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Abstract 

The growing demands for renewable energy sources have led researchers to investigate 

other biomass sources, aside from maize.  Grain sorghum is comparable to maize in its starch 

content and can be grown in regions with drier climates, where maize is a less suitable crop for 

these areas.  In attempts to increase yield prior to harvest and for ethanol production, this study 

focuses on mutant grain sorghum.  One hundred and nine mutant grain sorghum samples were 

analyzed for their chemical and physical properties and fermented into ethanol.  The current 

method for starch analysis is time-consuming and tedious.  Near infrared spectroscopy (NIR) 

models were developed as fast, cost-effective, and non-destructive methods for grain sorghum 

starch content analysis.  Each mutated grain sorghum sample was scanned in a wavelength range 

from 4,000 to 10,000 cm-1 as a whole grain and in flour form.  Partial Least Squares (PLS) 

regression method was used for NIR model development.  The coefficients of determination (R2) 

of 0.77 and 0.90 were achieved for starch content calibration and prediction models, 

respectively.  This model demonstrates the possibility of a positive correlation between the actual 

and calculated values for starch content.  Another PLS first derivative model with R2 = 0.95 for 

calibration and a reduced wavelength range (4,000-5,176 cm-1), using 39 of the original 109 

samples (27 for calibration and 8 for validation), was created to predict the fermentation 

efficiency. 
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Chapter 1 - Introduction 

 1.1 Problem Statement 

Despite policies being in place to encourage renewable energy, many obstacles prevent 

the production of biofuels on a larger scale.  One of the main challenges is the use of biofuel 

feedstock with a minimal impact on human food and animal feed production.  The main biomass 

source for first generation biofuels in the United States is maize.  However, with an increase in 

bioethanol production, maize has become overused as a renewable source, which affects the 

amount of maize used for human food and animal feed consumption.  An alternative crop that 

could be mixed with maize for ethanol production is grain sorghum.  Grain sorghum has been 

used to produce gluten-free food products for people with celiac disease (Liu et al., 2013).  Grain 

sorghum is also used for animal feed, but tannins can reduce the digestibility of starch and 

protein (Yan et al., 2009).  While maize can produce a higher yield, it also requires more water 

and fertilizer than other crops, such as grain sorghum (Assefa et al., 2014).  For this reason, grain 

sorghum, as opposed to maize, mostly thrives in the Central Plains, where there is a limited 

amount of rainfall and irrigation available.   

Maize and grain sorghum are a part of the Gramineae, or grass family (Assefa et al., 

2014).  Both crops are comparable in starch content with maize ranging from ~63-73% (an 

average of 67%) and grain sorghum ranging from 64-74% with an average of 70% (Orman & 

Schumann Jr., 1991; Wu et al., 2007).  According to Wang et al. (2008), there is a positive 

relationship between the amount of starch and the ethanol yield.  Thus, in addition to maize, 

grain sorghum has the potential to become a supplemental feedstock for bioethanol production. 

Chemical composition, especially starch content, is a major factor affecting ethanol yield.  

Even though, a higher amount of starch is correlated with a higher ethanol yield, there is not 
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necessarily a linear relationship between starch and fermentation efficiency (Wang et al., 2008).  

In addition, a statistical model could provide the opportunity to represent a relationship between 

fermentation efficiency and starch content.   

One of the common methods for observing different components of cereal grains is 

infrared spectroscopy.  While there has been extensive use of spectroscopy in the mid-infrared 

region, a more quantitative method for evaluation of chemical composition is near infrared (NIR) 

spectroscopy.  NIR spectroscopy has been used for comparison of different cereal grains, but a 

majority of the studies emphasize grains other than grain sorghum.  Thus, the use of NIR 

spectroscopy can potentially offer a high-throughput and cost-effective method for phenotyping 

grain sorghum, which would facilitate plant breeding and genetics studies, affected by the starch 

content and the fermentation efficiency. 

   

 1.2 Objectives 

The ultimate goal of this research is to study the potential of mutant grain sorghum for 

bioethanol production and to create fast methods for sorghum starch analysis and prediction.  

The objectives that will help to achieve this goal are: 

1. To evaluate the fermentation performance of mutant grain sorghum for ethanol 

production. 

2. To develop NIR models for the prediction of starch content and fermentation efficiency 

of mutant grain sorghum. 
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 1.3 Significance of Work  

With the depletion of nonrenewable resources from the Earth, more sustainable practices 

must be implemented to address the energy needs of the world.  According to Guo, Song, & 

Buhain (2015), it is believed that bioethanol and biodiesel will be the primary fuels for 

automobiles and larger vehicles by 2050.  To meet these demands, many countries around the 

world have implemented policies to address this issue.   

In United States, the Energy Independence and Security Act of 2007 mandates the 

reduction of gasoline use by 20% within 10 years and increase biofuel blending to 36 billion 

gallons by 2022 (Guo, Song, & Buhain, 2015).  The European Union passed the Directive on the 

Promotion of Renewable Energy in 2009, which set up “20-20-20” objectives to be achieved by 

2020: reduction of greenhouse gas emissions and energy use by 20% and increase the use of 

renewable energy sources by 20% of the total energy (Su, Zhang, & Su, 2015).  Finally, in 1997, 

Brazil established the National Agency of Petroleum, Natural Gas, and Biofuels to focus on 

creating ethanol subsidies in the hopes of producing three times more ethanol by 2021 (Solomon 

et al., 2015).  Brazil retracted caps on gasoline prices in 1997 since ethanol was able to join the 

competitive market with no subsidized credit (Solomon et al., 2015).  Table 1 shows the world 

bioethanol as well as biodiesel production and its significant growth from 2009 to 2013 (F.O. 

Licht, 2014; Koizumi, 2015).  Currently, the United States and Brazil make up 86% of the 

overall world production of bioethanol while the European Union produces the most biodiesel in 

the global market (Koizumi, 2015). 
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Table 1. Change in bioethanol production from 2009-2013 (F.O. Licht, 2014) 

 (Million L) 

Year 2009 2010 2011 2012 2013 

Bioethanol and biodiesel 
production total 

90.87 104.57 108.51 109.65 117.72 

World bioethanol 
production total 

73.07 84.92 84.15 83.35 88.17 

USA 40.73 50.09 52.81 50.35 50.40 

Brazil 23.92 25.53 21.02 21.62 25.53 

China 2.05 2.05 2.10 2.10 2.10 

EU 3.55 4.14 4.39 4.51 4.55 
 

While these policies have helped the movement towards renewable energy, many 

countries rely predominantly on one crop.  For example, Brazil mainly uses sugarcane as their 

biomass source for ethanol production.  The primary crop for the United States bioethanol 

production is maize, which ignited the Food versus Fuel debate.  The reason for the debate is due 

to the multipurpose usefulness of maize as food and feed sources and for the conversion to 

bioethanol.  With growing concerns for food security in the future, researchers have looked into 

other crops to meet growing demands for biofuels.   

In comparison to maize, grain sorghum has a relatively high amount of starch and it is 

more tolerant to drought and heat stress when grown in drier climates (Yan et al., 2009).  Grain 

sorghum production increased by 38% between 2014 and 2015, while maize production 

decreased by 4% (USDA-NASS, 2016).  This shift in production demonstrates that there is a 

possibility for grain sorghum to be incorporated into maize ethanol plants to move towards less 

of a dependence on maize alone.   
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 1.4 Literature Review 

 1.4.1 Biofuels 

Aside from bioethanol, there are other types of biofuels that fall into different 

classifications based on the type of biomass.  Biomass is any agricultural crop or renewable 

product used for biofuel production.  The three categories, based on the type of biomass, are: 

first generation, second generation, and third generation of biofuels. First generation mainly 

includes plant seeds and grains, which compete with food and animal feed consumption.  The 

second generation consists of cellulosic biomass and energy crops.  Second generation feedstock 

does not compete with any food sources and the energy crops are only grown for renewable 

energy purposes.  The third generation of biofuels is produced from algae.  The type of biomass 

dictates the form of biofuel that can be produced.  For example, used vegetable oil or oil seeds 

can be used to make biodiesel, but starchy grains or sugars can produce bioethanol and 

biobutanol.  Figure 1 represents the different generations of biofuels and also demonstrates the 

difference between primary and secondary biofuels.  Primary fuels do not undergo any 

modification and are completely natural whereas secondary biofuels undergo some form of 

processing, such as bioethanol or biogas (Nigam & Singh, 2011). 



6 

 

Figure 1. Categorization of biofuels (Nigam & Singh, 2011) 
 

Due to the competition with food using first generation substrates, there has been a 

significant increase in research on second and third generation biofuels.  However, due to 

challenges, such as pretreatment, it has been difficult for conversion of second and third 

generation biomass in large-scale biofuel production.  Due to simplicity, the first ethanol plants 

used first generation biomass, mainly maize as their feedstock.  Since maize has many uses, 

especially as a food source, some facilities mix grain sorghum, also known as milo, with the 

maize since the two crops are comparable in starch content.  Thus, the focus of this research was 

to provide a method for a fast determination of the starch content and fermentation efficiency of 

mutant grain sorghum for ethanol plants. 
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 1.4.1.1 Ethanol production 

Due to technological advances and environmental concerns, there has been extensive 

research in the area of biofuels.  However, the existence of bioethanol dates back to the 

nineteenth century.  In 1859, Edwin Drake was responsible for the discovery of bioethanol, 

which occurred before petroleum (Songstad et al., 2009).  Over time, there were actions that 

prevented bioethanol from being used in automobiles.  Although Henry Ford intended for 

ethanol to become the main fuel source for the automobile, an imposed tax, set in place during 

the Civil War, limited the competition between gasoline and ethanol (Songstad et al., 2009; 

Dimitri & Effland, 2007).  After the removal of this tax, gasoline already dominated the market 

and ethanol faded into the background until the Arabic oil embargo in 1974 (Songstad et al., 

2009).   

With an increase in oil prices, there became a greater interest in alternative fuel sources, 

such as ethanol.  In 2007, the Energy Independence and Security Act (EISA) stated that the 

United States needed to increase its biofuel usage to 36 billion gallons by the year 2022 (Coyle, 

2010).  In order to meet this high demand, new energy crops and advanced technology, with the 

help of ample funding, were on the verge of discovery. 

 In Figure 2, there are a large number of next-generation biofuel plants opening 

across the United States (Coyle, 2010).  The map also illustrates the utilization of different types 

of biomass across the nation.  The two most common biofuel sources are from agriculture or 

biomass from multiple categories.  It is also interesting to note the changes between 2010 (filled 

circles) and 2012 (open circles).  
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Figure 2. United States map of biofuel plants (Coyle, 2010) 
 

 1.4.2 Grain sorghum 

Since maize is the driving force behind the food versus fuel debate, other alternative 

energy crops are necessary to meet the bioethanol demands in the United States.  In order to 

address these bioenergy needs, other types of feedstock, such as grain sorghum, are under 

investigation.  Grain sorghum is a more cost effective crop for semiarid regions in the United 

States, including the Southwest and the Midwest (Yan et al., 2011).  The primary use of grain 

sorghum is as animal feed, which does not interfere with human food consumption.  Similar to 

maize, sorghum contains approximately 70% starch (Sun et al., 2014).  Also, sorghum starch 

generally contains about 70-80% amylopectin and 20-30% amylose (Yan et al., 2011). 
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 1.4.3 Starch 

Due to the importance of starch in grain sorghum, it is vital to have a greater 

understanding of its physical and chemical properties.  Starch primarily consists of two types of 

D-glucose polymers, called amylose and amylopectin, which make up 98-99% of the dry weight 

of starch (Copeland et al., 2009; Tester, Karkalas, & Qi, 2004).  Amylose is a linear chain with 

1-4 alpha-glucan linkages while amylopectin is mostly branched with 1-6 alpha-glucan branch 

points off of the 1-4 alpha-glucan chain.  Figures 3 and 4, pictured below, demonstrate the 

structural difference between these two components. 

 

 

Figure 3. Amylose structure 
 

 

Figure 4. Amylopectin structure 
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In addition to the difference in the structure, amylose and amylopectin also vary in their 

size and multitude within the starch granule.  The molecular weight of amylose can be as large as 

1,000,000, but this size is smaller than amylopectin’s molecular weight that is around 108 

(Delcour & Hoseney, 2010).  Tester, Karkalas, and Qi (2004) explains how there is a variation in 

the amount of amylose and amylopectin based on the type of cereal grain.  Generally, the amount 

of amylose in normal starch does not vary for wheat and sorghum, but can vary for rice starch 

(Delcour & Hoseney, 2010).  For this reason, there is the potential for wheat and sorghum to 

have “waxy” starches, which contain a higher amylopectin content (Singh et al., 2003).   

Amylopectin is important since it dictates the degree of crystallinity within the starch 

granules.  Native starch is only considered semi-crystalline since the amount of amylose creates 

the amorphous, not crystalline, regions in the granule (Singh, Dartois, & Kaur, 2010).  The 

degree of polymerization (DP) describes the relative number of individual glucose molecules 

within one polymer. For amylose, the DP is no more than 10,000 and the DP of amylopectin is 

above 1,000,000 (Copeland et al., 2009).   

Due to the branched nature of amylopectin, there are three types of chains that help to 

distinguish the level of substitution.  The C-chain contains the only reducing group and both 

alpha-1,4 linkages as well as alpha-1,6 branch points.  The B-chain contains the two types of 

linkages, alpha-1,4 and alpha-1,6, but it does not consist of the reducing group.  The A-chain is 

the only chain that is not branched and only involves alpha-1,4 linear linkages (Copeland et al., 

2009; Delcour & Hoseney, 2010).  The amylopectin and amylose structures of starch are broken 

down during the dry-grind ethanol process. 
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 1.4.4 Dry-grind ethanol process 

In order to understand the details of this process, it is important to first learn about the 

conversion of starch to ethanol during fermentation.  The sorghum starch is converted to simple 

sugars by using starch-degrading enzymes before yeast converts these monosaccharides into 

ethanol. A highly profitable by-product, called distillers’ dried grain solubles (DDGS), of ethanol 

production that is left over after the distillation can be sold as animal feed by the ethanol 

companies.  Overall, there are five steps in the dry-grind process: milling, liquefaction, 

saccharification, fermentation, and distillation (Mosier & Ileleji, 2014). 

 

 1.4.4.1 Milling 

Once the grain complies with quality standards, hammer mills or roller mills grind the 

grain kernel down to the appropriate size. In general, hammer mills are more common when the 

grains do not contain an outer covering, called a husk or hull (Kelsall & Lyons, 2003).  Another 

difference is that the hammer mills operate with a compressive force while the roller mill is more 

focused on shearing the hull off first before applying a compressive force.  In this study, a lab-

scale cyclone mill is used to grind the grain into flour, which is similar to a hammer mill.  The 

purpose of milling is to break down the grain into small particles in order to allow for water 

penetration during cooking (Kelsall & Lyons, 2003).   

 

 1.4.4.2 Liquefaction 

Prior to cooking, flour is mixed with water to form a slurry.  It is important that the water 

is in contact with all of the flour before gelatinization.  Gelatinization occurs when the starch 

granules swell due to water absorption at certain temperatures, which leads to the loss of its 
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crystalline structure (Kelsall & Lyons, 2003).  With the change in crystallinity, the slurry can 

undergo further hydrolysis.  The addition of starch-degrading enzyme, α-amylase, at this point is 

necessary to begin the process of breaking down starch.  Alpha-amylase only hydrolyzes the α-

1,4 glucosidic linkages within the starch polymers, which resulted in dextrins (Delcour & 

Hoseney, 2010).  Dextrins are short chains with a varying number of glucose molecules.  

According to Zhao et al. (2008), α-amylase behaves as a shear thinning fluid, which helps to 

reduce the viscosity of the gelatinized starch during liquefaction.  The purpose of liquefaction, 

also known as the cooking step, is to split the hydrogen bonds of starch molecules in order to 

disrupt the granules (Kelsall & Lyons, 2003). 

 

 1.4.4.3 Saccharification 

Saccharification is the process of hydrolyzing dextrins into individual glucose molecules.  

An enzyme that aids in this break down is glucoamylase.  Glucoamylase consecutively 

hydrolyzes the remaining α-1,4 glucosidic linkages.  Also, this enzyme completes the hydrolysis 

at the β-1,6 branch points, but at a slower pace than the α-1,4 bonds (Delcour & Hoseney, 2010).  

Before the addition of glucoamylase, there must be a decrease in the temperature and the mash 

must undergo a pH adjustment with use of sulfuric acid or backset stillage (Kelsall & Lyons, 

2003).  The reason for these changes is because the temperature and pH are based on the 

essential enzymes in each stage of the process.  

Another way of completing this step is to skip the saccharification tank and send the 

mash directly to the fermenter before adding the enzymes.  This alternative method is known as 

simultaneous saccharification and fermentation (SSF).  One of the main reasons that this 
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procedure is becoming more common is because there is less likelihood of microbial 

contamination (Bothast & Schlicher, 2005).   

 

 1.4.4.4 Fermentation 

Finally, fermentation is the step when the glucose is converted into ethanol.  One mole of 

glucose is converted into two moles of ethanol and two moles of carbon dioxide. The main 

component for this conversion is the microorganism, which in this case, is yeast.  Yeast, 

specifically Saccharomyces cerevisiae, consumes the sugars in order to produce ethanol.  Also, it 

is important to note that yeast produces carbon dioxide as a by-product.  Thus, weight loss, due 

to carbon dioxide, can be measured over the 72-hour period of fermentation.  The weight loss 

curve can also be used to calculate the ethanol yield. 

 

 1.4.4.5 Distillation 

After fermentation, the mixture contains ethanol and the leftover solids and water.  In 

order to separate the ethanol from the fermentation broth, there is a process called distillation.  

Distillation requires the boiling of the mixture before ethanol and water evaporate from the 

mixture and proceed through cooling coils into a flask.  Water and ethanol both evaporate out 

because their vaporization temperatures are 100 and 78 °C, respectively (Bothast & Schlicher, 

2005).  Once distillation is over, more than 4 % water is left in the ethanol, which forms an 

azeotrope (Swain, 2003; Bothast & Schlicher, 2005).  Industry regulations require further 

processing, with a molecular sieve system, in order to produce pure ethanol (Bothast & 

Schlicher, 2005).  The starch content from wet chemistry analysis and fermentation efficiency, 
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based on starch content, were used to create near infrared spectroscopy prediction models in this 

study.  

 

 1.4.5 Near infrared (NIR) spectroscopy 

NIR is only a small portion of the electromagnetic spectrum.  The use of NIR 

spectroscopy focuses on the wavelength range between 800 to 2500 nm (12500 to 4000 cm-1), 

which is also known as the near infrared region (Livermore, Wang, & Jackson, 2003).  A smaller 

wavelength in this region will be closer to the high end towards the visible spectrum and a larger 

wavelength is found closer to the start of the mid-infrared section (Liebmann, Friedl, & 

Varmuza, 2010; Livermore, Wang, & Jackson, 2003).   

One of the main purposes of using the near infrared wavelength range is that 

spectroscopy in this region allows for the detection as well as determination of different 

components.  The most important factors to examine in cereal grains are moisture, protein 

content, and starch (Liebmann, Friedl, & Varmuza, 2010).  In this study, the primary component 

of importance was starch, which was found in the initial mutant grain sorghum samples. 

This type of spectroscopy is beneficial in multiple ways.  The main reason to use NIR is 

to determine the quality of the materials for process optimization.  According to Livermore, 

Wang, and Jackson (2003), the time for testing takes only a few seconds and there is no harm to 

the sample, which is more cost efficient.  Another advantage is that the quantity of organic 

material needed for NIR is relatively small.  For these reasons, this study was able to use the NIR 

equipment for a limited amount of material per sample while still allowing the time needed to 

test a large number of different samples. 
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There are many different types of spectrometers used for observation in the near infrared 

region, including: filter photometers, scanning dispersive spectrophotometers, and detector array 

dispersive spectrophotometers (Livermore, Wang, & Jackson, 2003).  For this research, a Fourier 

transform (FT) NIR spectrometer was used.  Figure 5 below demonstrates how this spectrometer 

works once the light source hits the Michelson inferometer.  The three parts that make up the 

inferometer are the fixed mirror, the moving mirror, and the beam splitter.  The beam splitter 

allows some of the light to be reflected on the fixed mirror while there is a transmission of the 

rest of the light to the moving mirror.  As the light source is focused toward to the beam splitter 

from the fixed and moving mirrors, there is interference.  The moving mirror shifts back and 

forth, which leads to a variance in the interference. This difference in the interference causes the 

intensity of light hitting the detector to change over time.  FT-NIR spectrometers are beneficial 

due to high optical resolution and high ratios of signal to background noise (Livermore, Wang, & 

Jackson, 2003).   

 

Figure 5. Diagram of FT-NIR spectrometer (Livermore, Wang, & Jackson, 2003) 
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 1.4.5.1 Previous work using NIR 

Pohl and Senn (2011) examined 10 wheat varieties, 24 rye varieties, and 6 triticale 

varieties, for a total of 480 samples, by using a diode array spectrometer for whole grain samples 

and a dispersive near infrared monochromater for flour samples.  This study used partial least 

squares regression (PLS) for their NIR model and found that it was only an adequate method for 

starch analysis, not fermentation, due to the inability to find final ethanol yields.  Thus, NIR 

would be beneficial for initial testing of incoming grain and for development of better breeding 

programs.  Similarly, Kim and Williams (1990) investigated wheat, barley, and maize ground 

samples with a Pacific Scientific research composition analyzer, a Pacific Scientific feed-quality 

analyzer, and a DICKEY-john grain analysis computer.  As a result of this study, there was only 

a strong predictability for protein and energy, not starch. 

Cozzolino, Roumeliotis, and Eglinton (2013) observed the performance of 130 barley 

whole grain samples using a rapid visco analyzer (RVA) and near infrared reflectance (NIR) 

spectroscopy.  With use of partial least squares (PLS) regression, this study found that RVA and 

NIR could be useful tool for discovering the starch pasting properties for genotype selection. 

Another study conducted by Lin et al. (2014) also looked at 277 samples of whole grain barley, 

but their focus was on protein content.  As opposed to only using one type of calibration like the 

previous studies, this paper includes the use of partial least squares (PLS), least squares support 

vector machine regression (LSSVR), and radial basis function (RBF) neural network.  However, 

LSSVR was the most accurate multivariate calibration model by establishing a strong correlation 

between the first derivative spectra and the protein content.  These experiments also 

demonstrated how NIR was an accurate method for prediction of whole grain barley protein 

content. 
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Additionally, Bao, Cai, and Corke (2001) utilized RVA and NIR in their investigation of 

162 ground rice samples.  A modified PLS regression model correlated the first derivative 

spectra and the scatter correction for the standard normal variance and de-trend (SNVD).  The 

RVA pasting results revealed that there were strong relationships in the scatter plots and high 

coefficients of determination for setback (SB) and breakdown (BD), which are significant 

parameters in the determination of high quality in rice.  Thus, NIR has the potential to predict 

these values, which will be beneficial for rice breeding programs.  The study also showed how 

NIR could be used with rice flour samples to accurately measure starch values for SB, BD, the 

apparent amylose content, and the gelatinization peak temperature. 

Orman and Schumann Jr. (1991) intended to predict composition, such as starch, oil, and 

protein, of 156 out of 500 whole grain maize samples through NIR calibration models using a 

monochrometer infrared spectrophotometer.  The best and lowest error for prediction was found 

for the diffuse reflectance of the grain flour in comparison to the whole grain spectra.  Thus, the 

authors concluded that the flour diffuse reflectance method was the best for the prediction of 

starch, protein, and oil.   Hao, Thelen, and Gao (2012) examined 222 samples of maize flour to 

determine the potential for using NIR and the bootstrapping method to estimate ethanol yields.  

The average value of root mean square error of prediction (RMSEP) for the reduced wavelength 

range and original spectra validation was 0.56%.  The bootstrapping method with optimum 

wavelength intervals could be helpful in determining compositional factors contributing to the 

ethanol yield for maize in the future.   

Due to the large amount of literature published in the past ten years, NIR is a 

technological tool that is gaining popularity for prediction of compositional analysis.  However, 

there are very limited studies on the prediction for starch content and fermentation efficiency for 



18 

sorghum, especially mutant grain sorghum.  Thus, there is research needed to develop rapid 

methods for the prediction of starch and ethanol fermentation efficiency of mutant grain sorghum 

using NIR technology.   
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Chapter 2 - Materials and Methods 

 2.1 Mutant grain sorghum 

A total of 109 mutant grain sorghum samples were obtained from Plant Stress and 

Germplasm Development Unit of USDA-ARS, Lubbock, TX.  Mutant sorghums were used for 

this study since the genotype was found to have a significant correlation to ethanol yield and 

fermentation efficiency (Wu et al., 2007).  The samples were cleaned by removing foreign 

materials and small broken kernels.  The cleaned samples were milled into flour through a 0.5 

mm screen by an Udy cyclone sample mill (Udy, Ft. Collins, CO). 

 

 2.2 Chemical composition of mutant grain sorghum 

 

 2.2.1 Moisture content 

The moisture content was adapted from the AACC 44-15.02 standard moisture air-oven 

method (AACC International, 1999).  All of the metal dishes, along with their lids, were placed 

in the oven at 130 °C for 2 h for sterilization.  Two grams of each mutant sorghum flour sample, 

with one replicate, were placed in metal dishes.  Each sample was covered with the lid until the 

samples were ready to go into the oven.  The lids were removed and put underneath the 

corresponding dish before being placed in the oven.  The samples were left in the oven at 130 °C 

for 3 h.  Once the samples were done in the oven, they were quickly put in an airtight desiccator 

for cooling.  The dishes were immediately weighed, after reaching room temperature, for the 

most accurate reading. 
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 2.2.2 Total starch content 

Megazyme starch assay kits with two starch enzymes, α-amylase and amyloglucosidase, 

(Megazyme International Ltd., Ireland) were used for the starch content measurement following 

the standard AACC 76-13.01 method (AACC International, 1999).  The Mega-Calc software 

(Megazyme International Ltd., Ireland) determined the total starch in the grain sorghum flour.  

This software uses the absorbance data from experimentation and the moisture content to 

calculate the total amount of starch on a dry basis (db). 

 

 2.2.3 Protein content 

A 2400 CHNS/O Series II Analyzer (PerkinElmer Inc., Shelton, CT) was used to 

determine the elemental composition of mutant grain sorghum, including: carbon, hydrogen, 

nitrogen, sulfur, and oxygen.  The operating mode was CHNS so the combustion and reduction 

temperatures were set at 975 °C and 500 °C, respectively.  With the oxygen valve turned off, the 

instrument runs four blanks followed by ~3.5 mg of sulfamic acid sulfur conditioning reagent 

(also known as a conditioner) measured into an aluminum cup before running a blank and one 

more conditioner in the autosampler.  Next, three 2.0-2.5 mg cystine standards (also known as k-

factors) were weighed in aluminum cups and placed in the autosampler with the oxygen valve 

on.  Two consecutive k-factors must pass with all of the elements within an acceptable range and 

with only a small variation between the two standards before running four blanks with the 

oxygen off.  Then, the oxygen needs to be turned back on before continuing with the samples.  

The blanks need to finish before placing a sample (2.0 – 2.5 mg) into the autosampler.  All of the 

samples were weighed in aluminum cups using an AD 6 Autobalance (PerkinElmer Inc., 

Shelton, CT).  The amount of nitrogen was multiplied by 6.25 to calculate the protein content. 
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 2.3 Morphological properties of whole grain sorghum 

The morphology of mutant sorghum was studied using the scanning electron microscope 

(SEM) with an accelerating potential of 5 kV (Hitachi S-3500N, Hitachi Science Systems, Ltd., 

Japan).  Only six of the ten selected with the highest and lowest fermentation efficiencies were 

analyzed for SEM imaging.  In preparation, a few grains were selected from each sample and 

were cut with a razor blade.  This method was used to provide control when cutting the grain into 

cross-sections.  Grain fragments with flat surfaces were selected with tweezers and placed on a 

sticky carbon film.  Before inserting the samples into the microscope, a Desk II sputter coater 

covered each sample with a layer of gold and palladium under vacuum conditions (Denton 

Vacuum, LLC, Moorestown, NJ).  The purpose of this step is to increase the signal sensitivity 

and create better resolution images.  After the sputter coating, four samples at a time were loaded 

into the scanning electron microscope for imaging.  The samples images were taken at 

magnifications of 500x and 5000x for the opaque regions of the endosperm. 

 

 2.4 Thermal properties 

Differential scanning calorimetry (DSC) machine (DSC-Q200, TA Instruments Inc., New 

Castle, DE) was used to determine the thermal properties, such as the transition temperatures and 

changes in enthalpy.  The method followed the same process as described by Wu et al. (2007) 

and Wang et al. (2008).  Five samples with the lowest and highest fermentation efficiencies were 

selected for this analysis.  Approximately 10 mg of flour was weighed in a stainless steel pan 

before adding ~35 µL of distilled water to the pan.  The pans were sealed and mixed well before 

being kept in a 4°C refrigerator overnight.  A sealed empty stainless steel pan was used as a 
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reference.  All samples were held at 20°C for 1 min and then heated from 20 to 120 °C at 

10°C/min. 

 

 2.5 Pasting properties 

A Rapid Visco Analyzer (RVA) (RVA-3c, Newport Scientific Ltd., Warriewood, 

Australia) was used to look at the pasting properties of grain sorghum flour.  The same five 

samples with the lowest and highest fermentation efficiencies, also used with DSC, were selected 

for this analysis.   The method was based on the approved AACC standard method (76-21.01) for 

wheat and rye flour or starch (AACC International, 1999).  Grain sorghum flour (3.5 g, 14% 

moisture content) was added to approximately 25 mL of distilled water in a canister.  The slurry 

was mixed at 50 °C for 1 min before the temperature increased to 95 °C.  The paste was held at 

95 °C for 2.5 min before decreasing back to 50 °C, where the slurry was held for 2 min.  For a 

uniform mixture, the speed started at 960 revolutions per minute (rpm) before decreasing to 160 

rpm after 10 sec, which was the speed for the remaining duration of the test.   

 

 2.6 Ethanol fermentation 

Only 39 of the original 109 samples were used for fermentation.  The process of 

liquefaction started by adding 100 mL broth to 30 g (db) of grain sorghum flour in a 250 mL 

flask.  Twenty microliters of α-amylase, called Liquozyme (Novozymes, Franklinton, NC) and 

0.1 g of potassium phosphate, were stirred into 100 mL distilled water, preheated to 70 °C.  This 

fermentation broth was gradually added to each flask to ensure that all of the flour was fully 

saturated using a spatula.  This step is important because α-amylase will begin to break down the 

starch into glucose.  The flasks were then carefully placed in a water bath rotary shaker at 70 °C 
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and 180 rpm, which began the process of gelatinization.  Immediately after putting the flasks in 

the rotary shaker, the temperature was increased to 90 °C, until it reached 90 °C, and then, the 

temperature was reduced to 86 °C for 1 h.   

Once the flasks cooled down to room temperature, the pH was adjusted from ~ 5.0-6.0 to 

4.2 using 2.0 N HCl.  The activated yeast was prepared with approximately 40 min left of pH 

adjustment.  One gram of activated dry yeast was weighed into an autoclaved 125 mL flask 

before adding 19 mL of precultured broth under the purifier class II biosafety cabinet (Delta 

Series, Labconco Corporation, Kansas City, MO).  Then, the activated yeast flask were placed in 

the incubator shaker for 30 min at 200 rpm and 38 °C.  Under the biosafety hood, 100 µL of 

glucoamylase, also known as Spirizyme (Novozymes, Franklinton, NC), 0.3 g yeast extract, and 

1.0 mL activated yeast, once it is done in the shaker, were inserted to each flask.  For 

fermentation, all the flasks were placed into the incubator shaker at 30 °C and 150 rpm for a total 

time of 72 h.  Weights were recorded for each flask at certain time increments, which indicated 

the conversion to ethanol through loss due to carbon dioxide, a by-product of fermentation.  

Thus, weight loss and ethanol yield curves can be expressed by this data. 

After fermentation, contents were washed from each flask using distilled water and were 

poured into 500 mL distillation flasks with two to three drops of antifoam.  These flasks were 

placed on a heating element and connected to a cooling coil apparatus.  The heating element was 

turned on high to boil the contents and cause the evaporation of ethanol and water.  The ethanol-

water mixture was collected in a 100 mL volumetric flask. The remaining contents, called dried 

distillers’ grain solubles (DDGS), from the distillation flask were transferred to glass jars and 

placed in a freezer at -20 °C.  High Liquid Pressure Chromatography (HPLC) was used to 

determine the actual ethanol yield using an established standard curve.  The fermentation 
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efficiency was calculated by dividing the actual ethanol yield by the theoretical yield.  Based on 

these results, ten samples with the lowest and highest fermentation efficiencies were selected for 

the investigation of the differences in the morphological, thermal, and pasting properties. 

 

 2.7 Chemical composition of DDGS 

The glass jars with the DDGS were removed from the freezer and thawed until the 

contents turned into a liquid form.  Then, the jars were placed in a constant temperature cabinet 

oven (Blue M Electric Company, Blue Island, IL) at 49 °C for 48 h.  The dried DDGS was 

ground with a pestle in a 750 mL porcelain mortar (Cat. No. 60325, CoorsTek, Golden, CO) into 

smaller pieces before undergoing further grinding in a Micro-Mill (Bel-Art Products 

Scienceware, Pequannock, NJ).  The ground samples were then analyzed to determine the 

moisture content based on the same adaptation of the oven-dry AACC 44-15.02 standard 

procedure for the ground grain sorghum (AACC International, 1999).  The DDGS samples were 

sent to the Kansas State University Department of Animal Science and Industry Analytical 

Laboratory (Manhattan, KS) for crude protein content analysis.  Similar to the sorghum flour, the 

DDGS starch content was determined with the Megazyme total starch assay kit (Megazyme 

International Ltd., Ireland). 

 

 2.8 Near infrared spectroscopy 

Prior to milling, whole grain samples were scanned using Antaris II Fourier Transform 

Near Infrared (FT-NIR) Analyzer spectrophotometer (Thermo Fisher Scientific Inc., Madison, 

WI).  This process was also repeated after milling for the flour samples.  Whole grain samples 

(~20 g) and flour samples (~10 g) were loaded into a circular sample cup.  For each sample, the 
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cup was very lightly shaken for a more even distribution before loading.  The spectrophotometer 

was operated at a resolution of 4 cm-1 and a wavelength range of 4,000-10,000 cm-1.  The 

spectrum for each sample was obtained as the average of 32 scans and the data was recorded as 

log (1/R), when R is reflectance.  In modeling, the samples were divided into calibration and 

validation in a ratio of 4:1.  The spectroscopic method and data used TQ Analyst software 

(Thermo Fisher Scientific Inc., Waltham, MA). 

 

 2.8.1 Model Parameters 

The NIR data was analyzed in the TQ Analyst software (Thermo Fisher Scientific Inc., 

Waltham, MA).  The method for the quantitative analysis was partial least squares (PLS) and 

multiplicative signal correction (MSC) was selected for the pathlength type.  The modeling was 

completed for the starch content and the fermentation efficiency.  The number of factors for all 

of the PLS models did not exceed a total of 4 so the model would not become too complex. 

 

 2.8.2 Model Development: Starch Content and Fermentation Efficiency 

First, all of the starch values were included in the model to gain an understanding of the 

initial standard error of calibration (SEC), standard error of prediction (SEP), and their 

correlation coefficients.  Then, outliers were determined based on the differences between the 

calculated values from the software and actual values from experimentation.  Outliers were 

removed individually and the model was recalibrated each time. Once the initial model, prior to 

removal of outliers, was fully calibrated, the optimum wavelength range was selected to remove 

the noise.  Finally, the last two models represented the first derivative of the entire spectra and 
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the reduced spectra for the selected wavelength range.  The same method was repeated for the 

other parameter, fermentation efficiency. 
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Chapter 3 - Results and Discussion 

 3.1 Chemical composition and morphological properties 

Moisture content of the mutant sorghum was between 7% and 10% (wet basis, wb) with 

average of 8.5% (wb) (Appendix A, Table A.2).  Starch content for the mutant sorghum ranged 

from around 63% to 71% (dry basis, db) with average of 67.3% (db), which is a lower result than 

in the literature (Table A.3).  The average and standard deviation compositional data for each 

sample can be found in Appendix A.  According to Sun et al. (2014), grain sorghum normally 

contains around 70% starch.  The amount of total starch can vary due to irrigation and 

environmental conditions (Liu et al., 2013; Yan et al., 2009). 

The standard conversion factor for crude protein content was calculated by multiplying 

the percentage of nitrogen by 6.25.  Protein values for the mutant sorghum ranged from 11 to 

18% (Table A.4).  However, it is important to note that any values above 16% crude protein are 

not comparable to other results (Wong et al., 2010; Wu et al., 2010).  The reason for this 

discrepancy could mean that mutant grain sorghum has a potential to reach a higher protein 

content than other varieties.  While a high protein content is generally related to a lower starch 

content, the protein digestibility, which is lower for grain sorghum with tannins, can be 

positively correlated to the fermentation efficiency (Wang et al., 2008; Wu et al., 2007).  A 

summary of the composition analysis of the mutant grain sorghum can be found in Table A.1. 

Figure 6 shows SEM images of the mutant sorghum endosperm for the low and high 

fermentation efficiency samples at 500x and 5000x magnification.  The use of these images 

emphasized the morphological differences between the samples in the opaque region of the grain 

sorghum kernel.   
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a)   b)    

c)   d)     

Figure 6. a) Low efficiency sample in opaque region at 500x magnification; b) High 
efficiency sample in opaque region at 500x magnification; c) Low efficiency sample in 
opaque region at 5000x magnification; d) High efficiency sample in opaque region at 5000x 
magnification 

 

SEM images at 500x magnification showed the higher efficiency samples with a weaker 

protein matrix than samples with low fermentation efficiency (Figures 6a & 6b).  This result is in 

agreement with previous studies that a strong protein matrix can reduce the efficiency of starch 

hydrolysis (Wu et al., 2007).  At a higher magnification of 5000x, the opaque regions 

demonstrated larger starch granules for low efficiency samples and the high efficiency samples 

also depicted the protein matrix between the starch granules (Figures 6c & 6d).  There were 

many small holes seen on the surface of the lower efficiency samples, which is similar to the 

germinated grain sorghum samples (Yan et al., 2009).  Ai et al. (2011) describes how these tiny 
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holes could be from amylase hydrolysis, and only the grain sorghum, not maize, exhibited these 

small pinholes.  However, Yan et al. (2009) also states that the germinated grain sorghum had 

higher fermentation efficiencies, which differs from these results. 

 

 3.2 Thermal and pasting properties 

DSC peak temperature values for the ten mutant sorghum samples  

(5 lowest and 5 highest fermentation efficiency) ranged from 76.1-78.5 °C with an average of 

77.5 °C.  The average peak temperatures for the lowest and highest fermentation efficiency 

samples had no observed difference.  This result could be due to the similarities in the mutant 

grain sorghum composition.  The enthalpies of gelatinization varied from 4.8 to 6.6 J/g with an 

average of 5.4 J/g for low and high efficiency samples, respectively.  Liu et al. (2013) explains 

how the higher peak temperatures are correlated with a lower fermentation efficiency and more 

energy is required to start the process of gelatinization.  Figure 7 depicts all of the DSC curves 

for the high and low fermentation efficiency samples from 60 to 85 °C.  These curves showed 

the temperature required for gelatinization of the starch in each sample. 
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Figure 7. DSC curves for low (LE) and high (HE) fermentation efficiency samples 
 

All of the samples had slight amylose-lipid complex peaks from 100.0 to 101.2 °C.  

However, both of the averages for the low and high efficiency samples were about 100 °C, with 

a standard deviation of 0.25 J/g and 0.42 J/g, respectively.  The average enthalpy value (0.25 J/g) 

of the amylose peaks for the lower fermentation efficiency samples demonstrated how the 

presence of amylose requires more energy for gelatinization initiation.  On the other hand, with a 

high fermentation efficiency, the average amylose enthalpy was 0.20 J/g, indicating that it was 

easier for the gelatinization process to begin.  Other research on waxy starches, primarily 

composed of amylopectin, relates a lower amylose-lipid complex with a higher fermentation 

efficiency (Wu et al., 2007). 

All of the RVA results can be found in Table A.5 of Appendix A.  The peak viscosities 

ranged from 1141-1759 cP with an average of 1522 cP and peak times ranged from 6.3 to 6.8 

min (an average of 6.4 min).  The final viscosities were between 2328 and 3963 cP (an average 
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of 3218 cP) and the setback values were from 1244 to 2192 cP with an average of 1842 cP.  The 

average peak pasting temperature was 74.1 °C, with averages of 79.4 and 68.8 °C for the lowest 

and highest fermentation efficiency samples, respectively.  The results were expected because 

the samples with high efficiency have lower peak pasting temperatures, indicating the high 

efficiency samples are easier to cook and hydrolyze.  These values are in agreement with 

Shewayrga et al. (2011) except that the range for the peak pasting time was less for this study 

and the pasting temperatures were higher than their reported study.  The peak viscosity values 

were also high, but there was a positive correlation between the starch content and viscosity, 

which indicated that a sample with a higher starch content are generally more viscous 

(Shewayrga et al., 2011).  Based on the viscosity values, sample 1 has a low starch content, 

which correlates to the lowest peak viscosity (1141 cP), and sample 78 has the highest starch 

content and a high peak viscosity of 1718 cP. Figures 8 and 9 illustrate the RVA curves based on 

the ten samples with the lowest and highest fermentation efficiencies.   

 

Figure 8. RVA curves for low fermentation efficiency samples 
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Figure 9. RVA curves for high fermentation efficiency samples 
 

The first peak appeared around 5 min is representative of the peak viscosity related to 

starch gelatinization.  The pasting temperature is the temperature before the sudden increase in 

viscosity, which happened around 4 min. The viscosity reaches a maximum around 11 min, 

which is known as the final viscosity.  Setback is measured as the difference between the final 

and peak viscosity values.  According to Zhao et al. (2008), starch content as well as ethanol 

yield had a strong relationship with final viscosity and setback.  The results of this study showed 

that sample 1, with the lowest ethanol yield, also had the lowest final viscosity and setback of all 

ten samples.  For the highest efficiency samples, sample 97 had a higher ethanol yield, the 

second highest final viscosity, and the highest setback.  However, not all of these samples 

supported this correlation.  These results may indicate other factors may also affect the pasting 

viscosity and more research needs to be completed before drawing conclusions.  
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 3.3 Ethanol yield and fermentation efficiency  

The actual ethanol yields varied from ~12-15 % (v/v) and an average of 13.4% (v/v) with 

a standard deviation of ~4.0% (Appendix A, Table A.6).  These results are comparable to the 

ethanol yields (ranging from ~11-17%, v/v) found in a previous study that added sweet sorghum 

juice, instead of water, to different amounts of grain sorghum flour (Appiah-Nkansah et al., 

2015).  Furthermore, the fermentation efficiency was between 88-95%, with an average of 91% 

and a standard deviation of 2.2% (Table A.6).  Yan et al. (2011) reported that the fermentation 

efficiency of waxy grain sorghum were in the range between 86-92%.  The high ethanol 

fermentation efficiency indicates that the mutant sorghum has great potential for biofuel 

production. 

Figure 10 expresses the correlation between ethanol yield and starch content.  Based on 

the linear regression trend line, the R2 value was around 0.70, which means that the line of best 

fit represents 69.5% of the data points.  Thus, there was a positive correlation between the 

ethanol yield and the starch content.  This linear relationship between the total starch content and 

the ethanol yield was supported by Cremer et al. (2014), but the R2 value (0.74) was slightly 

higher.   
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Figure 10. Correlation between ethanol yield and starch content 
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determining how much ethanol was produced compared to how much starch was available 

before fermentation. 
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Figure 11. Correlation between fermentation efficiency and starch content 
 
 

After recording the weight loss over a 72 h period, the weight loss could be converted 

into the ethanol yield.  Figure 12 depicts the changes in ethanol yield with respect to time for all 

thirty-nine samples.  The purpose of the ethanol yield curve is to determine when glucose is no 

longer undergoing conversion into ethanol. 
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Figure 12. Ethanol yield with respect to fermentation time 
 

Based on the ethanol yield curves, fermentation was done around 48 h, except for sample 

82, which was complete at ~32 h.  The time required for fermentation is significant for industrial 

application.  If the bioconversion takes place in less time, the ethanol plant can stop fermentation 

and move the fermented product to distillation, which would cut costs and save energy for the 

next batch.  Wu et al. (2007) describes how the grain sorghum samples took over 60 h before the 

completion of fermentation, but some of the samples were more similar to this research by taking 

only 40 h.  However, germinated sorghum was reported to only take a total of 36 h to reach 

completion (Yan et al., 2009). 
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 3.4 Chemical composition of DDGS 

DDGS is the solid by-product left over after fermentation that is generally sold as feed by 

the ethanol plants.  DDGS can have up to triple its original protein content after fermentation, 

which is significant since feed with higher protein content is more desirable for ruminant animals 

as it helps build muscle (Wang et al., 2008).  In order to ensure successful ethanol conversion, all 

of the samples used for fermentation were analyzed for moisture content, starch content, and 

crude protein content.  The representation of this compositional data is shown in Table A.7.  For 

moisture content, the range was from ~11% (wb) to ~15.5% (wb) and an average of 14.2% (wb) 

with a standard deviation of 6.1%.  Starch content values were between 0.9% (db) and ~2.0% 

(db), with a standard deviation of 16.9% (db) and an average starch content of 1.5% (db).  The 

same calculation from the original mutant flour samples was repeated for the crude protein in the 

DDGS.  The values for protein were ~36-42% (wb), with an average protein value of 38% (wb) 

and a standard deviation of 3.6%.  Based on Wang et al. (2008), the starch content and the 

protein content are inversely related so if a higher starch content will produce a higher ethanol 

yield and a lower protein content in the DDGS.   

 

 3.5 Near infrared spectroscopy modeling 

 3.5.1 Starch content 

Based on the starch content, the Partial Least Squares (PLS) regression model, with 77 

samples for calibration, 22 samples for validation, and 10 samples removed as outliers, produced 

a root mean square of calibration (RMSEC) value of 0.83% with a coefficient of determination 

(R2) of 0.77 and a root mean square error of prediction (RMSEP) value of 0.77% with an R2 

value of 0.90, for calibration and prediction models, respectively.  These results demonstrate the 
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possibility of a positive correlation between the calculated and actual values for starch content 

(Figure 13).  The “actual” values refer to the experimental data from wet chemistry and can be 

found in Table A.3 whereas the “calculated” are the predicted values determined by the 

regression model.  The PLS model was chosen so the spectra could be represented by 

quantitative analysis through the use of factors.  Each factor is a component chosen based on its 

importance to the data and the creation of the model.  Figure 13 shows that 4 factors were used 

for simplicity in order to form the model.  

 

Figure 13. Scatter plot of NIR predicted values vs. actual starch values from 4,000-10,000 
cm-1 
 

 Figure 14 shows the NIR loading spectra from 4,000-10,000 cm-1.  The jagged parts in 

the spectra were sections of noise, which can interfere with the accuracy of the model.  For this 

reason, it would be more beneficial to concentrate on a specific wavelength range.  Selection of 

this range was based on the suggestion of the TQ Analyst software and other studies that 

suggested starch characteristics fall in the 1100-2300 nm (9,091-4348 cm-1) range (Liebmann, 

Friedl, & Varmuza, 2010; Pohl & Senn, 2011; Hao, Thelen, & Gao, 2012). 
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Figure 14. Loading NIR spectrum 
 

By reducing the wavelength range from 4,000-5,176 cm-1, the RMSEC decreased to 

0.84% with an R2 increases to 0.78 and the RMSEP increased to 0.89% with a slightly lower R2 

value of 0.84.  Ten samples were ignored as outliers (77 for calibration and 22 for validation), 

but some of these samples were different from the first model.  A maximum of 4 factors was 

used to create this model, seen in Figure 15 below.  This scatter plot was similar to the graph for 

the whole range by illustrating a positive relationship between the actual and calculated values.  
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Figure 15. Scatter plot of NIR predicted values vs. actual starch values from 4,000-5,176 
cm-1 
 

In order to limit the effect of the noise on the spectra and decrease background shifts, the 

first derivative was used to create two models for the full wavelength range and the reduced 

wavelength range (Lin et al., 2014).  Figure 16 below show the scatter plot for the first derivative 

of the full range (4,000-10,000 cm-1).  This model showed how the RMSEC value decreased to 

0.73% with R2 equal to 0.83 and the RMSEP increased 0.92% (R2 = 0.84).     
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Figure 16. Scatter plot of NIR predicted values vs. actual starch values for the first 
derivative from 4,000-10,000 cm-1 
 

Figure 17 below show the scatter plot for the reduced range (4,000-5,176 cm-1) of the 

first derivative.  The RMSEC and RMSEP values decreased from 0.82% (R2 = 0.79) and 0.85% 

(R2 = 0.86).  Based on these values, the first derivative in the limited range is a better model in 

comparison to the original curve.   

 

Figure 17. Scatter plot of NIR predicted values vs. actual starch values for the first 
derivative from 4,000-5,176 cm-1 
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 3.5.2 Fermentation efficiency 

Another PLS model, using 39 of the original 109 samples (27 for calibration, 8 for 

validation and 4 ignored), was created for the fermentation efficiency, which had a RMSEC of 

1.70% (R2 = 0.26) and a RMSEP of 1.22% (R2 = 0.75), seen in Figure 18.  Based on this model, 

there does not appear to be any relationship for the fermentation efficiency and the spectra.  

However, limiting the range of wavelengths to avoid the background noise and taking the first 

derivative could reduce the errors and improve the coefficients of determination.   

 

Figure 18. Scatter plot of NIR predicted values vs. actual fermentation efficiency values 
from 4,000-10,000 cm-1 
 

In Figure 19, the RMSEC was 1.64%, which is less than the full wavelength range, and 

the R2 value increased to 0.42. On the other hand, the RMSEP increased to 1.84% and the R2 

value decreased to 0.57.  The R2 value is still really low, which is probably due to a large ratio of 

noise.   
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Figure 19. Scatter plot of NIR predicted values vs. actual fermentation efficiency values 
from 4,000-5,176 cm-1 
 

  After taking the first derivative, figures 20 and 21 appear to have a linear relationship 

between the calculated and the actual fermentation efficiency values within the model.  Figure 20 

demonstrates how the RMSEC decreased to 0.98% (R2 = 0.76) and the RMSEP increased to 

1.74% (R2 = 0.38).  Even though the error for calibration was reduced, the error of the prediction 

is still very high in comparison to the full wavelength range.  The coefficient of determination 

was also significantly lower than the original model. 
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Figure 20. Scatter plot of NIR predicted values vs. actual fermentation efficiency values for 
the first derivative from 4,000-10,000 cm-1 
 

 Finally, Figure 21 shows how the RMSEC and RMSEP both decreased to 0.49% and 

1.12%, respectively.  The R2 value for the RMSEC increased significantly to 0.95 and the 

RMSEP R2 value increased to 0.78. 

 

Figure 21. Scatter plot of NIR predicted values vs. actual fermentation efficiency values for 
the first derivative from 4,000-5,176 cm-1 

 

R
2
 = 0.756 

R
2
 = 0.378 

R
2
 = 0.950 

R
2
 = 0.778 



51 

 3.5.3 Modeling Discussion 

After comparison, the best representation for the starch content was the full wavelength 

model due to the higher R2 value (~0.90) for the error of prediction, which demonstrates 

robustness of the model.  However, Kim and Williams (1990) stated that the best calibration 

model for starch in barley was the first derivative model and the second derivative was the best 

for maize starch and wheat.  Also, this study states how their models produced high correlation 

coefficients and low standard errors, which is comparable to the calibration models in this 

research.  According to Lin et al. (2014), which studied the protein content of barley, the SEP 

and R2 values was significantly higher than the current model.  However, their model was 

validated with the testing of additional samples, which has not been completed in this research. 

Based on the fermentation efficiency results, the best calibration model is the first 

derivative within the reduced wavelength range.  This model has a coefficient of determination 

equal to 0.78 and a value of 1.12 as its standard error of performance (SEP).  There has been 

little literature on the use of NIR to determine fermentation efficiency, but other studies describe 

their method for ethanol production, specifically ethanol yield.  For research completed by Pohl 

and Senn (2011), triticale was most similar to the mutant grain sorghum with an average starch 

content of ~67% (db).  The results for the Foss 5000 instrument show a RMSEC of 0.69%, a 

calibration R2 of 0.609, and a RMSEP of 0.65% for the ethanol yield of triticale.  While the 

standard error of calibration R2 was higher in this study (0.95), their RMSEC was higher and 

their RMSEP was lower with the use of 5 factors.  The use of 5 factors creates a higher level of 

complexity for their model since the model in Figure 21 only used 4 factors.  Overall, the models 

demonstrated the possibility of using NIR model prediction for mutant sorghum starch content 

and fermentation efficiency.  
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Chapter 4 - Conclusions and Recommendations 
 

 4.1 Conclusions 

Ethanol fermentation was completed in about 48 h for most of the sorghum samples, 

which means that the fermentation time can be shortened from the original 72 h period. Thus, the 

mutant grain sorghum was advantageous for ethanol fermentation.  The average starch content 

was 67.6% (db) with a standard deviation of 5.8% and the average ethanol yield was 13.4% (v/v) 

with a standard deviation of ~4.0%.  There was a positive correlation (R2 = 0.70) between the 

ethanol yield and the starch content. The average fermentation efficiency was 91% with a 

standard deviation of 2.2% and there was no relationship between the fermentation efficiency 

and starch content. 

Near infrared spectroscopy has the potential to create a more cost-effective, quick method 

for prediction of the starch and fermentation efficiency.  The PLS model for starch exhibited 

robustness with a high R2 of 0.77 and 0.90 and low error values of 0.83% and 0.77%, for 

calibration and prediction models, respectively.  For the fermentation efficiency, the RMSEC 

was 0.49% with a R2 value of 0.95 and the RMSEP was 1.12% with a R2 value was 0.78 for the 

first derivative PLS model (4,000-5,176 cm-1).  In future studies, it would be beneficial for the 

NIR spectra to be applied to another software to determine statistical significance and more 

analysis for fermentation in order to expand the basis for the model.      

 4.2 Recommendations 

For fermentation studies, more research is needed to analyze the relationship among the 

genetic and functional properties, processing methods, and final ethanol yield and efficiency for 

grain sorghum.  For studies on NIR models, more analysis is necessary to increase model 
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accuracy of fermentation efficiency models.  Further statistical analysis is required in order to 

determine the significance of the model.  Also, more mutant grain sorghum samples are needed 

to increase the model accuracy for both the starch content and fermentation efficiency models.  

Another recommendation is to combine starch content and ethanol yield into one model that 

could provide a fast way for ethanol plants to predict the starch content, ethanol yield, and 

fermentation efficiency. 
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Appendix A - Data Tables 

Table A.1. Compositional analysis for mutant grain sorghum 

Composition Range Average 

Moisture (%, wb) 7-10 8.45 

Starch (%, db) 63-71 67.27 

Protein (%, wb) 11-28 14.83 

 

Table A.2. Average and standard deviation data for moisture content (MC) with one 
replicate 

Sample Line Average MC (%) Standard Deviation (%) 

1 25M2-0003 8.47 0.16 

2 25M2-0054 8.10 0.80 

3 25M2-0063 9.01 0.65 

4 25M2-0083 8.05 1.34 

5 25M2-0113 7.61 2.92 

6 25M2-0176 7.95 0.55 

7 25m2-0183 8.77 2.39 

8 25m2-0193 9.14 1.47 

9 25m2-0236 9.15 0.77 

10 25m2-0275 7.89 1.02 

11 25m2-0301 6.97 2.96 

12 25m2-0315 8.97 0.21 

13 25m2-0322 7.35 0.93 

14 25m2-0323 7.40 0.59 

15 25m2-0363 8.32 1.06 

16 25m2-0365 8.08 2.06 

17 25m2-0378 8.83 0.11 

18 25m2-0439 7.66 0.34 

19 25M2-0450 7.76 1.77 

20 25M2-0466 8.78 0.70 

21 25M2-0485 9.14 1.39 
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22 25M2-0488 8.73 2.40 

23 25M2-0510 8.95 0.72 

24 25M2-0516 8.68 1.82 

25 25M2-0527 8.70 0.36 

26 25M2-0535 7.62 0.32 

27 25M2-0574 8.38 1.37 

28 25M2-0579 7.95 0.14 

29 25M2-0580 8.95 2.66 

30 25M2-0581 7.55 1.42 

31 25M2-0585 9.24 2.13 

32 25M2-0601 8.38 1.21 

33 25M2-0632 9.03 1.49 

34 25M2-0637 8.06 0.33 

35 25M2-0655 9.20 2.34 

36 25M2-0664 8.26 0.60 

37 25M2-0668 8.10 2.04 

38 25M2-0696 8.64 0.94 

39 25M2-0713 8.01 1.97 

40 25M2-0714 8.66 0.40 

41 25M2-0720 9.57 1.01 

42 25M2-0731 7.82 1.10 

43 25M2-0736 8.96 2.38 

44 25M2-0740 8.79 0.53 

45 25M2-0741 7.66 1.25 

46 25M2-0768 8.49 0.07 

47 25M2-0771 8.54 0.34 

48 25M2-0775 8.01 1.36 

49 25M2-0788 9.11 2.18 

50 25M2-0897 9.16 0.15 

51 25M2-0912 8.30 0.45 

52 25M2-0940 8.78 0.08 
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53 25M2-0964 8.57 2.48 

54 25M2-0991 8.64 1.70 

55 25M2-1025 8.70 0.13 

56 25m2-1036 9.45 0.75 

57 25M2-1077 8.92 0.10 

58 25m2-1079 7.68 1.34 

59 25M2-1080 8.70 0.65 

60 25M2-1082 7.99 1.47 

61 25M2-1083 8.32 1.23 

62 25M2-1091 9.06 0.55 

63 25M2-1093 7.78 1.85 

64 25M2-1098 7.39 0.41 

65 25M2-1111 7.69 0.29 

66 25M2-1129 8.51 0.25 

67 25M2-1131 7.25 0.63 

68 25M2-1135 8.23 0.08 

69 25M2-1141 8.61 1.60 

70 25M2-1159 8.70 0.38 

71 25M2-1183 8.84 2.27 

72 25M2-1194 8.50 0.51 

73 25M2-1201 8.77 0.02 

74 25M2-1343 8.20 0.23 

75 25M2-1435 9.29 0.26 

76 25M2-1449 8.66 2.02 

77 25M2-1506 8.75 0.83 

78 25m2-1522 8.76 2.71 

79 25M2-1542 9.93 0.47 

80 25m2-1553 8.76 2.91 

81 25M2-1645 8.57 0.88 

82 25M2-1682 8.09 1.11 

83 25M2-1683 9.16 0.81 
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84 25M2-1705 8.57 1.74 

85 25M2-1707 8.66 0.90 

86 25M2-1716 8.49 0.35 

87 25M2-1719 8.87 0.29 

88 25M2-1728 8.08 0.86 

89 25M2-1737 8.22 1.82 

90 25M2-1784 8.74 0.72 

91 25M2-1818 8.93 0.51 

92 25m2-2001 8.35 0.70 

93 25m2-2034 8.38 0.78 

94 25m2-2082 8.59 0.75 

95 25m2-2095 8.50 0.23 

96 25m2-2134 7.89 0.41 

97 25m2-2147 7.92 1.28 

98 25m2-2265 7.91 1.23 

99 25m2-2285 8.65 1.57 

100 M2P0049 9.01 0.20 

101 M2P0114 8.15 0.42 

102 M2P0799 8.55 0.22 

103 M2P0810 7.79 1.01 

104 M2P0841 8.59 0.67 

105 M2P0872 7.87 1.00 

106 M2P0965 8.53 0.08 

107 mut1104 9.50 2.80 

108 BTx623 7.87 0.38 

109 BTx623 8.70 0.18 
 
 
 
Table A.3. Average and standard deviation data for starch content with one replicate 

Sample Line Average Starch (db, %) Standard Deviation (%) 

1 25M2-0003 63.67 0.53 
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2 25M2-0054 66.32 0.14 

3 25M2-0063 66.56 0.93 

4 25M2-0083 64.40 0.46 

5 25M2-0113 63.06 1.18 

6 25M2-0176 65.28 1.08 

7 25m2-0183 65.90 0.47 

8 25m2-0193 68.02 0.31 

9 25m2-0236 69.16 0.00 

10* 25m2-0275 31.88 141.42 

11 25m2-0301 65.55 0.71 

12 25m2-0315 69.59 0.37 

13 25m2-0322 67.10 0.00 

14 25m2-0323 65.51 0.02 

15 25m2-0363 68.89 0.85 

16 25m2-0365 67.38 0.30 

17 25m2-0378 69.79 0.04 

18 25m2-0439 62.91 1.35 

19 25M2-0450 64.71 0.67 

20 25M2-0466 69.25 1.07 

21 25M2-0485 67.54 0.34 

22 25M2-0488 67.73 0.35 

23 25M2-0510 69.64 0.58 

24 25M2-0516 67.33 1.14 

25 25M2-0527 65.78 0.74 

26 25M2-0535 66.83 0.19 

27 25M2-0574 69.78 0.02 

28 25M2-0579 71.04 0.93 

29 25M2-0580 68.85 0.73 

30 25M2-0581 68.44 0.15 

31 25M2-0585 68.65 0.66 

32 25M2-0601 67.50 0.69 
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33 25M2-0632 67.61 0.80 

34 25M2-0637 69.71 0.14 

35 25M2-0655 67.14 0.68 

36 25M2-0664 67.78 1.22 

37 25M2-0668 63.63 0.26 

38 25M2-0696 70.63 0.16 

39 25M2-0713 65.88 0.97 

40 25M2-0714 66.12 0.94 

41 25M2-0720 67.80 1.59 

42 25M2-0731 66.53 0.42 

43 25M2-0736 66.04 0.25 

44 25M2-0740 70.42 0.53 

45 25M2-0741 67.11 1.12 

46 25M2-0768 67.22 0.41 

47 25M2-0771 66.96 0.30 

48 25M2-0775 66.64 0.72 

49 25M2-0788 68.98 0.18 

50 25M2-0897 70.85 0.06 

51 25M2-0912 68.02 0.65 

52* 25M2-0940 - - 

53 25M2-0964 64.15 1.03 

54 25M2-0991 69.31 0.84 

55 25M2-1025 68.44 0.19 

56 25m2-1036 67.67 0.47 

57 25M2-1077 65.22 0.79 

58 25m2-1079 63.80 0.73 

59 25M2-1080 69.01 0.28 

60 25M2-1082 66.83 0.20 

61 25M2-1083 68.47 0.35 

62 25M2-1091 70.01 0.31 

63 25M2-1093 67.38 0.69 
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64 25M2-1098 67.25 0.87 

65 25M2-1111 64.31 0.98 

66 25M2-1129 69.39 0.28 

67 25M2-1131 67.00 1.62 

68 25M2-1135 67.54 0.74 

69 25M2-1141 67.93 0.38 

70 25M2-1159 66.76 0.60 

71 25M2-1183 68.31 0.05 

72 25M2-1194 69.42 0.32 

73 25M2-1201 67.67 0.57 

74 25M2-1343 68.69 0.46 

75 25M2-1435 69.10 0.21 

76 25M2-1449 67.29 0.51 

77 25M2-1506 68.38 0.30 

78 25m2-1522 71.17 0.71 

79 25M2-1542 68.62 0.14 

80 25m2-1553 70.64 0.42 

81 25M2-1645 70.55 0.25 

82 25M2-1682 68.02 0.32 

83 25M2-1683 67.67 0.16 

84 25M2-1705 68.63 0.47 

85 25M2-1707 69.86 0.90 

86 25M2-1716 65.16 0.49 

87 25M2-1719 66.09 0.40 

88 25M2-1728 67.52 0.66 

89 25M2-1737 69.23 0.52 

90 25M2-1784 68.47 0.73 

91 25M2-1818 69.69 0.41 

92 25m2-2001 66.47 0.40 

93 25m2-2034 68.31 0.67 

94 25m2-2082 66.34 0.95 
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95 25m2-2095 65.69 0.62 

96 25m2-2134 66.30 1.88 

97 25m2-2147 69.00 0.53 

98 25m2-2265 67.66 0.55 

99 25m2-2285 63.17 0.13 

100 M2P0049 66.90 0.47 

101 M2P0114 70.24 0.66 

102 M2P0799 66.52 0.89 

103 M2P0810 67.95 0.02 

104 M2P0841 66.35 0.05 

105 M2P0872 66.64 0.41 

106 M2P0965 69.08 0.60 

107 mut1104 68.68 1.18 

108 BTx623 69.18 0.96 

109 BTx623 70.75 0.65 
* Experimental errors 

 
 
Table A.4. Nitrogen and crude protein data 

Sample Line Nitrogen (%) Crude Protein (%) 

1 25M2-0003 2.52 15.75 

2 25M2-0054 2.28 14.25 

3 25M2-0063 2.67 16.69 

4 25M2-0083 2.48 15.50 

5 25M2-0113 2.77 17.31 

6 25M2-0176 2.64 16.50 

7 25m2-0183 2.81 17.56 

8 25m2-0193 2.02 12.63 

9 25m2-0236 2.79 17.44 

10 25m2-0275 2.44 15.25 

11 25m2-0301 2.45 15.31 

12 25m2-0315 2.27 14.19 



65 

13 25m2-0322 2.22 13.88 

14 25m2-0323 2.37 14.81 

15 25m2-0363 2.27 14.19 

16 25m2-0365 2.34 14.63 

17 25m2-0378 1.98 12.38 

18 25m2-0439 2.94 18.38 

19 25M2-0450 2.90 18.13 

20 25M2-0466 2.34 14.63 

21 25M2-0485 3.16 19.75 

22 25M2-0488 2.34 14.63 

23 25M2-0510 2.13 13.31 

24 25M2-0516 2.74 17.13 

25 25M2-0527 2.42 15.13 

26 25M2-0535 2.45 15.31 

27 25M2-0574 1.94 12.13 

28 25M2-0579 1.99 12.44 

29 25M2-0580 2.11 13.19 

30 25M2-0581 2.31 14.41 

31 25M2-0585 2.27 14.19 

32 25M2-0601 2.33 14.56 

33 25M2-0632 2.80 17.50 

34 25M2-0637 2.06 12.88 

35 25M2-0655 2.50 15.63 

36 25M2-0664 2.39 14.91 

37 25M2-0668 1.90 11.88 

38 25M2-0696 2.12 13.25 

39 25M2-0713 2.25 14.06 

40 25M2-0714 2.42 15.13 

41 25M2-0720 2.07 12.94 

42 25M2-0731 2.80 17.47 

43 25M2-0736 2.45 15.31 
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44 25M2-0740 2.26 14.13 

45 25M2-0741 2.42 15.13 

46 25M2-0768 2.45 15.28 

47 25M2-0771 2.44 15.25 

48 25M2-0775 2.12 13.25 

49 25M2-0788 2.30 14.38 

50 25M2-0897 2.84 17.75 

51 25M2-0912 2.40 15.00 

53 25M2-0964 2.43 15.19 

54 25M2-0991 2.30 14.38 

55 25M2-1025 2.12 13.25 

56* 25m2-1036 4.48 28.00 

57* 25M2-1077 3.50 21.88 

58 25m2-1079 2.26 14.13 

59 25M2-1080 2.23 13.94 

60 25M2-1082 2.56 16.00 

61 25M2-1083 2.47 15.44 

62 25M2-1091 2.61 16.31 

63 25M2-1093 2.29 14.31 

64 25M2-1098 2.33 14.56 

65 25M2-1111 2.87 17.94 

66 25M2-1129 1.82 11.38 

67 25M2-1131 2.20 13.75 

68 25M2-1135 2.17 13.56 

69 25M2-1141 2.20 13.75 

70 25M2-1159 2.36 14.75 

71 25M2-1183 2.34 14.63 

72 25M2-1194 2.32 14.50 

73 25M2-1201 2.75 17.19 

74 25M2-1343 2.01 12.56 

75 25M2-1435 2.46 15.38 
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76 25M2-1449 2.42 15.13 

77 25M2-1506 2.40 15.00 

78 25m2-1522 1.90 11.88 

79 25M2-1542 2.23 13.94 

80 25m2-1553 2.29 14.31 

81 25M2-1645 2.22 13.88 

82 25M2-1682 2.11 13.19 

83 25M2-1683 2.40 15.00 

84 25M2-1705 2.16 13.50 

85 25M2-1707 3.07 19.19 

86 25M2-1716 2.23 13.94 

87 25M2-1719 2.72 17.00 

88 25M2-1728 2.05 12.81 

89 25M2-1737 2.34 14.63 

90 25M2-1784 1.97 12.31 

91 25M2-1818 1.98 12.38 

92 25m2-2001 2.53 15.81 

93 25m2-2034 2.10 13.13 

94 25m2-2082 2.23 13.94 

95 25m2-2095 2.30 14.38 

96 25m2-2134 2.13 13.31 

97 25m2-2147 2.14 13.38 

98 25m2-2265 2.68 16.75 

99 25m2-2285 2.73 17.06 

100 M2P0049 2.40 15.00 

101 M2P0114 1.98 12.38 

102 M2P0799 2.22 13.88 

103 M2P0810 1.95 12.19 

104 M2P0841 2.45 15.31 

105 M2P0872 2.28 14.25 

106 M2P0965 1.96 12.25 
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107 mut1104 2.15 13.44 

108 BTx623 1.90 11.88 

109 BTx623 1.84 11.50 
* Experimental errors 

 
 
 
 
 
Table A.5. RVA data for the lowest and highest fermentation efficiency samples 

Sample 
Peak 
Visc. 
(cP) 

Minimum 
Visc. (cP) 

Breakdown 
Visc. (cP) 

Final 
Visc. 
(cP) 

Setback 
Visc. 
(cP) 

Peak 
Time 
(min) 

Pasting 
Temp. 
(°C) 

Sample 
1 1141 1084 57 2328 1244 6.317 92 

Sample 
15 1362 1301 61 2974 1673 6.450 92.1 

Sample 
16 1211 1163 48 2495 1332 6.783 92.75 

Sample 
44 1663 1500 163 3581 2081 6.250 73.4 

Sample 
49 1607 1435 172 3329 1894 6.250 86.25 

Sample 
55 1759 1487 272 3963 2476 6.317 52.8 

Sample 
57 1311 1213 98 2600 1387 6.250 60.3 

Sample 
78 1718 1540 178 3604 2064 6.583 90.35 

Sample 
88 1702 1515 187 3589 2074 6.317 50.95 

Sample 
97 1748 1523 225 3715 2192 6.317 50.1 
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Table A.6. Ethanol yields and fermentation efficiencies (sorted based on fermentation 
efficiency) 

Sample Line Actual 
Ethanol Yield 

(%,v/v) 

Theoretical 
Yield (%, 

v/v) 

Flour 
Total 

Starch (%, 
db) 

Fermentation 
Efficiency 

(%) 

1* 25M2-0003 12.10 13.73 63.67 88.13 

16* 25m2-0365 12.85 14.53 67.38 88.44 

55* 25M2-1025 13.11 14.76 68.44 88.82 

49* 25M2-0788 13.23 14.88 68.98 88.91 

44* 25M2-0740 13.54 15.19 70.42 89.14 

105 M2P0872 12.89 14.37 66.64 89.70 

38 25M2-0696 13.70 15.22 70.55 90.01 

14 25m2-0323 12.73 14.13 65.51 90.09 

33 25M2-0632 13.20 14.58 67.61 90.53 

56 25m2-1036 13.21 14.59 67.67 90.54 

22 25M2-0488 13.25 14.61 67.73 90.69 

92 25m2-2001 13.01 14.34 66.47 90.73 

82 25M2-1682 13.31 14.67 68.02 90.73 

68 25M2-1135 13.27 14.57 67.54 91.08 

99 25m2-2285 12.41 13.62 63.17 91.12 

61 25M2-1083 13.46 14.77 68.47 91.13 

18 25m2-0439 12.41 13.57 62.91 91.45 

31 25M2-0585 13.58 14.81 68.65 91.69 

69 25M2-1141 13.46 14.65 67.43 91.88 

103 M2P0810 13.47 14.65 67.95 91.95 

12 25m2-0315 13.85 15.01 69.59 92.27 

64 25M2-1098 13.39 14.50 67.25 92.34 

94 25m2-2082 13.22 14.31 66.34 92.38 

4 25M2-0083 12.85 13.89 64.40 92.51 

45 25M2-0741 13.39 14.47 67.11 92.54 

63 25M2-1093 13.51 14.53 67.38 92.98 

23 25M2-0510 13.97 15.02 69.64 93.01 
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54 25M2-0991 13.92 14.95 69.31 93.10 

76 25M2-1449 13.52 14.51 67.29 93.18 

93 25m2-2034 13.75 14.73 68.31 93.35 

72 25M2-1194 14.06 14.97 69.42 93.89 

8 25m2-0193 13.78 14.67 68.02 93.93 

91 25M2-1818 14.13 15.03 69.69 94.01 

98 25m2-2265 13.74 14.59 67.66 94.17 

97* 25m2-2147 14.09 14.88 69.00 94.69 

57* 25M2-1077 13.35 14.07 65.22 94.89 

15* 25m2-0363 14.18 14.86 68.89 95.42 

78* 25m2-1522 14.68 15.35 71.17 95.64 

88* 25M2-1728 13.97 14.56 67.52 95.95 
*Samples with the lowest and highest fermentation efficiency selected for morphological, thermal, and pasting 
experiments  

 
 
 
Table A.7. Composition of Distillers’ Dried Grain Solubles (DDGS) 

Sample Line Average MC 
(wb, %) 

Average Starch 
(db, %) Crude Protein (wb, %) 

1 25M2-0003 13.83 1.67 40.48 

4 25M2-0083 14.15 1.11 39.26 

8 25m2-0193 14.41 1.28 38.11 

12 25m2-0315 13.89 1.03 40.06 

14 25m2-0323 14.70 1.53 38.89 

15 25m2-0363 13.59 1.57 38.68 

16 25m2-0365 13.47 0.92 40.09 

18 25m2-0439 13.16 1.44 39.79 

22 25M2-0488 14.17 1.49 39.19 

23 25M2-0510 14.13 1.45 38.13 

31 25M2-0585 15.10 1.58 39.31 

33 25M2-0632 12.48 1.54 39.25 

38 25M2-0696 15.35 1.00 37.64 
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44 25M2-0740 15.25 1.71 37.49 

45 25M2-0741 13.43 1.53 39.56 

49 25M2-0788 15.32 1.92 36.63 

54 25M2-0991 13.70 1.89 38.06 

55 25M2-1025 14.70 1.34 38.86 

56 25m2-1036 14.28 1.33 37.67 

57 25M2-1077 13.99 1.27 39.23 

61 25M2-1083 13.81 1.61 39.66 

63 25M2-1093 14.43 1.31 37.81 

64 25M2-1098 13.98 1.95 37.28 

68 25M2-1135 14.55 0.99 36.52 

69 25M2-1141 13.62 1.65 39.82 

72 25M2-1194 14.21 1.60 38.49 

76 25M2-1449 13.09 1.59 39.93 

78 25m2-1522 14.88 1.49 35.75 

82 25M2-1682 14.17 1.64 36.91 

88 25M2-1728 15.37 1.75 37.13 

91 25M2-1818 14.32 1.50 36.63 

92 25m2-2001 14.81 1.58 39.03 

93 25m2-2034 14.85 1.45 37.08 

94 25m2-2082 14.23 1.60 37.57 

97 25m2-2147 14.38 1.58 36.77 

98 25m2-2265 15.34 1.52 40.28 

99 25m2-2285 11.24 1.25 41.78 

103 M2P0810 15.43 1.80 36.55 

105 M2P0872 15.56 1.34 39.81 
  


