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Abstract

This dissertation contains two projects that are related to varying coefficient models.

The traditional least squares based kernel estimates of the varying coefficient model will

lose some efficiency when the error distribution is not normal. In the first project, we pro-

pose a novel adaptive estimation method that can adapt to different error distributions and

provide an efficient EM algorithm to implement the proposed estimation. The asymptotic

properties of the resulting estimator is established. Both simulation studies and real data

examples are used to illustrate the finite sample performance of the new estimation proce-

dure. The numerical results show that the gain of the adaptive procedure over the least

squares estimation can be quite substantial for non-Gaussian errors.

In the second project, we propose a unified inference for sparse and dense longitudinal

data in time-varying coefficient models. The time-varying coefficient model is a special case

of the varying coefficient model and is very useful in longitudinal/panel data analysis. A

mixed-effects time-varying coefficient model is considered to account for the within sub-

ject correlation for longitudinal data. We show that when the kernel smoothing method

is used to estimate the smooth functions in the time-varying coefficient model for sparse

or dense longitudinal data, the asymptotic results of these two situations are essentially

different. Therefore, a subjective choice between the sparse and dense cases may lead to

wrong conclusions for statistical inference. In order to solve this problem, we establish a

unified self-normalized central limit theorem, based on which a unified inference is proposed

without deciding whether the data are sparse or dense. The effectiveness of the proposed

unified inference is demonstrated through a simulation study and a real data application.
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kernel smoothing; EM algorithm; dense longitudinal data; sparse longitudinal data; time-

varying coefficient models; self-normalization.
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Chapter 1

Adaptive Estimation for Varying

Coefficient Models

1.1 Introduction

Since the introduction in Cleveland, et al. (1992) and Hastie and Tibshirani (1993), vary-

ing coefficient models have gained considerable attention due to their flexibility and good

interpretability. They are useful extensions of the classical linear models and have been

widely used to explore the dynamic pattern in many scientific areas, such as finance, eco-

nomics, epidemiology, ecology, etc. By allowing coefficients to vary over the so-called index

variable, the modeling bias can be significantly reduced and the ‘curse of dimensionality’

can be avoided (Fan and Zhang, 2008). In recent years, varying coefficient models have

experienced rapid developments in both theory and methodology, see, for example, Wu, et

al. (1998), Hoover, et al. (1998), Fan and Zhang (1999, 2000), Cai, et al. (2000), Fan and

Huang (2005), Wang, et al. (2009), Wang and Xia (2009), etc. We refer readers to Fan and

Zhang (2008) for a nice and comprehensive survey.

Let y ∈ R1 be the response, x = (x1, . . . , xd)
T ∈ Rd be the covariate vector, and u ∈ R1
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is the index variable. The varying coefficient model is defined as

y =
d∑
j=1

gj(u)xj + ε, (1.1)

where {g1(u), . . . , gd(u)}T are unknown smooth coefficient functions. Throughout this chap-

ter, we assume the random error ε to be independent of (u, x), with mean 0 and a finite

second-order moment σ2. By setting x1 ≡ 1, it allows a varying intercept in the model.

Hastie and Tibshirani (1993), Hoover, et al. (1998), Chiang, et al. (2001), and Eubank,

et al. (2004) proposed using smoothing spline to estimate coefficient functions. Polynomial

spline was used in Huang, et al. (2002, 2004) and Huang and Shen (2004). Wu, et al.

(1998), Hoover, et al. (1998), Fan and Zhang (1999), and Kauermann and Tutz (1999)

adopted kernel smoothing to estimate coefficient functions. Fan and Zhang (2000) further

studied a two-step estimation procedure to deal with the situation where the coefficient

functions admit different degrees of smoothness. Recently, Wang and Xia (2009) proposed

a shrinkage estimation procedure to select important nonparametric components. Wang, et

al. (2009) developed a highly robust and efficient procedure based on local ranks.

Nevertheless, most of existing methods used least squares type criteria in estimation,

which corresponds to the local likelihood when the error ε is normal. However, in the

absence of normality, the traditional least squares based estimators will lose some efficiency.

In this chapter, we propose a novel adaptive kernel estimation procedure for varying

coefficient models. The new adaptive method combines the kernel density estimation and

the local maximum likelihood estimation such that the new estimator can adapt to different

error distributions. The new adaptive estimator is shown to enjoy the asymptotic oracle

property, i.e., it is asymptotically as efficient as if the error density were known. An efficient

EM algorithm is proposed to implement the adaptive estimation method. We demonstrate

through a simulation study that the new estimate is more efficient than the existing least

squares based kernel estimate when the error distribution deviates from normal. In addition,
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when the error is exactly normal, the new method is broadly comparable to the existing

kernel approach. We further illustrate the effectiveness of the proposed adaptive estimation

method with two real data examples.

The rest of this chapter is organized as follows. In Section 1.2, we introduce the new

adaptive estimation method for the varying coefficient models and the EM algorithm. In

Section 1.3, we compare our proposed adaptive estimation with the traditional least squares

based estimation for five different error densities through a simulation study and then apply

the new method to two real data examples. We conclude this chapter with a brief discussion

in Section 1.4. All technical conditions and proofs are relegated to Section 1.5.

1.2 New Adaptive Estimation

1.2.1 Introduction to The New Method

Suppose that {xi, ui, yi, i = 1, . . . , n} is a random sample from model (1.1). For u in a

neighborhood of u0, we can approximate varying coefficient functions locally as

gj(u) ≈ gj(u0) + g′j(u0)(u− u0) ≡ bj + cj(u− u0), for j = 1, . . . , d. (1.2)

The traditional local linear estimation of (1.1) is to minimize

n∑
i=1

Kh(ui − u0)

[
yi −

d∑
j=1

{bj + cj(ui − u0)}xij

]2
, (1.3)

for a given kernel density K(·) and a bandwidth h, where Kh(t) = h−1K(t/h). It is well

known that the choice of kernel function is not critical in terms of estimation efficiency.

Throughout this chapter, a Gaussian kernel will be used for K(·). Due to the least squares

in (1.3), the resulting estimate may lose some efficiency when the error distribution is not

normal. Therefore, it is desirable to develop an estimation procedure which can adapt to
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different error distributions.

Let f(ε) be the density function of ε. If f(ε) were known, it would be natural to estimate

the local parameters in (1.2) by maximizing the following local log-likelihood function

n∑
i=1

Kh(ui − u0) log f

[
yi −

d∑
j=1

{bj + cj(ui − u0)}xij

]
. (1.4)

However, in practice, f(ε) is generally unknown but can be replaced by a kernel density

estimate based on the initial estimated residual ε̃1, . . . , ε̃n

f̃(εi) =
1

n

n∑
j 6=i

Kh0 (εi − ε̃j) , for i, j = 1, 2, ..., n (1.5)

where ε̃i = yi −
∑d

j=1 g̃j(ui)xij and g̃j(·) can be estimated by least squares (or L1 norm,

i.e., median regression) based local linear estimate (1.3). Here we use leave-one-out kernel

density estimate for f(εi) to remove the estimation bias. Let θ = (b1, . . . , bd, c1, . . . , cd)
T .

Then our proposed adaptive local linear estimate for the local parameter θ is

θ̂ = arg max
θ

Q(θ), (1.6)

where

Q(θ) =
n∑
i=1

Kh(ui − u0) log

(
1

n

∑
j 6=i

Kh0

[
yi −

d∑
l=1

{bl + cl(ui − u0)}xil − ε̃j

])
. (1.7)

The idea of adaptiveness can be traced back to Beran (1974) and Stone (1975), where

the adaptive estimation was proposed for location models. Later, this idea was extended

to regression, time series and other models, see Bickel (1982), Manski (1984), Steigerwald

(1992), Schick (1993), Drost and Klaassen (1997), Hodgson (1998), Yuan and De Gooijer

(2007), and Yuan (2009). Linton and Xiao (2007) proposed an elegant adaptive nonparamet-

ric regression estimator by maximizing the local likelihood function. In fact, the adaptive
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method proposed in Linton and Xiao (2007) can be seen as a special case of ours when

d = 1 in (1.1). Wang and Yao (2012) extended the idea of adaptive estimation to sufficient

dimension reduction.

1.2.2 Computation: An EM Algorithm

Unlike least squares criterion, (1.6) does not have an explicit solution. In this section, we

propose an EM algorithm to maximize it by extending the generalized modal EM algorithm

proposed in Yao (2013).

Let θ(0) be an initial parameter estimate, such as the least squares (or L1 norm, i.e.,

median regression) based local linear estimate. We can update the parameter estimate

according to the following algorithm.

Algorithm 1.2.1. At (k + 1)th step, we calculate the following E and M steps:

E-Step: Calculate the classification probabilities,

p
(k+1)
ij =

Kh0

[
yi −

∑d
l=1{b

(k)
l + c

(k)
l (ui − u0)}xil − ε̃j

]
∑

j 6=iKh0

[
yi −

∑d
l=1{b

(k)
l + c

(k)
l (ui − u0)}xil − ε̃j

]
∝Kh0

[
yi −

d∑
l=1

{b(k)l + c
(k)
l (ui − u0)}xil − ε̃j

]
, 1 ≤ j 6= i ≤ n. (1.8)

M-Step: Update θ(k+1),

θ(k+1) = arg max
θ

n∑
i=1

∑
j 6=i

{
p
(k+1)
ij Kh(ui − u0) log

(
Kh0

[
yi −

d∑
l=1

{bl + cl(ui − u0)}xil − ε̃j

])}

= arg min
θ

n∑
i=1

∑
j 6=i

{
p
(k+1)
ij Kh(ui − u0)

[
yi − ε̃j − zTi θ

]2}
,

=

(
n∑
i=1

∑
j 6=i

p
(k+1)
ij Kh(ui − u0)zizTi

)−1 n∑
i=1

∑
j 6=i

p
(k+1)
ij Kh(ui − u0)(yi − ε̃j)zi

(1.9)
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where zi = {xTi ,xTi (ui − u0)}T and the second equation follows the use of Gaussian

kernel for density estimation.

The above EM algorithm monotonically increases the estimated local log-likelihood (1.7)

after each iteration, as shown in the following theorem.

Theorem 1.2.1. Each iteration of the above E and M steps will monotonically in-

crease the local log-likelihood (1.7), i.e.,

Q(θ(k+1)) > Q(θ(k)),

for all k, where Q(·) is defined as in (1.7).

1.2.3 Asymptotic Result

We now derive the asymptotic distribution of the proposed adaptive local linear estimator

of θ. Define µk =
∫
ukK(u)du and νk =

∫
ukK2(u)du. Let H = diag(1, h) ⊗ Id with ⊗

denoting the Kronecker product and Id being the d× d identity matrix. Let q(·) denote the

marginal density of u, and

Γjk(ui) = E(xijxik|ui) for 1 ≤ j, k ≤ d, i = 1, ..., n, (1.10)

Γ(u0) = {Γjk(u0)}16j,k6d . (1.11)

Theorem 1.2.2. Suppose that the regularity conditions in Section 1.5 hold. Then,

with probability approaching 1, there exists a consistent local maximizer

θ̂ = (b̂1, . . . , b̂d, ĉ1, . . . , ĉd)
T of (1.7) such that

√
nh

{
H(θ̂ − θ)− S−1

h2

2

d∑
j=1

g
′′

j (u0)ψj(1 + op(1))

}
D→ N(02d, δ

−2
1 δ2q(u0)

−1S−1ΛS−1),

6



where 02d is a 2d×1 vector with each entry being 0, ρ(·) = log f(·), δ1 = E
{
ρ
′′
(εi)
}
, δ2 =

E
{
ρ
′
(εi)

2
}

, S =

1 0

0 µ2

 ⊗ Γ(u0), Λ =

ν0 ν1

ν1 ν2

 ⊗ Γ(u0), ψj =

µ2

µ3

 ⊗
(Γjk(u0))

T
1≤k≤d, and Γ(u0) is given by (1.11).

A sketch of the proof of the above theorem is provided in Section 1.5. As shown in

Linton and Xiao (2007), one important property of the proposed adaptive estimate is its

asymptotic oracle property, i.e., it achieves the same asymptotic efficiency as if the error

density were known. Therefore, the effect of estimating f by kernel density estimate will

not affect the asymptotic distribution of the resulting estimator of θ.

1.3 Examples

1.3.1 Simulation Study

In this section, we conduct a simulation study to compare the proposed adaptive estimation

(Adapt) with the traditional least squares based kernel estimation (LS) for varying coeffi-

cient models. The following five error distributions of ε were considered in our numerical

experiment:

1. N(0, 1);

2. t3;

3. 0.5N(−1, 0.52) + 0.5N(1, 0.52);

4. 0.3N(−1.4, 1) + 0.7N(0.6, 0.42);

5. 0.9N(0, 1) + 0.1N(0, 102).

The standard normal distribution serves as a baseline in our comparison. The second one

is a t-distribution with 3 degrees of freedom. The third density is bimodal and the fourth
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one is left skewed. The last one is a contaminated normal mixture distribution, where 10%

of the data from N(0, 102) are most likely to be outliers.

For each of the above error distributions, we consider the following two models:

Model 1: y = g1(u) + g2(u)x1 + g3(u)x2 + ε, where g1(u) = exp(2u− 1), g2(u) = 8u(1− u),

and g3(u) = 2 sin2(2πu).

Model 2: y = g1(u)+g2(u)x1+g3(u)x2+ε, where g1(u) = sin(2πu), g2(u) = (2u−1)2+0.5,

and g3(u) = exp(2u− 1)− 1.

In both models, x1 and x2 follow a standard normal distribution with correlation coefficient

γ = 1/
√

2. The index variable u is a uniform random variable on [0, 1], and is independent

of (x1, x2). We conduct two simulations with sample size n=200 and 400 respectively, each

with 200 data replications. There are two bandwidths in the estimation, h in the local

log-likelihood and h0 in the kernel density estimation. The bandwidth h is chosen by cross-

validation with more details in Fan and Zhang (1999), and h0 = h/ log(n) following Linton

and Xiao (2007). The performance of estimator ĝ(·) is assessed via the square root of the

average squared errors (RASE; Cai, et al., 2000; Wang, et al., 2009),

RASE2 =
1

N

N∑
k=1

3∑
j=1

[ĝj(uk)− gj(uk)]2, (1.12)

where uk, k = 1, . . . , N, are the equally spaced grid points at which the functions gj(·) were

evaluated. We used N=200 in the numerical studies.

The simulation results are summarized in Tables 1.1 and 1.2. We can clearly see that

the proposed adaptive estimation outperforms the least squares method when the error is

non-normal. The gain in estimation efficiency can be quite substantial even for moderate

sample sizes. When the error follows exactly normal distribution, our approach is still

broadly comparable with the least squares based method.

Figures 1.1 and 1.2 plot the estimated coefficient functions and the 95% pointwise con-

fidence intervals based on a typical sample when n=200 and the error distribution is the

8



contaminated normal mixture (Case 5). It is clear that the adaptive estimation method

provides narrower confidence intervals than the least squares based method, as expected.

Table 1.1: Model 1 estimation accuracy comparison–RASE and its standard error in brack-
ets.

ε n = 200 n = 400

LS Adapt LS Adapt

1 0.483(0.079) 0.439(0.081) 0.366(0.053) 0.324(0.053)

2 0.671(0.167) 0.601(0.139) 0.493(0.111) 0.422(0.086)

3 0.500(0.083) 0.401(0.077) 0.379(0.061) 0.277(0.048)

4 0.508(0.088) 0.376(0.082) 0.383(0.062) 0.262(0.045)

5 1.188(0.411) 0.720(0.220) 0.871(0.227) 0.459(0.098)

Table 1.2: Model 2 estimation accuracy comparison–RASE and its standard error in brack-
ets.

ε n = 200 n = 400

LS Adapt LS Adapt

1 0.362(0.077) 0.380(0.074) 0.263(0.051) 0.275(0.049)

2 0.618(0.301) 0.566(0.201) 0.431(0.129) 0.384(0.076)

3 0.412(0.091) 0.351(0.080) 0.290(0.059) 0.215(0.041)

4 0.407(0.102) 0.319(0.089) 0.291(0.061) 0.207(0.051)

5 1.133(0.397) 0.669(0.224) 0.828(0.224) 0.436(0.101)

1.3.2 Real-Data Applications

Example 1 (Hong Kong environmental data). We now illustrate the adaptive estimation

method via an application to an environmental data set. The data were collected daily in

Hong Kong from January 1, 1994, to December 31, 1995 and have been analyzed by Fan and

Zhang (1999), Cai, et al. (2000), Xia, et al. (2002) and Fan and Zhang (2008). In this data

9
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Figure 1.1: Estimated coefficient functions with 95% pointwise confidence intervals (blue dotted

line for Adapt and red solid line for LS) for model 1.

0 0.5 1
−2

0

2

(a) g
1
(u)

0 0.5 1

0

2

4

(b) g
2
(u)

0 0.5 1

−2

0

2

4

(c) g
3
(u)

Figure 1.2: Estimated coefficient functions with 95% pointwise confidence intervals (blue dotted

line for Adapt and red solid line for LS) for model 2.

set, a collection of daily measurements of pollutants and other environmental factors are

included. Following Fan and Zhang (1999), we consider three pollutants: sulphur dioxide

10



x2 (in µg/m3), nitrogen dioxide x3 (in µg/m3), and respirable suspended particulates x4 (in

µg/m3) (this variable is named as ‘dust’ in Fan and Zhang (1999), Fan and Zhang (2008),

and Cai, et al. (2000)). The response variable is the logarithm of the number of daily

hospital admissions y. We set x1 = 1 as the intercept term and let u denote time which is

scaled to the interval [0, 1]. As in the previous analyses, all three predictors are centered.

The following varying coefficient model is considered to investigate the relationship between

y and the levels of pollutants x2, x3, and x4.

y = g1(u) + g2(u)x2 + g3(u)x3 + g4(u)x4 + ε.

We set aside 50 observations as testing set. The bandwidth h, selected by leave-one-out

cross-validation, is around 0.146. The estimated coefficient functions together with 95%

pointwise confidence intervals are depicted in Figure 1.3. We also compare the median

squared prediction errors, MSPE = Median{(yj − ŷj)
2, j = 1, . . . , k}, from our adaptive

approach and the traditional least squares estimation, where k = 50 and ŷj = ĝ1(uj) +

ĝ2(uj)xj2+ĝ3(uj)xj3+ĝ4(uj)xj4. The MSPE from our adaptive approach is 0.0183, compared

to 0.0178 from the LS estimation.

In Figure 1.5 (a), we give the residual QQ-plot for Hong Kong environmental data. From

the plot, we can see that the residual is very close to normal, which explains why the MSPE

of the adaptive approach is close to the MSPE of the LS estimation.

Example 2 (Boston housing data). The Boston Housing Data (corrected version (Gilley

and Pace, 1996)), which has been analyzed by Fan and Huang (2005) and Wang and Xia

(2009), is publicly available in the R package mlbench, (http://cran.r-project.org/ ). In

this data set, the median value of owner-occupied homes in 506 U.S. census tracts in the

Boston area in 1970 and some variables that might explain the variation of housing value are

included. Following Fan and Huang (2005) and Wang and Xia (2009), we consider seven in-

dependent variables: CRIM (per capita crime rate by town), RM (average number of rooms

per dwelling), TAX (full-value property-tax rate per $10, 000), NOX (nitric oxides concen-
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Figure 1.3: Estimated coefficient functions (solid curves) with 95% pointwise confidence intervals

(dotted curves) for Hong Kong environmental data.

tration parts per 10 million), PTRATIO (pupil-teacher ratio by town), AGE (proportion

of owner-occupied units built prior to 1940), and LSTAT (lower status of the population).

The response variable is CMEDV (corrected median value of owner-occupied homes in USD

1000’s). We denote the covariates CRIM, RM, TAX, NOX, PTRATIO, and AGE to be

x2, x3, . . . , x7, respectively. We take x1 = 1 as the intercept term and u =
√

LSTAT. By

doing so, we can fit different regression models at different lower status population per-

centage (Fan and Huang, 2005). Following Fan and Huang (2005) we use the square root

transformation on the index variable LSTAT to make the data symmetrically distributed.

We construct the following varying coefficient model

yi = g1(ui) +
7∑
j=2

gj(ui)xij + εi.

Similar to the analysis in the previous example, we set aside 50 observations for checking

prediction errors. The bandwidth h was selected by leave-one-out cross-validation, which

is around 0.294. The estimated coefficient functions are depicted in Figure 1.4. From the

12



plot, we can see that the coefficient functions of x2 (CRIM) and x3 (RM) vary over time.

The coefficient functions of x4 (TAX), x5 (NOX), and x7 (AGE) are very close to zero and

the coefficient function of x6 (PTRATIO) shows no significant trend. These discoveries are

consistent with those from Fan and Huang (2005) and Wang and Xia (2009). In terms of the

median squared prediction error (MSPE), the MSPE from our adaptive approach is 0.0484,

compared to 0.0604 from the LS estimation.

In Figure 1.5 (b), we give the residual QQ-plot for Boston housing data. Based on

the tails of the QQ-plot, there is a clear deviation of the residuals from normal, which

explains why the MSPE of the adaptive approach is much smaller than the MSPE of the

LS estimation.
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Figure 1.4: Estimated coefficient functions (solid curves) with 95% pointwise confidence intervals

(dotted curves) for Boston housing data.

1.4 Discussion

In this chapter, we proposed an adaptive estimation for varying coefficient models. The

new estimation procedure can adapt to different errors and thus provide a more efficient
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Figure 1.5: Residual QQ-plot for two data examples: (a) Hong Kong environmental data; (b)

Boston housing data.

estimate than the traditional least squares based estimate. Simulation studies and two real

data applications confirmed our theoretical findings.

It will be interesting to know whether we can also perform some adaptive hypothesis

tests for the coefficient functions using the estimated error density. For example, we might

be interested in testing some parametric assumptions, such as constant or zero, for the

coefficient functions. It requires more research about whether the Wilks phenomenon for

generalized likelihood ratio statistic proposed by Fan, et al. (2001) still holds for the proposed

adaptive varying coefficient models.

The idea of the proposed adaptive estimator might also be generalized to many other

models, such as varying coefficient partial linear models and nonparametric additive models.

In addition, by combining this adaptive idea with shrinkage estimation, we can develop

adaptive variable selection procedures. Such study is under way.
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1.5 Proofs

We first impose some regularity conditions.

Conditions:

1. K(·) is bounded, symmetric, and has bounded support and bounded derivative;

2. {xi}i, {ui}i, {εi}i are independent and identically distributed and {εi}i is independent

of {xi}i and {ui}i. Additionally, the predictor x has a bounded support;

3. The probability distribution function f(·) of ε has bounded continuous derivatives up

to order 4. Let ρ(ε) = log f(ε). Assume E[ρ
′
(εi)] = 0, E[ρ

′′
(εi)] < ∞, E[ρ

′
(εi)

2] < ∞

and ρ
′′′

(·) is bounded;

4. The marginal density of u has a continuous second derivative in some neighborhood

of u0 and q(u0) 6= 0;

5. h→ 0, nh→∞ as n→∞ and h0 = h/ log(n);

6. gj(·) has bounded, continuous 3rd derivatives for 1 ≤ j ≤ d.

These conditions are adopted from Fan and Zhang (1999) and Linton and Xiao (2007). They

are not the weakest possible conditions. For instance, the independence of {xi}i and {εi}i

can be relaxed based on the discussion of Section 4 of Linton and Xiao (2007).
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Proof of Theorem 1.2.1

Note that

Q(θ(k+1))−Q(θ(k))

=
n∑
i=1

Kh(ui − u0) log


∑

j 6=iKh0

[
yi −

∑d
l=1

{
b
(k+1)
l + c

(k+1)
l (ui − u0)

}
xil − ε̃j

]
∑

j 6=iKh0

[
yi −

∑d
l=1

{
b
(k)
l + c

(k)
l (ui − u0)

}
xil − ε̃j

]


=
n∑
i=1

Kh(ui − u0) log
∑
j 6=i

 Kh0

[
yi −

∑d
l=1

{
b
(k)
l + c

(k)
l (ui − u0)

}
xil − ε̃j

]
∑

j 6=iKh0

[
yi −

∑d
l=1

{
b
(k)
l + c

(k)
l (ui − u0)

}
xil − ε̃j

]


×

Kh0

[
yi −

∑d
l=1

{
b
(k+1)
l + c

(k+1)
l (ui − u0)

}
xil − ε̃j

]
Kh0

[
yi −

∑d
l=1

{
b
(k)
l + c

(k)
l (ui − u0)

}
xil − ε̃j

]


=
n∑
i=1

Kh(ui − u0) log

∑
j 6=i

p
(k+1)
ij

Kh0

[
yi −

∑d
l=1

{
b
(k+1)
l + c

(k+1)
l (ui − u0)

}
xil − ε̃j

]
Kh0

[
yi −

∑d
l=1

{
b
(k)
l + c

(k)
l (ui − u0)

}
xil − ε̃j

]
 ,

where

p
(k+1)
ij =

Kh0

[
yi −

∑d
l=1{b

(k)
l + c

(k)
l (ui − u0)}xil − ε̃j

]
∑

j 6=iKh0

[
yi −

∑d
l=1{b

(k)
l + c

(k)
l (ui − u0)}xil − ε̃j

] .
From the Jensen’s inequality, we have

Q(θ(k+1))−Q(θ(k))

>
n∑
i=1

Kh(ui − u0)
∑
j 6=i

p
(k+1)
ij log

Kh0

[
yi −

∑d
l=1

{
b
(k+1)
l + c

(k+1)
l (ui − u0)

}
xil − ε̃j

]
Kh0

[
yi −

∑d
l=1

{
b
(k)
l + c

(k)
l (ui − u0)

}
xil − ε̃j

]
 .

Based on the property of M-step of (1.9), we have Q(θ(k+1))−Q(θ(k)) ≥ 0. �
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Proof of Theorem 1.2.2

Note that the estimator θ̂ is the maximizer of the following objective function

arg max
θ

n∑
i=1

Kh(ui − u0) log f̃

[
yi −

d∑
l=1

{bl + cl(ui − u0)}xil

]
, (1.13)

where

f̃(εi) =
1

n

∑
j 6=i

Kh0 (εi − ε̃j)

is the kernel density estimate of f(·), and ε̃i is the residual based on the least squares local

linear estimate. By the adaptive nonparametric regression result of Linton and Xiao (2007),

the asymptotic result of θ̂ in (1.13) is the same whether the true density f(·) is used or not.

Therefore, we will mainly proof the existence and asymptotic distribution of θ̂ assuming

f(·) is known.

We will first prove that with probability approaching 1, there exists a consistent local

maximizer θ̂ = (b̂1, . . . , b̂d, ĉ1, . . . , ĉd)
T of (1.7) such that

H(θ̂ − θ) = Op{(nh)−1/2 + h2}.

Then we establish the asymptotic distributions for such consistent estimate.

Denote θ∗ = Hθ, x∗i = (xi1, xi2, ..., xid, (
ui−u0

h
)xi1, ..., (

ui−u0

h
)xid)

T , Ki = Kh(ui − u0),

R(ui,xi) =
∑d

j=1 gj(ui)xij −
∑d

j=1[bj + cj(ui − u0)]xij, and an = (nh)−1/2 + h2. Let ρ(·) =

log f(·), we have the objective function

L(θ) =
1

n

n∑
i=1

Kiρ(yi − θ∗Tx∗i ) = L(θ∗).

It is sufficient to show that for any given η > 0, there exists a large constant c such that

P
{
sup‖µ‖=cL(θ∗ + anµ) < L(θ∗)

}
≥ 1− η,
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where µ has the same dimension as θ, an is the convergence rate. By using Taylor expansion,

it follows that

L(θ∗ + anµ)− L(θ∗) =
1

n

n∑
i=1

Ki{ρ(εi +R(ui,xi)− anµTx∗i )− ρ(εi +R(ui,xi))}

= − 1

n

n∑
i=1

Kiρ
′
(εi +R(ui,xi))anµ

Tx∗i +
1

2n

n∑
i=1

Kiρ
′′
(εi +R(ui,xi))a

2
n(µTx∗i )

2

− 1

6n

n∑
i=1

Kiρ
′′′

(zi)a
3
n(µTx∗i )

3

∆
= I1 + I2 + I3,

where zi is a value between εi+R(ui,xi)−anµTx∗i and εi+R(ui,xi). For I1 = − 1
n

∑n
i=1Kiρ

′
(εi+

R(ui,xi))anµ
Tx∗i , E(I1) = −E

[
Kiρ

′
(εi +R(ui,xi))anµ

Tx∗i
]
. By using Taylor expansion,

ρ
′
(εi +R(ui,xi)) ≈ ρ

′
(εi) + ρ

′′
(εi)R(ui,xi) +

1

2
ρ
′′′

(εi)R
2(ui,xi).

Based on the assumption that ε is independent of u and x, and E[ρ
′
(εi)] = 0, we have

E(I1) ≈ −anE

{
Ki

[
ρ
′′
(εi)R(ui,xi) +

1

2
ρ
′′′

(εi)R
2(ui,xi)

]
µTx∗i

}
.

Since

R(ui,xi) =
∑d

j=1 gj(ui)xij −
∑d

j=1[bj + cj(ui − u0)]xij

=
d∑
j=1

[
∞∑
m=2

1

m!
g
(m)
j (u0)(ui − u0)m]xij

= Op(h
2),

then 1
2
ρ
′′′

(εi)R
2(ui,xi) = [Op(h

2)]2 = Op(h
4), which is a smaller order than ρ

′′
(εi)R(ui,xi).
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Thus,

E(I1) ≈ −anE
{
Kiρ

′′
(εi)R(ui,xi)µ

Tx∗i

}
= −anE

[
ρ
′′
(εi)
]

E
[
KiR(ui,xi)µ

Tx∗i
]
.

Since δ1 = E
{
ρ
′′
(εi)
}

, then

E(I1) ≈ −anδ1E
[
KiR(ui,xi)µ

Tx∗i
]

= −anδ1E
{

E
{
R(ui,xi)µ

Tx∗i |ui
}
Ki

}
.

By µTx∗i ≤ ‖µ‖ · ‖x∗i ‖ = c ‖x∗i ‖, we have E(I1) = O(anch
2).

var(I1) =
1

n
var
{
Kiρ

′
(εi +R(ui,xi))anµ

Tx∗i

}
=

1

n
{E(A2)− [E(A)]2},

where A = Kiρ
′
(εi +R(ui,xi))anµ

Tx∗i . Since δ2 = E
{
ρ
′
(εi)

2
}

, then

E(A2) = E
{
K2
i ρ
′
(εi +R(ui,xi))

2a2n(µTx∗i )
2
}

≈ a2nE
{
K2
i ρ
′
(εi)

2(µTx∗i )
2
}

= a2nδ2E
{

E
{

(µTx∗i )
2|ui
}
K2
i

}
= O

(
a2nc

2 1

h

)
.

Note that [E(A)]2 = [O(anch
2)]

2 � E(A2), then var(I1) ≈ 1
n
E(A2) = O

(
a2nc

2 1
nh

)
. Hence,

I1 = E(I1) +Op(
√

var(I1)) = Op(anch
2) +Op

(√
a2nc

2 1
nh

)
= Op(ca

2
n). For

I2 =
1

2n

n∑
i=1

Kiρ
′′
(εi +R(ui,xi))a

2
n(µTx∗i )

2,
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we have

E(I2) =
1

2
a2nE

{
Kiρ

′′
(εi +R(ui,xi))(µ

Tx∗i )
2
}

=
1

2
a2nE

{
ρ
′′
(εi)Ki(µ

Tx∗i )
2
}

(1 + o(1))

=
1

2
a2nδ1E

{
E
{
µTx∗ix

∗T
i µ|ui

}
Ki

}
(1 + o(1))

=
1

2
a2nδ1µ

TE
{

E
{
x∗ix

∗T
i |ui

}
Ki

}
µ(1 + o(1)).

Note that x∗ix
∗T
i =

(
xijxik

(
ui−u0

h

)l)
1≤j,k≤d,l=0,1,2

and Γjk(ui) = E(xijxik|ui) for 1 ≤ j, k ≤ d,

then

E

{
E

{
xijxik

(
ui − u0
h

)l
|ui

}
Ki

}
= E

{
E(xijxik|ui)

(
ui − u0
h

)l
Ki

}

= E

{
Γjk(ui)

(
ui − u0
h

)l
Ki

}
.

By using Taylor expansion, we obtain

E

{
E

{
xijxik

(
ui − u0
h

)l
|ui

}
Ki

}
=

1

h

∫
Γjk(ui)

(
ui − u0
h

)l
K(

ui − u0
h

)q(ui)dui

= q(u0)Γjk(u0)

∫
tlK(t)dt(1 + o(1)).

So we have

E(I2) =
1

2
a2nδ1q(u0)µ

TSµ(1 + o(1)),

where S =

1 0

0 µ2

⊗ Γ(u0) is a 2d× 2d matrix. Thus,

E(I2) = O(a2nδ1q(u0)µ
TSµ)
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and

var(I2) =
a4n
4n

var
[
ρ
′′
(εi +R(ui,xi))Ki(µ

Tx∗i )
2
]

=
a4n
4n

{
E(B2)− [E(B)]2

}
,

where B = ρ
′′
(εi +R(ui,xi))Ki(µ

Tx∗i )
2. Let δ3 = E

(
ρ
′′
(εi)

2
)
, then

E(B2) = E
{
ρ
′′
(εi +R(ui,xi))

2K2
i (µTx∗i )

4
}

≈ E
{
ρ
′′
(εi)

2K2
i (µTx∗i )

4
}

= δ3E
{
K2
i (µTx∗i )

4
}

= O

(
1

h

)
.

Note that [E(B)]2 = [O(1)]2 = O(1) � E(B2), so var(I2) = O
(
a4
n

nh

)
. Based on the result

I2 = E(I2) +Op(
√

var(I2)) and the assumption nh→∞, it follows that

I2 = a2nδ1q(u0)µ
TSµ(1 + op(1)).

Similarly, I3 = − 1
6n

∑n
i=1Kiρ

′′′
(zi)a

3
n(µTx∗i )

3 = Op(a
3
n).

Assume δ1 < 0. Noticing that S is a positive matrix, ‖µ‖ = c, we can choose c

large enough such that I2 dominates both I1 and I3 with probability at least 1 − η. Thus

P
{
sup‖µ‖=cL(θ∗ + anµ) < L(θ∗)

}
≥ 1−η. Hence with probability approaching 1, there ex-

ists a local maximizer θ̂
∗

such that
∥∥∥θ̂∗ − θ∗∥∥∥ ≤ anc, where an = (nh)−1/2+h2. Based on the

definition of θ∗, we can get, with probability approaching 1, H(θ̂− θ) = Op((nh)−1/2 + h2).

Next, we provide the asymptotic distribution for such consistent estimate. Since θ̂
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maximizes L(θ), then L
′
(θ̂) = 0. By Taylor expansion,

0 = L
′
(θ̂) = L

′
(θ0) + L

′′
(θ0)(θ̂ − θ0) +

1

2
L
′′′

(θ̃)(θ̂ − θ0)2,

where θ̃ is a value between θ̂ and θ0. Then θ̂ − θ0 = −[L
′′
(θ0)]

−1L
′
(θ0)(1 + op(1)). Since

L(θ) = L(θ∗) = 1
n

∑n
i=1Kiρ(yi − θ∗Tx∗i ) and yi − θ∗Tx∗i = εi + R(ui,xi), then L

′′
(θ∗) =

1
n

∑n
i=1Kiρ

′′
(εi +R(ui,xi))x

∗
ix
∗T
i . We have the following expectation,

E[L
′′
(θ∗)] = E

{
ρ
′′
(εi +R(ui,xi))Kix

∗
ix
∗T
i

}
≈ E

{
ρ
′′
(εi)Kix

∗
ix
∗T
i

}
= δ1E

{
E
{
x∗ix

∗T
i |ui

}
Ki

}
= δ1q(u0)S(1 + o(1)).

Throughout this chapter, we consider the element-wise variance of a matrix,

var[L
′′
(θ∗)] =

1

n
var
{
Kiρ

′′
(εi +R(ui,xi))x

∗
ix
∗T
i

}
= O

(
1

nh

)
.

Based on the result L
′′
(θ∗) = E[L

′′
(θ∗)] + Op(

√
var[L′′(θ∗)]) and the assumption nh→∞,

it follows that

L
′′
(θ∗) = δ1q(u0)S(1 + op(1)).

For L
′
(θ∗), we can divide it into two parts.

L
′
(θ∗) ≈ − 1

n

n∑
i=1

Kiρ
′
(εi)x

∗
i −

1

n

n∑
i=1

Kiρ
′′
(εi)R(ui,xi)x

∗
i

∆
= −wn − νn.
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The asymptotic result is determined by wn. In order to find the order of νn, we compute

the following things.

E(νn) = E
[
Kiρ

′′
(εi)R(ui,xi)x

∗
i

]
= δ1E {E {R(ui,xi)x

∗
i |ui}Ki} .

Since g
′′′
j (·) is bounded, then we have

R(ui,xi) =
d∑
j=1

{
∞∑
m=2

1

m!
g
(m)
j (u0)(ui − u0)m

}
xij =

d∑
j=1

1

2
g
′′

j (u0)(ui − u0)2xij(1 + op(1)).

By x∗i = (xi1, ..., xid, (
ui−u0

h
)xi1, ..., (

ui−u0

h
)xid)

T ,

R(ui,xi)x
∗
i ≈

((ui − u0)2

2

{
d∑
j=1

g
′′

j (u0)xij

}
xik

)
1≤k≤d

,

(
(ui − u0)3

2h

{
d∑
j=1

g
′′

j (u0)xij

}
xik

)
1≤k≤d

T
2d×1

.

Since

E

{
E

{[
d∑
j=1

g
′′

j (u0)xij

]
xik|ui

}
(ui − u0)2

2
Ki

}

= E

{
d∑
j=1

g
′′

j (u0)E(xijxik|ui)
(ui − u0)2

2
Ki

}

=
d∑
j=1

g
′′

j (u0)E

{
Γjk(ui)

(ui − u0)2

2
Ki

}

=
h2

2
q(u0)

d∑
j=1

g
′′

j (u0)Γjk(u0)

∫
t2K(t)dt(1 + o(1))

and

E

{
E

{[
d∑
j=1

g
′′

j (u0)xij

]
xik|ui

}
(ui − u0)3

2h
Ki

}

= E

{
d∑
j=1

g
′′

j (u0)Γjk(ui)
(ui − u0)3

2h
Ki

}

=
h2

2
q(u0)

d∑
j=1

g
′′

j (u0)Γjk(u0)

∫
t3K(t)dt(1 + o(1)),
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then

E(νn) = δ1q(u0)
h2

2

d∑
j=1

g
′′

j (u0)ψj(1 + o(1)),

where ψj =

µ2

µ3

 ⊗ (Γjk(u0))
T
1≤k≤d is a 2d × 1 vector for j = 1, ..., d. Since var(νn) =

var
{
Kiρ

′′
(εi)R(ui,xi)x

∗
i

}
/n = O(h3/n), then based on the result νn = E(νn)+Op(

√
var(νn))

and the assumption nh→∞, it follows that

νn = δ1q(u0)
h2

2

d∑
j=1

g
′′

j (u0)ψj(1 + op(1)).

Then

θ̂∗ − θ∗ =− [L
′′
(θ∗)]−1L

′
(θ∗)(1 + op(1))

=− [δ1q(u0)S]−1 (−wn − νn)(1 + op(1))

=
S−1wn

δ1q(u0)
(1 + op(1)) + S−1

h2

2

d∑
j=1

g
′′

j (u0)ψj(1 + op(1)). (1.14)

Based on the assumption E[ρ
′
(εi)] = 0, we can easily get E(wn) = 0.

var(wn) =
1

n
var
{
Kiρ

′
(εi)x

∗
i

}
=

1

n
E
{
K2
i ρ
′
(εi)

2x∗ix
∗T
i

}
=

1

n
δ2E

{
E
{
x∗ix

∗T
i |ui

}
K2
i

}
.

Since x∗ix
∗T
i =

(
xijxik

(
ui−u0

h

)l)
1≤j,k≤d,l=0,1,2

and

E

{
E

{
xijxik

(
ui − u0
h

)l
|ui

}
K2
i

}
= E

{
E {xijxik|ui}

(
ui − u0
h

)l
K2
i

}

= E

{
Γjk(ui)

(
ui − u0
h

)l
K2
i

}
=

1

h
q(u0)Γjk(u0)

∫
tlK2(t)dt(1 + o(1)),

24



then

E
{

E
{
x∗ix

∗T
i |ui

}
K2
i

}
=

1

h
q(u0)Λ(1 + o(1)),

where Λ =

ν0 ν1

ν1 ν2

⊗ Γ(u0) is a 2d× 2d matrix. So

var(wn) =
1

nh
δ2q(u0)Λ(1 + o(1)).

We next use the Lyapunov central limit theorem to obtain the asymptotic distribution of

wn. The Lyapunov conditions are checked as follows. For any unit vector d ∈ R2d, let

dTwn =
∑n

i=1 ξi, where ξi = 1
n
Kiρ

′
(εi)d

Tx∗i . Since

E(ξ2i ) = E

{
1

n2
K2
i ρ
′
(εi)

2dTx∗ix
∗T
i d

}
=

1

n2
δ2d

TE
{
K2
i x
∗
ix
∗T
i

}
d =

1

n2h
δ2q(u0)d

TΛd(1+o(1)),

then
(∑n

i=1 E |ξi|2
)3

= O
((

1
nh

)3)
. Let δ4 = E

{
ρ
′
(εi)

3
}

, then

E(ξ3i ) = E

{
1

n3
K3
i ρ
′
(εi)

3(dTx∗i )
3

}
=

1

n3
δ3E

{
K3
i (dTx∗i )

3
}

= O(
1

n3h2
).

So
(∑n

i=1 E |ξi|3
)2

= O
((

1
n2h2

)2)
. Since

(
1

n2h2

)2
(nh)3 = 1

nh
→ 0, then

(
1

n2h2

)2
= o

((
1
nh

)3)
,

which is equivalent to (
n∑
i=1

E |ξi|3
)2

= o

( n∑
i=1

E |ξi|2
)3
 .

Based on Lyapunov Central Limit Theorem,

wn√
var(wn)

D→ N(02d, I2d),

where 02d is a 2d× 1 vector with each entry being 0; I2d is a 2d× 2d identity matrix. Pre-
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viously, we already computed that var(wn) = 1
nh
δ2q(u0)Λ(1 + o(1)), by Slutsky’s Theorem,

√
nhwn

D→ N(02d, δ2q(u0)Λ).

Based on (1.14), we have the following result

√
nh

{
H(θ̂ − θ)− S−1

h2

2

d∑
j=1

g
′′

j (u0)ψj(1 + op(1))

}
D→ N(02d, δ

−2
1 δ2q(u0)

−1S−1ΛS−1).
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Chapter 2

Unified Inference for Sparse and

Dense Longitudinal Data in

Time-Varying Coefficient Models

2.1 Introduction

Longitudinal data sets arise in biostatistics and life-time testing problems when the re-

sponses of the individuals are recorded repeatedly over a period of time. Examples can be

found in clinical trials, follow-up studies for monitoring disease progression, and observa-

tional cohort studies. In many longitudinal studies, repeated measurements of the response

variable are collected at irregular and possibly subject-specific time points. Therefore, the

measurements within each subject are possibly correlated with each other and data are often

highly unbalanced, but different subjects can be assumed to be independent. Typically, the

scientific interest is either in the pattern of change over time of the outcome measures or

more simply in the dependence of the outcome on the covariates.

A useful nonparametric model to quantify the influence of covariates other than time

is the time-varying coefficient model, in which coefficients are allowed to change smoothly
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over time. Let {(yij,xi(tij), tij); i = 1, 2, ..., n; j = 1, 2, ..., ni} be a longitudinal sample from n

randomly selected subjects, where tij is the time when the jth measurement of the ith subject

is made, ni is the number of repeated measurements of the ith subject, yij is the response,

and xi(tij) = xij = (x0i (tij), x
1
i (tij), ..., x

k
i (tij))

T are the (k + 1)-dimensional covariates for

the ith subject at time tij. The total number of observations in this sample is N =
∑n

i=1 ni.

The time-varying coefficient model can be written as

yij = xTijβ(tij) + εi(tij), (2.1)

where β(t) = (β0(t), β1(t), ..., βk(t))
T for all t > 0 are smooth functions of t, εi(t) is a

realization of a zero-mean stochastic process ε(t), and xij and εi are independent. It allows

the time-varying intercept to exist when x0(t) ≡ 1.

To better account for the local correlation structure of the longitudinal data, similar to

the nonparametric mixed-effects model used by Wu and Zhang (2002) and Kim and Zhao

(2013), we add a subject-specific random trajectory vi(·) to model (2.1) and consider the

following mixed-effects time-varying coefficient model

yij = xTijβ(tij) + vi(tij) + σ(tij)εij, (2.2)

where vi(t) is considered realizations of a mean 0 process with a covariance function γ(t, t
′
) =

cov
{
vi(t), vi(t

′
)
}

= E[vi(t)vi(t
′
)], εij are errors with E(εij) = 0 and E(ε2ij) = 1, and vi(t)

and εij are assumed to be independent. Our primary goal in this chapter is to estimate the

varying coefficients β(t) and construct confidence intervals for them.

Longitudinal data can be identified as sparse or dense according to the number of mea-

surements within each subject. Statistical analyses for sparse or dense longitudinal data

have been a subject of intense investigation in the recent ten years. Please see, for example,

Yao, et al. (2005) and Ma, et al. (2012) for the studies of the sparse longitudinal data when

ni is assumed to be bounded or follow a given distribution with E(ni) < ∞; and see, for
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example, Fan and Zhang (2000), Zhang and Chen (2007), Degras (2011), and Cao, et al.

(2012) for the studies of the dense longitudinal data when ni →∞.

It is known that the boundary between sparse and dense cases is not always clear in prac-

tice. Researchers may classify the same data set differently and therefore, a subjective choice

between the sparse and dense cases might pose challenges for statistical inference. Hoover,

et al. (1998), Wu and Chiang (2000), Chiang, et al. (2001), and Huang, et al. (2002) estab-

lished some asymptotic bias and variance of their proposed estimates under some general

conditions. However, the established limiting variances contain some unknown functions,

which are not easy to estimate. Therefore, the bootstrap procedures were used to evalu-

ate the variability of their proposed estimates. Li and Hsing (2010) established a uniform

convergence rate for weighted local linear estimation of mean and variance functions for

functional/longitudinal data. Nevertheless, Kim and Zhao (2013) showed that the conver-

gence rates and limiting variances under sparse and dense assumptions are different. This

motivated them to develop some unified nonparametric approaches that can be used to

conduct longitudinal data analysis without deciding whether the data are dense or sparse.

However, Kim and Zhao (2013) only considered estimating the mean response curve without

the presence of covariates effect.

In this chapter, we use the mixed-effects time-varying coefficient model (2.2) to take the

covariates other than time into account. The model considered by Kim and Zhao (2013)

is a special case of ours if xij = 1. We show that when using kernel smoothing method

to estimate the smoothing functions for sparse or dense longitudinal data, the asymptotic

results of these two situations are essentially different. Therefore, a subjective choice between

the sparse and dense cases might lead to wrong conclusions for statistical inference. In

order to solve this problem, motivated by Kim and Zhao (2013), we establish a unified self-

normalized central limit theorem, based on which a unified inference is proposed that can

adapt to both sparse and dense cases. The resulting unified confidence interval does not

depend on any unknown quantity other than the point estimator β(t) and thus is simple to
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use in practice. The effectiveness of the proposed unified inference is demonstrated through

a simulation study and an analysis of an acquired immune deficiency syndrome (AIDS) data

set.

This chapter is organized as follows. In Section 2.2, we first introduce a sample-size

weighted local constant estimator of the smoothing functions β(t) and provide the asymp-

totic properties for both sparse and dense longitudinal data. Under the mixed-effects time-

varying coefficient model setting, we then propose a unified convergence theory based on a

self-normalization technique. In Section 2.3, we provide numerical results from a simula-

tion study and use the AIDS data to demonstrate the performance of the proposed unified

approach. Section 2.4 contains some discussion. Regularity conditions and proofs are as-

sembled in Section 2.5.

2.2 A Unified Approach for Longitudinal Data

2.2.1 Estimation Method

Hoover, et al. (1998) proposed a local constant fit for the time-varying coefficient model.

However, they did not consider the effect of repeated measurements for each subject. Similar

to Li and Hsing (2010), we consider a sample-size weighted local constant estimation method

for the model (2.2). Let f(·) be the density function of tij and let t be an interior point of

the support of f(·). The weighted local constant estimator we consider is

β̂(t) = arg min
β

n∑
i=1

1

ni

ni∑
j=1

[
yij − xTijβ(t)

]2
K

(
tij − t
h

)
= H−1n gn, (2.3)

where K(·) is a kernel function which is symmetric about 0 and satisfies
∫
RK(u)du = 1 and
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h > 0 is a bandwidth, with

Hn =
n∑
i=1

1

ni

ni∑
j=1

xijx
T
ijK(

tij − t
h

), gn =
n∑
i=1

1

ni

ni∑
j=1

xijyijK(
tij − t
h

). (2.4)

2.2.2 Asymptotic Properties for Sparse and Dense Longitudinal

Data

Kim and Zhao (2013) specified the sparse and dense cases clearly. Here we adopt their

assumptions for the number of repeated measurements of each subject under these two

scenarios:

• Sparse longitudinal data: n1, n2, ..., nn are independent and identically distributed

positive-integer-valued random variables with E(ni) <∞;

• Dense longitudinal data: ni >Mn for some Mn →∞ as n→∞.

Next, we show that the convergence rates and limiting variances of β̂(t) are different

for sparse and dense longitudinal data. To gain intuition about this, we decompose the

difference between the estimated value β̂(t) and the true value β(t) in the following way:

β̂(t)− β(t)−H−1n

n∑
i=1

1

ni

ni∑
j=1

xij
[
xTijβ(tij)− xTijβ(t)

]
K(

tij − t
h

) = H−1n

n∑
i=1

ξi, (2.5)

where the asymptotic distribution of β̂(t) is determined by the right hand side, with

ξi =
1

ni

ni∑
j=1

ξij, ξij = xij [vi(tij) + σ(tij)εij]K(
tij − t
h

). (2.6)

Based on the previous definition γ(t, t
′
) = cov

{
vi(t), vi(t

′
)
}

= E
[
vi(t)vi(t

′
)
]
, and E(ξijξ

T
ij′ ) =

E
{

E
(
ξijξ

T
ij′ | tij, tij′

)}
, we have, for j 6= j

′
,

E(ξijξ
T
ij′ ) = E

{
G(tij, tij′ )γ(tij, tij′ )K(

tij − t
h

)K(
tij′ − t
h

)

}
≈ h2G(t, t)f 2(t)γ(t, t), (2.7)
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where G(tij, tij′ ) = E(xijx
T
ij′
| tij, tij′ ) and G(t, t) = lim

t′→t
G(t, t

′
). Throughout this chapter,

an ≈ bn means that an/bn → 1. For the same subject and same time point,

E(ξijξ
T
ij) = E

{
Γ(tij)

[
γ(tij, tij) + σ2(tij)

]
K2(

tij − t
h

)

}
≈ Γ(t)hf(t)ψk

[
γ(t, t) + σ2(t)

]
,

(2.8)

where Γ(tij) = E(xijx
T
ij|tij) and ψK =

∫
RK

2(u)du. Since

var(ξi|ni) = n−2i


ni∑
j=1

E(ξijξ
T
ij) +

∑
16j 6=j′6ni

E(ξijξ
T
ij′ )

 ,

then by (2.7) and (2.8), we have the following result,

var(ξi|ni) ≈
1

ni
Γ(t)hf(t)ψK

[
γ(t, t) + σ2(t)

]
+ (1− 1

ni
)G(t, t)h2f 2(t)γ(t, t). (2.9)

Under the sparse assumption with h→ 0, var(ξi|ni) ≈ Γ(t)hf(t)ψK [γ(t, t) + σ2(t)] /ni;

under the dense assumption with ni ≥Mn and Mnh→∞, var(ξi|ni) ≈ G(t, t)h2f 2(t)γ(t, t).

Therefore, the limiting variances for sparse and dense cases are substantially different. We

state the asymptotic properties for these two scenarios in the following theorem.

Theorem 2.2.1. Let

ρ(t) =

[
β
′
(t)f

′
(t)

f(t)
+
β
′′
(t)

2
+ Γ−1(t)Γ

′
(t)β

′
(t)

]∫
R
u2K(u)du.

Based on the regularity conditions in Section 2.5, we have the following asymptotic

results.

• Sparse data: Assume nh→∞ and supnnh
5 <∞. Then

√
nh
[
β̂(t)− β(t)− h2ρ(t)

]
→ N (0k+1,Σsparse(t)) , (2.10)
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where 0k+1 is a (k + 1) × 1 vector with each entry being 0, τ = E(1/n1), and

Σsparse(t) = Γ−1(t)ψK [γ(t, t) + σ2(t)] τ/f(t).

• Dense data: Assume ni ≥Mn, Mnh→∞, nh→∞ and supnnh
4 <∞. Then

√
n
[
β̂(t)− β(t)− h2ρ(t)

]
→ N (0k+1,Σdense(t)) , (2.11)

where Σdense(t) = Γ−1(t)G(t, t)γ(t, t)Γ−1(t).

Based on Theorem 2.2.1, the β̂(t) has the traditional nonparametric convergence rate if

the data are sparse but has the root n convergence rate if the data are dense. In addition,

note that if x = 1, then Theorem 2.2.1 simplifies to the asymptotic results provided by Kim

and Zhao (2013).

Based on the asymptotic normalities in Theorem 2.2.1, the confidence intervals for β(t)

are different under sparse and dense assumptions. Let z1−α/2 be the 1 − α/2 standard

normal quantile. Then an asymptotic 1 − α confidence interval for the smooth function

βl(t), l = 0, . . . , k is

β̂l(t)− h2ρ̂l(t)± z1−α/2(nh)−1/2
{[

Γ̂
−1

(t)ψK
[
γ̂(t, t) + σ̂2(t)

]
τ̂ /f̂(t)

]1/2}
l,l

(2.12)

for sparse data, or

β̂l(t)− h2ρ̂l(t)± z1−α/2n−1/2
{[

Γ̂
−1

(t)Ĝ(t, t)γ̂(t, t)Γ̂
−1

(t)
]1/2}

l,l

(2.13)

for dense data, where β(t) = (β0(t), β1(t), . . . , βk(t))
T , β̂l(t) is the (l + 1)th element of

β̂(t), ρ̂l(t) is the (l + 1)th element of ρ̂(t) and the subscript (l, l) refers to the (l + 1)th

diagonal element of a matrix. In the above formulas, τ̂ = n−1
∑n

i=1 n
−1
i , γ̂(t, t), σ̂2(t), f̂(t),

ρ̂l(t), Γ̂
−1

(t), and Ĝ(t, t) are consistent estimates of τ , γ(t, t), σ2(t), f(t), ρl(t), Γ−1(t), and

G(t, t).
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2.2.3 Proposed Unified Approach

From Section 2.2.2, the asymptotic results for sparse and dense longitudinal data are es-

sentially different and thus a subjective choice between these two situations might pose

challenges for statistical inference, which motivates us to find a unified approach.

In this section, we propose a unified self-normalized central limit theorem which can

adapt to both sparse and dense cases for the mixed-effects time-varying coefficient model

(2.2). Let

Un(t) = H−1n WnH
−1
n ,

where Hn has the same definition in (2.4), and

Wn =
n∑
i=1

{
1

ni

ni∑
j=1

xij

[
yij − xTijβ̂(tij)

]
K(

tij − t
h

)

}{
1

ni

ni∑
j=1

xTij

[
yij − xTijβ̂(tij)

]
K(

tij − t
h

)

}
.

We have the following unified central limit theorem.

Theorem 2.2.2. Assume nh/ log n → ∞ and supn nh
5 < ∞ for sparse data, or

ni ≥ Mn, Mnh → ∞, nh2/ log n → ∞ and supnnh
4 < ∞ for dense data. Under the

regularity conditions in Section 2.5,

Un(t)−1/2
[
β̂(t)− β(t)− h2ρ(t)

]
→ N(0k+1, Ik+1)

in both the sparse and the dense settings, where Ik+1 is the (k + 1)× (k + 1) identity

matrix.

Note that the central limit theorem proposed in Kim and Zhao (2013) is a special case

of Theorem 2.2.2 if x = 1 is assumed in model (2.2). Based on Theorem 2.2.2, a unified

asymptotic pointwise 1 − α confidence interval for βl(t), l = 0, . . . , k can be written as

follows:

β̂l(t)− h2ρ̂l(t)± z1−α/2
[
Un(t)1/2

]
l,l
. (2.14)
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The confidence intervals (2.12) and (2.13) in Section 2.2.2 require to estimate the within-

subject covariance function γ(t, t), the overall noise variance function σ2(t), and the con-

ditional expectation G(t, t), which need extra smoothing procedures; but (2.14) does not

need those estimations and can be used for both sparse and dense cases through the self-

normalizer Un(t)1/2.

For kernel regression, the selection of bandwidth is generally more important than the

selection of kernel functions. As stated in Wu and Chiang (2000), under-smoothing or over-

smoothing is mainly caused by inappropriate bandwidth choices in practice, but is rarely

influenced by the kernel shapes. Since it is difficult to estimate the bias h2ρ(t) in practice

due to the unknown derivatives f
′
, β

′
, β

′′
and Γ

′
, we use the same kernel function as in

Kim and Zhao (2013), K(u) = 2G(u) − G(u/
√

2)/
√

2, where G(u) is the standard normal

density. Then
∫
R u

2K(u)du = 0 and therefore ρ(t) = 0k+1. This obviously does not solve

the bias problem. For instance, if f , β and Γ are four times differentiable, then we have

the higher order bias term O(h4). As Kim and Zhao (2013) stated, the bias problem is an

inherently difficult problem and no good solutions so far.

To select the bandwidth for β̂, we use the “leave-one-subject-out” cross-validation pro-

cedure suggested by Rice and Silverman (1991). Let β̂−i(t) be a kernel estimator of β(t)

computed using the data with all the repeated measurements of the ith subject left out,

and define

CV(h) =
n∑
i=1

1

ni

ni∑
j=1

{
yij − xTijβ̂−i(tij)

}2

(2.15)

to be the subject-based cross-validation. The optimal bandwidth is then defined to be the

unique minimizer of CV(h).
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2.3 Simulation and Real Data Application

2.3.1 Simulation Study

We follow Kim and Zhao (2013) to construct the subject-specific random trajectory vi(·).

Consider the model

yij =
2∑
l=0

βl(tij)xijl(tij) +
3∑

m=1

αimΦm(tij) + σεij (i = 1, ..., n; j = 1, ..., ni),

where αim ∼ N(0, ωm) and εij ∼ N(0, 1). Let β0(t) = 5(t− 0.6)2, β1(t) = cos(3πt), β2(t) =

sin(2πt), Φ1(t) = 1, Φ2(t) =
√

2sin(2πt), Φ3(t) =
√

2cos(2πt), (ω1, ω2, ω3) = (0.6, 0.3, 0.1),

σ = 1, and n = 200. Then the variance function γ(t, t) = 0.6 + 0.6sin2(2πt) + 0.2cos2(2πt).

The time points tij are uniformly distributed on [0, 1]. To generate covariates, let bi1 ∼

N(0, 0.3), bi2 ∼ N(0, 0.3), ηij ∼ N(0, 1), δij ∼ N(0, 1) and ϕ(t) =
√

2(t + 1), then set

xij0 = 1, xij1 = bi1ϕ(tij) + ηij and xij2 = bi2ϕ(tij) + δij for i = 1, ..., n and j = 1, ..., ni.

Under this setting, we have the following conditional expectations:

Γ(tij) = E(xijx
T
ij | tij) =


1 0 0

0 0.6(tij + 1)2 + 1 0

0 0 0.6(tij + 1)2 + 1

 ,

G(tij, tij) = lim
t
ij
′→tij

E(xijx
T
ij′ | tij, tij′) =


1 0 0

0 0.6(tij + 1)2 0

0 0 0.6(tij + 1)2

 .

For the vector N = (n1, n2, ..., nn) of the number of repeated measurements on each
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subject, we consider four cases

N1 : ni ∼ U [{5, 6, ..., 15}]; N2 : ni ∼ U [{15, 16, ..., 35}]; (2.16)

N3 : ni ∼ U [{80, 81, ..., 120}]; N4 : ni ∼ U [{150, 151, ..., 250}]. (2.17)

Here U [D] represents the discrete uniform distribution on a finite set D. Five confidence

intervals are compared in our simulation study:

1. the self-normalization based confidence interval in (2.14) (SN);

2. the asymptotic normality based confidence interval (2.12) for sparse data (NS);

3. the asymptotic normality based confidence intervals (2.13) for dense data (ND);

4. the bootstrap confidence interval with 200 bootstrap replications from sampling sub-

jects with replacement (BS);

5. the infeasible confidence interval (NSD)

β̂l(t)− h2ρ̂l(t)± z1−α/2n−1/2Sl,l, (2.18)

where S =
{
Γ−1(t)G(t, t)Γ−1(t)(1− τ̂)γ(t, t) + Γ−1(t)τ̂ψK [γ(t, t) + σ2(t)] / [hf(t)]

}1/2
.

The confidence interval NSD is used as a benchmark to compare the performance of the

other confidence intervals, since NSD uses the true theoretical limiting variance function

(2.9). Note, however, that NSD is practically infeasible, since it depends on many unknown

functions. Similar to Kim and Zhao (2013), we use the true functions γ(t, t), σ2(t), f(t), Γ(t),

and G(t, t) for NS, ND, and NSD, which gives an advantage to the above three methods.

Note that the proposed self-normalization based confidence interval only requires a point

estimate of β(t) and thus is very easy to implement.

To measure the performance of different confidence intervals, we use the following two

criteria: empirical coverage probabilities and lengths of confidence intervals. Let t1 < · · · <
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t20 be 20 grid points evenly spaced on [0.1, 0.9]. For each grid point tj (j = 1, ..20) and a

given confidence level, we construct confidence intervals for smooth functions β0(tj), β1(tj),

and β2(tj), and compute the empirical coverage probabilities based on 500 replications. For

each of the five confidence intervals, the empirical coverage probabilities and lengths are

averaged at 20 grid points. The bandwidth used for each replicate is the average of 20

optimal bandwidths in (2.15) based on 20 replications (Kim and Zhao, 2013).

The results are showed in Tables 2.1, 2.2, and 2.3. It can be easily seen that the perfor-

mance of the confidence intervals NS and ND for all β0(t), β1(t), and β2(t) strongly depends

on the spareness or denseness of the data. When the number of repeated measurements on

each subject is increased from the sparse setting N1 to the dense setting N4, the performance

of the confidence interval NS assuming the sparse data becomes worse, while the confidence

interval ND assuming the dense data becomes better. These two confidence intervals only

perform well under their corresponding sparse or dense setting, which further confirms the

theoretical results in Theorem 2.2.1.

Note that the confidence interval ND assuming dense data gives same widths for each

simulation setting at a certain nominal level. This is because the asymptotic variances at

20 grid points assuming dense data are the same for each simulation setting. In addition,

since we use the same way to generate two covariates xij1 and xij2, the diagonal elements in

Γ(t) and G(t, t) corresponding to β1(t) and β2(t) in (2.12), (2.13), and (2.18) are the same

at a given grid point. Hence the widths of the confidence intervals of β1(t) and β2(t) are the

same for NSD, NS, and ND .

Compared to NS and ND, the proposed self-normalization based confidence interval SN

provides much robust and better performance. Firstly, it has similar widths and coverage

probabilities as the bootstrap confidence interval (BS) and both of them perform closely to

the infeasible confidence interval NSD; secondly, its computing time is much faster than the

bootstrap confidence interval; finally, the asymptotic properties of the self-normalization

method have been established in this chapter, whereas the theoretical properties of the
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bootstrap procedure for longitudinal data have not been developed as far as we know.

Table 2.1: Average empirical coverage percentages and lengths, in brackets, for
β0(t) of five confidence intervals.

1− α N SN NS ND NSD BS

90% N1 88.0(0.367) 80.3(0.303) 68.6(0.236) 88.9(0.375) 89.0(0.380)

N2 88.0(0.301) 70.8(0.201) 78.1(0.236) 88.9(0.306) 88.7(0.307)

N3 90.1(0.258) 53.5(0.112) 87.1(0.236) 90.5(0.260) 90.1(0.258)

N4 89.1(0.248) 44.6(0.087) 87.4(0.236) 89.5(0.251) 89.3(0.249)

95% N1 92.8(0.437) 86.7(0.361) 75.5(0.281) 93.7(0.447) 93.5(0.451)

N2 93.7(0.359) 78.4(0.240) 85.2(0.281) 94.1(0.365) 94.0(0.365)

N3 94.2(0.307) 60.1(0.134) 92.1(0.281) 94.8(0.310) 94.2(0.308)

N4 93.7(0.296) 51.0(0.104) 92.4(0.281) 94.1(0.299) 93.6(0.297)

SN, the self-normalized confidence interval in (2.14); NS and ND, the asymp-
totic normality based confidence intervals (2.12) and (2.13) assuming sparse
and dense data, respectively; NSD, the infeasible confidence interval in (2.18);
BS, the bootstrap confidence interval; N1−N4, the number of measurements
on individual subject in (2.16) and (2.17).

2.3.2 Application to AIDS Data

In this section, we apply the self-normalization based confidence interval to the AIDS data

(Qu and Li, 2006), which came from the Multi-Center AIDS Cohort Study. CD4 cells can

be destroyed by human immune-deficiency virus(HIV) and thus the percentage of the CD4

cells in the blood of a human body will change after HIV infection. Because of this, CD4

cell count and the percentage in the blood are the most popular used markers for doctors

to monitor the progression of the disease.

The HIV status of 283 homosexual men who were infected with HIV during the follow-up

period between 1984 and 1991 was included in this data set. All individuals were scheduled

to have their measurements made twice a year. Since many patients missed some of their
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Table 2.2: Average empirical coverage percentages and lengths, in brackets, for
β1(t) of five confidence intervals.

1− α N SN NS ND NSD BS

90% N1 85.7(0.218) 82.1(0.198) 56.4(0.115) 87.4(0.226) 88.8(0.238)

N2 87.1(0.169) 76.6(0.132) 70.4(0.115) 88.5(0.174) 88.7(0.177)

N3 88.6(0.133) 61.2(0.074) 82.6(0.115) 89.8(0.136) 89.0(0.135)

N4 89.2(0.126) 54.5(0.057) 86.3(0.115) 90.1(0.128) 89.2(0.126)

95% N1 91.4(0.261) 88.4(0.236) 64.1(0.137) 92.6(0.270) 93.7(0.283)

N2 92.7(0.201) 84.1(0.157) 78.1(0.137) 93.4(0.207) 93.7(0.210)

N3 93.2(0.159) 68.8(0.088) 88.9(0.137) 94.1(0.163) 93.5(0.161)

N4 93.7(0.150) 61.4(0.068) 91.9(0.137) 94.6(0.153) 93.7(0.151)

SN, the self-normalized confidence interval in (2.14); NS and ND, the asymp-
totic normality based confidence intervals (2.12) and (2.13) assuming sparse
and dense data, respectively; NSD, the infeasible confidence interval in (2.18);
BS, the bootstrap confidence interval; N1−N4, the number of measurements
on individual subject in (2.16) and (2.17).

scheduled visits and all the HIV infections happened randomly during the study, the numbers

of repeated measurements for each patient are not equal and their measurement times are

different. Further details about the design, methods, and medical implications of the study

can be found in Kaslow, et al. (1987).

The response variable is the CD4 percentage over time. Three covariates are: patient’s

age, smoking status with 1 as smoker and 0 as nonsmoker, and the CD4 cell percentage

before their infection. The aim of our statistical analysis is to evaluate the effects of cigarette

smoking, pre-HIV infection CD4 percentage, and age at HIV infection on the mean CD4

percentage after the infection. Define tij to be the time (in years) of the jth measurement

of the ith individual after HIV infection. In this data set, the patients have minimum 1

and maximum 14 measurements. Let Yij be the ith individual’s CD4 percentage at time

tij and X1i be the smoking status for the ith individual (equal to 1 for smoker and 0 for

nonsmoker). In order to have clear biological interpretations, we use centered age, obtained
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Table 2.3: Average empirical coverage percentages and lengths, in brackets, for
β2(t) of five confidence intervals.

1− α N SN NS ND NSD BS

90% N1 86.6(0.219) 83.0(0.198) 57.1(0.115) 88.2(0.226) 88.9(0.232)

N2 86.9(0.169) 77.1(0.132) 70.6(0.115) 88.2(0.174) 88.1(0.174)

N3 88.5(0.134) 61.6(0.074) 82.8(0.115) 89.6(0.136) 88.7(0.135)

N4 88.9(0.126) 54.0(0.057) 85.8(0.115) 90.1(0.128) 89.0(0.127)

95% N1 92.0(0.260) 89.3(0.236) 65.2(0.137) 93.5(0.270) 93.8(0.276)

N2 93.0(0.201) 84.4(0.157) 78.6(0.137) 94.0(0.207) 93.7(0.208)

N3 93.5(0.160) 69.8(0.088) 89.3(0.137) 94.1(0.163) 93.8(0.161)

N4 93.7(0.150) 60.0(0.068) 91.3(0.137) 94.2(0.153) 93.6(0.150)

SN, the self-normalized confidence interval in (2.14); NS and ND, the asymp-
totic normality based confidence intervals (2.12) and (2.13) assuming sparse
and dense data, respectively; NSD, the infeasible confidence interval in (2.18);
BS, the bootstrap confidence interval; N1−N4, the number of measurements
on individual subject in (2.16) and (2.17).

by subtracting the sample average age at infection from the ith individual’s age at infection

and denoted by X2i, and centered pre-infection CD4 percentage, obtained by subtracting

the average pre-infection CD4 percentage of the sample from the ith patient’s actual pre-

infection CD4 percentage, which is denoted by X3i. Then we construct the time-varying

coefficient model for the AIDS data as follows:

Yij = β0(tij) + β1(tij)X1i + β2(tij)X2i + β3(tij)X3i + εij,

where β0(t) represents the baseline CD4 percentage and can be interpreted as the mean CD4

percentage at time t for a nonsmoker with average pre-infection CD4 percentage and average

age at HIV infection. Therefore, β1(t), β2(t), and β3(t) represent the time-varying effects

for cigarette smoking, age at HIV infection, and pre-infection CD4 percentage, respectively,

on the post-infection CD4 percentage at time t.
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We use the kernel smoothing method stated in (2.3) to estimate the smoothing functions

β0(t), β1(t), β2(t), and β3(t). The bandwidth was chosen by using the leave-one-subject-out

cross-validation method. The self-normalization based 95% confidence intervals were con-

structed for β0(t), . . . , β3(t) at 100 equally spaced time points between 0.1 and 5.9 years.

We also constructed the bootstrap 95% confidence intervals at the same 100 time points,

based on 1000 bootstrap replications. Figure 2.1 depicts the fitted coefficient functions (solid

curves) with 95% self-normalization based confidence intervals (dashed curves) and boot-

strap confidence intervals (dotted curves). It can be easily seen that the self-normalization

based confidence intervals are very close to bootstrap confidence intervals. Indeed, they

almost overlap with each other. However, the computing time for the self-normalization

based confidence interval is much faster than the bootstrap confidence interval. The former

one only takes approximately 5 seconds, whereas the latter one needs almost 50 minutes

based on a personal computer with Intel(R) Core(TM) i5 CPU, 4GB installed memory, and

32-bit operating system.

Based on the constructed confidence intervals, the mean baseline CD4 percentage of

the population decreases with time, but at a rate that appears to be slowing down at four

years after the infection. Since the confidence intervals for cigarette smoking and age of

HIV infection cover 0 most of the time, these two covariates do not significantly affect the

post-infection CD4 percentage. The pre-infection CD4 percentage appears to be positively

associated with higher post-infection CD4 percentage. Our findings basically agree with Wu

and Chiang (2000), Fan and Zhang (2000), Huang, et al. (2002), and Qu and Li (2006).

2.4 Discussion

In this chapter, we proposed a unified inference for the time-varying coefficient model (2.2)

for the longitudinal data based on the new established unified self-normalized central limit

theorem. The new inference tool allows us to do inference for the longitudinal data without
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Figure 2.1: Application to AIDS data. Estimated coefficient curves for the baseline CD4 per-

centage and the effects of smoking, age and pre-infection CD4 percentage on the percentage of

CD4 cells. Solid curves, estimated effects; dashed curves, 95% self-normalization based confidence

intervals; dotted curves, 95% bootstrap confidence intervals.

subjectively deciding whether the data are sparse or dense. The effectiveness of the proposed

unified inference is demonstrated through a simulation study and an analysis of an AIDS

data set.

The weighted local constant estimators that we considered in this chapter only use one

smoothing parameter, which may not be able to provide adequate smoothing for all the

coefficient curves at the same time. Wu and Chiang (2000) proposed the componentwise

local least squares criteria to estimate the time-varying coefficients using different amounts

of smoothing. The reason that we use one smoothing parameter is for the simplicity of

computation and our proposed unified inference can be extended to the case of different

smoothing parameters as well.

For time-varying coefficient models, the commonly asked questions are whether the co-
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efficient functions β(·) are varying over time and whether certain covariates are significant.

Therefore, we may wish to test whether a certain component of β(·) is identically zero or

constant. The generalized likelihood ratio statistics for the nonparametric testing problems

proposed in Fan, et al. (2001) might be considered, but the theoretical and practical aspects

for longitudinal data would require substantial development.

2.5 Proofs

The following conditions are imposed to facilitate the proof and are adopted from Wu and

Chiang (2000), Huang, et al. (2002) and Kim and Zhao (2013). They are not the weakest

possible conditions.

Regularity conditions:

1. The observation time points follow a random design in the sense that tij, for j =

1, ..., ni and i = 1, ..., n, are chosen independently from an unknown distribution with a

density f(·) on a finite interval. The density function f(·) is continuously differentiable

in a neighborhood of t and is uniformly bounded away from 0 and infinity.

2. In a neighborhood of t, β(·) is twice continuously differentiable, σ2(·) is continuously

differentiable. In a neighborhood of (t, t), γ(t, t
′
) = cov{vi(t), vi(t

′
)} is continuously

differentiable and γ(t, t) = limt′→t cov{vi(t), vi(t
′
)}. Furthermore, σ2(t) < ∞ and

γ(t, t) <∞.

3. {vi(·)}i, {tij}ij, {εij}ij are independent and identically distributed and mutually inde-

pendnet.

4. {xij}ij, {vi(·)}i, {εij}ij are mutually independent. {xij}i are independent and identi-

cally distributed. For the same i, xi1, ...,xini
have the identical distribution and can

be correlated. E
[
‖xij‖ ·

∥∥xij′∥∥ · ∥∥xij′′∥∥ |tij, tij′ , tij′′ ] <∞ for 1 6 j 6= j
′ 6= j

′′
6 ni.

5. Γ(t) is invertible and differentiable.
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6. E{|vi(·) +σ(·)εij|3} is continuous in a neighborhood of t and E{|vi(·) +σ(·)εij|3} <∞.

7. K(·) is bounded, symmetric, and has bounded support and bounded derivative.

Since σ2(t) and γ(t, t) are unknown in most applications and the unified approach that

we proposed does not need the specific structures of σ2(t) and γ(t, t), therefore, we do not

require further specific structures for σ2(t) and γ(t, t), except for their continuity in the

above condition 2.

Proof of Theorem 2.2.1. Based on (2.5), the asymptotic results for sparse or dense

longitudinal data depend on the limiting distribution of ξi which is defined in (2.6). In order

to obtain the limiting distribution of ξi, we define the following notations.

Hn =
n∑
i=1

Vi, Vi =
1

ni

ni∑
j=1

Vij, Vij = xijx
T
ijK(

tij − t
h

),

bn =
n∑
i=1

ζi, ζi =
1

ni

ni∑
j=1

ζij, ζij = xij
[
xTijβ(tij)− xTijβ(t)

]
K(

tij − t
h

).

Γ(tij) = E(xijx
T
ij|tij), Γ1(tij) = E(x2ijlx

2
ijr|tij), Γ2(tij) = E(X2

ijmxijx
T
ij|tij),

where l, r,m = 0, ..., (k+ 1). We first want to find the order of Hn and bn. Their orders are

determined by Vij and ζij. Throughout this chapter, we consider the element-wise variance

of a matrix. Based on Taylor’s expansion and the symmetry of the kernel function K(·), we

have the following results,

E(Vij) = E {E(Vij|tij)}

= E

{
E(xijx

T
ij|tij)K(

tij − t
h

)

}
= h

∫ [
Γ(t) + Γ

′
(t)ht0 + o(h)

]
K(t0)

[
f(t) + f

′
(t)ht0 + o(h)

]
dt0

= Γ(t)hf(t)
[
1 +O(h2)

]
,
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and

var(Vij(l, r)) = var

(
xijlxijrK(

tij − t
h

)

)

= E

{[
xijlxijrK(

tij − t
h

)

]2}
−
{

E

[
xijlxijrK(

tij − t
h

)

]}2

= E

[
Γ1(tij)K

2(
tij − t
h

)

]
−O(h2)

= hΓ1(t)f(t)ψK + o(h)−O(h2)

= O(h),

where (l, r) refers to the element of Vij in the lth row and rth column. Therefore, var(Vij) =

O(h). Similarly, we have the following results for ζij,

E(ζij) = E

{
E

{
xij
[
xTijβ(tij)− xTijβ(t)

]
K(

tij − t
h

)|tij
}}

= E

{
Γ(tij) [β(tij)− β(t)]K(

tij − t
h

)

}

= h3f(t)Γ(t)

[
β
′
(t)f

′
(t)

f(t)
+
β
′′
(t)

2
+ Γ−1(t)Γ

′
(t)β

′
(t)

]∫
t20K(t0)dt0 + o(h3)

= Γ(t)h3f(t)ρ(t) + o(h3),

var(ζijm) = var

{
xijm

[
xTijβ(tij)− xTijβ(t)

]
K(

tij − t
h

)

}

= E

{
E

{[
xijmxTij [β(tij)− β(t)]K(

tij − t
h

)

]2
|tij

}}
−
[
O(h3)

]2
=

∫
[β(tij)− β(t)]T Γ2(tij) [β(tij)− β(t)]K2(

tij − t
h

)f(tij)dtij −O(h6)

= O(h3),

46



where ρ(t) =

[
β
′
(t)f
′
(t)

f(t)
+
β
′′
(t)

2
+ Γ−1(t)Γ

′
(t)β

′
(t)

] ∫
R u

2K(u)du, ζijm and xijm are the mth

elements of ζij and xij, respectively. Therefore, var(ζij) = O(h3). In order to find the order

of Hn, we consider that in either the sparse or the dense case,

E(Vi|ni) = E(
1

ni

ni∑
j=1

Vij|ni) = E(Vij) = Γ(t)hf(t)
[
1 +O(h2)

]
is not random. Then we have

var(Vi) = E {var(Vi|ni)}+ var {E(Vi|ni)} = E {var(Vi|ni)}

= E

{
var(

1

ni

ni∑
j=1

Vij|ni)

}

= E

 1

n2
i

 ni∑
j=1

var(Vij) +
∑

16j 6=j′6ni

cov(Vij,Vij′ )

 .

Since cov(Vij,Vij′ ) 6
√

var(Vij)var(Vij′ ), and Vij has the same distribution as Vij′ , then

var(Vi) 6 E

{
1

n2
i

[nivar(Vij) + ni(ni − 1)var(Vij)]

}
= E[var(Vij)] = var(Vij).

So we get var(Hn) =
∑n

i=1 var(Vi) 6 nvar(Vij) = O(nh), which means that var(Hn) =

O(nh). Based on the above results, we obtain the order of Hn as follows,

Hn = E(Hn) +Op

(√
var(Hn)

)
= nE [E(Vi|ni)] +Op(

√
nh)

= nΓ(t)hf(t)
[
1 +Op(h

2)
]

+Op(
√
nh)

=

[
1 +Op

{
h2 +

1√
nh

}]
nΓ(t)hf(t).
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Similarly, bn = nΓ(t)h3f(t)ρ(t) + op(nh
3) +Op(

√
nh3). Hence,

H−1n bn =
Γ−1(t)

[
nΓ(t)h3f(t)ρ(t) + op(nh

3) +Op(
√
nh3)

]
[
1 +Op(h2 +

√
1
nh

)
]
nhf(t)

=
nh3f(t)ρ(t) + op(nh

3) +Op(
√
nh3)[

1 +Op(h2 +
√

1
nh

)
]
nhf(t)

= h2ρ(t) + δn,

where δn = op(h
2) +Op(

√
h
n
).

For dense longitudinal data,
√
nδn = op(

√
nh2) + Op(

√
h), ni > Mn, Mnh → ∞, nh →

∞, and supnnh
4 < ∞, then we have δn = op(1/

√
n). Since var(

∑n
i=1 ξi) = nvar(ξi) =

nE[var(ξi|ni)] = nvar(ξi|ni) ≈ nG(t, t)h2f 2(t)γ(t, t), then

[
nh2f 2(t)

]−1
var(

n∑
i=1

ξi) ≈ G(t, t)γ(t, t).

We next use the Lyapunov central limit theorem to obtain the asymptotic distribution of∑n
i=1 ξi. The Lyapunov conditions are checked as follows. For any unit vector d ∈ Rk+1,

let dT
∑n

i=1 ξi =
∑n

i=1 dTξi =
∑n

i=1 θi, where θi = dTξi. Then

E(θ2i ) = E(dTξiξ
T
i d) = dTE(ξiξ

T
i )d = dTvar(ξi)d.

Since var(ξi) = E{var(ξi|ni)} + var{E(ξi|ni)} = E{var(ξi|ni)} = var(ξi|ni) = O(h2), then

E(θ2i ) = O(h2) and thus (
∑n

i=1 E|θi|2)3 = O{(nh2)3} = O(n3h6). Based on dTξi 6 ‖d‖ ·

‖ξi‖ = ‖ξi‖, we have

E(θ3i ) 6 E(‖ξi‖
3) 6 E

 1

n3
i

(
ni∑
j=1

∥∥ξij∥∥
)3
 ≈ E

[∥∥ξij∥∥ · ∥∥ξij′∥∥ · ∥∥ξij′′∥∥] = O(h3),
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which implies that (
∑n

i=1 E|θi|3)2 = O((nh3)2) = O(n2h6). Since

n2h6

n3h6
=

1

n
→ 0 as n→∞,

thus (
∑n

i=1 E|θi|3)2 = o
{

(
∑n

i=1 E|θi|2)3
}

. The Lyapunov conditions are satisfied and hence

the following result is obtained based on the Lyapunov central limit theorem.

∑n
i=1 ξi

h
√
nf(t)

→ N(0k+1,G(t, t)γ(t, t)).

Since
∑n

i=1 ξi = Hn

[
β̂n(t)− β(t)−H−1n bn

]
= Hn

[
β̂n(t)− β(t)− h2ρ(t)− δn

]
, Hn =[

1 +Op

{
h2 + 1√

nh

}]
nΓ(t)hf(t) and δn = op(1/

√
n), then

∑n
i=1 ξi

h
√
nf(t)

≈
√
nΓ(t)

[
β̂n(t)− β(t)− h2ρ(t)

]
.

By Slutsky’s theorem,
√
n
[
β̂n(t)− β(t)− h2ρ(t)

]
→ N(0k+1,Γ

−1(t)G(t, t)γ(t, t)Γ−1(t)).

Similarly, for sparse longitudinal data, since ξ1, ..., ξn are independent and identically dis-

tributed, then the result follows from δn = op(1/
√
nh) and var(

∑n
i=1 ξi) ≈ nhτψKf(t)[γ(t, t)+

σ2(t)]Γ(t). �

Proof of Theorem 2.2.2. Based on Theorem 2.2.1, if we can show nUn(t)→ Σdense(t)

and nhUn(t)→ Σsparse(t), then the Theorem 2.2.2 can be proved.

Denote Kij = K(
tij−t
h

). Let

Wn =
n∑
i=1

{
1

ni

ni∑
j=1

xij

[
yij − xTijβ̂(tij)

]
Kij

}{
1

ni

ni∑
j=1

xTij

[
yij − xTijβ̂(tij)

]
Kij

}

=
n∑
i=1

(
ξiξ

T
i + ξiα

T
i +αiξ

T
i +αiα

T
i

)
,
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where ξi = 1
ni

∑ni

j=1 xij [vi(tij) + σ(tij)εij]Kij, andαi = 1
ni

∑ni

j=1 xij

[
xTijβ(tij)− xTijβ̂(tij)

]
Kij.

Similarly as Kim and Zhao (2013), by Theorem 3.1 in Li and Hsing (2010),
∣∣∣β̂(z)− β(z)

∣∣∣ =

Op(ln)1k+1 uniformly for z in the neighborhood of t, where ln = h2 +
√

logn
n

for dense data,

ln = h2 +
√

logn
nh

for sparse data, 1k+1 is a (k + 1) × 1 vector with all elements equal to 1.

Then

αi = Op(|αi|) = Op(ln)
1

ni

ni∑
j=1

∣∣xijxTij1k+1Kij

∣∣ .
Since ξi = 1

ni

∑ni

j=1 ξij which is defined in (2.6), we can get

n∑
i=1

∣∣ξiαTi +αiξ
T
i +αiα

T
i

∣∣ = Op(ln)
n∑
i=1

1

n2
i

ni∑
j=1

∣∣ξij∣∣ ni∑
j=1

∣∣xTij(xTij1k+1)Kij

∣∣
+Op(ln)

n∑
i=1

1

n2
i

ni∑
j=1

∣∣xijxTij1k+1Kij

∣∣ ni∑
j=1

∣∣ξTij∣∣
+Op(l

2
n)

n∑
i=1

1

n2
i

ni∑
j=1

∣∣xijxTij1k+1Kij

∣∣ ni∑
j=1

∣∣xTij(xTij1k+1)Kij

∣∣ .
Based on the proof of Theorem 2.2.1,

ξij = E(ξij) +Op(
√

var(ξij)) = Op(
√

E(ξijξ
T
ij)) = Op(

√
h),

xijx
T
ijKij = Vij = E(Vij) +Op(

√
var(Vij)) = Op(h) +Op(

√
h) = Op(

√
h).

Since xijx
T
ij1k+1Kij = xijx

T
ijKij1k+1, xTij(x

T
ij1k+1)Kij = 1Tk+1xijx

T
ijKij and l2n = o(ln), then∑n

i=1

∣∣ξiαTi +αiξ
T
i +αiα

T
i

∣∣ = Op(nhln). Recall that ξ1, ..., ξn are independent, then

Wn = E

(
n∑
i=1

ξiξ
T
i

)
+Op

√√√√var(
n∑
i=1

ξiξ
T
i )

+Op(nhln)

=
n∑
i=1

E(ξiξ
T
i ) +Op(xn),
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where xn =
√∑n

i=1 var(ξiξ
T
i ) + nhln. By Theorem 2.2.1, we have the following results for

dense and sparse cases.

nH−1n

n∑
i=1

E(ξiξ
T
i )H−1n = n{[1 + op(1)]nΓ(t)hf(t)}−1

n∑
i=1

E(ξiξ
T
i ){[1 + op(1)]nΓ(t)hf(t)}−1

≈ Γ−1(t)var(
∑n

i=1 ξi)Γ
−1(t)

nh2f 2(t)

→ Γ−1(t)G(t, t)γ(t, t)Γ−1(t) = Σdense(t),

nhH−1n

n∑
i=1

E(ξiξ
T
i )H−1n = nh{[1 + op(1)]nΓ(t)hf(t)}−1

n∑
i=1

E(ξiξ
T
i ){[1 + op(1)]nΓ(t)hf(t)}−1

≈ Γ−1(t)var(
∑n

i=1 ξi)Γ
−1(t)

nhf 2(t)

→ Γ−1(t)ψK [γ(t, t) + σ2(t)]τ/f(t) = Σsparse(t).

Therefore, it remains to show xn = o(nh2) for dense data and xn = o(nh) for sparse data.

Dense case: Since ni >Mn for some Mn →∞ as n→∞, then

var(ξiξ
T
i (l, r)) = var

{
1

n2
i

ni∑
j=1

xijl [vi(tij) + σ(tij)εij]Kij

ni∑
j=1

xijr [vi(tij) + σ(tij)εij]Kij

}

6 E


[

1

n2
i

ni∑
j=1

xijl [vi(tij) + σ(tij)εij]Kij

ni∑
j=1

xijr [vi(tij) + σ(tij)εij]Kij

]2
= O(h4),

which implies var(ξiξ
T
i ) = O(h4) and thus

∑n
i=1 var(ξiξ

T
i ) = O(nh4). Hence

xn =

√√√√ n∑
i=1

var(ξiξ
T
i ) + nhln = O(

√
nh2 + nh3 + h

√
n log n) = o(nh2).
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Then we have

nUn(t) = nH−1n WnH
−1
n

= nH−1n

(
n∑
i=1

E(ξiξ
T
i ) +Op(xn)

)
H−1n

≈ nH−1n

(
n∑
i=1

E(ξiξ
T
i )

)
H−1n → Σdense(t).

Therefore, Un(t)−1/2
[
β̂(t)− β(t)− h2ρ(t)

]
→ N(0k+1, Ik+1).

Sparse case: Since E(ni) <∞, then we have

var(ξiξ
T
i (l, r)) 6 E


[

1

n2
i

ni∑
j=1

xijl [vi(tij) + σ(tij)εij]Kij

ni∑
j=1

xijr [vi(tij) + σ(tij)εij]Kij

]2
= O(h),

which means that
∑n

i=1 var(ξiξ
T
i ) = O(nh). Thus the asymptotic result for sparse case

follows from xn =
√∑n

i=1 var(ξiξ
T
i ) + nhln = O(

√
nh+ nh3 +

√
nh log n) = o(nh).
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Chapter 3

Future Work: Mixture of Varying

Coefficient Models

3.1 Motivation

The varying coefficient models have the following structure:

Y =

p∑
j=1

βj(t)Xj + σ2(t)ε = XTβ(t) + σ2(t)ε, (3.1)

where Y ∈ R1, X = (X1, · · · , Xp)
T ∈ Rp, t ∈ R1 and ε ∼ N(0, 1). By allowing βj(·) to be

functions of covariate t, we can study how the coefficients change over different values of t,

e.g., time and temperature. The varying coefficient model is useful when all subjects obey

the same relationship between the response and covariates. However, in some applications,

the subjects might come from an heterogeneous population which consists of several homo-

geneous subpopulations/clusters. For this type of application, a single varying coefficient

model of (3.1) is no longer adequate. To analyze such heterogeneous data, we consider the

mixture framework.

Our motivation to consider the mixture of varying coefficient models is from the CO2−GDP
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dataset. The CO2−GDP dataset contains two related variables for 175 countries for the years

1980-2005, the Carbon dioxide (CO2) emission per capita and the economy size (GDP) per

capita. Huang and Yao (2012) studied the relationship between a country’s CO2 emission

from its industrial activities and GDP per capita in year 2005 using a 2-component mixture

of regression models. The identity of the two components indicates a country’s development

path, either in a high or a low CO2 emission way, as compared with its GDP per capita.

This is a cross-sectional analysis, and it is of greater interest to ask whether and how the

development paths evolve over time, since we have data of the same structure over many

years (1980-2005). Finite mixture of varying coefficient models allow us to overcome the

challenge of incorporating both functional and heterogeneity features of the data.

Existing literature of mixture of varying coefficient models focus on estimation and

applications, and there lacks of comprehensive studies on the asymptotic properties, and

theories on testing hypothesis. For example, Lu and Song (2012) proposed a mixture of

varying coefficient models to study heterogeneous longitudinal data in medical research.

In the future work, we will systematically investigate mixture of varying coefficient mod-

els, where each varying coefficient model component follows the definition of Fan and Zhang

(1999). In addition to the varying coefficients and variance functions, the proportions are

also nonparametric functions of a covariate. Therefore, the proposed model is fully nonpara-

metric. In Section 3.2, we provide the estimation procedure and an efficient EM algorithm

for mixture of varying coefficient models and establish the asymptotic property in Section

3.3. The technical conditions and proofs are relegated to Section 3.4. In addition, we plan

to study the hypothesis tests for the varying coefficients in mixture of varying coefficient

models in the future.
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3.2 Mixture of Varying Coefficient Models

Suppose that observation {(xi, yi, ti), i = 1, · · · , n} are i.i.d random samples from {(X, Y, T )}.

Let C be a latent class variable, and assume that conditioning on T = t, C has a discrete dis-

tribution P (C = c|T = t) = πc(t) for c = 1, 2, · · · , C, where for any t, π1(t)+ · · ·+πC(t) = 1.

Conditioning on C = c and T = t, Y follows a varying coefficient model:

y = xTβc(t) + σc(t)ε.

where x = (x1, · · · , xp)T , βc(·) = (βc1(·), · · · , βcp(·))T and σc(·) are unknown smooth func-

tions, and ε follows a standard normal distribution. As the latent class variable C is not

observed, the conditional distribution of Y given X = x, T = t can be written as

Y |X = x, T = t ∼
C∑
c=1

πc(t)N(xTβc(t), σ
2
c (t)). (3.2)

By considering C a positive integer, we refer to model (3.2) as a finite mixture of vary-

ing coefficient models. This model can be viewed as a generalization of semiparametric

mixture of regression models with the varying mixing proportions (Huang and Yao, 2012),

by allowing coefficients and variances to depend on covariate t. It is also a generalization

of nonparametric mixture of regression (Huang, et al., 2013), where the one dimensional

nonparametric regression function in each component is replaced by a varying coefficient

model.
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3.3 Preliminary Results

3.3.1 Estimation Procedure

The log-likelihood function of model (3.2) is

n∑
i=1

log

[
C∑
c=1

πc(ti)φ{Yi|xTi βc(ti), σ2
c (ti)}

]
, (3.3)

where φ(·|µ, σ2) is the normal density function. In this chapter, we apply kernel regression

to estimate the unknown smooth functions βc(·), σc(·), and πc(·). For any fixed t, we use

local constants βc, σ
2
c , and πc to approximate βc(t), σ

2
c (t), and πc(t), c = 1, · · · , C. Let

Kh(·) = h−1K(·/h) be a rescaled kernel for a kernel function K(·) with a bandwidth h > 0.

Then, the corresponding local log-likelihood function for data {(xi, yi, ti), i = 1, · · · , n} is

`n(β,σ2,π) =
n∑
i=1

log

{
C∑
c=1

πcφ(yi|xTi βc, σ2
c )

}
Kh(ti − t), (3.4)

where σ2 = (σ2
1, · · · , σ2

C)T , π = (π1, · · · , πC−1)T , β = (βT1 , · · · ,βTC)T , and βc = (βc1, · · · , βcp)T ,

c = 1, · · · , C. By using local constant approximation, we have a closed-form solution in the

M-step of the proposed EM algorithm, while local linear or higher order do not provide

a closed-form solution for σ2
c and πc. The extension from local constant to local linear or

higher order is trival and of minor interest. For convenience in theoretical development

and computation, we use local constant approximation to estimate all the nonparametric

functions.

Computing Algorithms

For a given t, (3.4) is a weighted likelihood of finite mixture model, and thus an EM

algorithm is a natural choice to solve (3.4). However, such a pointwise implementation will

suffer the mislabel problem, see (Huang, et al., 2013). We use a modified EM algorithm

for model estimation. The key of the algorithm is to estimate the common labels in E-step
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which do not depend on the choice of t. In the M-step, we update the estimated curves

simultaneously at a set of grid points. The modified EM algorithm is described as follows:

E-step: For i = 1, · · · , n and c = 1, · · · , C, calculate

ric =
πc(ti)φ{yi|xTi βc(ti), σ2

c (ti)}∑C
c=1 πc(ti)φ{yi|xTi βc(ti), σ2

c (ti)}
, (3.5)

M-step: For c = 1, · · · , C, and t in a set of grid points, calculate

π̂c =

∑n
i=1 ricKh(ti − t)∑n
i=1Kh(ti − t)

, (3.6)

β̂c = (STWcS)−1STWcy, (3.7)

σ̂2
c = (y−Xβ̂c)TWc(y−Xβ̂c)/tr(Wc), (3.8)

where S = (x1, · · · ,xn)T , wci = ricKh(ti − t) , Wc = diag{wc1, · · · , wcn}, a n × n

diagonal matrix and tr(Wc) is the trace of Wc.

The modified EM algorithm is essentially similar to the EM type algorithm (section

2.3.1) in Huang and Yao (2012). Hence, it poses the ascent property in an asymptotic

sense; see Theorem 4(a) of Huang and Yao (2012).

3.3.2 Asymptotic Property

Let {β̂, σ̂2, π̂} be the solution of maximizing the local likelihood function (3.4). Then we can

estimate πc(t), βc(t), and σ2
c (t) using π̂c, β̂c, and σ̂2

c , respectively. In this section we study

the asymptotic properties of these estimates. Let θ(t) = (β(t)T , (σ2(t))T ,π(t)T )T , where

β(t) = (β1(t)
T , · · · ,βc(t)T )T , σ2(t) = (σ2

1(t), · · · , σ2
c (t))

T , and π(t) = (π1(t), · · · , πC−1(t))T ,

57



and let θ̂ = (β̂
T
, (σ̂2)T , π̂T )T . Denote

ρ(y|x,θ) =
C∑
c=1

πcφ
{
y|xTβc, σ2

c

}
, `(θ,x, y) = log ρ(y|x,θ);

qθ(θ,x, y) =
∂`(θ,x, y)

∂θ
, qθθ(θ,x, y) =

∂2`(θ,x, y)

∂θ∂θT
;

Λ(t|v) = E{qθ(θ(v),x, y)|T = t}, I(t) = −E [qθθ{θ(t),x, y}|T = t] .

Theorem 3.3.1. Suppose that the regularity conditions (A)—(H) in Section 3.4 hold. Then,

with probability approaching 1, there exists a consistent local maximizer θ̂ = (β̂
T
, (σ̂2)T , π̂T )T

of (3.4) such that

√
nh{θ̂(t)− θ(t)− I−1(t)[f

′
(t)Λ

′
(t|t)

f(t)
+

1

2
Λ
′′
(t|t)]v2h2 + op(h

2)} D→ N(0m, τf
−1(t)I(t)),

where f(·) is the marginal density function of T , τ =
∫
K2(t) dt, and v2 =

∫
t2K(t) dt.

3.4 Proofs

Regularity Conditions

A, The sample {(Xi, Yi, Ti), i = 1, · · · , n} is independent and identically distributed from

model (3.2).

B, The unknown functions θ(t) has continuous second derivatives. Furthermore, σ2
c (t) >

0, πc(t) > 0 and π1(t) + · · ·+ πC(t) = 1 hold for c = 1, · · · , C and all u ∈ U .

C, The support for T , denoted by U , is closed and bounded of R1. The marginal density

function of T , f(t), is twice continuously differentiable and positive for t ∈ U .

D, The third derivative |∂3l(θ,x, y, t)/∂θj∂θk∂θl| 6Mjkl(x, y, t), where E{Mjkl(X, Y, T )}

is bounded for all j, k, l.
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E, The following conditions hold for all i and j,

E(|∂`(θ,X, Y )

∂θj
|3) <∞, E(|∂

2`(θ,X, Y )

∂θi∂θj
|2) <∞.

Furthermore, E(qθθ(θ, X, Y )|T = t) is continuous in t, and the second derivative ma-

trix, I(t), is positive definite for t ∈ U .

F, E{qθ(θ, X, Y )qTθ (θ, X, Y )|T = t} is continuous in t.

G, The kernel function K(·) has a bounded support, and satisfies that

K(t) > 0, K(−t) = K(t),

∫
K(t)du = 1.

H, h→ 0, nh→∞ as n→∞.

All these conditions are mild conditions and have been used in the literature of local

likelihood estimation. Conditions A - C are basic assumptions in our model. Conditions

D - F are similar to the regularity conditions to prove the asymptotic normality of MLEs.

Condition G is the definition of kernel and Condition H is a standard assumption in the

nonparametric regression.

Proof of Theorem 3.3.1 We will first prove that with probability approaching 1, there

exists a consistent local maximizer θ̂ = (β̂
T
, (σ̂2)T , π̂T )T of (3.4) such that

θ̂ − θ = Op{(nh)−1/2 + h2}.

Then we establish the asymptotic distributions for such consistent estimate.
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Denote γn = (nh)−1/2 + h2, Ki = Kh(ti − t), and qθjθkθl(θ,x, y) = ∂3`(θ,x,y)
∂θj∂θk∂θl

, where

j, k, l = 1, 2, ..., (pC + 2C − 1). We have the following objective function

L(θ) =
1

n

n∑
i=1

log

{
C∑
c=1

πcφ(yi|xTi βc, σ2
c )

}
Kh(ti − t) =

1

n

n∑
i=1

`(θ,xi, yi)Ki.

It is sufficient to show that for any given η > 0, there exists a large constant, a, such that

P
{
sup‖µ‖=aL(θ + γnµ) < L(θ)

}
≥ 1− η,

where µ has the same dimension as θ, γn is the convergence rate. By using Taylor expansion,

it follows that

L(θ + γnµ)− L(θ) =
1

n

n∑
i=1

Ki{`(θ + γnµ,xi, yi)− `(θ,xi, yi)}

=
1

n

n∑
i=1

Ki{γnqTθ (θ,xi, yi)µ+
1

2
γ2nµ

T qθθ(θ,xi, yi)µ

+
1

6
γ3n

m∑
j=1

m∑
k=1

m∑
l=1

µjµkµlqθjθkθl(ξ,xi, yi)}

= I1 + I2 + I3,

where m = pC + 2C − 1, ξ is a value between θ and θ + γnµ such that ||ξ − θ|| ≤ γna.

Let f(·) be the marginal density function of T , and Λ(t|v) = E{qθ(θ(v),x, y)|T = t}.

Note that Λ(t|t) = E{qθ(θ(t),x, y)|T = t} = 0. Then for I1 = 1
n

∑n
i=1 γnq

T
θ (θ,xi, yi)µKi,

we have the following results.

E(I1) = E[γnq
T
θ (θ(t),xi, yi)µKi] =

γn
h

∫
ΛT (ti|t)µK(

ti − t
h

)f(ti)dti = O(γnah
2),

and

Var(I1) =
1

n
Var[γnq

T
θ (θ(t),xi, yi)µKi] =

1

n
{E(A2)− [E(A)2]},
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where A = γnq
T
θ (θ(t),xi, yi)µKi. Let Γ(t|t0) = E[qθ(θ(t0),x, y)qTθ (θ(t0),x, y)|t]. Then

E(A2) = γ2nE[µT qθ(θ(t),xi, yi)q
T
θ (θ(t0),xi, yi)µK

2
i ]

= γ2nµ
TE{E[qθ(θ(t),xi, yi)q

T
θ (θ(t0),xi, yi)|ti]K2

i }µ

= γ2nµ
TE[Γ(ti|t)K2

i ]µ

= γ2nµ
T 1

h2
{
∫

Γ(ti|t)K2
i f(ti)dti}µ

= O(
γ2na

2

h
).

.

Note that [E(A)]2 = [O(γnah
2)]2 = O(a2h4γ2n)� E(A2), then Var(I1) ≈ 1

n
E(A2) = O(a

2γ2
n

nh
).

Hence, I1 = E(I1) +Op(
√

Var(I1)) = Op(γnah
2) +Op(

aγn√
nh

) = Op(aγ
2
n).

For I2 = 1
2n

∑n
i=1 γ

2
nµ

T qθθ(θ(t),xi, yi)µKi, we have

E(I2) =
γ2n
2

E[µT qθθ(θ(t),xi, yi)µKi]

=
γ2n
2
µTE{E[qθθ(θ(t),xi, yi)|ti]Ki}µ.

Let S(t|t0) = E[qθθ(θ(t0),x, y)|t] and I(t) = −S(t|t) = −E[qθθ(θ(t),x, y)|t]. Then

E(I2) =
γ2n
2
µTE[S(ti|t)Ki]µ

=
γ2n
2
µT [

1

h

∫
S(ti|t)K(

ti − t
h

)f(ti)dti]µ

= −γ
2
n

2
µTI(t)f(t)µ(1 + o(1)).

Let B = 1
2n

∑n
i=1 qθθ(θ(t),xi, yi)Ki and denote B(j, k) be the element in the jth row and kth

column of the matrix B. Then qθjθk(θ(t),x, y) is the element in the jth row and kth column
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of the matrix qθθ(θ(t),x, y). Let δ(t|t0) = E[q2θjθk(θ(t0),x, y)|t]. It can be shown that

Var(B(j, k)) =
1

4n
Var[qθjθk(θ(t),xi, yi)Ki]

<
1

4n
E[q2θjθk(θ(t),xi, yi)K

2
i ]

=
1

4n
E{E[q2θjθk(θ(t),xi, yi)|ti]K2

i }

=
1

4n
E[δ(ti|t)K2

i ]

=
1

4nh2

∫
δ(ti|t)K2(

ti − t
h

)f(ti)dti

= O(
1

nh
).

Throughout this chapter, we consider the element-wise variance of a matrix. So, Var(B) =

O( 1
nh

). Hence, Var(I2) = O( γ
4
n

nh
). Based on the result I2 = E(I2) + Op(

√
Var(I2)) and the

assumption nh→∞, it follows that

I2 = −γ
2
n

2
µTI(t)f(t)µ(1 + o(1)) = Op(γ

2
n).

Similarly, I3 = γ3
n

6n

∑n
i=1{

∑m
j=1

∑m
k=1

∑m
l=1 µjµkµlqθjθkθl(ξ,xi, yi)}Ki = Op(γ

3
n).

Noticing that I(t) = −E[qθθ(θ(t),x, y)|t] = −E{∂
2`(θ(t),x,y)
∂θ(t)∂θ(t)T

} is a positive matrix, ||µ|| =

a, we can choose a large enough such that I2 dominates both I1 and I3 with probability

at least 1 − η. Thus, P
{
sup‖µ‖=aL(θ + γnµ) < L(θ)

}
≥ 1 − η. Hence with probability

approaching 1, there exists a local maximizer θ̂ such that ||θ̂ − θ|| ≤ γna, where γn =

(nh)−1/2 + h2. Therefore, with probability approaching 1, θ̂ − θ = Op((nh)−1/2 + h2).

Next, we provide the asymptotic distribution for such consistent estimate. Since θ̂

maximizes L(θ), then L
′
(θ̂) = 0. By Taylor expansion,

0 = L
′
(θ̂) = L

′
(θ) + L

′′
(θ)(θ̂ − θ) +

1

2
L
′′′

(θ̃)(θ̂ − θ)2, (3.9)
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where θ̃ is a value between θ̂ and θ. Then θ̂ − θ = −[L
′′
(θ)]−1L

′
(θ)(1 + op(1)). Since

L
′′
(θ) = 1

n

∑n
i=1

∂`(θ,xi,yi)

∂θ∂θT Ki = 1
n

∑n
i=1 qθθ(θ,xi, yi)Ki, then we have

E[L
′′
(θ)] = E[qθθ(θ(t),xi, yi)Ki]

= E{E[qθθ(θ(t),xi, yi)|ti]Ki}

= E[S(ti|t)Ki]

=
1

h

∫
S(ti|t)K(

ti − t
h

)f(ti)dti

= −I(t)f(t)(1 + o(1)),

and Var[L
′′
(θ)] = 1

n
Var[qθθ(θ(t),xi, yi)Ki] = O( 1

nh
). Based on the result L

′′
(θ) = E[L

′′
(θ)]+

Op{
√

Var[L′′(θ)]} and the assumption nh→∞, it follows that

L
′′
(θ) = −I(t)f(t)(1 + o(1)).

The asymptotic result is determined by L
′
(θ) = 1

n

∑n
i=1

∂`(θ,xi,yi)

∂θ
Ki = 1

n

∑n
i=1 qθ(θ(t),xi, yi)Ki.

We have

E[L
′
(θ)] = E[qθ(θ(t),xi, yi)Ki]

= E{E[qθ(θ(t),xi, yi)|ti]Ki}

= E[Λ(ti|t)Ki]

=
1

h

∫
Λ(ti|t)K(

ti − t
h

)f(ti)dti

= h2f(t)[
f
′
(t)Λ

′
(t|t)

f(t)
+

1

2
Λ
′′
(t|t)]v2(1 + o(1)),
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where v2 =
∫
t2K(t)dt.

Var[L
′
(θ)] =

1

n
Var[qθ(θ(t),xi, yi)Ki]

=
1

n
{E[qθ(θ(t),xi, yi)q

T
θ (θ(t),xi, yi)K

2
i ]− E[qθ(θ(t),xi, yi)Ki]E[qθ(θ(t),xi, yi)Ki]

T}

=
1

n
{E{E[qθ(θ(t),xi, yi)q

T
θ (θ(t),xi, yi)|ti]K2

i } −O(h4)}

=
1

n
{E[Γ(ti|t)K2

i ]−O(h4)}

=
1

n
{ 1

h2

∫
Γ(ti|t)K2(

ti − t
h

)f(ti)dti −O(h4)}

=
1

n
{1

h
Γ(t|t)f(t)τ(1 + o(1))−O(h4)}

=
1

nh
Γ(t|t)f(t)τ(1 + o(1)),

where τ =
∫
K2(t)dt. We next use the Lyapunov central limit theorem to obtain the

asymptotic distribution of L
′
(θ). The Lyapunov conditions are checked as follows.

For any unit vector d ∈ Rm, where m = pC + 2C − 1, let dTL
′
(θ) =

∑n
i=1 ζi, where

ζi = 1
n
dT qθ(θ(t),xi, yi)Ki. Since

E(ζ2i ) =
1

n2
dTE[qθ(θ(t),xi, yi)q

T
θ (θ(t),xi, yi)K

2
i ]d = O(

1

n2h
),

and

E(ζ3i ) = E{ 1

n3
dT qθ(θ(t),xi, yi)q

T
θ (θ(t),xi, yi)ddT qθ(θ(t),xi, yi)K

3
i } = O(

1

n3h2
),

then (
∑n

i=1 E|ζi|2)3 = O( 1
n3h3 ) and (

∑n
i=1 E|ζi|3)2 = O( 1

n4h4 ). Note that 1
n4h4 (nh)3 = 1

nh
→ 0,

so 1
n4h4 = o( 1

n3h3 ), which is equivalent to say (
∑n

i=1 E|ζi|3)2 = o((
∑n

i=1 E|ζi|2)3). Based on
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Lyapunov central limit theorem,

L
′
(θ)− E[L

′
(θ)]√

Var[L′(θ)]

D→ N(0m, Im),

where 0m is a m × 1 vector with each entry being 0 and Im is a m × m identity matrix.

Previously, we already computed that Var[L
′
(θ)] = 1

nh
Γ(t|t)f(t)τ(1 + o(1)), by Slutsky’s

Theorem,
√
nh{L′(θ)− E[L

′
(θ)]} D→ N(0m,Γ(t|t)f(t)τ).

By the Condition F we have I(t) = Γ(t|t). Hence, based on (3.9), we have the following

result

√
nh{θ̂(t)− θ(t)− I−1(t)[f

′
(t)Λ

′
(t|t)

f(t)
+

1

2
Λ
′′
(t|t)]v2h2 + op(h

2)} D→ N(0m, τf
−1(t)I(t)).
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