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A theory of electromagnetic (EM) wave scattering by many small particles of an
arbitrary shape is developed. The particles are perfectly conducting or impedance.
For a small impedance particle of an arbitrary shape, an explicit analytical formula
is derived for the scattering amplitude. The formula holds as @ — 0, where a is a
characteristic size of the small particle and the wavelength is arbitrary but fixed.
The scattering amplitude for a small impedance particle is shown to be proportional
to a*™*, where « € [0,1) is a parameter which can be chosen by an experimenter
as he/she wants. The boundary impedance of a small particle is assumed to be of
the form ¢ = ha™, where h = const, Reh > 0. The scattering amplitude for a small
perfectly conducting particle is proportional to @?, and it is much smaller than that
for the small impedance particle. The many-body scattering problem is solved under
the physical assumptions a < d < A, where d is the minimal distance between
neighboring particles and A is the wavelength. The distribution law for the small
impedance particles is N(A) ~ 1/a>™« Jy N(x)dx as a — 0. Here, N(x) > 0 is an
arbitrary continuous function that can be chosen by the experimenter and N(A)
is the number of particles in an arbitrary sub-domain A. It is proved that the EM
field in the medium where many small particles, impedance or perfectly conducting,
are distributed, has a limit, as a — 0 and a differential equation is derived for the
limiting field. On this basis, a recipe is given for creating materials with a desired
refraction coefficient by embedding many small impedance particles into a given
material. © 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4929965]

. INTRODUCTION

Electromagnetic (EM) wave scattering is a classical area of research. Rayleigh stated in 1871,
see Ref. 17, that the main part of the field, scattered by a small body, ka <« 1, where k is the wave
number and a is the characteristic size of the body, is the dipole radiation, but did not give formulas
for calculating this radiation for bodies of arbitrary shapes. For spherical bodies, Mie, Ref. 4, gave
a solution to EM wave scattering problem using separation of variables in the spherical coordinates.
This method does not work for bodies of arbitrary shapes. Rayleigh and Mie concluded that EM
field, scattered by a small body, is proportional to O(a®). We prove that the field scattered by a
small impedance body (particle) of an arbitrary shape is proportional to a®>~%, where « € [0,1) is
a parameter which can be chosen by the experimenter as he/she wishes, see formula (1.3) below.
Since 2 — « < 3, it follows, for a — 0, that the scattering amplitude for small impedance particle is
much larger than the scattering amplitude for perfectly conducting or dielectric small particle. This
conclusion may be of practical importance.

There is a large literature on low-frequency wave scattering and multiple scattering, see Refs. 1,
3,6,7,and 19.

In this paper, a theory of EM wave scattering by perfectly conducting and by impedance small
bodies of arbitrary shapes is developed. For one-body scattering problem, explicit formulas for
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the scattering amplitudes are derived for perfectly conducting and for impedance small bodies of
arbitrary shapes. For many-body scattering problem, the solution is given as a sum of explicit terms
with the coefficients that solve a linear algebraic system (LAS). If the size of the small bodies a — 0
and their number M = M(a) — co, a limiting integral equation is derived for the field in the limiting
medium. This equation allows us to obtain a local differential equation for the field in the limiting
medium and to give explicit analytic formulas for the refraction coefficient of the limiting medium.

As a result, we formulate a recipe for creating materials with a desired refraction coefficient by
embedding many small impedance particles in a given material.

The methods developed in this paper were applied to acoustic problems in Refs. 9-12, to heat
transfer in the medium where many small bodies are distributed in Ref. 13, and to wave scattering
by many nano-wires in Ref. 14.

In Section II, the theory of EM wave scattering is developed for small perfectly conducting
bodies (particles) of arbitrary shapes.

In Section III, the theory is developed for EM wave scattering by one impedance particle of an
arbitrary shape.

In Section IV, the theory is developed for EM wave scattering by many small impedance
particles of an arbitrary shape.

In Section V, a recipe for creating materials with a desired refraction coefficient is given. The
problem of creating materials with a desired magnetic permeability is solved.

Physical assumptions in this paper can be described by the inequalities,

a<d< A, (1.1)

where A is the wavelength in R? \ Q, Q is a bounded domain in which many small particles D,, are
distributed, 1 < m < M = M(a), and d is the minimal distance between neighboring particles.
The boundary impedance is assumed to be
h(xm)
é/m = ’ (12)

aK

where x,, € D,, is an arbitrary point inside D,,, h(x) is an arbitrary continuous function in Q such
that Reh > 0, k € [0, 1) is a parameter.

One can choose h = h(x), Re h(x) > 0, and k,k — [0, 1), as one wishes.

The distribution of the small impedance particles in D is given by the formula

N(A) = /AN(x)dx(l +0(1)), a—0, (1.3)

aZ—K

where A € Q is an arbitrary open set, N'(A) is the number of small particles in the set A, and
N(x) > 0is an arbitrary continuous function in Q.

The experimenter can choose the function N(x) > 0 as he/she wishes.

One has

N(A) = Z 1. (1.4)

Xm€eA

By w, the frequency is denoted, k = % is the wave number, and c is the velocity of light in the air.

Il. SCATTERING BY PERFECTLY CONDUCTING PARTICLES
A. Scattering by one particle
The problem is to find the solution to Maxwell’s equations
VXE =iwuH, VxH=-iweE, inD :=R>\D, 2.1

where D is the small body, ka <« 1, a = 0.5diamD, € and y are dielectric and magnetic constants of
the medium in D’, k = w+/€pn, and the boundary condition is

[N,[E,N]]=0 onS :=aD. (2.2)
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Here, and below, N := Nj is the unit normal to S pointing into D’, [E,N] = E X N is the vector
product of two vectors, E - N = (E, N) is the scalar product, |S| is the surface area.
The incident field Ej is

_ V X E,

EO = Seik(l'x, HO B
lwu

2.3)

where @ € S? is a unit vector, the direction of the incident plane wave, and it is assumed that
& - a = 0. This assumption implies that

V-Ey=0, V-Hy=0. (2.4)
The field E to be found is
E =Ey+ vg, (2.5)
where the scattered field vg satisfies the radiation condition
0
r (% - ikvE) =o(l), r:=|x| = co. (2.6)
r

In Equation (2.6), o(1) is uniform with respect to the direction §:= 2 of the scattered field as
r — 00,
The scattering amplitude A(8,a, k) is defined as usual,

eikr 1 X
VE = A(ﬂ,a,k)+0(—), r=lx] -0, B=-. 2.7
r r r
The magnetic field H = Hy + vy,
VXE V x
H=-"" oy=-""F 2.8)
iwu iwu
Let us look for the solution to scattering problems (2.1)-(2.6) of the form
oiklx—tl
E=Ey+VXx /g(x,t)](t)dt, g(x,t) = ——, (2.9)
s 4r|x — 1|

where J is a tangential field to S. We assume that S € C2, that is, S is twice continuously differen-
tiable.
Equations (2.1) are satisfied if

VXE
VXxVXE =k’E, H=—. (2.10)
iwu
Since E| satisfies Equations (2.10), these equations are equivalent to
V x
VXVxXog=kop  vg = —E @2.11)
iwu
Equation for vg is equivalent to the following equations:
(V2 + kg =0, V-vg =0inD’, (2.12)

because VXV X vg = VV - vg — Vig and V - vg = 0. Conversely, Equations (2.12) are equivalent
to (2.10) and to (2.1).
The radiation condition is satisfied by

vg =V X /g(x,t)J(t)dt
S

for any vector-function J(¢).
Boundary condition (2.2) yields
J

5 +TJ = % + /[Ns,[ng(s,t),J(t)]]dt = —[N;, Eo], (2.13)
s
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where the formula

X—Ss"

lim [N,V X /g(x,t)J(t)dt] = @ +TJ (2.14)
S

was used, see Ref. 15. Let us prove that Equation (2.13) has a solution and this solution is unique in
the space C(S) of continuous on S functions. This proves that the scattering problem can be solved
by formula (2.9) with J solving (2.13).

Theorem 2.1. If D is sufficiently small, then Equation (2.13) is uniquely solvable in C(S) and
its solution J is tangential to S.

Proof. Note that any solution to Equation (2.13) is a tangential to S field. To see this, just
take the scalar product of Ny with both sides of Equation (2.13). This yields Ny - J(s) = 0. In other
words, J is a tangential to § field.

Let us check that the operator T is compact in C(S). This follows from the formula

TJ = /S (ng(s,t)NS I - J(z)ag(;j )) dt. (2.15)
Indeed, if J is a tangential to S field, then
N, - J(s) = 0. (2.16)
Since S € C?, relation (2.16) implies
INs - J@)] = O(|s —tD[J@)],  |Vsg(s.0)Ns - J(1)] < O (|S—i[|) |J(D)]. (2.17)

Thus, the first integral in (2.15) is a weakly singular compact operator in C(S). The second integral
in (2.15) is also a weakly singular compact operator in C(S) because

'ag(s’t) =0( ! ) (2.18)
s — 1]
ifS e cC.

IN
Consequently, Equation (2.13) is of Fredholm type in C(S). The corresponding homogeneous
equation has only the trivial solution if D is sufficiently small. This follows from the following
argument. The homogeneous version of Equation (2.13) means that the function

vg =V X /g(x,t)](t)dt
s
solves Equations (2.12), satisfies radiation condition (2.6), and

[N,vg] =0 onS. (2.19)

This implies that vy = 0in D’.

Lemma 2.1 (see below) implies that if vg =0 in D’ then J = 0. This conclusion and the
Fredholm alternative prove the existence and uniqueness of the solution to Equation (2.13). The
smallness of the body D guarantees that k* is not a Dirichlet eigenvalue of the Laplacian in D.
Theorem 2.1 is proved. O

Lemma 2.1. Assume that the following conditions hold:

a) vg=0inD’

b) Jistangential to S, and

¢) k% is not a Dirichlet eigenvalue of the Laplacian in D.
Then, J = 0.

Proof. Denote A = [, s 8(x,1)J(t)dt and use the formula

/VxA~de=/ A~Vdex—/N~[A,B]ds=/ A -V x Bdx, (2.20)
7’ ’ S ’
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valid for any B € C°(D’). If V x A = 0 in D’, then formula (2.20) yields

/,A -VxBdx =0, VYBeCy[D). 2.21)

Write this formula as
/SdtJ(t) . /D/g(x,t)F(x)dx =0, F:=VXB. (2.22)
The set of vector-fields F' coincide with the set of divergence-free fields V- F = 0 in D’, where

F e Cy(D).
The set of vector-fields

G(t) = /D,g(x,t)F(x)dx, YF € C) (D),

where it is not assumed that the condition V - F = 0 holds, is dense in the set L*(S) of vector fields.
Indeed, if there exists an /& # 0 such that

/h(t)/ g(x,t)F(x)dxdt =0, VF € Cy(D), (2.23)
s D’
and w(x) = [ g(x,1)h(r)dt, then

/ w(x)F(x)dx =0, YF e Cy(D).

Thus,
w(x) = /g(x,t)h(t)dt =0 inD'. (2.24)
s
Consequently,
(V*+kHw=0 inD, w=0 on S. (2.25)
Since k? is not a Dirichlet eigenvalue of the Laplacian in D, Equation (2.25) implies w = 0 in D.
Therefore, w = 0in D U D’. This implies & = 59_1\% - % = 0. Consequently, the set G(¢) is dense in

the set L*(S) of vector fields on S.
We claim thatif V- F = 0in D’, where F € Cg"(D’), thenV-G=0o0nS.
Indeed,
V- / glx,t)F(x)dx = —/ V,g(x,t) - F(x)dx = / g(x,t)V - F(x)dx = 0. (2.26)
D’ D’ D’

Conversely, if V- G = 0 on S, then Equation (2.26) show that

/ g(x,t)V - F(x)dx = 0,V € S.
D/

Let us use the local coordinate system with the axis x3 directed along the outer normal N to
S, and x1(s), x2(s) are coordinates along two orthogonal axes tangential to S. Let us denote by e;(s)
and e;(s) the unit vectors along these axes at a point s € S.

Equation (2.22) can be written as

/ J(t) - G(t)dt = 0 2.27)
S

for all smooth G(r) suchthat V-G =0on S, G = [, g(x,1)F(x)dx,V - F = 0.
Let J(t) = Ji(t)e(t) + Jao(t)es(t) in the local coordinates. For an arbitrary small § > 0, one can
choose G(t) and G,(t) such that

71 = Gillpas) + 12 = Gallpas) < 6, (2.28)
where the over-bar denotes the complex conjugate. With G| and G, so chosen, choose G5 such that

V-G=0 on S, (2.29)
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which is clearly possible. Then, Equation (2.27) yields

/ (P + 1Py = 0). (2.30)
N

Since 6 > 0 is arbitrary small, relation (2.30) implies J; = J, = 0. Therefore, J = 0.
Lemma 2.1 is proved. O

As was stated above, it follows from Lemma 2.1 and from the Fredholm alternative that Equa-
tion (2.13) is uniquely solvable for any right-hand side if k> ¢ o"(Ap), that is, if k? is not a Dirichlet
eigenvalue of the Laplacian in D. If D is sufficiently small, which we assume since a — 0, then
a fixed number k? cannot be a Dirichlet eigenvalue of the Laplacian in D because the smallest
Dirichlet eigenvalue of the Laplacian in D is O(ﬁ) > k%ifa — 0.

Remark 2.1. The assumption k* ¢ o(Ap) can be discarded if g(x,t) is replaced by g(x,t), the
Green function of the Dirichlet Helmholtz operator in the exterior of a ball Be := {x : |x| < €},
where € > 0 is chosen so that k* ¢ o-(Ap\g,). This choice of € > 0 is always possible (see Ref. 8,
p- 29).

Let us denote by V the operator that gives the tangential to S component vg, of the unique
solution vg to scattering problems (2.1)-(2.3) and (2.6),

E = Ey+ vg, ver = V(=[N, Ep)). (2.31)

If the tangential component vg, is known, then vg is uniquely defined in D’. This is a known fact,
see, for example, Ref. 15. The operator V is linear and bounded in C(S). It maps C(S) onto C(S) and
vg has the same smoothness as the data [N, Eg]. For example, if S € CY, then vz € CY(D’), where
> 0.

Define
Q= / J(t)dt. (2.32)
s
From formulas (2.7), (2.9), and (2.32), it follows that
ik
A(B,a.k) = 4—[,3,Q]. (2.33)
s
For body D, one has
/[N, Eolds = / V x Eydx =V x Ey|D| = V x Eycpa’, (2.34)
s D

where | D] is the volume of D and cp > 0 is a constant depending on the shape of D. For example, if

D is a ball of radius a, then cp = *4F.

One has the formula (see Ref. 15, p. 8)

t 1
- /S %ds =5 +o(l). a—0. (2.35)
Since Ny - J(s) = 0 and S is C% — smooth, it follows that | N, - J(¢)| < c|s — ¢||J(¢)|. Therefore,
1
I:= /ds / dtVeg(s,t)Ng - J(t)| < ¢ / ds / dt——|J(@)| (2.36)
s s s s Is—1l

and I < O(a) fs |J(r)|dt. If I would satisfy the estimate I = o(Q), as @ — 0, then the theory would
simplify considerably and one would have Q = —V X E|D| = =V x Ecpa®. Unfortunately, estimate

I = 0(Q) is not valid, and one has to give a new estimate for the integral /; := [ gds J. 5 dtVg(s, )N -
J(t). To do this, integrate Equation (2.13) over S, use Equations (2.15) and (2.35), and get

Q+1) = —cpa’V x E. (2.37)

Let us write I as

I = e,,/srpq(t)Jq(t)dt, (2.38)
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where {ep};:1 is an orthonormal basis of R3,

T,(t) = / a%(s’t )N, (5)ds, (2.39)
S Sp

and the integral in formula (2.39) is understood as a singular integral. Thus, Equation (2.37) takes
the form

(I +1)Q = —cpa’V x E,. (2.40)

Here, the constant matrix I' is determined from the relation

ro= ep/sl“pq(t)Jq(t)dt, (2.41)

and the summation is understood over the repeated indices p,q, so I' is the matrix which sends a
constant vector Q onto the constant vector /; defined by Equation (2.38).

One can prove that the constant matrix I exists and can be determined by Equation (2.41), and
the matrix 7 + I' is non-singular.

To prove that a constant matrix I exists, assume that for every p = 1,2,3, the set of func-
tions {l"l,q(t)};:l is linearly independent in LX(S), [T (t)dt # 0, and Q = [ J(r)dt # 0. Here,
J(@) = 22:1 e4J,(t). For a fixed p, let M,, be the set in L*(S) orthogonal to the linear span of I',4(?).
Then, every function J,(¢) can be represented as J,(¢) = Jg(t) + 23:1 cq;Tpj(t), where Jg € M, and
cq; are constants. One has

3
; /S Cpg(0)J(0) =

where y,.,; is a constant non-singular matrix for each p because the set {l",,q(t)}f]:1 is assumed
linearly independent. To satisfy Equation (2.41), one has to satisfy the following equation:

3

3
Z cqj/Squ(t)ij(t)dt = Z CaiYpiar

q,j=1 q,j=1

3 3
Z CqjYpiaj = erchr
q.j=1 q=1

Since we assumed that Q # 0, at least one of the numbers Q, # 0. If there is just one such number,
say, Oq4, # Oand Q, = O for g # g, then we setI',,, = Q;]‘ Zf”.:l CqjYpiqj» Q@ = eq,Qq, Where there
is no summation over g, and I';,, = 0 for g # q1. If, for example, Q,, # 0, b = 1,2, then we may
set T, = 500 Yo 21 Cq¥pgj and Tpg = 0 for g # gy, b = 1,2. 1f Qg # 0 for g = 1,2,3, then we
may set [pg = $0' 20 ) ¢V piqs-

A more physical choice of I, is the following one:

o, < 3

. 4q 2

Gy = 2 Sy 310 >0
Zm:1 IQm| b,j=1 m=1

[
m’ so that 5 TpgQq = 23, -1 b Y pi-

A simpler approach to finding I' = (I',,), which automatically leads to a diagonal matrix
I'=yl with a number y and the identity matrix [, is to find y from the condition
lep [s Tpq()Jy(t)dt — ce,, [ Jp(1)dt| = min, where the minimization is taken over the number
¢ and |-| is the length of a vector. The solution of this minimization problem is

2 0pX
;f,_:ll—lgplf’ where X, = [(T,4(t)J,(t)dt. For this choice of T, one has
I+D)'=0+y)'L

From the computational point of view, it is simpler to use the formula with the diagonal I to

calculate the number ¢, := (1 + ¥)7!, and to calculate the Q by the formula

Corresponding to this choice weights are

Cmin =Y =

0= —ccha3V x Ey, ¢y =1+ ¥

The existence of the constant matrix I',,, in Equation (2.41) is proved.



091901-8  A.G.Ramm J. Math. Phys. 56, 091901 (2015)

To prove the second claim, namely, that the matrix / + I' is non-singular, it is sufficient to prove
that dim R(1 + I') = 3, where R(B) is the range of the matrix B. The range of the matrix I + T
consists of the vectors —cpa’V X Ey. Let us check that the range of the set of vectors {V x Ey}
equals to 3, dim{V x Ey} = 3, where Ey = Ee'***, @ - & = 0, a € S?, and & runs through the set of
arbitrary constant vectors. Since V X Ey = ik[a,E]e’ @~ and one can obviously choose three pairs
of vectors &, @ such that the three vectors [«,E] are linearly independent and « - & = 0, the second
claim is proved.

Since the matrix  + I' is non-singular, Equation (2.40) yields a formula for Q,

Q = —cpa’(I1+T)"'V x E,. (2.42)

Let us formulate the result using the simplified diagonal form of the matrix I'.

Theorem 2.2. One has
Q = —cpa’c,Vx Ey,, a— 0, ¢, = (L+y) " (2.43)

To use this result practically one has to solve numerically integral equation (2.13) for J, calculate
2 _10pX
Q = [gJ(t)dt = 23,:1 ¢,0,, then calculate y = =227 'where X, := Js Tpg(t)Jq(t)dt, and then

1 10pP
use formula (2.43).
From formulas (2.3), (2.33), and (2.43), one calculates A(B, @, k).

B. Many-body scattering problem

Let D,,, 1 <m < M = M(a) be small perfectly conducting bodies of the characteristic size
a, Xx,m € Dy, D = U%:l D,,, D,, c Q,D’' =R? \ D. Assume that D,, are distributed in a bounded
domain Q according to the formula

N(A) = %/AN(x)dx(l +0o(1)), a-0, (2.44)

where A C Q is an arbitrary open subset of Q, N(x) > 0 is a continuous in Q function which can be
chosen by the experimenter as he/she wishes. Let us assume that relation (1.1) holds. If Q is a cube
with the size L, then

L\’ 1
(3) =0M) = 0(5),

so d = O(La). Therefore, condition d > a can hold if L is sufficiently large. If L is fixed, then the
condition d > a can hold if N <« 1, because under this assumption about N one has

(Jo N(x)dx) /

The many-body scattering problem consists of solving Equations (2.1) with D = U%:l D,,,
with boundary conditions (2.2), where S = U%: \ Sm» and with radiation condition (2.6). The solu-
tion to this problem is unique.

We look for the solution of the form

M
E=Ey+ ) VX / g(x, 1) u(1)dt. (2.45)

m=1 m

This formula can be written as

M
E= Bt Y Vet Qnl 4 fo Q= [yt (2.46)
m=1 m
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where

M M
7= 239 [ (gt (0 = ) . @47)
m=1 m m=1

Let us show that for all m one has

|fml < 1In| = |[VE(x, ), Omll, @ — 0. (2.48)

If (2.48) holds, then the asymptotically exact solution of the many-body scattering problem is of the
form

M
E=Ey+ ) [Ve(x,xn),Qul,  a—0. (2.49)
m=1

This is a basic result: it reduces the solution to the many-body scattering problem to finding quan-
tities Q, rather than to finding the vector-functions J,(t). Such a reduction makes it possible to
solve the many-body scattering problem for so many particles that it was not possible to do earlier.
Our assumptionis a < d < A. Since k = 27" it follows that a < d < kL.
To check inequality (2.48), note that

|Vg(x,xm)| < O ((k + d‘l)é) = 0(%), |x = x| = d, (2.50)
[Vg(x,t) — Vg(x,x,)| < O (a(k + dl)%) , = xml < a. (2.51)

Thus, |1,,] = O (|Qm ﬁ), |fm| <O (|Qm|a(k + d‘l)ﬁ), and Q,, # 0. Consequently,

j;—’" <O (ka+ad™')< 1. (2.52)

m

Note that our basic physical assumption a < d < A implies ka < ad™! because k = 27”, sok < &

d
and ka < 4.
Let us define the notion of the effective field E, acting on the j-th particle
M
E, = Eo(x) + Z V x / g(x,0)Im(t)dt. (2.53)
m#j Sm

As a — 0, the effective field is asymptotically equal to the full field because the radiation from one
particle is proportional to O(a?), see Theorem 2.3 in Section IT A.

If
a
ka + 7 <1, (2.54)
then, with the error negligible as a — 0, one has
M
E = Ep+ ) [Ve(x.xm), Qnl, (2.55)
m=1
where
Om = —a’cp, (I +T)'V X E,(x,). (2.56)

If the quantities A, := (I + I)"(V x E.)(x,,),1 < m < M are found, then the solution of the many-
body scattering problem for perfectly conducting small bodies of an arbitrary shape can be found by
formulas (2.55) and (2.56).
The shape of the small bodies enters only through the constants cp,,,, since |D,,| = cDma3.
In order to solve many-body scattering problem, one needs to find the quantities A,,. Let us
reduce the problem of finding A,, and E,, to solving linear algebraic systems (LASs).
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Put x = x;, Eo(x;) := Epj in (2.55), assume for simplicity that cp,, = cp for all m, that is, the
small bodies are identical, let m # j and get

M
Ej = Eoj—cp ) [Ve(xjxm), Anld®, 1<j<M. (2.57)
m#j
There are 2M vector unknowns A,, and E,, in this LAS and M equations. One needs another set of
M linear equations for finding these unknowns.
To derive these equations, apply the operator (I + I')"!Vx to Equation (2.55), denote Agj =
(I + T)"Y(V x Ey)(x;), and set x = x;,j # m in the resulting equation. This yields a LAS,

M
Aj=Agj—cpa® Y (1 + )7V X [Ve(x, xm) Ap]) ey 1< j < M. (2.58)

m#j
Formula
Vi X [F(x),A] = (A,V)F(x) — A(V, F(x)),

valid if the vector A is independent of x, can be useful.

If M is very large, then the order of LAS (2.57) and (2.58) can be drastically reduced by the
following method.

Let ngl A, be a partition of Q into a union of cubes A, with the side b= b(a),
lim,_,0 b(a) = 0. Assume that

b>d>a, lim % =0. (2.59)

a—0

At the points x,,, € Ap,, the values of A,, and of Vg(x,x,,), where x ¢ A, are asymptotically equal
as a — 0. Therefore, Equation (2.58) can be rewritten as

Ay = Ao — Cp Z I+ )7V, X [Vg(x,xp). Ap]) [x=rga Z 1, (2.60)
pP*q Xm€Ap
and Equation (2.57) can be transformed similarly. Here, x, € A, is an arbitrary point, D,, C A,
Xm € Ap, Dy, are small bodies in A,,. Since A, is small the quantities A,,, E,,, and g(x;,x,,) for x,,
in A, and x; € Ay, p # g, are equal to A, E,, and g(x,, xp,), respectively, up to the quantities of
higher order of smallness as a — 0.
By (2.44), one has

3 Z 1= d’N(Ap) = N(xp)lA,, a— 0, 2.61)

xXm€Ap

where |Ap| is the volume of A,,. Thus,

Eq = EOq - CD Z[Vg(xq’xp)s Ap]N(xp)IAPL l S q S P9 a — 09 (262)

pP#q

P
Ag =Aog—cp Z ((I +)7'v, x [Vg(x,xp),Ap]N(xp)IAp|)|x:xq, 1<g<P, a—0. (2.63)
p*q

Equations (2.62) and (2.63) are a LAS for 2P unknowns Ay, E,, P < M. Computational work
can be considerably reduced if one solves first system (2.63) for P unknown vectors A, and then
calculate P unknowns E,, by formula (2.62).

Since P < M, the order of LAS (2.62) and (2.63) is much smaller than the order of LAS (2.57)
and (2.58).

A similar argument allows one to replace Equation (2.55) by the following equation:

P
Eeq = EOq —Cp (V X Z g(x’ xp)((l + r‘)—lv X Ee)(-xp)N(xp)|Ap|) |x=xq» (264)
P*q
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where the formula [Vg(x), A] = V x (g A) was used. This formula is valid for a scalar function g of x
and a vector A, independent of x.
Formula (2.64) is a Riemannian sum for the following limiting integral equation:

E(x) = Ey(x) — cpV X [zg(x, y)(I + )~'v x E(y)N(y)dy. (2.65)

The method used for the derivation of equation (2.65) in contrast to the usual assumptions of the
homogenization theory does not use periodicity assumption and the operator of our problem does
not have a discrete spectrum.

Let us state our result.

Theorem 2.3. If assumptions (2.54) hold, then the unique solution to the many-body scattering
problem can be calculated by formula (2.49), where Q,, are given in (2.56) and (I +T)™1(V x
E.)(x,) = Ay and E.(x,,) = E,, are found from the LAS (2.57) and (2.58). The order of LAS
(2.57) and (2.58) can be drastically reduced if assumptions (2.59) hold, and one obtains LAS (2.62)
and (2.63) of the order P << M. As a — O, the electric field in the medium tends uniformly to the
limit E(x) which satisfies equation (2.65).

Apply the operator V x Vx to Equation (2.65) and use the formulas
VxVx=VV--V% V.E=0, -V’g=kg+6(x-y).

Assume for simplicity that I is a diagonal matrix, I' := v/, and let Cp := ICTL;. Then,

VXVXE=kE-CpV x(Nx)VXE)=k*E -CpN((x)VxVxE-Cp[VN,V x E]. (2.66)
Consequently,

k’E Cp[VN,V x E]
1+ CDN(X) 1+ CDN(X) '

It is clear from (2.67) that the refraction coefficient in the medium where many small perfectly
conducting particles are distributed is changed: the new refraction coefficient is proportional to

VXVXE =

(2.67)

-1
(1 + CpN (x)) . The second term on the right-hand side of Equation (2.67) can be interpreted as
coming from the new magnetic permeability. Indeed, if u = u(x) in Maxwell equations, then taking
Vx of the first equation and using the second equation, one gets:

Vu(x)
H(x)

Compare this formula with Equation (2.67) and conclude that p(x) = (1 + CpN (x))

Since V- E =0,0onehas Vx Vx E = VV - E — V’E = —V?E, and since N(x) > 0 is compactly
supported, Equation (2.67) is a Schrodinger-type equation with compactly supported potential and
the terms with the first derivatives, the coefficients in front of which are compactly supported. The
solution of this equation satisfies the radiation condition at infinity.

VXVXE=kE+]|

,VXE].

-1

lll. SCATTERING BY ONE IMPEDANCE PARTICLE OF AN ARBITRARY SHAPE

The problem consists of finding the solution to system (2.1), assuming that E = Ey + vg, Ey is
given in (2.3), the scattered field vg satisfies radiation condition (2.6), and E satisfies the impedance
boundary condition

[N,[E,N]] =¢[N,H] onS, Rel=>0, (3.1)
where { is a number, the boundary impedance. We will use condition (3.1) in the form
[N.[og.NT] = [N,V x 0g] = . (32)

iwu
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where

f =[N,[Ey,N]] - ,i[N,V x Ey]. (3.3)
iwp

Let us look for the solution of the scattering problem with the impedance boundary condition in
form (2.9) where J(¢) is a tangential field to S.

It was not known if this solution could be represented in form (2.9). We prove in this section that
one can find the solution in form (2.9) and the scattered field can be found in form (3.4), see below.

The uniqueness of the solution to the EM wave scattering problem by an impedance body is
known (see a proof in Ref. 15). The existence of the solution in the form involving a sum of four
boundary integrals was known (see Ref. 2), but such a representation of the solution is not useful
for our purposes. We want to give an explicit closed-form formula for the field scattered by a small
impedance particle of an arbitrary shape.

The integral equation for J, which one gets by substituting

v =V X /g(x,t)](t)dt (3.4)
s

into boundary condition (3.2), is not of a Fredholm class: it is a singular integral equation.

Our approach to solving the scattering problem for a small impedance particle can be described
as follows. We prove that its solution exists and can be represented in form (3.4) by using the
general theory of elliptic systems (see Ref. 18) and checking that the complementing or covering
condition, also known as Lopatinsky-Shapiro (LS) condition, is satisfied (see Ref. 16).

Note that if the solution exists, it can be found in form (3.4). Indeed, one can calculate [N, e] on
S, and solve the problem for perfectly conducting particle with the boundary condition [N, e] on S.
If [N,e] on S is known, then e is uniquely determined, so the corresponding scattering problem is
uniquely solvable and its solution, as follows from Theorem 2.1, can be found in form (3.4).

Next, we prove that asymptotically, as a — 0, the main term in the scattered field is given by
the formula

ve = [Vg(x,x1),0], a—0, 3.5)

where x| € D is an arbitrary point inside the small particle D, and

Q= /J(t)dt. (3.6)
S

This is an important point: not the function J(t) but just the quantity Q defines main term of the
scattered field if the body D is small, ka < 1. From the physical point of view, solving the scattering
problem is reduced to finding vector Q rather than the vector-function J(t). From the numerical
point of view, such a reduction makes it possible to solve scattering problems with so many small
particles that it was impossible to solve such problems earlier.

Finally, we give, as a — 0, a formula for Q,

= _ﬂﬁv X Ep, 3.7
iwp

see formula (3.40) below, where 7, := (I + I') ', and 7 is defined in formula (3.8).
In formula (3.7), |S| is the surface area of S := dD, { is the boundary impedance (see condition
(3.2)), and the tensor 7 is defined as follows:

1
Tjp = (5],, - bjp, bjp = E/SNJ'(Z)NP([)L#. 3.8)

Formulas (3.5), (3.7), and (3.8) solve the EM wave scattering problem for a small impedance
body of an arbitrary shape. It follows from formula (3.7) that Q = O(a®>) because |S| = O(a?) and
{=0(@)asa— 0.

Let us prove these statements. We start with the uniqueness and existence of the solution of the
scattering problem with the impedance boundary condition.
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Uniqueness of this solution is known (see Ref. 15, p. 81). Let us reduce solving Maxwell’s
system (2.1) to an equivalent elliptic system for E. If E is found then H is given by the formula
VXE

H - .
iwu

(3.9)

Assume that y = const in D’. Apply the operator VX to first equation (2.1) and use second equation
(2.1) to get

VXVXE=FKE, V-E=0, inD, (3.10)
where k? = w’ep. Equations (3.10) imply
(V2+K*)E =0, V-E=0 inD" 3.1
Since Ej solves Equations (3.11) in R3, one concludes that
(V2 +k*)vg =0, V-vg=0 inD" (3.12)
Equations (3.12) could be replaced by one elliptic system
(-V*=k*)og=0  inD’ (3.13)
and the boundary condition
V-vg=0 on S. (3.14)

Indeed, the function ¥ (x) := V - vg solves the problem
(V2+k)y =0 inD, yl|s=0, (3.15)

and y satisfies radiation condition (2.6). This implies (see Ref. 8, p. 28) thatyy = 0in D’.

Therefore, our scattering problem is reduced to solving elliptic system (3.13) with boundary
conditions (3.14) and (3.2) and radiation condition (2.6).

Let w(x) := (1 + |x|*), where y > % be a weight function. This weight is chosen so that the
functions vg, that are O(ﬁ) as |x| = oo, belong to L*(D’,w). By HX(D’,w), the weighted Sobolev
space is denoted.

Theorem 3.1. The solution vg to elliptic system (3.13) with boundary conditions (3.14) and
(3.2) and radiation condition (2.6) exists in H*(D',w), is unique, vg = O(ﬁ) as |x| = oo, and vg
can be found of form (3.4).

Proof. Clearly, system (3.13) is elliptic. Let us check that the LS (complementary) condition is
satisfied. The principal symbol of operator (3.13) is &26 pq> wWhere £ is the parameter of the Fourier
transform

u(x) = / (&) ~dé. (3.16)
R3
IfD;:=-i %, then Equation (3.13) can be rewritten as follows:
3
> Do -k =0 inD'. (3.17)
j=1

Boundary conditions (3.2) and (3.14) can be written in the form

B(D)vg = F, F = (g) (3.18)
where D := (D1,D,,D3), f is a two-dimensional vector in the tangential to S plane in the local
coordinates, and the zero component in the vector F in formula (3.18) comes from the condition
V-vg = 0on S. The matrix B(D) is defined by one vector boundary condition (3.2) and one scalar
boundary condition (3.14). In the local coordinates on S, in which the exterior unit normal N to S
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is directed along the z-axis, one has N = (0,0, 1), and the principal symbol of the boundary matrix
differential operator B(D) is

; —-i&z 0 i&
BE=——1 0 -if i&). (3.19)
Mlie, ie ig

The operator D, is mapped by Fourier transform (3.16) onto &;.
Let D, := Ds. The LS condition holds if the following problem

d2
(—ﬁ + pz) u(nént) =0, t>0, p*i=¢&+63, (3.20)

B(&1,62, Du(ér,62,1)]i=0 = 0 (3.21)

has only the zero solution, provided that one uses exponentially decreasing, as t — oo, solution of
Equation (3.20), that is, u = e™"Pv, v = v(&1,&) = (1,02, 3).
Therefore, the LS condition holds if and only if the matrix

—-ip 0 &
0 -ip i& (3.22)
& & ip
is non-degenerate for p > 0. The determinant of this matrix equals to
—ip(p*+E+ED 0 if p > 0. (3.23)

Thus, the LS condition holds. This implies the Fredholm property of the corresponding problem in
the spaces H™(D’,w) where w = (1 + |x|>)7, y > %, that is, in the weighted Sobolev spaces with
the norm o2, = f D 20 |D'v|?w(x)dx. The weight w is chosen so that the functions decaying as
O(|x|™") at infinity belong to H™(D’,w). Since the LS condition holds, the elliptic estimate holds for

the solution to problems (3.13), (3.14), (3.2), and (2.6):

loellmez < € (V2 + Kol + 1BOWE,,, + Ieelo)

2
< ¢(1/1,eg + Imoelh) (3249
where 7 is a smooth non-negative cut-off function vanishing near infinity, ||v],, is the norm in
H™(D’,w), and |v|,, is the norm in the Sobolev space H™(S) on the boundary S, see Ref. 18.
Due to the uniqueness of the solution to the scattering problem, one can reduce estimate (3.24)
to the following estimate:

lVEllms2 < €l fl,, 1, (3.25)

where ¢ > 0 here and below denotes various estimation constants. To prove estimate (3.25), assume
that it is false and derive a contradiction. If estimate (3.25) is false, then there is a sequence vg,,
lvEnllm+2 = 1, such that

||UEn||m+2 = n|fn|m+% (326)

Therefore, in any compact subdomain D" of D’, one can select a convergent in H L (D), I < m,
subsequence which we denote again vg,. Assume for concreteness that m = 0. Then, by the Sobolev
embedding theorem, vz, converges strongly in H(D"") for [ < 2. Estimate (3.24) implies that

lvej = vEmllmapry < cfi = fmh2 + In(e; = vEm)llgoprny — 0 as j,m — co.
Thus, vg, converges in H*(D"’) to some element v, ||v||; = 1. It follows from estimate (3.26) and
from the relation |Jvg,|l, = 1 that |f,]1 — 0 as n — oo. Let us check that v satisfies the radiation
2
condition. This is done as follows. Denote vg, := v,, and write the Green’s formula,

e v,
0 = [ (000 str0) 32

)ds. (3.27)
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Pass to the limit # — oo in this formula. This is possible since, by the Sobolev embedding theorem,
the embedding of H!(D"’) into H'(S) is compact if [ > % provided that D” c R3, see Ref. 5. Due to
the local convergence in H'(D"), % < I <2, one can pass to the limit n — oo in Equation (3.27) and
get

o) = [ (5200 - st )as. (328

This implies that v satisfies the radiation condition.

Therefore, v solves the homogeneous scattering problem and, by the uniqueness of the solution
to this problem, v = 0. This contradicts the normalization ||v||, = 1, and the contradiction proves
estimate (3.25).

The index of our problem is zero.

This follows from the uniqueness of the solution to the homogeneous version of scattering
problems (3.13), (3.14), (3.2), and (2.6), see also Lemma 2.1.

Equation (3.2) can be written as

ver = < V(INY x vg:]) - V(). (3.29)

iwu

where the operator V was introduced in formula (2.31), and vg. is the tangential component of vg.
Let us assume that f € H™(S). If vgr € H™(S), then V X vg, € H™!(S). Therefore, it follows from
Equation (3.29) that V([N,V X vg.]) € H™(S). This means that V acts from H™~'(S) into H™(S).
Since the embedding from H™(S) into H"~'(S) is compact, V is compact in H"(S).

We have proved the existence of the unique solution to problems (3.13), (3.14), (3.2), and (2.6).
This problem is equivalent to scattering problems (2.1), (3.1), (2.5), and (2.6).

Let us prove that if a solution to this scattering problem exists, then the scattered field vg can be
represented in form (3.4).

Let E solve problems (2.1), (3.1), (2.5), and (2.6). The tangential component [N,[E,N]] on
S determines uniquely E in D’. There is a one-to-one correspondence between E and vg, where
vg = E — Ey, and v satisfies boundary condition (3.2) with f defined in (3.3). The vg of form (3.4)
can be found from equation of type (2.13). Theorem 2.1 guarantees that this equation is solvable for
J and the solution is unique. The corresponding vg, defined by formula (3.4), is the scattered field,
and E = Ej + vg is the unique solution to scattering problems (2.1), (3.1), (2.5), and (2.6).

Theorem 3.1 is proved. O

Corollary 3.2. The smoothness of vg is % derivatives more than the smoothness of the data f,
as follows from estimate (3.24).

Lemma 3.3. Formula (3.5) is asymptotically exact.
Proof. The proof is similar to the proof of formula (2.49). Namely, one has

E =Ey+[Vg(x,x1),0]+V x /S(g(x,xl) —g(x,1) J(t)dt, (3.30)

where x; € D is an arbitrary point and

0= / J(t)dt. 3.31)
S

Note that g(x,x;) = O(é), where d := |x — x;|. When one differentiates g, one gets
1 1
Vel =0(5(k+ ). di=|x—xi, (3.32)

IV (g(x,x1) — g(x,0))| =0 ((IZZ dz)a(k + )) a=|x—t|<d<k (3.33)
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The quantity Q does not vanish. Thus, the ratio of the third to the second term on the right-hand side
of Equation (3.30) is of the order

) (ka + g) <. (3.34)

Lemma 3.3 is proved. O

Corollary 3.4. Formula (3.5) shows that solving the scattering problem by a small body
(ka < 1) amounts to finding one quantity Q rather than the function J(t) on S.

This is crucial for the solution of the many-body scattering problem that we present in Sec-
tion IV.

Lemma 3.4. Formula (3.7) holds as a — 0.

Proof. Proof of Lemma 3.4 is based on the following idea: we take the vector product of N
with Equation (3.2), then integrate the resulting equation over S, and keep the main term as a — 0.
It

h
= pr k€[0,1), Reh=>0, (3.35)
then one obtains
0=0(a""), a-0. (3.36)

Theorem 3.1 gives a mathematical justification of the smoothness of vg and, therefore, of J(z)
provided that the data are smooth, see Corollary 3.2. This result is important for mathematical
justification of the boundedness of the second derivatives of the function J(¢), which is assumed
but not justified on p. 91 in Ref. 15. The estimates, necessary for a justification of formula (3.7),
are given on pp. 88-93 in Ref. 15. The term [¢ ds [ dtVg(s,t)N(s) - J(t) was neglected in Ref. 15.
This term depends on a vector whose components are f s Tpq(t)J4(t)dt. Here, and below, over the

dg(s,t)

repeated indices, summation is understood and I, (1) = [ sy

N,(s)ds, where the integral is
understood as a singular integral.
If one takes into account the term

/ds/dtng(s,t)N(s) -J(t) = e,,/F,,q(t)Jq(t)dt, (3.37)
S S S

where {ep};’7=l is an orthonormal basis of R, then in place of Equation (3.7) one obtains the
following equations:

/J,,(t)dt + /qu(t)Jq(t)dt = —@(TV x Eo,ep), 1<p<3. (3.38)
s S lwp

There exists a constant matrix I" := (I',) such that

ep /S T, ()], (t)dt = TQ, (3.39)

provided that Q # 0, which is our case. Equation (3.38) in this case takes the form (I + I')Q =

—%TV X Ey, and the matrix I + I" is non-singular since Q # 0. Therefore,
S
0= —M([ + )7V x E,. (3.40)
lwy
Lemma 3.4 is proved. O

The many-body scattering problem is discussed in Sec. IV on the basis of formula (3.7). This
is done for simplicity of notations, since formula (3.40) can be identified with formula (3.7) if one
replaces T by 7y := (I + )71,
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IV. MANY-BODY SCATTERING PROBLEM

This problem consists of finding E and H = %, which satisfy Equations (2.1) with D =
UAm’I:IDm C Q, E is of form (2.5) and satisfies the impedance boundary conditions on S,,, = dD,y,,
[N,[E,N]] = §m [N VXE] onS,; Rel,=>0, 4.1)

and radiation condition (2.6) for the scattered field vg. We look for vg of the form

M
Vg = Z Vx [ gx,0)Ju()dt, E = E+vg, (4.2)
m=1 Sm

where J,, is a tangential to S,, field.
The basic physical (and mathematical) assumptions are (1.1) and (1.3).
The basic results of this section can be described as follows:

1. The above EM wave scattering problem has a solution; this solution is unique and can be
found in form (4.2).
2. As a — 0, the main term of the solution to the EM wave scattering problem is

M
E=FEy+ Z [Ve(x,%m),Oml, a—0; Omi= / T(t)dt, 4.3)

m=1
where x,, € D, are arbitrary points.
3. An explicit, asymptotically exact as a — 0, formula for Q,, is derived,

0, = CnlSnl
iwu

Tn(VXE)(xp), 1<m<M, (4.4)
where |S,,| is the surface area of S,,,, ¢ = h(;‘,T), Re h > 0, where h € C(Q) is a function the
experimenter may choose as desired as well as the parameter «, x € [0,1), 7, is the tensor
defined by formula (3.8) with S = S,,,, and E,.(x) is the effective field acting on the particle
Dms

M
E.(x) = Eo(x) + Z V x / g(x.0)J,(t)dt. (4.5)
p#Fm Sp

Equation (4.5) is valid not only in a neighborhood of x,,. The field scattered by m-th particle is
proportional to a>™ and is negligible compared with E,(x) at any point x.

4. Derivation of a LAS for calculating Q,,.

5. Proof of the existence of the limit E(x) of the effective field E.(x) as @ — 0 and the derivation
of the equation for the limiting field E(x).

6. Physical interpretation of the equation for the limiting field E(x). Explicit formulas for the
new refraction coefficient and magnetic permeability.

The uniqueness and existence of the solution are proved similarly to the proof given in the case
of the scattering problem for one body. Formulas (4.3) and (4.4) are established as in our theory of
EM wave scattering by one body. An important point is the following one:

Each of the M small bodies can be considered under our basic assumption (1.1) as a single
scatterer on which the incident field E.(x) is scattered. Therefore, formula (3.7) remains valid after
replacing Ey by E., and this yields formula (4.4).

Formula (4.3) is derived along the same lines as formula (2.55). If

(VX E)Xm) = Ay (VX E)(X) = Ao, and [S,,| = cnd?,
then Equations (4.3)-(4.5) imply

h(Xm)ema®™

Aj= Aoy — V X Z [Vg(x Xm)s o

JjFm

TmAm] Y=z, 1<j <M. (4.6)
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This is a LAS for finding A,,. If A,, are found, then

h m)Cm 2—-k
Q= Mt 2y @.7)
iwy
For simplicity, one may assume in what follows that ¢,, = ¢y and 7, = 7 do not depend on m. One
can write Equation (4.3) as

2-k M
E(x)) = Eo(x)) - Cffm (D" 19806, xm), 7(V X E)(tm)] (i) L=y 1< j < M. (48)
JjEm

The order of LAS (4.6) and (4.8) can be drastically reduced.
Namely, consider a partition of £ into a union of small cubes A, Uﬁ _1Ap = Q. Assume that the

side b = b(a) of A, is much larger than d, b >> d, so that there are many small bodies D,,, in every
cube A, and

lim b(a) = 0. 4.9)

Recall that x,, € D,, is a point inside D,,. Let x,, € A, be an arbitrary point. For all x,, € A, the
values h(x,,) = h(xp) up to the error that tends to zero as a — 0, because £ is a continuous function
and b(a) — 0 as a — 0. The same is true for Vg(x;, x,,,) and for 7(V x E,)(x,,). Consequently, (4.8)
implies

E(xy) = Eo(xy) - w—# Z [Ve(xqrxp), T(V X E)(xp)] h(xp)a®™ > 1

q#*p xm€Ap
P
= Eo(x,) - uf)—oﬂ D V8 g xp) 7V X E)(xp)] hGp)N () A, (4.10)
q#p

Here, we have used assumption (1.3) in the form

ar* Z 1_/ N(x)dx(1+0(1)) = N(xp)|A,l, 4.11)

xXm€Ap Ap

where |Ap| is the volume of A, diam A, — Oasa — 0.
Equation (4.10) is the Riemannian sum corresponding to the integral equation,

B = Bis) = - /Q g PN ()TY X E(y)dy. 4.12)

Thus, the effective field E, has a limit E, as a — 0, and this limit satisfies Equation (4.12). We have
proved the following theorem.

Theorem 4.1. The effective field E.(x) in Q tends to the limit E(x) in C(Q) and the limiting
field E(x) solves Equation (4.12).

Let us interpret physically Equation (4.12). Let us apply the operator V X VX to Equation
(4.12). This yields, after using the formulas V x Vx = VV - -V? and V- Vx = 0, the following
equation:

VXVXE=VXVXE;— ,iV X / (—Vzg(x, ) h(y)N(y)TV x E(y)dy. (4.13)
iwp 0

Since V x V x Ey = k?Ey and —V?g(x, y) = k’g(x, y) + 6(x — y), Equation (4.13) can be written as
follows:

VX VXE=kE - -V x (h(x)Nx)TV x E(x)). (4.14)
iwp
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Assume that 7 is a diagonal tensor. For example, if D,, are balls, then 7,,, = %6 pq>SOT = %I , where
1 is the unit tensor. In this case,

2 2
Vx (hNTVXE) = SINV XV XE + 2 [V(hN),V X E]. (4.15)
Therefore, in this case, Equation (4.14) can be rewritten as follows:
2 2 \Y VxE
VXVXE = ZL_k | (lzlf_v)’ xEl (4.16)
1+ 3iw°ﬂ h(x)N(x) 3iop 1+ ﬁh(x)N(x)

The physical meaning of this equation becomes clear if one applies the operator VX to first equation
(2.1) assuming that u = u(x), that is, assuming that y is a function of x.
Then, one gets

VXVXE =ioux)Vx H+iw[Vu(x),H]. “4.17)

Using second equation (2.1), one reduces (4.17) to the following equation:

VxVxE =k’n*(x)E +

v

H v E] , k? = wleu(x). (4.18)
u

Comparing (4.18) with (4.16), one concludes that the following theorem is proved.

Theorem 4.2. The refraction coefficient in the new limiting medium is given by the formula

1

n(x) = , (4.19)
2c
V1 e h(ON(x)
and the magnetic permeability in this medium is given by the formula
u
Hx) = — , (4.20)
1+ 3in” h(x)N(x)
where u = const is the magnetic permeability in the original medium.
Note that according to formulas (4.16) and (4.18), one has
\Y 2 V (h(x)N
) 20 V(NG wa

) Biop ]+ 29 pN )

V. CREATING MATERIALS WITH A DESIRED REFRACTION COEFFICIENT AND A
DESIRED MAGNETIC PERMEABILITY

Formulas (4.19) and (4.20) allow one to give recipes for creating materials with a desired
refraction coefficient or a desired magnetic permeability.

Suppose that one wants to create a material with a desired refraction coefficient n(x) by embed-
ding in a given material many small impedance particles. One has to choose a bounded domain Q,
where the small particles should be distributed, and give a distribution law (1.3) for these particles in
Q. The function N(x) > 0 in (1.3) can be chosen by the experimenter. Next, one has to give bound-
ary impedances, defined by formula (1.2), where h(x), Re h > 0, is a continuous in Q function,
which can also be chosen by the experimenter as he/she wishes, as well as the parameter « € [0, 1).

Let us prove the following theorem:

Theorem 5.1. Any refraction coefficient n(x) can be obtained by choosing a suitable h(x).

Proof. Suppose that

2
h=h(x)+ihyx), hi(x):=Reh>0, N(x)=N =const, ;L =c; > 0.
wi
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Then, formula (4.19) yields

n(x) = ! . (5.1)
\/1 —icihi(x) + c1hy(x)
Let us define
Vz=1z"%'%, g=argz, 0<¢<2n

Since h; > 0 and h;, are arbitrary real-valued functions, let us denote

u(x) =1+ crhy(x), v(x) = crhi(x),
and write

1 1 ok arg(l+clh2(x)—iclhl(x)>. (5.2)

V1 + cirha(x) —icthi(x) B Vu? + v¥(x)
1

VuZ+0?

If |u| and |v| are arbitrary, so is . The argument ¢ of 1 + c1hy(x) —icihy € (m,2n) if hy > 0,

SO —% € (—%,—ﬂ). Choosing u and v suitably one can get a desirable amplitude ; - of the
u<+v
refraction coefficient and a desirable phase of it.
Theorem 5.1 is proved. O

Example. If —% ~ —7, then Re n(x) < 0 and Im n(x) < 0 can be made as small as one wishes,
so it will be negligible. Thus, the obtained material has negative refraction: the phase velocity is
directed opposite to the group velocity in this material. Recall that the phase velocity is v, = |‘"—| L
while the group velocity is vy = Viw(k).

Similar reasoning leads to a conclusion that a desired magnetic permeability can also be
created.
To do this, one uses formula (4.19). Indeed,

u _ H —ig
u(x) —iv(x) u?(x) + UZ()C)e ’

can be made arbitrary if /;(x) > 0 and /,(x) can be chosen arbitrarily. The

u(x) = @ € (m,2m). (5.3)

. 1
The quantlty m

argument ¢ € (7r,27) can be chosen arbitrarily.

Remark 5.1. Principal differences of our results and the results of other authors on wave
scattering by small bodies are:

1. For wave scattering by one body: we derive a closed-form explicit formula for the scattering
amplitude for small bodies of an arbitrary shape for four types of the boundary conditions (the
Dirichlet, the Neumann, the impedance, and the interface (transmission)), see Refs. 11 and 15.

2. For many-body wave scattering problems for small bodies of arbitrary shapes our condition
ka + ad™' < 1 allows one to have kd < 1, that is, it allows to have many small particles on
the wavelength. This means that the effective field in the medium in which many small particles
are distributed and the above conditions hold the effective field, acting on each small particle,
may differ very much from the incident field. That is, the multiple scattering effects are essential
and cannot be neglected.

3. For solving problems of many-body wave scattering by small bodies an efficient numerical
method is developed.

4.  For many-body wave scattering problems the limiting equation for the effective field is derived
in the limit when the size of small impedance particles tends to zero while the number of these
particles tends to infinity.

5. Arecipe is given for creating materials with a desired refraction coefficient by embedding many
small particles with prescribed boundary impedances into a given material.
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