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Abstract 

Psychological stress experienced during academic testing is known to be a significant 

performance factor for some students. While a student may be able to recognize and self-report 

stress experienced during an exam, unobtrusive tools to track stress in real time (and in 

association with specific test problems) are lacking. This effort pursued the design and initial 

assessment of an electrodermal activity (EDA) sensor - essentially a sweat sensor - mounted to a 

pen/pencil 'trainer:' a holder into which a pen/pencil is inserted that can help a person learn how 

to properly grip a writing instrument. This small assembly was held in the hand of a given 

subject during early human subject experiments and can be used for follow-on, mock test-taking 

scenarios. Data were acquired with this handheld device for 37 subjects (Kansas State University 

Internal Review Board Protocol #9864) while they each viewed approximately 30 minutes of 

emotion-evoking videos. Data collected by the EDA sensor were processed with an EDA signal 

processing app, which calculated and stored parameters associated with significant phasic EDA 

peaks. These peak data were then evaluated by a hypothesis driven stress-detection test that 

employed an approach using likelihood ratios for the ‘relaxed’ and ‘stressed’ groups. For these 

initial, motion-free testing scenarios, this pen-type EDA sensing system was able to discern 

which phasic responses were associated with ‘relaxed’ versus ‘stressed’ responses with 85% 

accuracy, where subject self-assessments of perceived stress levels were used to establish ground 

truth. 
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Chapter 1 - Introduction 

Academic stress caused by test anxiety in classrooms is a significant factor that inhibits 

academic performance. Students who experience extreme test anxiety often obtain lower scores 

than they would have likely otherwise achieved. Detecting and analyzing student anxiety within 

an academic environment, especially during test-taking scenarios, by using unique pen-type 

electrodermal activity (EDA) sensors, could give educators insights into improving numerous 

facets of the educational system. 

Methods to quantify anxiety/stress fall primarily into two categories: 1) electrochemistry 

methods such as cyclic voltammetry, which detects levels of the stress hormone, cortisol (present 

in blood or saliva) that are directly proportional to psychological stress [1], and 2) electrode-

based sensing methods that employ electrocardiographs, electroencephalographs, and 

electrodermal activity circuitry to acquire biosignals mediated by the sympathetic nervous 

system [2, 3]. In this chapter, the motivation for work related to a pen-type EDA sensing system 

is addressed. Recent hormone-based psychological stress detection research is reviewed, and 

electrode-based stress monitoring systems are compared to systems that apply hormone-based 

methods. Finally, the benefits of a novel, pen-type EDA sensor are addressed in terms of 

overcoming challenges experienced by traditional hormone- and electrode-based approaches. 

 A. Research Motivation and Significance 

 A.1 Recent Stress Hormone Sensing Techniques and Their Disadvantages 

The ‘stress’ hormone, cortisol, can be obtained from different types of biological 

samples, such as urine [4], interstitial fluid [5], hair [6], sweat [7], blood [8] and saliva [9]. 

Analysis methods that employ these body samples require devices that implement 

electrochemistry techniques, such as cyclic voltammetry [10], that can sense nanoscale 
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molecules. Another technique that can sense cortisol employs an immunoassay system [11], 

which requires ‘wet lab’ equipment that operates within a sterile environment to protect the 

samples from contamination.   

Physical systems that implement such techniques prove unwieldy for typical academic 

test-taking scenarios. For example, the acquisition of bodily fluid samples from a student during 

an exam would be impractical for obvious reasons, including the creation of interruptions that 

may compromise the student's performance. Additionally, practical fluidic sensors that provide 

real-time, continuous data have not yet become widely available 

 A.2 Recent Biosignal Sensing Techniques for Stress Detection 

 A number of research efforts have used electrode-based biosignal sensing systems to 

detect and monitor emotions, especially stress. Biosignals and biological parameters that 

researchers study include electroencephalograms,  electrooculograms, electrocardiograms, skin 

temperature, electrodermal activity (EDA), electromyograms, heart rate, heart rate variability, 

and respiration rate [12, 13] [14] [15]. Usually, to cross-validate these data and increase system 

sensitivity, researchers simultaneously acquire multiple signals and parameters. For example, S. 

Sriramprakash et al. monitored heart rate, heart rate variability, EDA, and electrocardiographic 

activity to detect stress in working people [2]. Another example is the wearable research 

conducted by F. Seoane et al., who used EDA, body temperature, electrocardiographic activity, 

electrical bioimpedance, and voice recordings in aggregate to assess mental stress [16]. 

 Electrode-based biosignal measurement has advantages. It is relatively easy to make 

portable devices that measure these biosignals, and monitoring data in realtime is straightforward 

with the use of a single-board computer and a wired or wireless connection.   
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 A.3 A Novel Pen-Type EDA Sensor 

A typical EDA setup employs electrodes directly attached to the fingers - an arrangement 

that can hinder a student's ability to move and to manage the test materials in a natural way, 

potentially compromising their academic performance. It therefore seemed sensible to avoid this 

problem by developing a more novel EDA sensing approach. To that end, this work focused on 

the development and testing of a novel “pen-type” EDA sensor and the affiliated signal 

processing app and emotion-identification algorithms. The goal is to acquire anxiety-related 

biosignal data comparable with data presented in the prior literature without unduly affecting the 

ability of a student to perform on a written exam. Unlike a traditional arrangement, the electrodes 

of the pen-type EDA sensor are in contact with a subject’s index finger and thumb, which are 

usually the main fingers employed when writing with a pen or pencil. This is accomplished by 

the addition of a sleeve-like pen trainer into which a pen or pencil is inserted. This trainer, which 

also hosts the electrodes, will be described later in this document. Using this approach, a subject 

is freely able to utilize or put down the writing tool without undue interference from sensors and 

wiring. This flexibility enables the user to participate in additional activities, unlike traditional 

arrangements, where a subject is tethered to the measurement system.  

 A.4 Challenges for a Pen-Type EDA Sensor 

 This pen-type EDA sensing method does face technical challenges. For example, since 

the sensors are mounted onto a writing tool that holds a pen or pencil, motion artifacts will 

corrupt the EDA signals that the sensor acquires. It is not yet clear whether this motion artifact 

will be primarily additive, meaning that clever filtering will allow signal/artifact separation. If 

such motion artifacts can be removed, or at least minimized, in order to isolate relatively clean 

EDA data, then the pen-type EDA sensor will be employable in more practical testing 
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environments. Note that the studies employed here form a proof-of-concept investigation, so 

motion artifacts are intentionally avoided as part of the human subject testing described later in 

this document. 

 A.5 Significance of Monitoring Emotions During Academic Testing 

In academic learning and testing scenarios, students experience a number of emotions 

and have varied emotional responses to certain academic tasks, especially test-related tasks. 

These emotional responses can have significant impacts on student achievement related to 

learning outcomes and course grades. It is therefore important to (1) understand the types of 

emotions involved in learning and test-taking and (2) be able to quantify individual emotional 

responses to these activities. 

Psychological responses to educational environments include class-related, learning-

related, and test-related emotions [17]. Well-known academic emotions are enjoyment, hope, 

pride, boredom, anger, anxiety, hopelessness, shame, and sadness [18] [19].  In the work 

presented here, some of these emotions will be addressed using pre-experimental survey 

questions. The intent is to understand the emotions that the subjects most associate with test-

taking scenarios, with a goal to ascertain whether the pen-type EDA system developed for this 

effort can differentiate between these types of emotions as elicited by video media. 

 A.6 Research Purpose and Contents of Upcoming Chapters 

The purpose of this effort is to assess the suitability of a lightweight, pen-type EDA 

sensing device to acquire stress-related data during an academic test-taking scenario – data that 

can be meaningfully interpreted in light of the existing EDA literature. Such a device would 

prove useful to continually assess exam-related stress without compromising the ability of a 

student to perform. This overall study will consist of two phases: 1) a phase to establish the early 
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viability of the pen-type sensor as a data gathering tool, where the device will be held by a given 

subject while they view emotion-evoking videos, and 2) a phase to assess the stress-detecting 

ability of the tool and its supporting software. Neither phase will yet address motion artifact, 

which has the potential to pose a substantial technical challenge.  

In Chapter 2, basic EDA principles and terminology are explained based on skin anatomy 

and a related electrical model. In Chapter 3, research materials, procedures, data, and stress-

detection approaches are summarized at a high level. Chapter 4 presents the prototype EDA 

device design and data acquisition method, then Chapter 5 addresses the signal processing 

approach applied to the EDA raw data. In Chapter 6, the purpose and significance of the pre- and 

in-experiment surveys are discussed as well as the content of the emotion-evoking videos used 

for these experiments. Chapter 7 presents experimental results, and Chapter 8 explains the stress-

detection methods and results. Finally, Chapter 9 contains a summary of the research and 

suggests future work. Appendices A through F present the informed-consent form, the 

experiment survey sheets, the experimental protocol, selected experimental data, extra likelihood 

ratios for stress detection, and the PCB circuit design. 
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Chapter 2 - Electrodermal Activity 

Sweat gland activity is controlled by sympathetic nerve activity [20], and the electrical 

properties of skin and its sweat glands play a role in this process. In this chapter, the principle 

behind electrodermal activity (EDA) will be discussed, and the corresponding model for the 

electrical properties of skin will be introduced, including the related terminology, electrical 

parameters, and units.  

 A. Principles of EDA Phenomena 

 A.1 Skin Anatomy 

The schematic diagram in Figure 1 illustrates a vertical cross-section of the skin that 

contains an eccrine sweat gland and an apocrine sweat gland. The upper (outer) layer of the skin 

is called the epidermis, which consists of the stratum corneum, the stratum lucidum, a granular 

layer, a prickle cell layer, and a germinating layer [21]. The outer surface of the stratum corneum 

contains dead skin cells, under which living cells reside. The role of the corneum is to manage 

moisture by holding water on either the outside or the inside of the skin, then allowing that water 

to pass through the skin when necessary [22]. Usually, this layer of the skin is moderately 

hydrated, but the level of hydration (and therefore the skin resistance) varies depending on 

humidity changes in the external environment or by sweating. The eccrine sweat gland duct is 

comprised of a tube-like tissue made of epithelial cells, and it is re-absorptive with regard to 

sweat [23]. The palm offers the highest density of eccrine sweat glands, followed by the head. 

Eccrine sweat glands are ‘innervated’ by the sympathetic nervous system via cholinergic fibers. 

This type of sweat gland produces odorless, water-like sweat [24]. Unlike an eccrine sweat 

gland, an apocrine sweat gland secretes fatty sweat, and this type of sweat has an odor [25].  
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Figure 1. Schematic cross-section of the skin and a representative sweat gland. 

 

 A.2 Nervous System and Sweating 

 The central nervous system (CNS) controls body temperature via the hypothalamus, 

which is a small region in the center of the brain. The CNS sends signals to the autonomic 

nervous system (ANS), which regulates sweat glands via cholinergic fibers in the sympathetic 

nervous system (SNS) [20]. The CNS responds to changes in emotion as well, resulting in 

changes in sweat gland secretion that then affect skin electrical resistance [26]. As an example of 

emotion-induced sweating, some individuals’ palms sweat when they feel nervous. Thus, using 

skin resistance, or skin conductance, as an emotion indicator is reasonable, and this measurement 

can be made with electrodermal activity sensors. 
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sweat gland 

Eccrine 
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 A.3 Electrical Properties of Skin and Sweat Glands: Resistive Model 

When an external current is applied to skin, skin acts as an electrical component 

comprised of resistors and capacitors. For example, bio-fluids such as blood and sweat act as 

variable resistors, whereas cell membranes exhibit more capacitive behavior because these 

membranes are semi-permeable and hinder cross-membrane ion flow, resulting in ionic 

‘potentials’ that exist across these cell membranes.  

A resistive skin model [27] assumes that all skin components act like electrical resistors. 

Figure 2 depicts an example of a resistive skin model. Here, the stratum corneum acts like a 

variable resistor, whereas the epidermal barrier acts like a fixed resistor. The sweat gland ducts, 

which are switched on and off to be part of the circuit, act like electrical ‘shunts’ due to their low 

resistance [28].  

 

 

Figure 2. Schematic of a resistive model consisting of the skin and the sweat gland ducts. 
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When a sweat gland duct is switched ‘on’ to be part of the circuit, electrical current also 

flows through the duct in addition to the rest of skin layers. This occurs when the duct is filled 

with the sweat secreted from the gland after cholinergic innervation is applied [29]. The lower 

epidermis and the dermis have relatively low resistance, and their resistance is fixed, unlike the 

stratum corneum [30]. 

 B. Terminology and Definitions 

 Electrodermal activity (EDA) is a term that is used to represent electrical changes in skin 

properties. The term ‘galvanic skin response’ is no longer recommended for use because of its 

improper implication that the skin is a galvanic element [27, 31]. Of all of the parameters 

associated with EDA, skin conductance has been the most studied. Skin conductance can be 

measured by applying an electrical voltage across two skin locations, where the amount of 

current flowing between these two spots is commensurate with skin conductance.  

Electrodermal activity (EDA) has two components: tonic and phasic, as noted Figure 3. 

Tonic EDA represents the skin conductance level (SCL), which has the character of a slowly 

changing baseline. Phasic EDA represents the skin conductance responses (SCRs) – temporal 

phenomena which reflect changes in sympathetic neuronal activity. Phasic EDA is either event-

related or non-specific. Event-related, phasic EDA occurs in response to psychological stimuli, 

whereas non-specific, phasic EDA consists of naturally occurring phasic peaks without stimuli. 

An electrodermal measurement technique that does not involve an external current is 

defined as endosomatic. In comparison, an exosomatic measurement approach utilizes either 

direct current (DC) or alternating current (AC). When the acquired voltage is kept constant 

during a DC measurement, EDA is reported with skin conductance (SC) units, whereas when the 

acquired current is kept constant, EDA is reported with skin resistance (SR) units. When the 
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acquired voltage is kept constant during an AC measurement, EDA is reported with skin 

admittance (SY) units, whereas when the acquired current is kept constant, EDA is reported with 

skin impedance (SZ) units [32]. 

 

Figure 3. Components of electrodermal activity. 

 

 C. Units  

Electrodermal activity is reported using the SI unit of Siemens (S). The electrical conductance of 

a component, G, is defined as 

G = 
ଵ

ோ
 = 

ூ

௏
 , 

where R is the electrical resistance, V is the voltage across the component with a conductivity, G, 

and I is the current flowing through the object. The electrical conductance, G, is reported in 

Siemens (S): 

S = Ωିଵ =  
஺

௏
, 

where A is amperes and V is volts. 
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 D.  EDA Signal Parameters  

EDA signal parameters can be visually explained using the prototypical EDA signal depicted in 

Figure 4. In a case of an event-related EDA signal (a signal caused by a physiological stimulus), 

the EDA signal level rises after a short period of latency. In contrast, a non-specific phasic EDA 

signal (a signal not caused by a particular physiological stimulus) occurs with a frequency of 1-3 

peaks/min [33]. Once the EDA signal reaches its peak, the signal starts to decrease, reaching 

50% of its peak amplitude at the ‘half-recovery’ time, followed by 63% of its peak amplitude at 

the ‘recovery time.’  Parameter descriptions related to Figure 4 follow: 

 Latency: the time period between the stimulus and the onset of the phasic response. 

 Response onset time: the time when the SCR rises from the base skin conductance. 

 Rise time: the time difference between the EDA signal onset time and the SCR peak. 

 Half recovery time or decay time: the time period between the SCR peak and 50% 

of amplitude. 

 Recovery time: the time period between the SCR peak and 63% of amplitude. 

 Response peak: the highest point of a single EDA response window after a stimulus 

is applied. 

 Amplitude: the difference between the response peak and the baseline. 
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Figure 4. Prototypical electrodermal activity signal. 
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Chapter 3 - Research Methods 

In this chapter, the research materials, procedures, data-management processes, and 

stress-detection methods will be addressed in detail. The Materials section addresses items 

incorporated into the sensing unit, a basic introduction to the emotion-evoking video content 

used during the experiments, and pre-and-in-experiment surveys offered to the participants. The 

Procedures section speaks to subject recruitment and the experimental procedure. Next, the 

Research Data Management section focuses on the signal processing method and the 

experimental results. Finally, the Stress Detection section briefly addresses the methodology 

used to classify data sets into ‘relaxed’ versus ‘stressed’ categories. 

 A. Materials 

 A.1 Pen-Type Electrodermal Activity (EDA) Device  

Figure 5 displays a picture of EDA electrodes mounted on a pen-type ‘writing trainer’. 

The writing trainer, into which a pen or pencil is inserted, is used to teach a student how to 

properly hold a writing instrument by providing a stable and fixed grip platform. Such a hand 

grip is comfortable and does not compromise a person's handwriting ability or style. Various 

commercial ergonomic training grips can be found online, and the lightweight grip design, 

MegaTrue Pencil Pen Ergonomics Handwriting Aid Grip for Adult and Kids [34], has been 

chosen for this research. The prototype EDA sensing device incorporates a modified version of 

this writing trainer that employs two EDA electrodes made from copper tape – see Figure 5. 

These electrodes are attached to the grip at the contact locations for the thumb and index finger. 

The electrodes are connected to the sensing circuitry, which produces a differential analog, 

electrical-current signal that can be stored, analyzed, and interpreted to provide indicators for 
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psychological stress consistent with the EDA literature. Hardware component details and signal 

processing methods are discussed in Chapters 4 and 5, respectively. 

 

Figure 5. Pen-type EDA electrodes mounted on a writing trainer. 

 

 A.2 Experimental Video Content 

The video series assembled for these early experimental analyses is approximately 30 

minutes long and includes a comforting Mozart music playlist, an extreme parkour clip, a jump-

scaring video, a video of a pet owner saying goodbye to his sick dog, and a video of near misses 

– see Chapter 6 for details. This material has been chosen to evoke emotions that may be 

representative of the emotions experienced during a test-taking scenario. The Mozart music was 

chosen to evoke relaxation; the extreme parkour clip was chosen to evoke anxiety; the jump-

scaring video was chosen to induce both anxiety and surprise; the ‘saying goodbye’ video was 

chosen to evoke sadness or stress; and the near-misses video was chosen to induce anxiety or 

stress. None of this material was intended to evoke extreme emotions and therefore does not 

include any depictions of oppression, bullying, suicide/death, abuse/torture, or other extremely 

upsetting or graphic subject matter. Additionally, the material does not include any pornographic 
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content or other material that may be described as 'adult' in nature. The experimental videos, 

surveys, and protocols were reviewed and approved by the Kansas State University Institutional 

Review Board under protocol #9864. 

 A.3 Experimental Survey Content 

The survey content employed in each experimental session had two components: 1) a 

pre-experiment survey and 2) an in-experiment survey – see Appendix B. The purpose of the 

pre-experiment survey was to investigate which positive and negative emotions the subject 

associates with the process of ‘taking an academic exam’ based on their past experiences. 

Analyses related to this survey component will offer insight into psycho-physiological reactions 

experienced in academic settings, especially during exams. According to Spangler et al., and 

Pekrun et al., academic exam-related emotions include pride, anxiety, hopelessness, anger, joy, 

boredom, shame, and hope [17] [35]. The pre-experiment questionnaire offered these specific 

emotions as responses, plus adds sadness.  Once the subject chose the emotions that they 

associate with the process of taking an academic exam, they then rated each emotion on a scale 

of 1 to 10 in the context of a typical exam experience, where 1 is a minimal sense of emotion and 

10 is an extreme sense of emotion. The ratings by the individual subject offer comparative 

tolerances for each emotion. For example, if the subject chose sadness and rated sadness at 8 out 

of 10, this subject would be considered to have a low tolerance related to sadness during 

academic exam settings, or possibly in non-academic settings as well.  

Negative emotions that were included in the pre-experiment survey are categorized as 

‘emotional stressors’ in this research. Out of all negative academic emotions, mainly sadness and 

anxiety/nervousness are triggered by the experimental videos. Likewise, out of all positive 

academic emotions, relaxation is primarily triggered by the experimental videos. There are 



16 

reasons why sadness, anxiety, and relaxation were emphasized by this research. First, sadness 

was chosen because academic failure brings about sadness, clearly implying that sadness can be 

a good indicator for academic stress [36]. Second, relaxation plays a role in the opposing 

emotions – anxiety or stress – which allows the researcher to quantitatively analyze stress or 

anxiety in comparison to relaxation. Third, anxiety is the main target for this research; it is the 

‘problem’ emotion that most often hinders students from achieving good grades on academic 

exams. EDA signals arising from anxiety will be compared with those that arise from relaxation 

and sadness. Detailed information regarding these analyses and results can be found in Chapters 

7 and 8. 

 B. Procedures 

 B.1 Experimental Procedure 

At the beginning of each experimental session, the subject was asked to read and sign the 

informed consent form (see Appendix A). The subject then completed a short pre-experiment 

survey (see Appendix B) that begins with a self-assessment regarding the subject's perceived 

levels of emotion in academic environments, particularly test-taking scenarios. The researcher 

then asked the subject to hold the EDA sensing device so that the researcher could verify that the 

associated signals were within the active range of the data acquisition equipment. At that point, 

the subject then engaged in an ordered exposure to the image- and video-based material as laid 

out in the session protocol (see Appendix C). In between each pair of videos, the subject was 

asked to answer ‘in-experiment survey’ questions (see Appendix B), which addressed how much 

the prior video affected various subject emotions on a scale of 1 to 10. The entire session was 

videotaped as a means to both archive the process and to seek other physiological parameters 

that may serve as supplemental indicators of stress/anxiety.  
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 B.2 Subjects and Subject Recruitment 

 Thirty-six individuals comprised the subject pool for this initial study and the affiliated 

analyses. Each of these individuals had experience as a student in a post-secondary academic 

environment, and each subject was between 18 and 35 years of age and was able to provide their 

own informed consent. These subjects were recruited via email, word of mouth, posted signage, 

and online advertisements. Korean subjects received informed consent forms, surveys, and 

debriefing statements that were translated into the Korean language. 

 

 C. Research Data Management 

 C.1 Subject and Data Protection 

All electronic data (EDA signals, ECGs, videos, etc.) were stored on a password-

protected network drive managed by the KSU College of Engineering and/or password-protected 

computers managed by the PI and the graduate student who conducted this work. Signed consent 

forms (see Appendix A) and any physical session materials were stored in a locked file cabinet. 

To maintain subject confidentiality, each participant was initially assigned a unique number that 

was thereafter used to identify them. 

 C.2 Signal Processing 

 All acquired EDA data were processed with a MATLAB-based app designed for this 

EDA research. The app can identify and store significant peaks along with other parameters such 

as amplitudes, peak times, onset times, and rise times. Detailed information about the EDA 

signal processing app can be found in Chapter 5.  
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 C.3 Experimental Results 

 Resulting data, such as pre-experiment survey results, in-experiment survey results, and 

signal processing results, are summarized and discussed in Chapter 7. The pre-experiment survey 

results are displayed in the form of a table and a pie chart. In the pre-experiment survey result 

table, ratings related to each ‘academic emotion’ are enumerated and then converted into ‘scores’ 

used to create the pie chart. Similarly, enumerated in-experiment survey results, consisting of 

ratings related to each emotion-evoking video, are displayed in the form of table. Finally, the 

signal-processing results are collected and exhibited in the form of box plots. The signal-

processing results involve several parameters such as phasic EDA amplitude, rise time, slope, 

and peak frequency. The box plots contain statistical information regarding the amplitude 

average, minimum, maximum, standard deviation, first quantile, third quantile, median, and 

skewness for each emotion evoking video. Moreover, given these phasic EDA amplitude results, 

a mean t test was conducted to verify that certain data sets are statistically different from each 

other, which validates the final step, which is ‘stress detection,’ as summarized in the next 

section.  

 D. Stress Detection 

 The goal for this phase of the research is to be able to determine whether a phasic 

response should be perceived as arising from a ‘relaxed’ versus a ‘stressed’ individual. After 

basic signal processing is performed to smooth the EDA signals and to extract parameter values, 

the data from all subjects are divided into either ground-truth data or non-ground-truth data for a 

given type of emotive response. Ground-truth data are data from subjects who indicated an in-

experiment survey answer of 5 or above after watching a given video (e.g., the stressed 

individuals). Non-ground-truth data are from the subjects who indicated a survey answer smaller 
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than 5 (e.g., the relaxed individuals). After this separation process, only ground-truth data are 

chosen to evaluate the stress detection system. A chi-squared goodness-of-fit test is conducted 

with a portion of the ground-truth data to validate the ‘training’ model. Then, the ‘test’ data (the 

remaining portion of the ground-truth data) go through a likelihood ratio test to either accept or 

reject the null hypothesis (i.e., the test data belong to the ‘relaxed’ group), whereas the 

alternative hypothesis assumes that the test data belong to the ‘stressed’ group. More detailed 

information can be found in Chapter 8. 
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Chapter 4 - Prototype Design and Data Acquisition System 

 This chapter addresses prototyping, data acquisition, signal processing, and data analysis 

methods related to the EDA system. A block diagram of the pen-type EDA process is illustrated 

in Figure 6. This process can be divided into two phases: data collection and signal processing. 

The first phase relies on hardware functionality, including the electrodes, the printed circuit 

board which contains the lowpass filter, and the microcontroller sub-system that enables real-

time data monitoring. The second phase includes the algorithm to extract the phasic EDA events 

from the raw EDA signals so that the system can identify significant phasic peaks, as well as 

their respective onsets and offsets, while excluding the tonic EDA elements that have little 

psychological meaning for stress detection. After detecting the significant phasic EDA peaks, the 

system categorizes the associated subject as relaxed or stressed based on a statistically 

established model. 

 

Figure 6. Block diagram – EDA data collection system and signal processing approach. 
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 A. Hardware Design 

The electrode-based sensing circuitry and the associated data acquisition hardware 

provide an electrical voltage output that can be mapped to skin conductance, which is then 

proportionally related to the perceived level of psychological stress, consistent with the EDA 

literature. This system includes an Arduino Nano microcontroller unit [37](with a 16-bit analog-

to-digital converter (ADC) extension) that coordinates the analog circuitry and the conversion of 

analog signal data into digital data suitable for computer storage and analysis. When a person 

who holds this pen-type EDA monitoring system is nervous, their hand becomes sweatier, and 

the electrical resistance between their thumb and index finger decreases, allowing more current 

to flow between the respective electrodes, which are powered by a constant voltage. The 

prototype, which uses a 5 V power source, will produce electrical current amplitudes that range 

from approximately 5 μA to 15 μA, depending on the subject's level of anxiety, which 

corresponds to thumb-to-finger tissue resistances of approximately 1.25 MΩ to 5000 MΩ  and 

skin conductances of approximately 0.0002 µS to 0.8 µS. This corresponds to current levels of 1 

nA to 3.4 µA. Such a current will flow, e.g., from one electrode into the index finger, through a 

portion of the user's hand, and then out of their thumb and into the other electrode. These 

electrical current amplitudes are safe [38], the currents are imperceptible to the subject, they are 

limited only to the region of the hand between the electrodes, and they do not alter the subject's 

tissue in any way. 

Figure 7 displays a picture of the EDA electrodes attached to the pen-grip trainer. The 

electrodes are constructed from conductive copper tape, which has been used for electrode 

material in other biomedical engineering research [39]. This handgrip form factor is natural and 

comfortable; it does not compromise the subject’s handwriting process or style. Further, the 
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electrodes offer excellent contact with a subject’s thumb and index finger toward acquiring a 

good EDA signal, and the controlled handgrip offered by the trainer ensures subject-to-subject 

consistency in terms of electrode placement. The electrodes are soldered to wires that interface 

with the downstream circuitry, which is comprised of a voltage divider followed by an analog 

lowpass filter. An Arduino Nano is used as both a microcontroller and a power source, since it 

can supply 5 V via a USB connection to a computer. The Arduino Nano uses an Atmega328 8-

bit AVR microcontroller [37]. To gain higher precision on the sampled data, an ADS1115 16-bit 

ADC [40] was used along with the Arduino Nano, which by default offers a 10-bit ADC. The 

MegunoLink software [41]was chosen for data storage and real-time plotting. 

 

Figure 7. Pen-type EDA sensor prototype, with circuitry on a breadboard (left) versus a 
printed circuit board version of the hardware (right). 

 

As depicted in Figure 8, other electronic devices are incorporated into the EDA data 

collection system: a video screen to display the emotion-evoking videos, Bluetooth headphones 

worn by the subject, and an EDA real-time monitor that the researcher can use to view data and 

initiate or pause data collection. The ground loop isolator is explained later in this chapter. 
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Figure 8. EDA data collection hardware. 

Figure 9 contains a representative picture of an EDA data collection session. Data 

collection was performed in an isolated room with minimal likelihood for interruptions such as 

drop-in visitors, hallway noise, or visual distractions, any of which might lead to data corruption 

from unrelated psychological disturbances. 

 

 

Figure 9. A representative EDA data collection session. 
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 A.1 Voltage Divider 

As mentioned above, the EDA sensing electrodes are connected to a downstream voltage 

divider whose voltage output varies as a function of R1, the skin resistance of the subject (see 

Figure 10). Given this arrangement, skin conductance in Siemens as a function of the measured 

output voltage can be calculated as below.  

 

Figure 10. Voltage divider circuitry. 
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 A.2 Filter Design 

A second-order, Sallen-Key lowpass filter with a cutoff frequency of 0.15 Hz (see Figure 

11) was employed as a downstream filter to attenuate higher-frequency signal noise. This active 

filter is a form of a voltage-controlled voltage-source (VCVS) filter which has, for practical 

purposes, an ‘infinite’ input impedance and an output impedance of ‘zero.’ This means that the 

output voltage of the upstream voltage divider will not measurably drop at the filter input: the 

filter will not provide an appreciable load to the voltage divider. The important components of 

the EDA signal exist at relatively low frequencies ranging from ~0.045 Hz to ~0.25 Hz [42] [43], 

so the chosen cutoff frequency of 0.15 Hz will pass the signal components of interest along with 

their respective harmonics. In support of this point, Figure 12 displays a magnitude spectrum for 

a representative EDA signal, where the spectral coefficients include a rather large DC baseline 

and smaller-magnitude coefficients confined to a frequency range of approximately [0, 0.1] Hz.  

 

Figure 11. Sallen-key lowpass filter employed in the EDA detection system. 
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Figure 12. Typical single-sided magnitude spectrum for sampled EDA data. 

 A.3 Electrical Isolation 

For safety purposes, a commercial electrical isolation unit (Adafruit USB isolator  [44], 

also referred to as a ground-loop elimination unit – see Figure 13) was incorporated into the 

EDA sensing system. This unit offers electrical isolation for both the power source and the 

detected signal, meaning that the subject will never become part of an electrical current path to 

ground. The circuit schematic for this PCB unit is displayed in Appendix F [44]. 

 

Figure 13. Adafruit USB isolator. 
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 A.4 EDA Electrode Contact Sites 

Conventional palmar EDA electrode sites are located at areas 1, 2, 3, and 4, as illustrated 

in Figure 14. For this pen-type EDA sensor platform, it is more convenient to use the thumb and 

index finger (areas A and B in Figure 14) as electrode contact sites, because the hand-grip trainer 

offers consistent access to these points given the natural grip arrangement that the trainer 

promotes. Early studies confirmed that contact points A and B yield sensible EDA signals. 

 

Figure 14. Palmar electrode sites. 
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Chapter 5 - EDA Signal Processing 

A. Signal Processing App

Processing of these EDA data is needed prior to further data storage and analysis. Raw 

data collected via the MegunoLink software are stored in a .csv file format. These raw data are 

fed into an EDA signal processing app developed with the MATLAB App Designer [45] – see 

the graphical user interface depicted in Figure 15. Three parameters (slope threshold, peak 

distance threshold, and phasic extraction average filter window size – displayed on the right side 

of Figure 15) control the signal processing sequence, and various parameters are reported for 

each individual raw data set (e.g., note the parameters in the lower right corner of Figure 15). 

Parameters affiliated with the signal processing approach are defined in the next section.  

Figure 15. Electrodermal activity signal processing app graphical user interface. 
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 A.1 App Input Parameters 

Parameters that act as inputs for the signal processing app follow: 

 Slope Threshold (µS/sec): the slope value that is close to zero and helps to determine 

whether the EDA signal,	ܣܦܧ	ሺܵ௡ሻ, has a possible peak at the data point, ܵ௡, by 

comparing Δ݄ܲܽܿ݅ݏா஽஺	ሺܵ௡ሻ	/Δܵ௡ with the slope threshold. The ideal slope threshold is zero, 

at which point the EDA signal has an inflection. However, it is unlikely that the discrete 

 /Δܵ௡ of exactly 0 at a point of inflection. Thus, if	ሺܵ௡ሻ	ா஽஺ܿ݅ݏሺܵ௡ሻ has Δ݄ܲܽ	ா஽஺ܿ݅ݏ݄ܽܲ

Δ݄ܲܽܿ݅ݏா஽஺	ሺܵ௡ሻ	/Δܵ௡ is smaller than the slope threshold, the selected ܵ௡ are considered to 

have a point of inflection among them. 

 Peak Distance Threshold (µS): the threshold that determines whether multiple ܵ௡ data 

points are detected around one point of inflection of the EDA signal, by comparing the 

distance between ݄ܲܽܿ݅ݏா஽஺	ሺܵ௡ሻ	and	݄ܲܽܿ݅ݏா஽஺	ሺܵ௡ିଵ) with the distance threshold. 

 Phasic EDA Extraction Filter Window Size: The moving average filter size used to 

extract phasic EDA peaks from the entire EDA signal. 

 Minimum EDA (µS): the minimum skin conductance (µS) out of all EDA data collected 

during a measurement session. This value is calculated prior to phasic EDA extraction. 

 Maximum EDA (µS): the maximum skin conductance (µS) out of all EDA data 

collected during a measurement session. This value is calculated prior to phasic EDA 

extraction. 

 Average EDA (µS): the average skin conductance (µS) out of all EDA data collected 

during a measurement session. This value is calculated prior to phasic EDA extraction. 

 Number of Detected Peaks: the number the peaks that the EDA signal processing app 

detects and records for a measurement session. 
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 A.2 App Reported Parameters 

The app reports data for each peak as well as for the entire measurement session: 

 Significant Peak Frequency (pks/sec): the peak frequency value, calculated by dividing 

the number of detected peaks by the data duration in seconds.  

 Average Phasic EDA (µS): the average value of the amplitudes of all resultant peaks 

detected during the phasic EDA extraction process. 

 Average Rise Time (sec): the average value of the time gaps between the onset times 

and the next-nearest-times of the respective local maxima. 
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 B. Phasic EDA Peak Extraction 

 B.1 Phasic EDA Extraction Filter 

Once raw EDA data are imported into the signal processing app, the skin conductance 

level (SCL) and phasic components of the signal are separated. The SCL, which is manifested by 

a slowly changing signal that visually represents the signal ‘baseline,’ is calculated by smoothing 

the EDA signal with a moving average window of a certain width. This process can be expressed 

as in Equation 1 [46]. 

 SCL(ܵ௡) =
ଵ

ଶ௄
൉ ∑ ∑ ሺܵ௡	ܣܦܧ ൅ ݅ሻ௄

௜ୀ	ି௄
ௌ೅ି௞
௡ୀ௞ାଵ , (1) 

where ܵ௡ is the ݊௧௛	sample, ்ܵ is the total number of samples collected, K is the number of data 

points before and after ܵ௡ for extracting SCL and phasic EDA. 2K+1 is the full width of the 

moving average filter window, also referring to the ‘window size of the phasic extraction’. The 

filter window concept is depicted in Figure 16.  

 

Figure 16. Average filter window depiction for phasic EDA extraction. 
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After setting the phasic EDA extraction grouping size (2K + 1), the phasic EDA component can 

be determined by subtracting the SCL data from the raw EDA data: 

 ሺܵ௡ሻ − SCL(ܵ௡) (2)	ܣܦܧ = ሺܵ௡ሻ	ா஽஺ܿ݅ݏ݄ܽܲ 

Figure 17 illustrates the phasic EDA & SCL extraction in one plot. The red line represents the 

raw EDA data, the black line represents the SCL data, and the blue line represents the phasic 

EDA component. This extracted phasic EDA signal is the input for the peak detection process 

implemented in the downstream signal processing app. 

  

Figure 17. SCL and phasic EDA extraction. 
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 B.2 Effect of Phasic EDA Extraction Filter Window Size  

 Changes in the phasic EDA extraction (a.k.a., averaging) filter window size significantly 

influence the resulting phasic EDA signal - see Figure 18. When the window size is too small, 

the computed SCL follows the phasic activity too closely and cannot exhibit its ‘tonic’ activity, 

which is considered to be slowly varying, trending behavior. On the other hand, when the 

window size is too large, the SCL is less useful for extracting relatively small phasic EDA peaks. 

Therefore, choosing the right width for the phasic EDA extraction filter is necessary. Usually, 

SCL is computed over surrounding samples of approximately +/− 4 seconds time period (~ 8 

seconds in total) which are centered around one data point [47]. The time interval between each 

data point is approximately 0.067 seconds. Thus, a phasic EDA extraction filter of width 141 (70 

data points before and after one data point) spanning approximately 9.4 seconds was chosen. 

 

Figure 18. The effect of phasic EDA extraction filter window width (81, 141, 201, and 401 
values, moving from the upper left axes to the lower right axes). 



34 

 C. EDA Peak Detection 

Ideally, when Δ݄ܲܽܿ݅ݏா஽஺	ሺܵ௡ሻ	/Δܵ௡ is equal to zero, a local phasic maximum or minimum 

will be present, assuming a noiseless data set. However, since these data are not continuous, but 

rather discrete, a sample value may not occur at the exact time of a peak, so choosing a slope 

threshold value that is just close to zero can narrow down the set of times at which the local 

maxima can be found. If 	Δ݄ܲܽܿ݅ݏா஽஺	ሺܵ௡ሻ	/Δܵ௡ is smaller than the parameter slope threshold value, 

then the signal processing app determines whether the curvature, ሺ ୼

୼ௌ೙	
ሻଶ݄ܲܽܿ݅ݏா஽஺	ሺܵ௡ሻ, is negative. 

If so, the graph is concave down and has a local maximum at the time, x, that corresponds to the 

index, n.  

C.1 Step 1 – Initial ࢔ࡿ Set for Peak Detection 

The initial set of ܵ௡ values can be determined by using this slope threshold approach. 

Figure 19 illustrates an example set of ܵ௡ሺଵሻ values selected by using the slope threshold 

parameter: 

ܵ௡ሺଵሻ = ൜ܵ௡ 	∈ 	 ܵ௡௉௛௔௦௜௖|		Δ݄ܲܽܣܦܧܿ݅ݏ	ሺܵ݊ሻ	/Δܵ݊ 	൏ 	 ,	௧ܮܵ 	ሺ
Δ

Δܵ݊	
ሻ
2
ܿ݅ݏ݄ܽܲ

ܣܦܧ
	ሺܵ݊ሻ ൏ 0ൠ, 

where ܵ௡௉௛௔௦௜௖represents the ܵ௡ values from the phasic EDA data, and ܵܮ௧ is the slope threshold. 

 

Figure 19. Total peaks, ࢔ࡿሺ૚ሻ, detected. 
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C.2 Step 2 – Second ࢔ࡿ Set for Peak Detection 

After the first detection process, one or more ܵ௡ values are identified as belonging 

to	ܵ௡ሺଵሻ. To omit ܵ௡ points that were falsely detected by the slope threshold parameter, one can 

set the minimum |݄ܲܽܿ݅ݏா஽஺	ሺܵ௡ሻ 	െ	݄ܲܽܿ݅ݏா஽஺	ሺܵ௡ିଵሻ| value and confine the  ܵ௡ points to the values 

that meet the condition, ݄ܲܽܿ݅ݏா஽஺	ሺܵ௡ሻ 	൐ 	0, thereby narrowing down the number of ܵ௡ values that 

can correspond to a given local maximum. Based on this threshold, the following ܵ௡ሺଶሻ set can be 

selected.  

ܵ௡ሺଶሻ  = ቄܵ௡ ∈ 	 ܵ௡ሺଵሻ	|	|݄ܲܽܣܦܧܿ݅ݏ	ሺܵ݊ሻ 	െ |ሺܵ݊െ1ሻ	ܣܦܧܿ݅ݏ݄ܽܲ	 ൐ ,௧ܦ ሺܵ݊ሻ	ܣܦܧܿ݅ݏ݄ܽܲ 	൐ 0ቅ, 

where ܦ௧ is the peak distance threshold. Figure 20 illustrates an example set of ܵ௡ሺଶሻ values 

selected by using the peak distance threshold parameter. Note, in comparison to Figure 19, how 

multiple spurious ܵ௡ values that cluster around some maxima have been reduced to one ܵ௡ value 

per maximum. 

 

Figure 20. Significant peaks, ࢔ࡿሺ૛ሻ,  detected. 
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C.3 Step 3 – Third and Fourth ࢔ࡿ Set for Peak Detection 

After selecting ܵ௡ሺଶሻ, the EDA signal processing app can determine a single ܵ௡ that 

represents a local maximum by way of a pair of onset/offset values:  

ܵ௡ሺଷሻ  = ቄܵ௡ ∈ 	 ܵ௡ሺଶሻ	|	ݐ௢௡௦௘௧ሺ௡ሻ 	൏ 	 ௌ೙ݐ ൏  ௢௙௙௦௘௧ሺ௡ሻቅݐ

and 

ܵ௡ሺସሻ  = ቄܵ௡ ∈ 	 ܵ௡ሺଷሻ	|	݄ܲܽܣܦܧܿ݅ݏ	ሺܵ݊ሻ 	 ൌ 	maxሺ݄ܲܽܣܦܧܿ݅ݏ	ሺܵ௡ሺଷሻሻሻ	ቅ, 

where ݐ௢௡௦௘௧ሺ௡ሻ and ݐ௢௙௙௦௘௧ሺ௡ሻ are the onset and offset times for ݄ܲܽܿ݅ݏா஽஺ሺܵ௡ሻ, and 

maxሺ݄ܲܽܿ݅ݏா஽஺	ሺܵ݊ሺ3ሻሻሻ is the maximum value of ݄ܲܽܿ݅ݏா஽஺	ሺܵ݊ሺ3ሻሻ. Figure 21 illustrates an example 

set of ܵ௡ሺସሻ values selected by finding times for maxima via the onset and offset parameters. 

Notice that only the local maxima, ܵ௡ሺସሻ, were chosen to be analyzed in this research. However, 

in future work, the data set, ܵ௡ሺଶሻ, might be considered to be the set of EDA responses to 

emotional stimuli due to the psychological information that each non-maximum peak might hold. 

 

Figure 21. Resultant peaks, ࢔ࡿሺ૝ሻ. 
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 D. Parameter Calculation  

Figure 22 displays an example phasic EDA peak with its amplitude, ݄ܲܽܿ݅ݏா஽஺	ሺܵ௡ሻ, and rise time. 

The rise time was calculated by subtracting the onset time, ݐ௢௡௦௘௧ሺ௡ሻ, from the peak time, ݐௌ೙.  

 

 

 

 

  

Figure 22. A phasic EDA peak with its amplitude and rise time labeled.
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Chapter 6 - Experimental Surveys and Videos 

 In academic learning and evaluation (test) scenarios, students experience a number of 

emotional responses to tasks, especially test-related tasks. These emotions can significantly 

impact student achievement in terms of both learning and grades. Therefore, it is important to 

identify and, if possible, quantify the emotions involved in learning or test-taking activities. 

 Academic emotions can be categorized as class-related, learning-related, or test-related 

emotions [17]. Well-known academic emotions are enjoyment, hope, pride, boredom, anger, 

anxiety, hopelessness, shame, and sadness [18] [19].  In the work presented here, such academic 

emotions are identified and quantified using pre-experiment survey questions. These questions 

address the emotions most often associated with test-taking scenarios, and they also provide 

‘ground truth’ data which can be used to validate ‘significant’ emotional responses identified by 

the pen-type EDA system developed for this research. This chapter addresses the pre-experiment 

survey, videos, and in-experiment surveys that, in aggregate, define the data-gathering session 

experienced by each human subject involved in this research. 

 A. Pre-Experiment Survey About Academic Emotions 

Prior to the EDA measurements, each subject was asked to identify the emotions they 

personally associate with academic test scenarios, and they were asked to evaluate these 

emotions on a scale of 1 to 10, where 1 is a minimal sense of emotion and 10 is an extreme sense 

of emotion. The purpose of this pre-experiment survey is to determine statistically which 

emotions can be associated with test-taking for a given student and to validate the significance of 

emotional responses detected during the measurement sessions. While academic emotions can be 

class-related, learning-related, or test-related [18] [19] [17], each subject was asked to focus on 

test-related emotions. The survey itself is included in Appendix B. 
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In the pre-experiment survey, the emotions can be categorized as positive and negative 

emotions. The positive emotions are happiness, relaxation, and pride, whereas the negative 

emotions are sadness, anxiety, hopelessness, anger, shame, and boredom. The emotion 

‘enjoyment’ is often included in EDA research, but ‘happiness’ is used here instead because it 

provides a clear positive counterpart for the negative emotion ‘sadness.’ Note that it is important 

to include the emotion ‘sadness,’ because ‘sadness’ relates to situations where some students 

psychologically break down during academic tests [18].  

 B. Emotion-Evoking Videos 

The video series employed in each experimental session is approximately 30 minutes 

long and includes a comforting Mozart music playlist, an extreme parkour video, a jump-scaring 

ghost video, a video of a pet owner saying goodbye to a sick dog, and a video of near misses 

while driving on the road. Specific video information is listed in Table 1. 

Research 
Description 

Original Title URL 
Video 

Uploader on 
YouTube 

Latest 
Access Date 

Mozart music 
playlist 

Mozart for Babies 
Brain Development 

https://youtu.be/WjwXxlAyKSI 
Kyle 

Sullivan99 
03/27/2020 

Extreme 
parkour 

People Are Insane 
(Intense Edition) 

https://youtu.be/9enptNl3KYA Scoreback 03/27/2020 

Jump-scaring JUMPSCARE 
CHALLENGE!!! 

https://youtu.be/aCDK8dHMoBA 
BROS TOP 

11 
03/27/2020 

Saying goodbye Saying Goodbye to 
Diesel 

https://youtu.be/wVa_PukAmFs Kyle Schwab 03/27/2020 

Near-misses Craziest Near Misses 
Compilation 2018 

https://youtu.be/85XckznLalo 
Dashcam 

World 
03/27/2020 

Table 1. Sources of emotion-evoking videos. 

 

During the Mozart music playlist, there is no strong visual stimulation – relaxing Mozart 

music plays while a static ‘sleeping baby’ picture is displayed. Only the first 4 minutes of the 

original Mozart music playlist were used for this research. In the extreme parkour video, where 

only 2 minutes of the original video were used, scenes of people doing parkour on rooftops are 
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played; these scenes include tricks such as jumping from roof to roof or hanging on the edge of 

rooftops. In the jump-scaring video, 6 ghost-like figures pop up unexpectedly, accompanied by 

loud noises, where an interval of about 15 seconds exists between jump-scaring elements. In the 

saying-goodbye video, a sick dog named Diesel is being put down by a vet, and the dog’s owner 

says an emotional goodbye. Only the last 2 minutes from the original video were used. Finally, 

the near-misses videos come from dashcams and helmet cams, where drivers suddenly get 

surprised by other cars or people that almost cause severe accidents. Only the first 2 minutes 

from the original video were used. 

Note that it is highly unlikely that a student will feel ‘jump-scared’ during an academic 

test taking scenario. However, a ‘scared’ emotion corresponds to a highly elevated sense of 

anxiety-based stress. Similarly, the extreme parkour video and the ‘near misses’ video can evoke 

anxiety-based stress. Sadness is a stress-causing emotion – thus the use of the ‘saying goodbye to 

a pet’ video. By using four different videos that address various facets of stress, a researcher can 

obtain various levels of ‘stressed’ EDA responses with a goal to differentiate ‘stressed’ EDA 

data that are statistically different from ‘relaxed’ EDA data. 

 C. Significance of the In-Experiment Survey 

‘Relaxed’ and ‘stressed’ emotions caused by various events are the targets of the pen-

type EDA system employed in this research. However, it is difficult to interpret collected EDA 

signals and to specifically determine which EDA signals indicate that the respective participants 

are ‘stressed’ versus ‘relaxed,’ partly because everyone’s sensitivities to certain emotions and 

emotion-evoking videos are different. Therefore, ground-truth information based on subjects’ 

own opinions about the relative emotions they felt towards each video is helpful. To that end, an 

in-experiment survey was conducted to acquire ground-truth information from each participant 
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regarding the respective videos. More specifically, after watching each video, a subject was 

asked about the intensity of a given emotion on a scale of 1 to 10.  For example, after watching 

the extreme-parkour video, a subject was asked how ‘anxious’ they felt so that the peaks 

extracted from their EDA signal could be interpreted in light of that subjective rating, also 

known as ground truth.  
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Chapter 7 - Experimental Results and Data Analyses 

 A. Survey Response Statistics 

 A.1 Pre-Experiment Survey Results 

Table 2 contains aggregated results from the pre-experiment surveys, where each subject 

rated their level of each emotion associated with test taking. For columns 1 to 10, the number of 

subjects out of 36 who chose each rating are noted. An emotional score was determined in each 

case:  

 Emotional	Score ൌ ∑ 	ݔ݁݀݊݅ ൉ ଵ଴ݐ݊ݑ݋ܿ
௜௡ௗ௘௫	ୀ	ଵ  (3) 

 

 1 2 3 4 5 6 7 8 9 10 Total 
Count

Emotional 
Score 

Percentage
(%) 

Happiness 23 2 3 0 1 3 4 0 0 0 36  87  9.0 

Relaxation 20 3 0 2 1 3 4 3 0 0 36  109  11.3 

Pride 14 0 3 3 7 3 3 2 0 1 36  135  13.9 

Sadness 25 0 1 6 2 0 0 1 0 1 36  80  8.3 

Anxiety 3 0 1 4 3 2 6 12 3 2 36  234  24.2 

Hopelessness 20 1 2 2 3 3 4 0 0 1 36  107  11.1 

Anger 25 1 1 2 5 1 0 0 0 1 36  79  8.2 

Shame 29 1 1 2 3 0 0 0 0 0 36  57  5.9 

Boredom 23 3 2 3 1 2 0 2 0 0 36  80  8.3 

Table 2. Counts for academic emotions chosen by 36 subjects and the average index for 
each emotion. 

 

The relative percentage of each score was calculated as well. These percentages are 

illustrated in the pie chart in Figure 23, where anxiety takes up 24 %, followed by pride (14%), 

relaxation (11%), hopelessness (11%), happiness (9%), boredom (9%), sadness (8%), anger (8%), 

and shame (6%). These numbers indicate that students are strongly influenced by anxiety while 

viewing video content, and it is therefore reasonable to assume that such anxiety can be triggered 

by test content and therefore negatively affect a student’s academic performance. 
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Figure 23. Pie chart illustrating relative percentages of academic test-related emotions 
identified by participants. 

 

  

 A.2 In-Experiment Survey Results 

For the in-experiment survey, each subject’s rating regarding their perceived level of 

stress was tallied following each of the five different videos, where a rating of 1 would mean a 

minimal sense of emotion and a rating of 10 would mean an extreme sense of emotion. For 

example, out of the 36 subjects, the number of subjects who offered a relaxation rating of ‘7’ 

after the Mozart music video was 11 – see Table 3. From the table, it is apparent that some 

emotion-evoking videos were effective in stimulating the designated emotions, whereas some 

were not. For example, the emotion-evoking ability of the ‘near-misses’ video was rated 

relatively low compared to the parkour video. As indicated in this in-experiment survey, the 

range of phasic EDA amplitudes for the ‘near-misses’ video should overlap significantly with the 

corresponding range for  the ‘relaxed’ emotion evoked by the Mozart music (e.g., see Figure 24 

Anxiety
24%

Pride
14%

Relaxation
11%

Hopelessness
11%

Happiness
9%

Boredom
9%

Sadness
8%

Anger
8%

Shame
6%

Score percentages of academic test related emotions
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and its accompanying text), which in essence disqualifies the phasic EDA amplitudes for the 

‘near-misses’ video to be categorized into the ‘stressed’ group.   

   1  2  3  4  5  6  7  8  9  10  Total 

Mozart music  0  0  1  1  3  3  11  10  3  4  36 

Parkour  2  1  4  3  1  2  9  11  1  2  36 

Jump‐scaring  2  3  2  5  4  5  3  6  5  1  36 
Saying goodbye  0  1  2  2  4  5  7  6  6  3  36 

Near‐misses  3  2  5  5  3  8  5  3  2  0  36 

Table 3. In-experiment survey results for each video. 

 

As mentioned previously, in-experiment survey information plays an important role when 

dividing the entire collection of EDA signal data into two groups (‘stressed’ versus ‘relaxed’), 

where the ‘stressed’ group only consists of data from subjects who offered a “5” or above after 

the parkour, jump-scaring, saying goodbye, or near-misses video; and the ‘relaxed’ group 

consists of data from subjects who offered a “5” or above after the Mozart music playlist. It is 

helpful to divide these response data into two groups to obtain ‘ground-truth’ knowledge of the 

‘stressed’ group, which can be used to establish a training model for stress detection – see 

Chapter 8.  

 B. EDA Parameter Statistics 

 B.1 Standardization 

An individual’s physical characteristics, such as skin thickness, affect the amplitude 

ranges for their acquired EDA data. Standardization of these datasets is therefore necessary to 

enable comparisons of data acquired from different individuals. One means to achieve such 

standardization is to divide each EDA data parameter (e.g., amplitude) by the corresponding 

individual’s maximum EDA signal value. For this work, the average of an individual’s three 

highest EDA signal values was used for that purpose, which helps to compensate for outliers. 
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 B.2 Phasic EDA Amplitude Data 

Figure 24 displays box plots of ‘standardized’ phasic amplitude data for the five emotion-

evoking videos. For convenience, each video is numbered from 1 to 5, where the ‘Mozart music 

playlist’ is 1st, the ‘parkour’ video is 2nd, the ‘jump-scaring’ video is 3rd, the ‘saying goodbye’ 

video is 4th, and the ‘near-misses’ video is 5th. To create a box plot, all of the phasic amplitudes 

that relate to each video are aggregated for all of the study participants. Then, six pieces of 

information are calculated for that collection of amplitudes: the minimum, maximum, average, 

median, first quartile, and third quartile. In this context, a “quartile” means a value that serves as 

a threshold for one quarter of the numerical set. For example, the first quartile means the value 

above the minimum that serves as the upper threshold for the lowest quarter of the numerical 

values, whereas the third quartile means the value below the maximum that serves as the lower 

threshold for the highest quarter of the numerical values. The bounds for the first and third 

quartiles are illustrated using ‘whiskers’ that extend way from the ‘box,’ where the lower 

whisker extends from the minimum to the bottom of the box, and the higher whisker extends 

from the top of the box to the maximum. The box itself illustrates the bounds for the remaining 

50% of the numerical values, where the line inside the box represents the median (the second 

quartile for the numerical values) and the ‘x’ indicates the average value. Small circles 

above/below the bounding whiskers represent outliers.  
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Figure 24. Box plots of standardized phasic amplitude data for each video.  

 

Table 4 contains detailed information about those box plots. As noted in the table, the 

amplitude range (quartile 1 - quartile 3) for the 1st video (0.1234 – 0.2357 µS) does not overlap 

with the range for the 2nd video (0.2612 – 0.5046 µS ) or the 3rd video (0.3098 – 0.4625 µS). This 

indicates the EDA data of the 1st video are statistically different than the EDA data for both the 

2nd and 3rd videos. However, the amplitude range for the 1st video significantly overlaps with the 

ranges for the 4th and 5th videos. Therefore, it is statistically difficult to differentiate the ‘control’ 

EDA data set, which represents a ‘relaxed’ emotion, from the 4th and the 5th data sets. Therefore, 

the EDA data affiliated with the 2nd and 3rd videos are merged into one grouping, i.e., the 

‘stressed’ data set, as opposed to the ‘relaxed’ data set associated only with the 1st video.  

  Average  stdev  Min  Max  Quartile 
1 

Quartile 
3 

Median  Skewness 

1st Video  0.1881 0.1189 0.0002 0.4569 0.1234 0.2357 0.1594 0.9355 
2nd Video  0.4097 0.1766 0.1305 0.7763 0.2612 0.5046 0.4192 0.2233 
3rd Video  0.3878 0.1263 0.1385 0.8002 0.3098 0.4625 0.3757 0.6965 
4th Video  0.2015 0.1242 0.0213 0.4545 0.0828 0.2961 0.1987 0.3738 
5th Video  0.1917 0.0912 0.0370 0.4089 0.1377 0.2412 0.1953 0.1312 

Table 4. Table of phasic amplitude data for a 141-wide filter window. 
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 A two-tailed mean t test with a significance level of 0.01 was conducted for the relaxed 

versus stressed groups to see if their averages were statistically distinct. As indicated in Table 5, 

the null hypothesis (ܪ଴ሻ	for this mean t test was the following: 

 ଴ = ‘The mean EDA amplitude for the relaxed group and the mean EDA amplitude for theܪ

stressed group are the same’ 

The result of the two-tailed mean t test was to reject the null hypothesis, indicating there is 

evidence that the mean amplitudes of the ‘relaxed’ data set and the ‘stressed’ data set are 

statistically different. It therefore makes sense to differentiate those two groups based on their 

corresponding amplitude measures, which also implies that further analysis based on these two 

distinct groups is warranted.  

Two‐Tailed t 

Test 
0.01 Significance Level 

Data Set  Relaxed Stressed 

Number of 

Values 
839  1325 

 ૙ࡴ
 ௥௘௟௔௫௘ௗܯ

 ௦௧௥௘௦௦௘ௗܯ =

t value  ‐16.46

p value  <0.0001

t test result  Reject the null hypothesis

Interpretation 
EDA amplitudes for ‘relaxed’ data and 

‘stressed’ data are statistically different 

Table 5. Two-tailed mean t test for the 'relaxed' versus 'stressed' data sets. 

 B.3 Slope Data 

Next, box plots and a corresponding table were created based on the ‘slope’ data – see 

Figure 25 and  

Table 6. Here, slope means ‘peak amplitude / rise time (µS/sec)’. The slope data range 

(min, max) numbers imply that the responses to the 1st video are statistically different from the 
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responses to the 2nd and 3rd videos, since the slope data ranges do not overlap with each other. 

However, unlike the phasic amplitude data, more outliers exist, making this parameter less 

desirable to use for classifying data sets into ‘relaxed’ or ‘stressed’ categories. 

 

Figure 25. Box plots of standardized slope data for a 141-wide filter window. 

 

  Average  stdev  Min  Max  Quartile 1  Quartile 3  Median  Skewness 

1st Video  0.4643 0.2983 0.0003 1.2923 0.2969 0.5399 0.2983 0.2983 
2nd Video  1.0282 0.4364 0.0587 1.7207 0.6929 1.4182 0.4364 0.4364 
3rd Video  1.1236 0.4759 0.1140 2.9243 0.9015 1.3260 0.4759 0.4759 
4th Video  0.6022 0.4812 0.0170 2.6687 0.2718 0.7583 0.4812 0.4812 
5th Video  0.5418 0.3129 0.0094 1.4256 0.3886 0.7396 0.3129 0.3129 

 

Table 6. Table of standardized slope-time data for a 141-wide filter window. 

 

 B.4 Rise Time Data 

Next, box plots and a table were created based on ‘rise time’ data – see Figure 26 and  

Table 7. As indicated by the box plots, the rise-time data ranges for each video overlap 

significantly, and a number of outliers exist, making the ‘rise time’ parameter unsuitable as a 

‘stress’ indicator. 
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Figure 26. Box plots of standardized rise time data for a 141-wide filter window. 

 

  Average  stdev  Min  Max  Quartile 1  Quartile 3  Median  Skewness 

1st Video  0.935448 0.158162 0.429422 1.272182 0.860538 1.020527 0.982235 -0.90918 
2nd Video  0.923933 0.155182 0.448494 1.213177 0.877893 0.98377 0.961148 -1.08898 
3rd Video  0.873878 0.209028 0.047678 1.267681 0.775974 1.006299 0.878935 -1.60458 
4th Video  0.914757 0.199017 0.02011 1.216842 0.84327 1.020638 0.953 -2.70312 
5th Video  0.874327 0.150398 0.568213 1.200386 0.75739 0.981311 0.883691 -0.07596 

 

Table 7. Table of standardized rise time data for a 141-wide filter window. 
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 B.5 Peak Frequency Data 

Finally, Figure 27 and Table 8 display results for the standardized ‘peak frequency’ data. 

The ‘peak frequency’ parameter describes the number of peaks (occurrences) per time that are 

detected by the EDA signal processing app within the data-collection time frame. In other words, 

the peak frequency values were calculated by dividing the number of detected peaks by the data 

duration in seconds. This parameter was also not a good candidate for a ‘stress’ indicator, for 

reasons similar to those stated above for the ‘rise time’ parameter. 

 
Figure 27. Box plots of standardized peak frequency data for each video. 

 
  Average  stdev  Min  Max  Quartile 1  Quartile 3  Median  Skewness 

1st Video  0.9455 0.0883 0.7681 1.1053 0.8849 1.0057 0.9322 0.2274 
2nd Video  0.9754 0.0879 0.8026 1.1833 0.9356 1.0417 0.9829 -0.2061 
3rd Video  0.8821 0.1256 0.6492 1.0958 0.7926 0.9858 0.8982 -0.1842 
4th Video  0.9471 0.1126 0.6000 1.1833 0.8776 1.0132 0.9703 -0.8471 
5th Video  0.9198 0.1230 0.6309 1.1220 0.8481 1.0128 0.9423 -0.6071 

 

Table 8. Table of standardized peak frequency data for the 141-wide filter window. 
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Chapter 8 - Stress Detection 

In this chapter, classification of test data into ‘relaxed’ versus ‘stressed’ states is 

addressed following algorithm training based on ground-truth data. Two different ‘stress 

detection’ phases are presented. In the first phase, data sets were chosen with training-to-test 

ratios of 80/20 (i.e., 80% of the amplitudes used for training, and 20% of the amplitudes used for 

testing) and 50/50 to compare their ‘cross-validation’ performance. In the second phase, the 

‘stress detection’ performance was tested by using each subject’s whole data set instead of 

creating ‘artificial’ test data sets in which each data point is randomly chosen for different 

individuals. The flow charts for the different ‘stress detection’ tests are offered in Figure 28, 

Figure 29, and Figure 33.  

 A. Stress Detection and Cross-Validation 

 A.1 Stress Detection Models 

 As mentioned in the previous chapter, the total EDA data set was divided into two 

statistically different groups. The first group, considered ‘ground-truth’ relaxed data, was 

comprised of EDA data acquired from the 34 subjects who rated their relaxation level at 5 or 

above after listening to the ‘Mozart playlist’ (see Table 3). The second group, considered 

‘ground-truth’ stressed data, was comprised of EDA data acquired from the 26 subjects who 

rated their stress level at 5 or above after watching the ‘parkour’ and/or ‘jump-scaring’ videos. 

The rest of the EDA data were not used in either training or testing the detection model because 

those data were collected from subjects who rated their stress levels at less than 5, thus failing to 

provide ‘ground-truth’ stress data. 

 Two generalized extreme value (GEV) models were selected for the ‘relaxed’ and 

‘stressed’ states after visual inspection of the amplitude histograms that were created using the 
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‘relaxed’ and ‘stressed’ training data sets. These GEV models were assessed with a chi-squared 

goodness-of-fit test and were then cross-validated by the ‘test’ data sets in downstream steps. 

 A.2 Training/Test Data (80/20 Ratio) and Detection Flow Diagram 

Given the availability of 780 ‘relaxed’ and 780 ‘stressed’ ground-truth data (EDA phasic 

amplitudes), some (630 values) were chosen for the training data set and some (150 values 

divided into 5 sets of 30) were chosen for the test data set – see Figure 28. This provides about 

an 80/20 ratio of training data to test data. Thus, in each test ‘relaxed’ data set, for example, there 

were 30 randomly chosen data points. This means that each test data set did not completely arise 

from a single subject’s data, but rather 30 randomly chosen data points from 20% of the entire 

ground-truth ‘relaxed’ data set were merged into one test data set. The same proportions of 

training and test data sets were created for the ‘stressed’ group using the same method. These 

randomly picked training data sets and test data sets were created 14 more times so that there 

were 15 different training-test data configurations. Thus, in total, there were 15 different training 

models and 75 different test data sets. For each of the 15 different training models, 5 test sets of 

30 values were designated. 



53 

 

Figure 28. Stress detection flow chart for a training-to-testing data ratio of 80/20. 

 

 A.3 Training/Test Data (50/50 Ratio) and Detection Flow Diagram 

Training/test data with a 50/50 ratio were also chosen (see Figure 29) in a manner similar 

to the 80/20 training/test sets described in the previous section so that the relative performances 

of the approaches could be compared. However, for the 50/50 ratio as applied to both the 

‘relaxed’ and ‘stressed’ data, 394 data points were randomly chosen to be the ‘training’ data, and 

390 data points were randomly chosen to be the ‘test’ data. Those 390 data were divided into 13 

different test sets so that each test set had 30 data points. For the 50/50 ratio, 15 different training 

models were created, and for each of the 15 different training models, 13 different test data sets 

were designated.  
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Figure 29. Stress detection flow chart for a training-to-testing data ratio of 50/50. 

 

 A.4 Generalized Extreme Value (GEV) Model and Chi-Squared Goodness-of-Fit 

Test 

Normalized histograms (i.e., where each histogram has a total area of one) with 100 bins 

each were created using EDA amplitudes from the ‘relaxed’ and ‘stressed’ training data sets. 

This normalization allowed theoretical probability density functions (PDFs) to bit fitted to those 

distributions and act as statistical models. As displayed in Figure 30, generalized extreme value 

(GEV) models ‘visually’ fit the normalized histograms of both the 630 ‘relaxed’ and the 630 

‘stressed’ training data (amplitudes). The GEV probability distribution function is described as 
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                                   GEV(y, ξ, σ, μ) =  
ଵ

ఙ
 కାଵ݁ି௧ሺ௬ሻ,                                  (4)	ሻݕሺݐ	

where ݐሺݕሻ 	ൌ 	 ቊ
ሺ1 ൅ ሺߦ	

௬ିఓ

ఙ
ሻሻିଵ/క	݂݅	ߦ	 ് 	0

݁ିሺ௬	ି	ఓሻ/ఙ	݂݅		ߦ	 ൌ 	0
 

 

 

Figure 30. An example of a GEV model fitted to the normalized training data. 

Here, y is one data point, ξ  is a shape parameter, σ  is a scale parameter, and μ  is a 

location parameter. Chi-squared goodness-of-fit tests were used to optimize the fits between 15 

different GEV models and their corresponding 15 training sets. In each chi-squared goodness-of-

fit test [48], the statistics, which is referred to as ‘Z’, from both sets of data were calculated using 

																																																																	ܼ ൌ෍
௝ܪ| െ ௝|ଶ݌݊

௝݌݊
																																																																	ሺ5ሻ

௠

௝ୀଵ

 

where Hj is the number of data that fall into the jth bin, n is the total number of these data,and pj 

is the probability that the data point yj falls into the jth bin. The probability pj is denoted by 
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௝݌																																		 ൌ ܲ൫ ௝݁ ൑ ௝ݕ ൑ ௝݁ାଵ൯ ൌ න ݂ሺݕሻ݀ݕ
௘ೕశభ

௘ೕ

																																												ሺ6ሻ 

where ej and ej+1 are the bin edges. This probability is determined by applying a cumulative 

distribution function (CDF) over the interval of ej to ej+1, where the CDF is defined as 

ሻݔሺܨ ൌ 	න ݂ሺݕሻ	݀ݕ	
௫

ିஶ
 

where ݂ሺݕሻ is a probability density function. Thus, the CDF of the selected GEV model is  

ሻݔሺܨ ൌ 	න ,ݕሺܸܧܩ ,ߦ ,ߪ ሺ7ሻ																																																	ݕ݀	ሻߤ
௫

ିஶ
 

The probability ݌௝ =  P൫ܽ ൑ ௝ݕ ൑ ܾ൯, can be determined by ׬ ,ݕሺܸܧܩ ,ߦ ,ߪ ݕ݀	ሻߤ
௕
௔ . Here, ‘a’ and 

‘b’ correspond to ej and ej+1, respectively.  

  Based on Equation (5) ~ (7), the Zx values (Z values for the ‘relaxed’ data) and Zy values 

(Z values for the ‘stressed’ data) were calculated and compared with the threshold, Zα. If a Z 

value is smaller than Zα, it indicates that the suggested GEV model is a good fit to the data. The 

Zα is chosen so that the following equation is satisfied: 

P(Z > Zα) = α                                            (8) 

where α is the probability of rejecting the suggested model. In this study, α was chosen to be 

0.05. Table 9 contains Zx and Zy values for each of the 15 different training models for the 80/20 

scenario. All models pass the chi-squared goodness-of-fit test since their Z values are smaller 

than Zα = 123.22, indicating these GEV models are good fits. The same chi-squared goodness-

of-fit tests were conducted for the models used in the 50/50 ratio tests. The Z values for these 

50/50 ratio tests can be found in Appendix E.  
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   Test 1  Test 2 Test 3 Test 4 Test 5 Test 6  Test 7

ξ_relaxed  5.73E‐01  5.59E‐01 5.85E‐01 5.92E‐01 5.49E‐01 6.08E‐01  5.59E‐01

σ_relaxed  7.93E‐02  7.87E‐02 7.82E‐02 7.63E‐02 8.07E‐02 7.91E‐02  7.78E‐02

μ_relaxed  7.20E‐02  7.29E‐02 7.11E‐02 6.96E‐02 7.47E‐02 7.12E‐02  7.19E‐02

ξ_stressed  3.30E‐01  3.45E‐01 3.31E‐01 3.56E‐01 3.29E‐01 3.19E‐01  3.35E‐01

σ_stressed  1.93E‐01  2.01E‐01 1.98E‐01 1.95E‐01 1.96E‐01 2.01E‐01  1.95E‐01

μ_stressed  2.13E‐01  2.19E‐01 2.16E‐01 2.11E‐01 2.15E‐01 2.21E‐01  2.17E‐01

Zx  4.02E+00  3.90E+00 3.96E+00 3.71E+00 4.22E+00 3.55E+00  4.01E+00

Zy  2.25E+00  2.29E+00 2.61E+00 2.42E+00 2.74E+00 2.67E+00  2.69E+00

 

 
Test 8  Test 9  Test 10 Test 11 Test 12 Test 13 Test 14  Test 15

ξ_relaxed  5.85E‐01  5.71E‐01  5.97E‐01 5.42E‐01 6.00E‐01 5.82E‐01  5.41E‐01  5.90E‐01

σ_relaxed  7.94E‐02  8.20E‐02  7.99E‐02 8.09E‐02 7.99E‐02 7.80E‐02  8.22E‐02  7.92E‐02

μ_relaxed  7.19E‐02  7.40E‐02  7.19E‐02 7.44E‐02 7.13E‐02 7.07E‐02  7.56E‐02  7.11E‐02

ξ_stressed  3.19E‐01  3.26E‐01  3.50E‐01 3.46E‐01 3.45E‐01 3.38E‐01  3.49E‐01  3.27E‐01

σ_stressed  1.99E‐01  1.99E‐01  1.96E‐01 1.98E‐01 2.02E‐01 1.99E‐01  2.03E‐01  2.01E‐01

μ_stressed  2.19E‐01  2.19E‐01  2.15E‐01 2.18E‐01 2.19E‐01 2.19E‐01  2.19E‐01  2.19E‐01

Zx  3.82E+00  3.77E+00  3.62E+00 4.34E+00 3.57E+00 4.02E+00  4.19E+00  3.78E+00

Zy  2.77E+00  2.23E+00  2.08E+00 2.39E+00 2.26E+00 2.47E+00  2.19E+00  2.53E+00

Table 9. Estimated GEV model parameters and Z values for 15 different data sets (80/20). 

 

The fitted GEV models corresponding to the estimated values from ‘test1’ in Table 9 for 

the ‘relaxed’ and ‘stressed’ data are noted as examples in Equation (9). Similarly, 14 other GEV 

models were established like these examples based on the estimated parameters. 

 Relaxed: GEV(y, ξ, σ, μ) =  GEV(y, 0.5725, 0.0793, 0.0720)  = ଴݂(y) (9) 

 Stressed: GEV(y, ξ, σ, μ) =  GEV(y, 0.3303, 0.1933, 0.2134) = ଵ݂(y) 
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 A.5 Likelihood Ratio Test for Cross-Validation 

After establishing GEV models for fifteen sets of relaxed and stressed data (refer to 

Figure 28 and Figure 29), a null hypothesis (ܪ଴) and an alternative hypothesis (ܪଵ) are made: 

 ଴= the selected data point, y, belongs to the relaxed data setܪ

 ଵ = the selected data point, y, belongs to the stressed data setܪ

After establishing these hypotheses, the acceptance of either ܪ଴ or ܪଵ depends on a likelihood 

ratio test, where ܪଵ is accepted when the likelihood ratio, ଵ݂(y)/	 ଴݂(y), is bigger than 1, and  ܪ଴ is 

accepted when the ratio is smaller than 1:  

  (10) 

This likelihood ratio test is based on two assumptions: 1) ‘relaxed’ and ‘stressed’ data sets are 

equally likely, and 2) a uniform cost function exists, where the risk and error rates are equal. The 

likelihood ratio test in Equation 10 has been widely used to detect or classify data [49-51].  

For example, if data point 1 from a test set (1) is ݕሺଵሻ
ଵ , a likelihood ratio test is conducted 

for each data point, ݕሺଵሻ
ଵ ሺଵሻݕ ,

ଶ ሺଵሻݕ ,… ,
ଷ଴ , since there are 30 data points in one test set. Then, the test 

is repeated four more times (to achieve testing for the rest of the 20% in the 80/20 scheme), for 

both the relaxed and stressed groups. The likelihood ratio for each set is then calculated by 

multiplying all thirty ݕሺ௡ሻ
ଵ 	ሺ௡ሻݕ ,

ଶ ሺ௡ሻݕ	,…,
ଷ଴  together since they are independent samples. The 

product of this multiplication becomes ଴݂(y) if ݕሺ௡ሻ values are from the ‘relaxed’ group or ଵ݂(y) if 

they are from the ‘stressed’ group. Finally, the whole process is repeated 14 more times. 

Eventually, there are 15 different training GEV models with which 75 different test data sets are 

tested. 
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In Appendix E, Table 11 through Table 15 display each likelihood ratio for the relaxed 

and stressed test sets. All ‘relaxed’ test sets have a ratio smaller than 1, indicating ܪ଴	was 

accepted. This means these test sets are determined to be ‘relaxed’ by the likelihood ratio test. 

Also, all stressed test sets have a ratio bigger than 1, indicating ܪଵ was accepted. This means 

these test sets are determined to be ‘stressed’ by the ratio test.  

 A.6 Confusion Matrix for the 80/20 Ratio 

 Based on the likelihood ratio test results, a confusion matrix was created (see Figure 31) 

for the ‘relaxed’ and ‘stressed’ data sets in the context of the 80/20 training/testing ratio. In this 

scenario, a ‘positive’ result means that an EDA amplitude is determined to be from a ‘stressed’ 

person, and a ‘negative’ result means that an EDA amplitude is determined to be from a 

‘relaxed’ person. Sensitivity was calculated as 100% · TP/(TP+FN); specificity was calculated as 

100% · TN/(FP+TN); precision was calculated as 100% · TP/(TP+FP); and accuracy was 

calculated as 100% · (TP+TN)/(TP+FN+FP+TN). 

 

 
Predicted Class 

 
Stressed Relaxed 

Actual Class 

Stressed TP = 75 FN = 0 
Sensitivity 

100 

Relaxed FP = 0 TN = 75 
Specificity 

100 

 
Precision 

100 

Negative 

Predicted 

Value 

100 

Accuracy 

100 

TP = True Positive, FP = False Positive, FN = False Negative, TN = True Negative 

Figure 31. Confusion matrix for ‘relaxed’ versus ‘stressed’ classifications with an 80/20 
ratio. 
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 The confusion matrix in Figure 31 states a classification performance with a 100% 

sensitivity, specificity, precision, and accuracy under two conditions: 1) the ratio of training to 

test data is 80 to 20; and 2) each test data set contains 30 randomly chosen data points from the 

entire ground-truth data set instead of from individual subjects. This performance can change 

when the training-to-test ratio changes or the test data sets change.  

 A.7 Confusion Matrix for the 50/50 Ratio 

 As mentioned previously, the classification performance of this system can vary based on 

the training-to-testing ratio. To compare the system performance against the ‘stress detection’ 

test with an 80/20 ratio, a similar test was done with a 50/50 ratio, and its confusion matrix is 

contained in Figure 32. As displayed in the matrix, the sensitivity, specificity, precision, and 

accuracy changed to 98.46 %, with 3 false negative and 3 false positive cases occurring out of 

195 cases.    

 

 
Predicted Class 

 
Stressed Relaxed 

Actual Class 

Stressed TP = 192 FN = 3 
Sensitivity 

98.46 

Relaxed FP = 3 TN = 192 
Specificity 

98.46 

 
Precision 

98.46 

Negative 

Predicted 

Value 

98.46 

Accuracy 

98.46 

TP = True Positive, FP = False Positive, FN = False Negative, TN = True Negative 

Figure 32. Confusion matrix for ‘relaxed’ versus ‘stressed’ classifications with a 50/50 
ratio. 
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 B. Stress Detection for Each Subject 

 To test ‘stress detection’ performance for each subject, individuals’ data were used as 

‘test’ sets instead of using randomly chosen test data. The 20 individuals who indicated a 5 or 

above for all the Mozart music playlist, parkour, and jump-scaring videos were chosen for these 

‘test’ data. The EDA data from the Mozart music playlist, parkour, and jump-scaring videos are 

referred to as ‘relaxed’, ‘stressed 1’, and ‘stressed 2’ data, respectively. Thus, from one subject, 

three different EDA responses are taken, and therefore there are 60 different test cases in total. 

As illustrated in Figure 33, 394 ‘training’ data are randomly picked from ground-truth data for 

both the ‘relaxed’ and ‘stressed’ states, as in previous tests. Only one ‘training’ model for each 

‘relaxed’ and ‘stressed’ state is selected. The selected training models are GEV(y, 0.584, 0.0837, 

0.0741) for the ‘relaxed’ state and GEV(y, 0.386, 0.204, 0.213) for the ‘stressed’ state. These two 

models passed the chi-squared goodness-of-fit test and were used in all 60 tests. 

 
Figure 33. Stress detection flow chart as applied to an individual’s data. 
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The likelihood ratio tests were conducted using the selected training models and these 

individuals’ test data. The ‘relaxed’ test data set was paired against both the ‘stressed 1’ and 

‘stressed 2’ test data sets, respectively, to derive the confusion matrices  in Figure 34 and Figure 

35. 

 
Predicted Class 

 
Stressed 1 Relaxed 

Actual Class 

Stressed 1 TP = 15 FN = 5 
Sensitivity 

75 

Relaxed FP = 2 TN = 18 
Specificity 

90 

 
Precision 

88.24 

Negative 

Predicted 

Value 

78.26 

Accuracy 

82.5 

TP = True Positive, FP = False Positive, FN = False Negative, TN = True Negative 

Figure 34. Confusion matrix for a ‘relaxed’ versus ‘stressed 1’ classification. 

 

 
Predicted Class 

 
Stressed 2 Relaxed 

Actual Class 

Stressed 2 TP = 17 FN = 3 
Sensitivity 

85 

Relaxed FP = 2 TN = 18 
Specificity 

90 

 
Precision 

89.47 

Negative 

Predicted 

Value 

85.71 

Accuracy 

87.5 

TP = True Positive, FP = False Positive, FN = False Negative, TN = True Negative 

Figure 35. Confusion matrix for a ‘relaxed’ and ‘stressed 2’ classification. 
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As indicated in Figure 34 and Figure 35, the classification performance for the ‘relaxed’ 

and ‘stressed 1’ data sets was 75% for sensitivity, 90% for specificity, 88.24% for precision, and 

82.5% for accuracy. The performance for the ‘relaxed’ and the ‘stressed 2’ data sets was 85% for 

sensitivity, 90% for specificity, 89.47% for precision, and 87.5% for accuracy. This implies that 

the classification performance is slightly better when ‘stressed’ test data are chosen from the 

EDA responses for the ‘jump-scaring’ video instead of the ‘parkour’ video. Moreover, the 

classification performance in each case is not as good as the performance achieved using the 

randomly chosen test sets. However, this result indicates that the pen-type EDA sensing system 

can detect whether a person is stressed or not with an average accuracy of  85% for the videos 

employed in this study, assuming that their emotional state has been independently self-verified 

as ‘relaxed’ or ‘stressed.’ 
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Chapter 9 – Conclusion 

 A. Overview and Results 

 A pen-type electrodermal activity (EDA) sensing system was implemented as a possible 

means to detect psychological stress in academic test-taking scenarios. The sensing electrodes 

are attached to a pen-mounted ‘trainer,’ which provides a fixed handgrip so that every subject 

who holds the unit interfaces with the thumb- and finger-located sensors in a controlled manner. 

These electrodes are connected to a printed circuit board (PCB) that contains a voltage divider 

and a lowpass filter for each signal. An Arduino Nano unit interfaces to the PCB, and a USB 

isolator eliminates any ohmic electrical connections for the power source and the data lines so as 

to protect both the user and the downstream electronics.  

In this research, minor psychological stress was evoked using four different videos: a 

parkour video, a jump-scaring video, a saying-goodbye video, and a near-misses video. The 

control emotion (‘relaxed’) was induced with a ‘Mozart music playlist’ video. While watching 

these videos, each subject held the pen-type EDA sensor, and their EDA responses were 

monitored and stored in a computer. Each subject also filled out pre-experiment and in-

experiment surveys where they rated, respectively, their emotions associated with academic test-

taking scenarios and their responses to emotion evoking videos that they just watched.  

After these experiments were performed with 36 subjects (under Kansas State University 

IRB protocol #9864), the stored EDA data were processed through an EDA signal-processing 

app which extracts SCL and phasic EDA data from a raw EDA data set. Significant phasic EDA 

peaks were identified and recorded. These recorded data yielded peak time, rise time, phasic 

amplitude, onset time, and offset time parameters. Based on these data, statistical plots were 

created to choose one or more parameters to use for ‘relaxed’ versus ‘stressed’ classification and 
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detection. Eventually, the parameter ‘phasic amplitude’ was picked for stress detection. 

However, out of 5 different sets of EDA data, only 3 sets were used for stress detection. Those 

EDA data were collected from the 1st video (Mozart music), the 2nd video (parkour), and the 3rd 

video (jump-scaring). The EDA data from the 2nd and 3rd videos were combined together to 

become the ‘stressed’ data set. This is because the ‘relaxed’ data set from the 1st video is 

statistically different from the 2nd and 3rd data sets, whereas the EDA data from the 4th video 

(saying goodbye) and the 5th video (near-misses) did not show any statistical differences relative 

to the 1st EDA data set.  

To build stress detection/classification models, normalized training data histograms were 

plotted against probability density functions (PDFs) for both the ‘relaxed’ and ‘stressed’ 

amplitudes, based on training/test ratios of 80/20 and 50/50. The data distributions were fitted 

with generalized extreme value (GEV) PDF models, which passed chi-squared goodness-of-fit 

tests when compared to the respective normalized histograms. The established GEV models for 

both the ‘relaxed’ and ‘stressed’ training data were then used to conduct likelihood ratio tests 

regarding whether to accept null or alternative hypotheses that related to relaxed versus stressed 

states, respectively. The likelihood ratio tests for the 80/20 and 50/50 scenarios offered 

outstanding performance. Additionally, similar likelihood ratio tests were conducted using a set 

of training data to establish GEV models based on individual subjects’ EDA data (as opposed to 

randomly choosing data points from all subjects). The stress detection performance for this case 

offered relatively lower accuracy. However, results from both testing approaches validated the 

potential for this novel pen-type EDA sensing system to identify user stress levels, and this work 

will facilitate future research on psychological stress testing within academic environments.    
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 B. Future Work 

There are a number of ways to improve the pen-type EDA sensing system and the 

associated research endeavors. First, the PCB can be shrunk to fit inside the handgrip ‘trainer’ 

shell. If wireless technology, such as Bluetooth, is incorporated, the pen-type sensor can be 

lighter and free of wires, meaning the user can freely utilize the writing functionality of the 

device. This will allow future research to incorporate actual ‘test taking’ scenarios. 

Second, algorithms will be needed to separate motion artifacts from EDA signals or at 

least minimize their contribution. The current EDA data are not corrupted by substantive motion 

artifacts because subjects are instructed not to move their hands during the data collection 

session. Since basic EDA signals evoked by various visual stimuli were successfully 

characterized by this research, motion-corrupted EDA signals are a sensible next step.  

Third, ‘superimposed’ EDA signals can be studied. In the current effort, only one 

maximum peak for each onset & offset pair was acknowledged as a peak. However, 

‘superimposed’ EDA peaks have psycho-physiological significance and should be studied. 

Lastly, other various emotions including sadness, boredom, etc. can be studied in greater 

detail. In the current project, there was an attempt to differentiate ‘sadness’ from anxiety-based 

stress. However, the EDA data from the supposed sadness-evoking video (‘saying goodbye’) 

were not differentiable from the ‘relaxed’ data by the statistical method incorporated in this 

research. 
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Appendix A - Informed consent form 

This appendix contains the informed consent form that every experiment participant read 

and signed. The document addresses a brief description of the research, the procedures, and the 

possible risks.  

 

INFORMED CONSENT FORM – ELECTRODERMAL ACTIVITY (EDA) SENSING STUDY 
 
PROJECT TITLE:  Pen-Type Electrodermal Activity (EDA) Sensing Device for Academic Test 
Anxiety Monitoring 
 
APPROVAL DATE:   09/06/2019  
EXPIRATION DATE: 09/06/2022 
 
PRINCIPAL INVESTIGATOR 

Steve Warren, Ph.D., Kansas State University (KSU), Electrical & Computer Engineering (ECE), 
3018 Engineering Hall, Kansas State University, Manhattan, KS  66506, swarren@ksu.edu, 785-
532-4644 

 
CO-INVESTIGATOR(S) 

Taehee Lee, KSU ECE, taeheelee@ksu.edu, 785-532-5600 
 
CONTACT FOR ANY PROBLEMS/QUESTIONS 

Taehee Lee, KSU ECE, taeheelee@ksu.edu, 785-532-5600 
 
IRB CHAIR/OFFICE CONTACT INFORMATION 

 Rick Scheidt, Chair, Committee on Research Involving Human Subjects 
 Heath Ritter, Research Compliance Manager 
 Cheryl Doerr, Associate Vice President for Research Compliance,  
University Research Compliance Office, 203 Fairchild Hall, Kansas State University, Manhattan, 
KS  66506, (785) 532-3224 
 

PROJECT SPONSOR:  N/A  
 
RESEARCH PURPOSE:  The purpose of this effort is to gage the ability of a lightweight, pen-type 
device to acquire mood-related data from a person’s hand while they participate in an emotion-evoking 
experience.  
 
PROCEDURES OR METHODS TO BE USED:  At the beginning of the session, you will be asked to 
complete a short survey regarding emotions that you typically associate with academic test taking. The 
researcher will then ask you to hold a pen-type sensing device while you watch a series of emotive 
videos. Prior to this video session, the researcher will also attach a set of electrodes that allow additional 
physiological information to be gathered from you as you watch the videos. This video material will be 
presented in a predetermined sequence, and the researcher will pause periodically to ask you about your 
response to that content. The entire session will be videotaped and last about 30 minutes. Data gathered 
by the pen-type device and the electrodes will be stored in a computer. At the conclusion of the session, 
you will receive a debriefing statement that affirms the purpose of the research and describes the data that 
were gathered. 
 
ALTERNATIVE PROCEDURES OR TREATMENTS, IF ANY, THAT MIGHT BE 
ADVANTAGEOUS TO SUBJECT: N/A. 
 
LENGTH OF STUDY:  This study and the follow-on analyses will occur primarily during the Fall 2019 
academic semester. 
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RISKS OR DISCOMFORTS ANTICIPATED:  The pen-type device and electrodes are completely 
safe – they pose no measurable risk to the subject or the researcher. It is possible, though unlikely, that 
you may experience emotional distress from a given video, even though this video material has been 
vetted to avoid extreme content. If this is the case, please describe your feelings to the researcher, and the 
two of you can decide whether it is sensible to continue. 
 
BENEFITS ANTICIPATED:  Test anxiety is a substantive issue for many college students. This work 
is intended to develop tools that can help to quantify academic stress and anxiety without interfering with 
the test taking process itself. The eventual goal is to better understand optimal means to present 
assessment material to the student while minimizing their emotional response to the process. However, 
there will not be any direct benefits, such as monetary prizes or gifts, to the participants. 
 
EXTENT OF CONFIDENTIALITY:  All session data will be stored on a password-protected network 
drive managed by the KSU College of Engineering and/or password-protected computers managed by the 
PI and the graduate student that conduct this work. Signed consent forms and physical session products 
will be stored in a locked file cabinet. To maintain your confidentiality, you will be assigned a unique 
number that will then be used to identify you thereafter; you will not be completely anonymous from the 
perspective of the researcher. 
 
FURTHER USE OF EXPERIMENAL DATA: All of the sensor data acquired by the researcher will be de-
identified, meaning that your identity will not be associated with these data. Because these data may 
prove useful, for example, as comparative data for follow-on efforts, it is possible that these data might be 
used for future research studies or may be distributed to another investigator for future research studies 
without additional informed consent. In any case, your identity will remain confidential and will not be 
made available to these other researchers. If these data result in commercial profit (which is 
unanticipated), subjects will not share in that profit. Clinically relevant research results will not be 
provided to subjects. 
 
TERMS OF PARTICIPATION: I understand that this project involves research and that my 
participation is voluntary.  I also understand that if I decide to participate, I may withdraw my consent and 
stop participation at any time without explanation, penalty, or loss of benefits to which I may otherwise 
be entitled. 
 
My signature below indicates that I have read and understand this consent form, and I agree to 
participate in this study under the terms described.  
 
 
Participant Signature: 

   
 
Date: 

 

 
Witness to Signature:  
(Project Staff) 

   
 
Date: 
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Appendix B - Experiment surveys 

The pre- and in-experiment surveys follow. The pre-experiment survey was given to 

every participant prior to data collection. A portion of the in-experiment survey was offered after 

each emotion-evoking video.  

Pre-Experiment Survey 

 

Subject Name: _______________________________; Subject Number (Assigned): ______ 

 

Email Address: ______________________________; Phone Number: __________________                             

 

Sex: ______; Age: ______;  

Based on your past experiences, what positive or negative emotions do you associate with the process of 

‘taking an academic exam?’ Circle all that apply. 

 

Happiness    Relaxation     Pride     Sadness     Anxiety    Hopelessness    Anger     Shame     Boredom 

 

For each emotion that you identified above, rate that single emotion on a scale of 1 to 10 in the context of a 

typical exam experience, where  

1 = a minimal sense of emotion and 10 = an extreme sense of emotion 

 

Happiness:  1       2       3       4       5       6       7       8       9       10 

Relaxation:  1       2       3       4       5       6       7       8       9       10 

Pride:   1       2       3       4       5       6       7       8       9       10 

Sadness:  1       2       3       4       5       6       7       8       9       10 

Anxiety:  1       2       3       4       5       6       7       8       9       10 

Hopelessness:  1       2       3       4       5       6       7       8       9       10 

Anger:   1       2       3       4       5       6       7       8       9       10 

Shame:                 1       2       3       4       5       6       7       8       9       10 

Boredom:  1       2       3       4       5       6       7       8       9       10 
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In-Experiment Survey 

 

Video 1 – Mozart Music Video 

How relaxed are you after listening to this music, where 1 = “not relaxed at all” and 10 = “extremely 

relaxed?” 

1       2       3       4       5       6       7       8       9       10 

Video 2 – Parkour Video 

How nervous did this video make you feel, where 1 = “not at all” and “10 = extremely nervous?” 

1       2       3       4       5       6       7       8       9       10 

Video 3 – Jump Scaring Video 

How startled were you during this video, where “1 = not at all” and “10 = extremely … I was scared 

every time?” 

1       2       3       4       5       6       7       8       9       10 

Did you physically move while watching this video? 

Yes                  No 

Video 4 –Saying Goodbye Video 

How sad did this video make you feel, where “1 = not at all” and “10 = extremely … I almost cried?” 

1       2       3       4       5       6       7       8       9       10 

Video 5 – Near Miss Video 

How stressed were you while watching this video, where “1 = not at all” and “10 = extremely?” 

1       2       3       4       5       6       7       8       9       10 
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Appendix C - Research protocol 

This appendix contains the research protocol. The expected duration of a session is about 

30 minutes. The necessary research materials are first listed, and then the data collection 

procedures are numbered and explained step by step. 

        Electrodermal Activity (EDA) Measurement Protocol  

Expected duration: 30 minutes 

Materials 

‐ Pen-type EDA sensing device 

‐ Noise cancelling headphones 

‐ Video camera (e.g., smart phone camera) 

‐ Data acquisition laptop & video-playing screen (iPad) 

‐ Emotion-evoking videos (Mozart music, parkour video, jump-scaring video, saying goodbye 

video, near miss video) 

‐ The research video compilation that is used in this project can be found in the URL written 

below: 

https://ksuemailprod-

my.sharepoint.com/:v:/g/personal/taeheelee_ksu_edu/EQFfK6PNlJRCnIw79lJnzVoB0eMosNDv

vB72d7KSJdFz8w?e=xTBZcs 

 

1) Pre-Experiment Survey (5 min) 

Ask the subject to respond to the survey items prior to the experiment (see EDA Survey.docx) 

2) Data Acquisition Setup 

- Employ MegunoLink for real-time plotting (two separate Arduino signals can be plotted 

simultaneously) 

- Use the subject’s right thumb and index finger to gather EDA data 
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- Prepare the laptop computer and smart phone for data and video logging, respectively

3) EDA Data Acquisition Protocol (~20 min)

The following is the overall protocol for EDA data collection. The instructions are the same for 

each video, but the post-video survey questions differ. Written instructions are superimposed on 

each video so that the subject knows what to do as they watch.

1. The subject completes the pre-experiment survey.

2. The subject sits next to the researcher so that the researcher can see what’s playing on the 

screen.

3. The researcher shows the subject how to properly grip the pen/pencil trainer so as to make 

proper contact with the EDA electrodes.

4. The researcher briefly explains the video display process and the times when the subject 

needs to grip the EDA device.

5. The researcher initiates data logging and video-camera acquisition.

6. After the explanation, the researcher plays the first video (20 seconds of instruction followed 

by 2~4 min of video content). When the video starts, the researcher records the timestamps 

on the data acquisition and camera equipment. If any subject movement occurs, the 

researcher also takes a note of it. After the video, the researcher pauses the data acquisition 

equipment and camera so that the subject has time to answer the survey question for the 

video. After the subject answers the survey question, the researcher saves the recorded EDA 

data ‘.csv’ files via MegunoLink.

7. Items 6 is repeated for the other videos employed during the session.
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Appendix D - Extra Experimental Data 

Appendix D contains extra experimental data. Boxplots of EDA phasic data with moving 

average filter windows of widths 81, 141, and 201 are attached. Unstandardized phasic EDA data 

are attached as well. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 36. Boxplots of EDA responses for each video with an 81-wide moving average 
filter window: unstandardized (top), standardized (middle), and standardized with a 

three-maxima average (bottom). 
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Figure 37. Boxplots of EDA responses for each video with a 141-wide moving average filter 
window: unstandardized (top), standardized (middle), and standardized with a three-

maxima average (bottom). 
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Figure 38. Boxplots of EDA responses for each video with a 201-wide moving average filter 
window: unstandardized (top), standardized (middle), and standardized with three-

maxima average (bottom). 
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Figure 39. Boxplots of EDA responses for each video with the three-maxima average 
standardization. Average filter window width: 81 (top), 141 (middle), and 201 (bottom). 



81 

Appendix E - Extra Stress Detection Data 

The first section of this appendix contains model parameters and Z values for the 

GEV models that were fitted to different test data. The second section contains all 

likelihood ratios calculated when varying the ‘training’ to ‘test’ ratios. 

  Test 1  Test 2  Test 3  Test 4  Test 5  Test 6  Test 7 

ξ_relaxed  5.84E‐01  5.61E‐01  5.48E‐01  6.05E‐01  4.87E‐01  5.92E‐01  5.60E‐01 

σ_relaxed  8.37E‐02  8.68E‐02  8.00E‐02  7.81E‐02  8.22E‐02  7.77E‐02  8.93E‐02 

μ_relaxed  7.41E‐02  7.99E‐02  7.41E‐02  7.22E‐02  7.95E‐02  7.21E‐02  8.22E‐02 

ξ_stressed  3.86E‐01  3.49E‐01  3.53E‐01  3.47E‐01  3.06E‐01  2.98E‐01  3.70E‐01 

σ_stressed  2.04E‐01  2.06E‐01  1.97E‐01  1.95E‐01  2.17E‐01  2.06E‐01  1.97E‐01 

μ_stressed  2.13E‐01  2.22E‐01  2.14E‐01  2.09E‐01  2.36E‐01  2.20E‐01  2.13E‐01 

Zx  4.52E+00  6.48E+00  5.48E+00  6.90E+00  9.49E+00  6.68E+00  6.13E+00 

Zy  3.79E+00  4.22E+00  4.75E+00  2.69E+00  3.73E+00  3.80E+00  3.89E+00 

 

 
Test 8  Test 9  Test 10  Test 11  Test 12  Test 13  Test 14  Test 15 

ξ_relaxed  5.24E‐01  7.04E‐01  5.73E‐01  5.49E‐01  5.66E‐01  5.70E‐01  5.91E‐01  6.48E‐01 

σ_relaxed  7.92E‐02  7.20E‐02  7.64E‐02  8.15E‐02  8.54E‐02  7.61E‐02  8.07E‐02  7.64E‐02 

μ_relaxed  7.60E‐02  6.18E‐02  6.92E‐02  7.38E‐02  7.81E‐02  7.02E‐02  7.32E‐02  6.64E‐02 

ξ_stressed  3.11E‐01  3.41E‐01  3.84E‐01  3.52E‐01  3.31E‐01  3.93E‐01  3.94E‐01  3.42E‐01 

σ_stressed  2.01E‐01  1.95E‐01  2.08E‐01  2.07E‐01  1.98E‐01  1.92E‐01  1.97E‐01  1.99E‐01 

μ_stressed  2.20E‐01  2.15E‐01  2.21E‐01  2.20E‐01  2.22E‐01  2.03E‐01  2.09E‐01  2.15E‐01 

Zx  8.89E+00  5.64E+00  7.40E+00  7.69E+00  6.57E+00  7.51E+00  6.81E+00  5.90E+00 

Zy  4.39E+00  3.68E+00  3.60E+00  4.15E+00  2.93E+00  3.86E+00  3.35E+00  4.84E+00 

Table 10. Estimated GEV model parameters and Z values for 15 different data sets (50/50). 
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Test 1  Test 2  Test 3  Test 4  Test 5  Test 6  Test 7 

likelihood_relax_1  9.12E-03 3.50E-06 6.52E-04 1.81E-08 1.46E-08 1.19E-06 1.75E-07 

likelihood_relax_2  2.81E-05 3.71E-07 3.61E-03 3.77E-03 3.26E-03 5.82E-07 1.54E-04 

likelihood_relax_3  1.40E-06 2.74E-01 4.83E-08 1.81E-04 3.01E-08 5.01E-04 4.11E-11 

likelihood_relax_4  3.67E-10 1.91E-06 2.12E-06 6.05E-04 1.47E-08 7.61E-10 1.06E-05 

likelihood_relax_5  4.47E-07 1.57E-10 2.00E-04 3.43E-05 6.21E-05 5.81E-05 1.68E-03 

Test 8  Test 9  Test 10  Test 11  Test 12  Test 13  Test 14  Test 15 

likelihood_relax_1  1.35E-06 3.03E-09 5.84E-06 1.54E-11 4.75E-06 2.28E-06 1.63E-04 5.51E-07 

likelihood_relax_2  6.36E-05 5.87E-09 2.21E-06 4.56E-09 4.21E-09 2.23E-08 5.29E-07 1.83E-04 

likelihood_relax_3  1.14E-08 3.40E-06 5.74E-04 6.90E-03 7.95E-06 5.30E-04 9.12E-07 1.60E-03 

likelihood_relax_4  3.86E-08 2.51E-08 6.19E-08 6.00E-05 2.67E-07 2.31E-04 4.16E-07 3.67E-04 

likelihood_relax_5  5.40E-02 9.17E-07 2.92E-05 3.94E-07 5.36E-10 8.38E-07 8.79E-11 4.19E-09 

Table 11. Table of likelihood ratios for the ‘relaxed’ test data sets using an 80/20 ratio. 

Test 1  Test 2  Test 3  Test 4  Test 5  Test 6  Test 7 

likelihood_stress_1  1.80E+05 2.17E+02 2.91E+07 5.28E+06 1.80E+03 6.46E+03 4.68E+04 

likelihood_stress_2  5.94E+04 3.32E+03 1.68E+03 2.73E+05 4.30E+07 3.40E+01 2.52E+06 

likelihood_stress_3  2.31E+02 2.92E+05 2.87E+06 1.57E+06 5.08E+05 2.17E+06 1.03E+02 

likelihood_stress_4  1.38E+08 2.02E+06 1.90E+04 7.21E+05 1.49E+02 3.52E+07 1.14E+06 

likelihood_stress_5  1.96E+02 8.61E+02 2.98E+07 7.81E+04 1.29E+06 5.62E+06 3.24E+08 

Test 8  Test 9  Test 10  Test 11  Test 12  Test 13  Test 14  Test 15 

likelihood_stress_1  3.43E+04 5.88E+04 4.64E+06 3.38E+05 1.62E+05 6.98E+00 5.90E-01 1.21E+07 

likelihood_stress_2  9.71E+04 5.00E+04 1.53E+05 1.64E+03 2.25E+06 4.31E+06 7.92E-02 3.94E+02 

likelihood_stress_3  1.34E+02 4.36E+02 4.19E+04 1.04E+05 2.56E+02 3.55E+06 7.11E-02 3.75E+07 

likelihood_stress_4  2.35E+05 1.72E+02 5.43E+07 4.17E+03 7.98E+06 7.24E+04 3.27E-01 2.84E+01 

likelihood_stress_5  4.30E+04 5.38E+04 1.02E+04 2.44E+05 1.06E+05 4.93E+07 2.01E-01 6.36E+09 

Table 12. Table of likelihood ratios for the ‘stressed’ test data sets using an 80/20 ratio. 
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  Test 1  Test 2  Test 3  Test 4  Test 5  Test 6  Test 7 

likelihood_relax_1  4.61E-03 8.36E-09 5.24E-06 4.79E-03 5.29E-06 5.32E-05 9.60E-09 

likelihood_relax_2  7.60E-04 1.56E-04 1.29E-03 2.27E-06 1.89E-04 3.09E-07 6.08E-06 

likelihood_relax_3  3.38E-06 3.66E-05 5.98E-06 8.32E-07 1.44E-07 5.54E-09 1.46E-07 

likelihood_relax_4  2.38E-05 7.44E-06 1.69E-06 1.64E-05 2.72E-07 2.71E-07 1.79E-09 

likelihood_relax_5  6.46E-07 3.48E-06 1.33E-06 6.88E-03 2.98E-03 7.05E-07 4.22E-10 

likelihood_relax_6  8.64E-06 9.83E-07 7.46E-09 1.27E-02 9.01E-07 8.27E-08 1.63E-07 

likelihood_relax_7  1.09E-04 1.46E-07 3.01E-03 3.06E-08 1.03E-08 1.72E-05 3.12E-07 

likelihood_relax_8  1.59E-09 1.24E-05 4.87E-11 1.07E-06 3.07E-06 2.89E-05 2.34E-04 

likelihood_relax_9  2.87E-03 2.39E-07 1.51E-07 1.38E-05 4.77E-06 2.48E-06 4.30E-03 

likelihood_relax_10  2.71E-02 2.20E-08 3.13E-05 3.20E-01 1.45E-09 1.97E-08 3.10E-09 

likelihood_relax_11  2.54E-05 1.29E-11 5.92E-10 3.67E-04 4.61E-09 1.58E-05 1.62E-05 

likelihood_relax_12  7.49E-08 9.32E-07 7.31E-07 6.77E-03 9.59E-07 7.40E-08 1.66E-06 

likelihood_relax_13  3.52E-05 7.26E-08 6.08E-05 4.44E-07 1.12E-08 9.17E-08 1.14E-09 

 

  Test 8  Test 9  Test 10  Test 11  Test 12  Test 13  Test 14  Test 15 

likelihood_relax_1  1.85E-07 3.93E+00 6.54E-10 7.63E-07 6.41E-08 2.48E+00 2.23E-04 4.76E-09 

likelihood_relax_2  8.86E-06 3.38E-07 1.43E-05 1.32E-07 1.18E-05 5.05E-04 7.31E-07 5.40E-05 

likelihood_relax_3  8.90E-07 3.10E-08 4.35E-07 2.44E-06 2.14E-08 1.82E-04 4.82E-06 4.07E-05 

likelihood_relax_4  2.00E-07 1.09E-08 1.06E-05 6.01E-07 9.36E-06 6.19E-08 1.83E-05 7.49E-06 

likelihood_relax_5  3.54E-07 2.03E-06 3.85E-07 1.98E-06 2.33E-07 6.50E-03 6.39E-04 4.33E-04 

likelihood_relax_6  4.38E-06 1.43E-04 3.83E-04 8.57E-07 2.35E-06 2.04E-05 3.63E-03 1.72E-06 

likelihood_relax_7  2.26E-07 2.90E-05 5.70E-07 1.55E-09 6.25E-07 4.05E-07 1.36E-06 1.90E-04 

likelihood_relax_8  6.62E-05 1.69E-02 7.70E-07 5.88E-04 7.79E-08 6.63E-07 1.01E-07 1.64E-05 

likelihood_relax_9  4.47E-08 4.66E+00 1.08E-03 3.61E-10 6.61E-09 1.73E-04 8.20E-12 1.39E-04 

likelihood_relax_10  1.08E-07 4.50E-07 5.38E-06 1.01E-11 5.55E-04 5.81E-02 4.09E-04 9.05E-07 

likelihood_relax_11  1.28E-09 4.60E-06 4.06E-05 1.21E-05 1.61E-04 7.27E-03 3.74E-08 1.25E-02 

likelihood_relax_12  2.13E-08 2.86E-05 1.36E-03 8.08E-05 3.72E-08 2.84E-06 1.55E-06 9.36E-08 

likelihood_relax_13  6.53E-06 5.95E-04 4.87E-10 2.91E-04 1.13E-05 1.59E-03 9.83E-11 1.96E-07 

Table 13. Table of likelihood ratios for the ‘relaxed’ test data sets using a 50/50 ratio. 
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  Test 1  Test 2  Test 3  Test 4  Test 5  Test 6  Test 7 

likelihood_stress_1  1.97E+03 3.03E+05 8.80E+05 2.88E-03 1.62E+06 5.96E+05 2.48E+06 

likelihood_stress_2  2.09E+07 5.34E+00 1.49E+04 1.50E+07 1.48E+05 3.08E+03 1.43E+03 

likelihood_stress_3  1.10E+03 2.31E+01 1.41E+06 7.08E+04 3.17E+05 2.48E+03 2.29E+05 

likelihood_stress_4  1.32E+05 1.83E+04 6.30E+06 1.47E+05 7.76E+06 8.00E+04 7.76E+03 

likelihood_stress_5  1.25E+04 3.51E+04 1.09E+05 1.08E+04 2.38E+02 9.96E+01 4.63E+05 

likelihood_stress_6  2.48E+04 3.19E+03 3.16E+04 1.33E+06 2.71E+02 2.71E+04 1.63E+05 

likelihood_stress_7  8.62E+01 8.39E+07 4.74E+06 1.92E+04 9.66E+03 2.43E+04 1.37E+01 

likelihood_stress_8  1.54E+07 1.39E+07 1.67E+05 1.33E+07 7.97E+06 7.04E+07 1.07E+05 

likelihood_stress_9  1.67E+03 3.40E+05 3.47E+05 8.72E+06 5.58E+07 5.34E+03 1.33E+05 

likelihood_stress_10  3.65E+09 7.37E+02 6.10E+03 7.84E+05 6.46E+06 2.90E+07 9.73E+02 

likelihood_stress_11  2.66E+01 2.65E+04 4.00E+05 1.62E+05 1.13E+08 5.16E+07 1.26E+03 

likelihood_stress_12  3.83E+07 4.31E+05 6.73E+03 1.82E+06 1.49E+03 2.98E+03 4.75E+06 

likelihood_stress_13  2.68E+09 7.27E+00 6.50E+04 4.91E+04 1.21E+03 4.81E+03 9.64E+04 

 

  Test 8  Test 9  Test 10  Test 11  Test 12  Test 13  Test 14  Test 15 

likelihood_relax_1  2.97E+06 8.73E+02 1.30E+05 3.52E+00 7.59E+05 1.40E+04 2.12E+07 7.05E+03 

likelihood_relax_2  3.35E+06 8.01E+01 2.75E+05 3.10E+03 4.02E+03 4.44E+05 3.20E+06 1.30E+02 

likelihood_relax_3  2.29E+06 1.91E+07 9.78E+03 9.98E+04 3.83E+04 5.04E+07 1.98E+03 4.46E+05 

likelihood_relax_4  4.55E+02 1.46E+06 1.57E+04 9.92E+06 1.91E+04 1.81E+06 1.64E+07 9.19E+07 

likelihood_relax_5  5.12E+03 4.47E+05 1.71E+07 3.32E+02 1.75E+02 3.56E+06 6.19E+00 3.91E+04 

likelihood_relax_6  2.39E+06 2.28E+04 8.17E+01 1.19E+03 1.09E+03 4.67E+04 8.43E+05 1.65E+07 

likelihood_relax_7  1.32E+07 1.10E+05 1.46E+04 3.87E+06 2.35E+05 1.43E+09 4.04E+10 3.15E+03 

likelihood_relax_8  8.00E+02 4.48E+08 3.55E+04 6.74E+05 2.25E+03 2.34E+06 2.12E+03 6.81E+09 

likelihood_relax_9  6.61E+03 7.79E+07 7.68E+01 2.81E+09 2.31E+01 2.59E+05 1.55E+06 2.22E+04 

likelihood_relax_10  3.76E+06 1.23E+03 4.22E+05 3.56E+09 3.66E-01 3.86E+06 2.56E+07 3.34E+05 

likelihood_relax_11  1.46E+04 1.72E+08 4.76E+04 3.80E+05 1.89E+00 3.63E+06 7.82E+03 8.62E+04 

likelihood_relax_12  1.34E+05 1.81E+06 8.77E+09 1.20E-02 2.97E+05 3.54E+07 3.20E+05 3.11E+05 

likelihood_relax_13  8.40E+02 3.37E+08 2.22E+03 3.59E+03 2.61E+04 5.43E+07 8.89E+04 2.69E+06 

Table 14. Table of likelihood ratios for the ‘stressed’ test data sets using a 50/50 ratio. 
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Subject 1  Subject 2  Subject 3  Subject 4  Subject 5  Subject 6  Subject 7  Subject 8  Subject 9 

Subject 
10 

relax_1  1.9E-13 1.1E-19 4.9E-06 2.9E-14 8.9E-06 7.7E-05 8.0E-02 1.3E-03 1.7E+00 1.9E-12 

stress_1  2.9E+06 1.8E+01 1.6E-02 1.6E-01 5.2E+08 4.0E-05 9.1E+07 6.8E+00 1.2E-05 2.8E+06 

stress_2  1.0E+02 5.4E+00 2.9E+02 1.6E+04 9.7E+01 2.2E-01 1.4E+03 1.7E+05 3.3E+01 2.5E+02 

 
 

 
Subject 
11 

Subject 
12 

Subject 
13 

Subject 
14 

Subject 
15 

Subject 
16 

Subject 
17 

Subject 
18 

Subject 
19 

Subject 
20 

relax_1  8.7E-10 9.4E-05 1.9E-02 2.9E-04 6.5E+01 2.6E-03 1.6E-03 1.1E-01 5.1E-15 1.2E-05 

stress_1  6.0E+05 3.9E+03 3.3E+08 4.7E+07 1.1E+05 8.9E+06 1.6E+05 1.7E-04 1.1E+06 7.4E+06 

stress_2  1.7E+03 2.9E-01 5.0E+01 7.6E+01 1.9E+00 8.7E+03 2.8E-03 1.9E+02 1.2E+03 2.2E+00 

 

Table 15. Table of likelihood ratios for the ‘relaxed’, ‘stressed 1’ and ‘stressed 2’ test data 
sets. 
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Appendix F - PCB Circuit Schematic 

The circuit schematic for the Adafruit USB isolator PCB is laid out below. 
 

 
Figure 40. Adafruit USB isolator circuit schematic [44]. 

 
 

 

 

 

 

 

 

 

 




