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Abstract

Let q(x) be a real-valued compactly supported sufficiently smooth
function. It is proved that the scattering data A(−β, β, k) ∀β ∈ S2,
∀k > 0, determine q uniquely. Under the same assumptions on q(x) it
is proved that the scattering data A(β, α0, k) ∀β ∈ S2, ∀k > 0, and a
fixed α0, the direction of the incident plane wave, determine q uniquely.
The above scattering data are non-overdetermined in the sense that the
scattering data depends on the same number of variables as the poten-
tial q(x), that is, on three variables. earlier there were no uniqueness
results for the solution of three-dimensional inverse scattering problems
with non-overdetermined scattering data.
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1 Introduction

The scattering solution u(x, α, k) solves the scattering problem:

[∇2 + k2 − q(x)]u = 0 in R3, (1)

u = eikα·x + A(β, α, k)
eikr

r
+ o

(
1
r

)
, r := |x| → ∞, β :=

x

r
. (2)

Here α, β ∈ S2 are the unit vectors, S2 is the unit sphere, the coefficient
A(β, α, k) is called the scattering amplitude, q(x) is a real-valued compactly
supported sufficiently smooth function. We want to determine q(x) given the
backscattering data A(−β, β, k), or the data A(β, α0, k) ∀β ∈ S2, ∀k > 0, α0 ∈
S2 is fixed. These are 3D inverse scattering problems with non-overdetermined
data: the data depend on the same number of variables as the q(x), i.e., on
three variables. The first uniqueness results for such problems were obtained in
[2]- [4].
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Assumption A): We assume that q is compactly supported, i.e., q(x) = 0 for
|x| > a, where a > 0 is an arbitrary large fixed number; q(x) is real-valued, i.e.,
q = q; and q(x) ∈ H`

0(Ba), ` > 3.
Here Ba is the ball centered at the origin and of radius a, and H`

0(Ba) is the
closure of C∞

0 (Ba) in the norm of the Sobolev space H`(Ba) of functions whose
derivatives up to the order ` belong to L2(Ba).

It was proved in [6] that if q = q and q ∈ L2(Ba) is compactly supported,
then the resolvent kernel G(x, y, k) of the Schrödinger operator −∇2+q(x)−k2 is
a meromorphic function of k on the whole complex plane k, analytic in Imk ≥ 0,
except, possibly, of a finitely many simple poles at the points ikj , kj > 0, 1 ≤
j ≤ n, where −k2

j are negative eigenvalues of the selfadjoint operator −∇2+q(x)
in L2(R3). Consequently, the scattering amplitude A(β, α, k), corresponding to
the above q, is a restriction to the positive semiaxis k ∈ [0,∞) of a meromorphic
on the whole complex k-plane function.

It was proved by the author ([7]), that the fixed-energy scattering data
A(β, α) := A(β, α, k0), k0 = const > 0, ∀β ∈ S2

1 , ∀α ∈ S2
2 , determine real-valued

compactly supported q ∈ L2(Ba) uniquely. Here S2
j , j = 1, 2, are arbitrary small

open subsets of S2 (solid angles).
In [10] (see also monograph [11], Chapter 5, and [8]) an analytical formula

is derived for the reconstruction of the potential q from exact fixed-energy scat-
tering data, and from noisy fixed-energy scattering data, and stability estimates
and error estimates for the reconstruction method are obtained. To the author’s
knowledge, these are the only known until now theoretical error estimates for
the recovery of the potential from noisy fixed-energy scattering data in the
three-dimensional inverse scattering problem.

In [9] stability results are obtained for the inverse scattering problem for
obstacles.

The scattering data A(β, α) depend on four variables (two unit vectors),
while the unknown q(x) depends on three variables. In this sense the inverse
scattering problem, which consists of finding q from the fixed-energy scattering
data A(β, α), is overdetermined.

Historical remark. In the beginning of the forties of the last century physi-
cists raised the the following question: is it possible to recover the Hamilto-
nian of a quantum-mechanical system from the observed quantities, such as
S-matrix? In the non-relativistic quantum mechanics the simplest Hamiltonian
H = −∇2 + q(x) can be uniquely determined if one knows the potential q(x).
The S-matrix in this case is in one-to-one correspondence with the scattering
amplitude A: S = I − k

2πiA, where I is the identity operator in L2(S2), A is
an integral operator in L2(S2) with the kernel A(β, α, k), and k2 > 0 is energy.
Therefore, the question, raised by the physicists, is reduced to an inverse scat-
tering problem: can one determine the potential q(x) from the knowledge of the
scattering amplitude. We have briefly discussed this problem above.

Since the above question was raised, there were no uniqueness theorems for
three-dimensional inverse scattering problems with non-overdetermined data.
The goal of this paper is to outline a proof of such theorems. The results are
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formulated in Theorem 1.1:

Theorem 1.1 If Assumption A) holds, then the data A(−β, β, k) ∀β ∈ S2,
∀k > 0, determine q uniquely. Under the same assumptions, the data A(β, α0, k)
∀β ∈ S2, a fixed α = α0 ∈ S2, and ∀k > 0, determine q uniquely.

Remark 1. The conclusion of Theorem 1.1 remains valid if the scattering
data A(−β, β, k), or the scattering data A(β, α0, k) are known ∀β ∈ S2

1 and
k ∈ (k0, k1), where (k0, k1) ⊂ [0,∞) is an arbitrary small interval, k1 > k0, and
S2

1 is an arbitrary small open subset of S2. The assumption ` > 3 can be relaxed
to ` > 2.

In Section 2 we formulate some known auxiliary results and introduce some
notations. In Section 3 an outline of the proof of Theorem 1.1 is given.

The results, presented in this paper, were reported in [3], [4]. We follow
closely the outline of the ideas from these papers.

2 Auxiliary results

Let

F (g) := g̃(ξ) =
∫

R3
g(x)eiξ·xdx, g(x) =

1
(2π)3

∫
R3

e−iξ·xg̃(ξ)dξ. (3)

If f ∗ g :=
∫

R3 f(x− y)g(y)dy, then

F (f ∗ g) = f̃(ξ)g̃(ξ), F (f(x)g(x)) =
1

(2π)3
f̃ ∗ g̃. (4)

If

G(x− y, k) :=
eik[|x−y|−β·(x−y)]

4π|x− y|
, (5)

then
F (G(x, k)) =

1
ξ2 − 2kβ · ξ

, ξ2 := ξ · ξ. (6)

The scattering solution u = u(x, α, k) solves (uniquely) the integral equation

u(x, α, k) = eikα·x −
∫

Ba

g(x, y, k)q(y)u(y, α, k)dy, (7)

where

g(x, y, k) :=
eik|x−y|

4π|x− y|
. (8)

If
v = e−ikα·xu(x, α, k), (9)

then
v = 1−

∫
Ba

G(x− y, k)q(y)v(y, α, k)dy, (10)
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where G is defined in (5). Define ε by the formula

v = 1 + ε. (11)

Then (10) can be rewritten as

ε(x, α, k) = −
∫

R3
G(x− y, k)q(y)dy − Tε, (12)

where Tε :=
∫

Ba
G(x − y, k)q(y)ε(y, α, k)dy. Fourier transform of (12) yields

(see (4),(6)):

ε̃(ξ, α, k) = − q̃(ξ)
ξ2 − 2kα · ξ

− 1
(2π)3

1
ξ2 − 2kα · ξ

q̃ ∗ ε̃. (13)

An essential ingredient of our proof in Section 3 is the following lemma, proved
by the author in [11], p.262, and in [10].

Lemma 2.1 If Aj(β, α, k) is the scattering amplitude corresponding to potential
qj, j = 1, 2, then

−4π[A1(β, α, k)−A2(β, α, k)] =
∫

B1

[q1(x)− q2(x)]u1(x, α, k)u2(x,−β, k)dx,

(14)
where uj is the scattering solution corresponding to qj.

Consider an algebraic variety M in C3 defined by the equation

M := {θ · θ = 1, θ · θ := θ2
1 + θ2

2 + θ2
3, θj ∈ C, 1 ≤ j ≤ 3.} (15)

This is a non-compact variety, intersecting R3 over the unit sphere S2.
Let R+ = [0,∞). The following result is proved in [12], p.62.

Lemma 2.2 If Assumption A) holds, then the scattering amplitude A(β, α, k)
is a restriction to S2×S2×R+ of a function A(θ′, θ, k) on M×M×C, analytic
on M×M and meromorphic on C, θ′, θ ∈M, k ∈ C.

The scattering solution u(x, α, k) is a meromorphic function of k in C, analytic
in Imk ≥ 0, except, possibly, at the points k = ikj , 1 ≤ j ≤ n, kj > 0, where
−k2

j are negative eigenvalues of the selfadjoint Schrödinger operator, defined
by the potential q in L2(R3). These eigenvalues can be absent, for example, if
q ≥ 0.

We need the notion of the Radon transform: f̂(β, λ) :=
∫

β·x=λ
f(x)dσ, where

dσ is the element of the area of the plane β · x = λ, β ∈ S2, λ is a real number.
The following properties of the Radon transfor will be used:

∫
Ba

f(x)dx =∫ a

−a
f̂(β, λ)dλ,

∫
Ba

eikβ·xf(x)dx =
∫ a

−a
eikλf̂(β, λ)dλ,f̂(β, λ) = f̂(−β,−λ).These

properties are proved, e.g., in [13], pp. 12, 15. We also need the following
Phragmen-Lindelöf lemma, which is proved, e.g., in [1], p.69.

Lemma 2.3 Let f(z) be holomorphic inside an angle A of opening < π; |f(z)| ≤
c1e

c2|z|, z ∈ A, c1, c2 > 0 are constants; |f(z)| ≤ M on the boundary of A;
and f is continuous up to the boundary of A. Then |f(z)| ≤ M, ∀z ∈ A.
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3 Outline of Proof of Theorem 1.1

The scattering data in Remark 1 determine uniquely the scattering data in
Theorem 1.1 by Lemma 2.2. Assume that potentials qj , j = 1, 2, generate the
same scattering data: A1(−β, β, k) = A2(−β, β, k) ∀β ∈ S2, ∀k > 0, and
let p(x) := q1(x)− q2(x). Then by Lemma 2.1, see equation (14), one gets

0 =
∫

Ba

p(x)u1(x, β, k)u2(x, β, k)dx, ∀β ∈ S2, ∀k > 0. (16)

By (9) and (11) one can rewrite (16) as∫
Ba

e2ikβ·x[1 + ε(x, k)]p(x)dx = 0 ∀β ∈ S2, ∀k > 0, (17)

where ε(x, k) := ε := ε1(x, k) + ε2(x, k) + ε1(x, k)ε2(x, k). By Lemma 2.2 the
relations (16) and (17) hold for complex k, k = κ+iη

2 , κ+iη 6= 2ikj , η ≥ 0.
Using formulas (3)-(4), one derives from (17) the relation

p̃((κ + iη)β) +
1

(2π)3
(ε̃ ∗ p̃)((κ + iη)β) = 0 ∀β ∈ S2, ∀κ ∈ R, (18)

where the notation (f ∗ g)(z) means that the convolution f ∗ g is calculated at
the argument z = (κ + iη)β.

One has

sup
β∈S2

|ε̃ ∗ p̃| := sup
β∈S2

|
∫

R3
ε̃((κ + iη)β − s)p̃(s)ds| ≤ ν(κ, η) sup

s∈R3
|p̃(s)|, (19)

where ν(κ, η) := supβ∈S2

∫
R3 |ε̃((κ + iη)β − s)|ds. We prove that if η = η(κ) =

O(lnκ) is suitably chosen (see [4]), then the following inequality holds:

0 < ν(κ, η(κ)) < 1, κ →∞. (20)

We also prove that

sup
β∈S2

|p̃((κ + iη(κ))β)| ≥ sup
s∈R3

|p̃(s)|, κ →∞, (21)

and then it follows from (18)-(21) that p̃(s) = 0, so p(x) = 0, and Theorem 1.1 is
proved. Indeed, it follows from (18) and (21) that, for sufficiently large κ and a
suitable η(k) = O(ln k), one has sups∈R3 |p̃(s)| ≤ 1

(2π)3 ν(κ, η(κ)) sups∈R3 |p̃(s)|.
If (20) holds, then the above equation implies that p̃ = 0. This and the injectiv-
ity of the Fourier transform imply that p = 0. A detailed proof of estimates (20)
and (21), that completes the proof, is given in [4]. This completes the outline of
the proof of Theorem 1.1.
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