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:lature

a, b, c, d - limit joints on the shock polar

s

- used to denote intersections having supersonic flow behind

"both reflected and Mach shocks

3 - used to denote intersections having supersonic flow behind

the reflected shock and subsonic flow behind the Mach shock

C
o

- used to denote intersections having zero curvature and

subsonic flow behind both reflected and Mach shocks

CM
- used to denote intersections having infinite curvature .

and subsonic flow behind both reflected and Mach shocks

c* - critical speed of sound

k - ratio of specific heats

M - Mach number

M* - dimensionless velocity ratio, V/c*

P - pressure

R, R' - intersection points on shock polar diagram for regular reflection

S1>
S
2

- intersection points on shock polars for Mach reflection

T, T' - used to denote triple point

V - velocity

a - angle between incident shock and wedge surface

a - limiting angle of incidence for two shock theory

6

a
o

a»

- angle of incidence at which Mach reflection is observed to begin

- angle between reflected shock and wedge surface

6
- -turning angle across shock

5
- turning angle beyond which regular reflection is theoretically

e possible

5
ax

- maximum turning angle for oblique shock

8
- flow directic.i

5
- ratio of pressure in front of a shock to that behind

V
- viscosity
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c - angle of shock to incoming flow

X _ angle th . line of travel of the triple point makes with the wall

u - angle between the flow and the incident shock

o)» - angle between reflected shock and path of the triple point

Roman Numerals:

I - used to denote the M shock polar

II - used to denote the M
?

shock polar

Subscripts:

- signifies the incident shock

B - signifies the Mach shock

C - signifies the reflected shock

1 - signifies conditions upstream of the incident shock

2 - signifies conditions behind the incident shock

3 - signifies conditions behind the reflected shock

k - signifies conditions behind the Mach shock
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In many practical problems, oblique shock waves are incident on fixed

walls. In such cases, the shock wave is reflected, since the gas flow is

assumed to follow the wall. Two types of Election have been observed.

One is known as regular reflection (Fig. l), and is characterized by the

JTTTTTTTTTT1

Fig. 1. Regular reflection

j-rrrrrrrn

la)
(b)

Fig. 2. Mach reflection

fact that the incident and reflected shocks intersect in a line at the wall

surface. However, for all values of free-stream Mach number, there is a range

of shock wave angles for which regular reflection cannot satisfy the bound-

ary condition of parallel flow at the wall (l, 2)*. The line of intersection

leaves the wall and moves out into the flow, and a third shock wave (called

the Mach shock) appears, j< the wall and the line of intersection. This

triple-shock phenomenon in called ^lach reflection (Fig. 2). An enlarged dia-

gram in the vicinity of the intersection is shown in Fig. 2(b).

ratal investigation of Mach reflection has been carried out using

of the most cc optical arrangements—shadowgraph, schlieren,

and interferometer. In all investigations, the axis of the optical syste-

has been parallel to the line of shock wave intersection so that this line

s in pa - -ses refer to . /ices at the e.id cf the report.
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appears as a point. Therefore, for convenience, this plane of observation

has been chosen for all discussions in this report, and henceforth, the

line of intersection mil be referred to as the point of intersection, or

the triple-pc int

.

Interactions other than with a solid wall also may produce Mach reflec-

tion- For example, plane shocks converging at the plane of symmetry of a

supersonic, 2-dimensional jet often result in a Mach reflection in the

vicinity of the axis."""

The type of regular interaction in steady flow shown in Fig. 1 is im-

possible if the incident Mach number M, is too small or if the deflection

angle 5 is too large. In the Mach reflection which then occurs (Fig. 2),

the Mach shock must be normal to the wall in the neighborhood of the wall,

for otherwise, a change in flow direction would occur at the wall. Since

the Mach shock is generally curved, the flow behind it is non-uniform in

velocity and direction, hence, rotational. It has been observed that a

fourth discontinuity trails behind the triple point. This is the slip line

forming the boundary between the I passing through the Mach shock and the

flow passing through the incident and reflected shocks. The existence of the

slip line is consistent with theoretical considerations of the problem, since

fluid passing through the incident and reflected shocks undergoes a smaller

change in entropy than that passing through the Mach shock. Since the total

energy is the same on the two sides of the slip line and since the static

pressure must be the same, the density and velocity are greater above this

boundary while the temperature is greater below. The reflected shock as well

as the Mach shock can be curved; thus the ilow behind the reflected shock can

.z ~e rotational.

;:

"Also, a conical shock convergent at the axis of a s .personic, axially sym-

metric jet always results in a Mach reflection in the vicinity of the axis.

(See Reference 3)



An analogous reflection pattern may be observed in a shock tube when

ncident Wave

Reflected Shock

11/11

Fig. 3. Mach reflection in

the shock tube.

the incident shock wave hits a

straight wedge as shown in Fig. 3<>

This pattern may be transformed to -

a pseudo-stationary case similar to

Fig. 2 by choosing a frame of refer-

ence in which the triple point is at

rest. The free stream flow V^ is in

the direction TO and w is the angle

of the incident wave.

The purposes of this report are:

(1) to present the classical "perfect fluid" solution of the triple-shock

drooler ;

(2) to perform some typical numerical solutions using this classical theory;

(3) to compare this theory with experimental results; and

(10 to discuss and evaluate the various theories that have been advanced to

explain the discrepancies between the classical theory and experimental

da^a.

THE EiSIC EQUATIONS AND TKEIR SOLUTION

Von Neumann (10 and .: (5) independently developed the first solu-

tion of the triple-shock problem. Their method will be referred to as the

"simple" theory, although, from a mathematical point of view, this is surely

a misnomer. Their idea was to consider the fluid to be non-viscous, non-

heat-conducting, non-i of constant chemical composition; and to

replace each s3 ve by a plane, disregarding any possible curvature of the

chocks and any possible finite shock wave --ess. Under those assumptions,

they examined boundary compatibility downstream of the triple point. Combina-

tions of Llach and reflscted chocks must co found which produce the same static



pressure ar r direction in the two domains downstream of the triple-

point. In terms of 3»lg. 2(b):

D = P

or
p,

' p. 1

S. - S, + C^ -/. VC

Unfortunately, no convenient explicit algebraic relations exist for

the oblique shock when % and 5 are taken as independent parameters. How-

ever, the following relations exist when 1^ and c are chosen as the parameters

(3, ?). In each of the following pairs of equations, the second form of the

equation applies for k = 1.4 :

Fp k+\ L

: £»f
-ri) N;

2{M?sl**rA -l)
few vA

=

J

UMl
Mf sm <Ci

"
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J
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Similar equations can be written v;hich express £3 ,

P
2

cot 6 in terms ci .:. , , ;J
a
^ ,

C

ana

- :

- £6 = <**(£> £^

lying a trigonometric identity:

- S -
est 5^ + c/

F4 , cot 6_ , and

pT
b

j since

utational cherts arc available which relate Mp a , and 6 (6,7,8).
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There are five variables in these bwo equations: M_, VL 3 ^ , 0g , c
c

•

In most problems the incident Mach number :.:-, and one of the shock wave angles,

; or o. , will be known. In the case where 1L and a
^ are known, VL may

calculated at once. Thus, the compatibility equations reduce to two

ations re :.:.: and o„ . However, because of

complexity of the equatic Lrect solution is impossible.

several ways to solve I - One straight-forward method,

.ch is especially suitable if one has a rough idea of the values of °"

and/or a , is the trial-and-error solution. A value of a , for example,



is assumed. From the pressure equation a^ is calculated; these values of

H , o , and o^ are then substituted into the deflection equation. If the

left hand member and the right hand member turn out to be equal, the original-

ly assumed value of c^ was correct. If the two members turn out unequal, a

new value of c_ is assumed, and the procedure repeated until a check is

B

obtained in the deflection equation.

If, originally, a
fi

were known instead of a
A ,

the problem is somewhat

more difficult to solve, for now M
2

is not known a priori. Again, trial-and-

error may be employed—this time, for three equations in three unknowns.

Early workers discovered a second method of solution which was graphi-

cal (5, 9). Because of the pressure and flow direction requirements, it is

obvious that the solution must be given by the intersection of two shock wave

polar diagrams plotted in ? - 6 coordinates. The shock polar in P - 5 coor-

dinates is a heart-shaped curve, (see Fig. U), on which the states of the

Mach shock and incident shock are located. 1'

2
is determined as shown above.

Corresponding to ML is a second shock

nolar which may be drawn right on top

of the polar for M. with the initial

point of the M
g
polar displaced along

the N, polar by the angle 6^. The

point of intersection 3, 1* of the polar

s

is the required solution. Depending on
6

the values of M and °
A , there may be

;, k. Construction of the x

solution Qne point f intersection, two points, or

none at all (excludJ te initial point 2) . Eggink showed that, using the

assumption stated in the first of this section, the Mg polar lay entirely

the interior of the U
}

polar for M^ 1.2U5, and that hence, no intersection



of the polars c curred. He did this by calculating the direction of bhe

tangent to both polar curves at the starting point of the 11^ polar. (The

;ent is found by differentiate ; the eq ion relating ° and ?.) Egg-

ink found that there is a limiting oint b ior all values of Mp beyond which

the 2,:, polar lies entirely inside ; 3 M, po! . Moreover, he found that

there was no value of o for which any pa f the Ik polar lay outside the

M-, polar for M^< 1.2U5. The fact that the Mach configuration is observed

experimentally for UL< l,2h$ exposes the first short-coming of the so-called

simple theory.

The limiting case mentioned above may be seen to be the case when the

reflected shock is of vanishing intensity (a Mach wave), and the incident and

:s are on the same straight line. Of course, a second limiting case

in the physical phase occurs when the incident shock has vanishing intensity,

and the Mach and "reflected" shocks are just one continuous oblique shock.

This case is illustrated in the ? - 6 polar (Eig, 5). As <5 •> p, the solution

point 3,1; approaches the liiaita int, a.

It should be pointed out that

such a configuration as illustrated

in Fig. 5 (termed inverted Mach con-

figuration) in which the Y polar .-

crosses the P axis of the IL polar,

is an unstable solution to the pro-

blem of shock reflection at a wall (2),

The inverted ' -ach reflection would be

destroyed, and regular reflection

cc. pear in its place, since the

Fig. 5- Determination of bhe

limiting point a.

mtibility condition of parallel flow at the wall can now be satisfied
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the UL polar at two different points ( R and PJ , in Fig. $) . Here, then,

we have, illustrated in the P - 6 polars, the condition for the end of regular

reflection and the onset of Mach reflection. The further point 2 is dis-

placed from point 1 in Fig. 5, the smaller the second polar becomes, until

finally it shrinks to a point at the sonic point en the -.'-, polar. Clearly,

then, the intersection points, R and R', disappear for 5 greater than some

6 . This should mark the beginning of Mach reflection (17).

- ink found that the polars intersect in two points, S-, and S^, for

.> 2.5$ (Fig. 6). S^ and S
2 run out from limiting points, a and c« S-j_

varies from a to the limiting point b,

as before. The second intersection

point S starts at c and advances to d

as 6 increases; when S
2
reaches d, it

is coincident with the starting point 2

of the M« polar. For larger o , there

is only one solution, S.

.

Fig. 6. Case of 2 solutions. Graphical representations of numer-

ical solutions have been presented in

two different forms (9)« One uses the shock wave angle of the Mach shock,

o^ >

-"- o*t, as coordinates with the angle of incident shock, a , as a

parameter. This representation shows that, in the region where 1L> 2.5$,

re is a range of incident shock wave angles, a , for which there are two

solutions for a , etc. Moreover, for M-,> 3*26, there is a certain range of

o„ in which the solutions, S_ (which is single valued) and S. (which is
a 1 2

double valued} overlap; un hese conditions three possible solutions for

, etc. exist. Another observation of interest is that there is a small

ion of solutions for all values of II, , in which flow is supersonic behind

both the Mach and the reflected shocks.
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Yihen one is principally interested in angles of deflection, the second

presentation is advantageous. It present. &
A

and 6
3

as rectangular

coordinates Trith Mf* as parameter. For M,> 3-72, the curves for the S
2

solution have a point of inflection, so that there are four distinct solutions

associated with one value of 6
3 , for 6

L
between limit point b and S^ .

;;ink extends the hodograph shock polar diagram (Fig. 7) to present his

res-alts. This representation has the advantage that the shock wave angle,

angle of deflection, and all

:.:ach numbers can be read dir-

ectly.

Eggink plotted solutions

for a number of values of 1^'

•

For each LI-", he found 6
Q

(and thereby point 3 in the

hodograph of Fig. 7) from the

intersection of the P - S shock

polar s. The points 3 are

computed as the 3^* polar is allowed to move along the fixed K* polar

through all permissible values of U*. The points 3 are then plotted on

the variable hodograph polar s Mg* and joined (Fig. 7) by a curve. The

curves begin at the limiting point a or c on polar Xj* and end on the axis

of the diagram at the ! i, corresponds to limiting points b and d. Thus,

ens can start with a give- *r! Lch a definite shock polar is asso-

ciated. The incident shock is dete: I by prescribing 6A ,
and M

2
" is

obtained. The V* hodograph polar is rotated back by the angle «
A

about

as a center, so that the initial point 2 lies on the 1^* axis. Point 3 is

located by the intersection of the M^ polar and the locus of points 3

Fig. 7. The shock-polar diagram

for a triple shock.
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ropriate to the g L*. Thus, Mj* and 6
Q

are determined. Finally,

point l| is found on the 1^* polar by usin£ the compatibility equation

5=5+6 .A case is illustrated in Fig. 7 which has two solutions.
3 A C

. second solution, when one exists, is given by the dashed locus of

points 3'

«

The simple theory interactions may be divided into three groups. Group A

is the case when flow on both sides of the slip line is supersonic. Group B

contains those cases when flow behind the reflected shock is supersonic and

tat behind the --aoh shock is subsonic. Group C has subsonic flow en both

sides of the slip line.

:PLS SOLUTIONS USING THE SIMPLE THEORY

In this sect:'-;- : ample solutions are presented for all three goups of

simple-theory interactions. Fhe trial-and-error approach will be used to

solve the equations directly, and this method then will be checked by use of

the various computational curves available (6,7,8) as -.Yell as the charts

presented in References 5 and 9.

GROUP A : supersonic-supersonic

Given : VL =1-557 %= 60° v

Solutionj. M4
-

/1.735 (U.mS) M+- l-°3°

^y a/ 732/ r/.2fr^4l- -. : z l-^a-ir^
CeX- Oe 1. 1341

^ o.bi^s '] ~—-

—

T ^*,r' kj2 ZU(2A.: . 7> -5(OM3lO)H>At>3Z ._ , .

? ?
Assume (TA = 55 /5 A£—

/a^ 33 (4.437^
/

'
C5J~

... check Xhe assumption by calculating cot 6
B

(T ~fe7 3 r ,v7 -;-.• \ .

=
. 1.4415(3.515)+ 2.3Cl(/4.00&)

T'

This is in agreement with the known value, so our assumed value of o^ must

be correct.



11

C = e=//°o.o' M^LlM M3
~ 1.0*8

Using the computation curves, the following values are obtained:

Mt* 1. 146 M
a
* 1.052 M+' 1.038

GROUP B : supersonic-subsonic

Given : ^ = 2.36 c?

A
= ^7-5°

Solution: M^ 3CJ2ftM.)
' M?' 1**4

7(/.7283VAssume <Tc =57*f8 itfsm^- I- S.OZI

sm ai'O^ssi CB « 84*27'

The assumption is checked by calculating the value of both members of the

deflection equation. The left hand member is denoted as D^ and the right

hand member as Dg.

The two members are in close agreement, so the assumed value of a
Q

is correcl

Mrl.5S4 M=I,0G85 A£- 0.575*

Using Eggink's shock polar diagram, the following values are obtained:

Mr /.5575" M
3 =(,08C

iVi- 0.505$
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Using the computation charts, these values are obtained:

MZ
*I.S4S M

3
=!,085 M^ 0.520 <TB

* 84*18'

«•,— jS
<TC --S7*5i'

GROUP C

Given :

Solution

subsonic-subsonic

M
x

= 1.732 a
A

= >*9°

k a i 3U$/.7Q87~5(0JO87)/t. e
?Cl

/W*
-

lO.9Gl[i.70B7)

Assume (T> <75°3&

Sih cr
6
= 0.11053

Or
4.oS

<rB
-S2V-

+. 08 An 4T t-2. 0°& ;w ?5"'3£

'

-£.A5*

This constitutes a reasonable check, so the assumed o
c

is correct.

M,'/- 30/ M3
- 0.7973 H= 0.644/

(rB
»82*6' <rc

=<?5°3£'

fc-a^'2' SB-

e

f
- g4

- *'/+'

The values obtained from the computation charts are :

/W,*/.3°° M^O.SIO MfO.tfO

cr=
ciS

u
4-2'

c<rB
* 82'

L-0--/2'
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It was observed that the trial-and-error solution used to solve the

supersonic-supersonic case (Group A) was more difficult than the other cases

because of the decision to match values of cot 6 B . As <$ turned out to be

quite small, the process was extremely non-linear, and interpolation and extra-

polation was inaccurate, even for variations of only 0.1 in angle. However,

when the check was made using computational curves, it was decided to match

values of pressure ratio, and this procedure was much more easily applied.

EXPERIMENTAL RESULTS

Most of the experimental work has been done in the shock tube rather than

in the wind tunnel. The plane shock wave is incident on a plane rigid wall

which makes an angle a with the shock. This angle and the shock strength

p
£ = _i are convenient parameters to describe the results of these experiments.

P
2

In air, regular reflection occurs for small o at all values of £ (10, 11, 12).

Holding 5 £ x
= constant, we note that regular reflection occurs as

a increases from 0° up to some angle a , at which point the point of inter-

80° r

60 c

1»0<

20 c

Mach
Reflection

Regular
Reflection

0.2 O.k 0.6 0.8
£

Fig. 8. Regions of regular and
Mach reflection

Fig. 9- Notation of angles used in

Mach reflection
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section pulls away from the wall and Mach reflection ensues. All experi-

ments (10, 13) show that this, angle a is 2° to 3° beyond the theoretically

predicted extreme angle for regular reflection a (Fig. 8). Although the
e

difference is small, it has been consistently noted by independent experi-

menters and cannot be explained as experimental error, since a can be

measured quite accurately. In presenting data on Mach reflection it is con-

venient to give angles with respect to the line joining the triple-point

and the corner TO. The angle between line TO and the wall is x« T"e inci-

dent shock I and the reflected shock R of Fig. 9 make angles u and u>', at

the triple point with TO. Also,

u) = a - x u' a'+ x

A comparison of experiment and theory, from Reference 10, is shown in

Fig. 10. Data are for two shock strengths, 5 1= 0.8 and 5 = 0.2, represent-

ing weak and strong shocks respectively. For strong shocks, agreement in

r/Iach reflection region is not bad,

but certainly not as good as for

regular reflection. The deviations

are consistent and above any normal

experimental error (10). For weak

shocks, there is a large discre-

pancy.

Another feature to be pointed

out in Fig. 10 is that for weak

shocks, Mach reflection seems to

join on smoothly where regular

reflection stops v/hile for strong

shocks there is a sharp discon-

u

1
1

3-shock theory

5 = 0.8\ /

S = 0.2^7
90°

\ ^^*-7Nv\
f N. ^\ \0X 7 VN /\ • V \.X y 7

60° \ Ik
\ / >

'

V 1

A /30°
• ^^/)^

/jf* 2-shock theory

sfi<^-Z = 0.2
/!* ^5 = 0.8

30 c 6o c

0)

Fig. 10. Comparison of theory and
experiment
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tinuity in to ' when Mach reflection begins as is predicted by the simple

theory. In all cases, regular reflection persists beyond the theoretical

limit; this persistence is in very obvious disagreement with the simple

theory in the case of weak shocks. Here, then, is strong evidence showing

the inadequacy of the simple theory.

DISCUSSION AND CONCLUSIONS

The first discrepancy noted was the fact that the simple theory pre-

dicted no triple-shock solutions for M,< 1.2U5, whereas the configuration

is observed experimentally for all supersonic IL . It will be recalled

that the reason the simple theory predicted no solution was the two polar

s

had no intersection in the P - 6 plane. The gap in the theory was filled

by Guderley (lii) who found a theoretically correct way of inserting a

Prandtl-Meyer expansion at the triple point. Guderley 1 s analysis is re-

stricted to weak shocks, where entropy changes through the shocks may be

neglected.

The general character of a Guderley solution is shown in the physical

and hodograph planes in Fig. 11. An enlarged diagram of the hodograph in

Physical
Plane

Polar 1

Fig. 11. Guderley' s triple shock wave solution
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the vicinity of the triple point is also shown. The reflected shock at

the triple point is given by point T' which is the intersection of sonic

line with polar IL . A Prandtl-Meyer expansion centered at the triple

point is inserted in the flow behind the reflected shock, hence the stream-

line from T 1 in the hodograph follows a characteristic curve T*T. The

point T is the intersection of the characteristic with polar I, and gives

the location of the rJach stem in the hodograph.

Unfortunately, Guderley's new solution still seems to disagree widely

with experiment for weak shocks. One possible explanation for this appar-

ent failure of the theory is that in 1the experiments the shock angles have

not been measured sufficiently close to the triple point to be compared

with theory. It is observed that both the reflected shock and Itfach stem

are curved as they approach the triple point. The experimental photograph

is always blurred in a small region arround the triple point, and, possibly,

the shock waves are highly curved in this region.

The pseudo-stationary case of nearly glancing incidence in a shock

tube may be simplified by a linearization process developed by several

workers and discussed in Reference 11. Unfortunately, this simplification

is of no use in the present problem. Inherent in the linearization is the

requirement that the reflected shock have zero strength at the triple point,

which is not the case in our problem.

Sternberg (l£) has shown, in one of the most recent and extensive ex-

aminations of this problem, that the shocks are so strongly curved near

the triple point in Guderley's solution that it would be impossible to

observe the theoretical intersection angles, even with the best available

experimental technique. Sternberg therefore concluded that the comparisons

which earlier workers had made between experiment and theory were not valid
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and that no one up to that time had conclusively proved that the theory

was wrong. He then attempted to use a different comparison to show that

the theory was incorrect.

The theories of von Neumann, Eggink and C-uderley are all based on the

assumption that viscosity is not a factor in establishing boundary condi-

tions at the triple point. The simple theory of von Neumann and Eggink

explicitly states that, at least in a close neighborhood of the triple

point, the shocks are straight and that they separate regions of uniform

flow.

Along the shock polars in the P - <5 plane, the streamline slopes are

fixed by the equations of motion and the Rankine-Hugoniot equation provid-

ing shock-wave curvatures are finite. In general, the streamline slopes

on the intersecting polars differ at the triple point. Since the stream-

line from the triple point cannot have two different slopes at the same

point, the shocks cannot have finite curvature at the intersection, and

the triple point must be singular. If the streamlines on the two polars

converge toward each other at the intersection point, the shock curvature

* • in the physical plane. By contrast, if they diverge, the shock cur-

vature -> (Hi). By examining the simple-theory interactions, it is

found that both types (convergent and divergent) of contradictions occur.

Guderley showed that in his solution, also, streamline slope discontinu-

ities occur and that, in his solution, the shock curvature must * " at

the triple point.

It will be remembered that the simple theory interactions were classi-

fied into three groups according to flow conditions downstream of the triple

point. It has been shown that when flow is supersonic behind the reflected

shock (groups A and B), curvature must be zero at the triple point (16).
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Group C has subsonic flow above and below the slip line just downstream of

the triple point. There are two sub-groups depending on whether curvature

is zero or infinite. The case in which a Group C interaction has infinite

curvature, here denoted as Group C^ , is found at all Mach numbers M-, . The

sub-group having curvature, denoted as Group C , contains the limited

range of intersections on the P - 5 polar that fall on the reflected shock

polar between the sonic point and the point of maximum deflection. (See

Fig. 12)

(a) (b)

Fig. 12. Types of triple shock vave intersections

It should be noted that the intersection point in Fig. 12 (a) is on the

strong shock part of polar II, while in Fig. 12 (b) it is on the weak part.

When the so-called "stationary Mach reflection" (in which the Mach stem is

a straight shock normal to the wall) appears, the intersection point T

coincides with the point of maximum deflection M in polar II at 6 = of

polar I. The conditions for stationary reflection, as predicted by the

simple theory, are U^ = 3.203, % = O.U33, and hence, a s Ul.56 . (17)

Thus, Group C cases are found only for M, greater than about 3.2 in a

supersonic flow or for shock pressure ratios, £, less than 0.U33 in the

shock tube.
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At the transition from regular reflection to i;iach reflection, one

should be able to distinguish between Groups CQ and ()„ by observing the

change in angle of the reflected shock if transition occurs as theory pre-

dicts. For Group C , the reflected shock angle (*>• should decrease discon-

tinuously, while for Group C^ , it should show a sudden increase, because

the intersection point T lies on different branches of the M_ polar in the

two different cases.

Recalling the discussion of experimental results in the last section,

we find agreement with the prediction that oj' has a sudden decrease for

Group C , the case of strong shocks. However, experiment shows a nearly

continuous transition for the weak incident shock (Group C^ ), thus violat-

ing the theory. It is also found in experiment that the boundary between

discontinuous and continuous transition is approximately K = O.I4.2. This

compares well with the theoretically predicted value above.

VJe begin to suspect that there is some connection between the experi-

mental inconsistencies and the character of Group C m of Fig. 12 (a). Sev-

eral streamlines are shown therein and the dotted line of this same figure

is the slip line. A well established theorem of the hodograph plane due to

Busemann states that, in subsonic flow, a region in the hodograph with

crowded streamlines corresponds to nearly uniform flow in the physical

plane, while a region with few streamlines in the hodograph is associated

with a narrow field of rapidly changing flow. Using this theorem, it has

been argued (17) that the quantities measured experimentally are those at

point M and not those at the actual triple point T in Fig. 12 (a). If this

were the case, a seemingly continuous transition -would take place if the

flow behind the reflected shock is subsonic.

Actually, infinite curvatures in a real gas are impossible, and viscosity
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should be considered to see if it has any effect on the solution. Stern-

berg appears to be the only author to date "who has investigated the signi-

ficance of viscous forces. He first shows that if excessive curvature is

the only modification of the "perfect fluid" solutions needed, then vis-

cosity is not important. As a general rule, it has been shown that the

weaker the shock wave, the thicker it is (l8). So Sternberg chose a weak

shock (c z 0.8) to obtain a relatively thick shock wave (on the order of

3 x 10 cm at ordinary atmospheric conditions). As long as radii of cur-

vature were 100 times this value, or 3 x 10~2 cm, curvature should not affect

our use of shock polars as boundaries in the hodograph. Using an electric

tank analogy, he shows that curvature is not a factor except within less

than 0.1 mm of the triple point and is thus unobservable in the experiments.

Sternberg next attempted to show that viscosity fundamentally alters

the boundary conditions at the intersection. Using an analysis contained

in Reference 18, he calculated distributions "of pressure and temperature

along a streamline within each of the three shocks and showed that there

are significant differences of pressure, temperature, and direction within

the waves along the dividing streamline. This, he argued, justified the

choice of a non-Rankine-Hugoniot zone of transition between the incident

and reflected shocks on the one side, and the ¥ach shock on the other. He

asserted that within this zone there would be significant pressure and

temperature gradients along the front, as well as normal to it. Hence, the

structure would be 2-dimensional, and would not conform to the one-dimen-

sional Eankine-Hugoniot (R - H) equations. It follows from this conclusion

of Sternberg that the boundary conditions for Group C of the perfect fluid

solutions are fundamentally inconsistent when applied to a real fluid.

Sternberg then tried to justify his theory that a non-R - H zone
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separates the three R - H shocks by constructing a model to replace perfect

fluid solutions of Group C^ and performing a sample calculation using his

model. Salient features of the model are now described. It is assumed

that pressure and direction vary significantly along the downstream edge

of the non-R - H zone (See Fig. 13),

i.e., P
Q
> P

E
and 9

C
5* 8

E
. Viscosity

is finite, and the Navier-Stokes

equations apply. The flow field is'

now described in the vicinity of the

intersection, by selecting reasonable

values for shock wave angles at the

edge of the non-R - H zone. From

this point in his discussion, Stern-

berg advanced what seems to this

author to be a questionable discussion

about what a "reasonable" value of the reflected shock wave angle would be.

The available experimental data suggest a value of 95>° for the choice of

incident conditions which he selects. But Sternberg abandons the data and

suggests that any value greater than 90° is "physically impossible" since

this implies that the reflected shock runs upstream from the triple point.

It has been pointed out that it seems unreasonable to dismiss the consider-

able amount of both wind tunnel and shock tube evidence that do show flows

incident as much as 105° to that shock front (19). Sternberg seems to over-

look the fact that, since flow is subsonic downstream of the reflected shock,

signals from dov/nstream disturbances can reach the reflected shock. In
»

particular, the effects of a curving slip line will be impressed on the

Fig. 13. Sternberg's proposed
real fluid model in the physical

plane.

reflected shock and will affect its shape. However, it must be acknow-
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The intersection of three shock waves at a single point is investigated

in this report. First, it is assumed that in some neighborhood of the inter-

section point, -one shocks are straight and may be replaced by planes, disre-

garding any effect that shock thickness may have. Then, each shock is treated

using the standard Rankine-Hugoniot theory with the boundary conditions of

equal pressure and flow direction in the two regions downstream of the inter-

section. Several numerical solutions are performed to illustrate this so-

called simple theory.

-Clhen a shock wave is incident on a rigid wall, it is found that, for

all free stream Mach numbers, there is some range of incident wave angles

for which a triple-shock configuration occurs. This phenomenon is called

Mach reflection. Furthermore, there is a range of incident wave angles for

any free stream Mach number, for which the simple theory predicts that no

Hach intersection is possible. However, this gap in the theory is not matched

by an experimental gap. An approximation of "isentropic" shocks used to fill

the gap in the theory is discussed.

For weak incident shocks, a large discrepancy between experimental data

and the simple theory appears. One possible explanation for this difference

is the suspected increasing curvature of the shocks approaching the triple

point. Other factors may be viscous effects and shock wave thickness. A

recent paper proposes a non-Rankine-Kugoniot zone separating three Rankine-

Hugoniot shocks at the point of intersection. This paper is discussed and

some evaluation of the assumptions and conclusions stated therein is given

in the present report.


