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I. Formulation of the problem..

In geophysical prospecting and seismology there are many problems which are

governed by the equation:

Au(x) + uj^n{z)u{x) = -*(a;) (1)

where x = (x^is) G R' , = (ii.xj) €R^ z = xs < , uj > . In acoustic

prospecting, S{x) is a point source situated at the origin, u(i) is the pressure,

w is the wave frequency, and c{z) = n"^/'(z) is the velocity of the wave at the

depth z . The inverse problem is to find n(z) from the given data: u(x,a;) , where

X E P := {x : X3 = 0} and < a; < wq
,

ojq is a fixed small frequency. Let us

give a sketch of our approjich following [l].

Fourier transform (1) in x^ to get

u"-X^u + q{z)u=-S{z),

where

u'

u(A,z)

A

Assume that A' > go := max, \n{z)\ , then the integral equation

ti(A, z) = g{X, z) + g{X, z - z')q{z')u{X, z')dz' (2)
J — OO

where g{X,z) =
, is uniquely solvable by iterations, and u is analytic in A

in the region ReX > q^^' . Note that

u{X,z) = g{X,z) +oj^ f giX,z-z')n{z')g{z')dz' + 0{u*),as u ^ 0.
J —OO

Therefore

/(z.A)= lim(u-,)a;-^ =
y_^

'--—n{zY-^dz'.

4

= du/dz,

/
+00

e-^^ ' u{x\z)dx^,
-OO

= (Ai,A2),

= xl + xl



This low frequency limit was used in [2], [3]. Set z = , then

Fix) := 4AV(0, A) = e-'^\'ln{z)dz, A > 0. (3)

Since the data are given on the plane P := {x : xs = 0} ,
u(A,0) and F{X)

are known. Therefore the inverse problem is reduced to finding n{z) from the

knowledge of F{X) .

Assume that n(z) = 1 for z > and n(z) = no = const for z < -rf, where
d is a certjiin depth. Then (3) becomes

l\-''\M^)dz = rPiX) (4)

where il>{X) = F{X) - ^ -
. A change of variables, 2A = p , z = -i

,

transforms (4) into

/ e-P*h{t)dt = ^p), p>0
Jo

where h{t) = n{-t) ,
= V(f ) . The function h{t) can be found by the

method given in [3], [4]. The problem of inverting the Laplace transform of a

compactly supported function from the real axis is solved analytically in [5].

We assume that n(z) = 1 for z > (above the ground), n(z) = no , for

z < -d, no > 0, d> 0, and n(z) = ny for zy < z < zy+i , 1 < j < m
, zi =

^m+i = . So there are m homogeneous layers in the region — < z < .

Therefore (4) yields

m
^n,[e-'^\''^^\-e-''M] = <f>{X):=2XfP{X), A > 0. (5)
3= 1

This problem is ill-posed, it is very sensitive to noise in the data. One wishes

to find an efficient way to recover parameters {ny}^i , {z,}^^i from the knowl-

edge of ^(A)
.

In this paper, we give a numerical solution to this problem and
demonstrate its efficiency. We assume in the beginning that the number m of

layers is known. In section IV a method is given for estimating this number from
the data.
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n. The description of the algorithm.

Let {<^{Xi)}iLi be given, where {Ai}^i is a set of positive numbers. Re-

placing A by Xi for » = 1, 2, . .
.

, iV in (5) yields

m
.[e-2A,>,+.| _ ^-2A,|,,|| ^ ^(^.j^ = 1,2,. . . (6)

3=1

Tliis is a nonlinear system for {n,}^! and {zj}^^i . It can be solved by an

optimization method. Let us describe the method. Set

M^u tfa, • • • ,
Wm, yi, yj, .

. • , ym) := J2
[«~'^'*'+' - e"'-^**^],

3=1

N
G(«;i,u;,,...,«;^,yi,yj,...,y^) := /?(tx;i, ti;,, yj, yj, y„),

j=i

/< = ^-?i(A0,« = l,2,...,iV.

We want to find {ny}^i and {zj}^^^ by minimi2ing G , the target function.

Note that here the variables wi, u;,, . .
. ,
u;„, yi, yj, . .

. , y„ are not free variables.

They satisfy the constraints:

gj := Wj > 0,

1

Ji+m := yy > 0, > J = l,2,...,m. (7)

93+2^ := yy+i - y,- > 0, J

Introduce parameters Mj
, j = 1, 2, . .

.
, 3m , then the problem is reduced to the

following non-constrained optimization problem:

f(«'i,wj,...,u;„,yi,y2,...,y^) = min

where F = G + ESf+i // , fi+s = M,| min(0,50P , i = 1,2,. ..,3m, are

exterior penalty functions [6], and Mi, i = 1,2, ... ,3m , are given large positive

numbers chosen so that A = , t = 1, 2, . .
.

, 3m , at the minimizer of F
; therefore

conditions (7) are satisfied at this minimizer.

Newton's method for minimizing F{x) is

X= (xi,X2,...,Z2Ta) = (wi,ttf2,...,tWm,yi,y2,.-.,yn»).

6



Here VF{x) is the gradient of , and F" is the matrix (^^^) , i = 1,2

2"!
, J = 1,2, . . . ,2m . Newton's method has qujidratic convergence necir a local

minimizer. But it requires calculation of second derivatives of the target function.

One can estimate the second derivatives of F{x) by the first derivatives of /j(x)

,

i = 1,2,... ,M := N + Zm.

Let be an approximation of the minimizer x* of F . To construct
x(A:+i)

^ we approximate /^(x) by the Unear functions

3=1

•^Vi(a:)= -^,. = l,2,...,M,y=l,2,...,2m.

So in place of F{x)
, one minimizes Ei^i(^,-*^(«))' • Let us denote this function

by the same letter F[x) . Then

= 2(J(*))''(J(*)),

= (Jo (xW)), t = 1, 2, . .
. ,
M,y = 1, 2, . .

.
, 2m

Vii'(x(*)) = 2(j(*))''/(i(*))

/(x)=

V/m(x)

Thus the iterative procedure is

^(fc+i) = _ ((j(*))r(j(fc)))-i(j(*))T^(^(fc))

This scheme is easy to implement and our results show its eflRciency. Note that

is always ill-conditioned when i^*) is sufficiently close to a mini-

mizer, and sometimes is ill-conditioned even when x^*) is not close

to a minimizer. To overcome this, we change the search direction a little, so the

modified procedure is

x(*+») = x(*) - [(JW)''(J(*)) + a,/]-Hj(*))''/(x(*)) (9)

where ajt > is a parameter. The choice of a* is described in the outline of the

program below; is stored in the cell named a . This is Marquardt's method
which is a combination of the least squares method and the gradient method.
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Let us outline the zdgorithm:

One starts with an initial point a:(°) , the data {Ai}^i , {^(A,)},^i , m , a

positive integer, e , a smeJl positive number, d , a positive number, parameters

ao > , u > 0, {Afy}y^i , each Mj is a positive large number. IW is a count

number, the meaning of which can be seen clearly from the following outline.

Step 1 : 0=^ k, oq => a .

Step 2 : -1 => iW
,
a/v =>• a. , calculate:

(/i(x(*)),/,(xW)....,/M(xW)r,

M

»=i

/ a/i(x'*') 3/i(x'*') a/i(x'*') \
9X1 9X2 dX3n>

a/3(x'*') a/2(x'*') a/2(x"'))
9xi 3x2 dX2m

a/A^(x<*') a/M(xt*)) a/M(xt*))
9X1 9X2 9x2m

x(*'+i) = xW + P, and F{x^%

where aj^ is a real number in cell a .

Step 4 : If is less than F{x^''^) , then pass to the sixth step,

otherwise do the next step.

Step 5: IW + l=i^ IW , au=>a. U
\\

(j(*))''/(a;(*)) ||< e , then pass to

the seventh step, otherwise go hack to the third step.

Step 5 : If
II
(J(*))^/(x(*)) ||< e , then go to the seventh step; otherwise, let

k + k, = x(*) , and go back to the second step.

Step 7 : The execution stops.

Since there is no guarantee that the minimizer found by this algorithm is a

global one, we demand that the optimal point x* should satisfy two inequalities

II ||< c and F{x*) < ei to be a global minimizer. Here ei > is

a small number and c > is the number given at the start.

/(x(*)) =

f(x(*)) =

J(*) =

step S : Calculate:
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ni. Nmnerical results and practical reconunendations.

Rewrite (5) as

n„» + (n^_i - n^)e-2^'« + (n^.j - rz„»_i)e-'^'~-' + • • •

+ (ni - n2)e-^^'^ - m*"'^'' = ,^(A).

Suppose that there is a large enough Ai„ among {A»}^i , then n,n is approxi-

mately equal to ?i(A»,) . Thus is ^(Ai„) , a known quantity, in the numerical

examples below. When the data are noiseless, peirameters n„_i,rt^_2 and

can be determined by an asymptotic procedure of the peeling oS type [3,

Appendix 7]. However, this asymptotic approach is not easy to use because of the

rapid accumulation of round-oflF errors and its sensitivity to noise.

It is obvious that one needs some a priori assumptions about parameters

{ny}^! and {^y}^! . There are three typical cases with noise-free synthetic

data or noisy data for which the recovery may be difficult to carry out. The first

case is when some layers are very deep, the second is when some layers are very

thin, and the third is when two adjacent layers have ahnost the same parameters

Tij . Hence the numerical examples are mainly focused on these difficult cases, yet

a few intermediate cases are also presented for comparison.

The results obtained are presented in six tables. Tables 1, 3 and 5 are for the

two, three and four layers with noise-free data. Tables 2, 4 and 6 are for two, three

and four layers with different noise levels in the data. The results show that the

algorithm is applicable to a large range of layered structures and is efficient. In the

numerical examples the quantities ny
,
Ay , and z, are dimensionless. For example

rij = 2 means that one has chosen some unit of and ny = 2 x (unit of ny ) .

For a practical problem, if one has a scale system under which the value of each

variable falls into the range we describe below, then one can apply the method to

this problem.

First, if the thicknesses of layers are not too small and the depths of layers are

not too large, then recovery is reasonably accurate. Specifically, we require that

the thickness of each layer should not be less than 0.2 and the depth of each layer

should not be more than 20 . Under these assumptions, the recovery is accurate

even for noisy data, the majority of which have noise/signal ratio less than 0.01

.

The case when layers are thin and deep is more difficult than that when layers are

thin and shallow. Also one will not have much difficulty to recover the parameters

9



{"jj-^^j} if there is no big difference in the thicknesses of layers even though they

are very thin or they are deep down in the earth.

Secondly, although one can divide both sides of (5) by any number to make

{^j}^! larger, the level of noise in ^(A) is changed at the same time. Therefore,

the relative error of recovery remains basically the same. Clearly, the larger ny
,

J = 1» 2, . .
. ,m , the easier the recovery, provided that the level of noise is the

same. In fact, the range of ny for which the recovery is feasible depends highly

on the difference between Zj and zy+i . We suggest that ny be larger than 1

,

J = 1» 2, . .
. ,m , if the level of noise is not greater than 0.001 . Some restriction one

should impose on the difference of the parameters of the adjacent layers:
|
nj+ 1-

|

should be of order 100c where € is the absolute error of the data. No restrictions

are needed on |n^ - n,| , t # j - 1, j , j + i, j = l,2,...,m.

Thirdly, the sample rate AA» , t = 1,2, . .
.

,
^ for ^(A) can be chosen be-

tween 0.01 and 0.1 . The number of samples can be around 100 , and this num-
ber should be increased as the number of layers increases. One should not choose

large A as sample points except one point to get and does not have to choose

equidistant samples. The rate of convergence of i^*) depends on the choice of

samples.

Fourthly, since there are many local minimizers, we may not be able to get a

global one if we start with an arbitrary initial point. We recommend to use the

criterion

{F{x')<e^ and
i|
(J(x*))^(/(x*)) ||< e} (lO)

to decide which minimizer is the global one. In order to get better initial points

one can use an auxiliary optimization method, such as pattern search method or

simplex method [7], and then apply the above algorithm to the prospective points

found by the auxiliary method.

Fifthly, since data are always noisy in practice, it is important to show that

the method can handle the cases with noisy data when the noise level is within a

certain level. Note that 4>{X) decreases very fast as A grows. In our examples

noise/signal ratio for 88% of the data with noise level 0.001 is < 0.01 . The
remaining data, though very noisy, do not play a significant role in the recovery.

Our results show that the algorithm works well in the presense of noise. In tables

2, 4 and 6, one can see that if the level of noise is increased a little, then the

accuracy of the recovered parameters does not decrease much. At the recovered
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values of {ny.zy} every fi in the target function F is not greater than the noise.

Therefore the accuracy of the recovery can not be improved.

We conclude that the algorithm can be used for practical recovery of the

layered medium from the seismic data.

rv. Additional remarks..

The algorithm can be generalized for the case when ny and Zj are complex

numbers. The number of the layers can be increased to 10 by the given method
according to the results of numerical experiments.

Let us give a method for estimating the number of layers from the data.

Let T(A) := nje'^'' . Apparently, formula (5) and r(A) have the

same form. Set = T{k AA)
, e," = e"^* '^

, AA > , j = 1, 2, . .
.

, m , thus

Tk = E]?Li«j^y . * = 1,2,.... Assume ^. ^ for t y, ij = 1,2,.. .,m,
then we have

rank Aj, = min(m,p) for ny > 0, j = 1, 2, . .
. ,
m, (11)

and

rank Ap = m for p > m.and ny ^ 0, j = 1,2, . .
.

, m. (12)

where rank A is the rank of the matrix A , and

/ To Ti... rp_i >y

Ti Tj...

VTp.i Tp... Tjp.j/

Hence the number m is the smallest p starting from which rank Ap does not

change as p grows. Since each ^y , j = 1, 2, . .
.

,m
,
exponentially decreases when

k grows, Ap becomes ill-conditioned as p increases. Therefore it is difficult to

compute its rank. Prony's method can also be used for determining ny and Zj
,

J — 1, 2, . .
. ,m . Prony's method is compUcated and very sensitive to the noise in

the data. An extensive bibUography on Prony's method can be found in [8] and

[3, Appendix 7].

One can use (11) or (12) for estimating m , and then use our algorithm with

the criterion (10) for recovery of ny and Zj .
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APPENDIX 1

Theorem l.. If > qo := w'max, |n(z)| , then the integral equation (2) is

uniquely solvable by iterations, and u is analytic in X in the region ReX >

PROOF: Let Vii := /+~ ^(A, z - z')q{z')u{X, z')dz' . One has

1/2

sup, \g{X,z - z')q{z')\dz' < sup, ^ f^'"

?o 2 ?o

By Young's inequality, V maps i'(-oo,+oo) into itself, and < ^ . If

9o < A' , then |1V|| < 1 . Therefore the series

u(A, z) = 9iX, z) + Vg{X, z) + ... + V^g{X, z) + (13)

gives the unique solution to equation (2) and converges uniformly in z and
1/2

A for A > go • Since for all positive integers k, the function V''g{X,z) =

/-<^
~—2A

—

y''~^g{\z')dz' is analytic in A and the series (13) converges

uniformly in the region A > g^' , it follows that u is analytic in A if A > ReX >
i/a

In the following theorem, we use the same notations as in the section IV.

THEOREM 2 . . Assume that ^ for i ^ j, i,j = l,2,...,m, then (11) and

(12) bold.

We consider (11) Grst. It is sufficient to prove that det Ap = if p > m and

that det Ap ^0 if p < m .

Suppose p > m, we want to show that det Ap = . Note that det Ap can

be represented as a sum of terms

"ti lis • • • »»», det

( 1 ^i.--- CM

2p-2

(14)
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where = 1, 2, . .
. ,
m, A = 1, 2, . .

. , p . Since p > m , at least two columns of the

above matrix are limearly dependent. So the determinant of the matrix is zero.

This implies that det Ap = .

Now we prove that det Ap ^ if p < m . Consider all the terms of the

form (14). We divide them into several groups. In each group the p - tuple

r*i>«2i runs through all the permutations of the integers «i,tj, ...,tp. We
pick up one of these groups and sum all the terms in it. Without loss of generality,

we assume that for this group f»i, ij, ...,ip) is a permutation of (1, 2, p).

Therefore the sum is

det

ynun^^r T^u^ie^.: zu^^er'J

( 1

= det

1.

6

1 \

det

p-i

\np rip^p... np^-'^^J

= Tiifij . . . Hp det

1.

6

1 \'/ 1

ver' e? -- ep'-'J

> 0.

Since ^» for i # j, i, j = 1, 2, . .
.

,m , and p < m , we infer that det Ap >
if p < m. Therefore we conclude that rank Ap = min(m,p) under the assumption

(11).

From the above argument, it is clear that det Ap = for p > m ,
regardless

of the values of tij . Ifp = m, then the above argument yields

14
^



det Am = "ina . . . det

( 1 1... 1 \

^1 f2 • • • if

> 0.

pTOYided tiat , and 7^ $y for i ^ j, i,j = 1,2,. . . ,m . Therefore

follows. This completes the proof of theorem 2.
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APPENDIX 2

In the section III, we point out that the asymptotic approach practically is

hard to carry out. Here we give an explanation. Consider two layer case, then (5)

becomes

nj + (ni - nj)c-'^'» - me"'^'' = VCA) (15)

Let us first describe the asymptotic approach to get nj,zj,ni . Below * denotes

the recovered parameters. As mentioned before, we use a datum ^'(•^io) to get
,

where Aj„ is a large number. Suppose ^(A„) is a datum such that nie~^^'i'^ «
(ni - nj)e~'*«i'= and I is small enough. Since d > , we can have such

a datum. Then we approximately have

ln\ni - njl - 2A<jZa = /nlV-CA^J - n\\

In order to get zj , we eliminate the small quantity I hence

/n|V.(A,J - n;|
^2-

2A:^
(16)

From (14), using another datum V'(Ata) , we get

^ e-2A<3Zj - e-2Aj,<i

Assume now that ni = 4, nj = 7, d = 5, zj = 2 . Let us analyse more carefully

the way we get z\ . (16) is more precise when A becomes larger. For example.

, . /n(1.2745063 * 10-^^)
A = lU, Zj = — '- = 1

20
9450

X on . /n(5.4145542 * 10-"^)
A = 20, z; = i L = 1.9725

40

One sees that if A increases, the numbers under logarithm decrease extremely feist,

while the accuracy of z, does not change much. Practically, the round-ofiF error of

computers does not allow us to increases A very much. Moreover we sdways have

noise in V'(A,, ) - nj which makes the estimation of zJ difficult. Therefore we are

not able to recover zJ by this approach even in this simplest two layer case.

16



APPENDIX 3

Here is the list of arguments of our program which is appended.

AA - Real work matrix of order (2Ar - 2) x {2k - 2)

.

AJ - Real work matrix of order (MO + 3A; - 3) x (2Jb - 2)

.

AJF - Real work vector of length {2k - 2)

.

AJTJ - Real work matrix of order (2A; - 2) x (2* - 2)

.

AJTJJl - Real work matrix of order (2* - 2) x (2A: - 2)

.

ALAMDA - Input real vector of length MO , which contains the points where the data

are picked up.

AN - Real work vector of length k. In the end, it contains the estimation of

numbers in ANE.

ANE - Input real vector of length A: , in which the exact parameters rij
, j =

1,2,... ,k , are stored.

AZ - Real work vector of length k. In the end, it contains the estimation of

numbers in AZE.

AZE - Input real vector of length k , in which the exjict parameters zy
, j =

1,2,... ,k , are stored.

EPSN - Input real number which is the error of the data.

F - Real work vector of length MO + 3Jfe - 3 .

FE - Real work vector of length MO , which contains the exact data.

FIl - Real number which is the value of the target function.

K - Input integer which is the number of the layers.

MO - Input integer which is the number of the data.

T - Real work number which is the maximum value among all the components

of the vector {J {x^'''^))'^f {x^-''^) in formula (7) in each step of iteration.

P - Real work vector of length {2k - 2) .

X - Real work vector of length (2A; - 2) .

XI - Real work vector of length (2A; — 2) .

17



PILEI T FORTRAN A KANSAS STATE UNIVERSITY VN/SP CHS

THE PROGRAM FOR SOLVING THE INVERSE LAYER PROBLEM

THE MAIN PROGRAM
REALMS AN(4),AI(4), ANE<*),AZE(4),AJ(89,6).AJTJ<6,6), ALAMDACaO),

* X(6)fXl(6),F(89),FEC80),AJFC6),P(6),AJTJl(6,6)
REAL*! ALPHA.CAMNA, R,OE lEP.EPS, EPSN.FIl F1,T|AA(6,12),PHI
DATA ALAHOA/0.02O*O0t 0. 040*00 i0.060*00«0.080*00>0.100«00i

« 0.120*00,0. 140*00, 0. 160«00t 0. 180*00.0. 200*00 .

• 0.21 0*00, 0.220*00, 0.230*00, 0.240*00. 0.250*00.
* 0. 260*00, 0.2TO*00, 0.280*00, 0.290*00, 0.300*00,
« 0.310*00, 0.320*00, 0.330*00. 0.340*00, 0.350*00.
• 0.360*00, 0.370*00, 0.390*00, 0.39 0* 00, 0.400*00,
* 0.420*00,0.4*0*00,0.460*00,0.480*00,0.400*00,
• 0.520*00, 0.540*00, 0.560*00. 0.580*00. 0.500*00.
• 0.620*00,0.640*00,0.660*00,0.680*00.0.700*00.
• 0.720*00, 0.740*00, 0.760*00, 0.730*00, 0.800*00,
* 0.820*00, 0.940*00, 0.360*00, 0.830*00, 0.900*00,
« 0.920*00,0. 940*00, 0.960*00, 0.980*00. 1.000*00,
* 1.020*00, 1.040*00, 1.060*00. 1.080*00.1. 000*00,
« 1. 120*00, 1. 140*00, 1.160*00,1. 180*00, 1.200*00,
• I. 220*00, 1.24 0*00, 1.260*00, 1.280*00. 1.300*00,
• 1. 320*00, 1. 340*00, 1.360*00,1. 380*00, 1.400*00/

DATA ANE/5. 00*00, 8. 00*00, 3. 00*00, 7. 00*00/
DATA A2E/6. 00*00, 4. 50*00, 3. 10*00, 1.50*0 0/
DATA X/4. 98 100*00, 7. 8 20*00, 2. ?.60*00, 4. 540*00, 3.0 70* 00, 1.5010*03/
K«4
M32«K-2
NN«2*N
M0"80
M»M0*3»K-3
ALPHA*1 . 00*00
GAMMA15 . 00*00
EP»1. 00-09
EPS'l. 00-09
EPSN»0. 00010*00
R=500. 00*00
00 2 1=1, H-1
ANcn.xci)

2 AZ(I*1)=XCI*H-1)
AN(K)eANE(K)*0. 10-09
Ai(i)«4ze(i)
00 10 1 = 1, 10
CALL FF( AHE , AZE .H, ALAMOACIi ,PHI)
WRITE(6,8) I, PHI

8 FOi»MAT(2X,2HI = ,I6,4X,3MFE-,02 0. 10)
10 FE( I ) »PHI*EPSN

WRIT£(6,20) ANE,AZE
2 FORMATC1X.3HN1.,014.6.2X. 3HN2.,C14.6,

2X.3HN3»,014.6,2X,3MN4=,D14.4/
1K,3HZ1»,D14.6,2X,3HZ2=.D14.6,
2X.3HZ3«.014.6,2X,3HZ4=,014.6)

HRITE(6,24) AN, 42

It
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2* FORHATdK.lSHINITIAL VALUE/ 1 X , 3MN 1 - , 01 6 , 3X , 3HN2- , 01*. 6 , 3X ,
* 3MN3-t014.6, 3X,3HN4«,014.6/

00 40 I-l.NO
CALL FFCAN, A2,K,ALAN0A(I},PHI)

40 F{I)»PHI-F£<I)
00 42 I>H0*1.N2 F(I)-0. 00*00
00 50 1*1,

N

IF(X(I)) 44, 50, 50
F(MO*I)»R«X(I)»X(I)

SO CONTINUE
00 56 I«1,X-1
IF(4Z(I)-a:(I»i)> S4.56.S6

5* ''<«0*N*I).(AI(I)-AZ(I*n)«<AZ(I)-A2Cl»n)*«
56 CONTINUE
60 WRIT6(6,iO) AN,A2

FI-0. 00*00
00 70 I<1,M

70 FI»FI*F(I)«FCI)
FI«OSQRT<FI/OFlO*T(H))
MRITEC6,72) Fl

72 FORMATC IX,5MFSUM-,016.8)
30 IW<-1

IF( ALPHA. LT. 0.0000050*00) GOTO 79
ALPHA»ALPHA/GAHHA

79 CALL «J(AN,Ai,ll,AJ,N,l«,MO,ALAHOA,R)
00 100 I«1,N ^
00 80 I1-1,N

80 AJTJ(I,n)>0. 00*00
AJF(I)«0. 00*00

100 P(I)«0. 00*00
DO UO I>l,N
00 no I1>1,N
DO 110 I2»1,H

XIO *JTJ(I,Il)»*JTJ(I,n)*Aj<i2,i)«4j(i2
00 120 I3»1,M

120 *JFCI).AJF(I)*4j<l3,i),F(i3,
140 CONTINUE

00 160 I-1,N
DO 160 ll«l,M

160 AJ7J1(I,I1)-»JTJ<I,H)
170 WRITE<6,142) AJF
1*2 F0RMATC1X,4HAJF=,3020.10)

00 180 I<1,N
00 180 J>1,N

180 AJTJCI, J).AJTJ1(I,J>
00 182 I>1,N

182 *JTJ(I,I).AJTJ(I,I)*ALPHA
IFCALPHA.LT. 0.010*00) GOTO 185
00 184 I'l.N
DO 184 Jsl,N

184 *JTJ(I, J).AJTJ<I,J)/ALPHA
185 CALL IVSN(AJTJ,AA,N,NN,0E,EP,IS)

19



'^^^'ri*'- T FORTRAN « KANSAS STATE UNIVERSITT VM/$P CMS

IT"IT4l
IF(IS.CT.O) GOTO 200
WRITE(6tl90) IS

190 F0RM*I(1X,25HTME HATRIX IS OECENE R ATEO, I 1 >
GOTO 230

200 00 202 I'l.N
202 P(I)«0. 00*00

00 210 I>1,N
00 210 I1>1.N

210 PCO»P(I)»AJTJ(r,Il)«AJF(Il)
hRITE(6,10S} P

105 FORMAT(IX,2HPP,3020.10)
URITE(6,106) ALPHA

106 F0fiHAT(lX,6HALPHA«,015.8)
WRITE(6i84) IT

84 F0RMAT(5X,3HIT-,I6)
211 I>1
212 IF(P<I)-1. 00*00) 213, 214, 214
213 I>I*1

IF(I.GT.N) GOTO 219
GOTO 212

214 00 21S 1*1,

N

215 PC I )>!P( I 5/2.00*00
GOTO 211

219 00 220 I>1,N
220 X1<I)«X(I)-P(I}

00 222 I-l ,» -1

ANcn-xun
222 Ai(i»n«xui.n-n

00 230 I>1,H0
CALL FF(AN,AZ,H,ALAMOA<I),PMI)

230 F(I)»PMI-Fg(I)
00 2J1 I>M0*1,M

231 F(I)sO. 00*00
00 240 I'l.N
IF(X1(I)) 238,240,240

238 F(M0*I).XUn*xi(n«R
2 40 CONTINUE

00 246 I>1,K-1
IF(«an-42(lM)> 244,246,246

24^
^j;;;j;j^'^»^«i>-«i(i»»>>*<*Ki)-Az<i*i),»R

249 MRITE(6,20) AN.A2
FI1«0.0
00 2S2 I>1,H

252 FIl.Fn«F(I)«F<I)
FI1=0SQRT(FI1/0FL0ATCM))
MRITE{6,72> fU
IFCFIl.LT.FO GOTO 270

250 lu<lw*l
ALPHA>ALPHA*GAMHA
HRITE(6,260) lU

260 F0RHAT(1X,3MIM.,15)
T«0
00 264 I-l.N

20.
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264

266

270
280

284

290

999

10

12

20
26
28
30

«0

50

130
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IF(0A8$(«JF(I)).LE.T) GOTO 264
T"0ABS(AJF(1))
CONTINUE
MRITE(6.266> T

FORMAT(1X,5HHAJF»,020.10)
IFCT.LT.EPS) GOTO 999
IFCIM.GT.T) GOTO 999
GOTO 170
URITE(6.280)' ALPHA
F0RHAT(1X,6HALPHA>,014.8)
IF(IT.GT.IOO) GOTO 999
T«0
00 284 I«1,N
1F(DABS<AJF(I)).LE.T) GOTO 284
T-0A8SCAJF(I))
CONTINUE
MRITE(6,266) T

IFCT.LT.EPS) GOTO 999
00 290 I>1,N
XCn-XH I)
FI-Fli
GOTO 30
STOP
ENO

R£AL»8 ANCK),A2<K),AJ<M,N),ALAHDA(M0>
REAL«8 R

00 10 J>1,K-1
DO 10 I>1,N0
AJ(I , J).0£XP(-2.00»00«ALAMOA( I)»AIC J«l))

-OEXP(-2.00*00*ALAMOA(I)»»i( J))
AJ( I, J»K-n«2.00»00»{AN( J»l )-AN( J))«ALAMDA(n

»OEXP(-2.00*00*ALAMOA(I)«AZ( J*l))
00 12 I<M0*1,M
00 12 J«1.N
AJ(I,J}>0. 00*00
00 30 I«l,K-l
IFCAN(I)) 20,26,24
AJ(H0*I,I)»2.0O*0O»AN<I)«R
IFCAZCI*!)) 28,30,30
AJ(H0*K-1 I,K-l*I).2.0O*00«A2(I*n«R
CONTINUE
00 50 I»1,H-1
IF(AI(I)-AZ(IM)) 40, 50, 50
AJ<«0»NM.*-2»I).-2.00»00«(AZ(I*l)-*l(l))«R
AJCMO*N»I ,n-l*I ).-4j(M*N»I,K-2*I)
CONTINUE
AJ(M0»N»l,H-l)«O. 00*00
RETURN
ENO

SUdROUTINE FF(ANS,AIS,K,C,PHI)
REAL«8 ANS(K),A2
R£AL*8 C.PMI

*
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PHI-0. 00*00
00 10 I-ltK-1

10 PHI»PMI**MS<I)*<0EXP(-1.00»00*C«AZS(1*1 ))
• -0EXP(-2.00«00*C«AZS(I}))
PHI-PMI*AMS<K>»<1.00*00-OEXP{-2.00*00«C*AZS<K)))
RETURN
ENO

SUBROUTINE IVSN(A,AA,N,NNtOE.EP,IS)
REAL*8 A(N>N) lAACN.NN)
REAL«8 T.OE.EP.C
IS-1
OE>1.00«00
00 6 I-l.N
00 7 J«X,N

7 AACI, J)»A(I,J)
00 8 J-liN

e AA(I, J*N)«0.0
6 AA( I, I*N}-1 .0

00 100 I>1,N
T'O. 00*00
K»I
DO 20 J>I ,N
IF(0AB$CAACJ,I)).L£.OABSCy)«1.0O-10) GOTO 20

T»AA( J, I

>

20 CONTINUE
OE>oe»r
IF(OABS(T).CT.EP) GOTO 30
IS«-1
RETURN

30 iF(K-n 4o,soi4o
40 00 4* J»I,NN

C=AA(I, J)
AA( I, J)aAA(K, J)/T« AA(R,J).C
DE»-OE
GOTO 62

SO 00 60 J>I,NN
60 AA( I , J)=AA( I, J)/T
62 00 80 J23l*l,2*N

00 80 J1>I*1,N
80 *»C Jl. J2).AA(J1,J2)-A»<J1,I)«AA(I,J2)
100 CONTINUE

00 120 I-1,N-1
00 120 J2:N*1,NN
00 120 J1>1,N-I

120 *«<JI.J2J«AA(J1,J2)-AA<J1,N»1-1)»AA(N*1-I,J2)
00 140 I.l.N
00 140 j3l,N

1*0 A(I , J).AA(I, J»N)
RETURN
ENO



TABLE 1: TWO LAYERS, NOISELESS DATA

"1 4.0000 12.0000 7.2000 12.0000 4.0000 15 0000 15 noon

112 2.0000 7.0000 7.0000 7.0000 7.0000 7.0000

zi (given) 5.0000 30.0000 14.0000 14.0000 19.0000 5 0000

3.0000 24.0000 8.0000 13.0000 18.0000 4.2000 4.8000

4.0001 11.9998 7.2000 11.9800 4.1029 15.0000 15.0742

2.0000 7.0000 7.0000 7.0000 7.0000 7.0000 7.0000

^2 3.0000 23.9993 8.0000 12.9962 17.9654 4.2000 4.8018

t all the results are rounded to four decimals.

* denotes the recovered parameters.
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TABLE 2: TWO LAYERS, NOISY DATA

"1 4.0000 12.0000 7.2000 15 0000

2.0000 7.0000 7.0000 7.0000

zi (given) 5.0000 30.0000 14.0000 5.0000

3.0000 24.0000 8.0000 4.6000

"I 3.9990

3.9896

11.9953

11.9543

7.2003 15.0351

15.3714

noise level 0.0001 ^

noise level 0.001

"1 2.0001

2.0010

7.0001

7.0010

7.0001 7.0001

7.0010

noise level 0.0001

noise level 0.001

^5 2.9987

2.9871

23.9934

23.9354

7.9929 4.6016

4.6146

noise level 0.0001

noise level 0.001

t by noise level we mean the absolute error of the data in tables 2, 4 and 6.
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TABLE 3: THREE LAYERS, NOISELESS DATA

10.0000 10.0000 4.0000 4.0000 8.0000 8.0000

7.0000 7.0000 5.0000 5.0000 2.0000 2.0000

4.0000 4.0000 1.0000 1.0000 5.0000 5.0000

zi (given) 3.0000 20.0000 4.0000 4.0000 0.9000 4.0000

2.0000 15.0000 3.8000 1.2000 0.6000 3.7000

1.0000 13.0000 1.0000 1.0000 0.3000 3.4000

«I 10.0000 9.9978 4.0791 4.0000 7.9998 8.0505

7.0000 6.9404 5.0003 4.9649 1.9997 3.0246

4.0000 4.0000 1.0000 1.0000 5.0000 5.0000

2.0000 14.9726 3.7823 1.2043 0.5998 3.7375

1.0000 12.9841 1.0000 0.9992 0.3001 3.3320

2S



TABLE 4: THREE LAYERS, NOISY DATA

"1 10.0000 4.0000 4.0000 8.0000

7.0000 5.0000 5.0000 2.0000

4.0000 1.0000 1.0000 5.0000

zi (given) 20.0000 4.0000 4.0000 0.9000

15.0000 3.8000 1.2000 0.6000

"3 13.0000 1.0000 1.0000 0.3000

"J 10.0307

10.4230

4.2136

4.5122

4.0001

4.0053

8.0263 noise level 0001

noise level 0.001

7.2731

7.6933

5.0002

4.9955

4.7976

4.7888

2.0486 noise level Dnm
noise level 0.001

4.0001

4.0010

1.0001

1.0010

1.0001

1.0010

5.0001 noise level 0.0001

noise level 0.001

^2 15.1933

16.2958

3.7468

3.6303

1.2261

1.1991

0.6029 noise level 0.0001

noise level 0.001

4 13.0488

12.9653

1.0000

0.9984

0.9947

0.9912

0.2985 noise level 0.0001
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TABLE 5: FOUR LAYERS, NOISELESS DATA

5.0000 5.0000 5.0000 5.0000 5.0000 5.0000

8.0000 8.0000 8.0000 8.0000 8.0000 8.0000

ns 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000

10.0000 10.0000 10.0000 10.0000 10.0000 10.0000

zi (given) 5.2000 7.0000 7.5000 7.5000 8.0000 4.5000

3.8000 6.2000 2.4000 6.4000 7.1000 3.3000

2.5000 1.8000 1.7000 5.3000 6.2000 2.3000

z* 1.2000 1.0000 1.0000 1.0000 5.2000 1.1000

nl 5.0293 5.0018 5.0005 5.0062 5.0106 4.9584

8.1760 8.0001 8.3189 8.0256 7.4764 7.7602

^3 6.0146 6.0004 6.0622 6.0000 5.6168 5.9792

< 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000

3.7460 6.1994 2.3692 6.3920 7.2012 3.3662

2.5531 1.8002 1.7692 5.3054 5.6579 2.2304

< 1.1991 1.0000 0.9973 1.0000 5.1973 1.1012
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TABLE 6: FOUR LAYERS, NOISY DATA

5.0000 5.0000 5.0000 5.0000 5.0000 5.0000

"2 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000

"3 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000

10.0000 10.0000 10.0000 10.0000 10.0000 10.0000

zi (given) 5.2000 7.0000 7.5000 7.5000 8.0000 4.5000

3.8000 6.2000 2.4000 6.4000 7.1000 3.3000

«3 2.5000 1.8000 1.7000 5.3000 6.0000 2.3000

1.2000 1.0000 1.0000 1.0000 5.2000 1.1000
— *

5.0369 5.0430 5.0011 5.0021 5.2246 5.0721 noise level 0.0001
5.1971 6.1799 noise level 0.001, 0.005+

'"2 8.1152 8.0007 7 77S9tilt 0£i 7 171R
r .0400 noise level 0.0001

8.3570 7.4567 noise level 0.001, 0.005

"a 5.9956 5.9911 6.0363 5.9997 5.6422 5.9527 noise level 0.0001
5.8726 5.9922 noise level 0.001, 0.005

< 10.0001 10.0001 10.0001 10.0001 10.0001 10.0001 noise level 0.0001
0.0010 10.0050 noise level 0.001, 0.005
3.7520 6.1881 2.3657 6.4472 7.1332 3.2890 noise level 0.0001
3.5874 5.0568 noise level 0.001, 0.005
2.5229 1.7979 1.7603 5.2356 5.5113 2.2177 noise level 0.0001
2.4738 4.4969 noise level 0.001, 0.005
1.2007 1.0007 0.9989 1.0001 5.1684 1.1031 noise level 0.0001
1.2127 1.0015 noise level 0.001, 0.005

+ The data in the second column have noise level 0.0001 and 0.001, and the data in the fifth column
have noise level 0.0001 and 0.005.
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ABSTRACT.
In this paper an inverse problem is formulated and its numerical solution is

given. The problem is of interest, for example, in geophysics. Numerical results

show that the algorithm is efficient for noisy data. Prjictical recommendations are

given. The computer code which solves the inverse problem is appended.


