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INTRODUCTION 

The main object of structural analysis is to ensure a structure 

will have a suitable factor of safety against failure and in addition, that 

it will be serviceable when subjected to its design working load. The 

majority of slab or plate structures in the world have been designed in 

the past on the elastic theory. However, this theory does not give an 

accurate indication of the factor of safety against failure because of 

the condition that the materials may behave plastically. An alterna- 

tive technique, yield line analysis, is an ultimate load method, in that 

the load at which a slab will fail is determined. No matter how complex 

the slab shape or loading configuration is, 

realistic value of the failure load. 

The membrane action analysis, which gives 

it is possible to obtdin a 

an ultimate load much 

higher than the ultimate load given by yield line analysis, is another 

alternative. In this analysis, restraining the edges of a beam or slab 

results in a higher load carrying capacity when compared with results 

of yield line analysis. 

The object of this report is to describe the techniques of yield 

line analysis to find the ultimate load of a structural slab, and also, 

the analysis for tensile membrane action arresting the load when the 

structure fails. 



Chapter I 

Yield Line Theory 

General Concept: The basic concept of yield line theory for ultimate 

load design of slabs was developed in detail by Johanson (6)*. He pro- 

vided, not only introductory theory, but also a variety of practical 

examples. 

In this theory, the strength of the slab is assumed to be controlled 

by flexure alone. The steel is assumed to be fully yielded along a 

given line at collapse and the bending and twisting moments are assumed 

to be uniformly distributed along these "yield" lines. This assumption 

is justified since most slabs are under -reinforced allowing reinforce- 

ment to yield with a corresponding large angle change and only slight 

increase in moment capacity. 

The yield line theory for a one-way slab may, generally, be treated 

as identical to the limit analysisof acontinuous beam. For instance, 

consider the simply supported one-way slab in Figure I. As the load 

approaches its ultimate value, failure of the slab occurs on lines along 

which the steel has yielded (which are idealized and called yield lines). 

The curvature of the slab at the yielding section increases sharply, and 

deflection increases disproportionately. The elastic deformation of 

the slab is small compared with the deflection of the structure due to 

plastic deformation along the yield line. Therefore, elastic deforma- 

tions are neglected and all deformations are assumed to be concentrated 

at the yield lines. The plastic hinge which forms at the yield line is 

*Number in parenthesis refers to references listed in the bibliography. 
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Mp 

Yield line 

(1'"n 
Collapse mechanism 

Figure 1. Simply Supported, Uniformly Loaded Slab 
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assumed to rotate with a constant moment. This restraining moment at 

the yield line can be taken equal to the ultimate resisting moment for a 

determinate slab, such as in the example. The formation of a yield line 

in this example is identical to failure. A "mechanism" forms and the 

segments of the slab between the yield line and supports will move 

without an increase in load, and, finally, collapse of the structure 

results. This condition is known as "collapse mechanism". 

In the case of an indeterminate structure, equilibrium can be maintained 

after the formation of one or more yield lines. Consider, for example, 

the fixed -fixed slab shown in Figure 2. A uniform loading on the slab 

will cause uniform maximum negative bending moment along AB and EF and 

uniform positive bending moment along CD, which is parallel to the 

supports. As the load gradually increases, the moments along AB and EF 

reach their ultimate moment capacity Mp. At this time, rotation of the 

slab segments will occur with the yield lines AB and EF acting as axes 

of rotation, but with restraining moments of constant amount Mp. The 

load can be increased still further, until the moment at the midspan 

becomes equal to the ultimate moment capacity of the slab, and the third 

yield line forms along CD then the slab segments between the supports 

and yield line CD will rotate with no change in resisting moment. This 

converts the structure into a mechanism, and results in collapse. 

The yield line theory fora two-way slab requires a different treat- 

ment from the limit analysis of continuous beams, because, in this case, 

the yield lines will not, in general, be parallel to each other but 

instead will form a yield line pattern. The entire slab area will be 
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Fig. 2. Formation of Yield Lines in Uniformly Loaded Slabs. 
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divided into several segments which can rotate along the yield lines as 

rigid bodies at the condition of collapse or unstable equilibrium. Fre- 

quently, the exact configuration of yield lines is not known and a 

series of possible patterns must be considered. 

Generally, yield lines occur along lines of fixed support, lines 

of symmetry and along axes passing over a column. Yield lines also pass 

through the intersection of the axes of rotation of adjacent slab segments. 

Figure 3 shows several typical examples of yield line patterns. In Figure 

3a, at limit condition, the slab will break into two segments and rotate 

about EA and ED. The positive yield line (the terms positive yield and 

negative yield line are used to distinguish between those associated with 

tension at the bottom and tension at the top of the slab, respectively) 

must go through E, the intersection of EA and ED. The exact location of the 

positive yield line depends on the amount of reinforcement and its direc- 

tion, both in the positive and negative moment regions. In Figure 3b, 

the collapse mechanism consists of four slab segments. The diagonal 

yield lines must pass through the corner intersection of two yield lines, 

and the central yield line is parallel to the two long sides. In Figure 

3c, the axes of rotation must pass through the isolated columns. For 

a concentrated load at a large distance from the supported edge, the 

yield line pattern will be circular (Figure 3d) or eliptical (4) depending 

on the amount of reinforcement in different directions. If the point 

load is near the edge or corner of a slab, a partial fan may form, which 

is shown in Figure 3e. The foregoing can be summarized by the following 

conditions which assist the prediction of yield lines. 
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1. Yield lines terminate at a slab boundary. 

2. Yield lines are, generally, straight.* 

3. Yield lines (produced, if necessary) pass through the inter- 

section of the axes of rotation of adjacent slab elements. 

4. Axes of rotation, generally, lie along the lines of the support 

and pass over columns. 

Fundamental Assumptions: In applying the yield line theory to the ulti- 

mate load analysis of reinforced concrete, the following fundamental 

assumptions are made. 

1. The reinforcing steel is fully yielded along the yield line at 

failure. In the usual case, when the slab reinforcement is 

well below the balanced condition, the moment curvature relation- 

ship (7) is as shown in Figure 4. 

2. The slab deforms plastically at failure and is separated in 

segments by yield lines. 

3. The bending and twisting moments are uniformally distributed 

along the yield line and they are the maximum values provided 

by ultimate moment capacity in two orthogonal directions (for a 

two-way slab). 

4. The elastic deformations are negligible compared with the plastic 

deformations; thus, the slab parts rotate as plane segments in 

the collapse condition. 

* It should be noted, however, that for some systems of point loads or 

circular supports, a multiple system of yield lines can approximate 

a single curved yield line, e.g. see Figure 3d. 
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Moment Key Notation: It is usual to express the ultimate bending strength 

of a slab in terms of moment per unit width of the slab. The moment key 

lines at the side of the slab are an abbreviated form of the statement 

"the normal moment/unit length on a yield line in this direction is the 

value given". Thus, the moment key line marked m implies that if a yield 

line is in the direction of that moment key line, the normal moment/unit 

length along the yield line is m. Key lines are at right angles to rein- 

forcements as shown in Figure 5. 

Moment Along Yield Line: Consider an element of slab with resisting ul- 

timate moments mx and my, (Figure 6). If mnband mnt are the normal and 

twisting moments respectively, both per unit length applied along the 

yield line which makes an angle a with the x axis. Then, resolving vectors 

and writing equilibrium equations along the n and t directions, gives: 

mnb 
R 

= m (i Sina) Sina + m (2, Cosa) Cosa. ( I ) 

1 + Cos2a - 1.-Cos2a 
in equation (1) Substituting. Costa and Sin2a 

2 2 

yields, 

mnb= 
(1-Cos2a) 

' 

mi. (1 + Cos2a) - ifl2 

- 

Y 

y 2 w 
1112- Cos2a + r1-5:1- Cos2a (2) 

or, 
m m m, m y + x y - x 

m CosZa (3) mnb= 
2 2 

Also, 

mnt 
m (t Sina) Cosa - mx Cosa) Sina = (my -mx )9, SinaCosa (4) = 

mnt 
= 2 

Sin2a (5) 

For an isotropic slab my = mx = m, therefore 

mnb= m Cos2a m Sin2a = m (6) 

mnt = 

m -m 
Sin2a = 0 (7) 2-- 
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In using equations (3) and (5), it is important to note that a is 

the counterclockwise angle measured from positive x axis. 

Method of Analysis: There are two methods of analysis: 

1. The virtual work method. 

2. The equilibrium method. 

Both methods are based on the postulated yield line pattern and 

fundamental assumptions. In either method, it is necessary to analyze 

alternative yield line patterns in certain cases in order to determine 

the critical collapse mechanism. The virtual work method is more generally 

used in practice and is the only method presented here. This method states 

that the virtual work done on the slab by the loads equal the work done 

against the yield lines as they rotate. Hence, if a point on the slab 

is given a virtual deflection 6, deformations in the form of rotations 

consistent with this displacement must take place along the yield lines. 

The internal work done on the slab is the sum of the rotations along the 

yield lines multiplied by resisting collapse moments. The external 

work done by the loads is the sum of the loads multiplied by their re- 

spective deflections. Equating internal and external work gives the 

relation between resistance moment in the slab and collapse load. To 

find the virtual work due to external load, consider a particular rigid 

region of slab which is in equilibrium under the action of forces. The 

work done by the external load on the small element of sides dx, dy will 

be fIw6dxdy. If the slab contains many regions, the total virtual work 
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done on the slab will be the summation of ff msdxdy, therefore, 

total virtual work = E Ufw6dxdvl (8) 
each region 

where: 

w = distributed load on the slab at collapse 

6 = virtual displacement 

For a uniformly distributed load, equation (8) may be written as 

w E.f.f Scixdy = wz(Volume under each region of slab). (9) 

The energy absorbed during rotation along the yield line is the 

total moment along the yield line multiplied by rotation of the yield 

line. If e is the rotation which is a function of (5, then the total in- 

ternal work done on all yield lines is given by, 

Internal work done = E(mze) (10) 

where: 

e = angle of rotation 

z = length of yield line 

By equating external work done to internal energy absorbed, we get: 

Elf wrsdxdy = E (mke) (11) 

From the above equation, which is called "work equation", the ultimate 

load (or moment) can be calculated. The failure load found by this equa- 

tion is not necessarily the smallest value of load for a given value of 

bending moment. If the yield lines are moved to other positions while 

retaining the same basic shape of the pattern, there exists a certain worst 

layout where the failure load is minimum for a given resisting moment capa- 

city. This layout can be established by trial and error, or by a differential 
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equation. Since the general pattern of the yield lines is often defined 

by unknown parameters, the work equation is obtained in terms of these 

parameters in the form of m = w (a, 5, --- (. Only one equation 

relating m and w is obtained from virtual work. Since m must be maximum 

(or w minimum), 

am= am 3M 

as 313 3(0 
(12) 

By the above equation the ultimate load can be obtained. 

To work with the virtual work method it is of great convenience to 

express equation (10) in a vector form. The total moment vector along 

the yield line Mn and the rotation vector about the axis of rotation 8n 

can be expressed in x and y coordinates. Hence, the internal work 

E = gn 'n 

may be written as 

E =mie +mze 
x x yyy 

( 1 3) 

(14) 

where 2,x and 2 are the projected length of the yield line in x and y 

directions, ex and e are components of en along the x and y directions, 

and mx and my are ultimate moment capacities of the reinforced section 

per unit length, with respect to x and y axes, respectively. (See 

Appendix for proof of equation 14.) 

Example 1: For the isotropically -reinforced square slab find the ultimate 

load. Assume the load is uniformly distributed and the slab is simply - 

supported. 

Solution: Assume the yield line pattern shown in Figure 7a. Since the 

slab is equally reinforced, the yield moment along the diagonal yield line 

will be m. For a small deflection at e the rotations at the yield lines are 

as shown in Figure 7b which is a view on the diagonal yield line deb. The 



center of gravity of each of the triangular segments of the slab deflects 

by 1/3 6, hence, 

External work done = z(w6) = 1/3 w622 (15) 

26/T From Figure 7b, the rotation at yield line aec is a = 
z 

and hence, internal work done on ac = mezv2-= m szif = 4m6 (16) 

Total internal work = 2.4m6 = 86m (17) 

Equating equations (15) and (17) gives: 

1/3 w622 = 8m6 or, (18) 

w = 24m/22 (19) 

Example 2: For an orthotropically reinforced rectangular slab, simply 

supported and uniformly loaded, find the ultimate load. 

Solution: Assume the ultimate moment on yield lines parallel to the short 

side is um. In the yield line pattern assumed in Figure 8, the angle 

is unknown and the correct yield line pattern will be the one corresponding 

to the value of which gives the lowest value of the collapse load. 

For a deflection of unity at yield line ef, 

volume under region 1 = 1/4 z2(a-tan) + 2 
Z ta2n,q5 

volume under region 2 = 1/2. 1/2 z tang) z 1/3 = 1/12 22 tang) (21) 

Total volume = 2 1/4 z2(c.-2/3 tang) + 2 1/12 Z2 tangy 

= 1/2 22(a-1/3 tan4) 

Using equation (9) we obtain: 

Total external work done - ' z2( -1/3 tarp) 

Using equation (14) the internal work done cn yield lines ae, tf, 

and de, may be obtained as follows: 

(") 

(23) 
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Fig. 8. Yield Line Pattern For Two -Way Rectangular Slab 
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1, 

in rotation in y direction = 2 pin 2, 

41m 
(24) 

1/2k tam) tan 

in rotation in x direction = 2 m 2 

Internal work done on yield line of is, 

2m2 (a -tamp) - 4m (a-tamb) 

Hence the total internal work done is, 

ktamp 1 

2 17 - 4mtam) (25) 

(26) 

4m1.1 
+ 4mtanp + 4ma 4mtamp = 4m(a+ u ) (27) tangtamp 

Equating external and internal work done, 

1/2 w z2(a- 1/3 tano) = 4m a ( 

s-+ talr4 ) 

(28) 

Let z = tamp, then from equation (28) we obtain, 

w - 24 . a+p/Z 24 . az + u (29) 

3a- z V 3az - z2 

In order to find the minimum value of the collapse load, or, for 

design, the maximum value of ultimate moment for a given ultimate load 

it is necessary to differentiate the right-hand side of equation (29) 

with respect to z, and equate the result to zero. Therefore, 

d(gi) 24 . a(3az-z2)- (3a -2z) (az _ 

dz 
(3az-z2)2 

which gives, 

aZ2 211z - 3ap = 0 

The positive root of equation (31) is 

0 (30) 

(31) 
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z = taro) = /Op + 4 ) _ ,31 (32) 

If y = f(y' = flWM 9(xD 
x) 

-]l(x) f(x) Suppose, x is a root 1 we have --------2 ' 

g(x 

of -the, equation y' = 0. Then P(x0) g(x - gi(x0) f(x 
0)= 

0 which 

leads to ,provided gi(x0) # 0 (33) 

Applying this result, to equation (29) gives, 

w 24 . -11/z2 24 . 

- -1 7 
Substitutingz = taro) in equation (34) leads to, 

m. w - 24 

tar-TT 

(34) 

where (35) 

tang = /3p + 4 . 

a a 

Assume the slab is continuous over all four sides. As a result 

of this continuity, collapse will not take place until the four negative 

yield lines at the supports have formed. The negative steel in the top 

of the slab at the supports is assumed to be such that the ultimate 

moment of yield lines parallel to the long sides is m' and parallel to 

the short sides is pm'. 

Equation (14) can be used to find the work done on negative yield lines. 

Therefore, 

total work done on negative yield lines = 2[-Fila)2S- + 2 4m'(a+ 
tang) tang5 

(36) 
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Adding equation (36) and (28) gives the total internal work done in 

rotation at yield lines as 

internal work done = 4(m + m') (a+ u ) 

tangy' 

It will seem that equation (37) is the same as equation (28) with 

the moment increased by W. As a result the collapse load may be 

written down directly as, 

24 (m + m') 
w- 2,2 

tan2cP 

(37) 

where (38) 

tamp = /31.1 + 
a a 

Example3: Find the ultimate load for an isotropically reinforced square 

slab, supported at the corners only, and uniformly loaded. Solution: 

In this case it is geometrically possible for failure to occur by the 

formation of diagonal yield lines, and the ultimate load will be the 

4m 
same as the results of example 1, i.e. w - 

2 
. However, the axes of 

rotation may pass over the column heads at any angle, so it is also 

possible that a yield line pattern as shown in Fig. 9a, may develop. 

The rotation at yield lines are shown in Fig. 9b for a deflection of 

unity at center. 

External work done = w 1/22.2 = 1/2 w2.2 (39) 

Internal work done = m2kx-7 = 4m (40) 

Equating external and interal work done, leads to 
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(b) 

Fig. 9. Uniformly loaded square slab supported at corners with free edges. 



21 

w - 
8m 
-272- (41) 

It is worth mentioning again that all possible yield line patterns or modes 

must be analysed. Since each result is an upper bound solution of the 

collapseload, the least upper bound is the correct solution. In this 

example the lower upper bound solution is 1/3 of the value for diagonal 

yield lines. 
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Affinity theorem: An orthotropically reinforced slab is one in which 

the moment per length of slab is different in two orthogonal directions. This 

impliesadifferent percentage of steel in the two directions. the 

analysis of certain types of slab was simplified by Johanson (6) to 

that of an"affine" slab. An affine slab is an isotropic slab which, 

for purposes of analysis, may be considered to be equivalent to an 

orthotropic slab and is obtained by transforming the shape and loading 

of the orthotropic slab according to certain rules. This equivalent 

isotropic slab gives the same solution, i.e. value of m, as the ortho- 

tropic slab. 

Consider a part of a slab ABCDEF shown in Fig. 10a limited by 

positive and negative yield lines and a free edge, assumedto rotate 

through a virtual angle e about an axis of rotation R -R. Assume 

bottom and top reinforcement are placed in the x and y directions. 

Let the reinforcement in the y direction provide ultimate moments 

of m and m', and let the corresponding values in the x direction be 

01 and 0m'. This means that the ratio of the top to bottom reinforce- 

ment is the same in both directions. The ultimate moments in the x 

and y directions are indicated by vectors in Fig. 10b. From equation 

(14) we have 

E =M2,6 z xxx yyey (14) 

Using this equation, the internal Virtual work for this slab part is, 

U = (mcx + rebx)ex + (mcy + m'by) ey (42) 
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Fig. 10. Conversion of an orthotropic slab to an affin slab. 
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Where cx, cy and bx, by are the projections in the x and y directions of 

the lengths c and b, and ex and e are the x and y components of the 

rotation vector -8'. Assuming that a unit deflection occurs at a point n, 

a distance r from the axis R -R, the rotation e and its components 

can be written as 

e = -r ex eCosa =1 1 
e = esina = -r 

(43) 

In the above a isthe angle between the x axis and the axis of rotation. 

Substituting equation (43) into equation (42) we obtain, 

U = [(mcx + mebx) Cosa + (1)(mc + WI) ) sina]e (44) 

Assume now that the loading on the slab part consists of a uniformly 

distributed load q per unit area, a line load p per unit length on a 

length 2. in a direction making an angle T with the x axis and a concen- 

trated load P at point 0. The external virtual work of the slab part 

is, 

W = ffqwdxdy + fpwidt + Pimp (45) 

where w is the deflection at any point (x, y), wz the deflection of any 

point below the line load, and wp the deflection below the concentrated 

load. The integration is carried out for the whole area and for the 

loaded length. The virtual work equation is 

E [(MCx + bx) 
1 

r 
y 

+ (nc + by) 17;,] = E (fiqw4dxdy +fiPI2, + pwp ) 

(48) 

where the summation is for all slab parts. 
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Consider an affine slab equally reinforced in the x and y directions so 

that the ultimate positive and negative moments are m and ml respectively. 

Suppose this affine slab has all its dimensions in the x direction equal 

to those of the actual slab multiplied by A. The pattern of fracture 

remains similar and the corresponding points can still have the same 

vertical displacements. The internal virtual work for the part of the 

affine slab is 

1 1 
= (Mc. + im'Abx) 

7- 
+ 

(mcy 
+ m'b ) 

Ar y 
x 

(49) 

Let the load on the affine slab be a distributed load q' per unit area, a 

line load p' per unit length, and a concentrated load P'. The external 

work for this part of affine slab is 

W I fq 1wAdxdy + f pi w /02 + xz dx2 + PIwp (50) 

Dividing both internal and external work loyA will not change the work 

equation, which then becomes 

, 

grmcx + m'bX 
r 

1 
) - + kmcy +m' by 

r 

1 
) = E(ffq'wdxdy +fp'w /A2+ dx2 

x 

1 

3), 2 

P' 
+ W 

X P 
(51) 

All terms of virtual work equations (48) and (51) are identical, pro- 

vided that 

(I) = -7 or x = 

q' = q 

(52) 

(53) 
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or 

and 

2 

+ dx2 = pdz 2 
A 

/2 
2 

q5Sin + Cos T 

P' = P - 
01) 

(54) 

(55) 

This means that an orthotropic slab with positive and negative ultimate 

moments m and m' in the x direction and cm and pm' in the y direction, 

and be analyzed asan isotropic slab with moments m and m' and the linear 

dimensions in the x multiplied by. The intensity of a uniformly 

distributed load remains the same. A linear load has to be multiplied 

1 

by 4Sin2T + Cos2P 
, T being the angle between the load line and the 

x axis. The concentrated load has to be multiplied by 

Example 4: A rectangular orthotropically reinforced slab is shown in 

Fig. 11. Find the dimensions of an isotropic affine slab. 

Solution: We have 1/2, so that the 16 -ft side is to be changed to 

16 /7 = 22.6 ft. For an isotropic affine slab with ultimate moment of 

2m and 2m' see Fig. lib. The same orthotropic slab can also be ana- 

lyzed as an isotropic slab for which the side 16 ft remains unchanged and 

the 12 ft side is changed to 
1/ 

= 8.5 ft, the ultimate moment being 

m and m' (See Fig. 11c). 
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Fig. 11 Orthotropic and Affine Slabs 
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Dissipation of Energy in Circular Fans of Yield Lines 

Straight yield lines have been studied in the previous part of 

this report and an accurate value of collapse load was determined. 

There are certain circumstances in which a "fan mechanism" could be 

produced in slab. For example in the corner of the slabit is common to see 

a set of yield lines radiating from a common focus, and forming an 

elaborate cut-off, whereby a simple corner "lever" is replaced by a 

set of multiple triangular regions forming a fan as shown in Fig. 12b. 

Fig. 12a shows an eliptical fan which has been formed by applying a 

concentrated load on an orthotropically reinforced concrete slab. 

A circular fan will be produced if the slab is isotropically rein- 

forced. Reference (4) contains related material discussed in more 

detail . Fig. 12c shows a circular plate subjected to an uniform 

distributed load and a circular fan is formed. 

To find the dissipation of energy in a fan of radius R, total 

angle in plane c, and polar deflection A, consider a small component 

triangle of latitude R and perimeter Rdq), as shown in Fig. 13. Using 

directions r and q) as in polar coordinates, then the vector method 

for finding the dissipation of energy requires that, for every small 

triangular rigid element of the fan the concept of dissipation of energy 

must be referred to axes r and q) which are locally at right angles 

namely. 

ED 
= (111 '"r -r 

m, 
) r 

(I) 

(56) 



29 

(a) 

m 

,.cm 

(c) 

Fig. 12. Various Types of Fan Yield Lines. 
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0 

Fig. 13. Circular Fan. 
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The fact that there is zero displacement around the boundary of 

the fan makes the rotation of the rigid element about the radius, equal to 

zero. This leaves only m(0, 24, and 0(0 to discuss. 94) is the rotation of 

the element about circumferential axis 4), so that e(1) = A/R. Moreover 

the quantity m 2,(P is split into two parts. Firstly there is the energy 

dissipated by the negative yield line on the boundry, for which m(0 is 

the circumferential moment km and 2 is equal to R.dp. Secondly the 
.1) 

two positive radial lines bounding the element together add up to the 

same vector length R(14). The combined dissipation of energy is 

ED = i4m(l+k)Achp = m(1+k)4 (57) 

Therefore the dissipation of energy for the complete circular fan is 

ED = 27m(l+k)A (58) 

Sometimes an inverted fan of yield lines is formed in the slab 

around the column support (e.g. in flat slab). In this case the radial 

yield lines now have negative yield moment km, and the boundary of the 

fan has positive yield moment m, but there is no change in the express- 

ion (53) for dissipation of energy. Note that the angle 4) must be in 

radians. 

Example 5: Circular slab with distributed load p/unit area, and point 

load P at the center. 

Solution: Consider the slab shown in Fig. 12 c , where the nenative 

yield line has a radius R. The expenditure of energy by the external 

load is equal to 
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E = PA + 1/3 7R2Ap (59) 

From equation (58)tne dissipation of energy is 

ED = 27m (1 + k)A (58) 

Equating equations (58) and (59) we obtain 

PA +1/37R2Ap = 2zrm (1 + k)A (60) 

Thus it gives 

P + 1/37R2p 
m - 

21-(1 + k) 
(61) 

If there is no point load, then 

pR2 
" 6(1 + k) 

(62) 

If the distributed load is negligible compared with the point load, then 

P 

m 27(1 + k) 
(63) 

In equation (61) and (62) m increases with increase of the radius 

R of the fan, which means that the radius of the fan in Fig. 13 would 

extend right up to a circular boundry. Equation (63) is independent of 

radius R, which means with only a point load a complete fan of any 

radius could form with no change of collapse load P = 27m(1 + k). 

Example 6: Isotropically reinforced circular foundation slab. For this 

example the result of previous example may be used. If the floor slab 

is continous with the walls the internal work done can be calculated 

by use of equation (58) which is equal to 27m(1 + k)A, but if the walls 

are free at the foot then k = 0 and the internal work done will be 27mA. 

If it is assumed that the total load w on the soil at failure of the 

slab is applied through the walls, (See Fig. 14a), then the external 
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work done by the contact pressure, and the value of the ultimate load, 

depend on the way in which the contact pressure between soil and the 

slab is distributed. If pressure is assumed to be uniform, the contact 

pressure will be,) - and external work done will be 
Trr 

External work done = 1/37r2pA = 1/3 "'IL (64) 

Equating external and internal work done, leads to: 

w = 67m(1 + k) = 18.8 m(1 + k) (65) 

and for the free edge (k = 0): 

w = 18.8m (66) 

In reality the distribution of contact pressure depends upon the 

characteristics of the soil, and of the rigidity of the foundation. 

Theoretically if the soil is cohesionless, and if the base can be con- 

sidered rigid, the pressure varies from zero at the edge to a maximum 

at the center of the base. If it is assumed, for the circular slab 

under study, that the pressure distribution may be represented by a 

paraboloid, as shown in Fig. 14b, then the volume of the paraboloid is 

equal to the total load on the soil, w, therefore 

Maximum pressure, ID_ = 
m 1/2Trr2 

(67) 

A 
Pressure at radius rA, pA = pm (1 - (--17)2 ) (68) 

If the slab fails by conical collapse modes (forming fan yield lines), 

then for a centeral upward deflection of unity, the deflection at radius 

A may be obtained, from triangle ocd (Fig. 14c) 

1 -A rA 

1 
or 

r - rA 

r 
(69) 

The external work done by the contact pressure on an annular strip drA 

in width at radius rA is: 
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Fig. 14. Circular Foundation of Granular Soil 
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Fig. 75:Circular Foundation. on Cohesive Frictionless Soil 
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or 

- 

dW = (PAdA)6A= Pm - (rA)]9 (277rAdrA) (r 

W = 27rpmo rA 11 -()2] 
- r 

(70) 

8)drA = 7/30 7Tr2pm (71) 

Substituting P 
m 1/27rr2 

equation (67) we obtain, 

Total external work done = 7/15 w 

and 

(72) 

Total internal work done = 27m(1 + k) (73) 

Equating external and internal work done, we obtain 

27rm(1+ k) = 7/15 w or w = 13.4m(1 + k) (74) 

If the walls are not continous with the slab (k = 0) the collapse load is, 

w = 13.4m (75) 

In the other limit case, that of cohesive soil with no internal 

friction, the contact pressure is theoretically maximum at the edges, 

decreasing to the center. If it is assumed that the distribution may be 

represented by the complimentary volume given by the difference between 

the paraboloid and cylinder which contains it as shown in Fig. 15, then 

the complimentary volume is equal to the total load on the soil, w. 

Following the same procedure for the granularsoil case, leads to 

w= 107rm(1 + k) = 31.4m(1 + k) (76) 

If the walls are not continous with the base slab, then 

w = l0irm = 31.4m (77) 

It can be seen that the collapse load ranges from the upper limit of 

31.3m(1 + k) for cohesive soil to the lower limit, for granular soil, 

of 13.4m(1 + k). An intermediate value for uniformly distributed con- 

tact pressure is, 13.3m(1 + k). 
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In practice, however, the total load will not be applied entirely 

through the walls, and the external work done must be reduced by the 

amount of "negative" work done against the action of the weight of the 

floor slab, or in the case of a tank, from tank contents. 

Example 7: Point load on the edge of a slab of infinite extent, (iso- 

tropically reinforced). 

For this case the yield line pattern is shown in Fig. 16. It is con- 

venient to take the unknown parameters as 15, the fan angle, and the 

angle $. Let deflection of the slab under load P be unity. The per- 

pendicular distance h is given by h = RSina. 

triangle Pab, we have 

ab 
or 

Sin(Tr/2 - q)/2) Sin[(Tr/2 - - 6/2)] 

which gives, 

ab - 
R Cos (_/2 

Cos ($ - /2) 

Using the Sine law for 

ab 

Cos(cp/2) - Cos ($ - cp/2) 

The angle of rotation about axis ab is 1/h or 1/RSin13. To find the 

dissipation of energy for region 1, with the axis of rotation ab, 

equation (14) can be used. Therefore 

(78) 

(79) 

R Cosq)) . 1 
for region 1, ED = km. + (m) (RCosis) 1 (80) 

Cos(is( - t 

/2/2) 
RSini3 RSin$ 

Therefore for region 1 and 2 

2km Cos(CP/2) 
E - +2m Cotg$ 
D Cos - t/2) SinS 

(81) 

From equation (47) dissipation of energy for circular fan is, 

ED = m(1 + k) (82) 

Therefore 
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Free edge 

km 

b 

Fig. 16. Yield line Pattern for a Point Load on the 

Edge of a Slab of Infinite Extent. 
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The total dissipation of energy - 
2km Cos ( /2) + 2m Cots 

Cos(s - (1)/2) Sins 

+ m(1 + k)(1) (83) 

External work done is equal to 

External work done = P x 1 = P (84) 

Equating equations (83) and (84) we get. 

2km Cos (/2) 
P - 2m Cots + m(1 + k)q) (85) Cos(s - 0/2) Sins 

m is maximum when -1 = 0, 
pp= 

0, 

ap -km Sin (t/2) Cos(S - t/2) Sins - km Cos (t/2)Sin( - t/2) Sins 
Dci) COS2(s - t/2)Sin2S 

+ m(1 + k) = 

-km Sins[Sin(t/2)Cos(s - t/2) + Sin(s - (p/2) Cos (6/2)]+ 
Cos2(s - t/2) Sin2S 

m(1 + k) (86) 

Using identities, sin (a + b) = Sina Cosb + Cosa Sinb and Costa - 

equation (86) becomes, 

aP -km Sins Sins 
Cos2(s - t/2) Sines 

aP 
, then 

1 

+ tan2a ' 

m(1 + k) = m - kmtan2(s - t/2) (37) 

tan(s - t/2) = /1/k 

Putting 
Di3 

Ogives 

3P -2km Cos(t/2)[Cos( 8 - V2) Coss - Sins Sins - t/2)] 2m 
',;13 Cos2(s - t/2) Sines Sines 

After adding two fractions and ignoring the denominator, we get 

-2km Cos (o/2) Cos (2s - t/2) - 2m Cos2(s - t/2) = 0 

(89) 

= 0 (90) 

(91) 
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Using the identify Cosa Cosb = 1/2 [Cos (a + b) + Cos (a - b)],the above 

equation gives, 

-k CosU - k Cos2(13 - (W2) - 2 Cos2( - 412) = 0 (92) 

1 - tan2a 1 

1 + tan2a 
By use of identities Cos 2a = 

1 + tan2a' 
Costa - and 

equation (89), equation (92) reduces to 

- k Cos21S - kk 
- 1 

k + 1 
2k 

+ 1- 0 (93) 

After simplification, the above equation leads to: 

Cos2 = -1 or R = 90° (94) 

Clearly from equation (89) we now have 

tan (90 - q/2) = Cot4 /1/k (95) 

and by referring to equation (85): 

P = m(1 + k)q) + 2m147 (96) 

It can be seen that radius R of the fan is not part of the solution, 

so that the mechanism can be reproduced on any scale without affecting 

the collapse load. 



CHAPTER II 

Membrane Action Analysis of Concrete Plates 

General Concept: Concrete is one of the groups of materials with different 

tensile and compressive strengths. When a plate of such material is 

subjected to a flexure , its moment capacity may be governed by either 

lower or higher rupture strength depending on boundary conditions. If the 

plate is simply supported, the lower rupture strength is normally cri- 

tical. If the plate islaterally restrained, the higher strength may 

generally be utilized in resisting loads. In a plain concrete plate the 

tensile strength is much the weaker, and transverse load capacity 

is correspondingly low when the plates are simply supported. When res- 

trainedagainst elongation at the edges, higher compressive stress and 

a resultingly higher load capacity may be obtained. This behavior is 

termed compressive membrane action. 

In an under reinforced concrete plate, two actions may occur at 

different stages of deformation. At deformations which are small com- 

pared to plate dimensions the compressive strength of the concrete 

governs, and if the plate is restrained agains elongation, arching 

occurs as before. At large deformations, however, the concrete may 

crush leaving only the tensilestrength of the reinforcement to resist 

loading, and if the edges of plate are restrained against inward dis- 

placement the full strength of reinforcement may be developed as a 

tensile net. 

40 
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Tensile Membrane Action: The load - central deflection relationship 

(5) for a slab restrained against in - plate motion at its boundry is 

shown in Fig. 17. As the load increases and inelastic action attempts 

to develop to the slab, the outward in plane displacementsthat should 

accompany that yielding are restrained and compressive forces generated 

that strengthen and stiffen the slab allowing it to develop the maxi- 

mum load represented by point A. Prior to point A there is compressive 

membrane action. The failure at point A is a brittle punching shear 

failure or a brittle flexural compression failure. After that fail- 

ure the slab snaps through. The resulting large deflections set-up 

a tensile membrane with only the reinforcement resisting the load as 

a hanging net. That tensile membrane if properly proportioned and 

detailed offers a secondly support system capable of arresting a pro- 

gressive collapse. Exact solutions to the equilibrium and compatibility 

expression for tensile membrane can be complex (8, 2). For flat slabs, 

simplified expressions yielding reasonable agreement with test result 

are obtained if it is assumed that the membrane takes up a circular, de- 

formed shape. The use of a catenary or parabolic shape could be realistic. 

However, there is little gained in either understaing or reliability 

with the resultant more complex expressions. Fig. 18 shows a rectangu- 

lar slab, Lx by Ly, where Ly is the long direction. The slab is sub- 

jected to a uniform loading w, resisted by edge tensions per unit 

length of Tx in the x direction and Ty in the y -direction. The deformed 

shaped assumed for the slab in the x direction is shown in Fig. 19. 

Vertical equilibrium gives 
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Fig. 17. Development of Tensile Membrane Action. 
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wLxLy =2TxLy Sin cpx + 2TyLx Sin g)y (97) 

where w is the load per unit area of the slab. 

Geometry gives 

or 

Lx = 2RXSing)X and L = 2R Sing) 
Y 

L L, 
Sing) = and Sin4 = 

y 2R x 2R 
x 

Substitution of (99)into(97) leads to: 

Tx 
w 

Rx 

T 1 
Ry 

(98) 

(99) 

(100) 

Solution of equation (100) requires knowledge of (a) the stress strain 

relationship for the slab reinforcement, and (b) the tensile geometry 

relationship for the member. For the latter the loading lengthensthe 

membrane from straight line ABC in Fig.19 , of length 2RxSincox to 

a circular are AB'C of length 2Rxf,x, therefore, 

2R (1) - 2R Sings 
AB'C - ABC x x x x ex 

ABC 2R Sincp 
x x 

(101) 

If Sinx is approximated by the first two terms of the Taylor series, then 

(I)x 
- 

(4k 
-x3/3! ---) 

15)(3/31 --- 
x 

X X 
3/31 + - x 

3/3! + (102) 

If i3 «x ( 102 ) gives, 

q/6 
(103) 

similarly 
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V 

Fig. 18. Equilibrium of Rectangular Tensile Membrane. 

Lz 

Fig. 19. Deflection in x direction for Unit Width Strip. 
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ey 

From Fig. 18, we have 

6 

R qt,2 
6x = Rx - Rx Cos ¢x= Rx (1 - Cos ¢x) = x x 

2 

Fralequation (103), ,I)x2 = 6Ex, thus 

similarly 

(104) 

6x = Rx/2 (66x) = 3Rx 6x 
(106) 

6y = 3R 6 
Y Y 

(107) 

Since6x =6y at the center of the membrane, from the (106) and (107), 

From triangle OBC (Fig. 19) we have 

RX 2 = (RX - 6x)2 + (LX /2)2 

After simplification, 

2R 
X 
6X = L2X /4 +6x2 

If 8x2 «Lx2 /4, (110) leads to 

similarly 

Lx2 = 86- R 
x 

Lye = 86YRY 

Dividing (112) by (111) we get, (6x = 6y) : 

(108) 

(109) 

(110) 

(112) 
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(EL) 2 = 

X "x 

Equations (108) and (113) give 

Lv 

-y 
()2 

Dividing equation (97) by LxLy'gives 

2Tx 2T 

Sir4 + Simi) 
Lx x 

Using q)x = V6Ex, and equation (114), yields 

2TxSinVfiex 
+ -Y 

2TSin (Lx/L/67;) 

Ly Lx 

w - 

Thus for a square matrix with isotropic reinforcement (Lx = L 

Ex = e and Tx = Ty ). 

4T SinV6E' 4TxSini67 
w- y 

Ly Lx 

(113) 

(114) 

(115) 

(116) 

(117) 

Ifthestressstrain relationship for reinforcement is known the full tensile 

membrane behavior can be predicted by: choosing a value of Ex; finding 

E from equation (114), finding Tx and Ty from the reinforcement 

stress strain curve; calculating W from equation (116); calculating (S 

from equations (106) or (107); returning to step one incrementing Ex 

and repeating the cycle. An 'alternative procedure is: calculating 

Rx from the equation (110), finding ex from the equation (106); calcu- 

lating E from the equation (114); finding Tx and T from the stress - 

strain curve: find w from the equation (117). The comparison of 

results obtained from using the two methods is shown in the Table 
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on page (53). For most flat plate structures the midspan rein- 

forcement is considerably less than the edge reinforcement so 

that the midspan reinforcement controls the capacity of the tensile 

membrane. The force at the midspan of the membrane is Cos times the force 

at the edges so that equations (116) and (117) can be re -expressed as 

equations (118) and (119) respectively. From equation (116) we have: 

or 

w - 
Lx Cosi6Ex Ly Cos(Lx/Lyi6cx) 

2T' 2T' 

--Y-- tan ((--)-(-)V6-e ) 

x 

w - 
L 

tanATx + 
L x 

Fora small angle sbx 

L 

w = T 
x L y 

L2 y) 

For a square panel with isotropic reinforcement, 

T 

W 4/6e" 
x Lx 

= 4/6Ty 
L 

2TxSin;TE; CosIZT; 2Tv Sin(lx/LyVgE;) Cos(Lx/Ly/6c) 
(118) 

(119) 

(120) 

(121) 

where, Tlx and Ty are midspan force per unit width in the x and y 

direction. 

Comparison with test data: Strengths predicted by this tensile membrane 

model are compared with experimental results. In Table (1),Powell's test 

specimens (8, 9), contained both top and bottom steel mats over the whole 

area of the rectangular slab. For these tests equation (116) was used by 

him to predict his results. Park's specimens (8) contained continuous 

bottom reinforcement only. The top steel was discontinued short distances 
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from the edge and therefore equation (120), was used to predict his 

results. For Park's specimens Al and A2 pure membrane action did not 

develop. Brotche and Holley (2) tested square slabs with bottom rein- 

forcement only. Therefore equation (117) was used to predict their 

results. The stress strain curves for steel shown in Figs. 20 and 21 

were used for the predictions listed in Table (1). There is reasonable 

agreement between theoretical and experimental results. In the last 

column of Table (1), ultimate loads for slabs using yield line theory 

are shown. Calculations were done based on information given in that 

table, from appropriate references, and the slabs were assumed to be 

simply supported. Failure was assumed to occur when the middle deflection 

3x was equal to 0.1 L. 
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Example 8: The following calculations show the alternative pro- 

cedure to calculate the loading w. The result is compared with value 

given in table (1). 

Let us take Powell's slab Number 47 (See table 1), and calculate the 

load w. 

dx = 0.1 Lx = 0.1 x 20.57 = 2.06 in (5.32 cm) 

L2 

8(5x 

- 2.06/2 + (20.57)2/ 8 x 2.06 = 26.74 in. (67.91 cm) 

x 

Ex = dx/3Rx = 2.06/3 x 26.74 = 0.02564 

= Ex (Lx/Ly)2 = 0.02564 (20.57/36)2 = 0.00837 

From the reinforcement stress -strain curve (Fig. 21), we get 

ay 

ax = 37.80 ksi (260.82 x 103 kPa) 

As = 0.0039 x 1.286 = 0.00501 in /in (0.127 cm) 

T = Aa 

= 31.66 ksi (218.45 x 103 kPa) 

Tx = 0.00501 x 37.8 x 103 = 189.57 lb/in (3.32 x 104 7m) 

0.00501 x 31.66 x 103 = 158.78 lb/in (2.78 x 104 N/m) 

2TSinAc 2TySin (Lx 

w= x (Eq. 116) 

w 
2 x 189.5 x Sin/6 x .002564 2 x 158.78 x Sin(20.57/36)V6 x 0.02564 

20.57 36 

7.035 + 1.988 = 9.025 psi (62.27 Oa) 

The theoretical value from Table (1), given by Powell, is 9.2 psi and his 

experimental value is 9.0 psi, which are very close to the above answer. 
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Example 9: Calculate the ultimate load w by yield line analysis for 

slabs listed in table (1). To show a sample calculation, let us take 

Powell's slab Number 47 from Table (1). We have the following infor- 

mation: 

d = 1.286 in (3.26 cm) 

Lx = 20.57 in (52.25 cm) 

Ly = 36 in (97.44 cm) 

px = py = 0.0039 

fy = 30 x 103 psi 

fd = 4000 psi 

mu = A 
s 
fy (d - a/2) 

a = As fy /0.85 f' b 

As = 0.0039 x (1.286) = 0.00501 in2/in (0.127 cm2/cm) 

a = 0.00501 x 30 x 103/0.85 x 4000 = 0.044 in (1.12 cm) 

mux = 0.00501 x 30 x 103 (1.286 - 0.044/2) = 190 lb-in/in (844 N-m/m) 

muy = 190 lb-in/in (844 N-m/m) 

From equation (35), Page (18), we have 

w = 24m/Z2 u/tan20 

112/a2 
- tamp =u/a 

a = 36/20.57 = 1.75 

u = 1 (isotropic slab) 

tang) = /3 + 1/(1.75)2 - 1/1.75 = 1.25 

w = 24 x 190/(20.57)2 . 1/(1.25)2 = 6.87 psi (47.36 kPa) 

Note that this is somewhat lower than obtained from the membrane net 

solution. 
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0.06 0.08 

Fig. 20 Reinforcement Stress -Strain Curves for Predicting Results 
in Park's Test 
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Fig. 21 Reinforcement Stress. -Strain Curves for Predicting 
Results in Powell's and Brotchie & Holley's Test 



Table 1. COMPARISON OF MEASURED AND PREDICTED STRENGTHS FOR TENSILE MEMBRANE ACTION 

Slab 

Desig- 
Source nation 

d 

in. 

(cm) 

Lx 

in. 

(cm) 

L 

in. 

(cm) 

Amount of 
Reinforcement 

x direc- y direc- 
tion tion 

Values of w, psi 
(kPa) 

at d = 0.1 
Lx 

Theoret- 
ical Exp. 

Ultimate 
Load w 

by Yield 

Experi- Line 

mental, w Theory, 
Theoret- psi 
ical, w (kPa) 

Powell 

(23) 

S47 

S50 

S54 

S58 

S59 

S62 

S63 

1.286 20.57 36.0 0.39 0.39 

(3.26) (52.24) (91.44) 

1.286 20.57 36.0 0.70 0.70 

(3.26) (52.24) (91.44) 

1.286 20.57 36.0 1.11 1.11 

(3.26) (52.24) (91.44) 

1.286 20.57 36.0 1.52 1.52 

(3.26) (52.24) (91.44) 

1.286 20.57 36.0 1.52 1.52 
(3.26) (52.24) (91.44) 

1.286 20.57 36.0 2.39 2.39 

(3.26) (52.24) (91.44) 

1.286 20.57 36.0 2.39 2.39 

(3.26) (52.24) (91.44) 

9.2 

(63.38) 

16.7 

(115.06) 

26.3 

(181.20) 

41.5 

(285.9) 

41.5 

(285.9) 

65.5 

(451.29) 

65.5 

(451.29) 

9.0 

(62.01) 

17.3 

(119.19) 

25.9 

(178.45) 

43.6 

(300.4) 

41.2 

(283.86) 

61.4 

(423.06) 

65.6 

(452.0) 

0.98 

1.04 

0.98 

1.05 

0.99 

0.94 

1.00 

6.87 

(44.40) 

12.22 

(84.25) 

19.01 

(131.06) 

25.5 

(175.81) 

25.5 

(175.8) 

38.5 

(265.44) 

38.5 

(265.44) 

Al 2.0 40 60 0.16 0.16 

(5.08) (101.6) (152.4) 

Park (20) A2 2.0 40 60 0.35 0.16 

(5.08) (101.6) (152.4) 

4.7 

(32.38) 

7.7 

(53.05) 

9.2 

(62.01) 

15.2 

(104.72) 

1.96 

1.97 
* 

3.40 

(23.42) 

5.22 

(35.96) 
* 
Full tensile membrane action did not develop. 



Table 1 (continued) 

Source 

Slab 

Desig- 
nation 

in. 

(cm) 

Lx 
in. 

(cm) 

Ly 
in. 

(cm) 

Amount of 
Reinforcement 

x direc- y direc- 
tion tion 

Values of w, psi 

(kPa) 
at 6 = 0.1 

Lx 
Theoret- 

ical Exp. 

Experi- 
mental, w 

Ultimate 
Load w 

by Yield 
Line 

Theory, 
psi 

(kPa) 

Theoret- 
ical, w 

A3 2.0 40 60 0.59 0.16 14.1 20.8 1.48 8.57 

(5.08) (101.6) (152.4) (97.14) (143.30) (59.10) 

A4 2.0 40 60 0.96 0.16 20.0 25.6 1.28 12.48 

(5.08) (101.6) (152.4) (137.79) (196.37) (85.98) 

46 0.56 15 15 1.00 1.00 39.9 35.3 0.88 16.91 

Brotchie 
and 

(1.42) (38.1) (38.1) (274.9) (243.20) (116.59) 

Holley 47 1.22 15 15 1.00 1.00 81.1 94.5 1.17 86.8 

(21) (3.09) (558.7) (651.10) (597.10) 

48 0.56 15 15 2.00 2.00 79.7 65.6 0.82 30.84 

(1.42) (549.1) (454.03) (212.65) 

49 1.22 15 15 2.00 2.00 162.2 145.5 0.90 156.89 

(3.09) (1117.51) (1002.45) (1081.75) 



Chapter III Conclusions 

Yield line analysis provides answersto problems of slab design 

which cannot be handled by other means. The work method theory gives an 

upper -bound solution. In practice the actual load of a reinforced 

concrete slab, may be above the calculated value by this method because 

of the occurrence of various secondary effects. By means of yield line 

analysis, a rational solution for the failure load may be found for 

slabs of any shape supported in a variety of ways and for concen- 

trated loads as well as distributed and partially distributed loads. 

In most of the cases the work method gives a quick solution to the prob- 

lems. 

There is no necessity for considering the fan mechanism when the 

slab is carrying distributed load only, however, when heavy concentrated 

loads are involved, it is important to analyze the slab considering a 

fan mechanism. A fracture pattern involving fan modes will generally give a 

lower collapse load than that obtained from corresponding straight 

line pattern. For analysis of an brthotropic slab a library of solu- 

tion collected for the isotropic slab is very useful. 

When horizontal movement of the slab is not allowed by restrain- 

ing the boundaries, at large deflections of the slab, it is possible 

finally to develop tensile membrane action when cracks go right through 

the slab so that the load is supported on the net of reinforcement. 

The load carried by reinforcement is usually greater than the ultimate 

load calculated by yield line analysis. 
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APPENDIX 

Consider the yield line shown in Fig. 6. The internal work done 

along the yield line may be written as: 

or 

E =.nb +ntz) en = mnb en Cos 0 + mntt en Cos 90 

E = mnbt en 

where mnb and mnt are bending and twisting moments per unit length 

along the yield line, and en is rotational vector along the yield line. 

Substituting mnb in terms of the ultimate moment capacity of reinforced 

section per unit length with respect to x and y axes, as given by 

equation (1), page (10), into equation (2a), gives 

E = Emx (z Cos a) Cos a + my (2, Sin a) Sin a] en 

or 

E = mx (2, Cos a)(en Cos a) + my (k Sin a)(en Sin a) 

substituting tx = z Cos a, Qy = t Sin a, ex = en Cosa and 

e = en Sin a into equation (4a), leads to 

E=m t +m e xxx yyy 

which is similar to equation (14). 

(3a) 

(4a) 

(5a) 
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Yield line theory and tensile membrane action are presented. The 

yield line analysis is based on the formation of the yield pattern, with 

its location dependent on loading and boundary conditions. There are 

guidelines for establishing yield line patterns. The complexity of 

analysis of yield line will be reduced by making some basic assumptions. 

It has been assumed that the collapse load can be arrived at by consider- 

ing bending action only. It has been also assumed that the elastic 

deformations are negligible compared to plastic deformations, therefore 

the segments between the yield lines remain rigid. Once the general 

crack pattern is known, the work method or the equilibrium method may 

be used to determine the collapse load. In the work method, the external 

work done by the loads to cause a small arbitrary virtual deflection must 

equal the internal work done as the slab rotates at the yield lines to 

adapt this deflection. Only the work method is discussed. 

A fan mechanism will form when a slab is subjected to a heavy con- 

centrated load. There is no need for considering the fan mechanism when 

the slab is carrying a distributed load only. 

An orthotropic slab may be transferred into an equivalent, or 

affine, isotropic slab. This transformation allows an easy solution 

compared with the analysis of the orthotropic slab. 

When boundaries of any slab are restrained from horizontal move- 

ment (as might occur in the interior panels of a continuous slab), the 

formation of the collapse mechanism develops high compressive forces 



in the plane of the slab with consequent increase in tarring capacity. 

At large deflections of the slab, it is possible finally to develop 

tensile membrane action where cracks go right through the slab so that 

the load is supported on the net of reinforcement. 


