23.50 Trial 4  0.73 42.83 Trial 4  0.94 2 components 
(PLS modeling) 

0.63 27.36 Trial 4 

TFI/JFI (-) 0.65 26.15 Trial 26  0.87 14.81 Trial 4  0.80 10 components 
(PLS modeling) 

0.63 24.51 Trial 4 

HR (-) 0.84 2.30 Trial 26  0.88 4.08 Trial 26  0.60 0.06 SEM  
(3D modeling) 

0.94 0.62 Trial 26 

ABD (g/cm3) 0.83 3.32 Trial 17  0.85 3.09 Trial 17    0.83 3.32 Trial 17 
CC (%) 0.86 15.05 Trial 26  0.83 16.31 Trial 26    0.89 24.62 Trial 26 
TFI (-) 0.87 1.22 Trial 26  0.89 1.16 Trial 26    0.29 2.47 Trial 26 

a DDGS = distillers dried grains with solubles; NN = neural network; AoR = angle of repose; JFI = Jenike flow index; TFI = total flowability index; HR = Hausner 
ratio; ABD = aerated bulk density; CC = Carr compressibility; and SEM = standard error of the mean. For NN trial information, refer to Table II. 
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0.1 to –0.1, combined with a CDS level of 19% (wb), could cre-
ate DDGS with potential flow problems (AoR 48°). For Ganesan 
et al (2008b), higher moisture content (>25%, db) showed some 
lubricating effects and slightly improved flow behavior. However, 
for our case, such lubricating effects at higher CDS levels were 
not seen, and the cohesive nature of DDGS increased with an 
increase in CDS levels. CDS is relatively high in fat content (6–
12%, db) (Rosentrater and Muthukumarappan 2006). High CDS 
levels correlate to high fat levels in DDGS. Fat can be a major 
cause in cohesiveness between DDGS particles because tempera-
ture fluctuations (e.g., high summer temperatures) can lead to 
phase changes (e.g., partial melting, changes in crystallinity) of 
adjacent fat molecules and increase the cohesive strength between 
particles (Bhadra et al in press a). 

Figure 4B presents the optimal HR plot according to CDS 
level and C/D. Higher HR (>1.15) generally indicates poor or 
cohesive flow in DDGS (Bhadra et al 2009b). However, accord-
ing to Ganesan et al (2007), empirical modeling of DDGS pre-
dicted that for HR between 1.03 and 1.05, “fair” or potentially 
problematic flow would occur, but for HR > 1.05, “poor” flow 

or flow with definite problems would exist. From Figure 4B, we 
can see that lower CDS levels combined with 0.2–0.4 or –0.1 to 
–0.2 C/D yielded HR > 1.15, indicating potential flow problems 
in the DDGS. 

According to Figure 4C, predicted ABD did not have much 
relationship to CDS level at levels greater than 13% (wb), but 
there was a marked increase in ABD with an increase in C/D. 
ABD may be related to particle size. Lower bulk densities (at 
CDS > 13% [wb] and C/D from 0.1 to 0.4) represent more 
entrapped void spaces resulting from larger particle sizes (Yan 
and Barbosa-Canovas 1997). Again, larger particle size would 
indicate a lower surface area to volume ratio, and thus, less 
cohesiveness and better flow (Farley and Valentin 1967). 

Figure 4D shows the optimal CC modeling results and indicates 
that C/D had a major influence on CC, whereas CDS level did 
not. Lower CC (<15%) generally indicates good flow behavior in 
powders (Carr 1965), and in this case, C/D between 0.1 and –0.1 
predicted DDGS with low CC and, hence, good flow. 

Figure 4E gives the optimal predicted plot of TFI. TFI > 75 
generally indicates good flow behavior, and index values be-

Fig. 3. Predicted output for flow properties for data obtained from Ganesan et al (2007) using an artificial neural network with the network structure 
indicated in Table V. Exemplar was calculated as the total number of data points in the input set divided by the number of processing elements. Solid 
lines are observed output; dashed lines are predicted output. 
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tween 60 and 75 indicate fair flow behavior in bulk solids (Carr 
1965). According to Figure 4E, higher CDS levels (>18%, wb) 
combined with higher C/D (0.25–0.4) predict TFI values be-
tween 72 and 74, indicating some possible flow problems in the 
DDGS samples. 

Figure 4F presents the optimal predicted JFI for varying CDS 
and C/D. JFI > 4 generally indicates fair to good flow behavior in 
bulk solids (Fitzpatrick et al 2004). From our predicted surface, 
we observe that CDS levels <17% (wb) combined with C/D in the 
range of 0.1 to –0.05 predict higher JFI (>4) for DDGS samples, 
hence indicating good flow behavior. 

CONCLUSIONS 

This research revealed that NN modeling was successful in pre-
dicting the behavior of key flow properties of DDGS as a function 
of multiple process (CDS addition level and drying temperature) 
and environmental or storage variables (cooling temperature and 
storage time) with only one hidden layer and employing MLP 
network architecture. For AoR, TFI/JFI, and HR, NN modeling 
yielded better models (R2 > 0.87) than both PLS multivariate 
modeling and response surface modeling done in our previous 
studies. Our proposed NN models were validated with other 

 

 

 

Fig. 4. Graphical representation of the predicted surfaces obtained from the optimal neural network model as a function of the ratio of cooling tempera-
ture to drying temperature (-) and condensed distillers solubles (CDS) level (%, wb). A, angle of repose (AoR, °); B, Hausner ratio (HR, -); C, aerated 
bulk density (ABD, g/cm3); D, Carr compressibility (%); E, total flowability index (-); and F, Jenike flow index (-). 
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DDGS flowability data as well, with resulting model performance 
of R2 > 0.83 for several variables, although not all of them. Ob-
served and predicted plots were in accordance with the NN model 
performance values. From a practical point of view, this study 
was able to predict values for DDGS flow properties with respect 
to varying CDS, drying temperature, cooling temperature, and 
storage time levels. Hence, from the predicted plots, it was possi-
ble to classify flow properties (favorable or cohesive flow) based 
on given CDS levels and C/D. 

Drying temperature and CDS levels were based on discussions 
with industry experts. Cooling temperature and storage time lev-
els were selected to cover average ambient temperature and 
DDGS hauling times faced by the DDGS industry. The key points 
from these results are as follows. 

CDS levels below 13% (wb) would produce DDGS with AoR 
42°, low HR values, and JFI > 4, indicating noncohesive DDGS. 

CDS levels up to 14% (wb) resulted in DDGS with the highest 
TFI values, indicating good DDGS flow characteristics. 

Overall, AoR, HR, and JFI properties showed that C/D (-) 
values between 0.1 and –0.1 yielded DDGS with better flow 
behavior. 

Thus, predicted surface plots can serve as a useful tool for 
industrial practice and academic research to predict the flow 
behavior of DDGS under given process and environmental condi-
tions. Such predictive modeling encompasses a wide range of 
possible conditions in DDGS production. This approach could 
open new possibilities for applying artificial intelligence based 
algorithms toward understanding flowability of DDGS and other 
bulk solids. 
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