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Abstract 

Windbreaks are a valuable resource in conserving soils and providing crop protection in 

western Kansas and other Great Plains states. Currently, Kansas has neither an up-to-date 

inventory of windbreak locations nor an assessment of their condition. The objective of this 

study is to develop remote sensing and geographic information system methods that rapidly 

identify and assess the condition of windbreaks in Ford County, Kansas.  Ford County serves as 

a pilot study area for method development with the intent of transferring those methods to other 

counties/regions in Kansas and the Great Plains. A remote sensing technique known as object-

based classification was used to classify windbreaks using color aerial photography acquired 

through the 2008 National Agricultural Imagery Program.  Object-based classification works by 

segmenting imagery where areas with similar spectral, shape, and textural properties are grouped 

into vectors (i.e., objects) that are later used as the basis for image classification. Using this 

technique, 355 windbreaks, totaling nearly 1,012 acres (410 hectares), were identified in Ford 

County. When compared to a spatial dataset of confirmed windbreak locations generated via a 

heads-up digitizing process, the location of windbreaks identified using object-based 

classification results agreed approximately 81% of the time.  Mean textural and spectral values 

were then combined and used to place identified windbreaks into three condition categories 

(good, fair, and poor) using a manual classification approach.  Analysis showed the area of 

windbreaks in good condition to be 170 hectares, with the remaining 171 hectares of windbreaks 

falling in the fair or poor classes.  Methods detailed in this study proved successful at rapidly 

identifying windbreak location and for providing useful condition class results for windbreak 

renovation and restoration planning.  
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CHAPTER 1 - Introduction  

Windbreaks, also known as shelterbelts, are a valuable resource in conserving soil and 

providing crop protection in western Kansas, as well as many other Great Plains states (Brandle 

et al., 2004).  Many of these windbreaks were planted to reduce wind erosion during the Dust 

Bowl era of the 1930’s (Read 1958).  The Society of American Foresters (SAF) defines a 

windbreak as “a strip of trees or shrubs maintained mainly to alter wind flow and microclimates 

in the sheltered zone, usually farm buildings.”  SAF also defines a shelterbelt as a “strip of trees 

or shrubs maintained mainly to alter wind flow and microclimates in the sheltered zone, usually 

agricultural fields” (R. Atchison 2008, pers. comm.).  Brandle et al., (2004) provide a much 

simpler definition “Windbreaks or shelterbelts are barriers used to reduce wind speed.”  In this 

study, the Brandle et al., (2004) definition will be used as both farmstead and field windbreaks 

are objects of interest.  Figures 1 and 2 are photos of multi-row windbreaks commonly found 

throughout the Ford County study area.  

 

Figure 1.  Field windbreak located 20 miles east of Dodge City, Kansas.  
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Figure 2.  Field windbreak located approximately 25 miles east of Dodge City Kansas.  
               

 

 

 

 

 

 

 

 

 

 
 

Currently, Kansas has neither an up-to-date inventory of windbreak locations nor an 

assessment of their condition.  In this study, methods are applied to identify the location and 

assess the condition of windbreaks in Ford County, Kansas using remote sensing (RS) and 

geographic information system (GIS) techniques.  The most recent study in Kansas was 

completed in 1992, when the U.S. Department of Agricultural (USDA) Natural Resource 

Conservation Service (NRCS) determined there were approximately 78,000 windbreaks in the 

state (R. Atchison 2008, pers. comm.).  Most natural resource professionals agree that field 

windbreaks are a declining resource in Kansas and that few new ones are being established, yet 

there is little good science available to efficiently document windbreak location, size, or 

condition.  Still, the 1997 NRCS Natural Resource Inventory (NRI) suggests that wind continues 
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to erode 1.8 million acres (728,434 ha) of cropland in Kansas at rates that exceed tolerable limits 

(around 1.3 tons/acre/year) (R. Atchison 2008, pers. comm.).  

Sorenson and Marotz (1977) expressed concerns that windbreaks in Kansas were 

beginning to be  removed over 3 decades ago.  Many of the windbreaks planted in western 

Kansas were planted during the Dust Bowl era whenCongress passed the Prarie States Foresty 

Act (PSFA) (Croker 1991).  The Act called for the planting of millions of trees and tens of 

thousands of shelterbelts in an attempt to prevent eolian erosion and to create jobs for a destitue 

Great Plains economy (Read 1958).  Bates (1924) pointed out that, before the Dust Bowl, the 

lack of windbreaks in the Great Plains was a “severe handicap” to agricultural land.  It is now 

timely to build upon previous work of the NRCS and additional shelterbelt research projects to 

develop methods for the rapid identification of windbreak location and an assessment their 

condition..  

Purpose and Objectives  
 

 The main purpose of this research is to work in conjunction with the Kansas Forest 

Service (KFS) to develop GIS and RS methods to identify the location, size, and condition of 

windbreaks in Ford County, Kansas.  In addition, it is the purpose of this research to determine 

how well automated classification schemes match with ground truth data of windbreak condition. 

Once a satisfactory method of classification has been obtained, the same or similar methods can 

be used in future research to locate and assess windbreaks in other western Kansas counties and 

across the Great Plains.   
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This project has three primary goals:  

1) To rapidly classify windbreaks using object-based classification on County Composite 

Mosaic (CCM) aerial imagery,  

2) To develop a secondary classification to assess windbreak condition (good, fair, poor) 

and determine the number of acres/hectares that exist in each class, and 

3) To identify windbreaks located on highly erodible and impaired soils.  

 To achieve these goals a remote sensing technique known as object-based classification 

was used to classify windbreaks from 2008 National Agriculture Imagery Program (NAIP) 

imagery.  Attributes from four spectral bands (blue, green, red, and near-infrared) present in the 

NAIP imagery were used in the classification process.  Object-based classification takes into 

account size, shape, and context as well as spectral information of features identified for 

classification (Baatz et al., 2004).  These non-spectral classification criteria are crucial for 

accurate classification of windbreaks for two reasons.  First, windbreaks are usually linear strips 

of tree plantings.  A riparian area could easily share similar spectral reflectance characteristics as 

a windbreak making it difficult to distinguish between the two features without considering some 

shape criteria in the classification.  Second, some object-based classification software packages 

allow for the isolation of features of interest.  This option means that based on certain shape and 

spectral parameter settings, one can eliminate features in the image that are not of interest before 

beginning the classification process, resulting in more efficient classification and image 

processing times.   

Traditionally, foresters determine windbreak condition using measures of tree density 

and/or porosity.  In addition, windbreak condition can also be based on how well it is functioning 

as a wind restraint.  A dense windbreak is capable of blocking more wind from the sheltered 
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zone while a sparsely-planted windbreak provides less wind resistance over the same area.  Read 

(1958) developed condition classification criteria that are still widely accepted and used (R. 

Atchison pers. comm. 2008).  Read’s classification approach requires field crews to visit each 

windbreak and look through it horizontally to determine density.  In this study, windbreak 

condition is assessed using a vertical view provided by aerial photographs.  If assessment results 

generated by analysis of aerial photography compare well with ground-based assessments, many 

hours of field surveying could be replaced with digital image processing for condition 

assessments.  

The mean spectral reflectance brightness values (BV) of windbreak features in the green 

band (band 2) of windbreaks were used to determine windbreak condition. The average BV of a 

windbreak should correlate well with vegetation density and tree cover within a given stand.  

Dense windbreaks appear as dark linear features with few gaps where bare soil and grass is 

visible through the tree canopy.  Such windbreaks should be in relatively good condition and 

have a lower average BV as compared to a less dense windbreak with multiple or large gaps in 

the stand. 

Normalized Difference Vegetation Index (NDVI) was also calculated from the NAIP 

image to perform a second condition assessment and then be compared with results from the BV-

based assessment.  As a measure of greenness, average NDVI values for a windbreak should be a 

good measure of vegetation abundance and health.  A third, and final, condition assessment was 

performed using a condition index based on both mean textural values and BV’s using a linear 

scaling model suggested by Booysen (2002).   

In addition to knowing the location and associated condition of windbreaks, Kansas 

foresters are also interested in understanding more about the soils on which they are found.  To 

5 



achieve the third goal of this project, a geospatial data layer of highly erodible and impaired soils 

was obtained from Hutchinson et al., (2008).  This layer was composed of agricultural crop land 

and soils with a wind erodibility index (WEI) of 87 or greater. Identifying windbreaks in these 

vulnerable areas can assist foresters in prioritizing windbreak renovation projects and new areas 

for future plantings.  

Applied and Academic Contribution   
 

Results from this research will assist foresters in Kansas as they plan for future 

windbreak renovations and identify sites for new plantings.  In addition, this research may serve 

as a catalyst for future research that places a monetary value on the ecosystem services provided 

by windbreaks.  Within the academic realm of geography this research helps answer one of the 

most common questions in the discipline, ‘where?’(Pattison 1963; Golledge 2002; Cutter et al., 

2004).  Cutter et al., (2004) identify ten “Big Questions in Geography” that are meant to work as 

guides in helping bring geographic research to the public in meaningful and useful ways.  

Research from this project addresses two of these questions: 

1) “How has the earth been transformed by human action?” and  

2) “What role will virtual systems play in learning about the world?”   

Prior to the 1930’s few, if any, windbreaks existed in Kansas or the Great Plains (Croker 

1991).  Identifying windbreaks will contribute to the understanding of how humans have 

modified the landscape in the interest of soil loss prevention.  Additionally, use of RS and GIS 

methods is likely to promote better understanding of ‘what’ we can identify ‘where’ on the 

landscape.  Understanding the capabilities and limits of virtual systems is a fundamental element 
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when determining the scenarios for which these systems can be effectively used to extracting 

valid information from real-world imagery.   
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CHAPTER 2 - Literature Review  

Windbreaks  
Windbreaks provide a number of environmental benefits for semi-arid regions throughout 

the world.  Windbreaks provide protection from wind for cattle, crops, and soil as well as homes 

and other structures (Kort and Stefner 2007; Brandle et al., 2004).  Stoeckeler and Williams 

(1949) reported many farmers throughout the Great Plains encountered a drastic reduction in 

winter fuel expenses after planting windbreaks to protect their homes.   

Windbreaks first appeared on the landscape in Scotland during the  mid-1400’s after 

Scottish Parliament urged planting to assist in soil loss prevention on agricultural lands (Brandle 

et al., 2004; Droze 1977).  The first major planting of windbreaks in the United States occurred 

during the 1930’s.  Due to Dust Bowl conditions, U.S Congress authorized the Prairie States 

Forestry Project (PSFP) to assist with planting of shelterbelts to minimize wind erosion and 

decrease the number and intensity of dust storms (Brandle et al., 2004; Droze 1977; Read 1958). 

Many of the dust storms common to Kansas were the result of severe drought, mismanaged 

agricultural land, and “suit case farming” practiced by transient farmers (Saloutos 1969 pg. 1).  

The PSFP provided jobs for an economically distressed population and resulted in the planting of 

over 200 million trees and shrubs totaling 18,600 miles in length (Read 1958).  Between 1935 

and 1942, the PSFP was successful in planting shelterbelts on 30,000 farms stretching from the 

Canadian border of North Dakota south to the Texas Panhandle (Read 1958).  Windbreaks 

planted in western Kansas consisted mainly of the species listed in Table 1. 

Controversy arises, however, when dealing with the total number of trees actually planted 

by the PSFP.  Croker (1991) stated that only 145 million trees were planted by the PSFP between 
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1935 and 1942, which is not consistent with the numbers given by Read (1958).  Though the 

numbers do not match, there is little argument that the PSFP was “One of the greatest projects 

ever attempted by man to improve the environment of our planet” (Croker 1991 pg. 4).  

 

Table 1.  Common windbreak tree species in Ford County, Kansas.  

Scientific Name Common Name  
Prunus angustifolia Sand Hill plum 
Prunus americana  American Plum 
Prunus virginiana Choke Cherry 
Fraxinus pennsylvanica Green Ash 
Populus deltoides Eastern Cottonwood 
Ulmus pumila Siberian Elm 
Celtis occidentalis Hackberry 
Gleditsia triacanthos Honey Locust 
Quercus macrocarpa Bur Oak 
Gymnocladus dioicus Kentucky Coffee Tree 
Juniperus scopulorum Rocky Mountain Juniper 
Juniperus virginiana Eastern Red Cedar 
Pinus ponderosa Ponderosa Pine 
Pinus sylvestris Scotch Pine 
Pinus nigra Austrian Pine 

 

Previous Windbreak Assessments 
In 1938, the first windbreak survey in the United States was conducted to assess the 

survival rate of windbreaks as a whole and not just the individual health of trees planted during 

the PSFP.  Results showed that 61% of all species planted survived (Read 1958).  Factors cited 

for the failure of the remaining 39% of plantings included poor agricultural practices, insects, 

rodents, and improper planting strategies (Read 1958).  While this survey reported a fairly high 

survival rate for plantings, it did not take into consideration the condition of surviving 

windbreaks.   

In forestry terms, windbreak condition is determined based on how well it is functioning 

rather than solely on the health of individual trees.  Function ratings are based on the number of 
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gaps (i.e., porosity) in a windbreak (Cornelis and Gabriels 2005).  Porosity can be measured as a 

ratio between the open area and the total area of a windbreak (Cornelis and Gabriels 2005; 

Jensen 1954). 

A second survey was conducted in 1944 to assess PSFP-planted windbreaks.  By this 

time, the plantings ranged in age from 4 to 7 years (Read 1958).  Samples included over 1,000 

windbreaks spanning from North Dakota to Texas with 78% of them being rated in good 

condition or higher (Read 1958).  Read (1958) explains that the criteria for classifying a 

windbreak as “good” was based only on “survival and the potential of producing a barrier”.  

In 1954, Read (1958) conducted another survey that re-examined many of the same 

windbreaks (938 or 1,079) sampled ten years earlier.  His research took into consideration 

survival, height, diameter at breast height (DBH), vigor, crown spread, and continuity of trees for 

each species.  In addition, Read (1958) also developed four classes (good, fair, poor, or 

destroyed) into which windbreaks could be placed based on their “effectiveness”, which is now 

considered to be “function” (Figure 3).  Good windbreaks in the Read (1958) study exhibited 

moderate but continuous density throughout the stand.  Windbreaks in the poor class generally 

had low density with sparsely separated or clumped trees.  Read (1958) reported that 42% of the 

windbreaks surveyed were in good or excellent condition, 31% were classified as fair, 19% 

classified as poor, and the remaining 8% had been removed (Ticknor 1989).  

More recently, the 1992 NRCS Natural Resource Inventory (NRI), the last assessment 

conducted in Kansas, identified 78,000 windbreaks in the state.  These windbreaks covered a 

total of 114,000 acres and extended a collective length of 20,000 miles. Of those windbreaks 

surveyed, 13% were found to be in excellent condition, 38% good, 34 % fair and 15% poor 

(United States Department of Agriculture 1994).  In producing the 1992 NRI, NRCS adopted 
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many of the same criteria for classifying windbreaks as those used by Read (1958).  Read’s 

classification scheme remains the most widely accepted and used method of rating windbreaks in 

the field (R. Atchison 2008 pers. comm.).  

 
Figure 3.  Classification diagram used by Read (1958) to assess the condition of 
windbreaks. 
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Recently, Wiseman et al., (2007) used object-based image analysis using very-high 

resolution (VHR) imagery to identify and assess windbreaks.  Segmentation methods were used 

on VHR images to create a spatial polygon file which was then used to extract windbreaks via 

Structured Query Language (SQL) queries with in a GIS.   A total of 27 sample windbreaks were 

selected throughout a study area located approximately 150 kilometers east of Winnipeg, 

Manitoba, Canada.  Of these 27 windbreaks, 26 were classified correctly when compared to 

ground truth data.  Wiseman et al., (2007) also used spectral properties from the red, green, and 

blue bands to determine windbreak density and shape characteristics along with expert 

knowledge to extract windbreak vectors from their segmented data.   

Remote Sensing  
Remote sensing is commonly used for the identification, extraction, and classification of 

landuse/landcover types (Koch et al., 2007).  Biophysical remote sensing techniques have also 

been proven useful in monitoring vegetation biomass, soil moisture, surface temperature, and 

surface texture (Jensen 1983).  At the simplest level, remote sensing can be thought of as the 

process of extracting data from real world imagery (Quattrochi et al., 1989).  Geographic remote 

sensing requires that users understand the nature of the imagery they are working with (i.e., 

knowing what landcover features they are looking at) and the drivers or physical processes that 

determine why particular features or cover types are located where they are (Quattrochi et al., 

1989).   

Remote sensing methods take advantage of advanced sensors to capture images of 

particular features or geographic areas.  The process of gathering remotely-sensed imagery has 

been around for over 150 years (Jensen 2007).  In 1858, the first aerial image was captured by 

the Frenchman Nadar from a tethered balloon (Jenson 2007).  Modern sensors are capable of 
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capturing imagery at multiple angles, various spatial resolutions, and using most areas of the 

electromagnetic spectrum.  These advanced sensors can be found on satellites orbiting the earth, 

onboard terrestrial aircraft, and even contained within portable units that users can take to the 

field to capture detailed information about the earth’s surface (Rostoker et al., 1995; Moran et 

al., 1997; Diner et al., 1999; Landgrebe 2003; Jensen 2007).  

 Imagery collected through remote sensing is not only used for visual interpretation, but 

also to extract relevant thematic information through classification and to analyze various 

biophysical properties of vegetative land cover (Jensen 2005).  Extracting thematic information 

from imagery is typically accomplished through ‘supervised’ or ‘unsupervised’ classification 

approaches (Jensen 2005; Richards and Xiuping 2005; Schowengerdt 2007).   

In a supervised classification, known ground truth points are selected as training sites for 

a predefined number of thematic classes.  These training sites are then used in classification 

algorithms to group like clusters of homogeneous pixels into their respective class (Jensen 2005; 

Richards and Xiuping 2005).  In unsupervised classifications, algorithms are used to group like 

pixels into categories with little, or no, prior knowledge of the thematic types present in the 

imaged area (Duda et al., 2001; Jensen 2005).  Once the unsupervised classification scheme 

groups like pixels, the user then labels the groups or classes according to their corresponding 

information class as determined from expert knowledge or ground truth data (Famiglietti et al., 

1999; Jensen 2005). 

 Both supervised and unsupervised classification methods have traditionally been 

accomplished on a per-pixel basis.  Per pixel classifications takes into account only the spectral 

value of a single pixel, which limits its capability to identify ‘features’ and process VHR data 

(Jensen 2005).  More recently, object-based classification methods have been gaining in 
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popularity.  Object-based classifications group homogeneous pixels through a segmentation 

process and convert them to multi-pixel shapes which later become the basis for classification 

(Blashke et al., 2004; Jensen 2005).  Objects created during segmentation provide not only 

spatial information, but also have spectral and textural properties of the objects associated with 

them (Baatz et al., 2004).  For example, each segmented object will have an associated mean 

pixel value for each electromagnetic waveband as an attribute which can be used later during 

classification.   

Object-based Classification Concepts  
Object-based classification is not a new idea.  White the approach has been known since 

the 1970’s, a lack of computing power has prevented its widespread use until very recently 

(Rutherford and Rapoza 2008).  Traditional pixel-based classification only takes into account 

position, size, and value of individual pixels in remotely-sensed imagery (Jenson 2005).  Object-

based classification takes into account not only the position, size, and spectral characteristics of 

individual objects, but also shape and context as a forth category to delineate between individual 

landscape features, or objects (Blaschke et al., 2004).  Essentially, object-based classification 

allows a classification scheme to be based on the shape of objects or features rather than simply 

the spectral reflectance of single pixels.  The main purpose of object oriented-image analysis is 

to extract or identify “real world objects” that are “proper in shape and proper in classification” 

(Baatz et al., 2004).  

Object-based classification depends on a critical process called segmentation. 

Segmentation groups similar pixels together to create object vectors.  Conceptually, 

segmentation methods are used to divide an image into homogeneous objects or regions for 

extraction and classification (Koch et al., 2007).  However, a “general segmentation method, 
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which performs well in many contexts, does not exist” (Kermad and Chehdi 2002 pg. 542).  This 

means that a general scale parameter setting, which determines the size of objects to be created, 

does not exist to segment all desired objects all the time in remotely-sensed images.  In the 

context of this study, if the scale-based segmentation parameter is set too high, the image may be 

segmented into very large polygons that encompass much more area than the features of interest 

(e.g., windbreaks).  Alternatively, if the scale parameter is set too low, then the image could be 

segmented the component pieces of a feature of interest (e.g., individual trees in a windbreak) 

and fail to capture the entire feature as one object.  Figure 4 is provided to facilitate visualization 

of a segmented aerial image.  

In order to overcome the issues surrounding scale-based segmentation parameter settings, 

many parameter values need to be tested to determine the optimal segmentation size(s) based on 

the type of object(s) a user wants to classify (Rutherford and Rapoza 2008).  This approach 

introduces some subjectivity into the segmentation process but little has been done to generalize 

segmentation parameters in the interest of isolating any given set features.  

There are three basic and accepted approaches to performing image segmentation:  Pixel, 

edge, and region (Blaschke et al., 2004).  Pixel-based approaches assign a label to continuous 

patches of pixel cells.  Edge-based methods attempt to identify edges between regions and assign 

labels to boundaries between regions where a pixel value change occurs.  According to Robinson 

et al., (2002), the edge-based approach works fastest because it incorporates only the scale 

parameter into the segmentation process.  Region and pixel-based segmentation methods 

incorporate compactness (ratio of pixels in the perimeter length) and smoothness (jagged edges 

vs. smooth edges) into the segmentation algorithm which slows down processing time (Kermad 

and Chehdi 2002; Jensen 2005).   
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Figure 4. A visual example of the segmentation process. 
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Region-based techniques are subdivided into three categories:  Region growing, region 

merging, and region splitting (Baatz et al., 2004).  Seed points are used to start this region-based 

process.  Next, neighboring pixels are joined to the original seed point until a specific size 

threshold is met.  After this, the process starts over with a new set of seed points (Blaschke et al., 

2004).  Kermad and Chehdi (2002) suggest that an integrated segmentation approach will yield 

the best results, especially when edge- and region-based approaches are combined.  Often, a 

bottom-up region-merging segmentation approach beginning with an individual pixel has proven 

16 



quite successful.  This approach, referred to as the fractal net evolution approach (FNEA), is 

inherent in the eCognition (Definiens, Muchen Germany) digital image segmentation software 

(Huang and Zhang 2008).   

The ENVI Zoom 4.5 Feature Extraction Module (ITT Visual Information Solutions, 

Boulder, Colorado), which was used in this research, uses an edge-based algorithm developed by 

Robinson et al., (2002) to segment imagery.  However, little research has been published using 

this software due to its recent availability (ITT Visual Information Solutions 2008). The edge-

based algorithm is intended to work very fast because it requires only one parameter input (scale 

level) (ITT Visual Information Solutions 2008). Robinson et al., (2002) algorithm was developed 

to detect edge features then merge neighboring regions based on similar measures of spectral 

values as scale parameter increases.  

Expert knowledge, or knowledge-based image interpretation, is a strategy in which a user 

determines the proper segmentation and classification  parameters based on his/her knowledge of 

the objects they wish to classify (Rutherford and Rapoza 2008; Benz et al., 2004).  For example, 

users can look at an image and determine if the segmentation parameters did or did not 

adequately capture the objects of interest. Benz et al., 2004 (pg. 241) list four key points to 

employ the best knowledge-based image interpretation techniques:  

1. Understanding sensor characteristics, 

2. Understanding the appropriate scale of analysis, 

3. Identification of typical context and hierarchical dependencies, 

4. Consideration of inherent uncertainties of the whole information extraction 

system, starting with the sensor, up to fuzzy concepts for the requested 

information. 
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Complementary to expert knowledge, is the ability of object-based classification to 

account for the compactness, smoothness, and linearity of various objects (Tian and Chen 2007; 

Baatz et al., 2004).  Linearity can be represented by three different object feature measures:  (1) 

Length/width of object, (2) length/width of main line, and (3) length/width of main line plus long 

branches of first order” (Tian and Chen 2007).  Tian and Chen (2007) suggest that using 

length/width of main line is far superior to length/width of object because it can capture the true 

linearity of objects.  Figure 5 illustrates a generic main line and first order lines of a generic 

object.  Baatz et al., (2004) mentions, however, that relying too much on shape information may 

reduce the quality of segmentation and advises users to emphasize spectral information while 

incorporating shape information only when necessary.   

Rectangular fit is another important criterion that can be used to capture the linear nature 

of windbreaks.  According the ENVI Feature Extraction Module User’s Guide (ITT Visual 

Information Solutions 2008), rectangular fit can be used to eliminate circular and radically 

‘jagged’ features from any class when deemed necessary by the user.   

Scale is also an important factor when setting segmentation parameters. In remote 

sensing “a certain scale is always presumed by pixel resolution” but “objects of interest often 

have their own inherent scale” (Benz et al., 2004 pg. 241).  For example, while a windbreak may 

not be visible on a LANDSAT 5 image with 30 meter spatial resolution, it would be visible on 

VHR imagery with a spatial resolution of 1 meter.  Though related, scale and spatial resolution 

do have distinct differences.  Resolution refers to the “average area dimension a pixel covers on 

the ground,” where as scale measures the “magnitude or the level of aggregation (and 

abstraction) on which certain phenomenon can be described” (Benz et al., 2004 pg. 245).   
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Figure 5. Differences between the main and first-order lines of an object. 
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Once desired segmentation parameters have been determined, the next step in gathering 

useful information from an image is to place segmented objects into classes.  Classifying objects 

simply means labeling certain image objects using category class names (Baatz et al., 2004).  

Classes, in turn, are established by placing like objects into a user-defined set of categories 

(Baatz et al., 2004).  Fuzzy classification strategies, commonly referred to as fuzzy logic, assign 

a measure of membership to each pixel or object and have become increasingly popular when 

classifying objects (Wang 1990; Jager and Benz 2000; Blaschke et al., 2004).  Fuzzy logic can 

also be used to assign certain objects or shapes to an individual class.  Membership values fall 
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between 0.0 and 1.0, with 0.0 indicating no membership exists with any given class and 1.0 

means full membership (Baatz et al., 2004).   

Jager and Benz (2000) suggest the fuzzy logic approach has great value when compared 

with ground truth data collected for accuracy measures because it takes into account mixed pixel 

issues by assigning a degree of membership to each relevant category.  Certainly, fuzzy logic 

would be useful for identifying windbreaks as such objects will frequently have mixed pixels due 

to their narrow linear character that can result in frequent overlap of forest pixels with 

neighboring grasses or other landcover types.  Also, many windbreaks are planted in distinct 

rows that permit soil and grasses to be visible within them in addition to gaps caused by the 

presence of dead trees.  

Using a supervised classification strategy, multiple objects can be selected as training 

areas for each class to be established.  Various shape, contextual, spectral, and other spatial 

attributes, such as length and area, can then be calculated for and assigned to training sites to 

determine what other objects in the image fit into the predetermined classes best (Baatz et al., 

2004).  Image processing software used in this research project incorporates both a supervised 

classification strategy and a rule-based classification strategy.  The rule-based classification 

strategy can be used to isolate features of interest while eliminating irrelevant features and works 

by allowing the user to define certain criteria that objects must possess in order to be placed in a 

given class.  It is essentially a singular classification that eliminates all but one particular set of 

objects.   

This process is accomplished by first eliminating pixels that do not contain spectral 

values inherent to the features of interest.  Second, shape and contextual based criteria can be 

used to further eliminate features not desired in the final output (ITT Visual Information 
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Solutions 2008).  Recently, similar rule-based techniques have been used to identify urban 

features such as rooftops and buildings (Huang and Zhang 2008).  

  Once desired objects have been classified, they can be imported into a GIS as a vector or 

raster dataset for further analysis (Wiseman et al., 2007).  According to Tian and Chen (2007), 

however, vectors exported from certain image processing platforms sometimes contain no spatial 

reference.  This prevents a GIS from recognizing the actual size, spatial extent, or location of the 

data.  To address this issue, Tian and Chen (2007) developed a custom tool that allowed them to 

set the spatial reference.  Spatial reference definitions did not appear to be an issue with research 

done using more modern image processing software (Radoux and Defourny 2007; Huang and 

Zhang 2008; Rutherford and Rapoza 2008).   

Object-based Classification Implementation  
Traditional methods of classification using remotely-sensed images have become time 

consuming and inefficient given the development of automated classification techniques (Drăgut 

and Blaschke 2006).  In fact, even traditional pixel-based classification techniques are being 

replaced with object-based classification due to its increased accuracy and versatility.  Whiteside 

and Ahmad (2005) found that object-based image analysis produced 78% accuracy while pixel-

based approaches yielded 69.1% in a land cover classification comparison in northern Australia. 

Koch et al., (2007) classified landuse and landcover at a study site within the interior Atlantic 

forest of Paraguay in an attempt to monitor Hantavirus dynamics. Their research showed that 

object-based classification produced 84% overall accuracy while the per-pixel approach yielded 

only 43% overall accuracy (Koch et al., 2007).  Koch et al., (2007) also reported that the Kappa 

metric calculated from their results was significantly higher for the object-based classification 

results compared to that of the per-pixel results.  Cohen’s Kappa is a statistic used to measure 
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how much better the classification worked compared to random chance assignment of features to 

classes (Jenson 2005).  Higher percentage accuracy for object-based classifications was a 

common trend throughout all of the literature reviewed for this research.  The topic of accuracy 

assessment is addressed in detail by Jäger and Benz (2000) and Jenson (2005 pg. 506-509).  

Object-based classification can be used for a variety of image analysis objectives. 

Commonly, object-based classification is used when classifying land cover, however, it is 

certainly not limited to that function.  Baatz et al., (2006) used object-based classification for 

high content screening of fluorescent cell images at a microbiological level.  Geomorphologists 

such as Drăgut and Blaschke (2006) have used object-based classification to identify landform 

elements and created a reproducible methodology that could be applied to a number of study 

sites.  Most recently, researchers have been using an object-based approach to classify urban 

areas which are inherently hard to classify due to the diverse range of spectral values that are 

typically present (Huang and Zhang 2008; De Roeck et al., 2009; Bernad et al., 2009).  In fact,   

De Roeck et al., (2009) were able to produce a Kappa value of 0.84 when classifying urban 

fringe areas, meaning that their classification scheme worked 84% better than a random 

assignment of features to classes.  

Relevant to this project is a study conducted by the Agriculture and Agri-Food Canada 

(AAFC) Prairie Farm Rehabilitation Administration (PFRA) Shelterbelt Centre in Indian Head, 

Saskatchewan. Similar to the KFS, the AAFC PFRA had no spatial data regarding the location of 

windbreaks, or their condition, within their area of responsibility. It was determined that 

traveling across the country to visit individual windbreaks would be too costly and time 

consuming.  Therefore two main objectives were established for their research:  (1) “Can high 

resolution imagery be used to generate an accurate inventory of shelterbelts across a vast 
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landscape?” and (2) “Can shelterbelts be identified by species from high resolution 

imagery?”(Wiseman et al., 2007 pg. 2). Wiseman et al., (2007) randomly selected 27 individual 

windbreaks for ground truth comparisons with windbreak features they extracted from aerial 

imagery. They did not classify windbreaks after segmenting their image but, instead, chose to 

export the vector-based polygon geometries into a GIS immediately after segmentation and 

isolate windbreaks from the rest of the polygons using standard query language (SQL) 

statements.  Rather than classify the image, they used a set of shape and length SQL queries to 

pick out windbreaks from the rest of the segmented polygons.  Using this technique, 26 of the 27 

ground truth windbreaks were successfully identified.  Wiseman et al., (2007) reported that 

shape attributes were most useful in identifying whole windbreaks, while spectral information 

produced better results for individual species classification.  While their results seem accurate, it 

should be understood that Wiseman et al., (2007) did not employ a conventional classification 

strategy.  Rather they used a technique more closely related to a process referred to as feature-

based classification (Bernad et al., 2009).  

In this scenario, features of interest are extracted from the rest of the polygons and placed 

into their own category or file.  This means that there are no 1’s and 0’s, like in a binary 

classification, but just 1’s indicating the feature exists or “no data”.  It should be understood that 

accuracy results from a single feature extraction such as this cannot be compared to results 

generated from a Kappa metric because they represent different measures. The Kappa metric is 

used to measure how much better a classification scheme worked compared to the random 

assignment of features to classes. Weisman et al., (2007) tried only to classify windbreaks that 

they knew to exist.  The issue with their accuracy measure appears to be, that outside of the 27 
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windbreaks they visited in the field, they did not document whether any other windbreaks in their 

study area were correctly identified.  

It has been noted that, in image classification, as more classes are developed the better 

the chances are of distinguishing between them (Jensen 2007).  The idea is that more classes will 

eliminate confusion between features by reducing generalization that can occur when using too 

few classes.  For example, if windbreaks were the only class selected for features that contain 

trees, then the all trees in the image would be placed into the windbreak class.  However, if 

classes were developed for windbreaks, riparian zones, and larger forest stands, various 

algorithms can be used to place each “tree” feature in their correct respective classes based on 

other properties such as shape, size, and spectral reflectance.  

Object-based classification has proven to be a useful technique in classifying land cover 

in a variety of scenarios.  Often, object-based classification has shown its usefulness in 

classifying entire images and for single feature extraction.  Using certain spatial and spectral 

criteria, it is the objective of this research to isolate windbreaks from all other land cover features 

and assess their condition using different spectral and textural properties.  By taking advantage 

of the unique ability of object-based classification to classify features based on their shape, 

windbreak features should be easily distinguished from all other landcover features that share 

similar spectral properties.  In addition, using this automated technique it should help decrease 

the amount of time required to inventory windbreaks by eliminating much of the field survey 

methods employed by Read (1958).  While a variety of windbreak surveys have been conducted 

in the past, none performed in Kansas have ever attempted to extract windbreaks from aerial 

imagery at the county level.  
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CHAPTER 3 - Study Area 

Ford County, Kansas was selected as the study area for this research project and will 

serve as the pilot county for the development of remote sensing and GIS methods to classify 

windbreaks (Figure 6).  The methods tested in Ford County, if successful, will then be applied to 

a multi-county area in southwest Kansas, including the counties of Clark, Gray, Haskell, 

Hodgeman, Meade, and Seward.  These counties are located in the Southwestern District of the 

KFS and selected for analysis in the Conserving, Renovating & Establishing Working Field 

Windbreaks (CREWFW) grant that funded this research. The CREWFW was accepted for 

funding via the State and Private Forestry FY 2008 Western Competitive Grant Application.  

 

Figure 6.  Ford County study area with Kansas Forest Service districts highlighted.  
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Ford County is home to more than 800 acres of windbreaks, some of which were planted 

during the PSFP (1930’s-1940’s).  In addition, the Natural Resource Conservation Service 

(NRCS) provided an independently developed GIS-friendly spatial data file for windbreaks 

identified using a ‘heads-up digitizing’ process that will be used to assess the accuracy of the 

classification techniques applied in this project (R. Temat 2008, pers. comm.).   

 Ford County is located in southwest Kansas and spans an area of 2,850 km2.  Landcover 

within the county is dominated by agricultural cropland, while mixed or short grass prairies make 

up the majority of native vegetation (Goodin et al., 2002 pg. 46). Figure 7 shows a map of Ford 

County landcover based on the 2001 National Landcover Dataset (NLCD).  Land use related to 

the cattle industry also makes up a major part of the landscape with many areas being used as 

grazing land, livestock feed production, and large scale feedlots (Harrington 2001).  A detailed 

breakdown of current landuse/landcover types in Ford County is shown in Table 2.  Appendix A 

gives a description of the NLCD land cover types and associated cover codes.  

Much of the county’s agricultural cropland remains bare soil after harvest, which usually 

occurs in mid- to late June.  The lack of crop residue makes it extremely susceptible to wind 

erosion throughout much of the year.  During the period between harvest and next planting, 

windbreaks sometimes provide the only protection against soil loss (Brandle et al., 1982).  

Another important landcover feature in the study area is the lengthy riparian area 

bordering the Arkansas River.  This forest corridor stretches approximately 65 km from the 

northwest to east-central border of the county.  Eastern cottonwood (Populus deltoides) is the 

dominant tree species found in the riparian area, as well as in many of the older windbreaks (R. 

Atchison pers. comm. 2009).  
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Figure 7.  Landcover/Landuse classes in Ford County.  

 

Dodge City is the major urban center in Ford County and is home to 77% of the county’s 

residents (Harrington et al., 2003).  Current population estimates from the U.S. Census Bureau 

(2009) shows this percentage holding steady, with Dodge City comprising 25,737 out of the 

county total population of 33,340.   Table 3 shows historic population estimates from 1870 to the 

present (U.S. Census Bureau and National Historical GIS (NHGIS)).  Drastic population spikes 

occurred between 1900-1930 as well as from 1960-2000.  These population spikes are illustrated 

in Figure 8.  Population booms in the 1930’s and 1960’s are due to the “Green Revolution”, an 

era in which advanced in agricultural technology made farming an appealing and profitable 

career choice (Evenson and Gollin 2003).    
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Table 2.  Total area of each landuse/landcover class in Ford County (Source:  2001 NLCD) 

 

COVER TYPE COVER 
CODE 

ACRES HECTARES % OF 
TOTAL 

Open Water  11 19,021.2 7697.6 0.9%
Developed, Open Space 21 87,027.9 35,218.9 3.9%
Developed, Low Intensity 22 13,818 5,591.9 0.6%
Developed, Medium Intensity 23 3,377.2 1,366.7 0.2%
Developed, High Intensity  24 1,550.3 627.4 0.1%
Barren Land (Rock/Sand/Clay) 31 557.5 225.6 0%
Deciduous Forest 41 5,343.3 2,162.3 0.2%
Evergreen Forest 42 12.7 5.1 0%
Mixed Forest 43 19.1 7.7 0%
Shrub/Scrub 52 69.1 27.9 0%
Grassland/Herbaceous 71 564,014.8 228,248.6 25.4%
Pasture/Hay 81 55,236.9 22,353.5 2.5%
Cultivated Crops 82 1,455,024.7 588,827.6 65.6%
Woody Wetlands  90 11,644.5 4,712.2 0.5%
Emergent Herbaceous Wetlands 95 492.4 199.3 0%
Total  2,217,209.4 897,272.8 100%

 
 

Table 3.  Historic population change in Ford County, Kansas. 

 

Year Population  Year Population
2009 33,340  2001 32,281
2008 33,293  2000 32,565
2007 33,077  1990 27,463
2006 32,751  1960 20,938
2005 32,876  1930 20,647
2004 32,654  1900 5,497
2003 32,558  1870 427
2002 32,164   
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Figure 8.  Graph of population change in Ford County, 1870-2009.  
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Ford County has a semi-arid climate characterized by high winds, low yearly 

precipitation (> 58 cm) and extreme weather events.  Table 4 lists average annual precipitation 

values for the county dating back to 2000.  Figure 9 is a graph of five-year mean precipitation 

totals plus the deviations from the long term average (47.9 cm) taken from the Dodge City 

weather station and date as far back as 1895.  Periods of drought during the 1930’s are easily 

visible in Figure 9 as precipitation deviates well below the long term mean.  In a tree ring 

chronology study under taken by Woodhouse and Overpeck (1998), it was determined that the 

severity of droughts during the 1930’s and 1950’s were equal to or slightly less than droughts 

experienced thousands of years ago.  This study indicates that severe drought has consistently 

plagued the study area for hundreds of years, with some drought periods lasting for decades or 

longer (Woodhouse and Overpeck 1998).   
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Table 4.  Annual precipitation for Ford County, 2000-2008.  

 

Year  Precipitation (in) Precipitation (cm) 
2000 23.3 59.3
2001 17.5 44.4
2002 17.8 45.3
2003 19.1 48.4
2004 23.5 59.7
2005 25.2 64.1
2006 24.6 62.4
2007 27.2 69.1
2008 22.7 57.6

 

 

Figure 9.  Five year precipitation averages for Ford County, 1895-2006.  
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Blizzards are common events during winter months, while drought often strikes during 

the summer months.  Severe winds, tornados, and thunderstorms accompanied with hail are also 

very common in the spring (Flora 1948).  The National Climactic Data Center (2009) reported 73 
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documented tornado touchdowns between 1950-2008.  Mean monthly temperature variations 

range from -1 o to +27o C (Goodin et al., 1995; Harrington et al., 2003).  Figure 10 is graph of 

historic annual mean temperatures ranging from 1875-2008. This data was collected from the 

Dodge City weather station and made available by the Kansas Board of Agriculture. 

  

Figure 10.  Five year mean temperatures for Ford County, 1895-2006.  
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High winds accompanied by severe weather events (e.g., blizzards) are common to the 

area and have the potential to cause significant damage to shelterbelts. Winter ice storms in 2007 

caused major widespread damage to windbreaks in the area due to the combined impact of 

accumulated ice and winds which broke limbs and, in some instances, brought down entire trees 

(R. Atchison. pers comm. 2009).     
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CHAPTER 4 - Data and Methods 

Imagery 
 The image used in this study was acquired through the 2008 National Agricultural 

Imagery Program (NAIP).  NAIP imagery has a spatial and radiometric resolution of 1 m and 8 

bits, respectively (United States Department of Agriculture 2008).  Each image is multispectral 

in nature, and contains spectral data from four bands of the electromagnetic spectrum:  Blue 

(band 1), green (band 2), red (band 3), and near-infrared (NIR) (band 4).  Documentation was not 

available with the NAIP image that described the specific wavelengths recorded in each band.  

The NAIP image used here was collected during the crop-growing months of 2008.   

 Individual multispectral NAIP images are processed into Compressed County Mosaics 

(CCMs), with a compression ratio of 1:15, and distributed to the public in the JPEG 2000 (.jp2) 

format (Adkins 2008).  The 2008 NAIP CCM for Ford County was downloaded from the Kansas 

Geospatial Community Commons (http://www.kansasgis.org).  The image is delivered to the 

public with a maximum of 10% cloud cover, georectified (North American Datum 1983 

Universal Transverse Mercator Zone 14 North) and with atmospheric corrections already made 

(Mathews and Davis 2007).  Because little cloud cover was observed in the Ford County image, 

it was determined that the few clouds that did exist would not introduce significant error into 

later windbreak classification efforts.  

  One great advantage of using the 2008 NAIP imagery is that it can be downloaded for 

free as compared to similar 1 m resolution imagery which can cost over $25.00 U.S. dollars per 

km2 (M. Kallas, 2008 pers. comm.).  Because the area of Ford County is 2,850 km2, the total cost 

associated with purchasing imagery could easily be $71,250, making it unaffordable for this and 

other projects.  
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The remainder of this chapter outlines methods used to process the NAIP image, perform 

object-based classification, assess windbreak condition, and calculate the area of windbreaks 

found on highly erodible soils.  Figure 11 diagrams a general workflow of the methods used in 

this research.  

 

Figure 11.  Workflow sketch of the methods used in this research.  

 

 

 

Image Preprocessing 
Most GIS software packages are compatible with the .jp2 compressed file format.  

However, the digital image processing software program used in this study, ENVI Zoom 4.5 

Feature Extraction Module (ITT Visual Information Solutions, Boulder, CO), did not recognize 
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the .jp2 format.  Because of this, the original .jp2 CCM for Ford County was converted to the 

TIFF format (based on a lossless compression technique) to make it universally compatible with 

the all image processing and GIS software packages used here.    

Image resampling was performed next and the process of geometrically transforming an 

image and is commonly used to enhance the visual characteristics of an image for display 

purposes (Parker et al., 1983; Dodgson 1992).  Image resampling can also be used to decrease 

the spatial resolution of an image by enlarging the dimensions of individual pixels through 

resampling techniques such as nearest neighbor, bilinear interpolation, and cubic convolution 

filtering.  This process is sometimes referred to as spatial down-sampling (Parker et al., 1983; 

ITT Visual Information Solutions 2008).  

The advantage of using fine spatial resolution imagery comes at the cost of enormous file 

sizes which can significantly slow computer-based processing methods.  Dodgson (1992) 

suggests that image resampling should be done when, (1) collecting the imagery at different 

resolutions is not an option, and (2) when it is possible to recapture the imagery but resampling 

requires no additional monetary input and would result in faster processing.  Here we cannot 

have NAIP personnel re-fly Ford County to capture imagery with less spatial resolution and 

faster processing times are obviously desired. The original .jp2 NAIP image was approximately 

14.5 GB which exceed the 4 GB limit to convert to a .tiff file (Geospatial Data Abstraction 

Library 2009).  

Based on Dodgson (1992) suggestions it was confirmed that resampling the original 

imagery was indeed the best option.  Though information is lost in this process, it will not impact 

this research.  For example, a data reduction step such as resampling would not be appropriate if 

individual tree species were to be classified.  Here, however, the objective is to identify entire 
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windbreaks, so image resampling is actually beneficial by both reducing file sizes and by 

transforming windbreaks into areas of more homogeneous pixels rather than isolated pixels 

representing single trees with in a windbreak.  

The Nearest Neighbor (NN) resampling technique was used because of its speed and 

simplicity (Parker et al., 1983, OverWatch Textron Systems 2008).  The Feature Analyst 

Reference Manual (OverWatch Textron Systems 2008) also suggests that the NN resampling 

technique be used when linear features, like windbreaks, are of particular interest.   

 Resampling factors of 2, 4, 6, 8, and 10 were all performed to determine an optimal 

solution to the .tiff conversion issue.  Resampling the image at factors of 2 and 4 did not decrease 

the original .jp2 file size sufficiently to allow for file conversion.  In addition, when resampling 

factors of 8 and 10 were used windbreaks in the imagery appeared to lose most, if not all, spatial 

integrity. Pixels comprising small windbreaks were averaged in with surrounding grasslands and 

all digital information regarding them was lost.  Furthermore, when resampling factors of 8 and 

10 were used, several large field windbreaks were averaged into a single row of pixels which 

would have prevented an accurate assessment of their condition in later classification steps.  

Resampling the image by a factor of 6 reduced the .jp2 file size enough to permit for .tiff 

conversion while maintaining much of the spatial integrity of field and farmstead windbreaks. 

Figure 12 illustrates a sample of the original and resampled image that was used for 

segmentation and classification.  
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Figure 12.  Comparison of the Ford County 2008 NAIP image at 1 and 6 meter pixel size. 

 

Image Segmentation and Merging 
Several segmentation methods are available that can be used to isolate homogeneous 

pixels into proper objects.  In a preliminary segmentation test for this project conducted as part 

of a class assignment, a bottom-up region merging approach was used to segment imagery within 

a test site in Ford County.  Using this approach, and a minimum distance classifier, an overall 

accuracy of 53.2% was achieved for a landuse/landcover classification.  For this research, an 

edge-based segmentation method and Support Vector Machine (SVM) classifier was applied to 

determine whether improved accuracy was possible.   

 Segmenting imagery can be a time-consuming activity depending on the processing 

power of the computer hardware being used to operate the segmentation software.  Because of 

this, an area of just over 240 km2 was extracted from the resampled imagery to develop 

segmentation and classification parameters to be applied later to the entire CCM of Ford County 

(Figure 13).  Developing parameter settings using a smaller image file allows for faster 

processing times and eliminates much of the need for lengthy “trial and error” experimentation 
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on the much larger CCM file.  The test site was selected because it contained most of the 

windbreak ground truth data collected for accuracy assessment.  In addition, this particular area 

was noted as having a particularly high number of windbreaks (> 30) compared to other areas of 

the county.   

 

Figure 13.  Location of Ford County test site.  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 
 
 

 Segmenting an image relies heavily on a trial-and-error approach where the user 

evaluates the performance of several different scale parameter settings in order to determine 

which performs best.  The ENVI Feature Extraction Module User’s Guide (ITT Visual 

Information Solutions 2008) suggests users should implement the highest scale level that 

properly defines the boundaries of features of interest.  The image processing software used in 

this research provided a viewing portal in which different segmentation parameters could be set 
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and the results then viewed “on the fly” prior to segmenting the entire image to determine if the 

segments are satisfactory.  The viewing portal is mobile, meaning users can move the portal to 

any region of the image and view a sample of what segments would result.   

Scale level is an area measure that determines the ‘size’ of objects to be created.  Scale 

parameter values range from 0.0-100.0 with segments decreasing in size as they move closer to 

0.0. After viewing several scale parameters in the viewing portal, it was determined that a scale 

parameter of 78 adequately delineated large homogeneous regions within windbreaks throughout 

the image (Figure 14).  Higher scale parameters appeared to create larger objects that 

encompassed more landuse/landcover types than just windbreaks.  Lower parameters values 

began to create borders around individual trees within windbreaks.  

 

Figure 14.  Screenshot of the ENVI Zoom 4.5 Feature Extraction Module and viewing 
portal (outlined in red).  
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Using a scale level of 78, an edge-based segmentation algorithm was used to segment the 

entire Ford County image.  The edge-based segmentation algorithm works faster than other 

approaches, such as bottom-up region merging, because it requires only one parameter input 

(scale level).  Though the scale level of 78 adequately defined segments between the windbreak 

and surrounding landcover, several small segments within the windbreak remain.  To correct for 

this issue, a technique called segment merging was used to group small segments of similar 

spectral, spatial, and textural values to create even larger segments containing similar values.   

Segment merging is based on a Full Lambda-Schedule algorithm created by Robinson et 

al., (2002) (Equation 1).  Merging of objects occurs when the algorithm identifies a set of 

neighboring objects with similar spatial and spectral properties.  The merge which groups shapes 

into even larger objects uses the same Equation 1 as the segmentation process and has a range of 

threshold lambda values between 0.0 - 100.0.  After experimenting with a wide variety of lambda 

values it was determined that a value of 50 properly merged segments within windbreaks while 

keeping them isolated from neighboring landuse/landcover types.   

 

Equation 1.  Full Lambda-Schedule algorithm for segment merging.  
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where, 
Oi = region i of the image, 
Oj = region j of the image, 
ui = average value in region i, 
uj = average value in region j, 
||ui – uj|| = Euclidean distance between spectral values of regions i 

and i, and 
Length (∂(Oi, Oj)) = length of the common boundary of Oi and Oj. 
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 In addition to segmenting and merging objects, an additional technique called 

thresholding was used to eliminate objects containing mean spectral values that were not 

essential for identifying windbreaks.  With thresholding, a histogram of regional mean values are 

calculated and displayed with the option to set upper and lower value limits which will remain in 

the image for later classification.  For this project, the only landuse/landcover type of concern is 

the vegetation within windbreaks, so elimination of impervious features such as roads, houses, 

bare soil, and parking lots makes the process of defining classes of remaining vegetation types 

much simpler.  Note that spectral values from bare earth that were captured within objects 

considered to be windbreaks were not eliminated.  The thresholding process only eliminated 

large contiguous areas of bare soil, grasses, roads, etc.  The processing time required to classify 

remaining objects is less and should be more accurate by reducing any confusion in the data 

between impervious and vegetative features.  

Several band threshold parameters were tested and viewed throughout the Ford County 

image using the viewing portal previously mentioned.  Visual analysis showed a minimum band 

threshold of 90 eliminated most impervious features.  No upper limit was placed on the band 

threshold parameters to prevent the potential elimination of any tree cover.  Using these 

threshold parameters all region mean values in the image below 90 were masked from future 

analysis (Figure 15).  After thresholding, several non-windbreak landuse/landcover types (e.g., 

riparian areas and cropland) remain in the image.  

 

Attribute Value Extraction 
 After thresholding has been used to eliminate unwanted regions of the image, attributes 

must be computed for the remaining features.  Attributes calculated for later use in classification 

included those related to spatial geometry (area, length, roundness, etc.), spectral characteristics 
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(pixel BV’s within objects), texture (measures of pixel variance and range), and band ratio (hue, 

saturation, and intensity of pixel values within objects).  A detailed listing all attributes 

calculated, accompanied with a definition and the equation used to calculate the individual 

attributes, can be found in Appendix B.   

 
Figure 15.  Screenshot of the band thresholding operation used to eliminate areas not 
required for windbreak classification.  

 

 
 
 
In the object-based classification software used here (ENVI Zoom 4.5 Feature Extraction 

Module) object attributes are calculated for the purpose of classification only. Any classification 
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results produced within the software will not include attribute information pertaining to the 

attributes identified in Appendix B.  This can pose a problem for later classifications or 

classification enhancements/modifications performed in a GIS later using these same attributes.  

To overcome this problem, objects must be exported immediately after the “calculate attributes” 

operation and before classifying them based on landcover type within the software.  This will 

ensure that a shapefile (spatial data file) of objects with spatial, spectral, textural, and band ratio 

attributes exists.   

When objects are finally delineated into their appropriate landcover classes they can be 

exported to shapefile format however, the only attribute associated with this export will be 

‘landcover class.’  Once classified objects have been exported, a spatial query (i.e., “select by 

location”) can be performed in a GIS to select objects from the original segmented shapefile (the 

one containing attribute information) that intersect or overlay known landcover classes in the 

exported landcover class shapefile (the one containing no attribute information). If this is 

accomplished properly, the objects selected from the original segmentation shapefile can then be 

used to classify landcover features based on their attribute information identified in Appendix B.  

Image Classification 
 Object classification was the next step following the export of segments and their 

associated attributes.  Two classification approaches were considered for extraction of 

windbreaks.  The first was a rule-based classification strategy where the user develops a set of 

rule-based algorithms, or guidelines, to eliminate all features except those of interest for 

extraction.  Rule-based classifications within the software used here were developed as a binary 

classification tool for the extraction of an individual feature type (e.g., houses, buildings, roads, 

etc.).   
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After much experimentation with this approach, it was found that windbreaks shared far 

too many spectral and spatial characteristics with other vegetated features such as riparian areas, 

ditches, and some crop fields to be completely isolated into their own class using the algorithms 

provided in the object-based image classification software.  Because of this it was decided to use 

a traditional supervised classification strategy in order to isolate windbreaks from the other 

landuse/landcover features in the Ford County image.  

Supervised classification requires selection of training sites, or objects of known identity, 

which are then used in the classification algorithm to place objects of an unknown feature type 

into the training class with which it is most similar.  First, a set of classes have to be developed 

based on what cover types are known to be in the image. Much consideration was given to 

building on the Anderson et al., (1976) Level I and II classification schemes.  However Level I 

was much too generalized to incorporate a windbreaks class, and Level II was too detailed to 

derive windbreaks from multiple tree species classes. In fact, while the trees planted in a 

windbreak are indeed a type of landcover, a windbreak in its entirety is a landuse because they 

were planted on the land to be ‘used’ as a wind restraint.   Because of this, the remaining feature 

types were inspected to build a set of custom classes based on suggestions by Jensen (2005) and 

Baatz et al., (2004).  Manual inspections of the objects remaining in the image after band 

thresholding resulted in the identification of four remaining landcover types within the test site 

(Table 5).  

The ENVI Zoom Feature Extraction User’s Manual (ITT Visual Information Solutions 

2008, pg. 33) comments that the more accurate results are obtained when using more training 

sites.  However they do not specify an upper value to the number of training sites.  Instead, they 

state that “an overwhelming number of training samples will cause poor performance during 
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classification and previewing results.” Several different combinations of training site numbers by 

cover type were tested via visual inspection.  It was determined that 15 training sites for crops, 

riparian areas, and windbreaks along with 25 tree stand samples yielded the best results.  

 

Table 5.  Custom landuse/landcover classes developed based on expert knowledge of the 
features remaining in the Ford County image after band thresholding.  
 
 

Cover Type Description 
Crops Live row crops including live crops on center pivot irrigation land. 
Tree Stands  Individual stands of trees/shrubs not linear in nature and not near water 

features. 
Riparian  Long irregularly shaped stands of trees bordering water features. 
Windbreaks Linear strips of trees planted near farm houses and crop fields likely to have 

gagged edges conforming to the shape of outer edge trees. 
 

 Once training sites were established, the next process was to select the appropriate 

attributes for classifying the remaining features.  An algorithm established by ITT Visual 

Information Solutions (2007) was used to automatically select attributes for classification.  This 

algorithm uses a Discrete Capability Index (DCI) to establish the significance level (0.0 - 1.0) of 

an attribute’s capability to distinguish between multiple classes based on 6 distinct types of 

attribute signature overlap (Table 6).  For example, a Type 1 interval has no overlap between 

classes while Type 6 intervals have full overlap.  

Using the “Auto Select Attributes” function, Equation 2 was used to calculate the 

significance of each attribute based on its ability to distinguish between classes at each interval 

type.  If an attribute has the significance level to fully distinguish among 2 classes it receives a 

value of 1.0, which would be the case for Type 1 and 2 intervals. Once the significance values of 

attributes were calculated, the DCI was used to determine the largest intervals that could discern 
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one class from all other classes.   Attributes used to classify the remaining features in the test site 

are listed in Appendix C.  

 
Table 6.  Discrete Capability Index overall interval types (ITT Visual Information 
Solutions 2007). 
 

Type 1:  Interval 1 is before Interval 2 without Overlap:  

Type 2:  Interval 2 is before Interval 1 without Overlap:  

Type 3:  Interval 1 is before Interval 2 with Overlap:  

Type 4:  Interval 2 is before Interval 1 with Overlap:  

Type 5:  Interval 1 contains Interval 2:  

Type 6:  Interval 2 contains Interval 1:  

 
 

Equation 2.  Method used to distinguish between classes by DCI interval type. 

 

1 nfsignificance
nn

= −  

where:  
nf = the number of feature points falling in the interval overlap 

range  
nn = the total number of training points that belong to that class. 

 
 

 The final step in object-based image classification, (using ENVI Zoom 4.5 Feature 

Extraction Module) requires a choice between two classification algorithms that operate on the 

selected attributes in Appendix C:  K Nearest Neighbor algorithm and Support Vector Machine 

(SVM). The K Nearest Neighbor classifier considers n number of neighbors to classify objects 

based on Euclidean distance between n neighbors.  SVM uses a training set of “instance-label” 

pairs to map vectors into a possibly infinite dimension of space by the function Φ (Hsu et al., 
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2008).  The SVM algorithm then uses optimization methods to divide numeric attributes into 

upper and lower margins based on a set number of hyperplanes that split the data into their 

respective classes (Huang and Zhang 2008; Hsu et al., 2008).   

The SVM classifier was used in this project.  Two issues prevented use of K Nearest 

Neighbor:  (1) Misleading results would likely result given that very large areas were masked out 

after applying a band threshold to the Ford County image, and (2) windbreaks are distributed in a 

non-uniform manner across the study area landscape such that nearby similar features can’t 

reliably be classified as windbreaks.   

Use of the SVM classifier requires selection of a kernel type to operate the classifier.  

Typically there are four kernel types from which to choose:  (1) Linear, (2) polynomial, (3) radial 

basis function (RBF), and (4) sigmoid (Hsu et al., 2008).  Because the RBF kernel type has been 

noted for working most efficiently in a variety of classification experiments (Hsu et al., 2008 and 

ITT Visual Information Solutions 2008), it was selected here.   

Object-based Classification Accuracy Assessment  
A wide variety of accuracy assessments can be applied to classification results obtained 

from remotely sensed data.  Before moving on to classify the entire study area, accuracy 

measures needed to be performed on the classification results from the test site. Little ground 

truth data had been obtained within the test site area making it difficult to compare those 

classification results to ground truth measurements. In order to measure the accuracy of the 

object-based classes, several ground truth points would have needed to be collected before the 

classes were generated.  Based on suggestions by Jäger and  Benz (2000),  Jensen (2005), Koch 

et al., (2007), and Rutherford and Rapoza (2008) random samples within each class were 

generated in order to create a  classification error matrix, including values for user, producer, and 
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overall accuracies.  The proper number of random samples were determined using the 

Fitzpatrick-Lins (1981) equation (Equation 3) derived from the Binomial Probability Theory 

(Jensen 2005). 

 

Equation 3. The Fitzpatrick-Lins equation. 
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2
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where: 
p = expected percent accuracy of the whole classification  
q = 100 - p 
E= allowable error 
Z = 2 from the standard normal deviate of 1.96 for the 95% two-

sided confidence level. 
 

In addition to calculating overall accuracy, the Cohen’s Kappa metric was calculated to 

determine to determine the agreement between the object-based classifications and the reference 

data located in the major diagonal of the confusion matrix and the random chance of agreement 

which is specified in the row and column totals (Jensen 2005).   

Once random samples were generated within each class, the error matrix was populated 

by inspecting the underlying landcover class of each random point.  Expert knowledge, or 

knowledge based interpretation, of landcover/landuse features was used to determine if the 

object-based classification classes matched the actual landcover/landuse visible in the 2008 

NAIP imagery.  Because the windbreak category was the only class for which accuracy was 

relevant, a 2x2 error matrix of non-windbreak and windbreak classes was constructed.  Table 7 is 

an example of a populated error matrix.  
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Table 7.  Example of a populated error matrix with generic variables.    

 

 Variable 1 Variable 2 
Variable 1 179 4 
Variable 2 3 17 

Column Total 182 21 
 

Producer and user accuracies for each class were calculated once the error matrix was 

populated.  Producer accuracy, which is a statistic representing the probability of a reference 

object being classified correctly, was then calculated for each class by dividing the number of 

correctly classified objects by the column totals (Jensen 2005).  User accuracy, or the probability 

that an object classified in the object-based results corresponds with the actual underlying 

landcover, was calculated by dividing the correct number of sampled objects by the row total 

(Jensen 2005).  Finally, overall accuracy of the error matrix was calculated by dividing the major 

diagonal values total by the total number of samples.   Finally, the Kappa metric (Equation 4) 

was calculated to measure the accuracy between the object-based classes, reference (ground 

truth) data and random chance agreement.  Jensen (2005) states that to show strong agreement, 

the Kappa statistic needs to be greater than 80.0%.  Values ranging from 79.9 to 40.0 are 

considered to have moderate agreement, while any value less than 39.9 shows weak agreement. 

Moving from Test Site to County 
Results from image resampling, segmentation, merging, thresholding, and RBF-based 

classification produced, after visual inspection, accurate results in the Ford County test site for 

the four established classes.  The same parameters and algorithms were then used to classify the 

entire CCM for Ford County (Table 8).  
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Equation 4. The Cohen Kappa statistic. 
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Table 8.  Parameter settings used to classify the Ford County 2008 NAIP image.  

Parameter or Classification Setting Value 
Segmentation Parameter  78.0 
Merge Factor  50.0 
Band Threshold  90.0-255.0 
Classification Algorithm  SVM  

 

Segmented objects with attribute information contained in Appendix B were exported for 

later classification using spectral information.  This file will be referred to as “Ford Co. 

Segments.” As noted earlier, the software package used here did not export attribute information 

in a shapefile after it had been classified.  Object primitives established during the segmentation 

and merging process were exported for later classification based on their attribute information.  

 After band thresholding, two additional classes were added to the Ford County 

classification to reduce confusion when placing landuse/landcover features into their correct 

classes (Table 9).  These features, manicured landscapes (including golf courses and lawns) and 
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ditches, were not present in the Ford County test site.  Both lawns and golf courses were placed 

into the manicured landscape category because they shared very similar spectral properties.   

 

Table 9.  Final landuse/landcover categories used in the Ford County classification.  

LULC Type Description 
Crops Live row crops including center pivot irrigation land 
Tree Stands  Individual stands of trees/shrubs not linear in nature and not near water 

features  
Riparian  Long irregularly shaped stands of trees bordering water features  
Windbreaks Linear Strips of trees planted near farm houses and crop fields likely to have 

gagged edges conforming to the shape of outer edge trees   
Manicured 
Landscape 

Vegetative features such as Golf Courses and Lawns under apparent human 
management  

Ditches Extremely long linear features running parallel to roads and rail road tracks 
containing few trees and smooth edges  

 
 

As compared to the test site, the segmentation process for Ford County as a whole 

resulted in thousands more objects that had to be placed into the six landuse/landcover classes. 

Since there was an increase in the number of objects for the entire county, more training sites 

were used as compared to that with the test site (Table 10).  

 

Table 10.  Number of training sites selected for each landuse/landcover class in Ford 
County.  

Cover Type  Number of Training Sites 
Crops 35 
Tree Stands  50 
Riparian  20 
Windbreaks 45 
Manicured Landscape 6 
Ditches 15 

 
 

 The final step in classifying the remaining objects in Ford County again required the use 

of the SVM RBF algorithm.  Hsu et al., (2008) state that the RBF algorithm works just as well, if 
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not better than, the three other kernel types when dealing with a large number of data points (i.e., 

attributes of objects).  For the purpose of consistency, and based on the suggestions of Hsu et al., 

(2008), the RBF algorithm was used to classify the objects in Ford County.  The original 

classified vectors, prior to any manual cleanup or accuracy assessment, are shown in Figure 16. 

The ‘windbreak’ Landover class was assigned a Class ID of “WB” in the attribute table.  The 

data in Figure 16 is used for display purposes of what the RBF classification algorithm generated 

but is not yet a final result.  

 

Figure 16.  Classified landuse/landcover map of the features generated in Ford County 
using object-based classification.  
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 The speed with which windbreaks could be classified was an issue of concern in this 

research. The KFS wanted a method that reduced the time needed to identify windbreak 

locations as compared to the heads-up digitizing technique that required many hours to inventory 

windbreaks using aerial photographs.  The amount of time required for the various computational 

steps required to generate the classification results is listed in Table 11.  These time measures are 

only for software processing time and do not include user decision times.   

 

Table 11.  Software processing times required for each step in the classification of the Ford 
County NAIP image using object-based methods.  
 

Step Time (Minutes)  
Segmentation  5.1
Merging  22
Thresholding 4.2
Extract Features  18
Classify Features  7
Total  56.4

 
 

Windbreak Extraction  
The windbreak class was extracted from the original classification results by selecting 

Class ID “WB” and exporting it as a single shapefile.  The windbreaks in this shapefile contained 

no attribute information (e.g., spectral, spatial, textural, or band ratio) and is referred to as 

Windbreaks NA (NA= No Attributes).  Once the windbreaks were isolated into their own file 

with no other landuse/landcover types present, a manual editing session was used to remove any 

features that were misclassified as a windbreak.  The windbreak class was placed over the 

original 2008 NAIP CCM of Ford County and carefully inspected to remove any misclassified 

features by manually editing the shapefile within a GIS 
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Windbreak Condition Assessment 
 The second objective of this research was to assign identified windbreaks to distinct 

condition classes.  Members of the Kansas Forest Service (KFS) determined that establishing 

three classes (good, fair, and poor) would best suit their needs for future windbreak renovation 

planning and policy reporting.  Wiseman et al., (2007) stated that using average spectral 

reflectance of windbreaks correlated well with ground truth observations.  Building off of this 

work, average spectral reflectance of the green band (Band 2) of the 2008 Ford County NAIP 

image was used to estimate windbreak condition classes.  In this assessment mean BV’s were 

obtained from the 6 m resampled imagery of Ford County.  The rationale behind using Band 2 

was that average green reflectance values would correlate well with windbreak density, a 

common criteria used to rate windbreak condition.  The principle here is that that darker BV’s 

(lower reflectance) will correlate with dense (good) windbreaks having few gaps or snags and 

those which are functioning well.  It should be noted that windbreaks are rated based on how 

well they are functioning as a wind restraint and not solely the health of individual trees within 

the stand (Kort and Stefner 2007).  Brighter (higher) BV’s will correlate well with poor condition 

windbreaks containing gaps and snags.   Less dense (poor) windbreaks will have areas of bare 

earth showing through from a vertical view and result in higher average BV’s.  A dense (good) 

windbreak will have little to no bare earth showing through and lower mean BV’s.  Areas of bare 

earth within windbreaks were not removed during the thresholding process because they had 

already been factored into the windbreak vectors during the ‘merge’ process.  This ensured that 

measuring the mean spectral reflectance of windbreak objects would still reflect any gaps or 

breaks in the barrier.  

 In order to classify windbreaks based on their average green reflectance, windbreaks 

were extracted from the “Ford Co. Segments” shapefile that contained this attribute information. 
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Windbreaks were extracted using a spatial query (e.g., “select by location”) that identified 

features that intersected the Windbreak NA feature class.  Once windbreaks were selected from 

the Ford Co. Segments shapefile they were exported to another shapefile called “WB Vectors 

BVS” (Windbreak Vectors Brightness Values).  

 Three classification strategies were used to place windbreaks into the good, fair and poor 

categories.  First, a quantile, or equal frequency, scheme was used in a GIS to place windbreaks 

into the three condition classes in an automated fashion.  A quantile classification works by 

“dividing the total number of data values by the number of classes and ensures that each class 

contains the same number of data values” (Chang 2006, pg 179).  Second, a natural breaks 

method was used to place windbreaks into the three classes in a similar automated fashion. 

Natural breaks classification works by implementing the Jenk’s optimization formula which 

places data into classes based on natural groups within the data set (Chang 2006). Finally, a 

statistical classification scheme was developed by assigning every value that was less than one 

standard deviation from the mean to the good class and every value that was one standard 

deviation higher than the mean to the Poor class. All values falling between ± 1 standard 

deviation of the mean were placed into the Fair category.  As mentioned earlier, good condition 

windbreaks will have few gaps which would allow soil or grasses to show through the canopy 

and raise the overall average BV of the windbreak as a whole.  Poor windbreaks, on the other 

hand, will contain many gaps where high BV’s from bare soil and grasses will increase the mean 

BV of the windbreak being classified.  

The Normalized Difference Vegetation Index (NDVI) was also evaluated as a means to 

assess overall windbreak condition. NDVI is an indexed measure of greenness with values 

ranging from 0.0 - 1.0 (Liu and Huete 1995).  The closer to 1.0 a NDVI value the healthier the 
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vegetation is supposed to be with vegetation health decreasing as the values near 0.0.  NDVI was 

developed by Rouse et al., (1974) and is a measure of the greenness of the earth’s surface that 

frequently correlates well with vegetation properties such as aboveground biomass, leaf area 

index, and percent cover (Cihlar et al., 1991).  It is calculated using data from the red and NIR 

bands of remotely-sensed data (Equation 5).  In the context of this study, object with high NDVI 

values (greener surfaces) are considered to contain more and healthier vegetation.   

 

Equation 5. Normalized Difference Vegetation Index (NDVI).  
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Using the zonal statistics function within a GIS, NDVI values were obtained for ground 

truth windbreaks that had been field surveyed to determine their condition class.  Mean NDVI 

values were calculated for these windbreaks to determine proper class breaks between the good, 

fair, and poor class categories.   

Jensen (2007) notes that one of the major weaknesses of NDVI is that it is “very sensitive 

to canopy background variations” and can be artificially high with darker canopy backgrounds. 

Darker areas in an NDVI image often contain areas of soil and dry grasses.  Because of this, 

porous windbreaks with large caps in the canopy (i.e., those likely to be in the poor windbreak 

condition class) might have higher average NDVI values resulting in placement in a better 

condition class.   

In addition to average green reflectance values and NDVI, spectral texture was also 

evaluated as a means to measure windbreak condition.  Often, when objects of different 

landcover types share similar spectral properties, textural measures can serve as a means to 
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distinguish between the two.  Jensen (2005) states that the higher (coarser) a textural value is 

then the brighter it will appear.  This means that windbreaks with coarse mean textural values 

will likely have a wide variation of values within them that likely signify the presence of gaps 

and snags which are characteristic of windbreaks in the poor condition class.  Conversely, good 

condition windbreaks with few gaps or snags will have low mean textural values.  

A texture image was calculated using a 3 x 3 moving window from the 2008 NAIP image 

of Ford County.  Mean texture values were obtained for each windbreak using the zonal statistics 

function within a GIS.  As with the green BV and NDVI-based assessments, textural values were 

classified using three classification strategies to place each windbreak into the good, fair, or poor 

condition class category and poor categories.   

A fourth, and final, approach involving a combination of texture and green reflectance 

was also used to produce accurate assessments of windbreak condition.  Because the BV’s 

associated with texture and green reflectance images of windbreaks in good and poor condition 

classes are inversely related (e.g., poor condition windbreaks likely have both high green 

reflectance textural values) should correlate well with poor condition windbreaks it was thought 

that combining the two would increase the likely hood of distinguishing between condition class 

and make class breaks more discernable. In this step mean BV’s were obtained from the original 

1m 2008 NAIP imagery using zonal statistics within a GIS. Texture and BV’s were then added 

together within a GIS to form their own attribute. Raw values of texture and BV’s had a wide 

range of values (4.4 - 232.3) so based on suggestions from Booysen (2002) it was decided to use 

a linear scaling transformation to index the values into a more manageable distribution. Using 

Booysen (2002) linear scaling model texture and BV’s were indexed to values between 0.0 - 10, 

with the idea that windbreak health/function would decline as values move towards 10.  
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Acreage Calculations 
 To determine the amount of acres/hectares in each condition class the geospatial data 

layer containing the condition index information was converted to a 1 m raster.  After the file 

was converted to a raster it was reclassified so that all values in the good category received a new 

value of 1, windbreaks in fair condition received a value of 2, and windbreaks in poor condition 

received a value of 3.  

In order to calculate the total acreage of each class, the total area in square meters of each 

class had to first be determined. Because each pixel covers an area of 1 m2, total area in square 

meters was calculated shown in Equation 6.  Square meters were converted to acres using a 

conversion factor of 0.000247105381 as shown in Equation 7. Acres were then converted to 

hectares using Equation 8.  

 

Equation 6.  Formula to calculate area (m2) for each windbreak condition class. 

 
2( ) 1*TotalArea m N=  

       where: 
N = the total number of pixels in each class. 

 

Equation 7.  Formula to convert area to acres from square meters. 
 

2( ) ( )*0.000247105381TotalArea Acres TotalArea m=  

 

Equation 8. Formula to convert acres to hectares. 

 

*0.404685642TotalHectares TotalAcres=  
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Ground Truth Data Collection 
 Remote sensing accuracy assessments usually, if not always, require the use of ground 

truth data for comparison purposes.  For this study, ground truth data was needed to both 

quantify the performance of the object-based windbreak classification and the accuracy of 

estimated windbreak condition assessments.  The location and condition of 34 windbreaks in 

Ford County were cataloged during a series of field surveys conducted during June 2008.  This 

was approximately the same time period during which the 2008 NAIP image used in this study 

was collected.  

 Published in the Great Plains Initiative Inventory Project Field Guide 1.0 (2008), 

foresters have developed a set of criteria that are used when performing field surveys of 

windbreaks.  In the field, foresters record the category (Table 12) where the majority of the 

condition descriptions listed in Table 13 apply.  While conducting condition assessments, 

foresters walk (or drive) the length of each windbreak and observe them from a distance of 1/8 of 

a mile (approximately 200 m) to identify gaps. 

 

Table 12.  Windbreak condition class evaluation guide (GPIIP Field Guide 1.0 2008). 

Condition Class Description 

Good 
Meets at least 7 of the attributes listed (one needs to be less than 
25% mortality) 

Fair 
Has 5-6 of the attributes listed (one needs to be less than 25% 
mortality)  

Poor Has less than 5 of the attributes listed an/or more than 25% mortality
 
 

Using the criteria outlined in Tables 12 and 13, 9 of 34 windbreaks (26%) surveyed were 

determined to be in poor condition as they met less than 5 of the listed attributes. A total of 16 

(47%) and 9 (26%) windbreaks were determined to be in the fair and poor classes, respectively. 
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Table 13.  Windbreak attributes used to place windbreaks into condition classes (GPIIP 
Field Guide 1.0 2008). 
 
Less than 25% of the trees are dead 
Continuous barrier, no gaps (missing trees) 
50% density of greater 
No smooth bromegrass or fescue sod present 
Majority of the tree crowns are healthy with less that 25% of the trees showing insect, disease 
of herbicide damage 
None to very little livestock activity in the planting  
Tree regeneration is present 
Trees are expected to live another 20 years  
 

 

Many of the surveyed windbreaks (between 10-15) were located on private property 

where permission to access the windbreak locations had not been granted to access the land in 

order to measure spatial properties using a GPS. Since accurate GPS-derived coordinates for 

these windbreak locations could not be obtained, a geospatial data layer of windbreak locations 

was created via heads-up digitizing using the 2008 NAIP image for Ford County.   

Condition classes were assigned as attributes to each windbreak in the attribute table 

based on findings from the field surveys.  Average green (band 2) spectral reflectance, NDVI, 

and textural values were also added as attributes and used later as the basis for the GIS-generated 

condition class results (e.g., quantile, natural breaks, and standard deviation classifications).   

Mean spectral reflectance values for the windbreaks surveyed in the field were obtained 

by using zonal statistics derived from the NAIP image.  NDVI and texture values were calculated 

using the zonal statistics function in a GIS from the NDVI and texture images.  

Highly Erodible and Impaired Soils Layer  
 Staff members from the KFS requested that the number of windbreak acres present on 

erodible soils be calculated as part of this project.  To accomplish this task, a raster dataset of 

highly erodible and impaired soils was obtained from Hutchinson et al., (2008).  This dataset was 
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produced using data from the State Soil Survey Geographic (SSURGO) and the Kansas GAP 

landcover dataset and identified areas of cultivated lands with a wind erodibility index (WEI) of 

87 or greater.   

 Ford County was extracted from the soils layers using an ‘extract by mask’ function with 

a vector-based feature class of the county boundary serving as the mask (Figure 17).  Hutchinson 

et al., (2008) excluded incorporated areas from their analysis, but only one Ford County 

windbreak was located in an area containing no information related to erodible or impaired soils. 

 

Figure 17. Highly erodible and impaired soils in Ford County, Kansas.  
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 The highly erodible or impaired soils raster for Ford County was converted from its 

original 30 m cell size to a 1 m resolution to match the grain of the windbreak condition class 

grid which was converted to a 1m raster to calculate total condition acres in a previous step.  

Each windbreak condition class was isolated into separate binary grids with representing the 

presence (value = 1) or absence (value = 0) of windbreaks in a given condition class.  Next, each 

windbreak class was added separately to the erodible/impaired soils grid using a raster calculator 

function to determine pixel counts of each class in an impaired area.  Pixel counts for each class 

were then converted to square meters, acres, and hectares (Equations 6-8).  
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CHAPTER 5 - Results and Discussion  

Segmentation Results  
 As noted earlier, object-based classification relies almost entirely on the segmentation 

process where objects are created by grouping like or similar pixels into polygons or ‘shapes.’ 

Using the segmentation parameters discussed previously, 51,202 objects were generated within 

Ford County.  These objects are displayed at a scale of 1:235,000 in Figure 18.  Areas in white 

contain no data as they were masked out during the thresholding process.  A larger-scale view 

(1:60,000) of several segmented objects within the study area is shown in Figure 19. 

 

Figure 18. Segmented image of vegetative features in Ford County (1:235,000 scale).  
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Figure 19. Portion of the segmented image of vegetative features for Ford County (1:60,000 
scale). 
 

 

Classification Accuracy  
After segmenting the imagery objects were classified and placed into there respective 

landuse/landcover categories.  Accuracy of the object-based classification was measured by 

creating an error matrix (Table 14) and calculating the Kappa metric. The error matrix combines 

all non-windbreak classes into one class labeled NWB (non-windbreak).  First however, the 

proper number of samples had to be determined using Fitzpatrick-Lins (1981) equation derived 

from Binomial Probability Theory (Jensen 2005).   Equation 9 shows the allowable error, 

expected accuracy and number of sample points used in this research. Given the needs of the 

forest service in regards to windbreak renovation planning it was decided by members of the 
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KFS that an allowable error of 15% would be acceptable for this research. 203 sample points 

were generated using the random sample generator within a GIS. Given the small size of the test 

site it was determined that stratified random sampling would not be necessary and that the 

Fitzpatrick-Lins (1981) equation would suffice.  

 

Equation 9.  Implementation of the Fitzpatrick-Lins equation. 
2

2

2 *85*15 203
5

N = =  

 

Table 14.  Classification error matrix for the Ford County test site. 

  NWB Windbreak Row Total User Accuracy 
NWB 179 4 183 97.8%
Windbreak 3 17 20 85%
Column Total 182 21 203   
Producer Accuracy           98.35% 80.95%Overall Accuracy 96.6%

   Kappa  81%
 

 

Given that the current classification scheme had a very good overall accuracy of 96.6% 

and a strong Kappa statistic, it was determined that the parameters used to classify 

landcover/landuse features in the test site would be appropriate for classifying the entire county.  

After classifying the entire Ford County image, an additional error matrix was compiled 

to measure the user, producer, and overall classification accuracy (Table 15). Ford County 

contained over 51,000 objects, so the random sample size was increased from 203 to 300. 

Congalton (1991) and Congalton and Green (1999) suggest that each class have at least 50 

random points when dealing with large areas (i.e., 1 million ha or more), so each class was 

assigned 50 random points in order to construct the error matrix.  As with the test site, all non-

windbreak features were placed into the single (NWB) category. 
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Table 15.  Error matrix compiled from a random distribution of sample points for the Non-
Windbreak (NWB) and Windbreak classes.  

 

 NWB Windbreak Row Total User Accuracy 
NWB 247 22 269 91.8%
Windbreak 3 28 31 90.3%
Column Total  250 50 300   
Producer Accuracy 98.8% 56%Overall Accuracy  91.7%

   Kappa 64.6%
 

 

Using the same object-based classification parameter settings as in the test site, an overall 

accuracy of 91.7% was obtained with a corresponding Kappa metric of 64.6%.  While producer 

accuracy appeared fairly low (56%) for the windbreak class, the user accuracy was quite high at 

just over 90%. In addition, both producer and user accuracy for the non-windbreak category were 

both over 90%.   

While the overall classification accuracy of approximately 92% is very good, the proper 

boundaries of the windbreak objects were often inconsistent with that of the actual windbreak 

features on the ground. When observing the object-based results over the original 1 m NAIP 

imagery it was evident that some windbreaks were not captured in their entirety.  Because the 

down-sampled  6 m image  was being used for segmentation and windbreak classification, the 

segmentation process had difficulty recognizing very poor condition areas where snags, gaps, 

and soil was visible in between trees within a larger windbreak feature.  This is due to the drastic 

change in spectral reflectance values between a dense area in a windbreak and a degraded area.  

Figure 22 displays a subset of the Ford County image where the segmentation process defined 

the border of a dense windbreak very well compared to another site where an inaccurate border 

was identified for a degraded windbreak.  The green oval in the photo on the right of Figure 22 

illustrates an area in which the true border of the windbreak was not defined correctly during 
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segmentation.  This may be corrected, to a degree, by incorporating a smoothing technique on a 

set of manually selected features without altering boundaries of properly defined windbreaks.  

 

Figure 20. Images displaying accurate windbreak border assignment and an inaccurate 
border assignment. 

 

 

 

Windbreak Classification Accuracy  
Approximately 150 objects (23%) were removed from the windbreak class during a 

manual editing session within a GIS.  Several riparian areas, ditches and some cropland were 

misclassified as windbreaks.  However, removal of these objects was a simple process requiring 

less than 30 minutes, as such errors were easy to visually detect.  These misclassified features 

had to be removed in order to accurately report the total number of windbreaks (355) in the study 

area.  Most of the features removed were fairly small (12 m2 or less) so they did not take up a 

significant portion the overall total area of the windbreak class.  

66 



In order to perform an accuracy assessment of the windbreak class by itself, several 

known windbreak locations were needed for comparison. A geospatial dataset of 137 known 

windbreaks was obtained from the USDA NRCS for comparison with windbreaks derived by 

object-based classification. It is important to note that while this project attempted to classify 

every windbreak within Ford County, the NRCS dataset was created using a ‘heads-up’ 

digitizing approach for only those windbreaks considered ‘significant’ (Table 16).  

 

Table 16.  Comparison of windbreak acres for the NRCS and  object-based classification 
products.  

 

Statistic NRCS Object-based Classification 
Mean 2.42 0.86 
Minimum .24 0.007 
Maximum 11.71 3.95 
Standard Deviation 1.39 0.99 
Total 821.3 1,011.9 

 
 
The large difference in maximum values between the NRCS and object-based 

classification results is likely due to some fragmentation within windbreaks classified using the 

object-based approach.  For example, it is likely that the NRCS digitized a single feature based 

on an extremely long windbreak with fragments in it due, perhaps, to bisecting roads. While a 

human can subjectively make the decision to classify a fragmented, or multi-part, windbreak into 

one singular unit, object-based classification methods classify each part as separate object 

primitives.  This is one weakness of the object-based method when trying to capture singular 

features that contain very dynamic attributes. 

   Making careful visual inspections of the object-based classification results and the NRCS 

data it was confirmed that the NRCS data did not account for fragmented windbreaks but rather 

made the decision to classify them as singular units (Figure 21).  The NRCS windbreak polygon 
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outlined in red in Figure 21 is located in central Ford County and was the largest windbreak 

inventoried, measuring 11.7 hectares (28.9 acres) in area. 

Though there is a large difference in the number of windbreaks as reported by NRCS and 

classified in this study, a comparison of total windbreak area should be similar. In fact, a 

difference of only 190 acres was found to exist between the two datasets.  

 

Figure 21. Example of a fragmented windbreak classified by NRCS as a single unit, but as 
two distinct units by object-based classification.       

 
 

A simple percentage match comparison was performed to test how well the object-based 

windbreak classification results agreed spatially with the NRCS data.  Using the spatial query 
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capability within a GIS, all windbreaks classified using the object-based method that intersected 

NRCS windbreaks were selected.  Results showed that 111 of the 355 (81%) object-based 

features coincided with the 137 NRCS windbreaks.  

Windbreak Condition Assessments 
 Each of the classified windbreak features were place into one of three condition classes 

(good, fair, and poor) based on the average green (band 2) reflectance computed for each feature.  

A quantile classification method was the first technique used to place windbreaks into the 3 

classes. An error matrix (Table 17) was created to determine how accurately the quantile 

classification scheme could automatically place windbreaks into the correct condition class when 

compared to field survey assessments.  

 

Table 17.  Error matrix for windbreak condition assessment based on average green 
reflectance and a quantile classification scheme.  

 

  Quantile Classification Condition Class   
Surveyed Condition Class Good  Fair Poor Row Total User Accuracy  
Good 4 6 0 10 40%
Fair 4 7 5 17 41.2%
Poor 0 4 4 8 50%
Column Total  8 17 9 34  

Kappa = 9.7% 
Producer Accuracy 50% 41.2% 44.4% Overall Accuracy= 44.1% 

 
 

Using the quantile classification scheme an overall accuracy of 44.1% was obtained.  The 

Kappa statistic showed that the classification was not significantly better than random 

assignment of condition classes.  Because of this, quantile classification was abandoned as a 

means to classify average green reflectance.  
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A natural breaks classification was the second approach used to place windbreaks into the 

three condition classes.  An error matrix (Table 18) was created to compare results with ground 

truth data in similar fashion to the quantile classification assessment.  

 

Table 18. Error matrix for windbreak condition assessment based on average green 
reflectance and a natural breaks classification scheme.  
 

  Natural Breaks Classification Condition Class   

Surveyed Condition Class  Good  Fair Poor Row Total 
User 
Accuracy  

Good 6 3 0 9 66.7%
Fair 5 10 5 22 40.9%
Poor 0 3 2 5 40%
Column Total  11 16 7 34   

Kappa= 18.8% 
Producer Accuracy 54.6% 62.5% 28.6% Overall Accuracy=52.9% 

 
 

Results from the natural breaks classification yielded a stronger measure of overall 

accuracy (52.9%) than the quantile classification and an improvement in the Kappa metric 

(18.8%). The Kappa metric was still to low to show that the classification significantly worked 

better that the random assignment of condition classes.  Wishing to improve the accuracy 

between ground truth condition and the GIS generated classifications, a standard deviation 

classification was implemented next.  

 The standard deviation classification was developed based on ± 1 standard deviation 

(14.7) from the mean green reflectance of each windbreak.  Again, an error matrix (Table 19) 

was created to assess the accuracy of the statistical classification when compared to field survey 

results. 
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Table 19. Error matrix for windbreak condition assessment based on average green 
reflectance and a standard deviation (SD) classification scheme.  
 

  SD Classification Condition Class   

Surveyed Condition Class  Good  Fair Poor Row Total 
User 
Accuracy  

Good 3 0 0 3 100%
Fair 2 10 3 15 66.7%
Poor 4 6 6 16 37.5%
Column Total  9 16 9  34   

Kappa = 31.5% 
Producer Accuracy  33.3% 62.5% 66.7% Overall Accuracy=55.9% 

 
  

The standard deviation classification produced much better results (55.9% overall 

accuracy) than the quantile or natural breaks classifications.  The Kappa metric also showed 

improvement (31.5%) when using the standard deviation classification. User accuracy for the 

good condition class was discovered to be 100% while the producer accuracy was only 33.3%. 

Producer accuracy for the poor class was found to be approximately 67% showing much 

improvement compared to the results of the quantile and natural breaks classifications.  

After evaluating the effectiveness of using average green reflectance to accurately 

determine windbreak condition class, the same classification strategies were implemented to 

place windbreaks into their respective condition classes based on the mean NDVI value of each 

windbreak feature.  However, as can be seen in Figure 25 no clear break existed in the data. An 

extreme amount of overlap between the classes existed making it impossible to determine 

appropriate class breaks.  In addition all the classes had similar overall mean NDVI values (good 

= 0.37, fair = 0.36, and poor = 0.33) denoted by the heavy black line running horizontally 

through the box plots in Figure 22.   
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Figure 22. Box-and-whisker plot illustrating the overlap in NDVI values across windbreak 
condition classes for field-surveyed windbreaks.  
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Despite the vast amount of overlap between NDVI values in the condition classes it was 

decided to use the quantile, natural breaks, and statistical classification schemes similar to those 

used in the condition assessments based on mean spectral reflectance of band 2. By doing this, a 

comparison could be made between the two classification variables (BV’s vs. NDVI).  

  Tables 20 - 22 contain error matrices that compare field survey condition class 

assessments with those made based on average NDVI using a quantile, natural breaks, and 

standard deviation classification scheme. 
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Table 20. Error matrix for windbreak condition assessment based on average NDVI values 
and a quantile classification scheme.  

 

  Quantile Classification Condition Class   

Surveyed Condition Class  Good  Fair Poor Row Total 
User 
Accuracy  

Good 3 7 2 12 25%
Fair 6 7 4 17 41.2%
Poor 0 2 3 5 60%
Column Total  9 16 9  34   

Kappa = 2.3% 
Producer Accuracy  33.3% 43.8% 33.3% Overall Accuracy=38.2% 

 

 

Table 21. Error Matrix for windbreak condition assessment based on average NDVI values 
and a natural breaks classification scheme.  

 

  Natural Breaks Classification Condition Class   
Surveyed Condition 
Class  Good  Fair Poor Row Total 

User 
Accuracy  

Good 3 7 2 12 25%
Fair 6 7 4 17 41.2%
Poor 0 2 3 5 60%
Column Total  9 16 9 34  

Kappa = 2.3% 
Producer Accuracy 33.3% 43.8% 33.3% Overall Accuracy=38.2% 

 

 

Table 22. Error matrix for windbreak condition assessment based on average NDVI values 
and a standard deviation (SD) classification scheme.  

 

  SD Classification Condition Class   
Surveyed Condition 
Class  Good  Fair Poor Row Total 

User 
Accuracy  

Good 3 4 1 8 37.5%
Fair 6 10 7 23 43.5%
Poor 0 2 1 3 33.3%
Column Total  9 16 9 34  

Kappa = 3.4% 
Producer Accuracy 33.3% 62.5% 11.1% Overall Accuracy= 41.2% 
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Using the quantile classification to place windbreaks into the condition categories based 

on mean NDVI values resulted in an overall accuracy of approximately 38% and a very low 

Kappa metric of 2.3%.User accuracy was highest (60%) for the poor condition class while user 

accuracy for the good class was the lowest (25%).  Given these results the natural breaks 

classification was tested next to monitor improvement or a reduction in accuracy..  

 After natural breaks classification, the exact same results were produced as when 

applying the quantile strategy.  After observing no improvement in the classification accuracy it 

was determined a standard deviation classification should be done using ±1 standard deviation (± 

0.08) of the NDVI mean (0.33) to determine class breaks. In this scenario windbreaks + 1 

standard deviation (0.4) would be placed in the good category and all values less than – 1 

standard deviation (0.29) would be placed into the poor category. All values falling between ± 1 

standard deviation of the mean would be placed into the fair category.  

 The standard deviation classification proved to be most accurate (41% overall accuracy) 

compared to the rest of the classification techniques using average NDVI values.  However, the 

overall accuracy of the standard deviation classification using average NDVI values was still less 

than that which was achieved when using the same classification method but with average green 

reflectance values (56% overall accuracy).   

Jensen (2007) reports that one of the weaknesses of NDVI is that it is extremely sensitive 

to background variations in the canopy and that, during periods of peak greenness, NDVI values 

can become oversaturated due to the large amount of leaf area.  Huete and Liu (1994) found 

NDVI to be unreliable because of sensitivity to soil characteristics visible through the canopy, as 

well as the presence of dead vegetation.  Better results from NDVI classifications might be 
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obtained with imagery taken at times other than peak greenness where NDVI values would be 

less inflated in poor and fair windbreaks because of smaller leaf areas.  

Average windbreak texture was used as a third means to classify windbreak condition.  

Areas having high mean texture values have a vast amount of variation in values within the 

windbreaks indicating that gaps and snags are likely present. Conversely, good windbreaks that 

are functioning well would have low mean textural values as a result of few existing gaps and 

snags.  Because the standard deviation classification preformed best in tests using average green 

reflectance and NDVI, it was also used to classify average texture values into the three condition 

classes. In this scenario it was found that using break values ± 0.5 standard deviations from the 

mean (42.7) worked best. All windbreaks with a mean textural value less than -0.5 standard 

deviations (31.2) were placed in the good category while all windbreaks having a mean textural 

value greater than +0.5 standard deviations (54.2) from the mean were placed into the poor 

category. Figure 23 displays the difference in textural values for each condition class of the 

ground truth windbreaks.   Table 23 represents the error matrix created comparing field survey 

and remote sensing condition class assessments. 
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Figure 23.  Box-and-whisker plot illustrating the variation in textural values across 
windbreak condition classes for field-surveyed windbreaks.  

 

 
  

Table 23. Error matrix for windbreak condition assessment based on mean texture values 
and a standard deviation (SD) classification scheme.  
 

  SD Classification Condition Class   
Surveyed Condition 
Class  Good  Fair Poor Row Total 

User 
Accuracy  

Good 5 4 0 9 55.6%
Fair 4 11 4 19 57.9%
Poor 0 1 5 6 83.3%
Column Total  9 16 9 34  

Kappa= 38.9% 
Producer Accuracy 55.6% 68.8% 55.6% Overall Accuracy=61.8% 
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Using mean textural values to classify windbreak condition showed significant 

improvements over using mean NDVI and BV’s. An overall accuracy of 61.8% and a Kappa 

metric of 38.9% was obtained using textural values. In addition, the poor condition class 

received a fairly high user accuracy of 83.3%.  Still wishing to improve the overall accuracy of 

the condition classification, BV’s and texture were combined to  create a ‘condition index’ based 

on suggestions from Booysen (2002). Table 24 displays the error matrix comparing the field 

survey data and condition index approach to class assessment.  

 

Table 24.  Error matrix for windbreak condition assessment based on average condition 
index values and a standard deviation (SD) classification scheme.   

 

  SD Classification Condition Class   
Surveyed Condition 
Class  Good  Fair Poor Row Total 

User 
Accuracy  

Good 7 3 0 10 70%
Fair 2 12 4 18 66.7%
Poor 0 1 5 6 83.3%
Column Total  9 16 9 34  

Kappa=53.% 
Producer Accuracy 77.8% 75% 55.6 Overall Accuracy=70.6% 

 

 

 By combining mean texture and average green reflectance of each windbreak, an overall 

accuracy of approximately 71% was achieved (Note:  Average green reflectance here was 

calculated using the original 1 m resolution NAIP image). The Kappa metric also showed 

improvement (53%).   This represents a 15% improvement in overall accuracy as compared to 

the results using only average green reflectance and a 30% improvement compared to results 

generated using average NDVI values.  The areas of windbreaks in each condition class were 
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determined based on the condition index assessments due to the fact they exhibited the highest 

percent overall accuracy compared to all other condition classification attempts (Table 25).   

 

Table 25. Windbreak area by condition class.  

  Acres Hectares 
Good 313.1 126.7
Fair  528.6 213.9
Poor 170.2 68.9
Total 1011.9 409.5

 

A wide range of accuracy results were obtained from the condition assessments. It is 

important to consider the differences between classifying condition by viewing windbreaks 

horizontally from the ground versus viewing them from above using aerial imagery in order to 

understand the amount of error between ground truth condition classification and GIS generated 

classifications.  For example, a windbreak may appear dense while viewing it from the ground, 

yet the canopy may have dead vegetation that could only be seen using a view from above.  In 

this scenario, the field survey may conclude that the windbreak is in good condition, while the 

remote sensing assessment rates the same windbreak as poor (Figure 24).  Similarly, a windbreak 

classified as poor in the field due to numerous gaps visible at ground level, may be assessed as 

good when using remote sensing methods that see only a continuous healthy and dense tree 

canopy.  
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Figure 24. Example of windbreak classified during a field survey as being in good condition 
but in poor condition when using the standard deviation classification technique.   

 

Windbreaks in Highly Erodible and Impaired Areas 
 Procedures discussed in the Data and Methods section were used to calculate the total 

acres/hectares of each condition class in the study area. Table 26 contains the acreage and 

hectare data obtained for each condition class in highly erodible and impaired areas.  

 
Table 26. Total area of Ford County windbreaks located on highly erodible and impaired 
soils by condition class.  
  

        Acres   Hectares 
Good 420.9 170.1
Fair  380.3 153.7
Poor 42.1 17
Total 843.3 340.8
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 Out of all the windbreak acres calculated, 340.8 hectares (843.3 acres) were identified as 

being located in an impaired area, while the Good condition class was determined to contain the 

most acres in any given number of disturbed areas. Foresters in Kansas are equally concerned 

with renovating both fair and poor windbreaks. The 170 hectares of fair and poor windbreaks 

will likely be the top priority yet given the nature of segmentation process; Poor areas within 

overall Fair windbreaks were able to be identified as well. Using this spatial data certain areas of 

windbreaks can be targeted for field inspections and renovation.  Figure 25 gives an example of 

some poor areas identified with in a windbreak considered to be in overall Fair condition. This 

information will certainly assist the KFS as they promote windbreak renovation throughout the 

study area. 

 
Figure 25. Example of a fair condition windbreak containing several areas that need 
renovation activities. 
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CHAPTER 6 -   Conclusions  

The main purpose of this project was to assist the KFS with future windbreak renovation 

planning and reporting by creating a set of RS and GIS methods to rapidly identify and classify 

windbreaks.  Object-based classification is a complicated technique that requires a vast amount 

of trial an error processes in an attempt to create optimal vector polygons of homogeneous 

groups of pixels.  Those vectors or ‘objects’ are then used as the basis for classification taking 

into account their geometric, spectral, and textural properties as outlined in Appendix B.  As 

discussed in the Data and Methods chapter a bottom-up region merging segmentation process 

was used with a minimum distance classifier within the Ford County test site in early attempts to 

segment and classify windbreaks.  Using those methods an overall accuracy of just over 50% 

was achieved on the classification.  Here it has been proven that the edge-based segmentation 

algorithm accompanied with the SVM classifier out performed those methods by generating just 

over 96% overall classification accuracy in the test site and approximately 91% overall accuracy 

in the entire county classification.  In future research attempts could be made to possibly enhance 

the overall classification accuracy by adjusting the scale parameters of the edge-based algorithm 

in an incremental fashion then testing each parameter setting for accuracy after the classification 

algorithm ran.  

Methods developed in this research are meant to serve as a stepping stone towards 

classifying windbreaks throughout the rest of western Kansas and potentially the Great Plains.  

The idea was to establish a universal yet dynamic set of criterion that could be slightly modified 

by novice GIS and RS users to inventory windbreaks in areas outside of Ford County.  

Depending on what county is being classified, additional classes may have to be developed to 

account for landcover features not encountered in Ford County.  Some possible scenarios might 
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include adding an ‘open water’ class in a county that had several lakes. In addition, segmentation 

parameters, merge factors, and band threshold values will likely need to be modified based on 

the nature of windbreaks in other counties.  Some counties may only contain small farmstead 

windbreaks less that 1 hectare which undoubtedly would require that the segmentation 

parameters be modified and reduced in order to capture the smaller features.   

 Windbreaks cover a relatively minuscule amount of land when compared to the total area 

of land within the study site making it difficult to determine proper segmentation parameters that 

will capture the homogeneity of windbreaks without over generalizing them.  Windbreaks are 

also planted in an ever changing variety of shapes and sizes making the segmentation parameters 

particularly difficult to determine.  Setting segmentation parameters too high will result in the 

exclusion of small farmstead windbreaks while setting parameters too low will cause over 

segmentation in large windbreaks and thereby will not grasp the overall homogeneity of the 

objects to be classified.  This is one weakness of the object-based approach that always needs to 

be considered when classifying any given set of features.  After much testing, it was confirmed 

that a segmentation parameter setting of 78.0 and a merge factor of 50.0 did a reasonable job 

isolating windbreaks while presumably excluding a minimal number of small farmstead 

windbreaks.  It should also be noted that windbreaks are planted in a wide variety of tree species. 

Typically larger field windbreaks in the study area contained deciduous hardwood trees while 

smaller farmstead windbreaks contained coniferous species such as Easter Red Cedar.  

Hardwood and coniferous trees ultimately reflect different spectral signatures making it difficult 

to place them in the same class even though they may share similar geometric properties.  In 

addition, dense windbreaks containing hardwood trees will inherently have higher BV’s 

potentially making them fall into the wrong condition class when in fact they are in good health. 
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Future research should account for this problem by establishing a coniferous and deciduous 

windbreak class. Separating windbreaks into two classes based on the majority of species 

composition would likely increase the accuracy of identifying windbreaks and condition 

assessments. 

An overall classification accuracy of 91% and a Kappa of 64% was obtained for all the 

classes in Ford County, the real concern is how accurately were windbreaks identified?  In this 

research windbreaks were extracted from all other feature types and isolated in there own single 

class geospatial dataset.  A problem of particular concern then is how to determine if any 

windbreaks were left unclassified and not inventoried?  In order to address this problem a 

comparison was done between an NRCS inventory and the object-based classification results.  

The NRCS data and the object-based results showed approximately an 81% spatial match yet the 

object-based results classified many windbreaks the NRCS missed.  The problem arises when it 

is taken into account that this research attempted to classify 100% of the windbreaks in Ford 

County while the NRCS chose which windbreaks to inventory and ultimately did not capture 

100% of the windbreaks in the county.  The fact is a scientifically justifiable accuracy 

measurement cannot be preformed until a dataset containing 100% of the windbreaks in Ford 

County has been created for spatial matching comparisons.  Attempts could be made to generate 

random points throughout the study area with the prospect of one landing on an unclassified 

windbreak but because windbreaks take up such a small part of the landscape odds are 

astronomically stacked against that happening.  Based on all the accuracy tests, it is safe to say 

that approximately 355 windbreaks totaling 409ha exist in Ford County with roughly 91% 

assurance.  This means that the object-based results missed approximately 9% of the windbreaks 

in the county. However, it should be addressed that 355 windbreaks might be an overestimate, as 

83 



the object-based technique inventoried fragmented windbreaks as separate units.  While a 

windbreak with a dividing feature in it such as a driveway should in all honesty be classified as 

one unit the object-based technique identifies something like a driveway as a dividing edge 

feature between two independent groups of like pixels.  This is major weakness to the object-

based approach compared to the ‘heads-up’ digitizing approach.  In future research a logical 

expression should be developed to merge fragmented windbreaks that are within a certain 

distance of one another.  

Another objective of this research was to assess the condition of identified windbreaks 

based on their mean BV’s, NDVI, and textural values.  Using spectral values from band 2, 

collected from the resampled 6m imagery, condition assessments were made and an overall 

accuracy of condition class compared to ground truth data was discovered to be around 56%. 

Based on the overall accuracy of the condition class measures we can say that the using the mean 

BV’s of windbreaks to place windbreaks in their respective condition class works about 56% of 

the time.  It is important to conclude here that discrepancies between ground truth condition 

assessments and condition assessments made using aerial imagery exist due to the nature in 

which the windbreaks are being viewed.  A condition assessment on the ground is made by 

horizontally viewing through the windbreak to identify flaws while the GIS and RS assessment 

methods are done from a vertical view looking down.  Viewing windbreaks vertically eliminates 

the possibility of seeing flaws that are easily identifiable on the ground such as damage from 

cattle or insect damage.  That said, we can finally conclude that condition assessments made 

from vertical viewing using BV’s are around 56% reliable.  Higher percent condition assessment 

accuracy was desired, so NDVI and textural values were tested to determine if they would 

correlate more with the ground truth observations.  Using NDVI values actually showed a 
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decrease in overall classification accuracy compared to the use of BV’s.  This is likely due to 

inflated NDVI values derived from a time of peak ‘greenness.’ Had the imagery used been 

captured in the fall or early spring results would have likely been more accurate as leaf area 

would not have caused an oversaturation in values.  

 Textural values calculated from the original 1m 2008 NAIP imagery proved to be more 

accurate (61% overall accuracy) when used for condition assessment that that of the BV’s and 

NDVI.  Noting that BV’s from the 6m resampled imagery worked only 5% worse than texture 

values alone, the two variables were combined to create a condition index.  First however, BV’s 

were re-obtained from the original 1 meter 2008 NAIP imagery.  Using this index, it was 

determined that condition assessments from the vertical view could be made with about 72% 

accuracy when compared to ground truth condition assessments.  This confirms the hypothesis 

that textural values would correlate more significantly with ground truth assessments as 

compared to green spectral reflectance or NDVI alone.  

 After proving that the condition index performed more successfully than the other two 

assessments it was decided to use the resulting windbreak condition classes to determine how 

many hectares of each condition class existed in an area of highly erodible and impaired soils. 

Approximately 341 (83%) of the 409.5 hectares of windbreaks identified were found to exist in 

these impaired areas.  Having discovered this, the hypothesis that over 50% of total windbreaks 

in Ford County existed in impaired areas, was confirmed.  

It can be said that the object-based approach to classifying windbreaks confirmed the 

hypothesis that it would perform in a more rapid manner than ‘heads-up’ digitizing.  The object-

based approach took raw imagery and produced a windbreak classification within approximately 

one hour of processing time.  This of course was after weeks of experimentation to implement 
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the optimal segmentation and classification parameters.  The ‘heads-up’ digitizing process can 

take much longer based on the level of experience held by the user.  In addition, the object-based 

approach eliminates much of the subjectivity encountered in a ‘heads-up’ digitizing environment.  

Hopefully, this research will be of great value to the KFS as they move forward with future 

windbreak inventory analysis and windbreak renovation/restoration programs.  The idea is that 

by locating windbreaks using remote sensing and GIS methods that vast amounts of field survey 

time will be alleviated and more time can be spent renovating instead of dragging out long timely 

field surveys to locate and assess windbreaks individually.   
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Appendix A - 2001 National Land Cover Dataset Landcover Codes 
and Descriptions 

Taken from the 2001 National Landcover Dataset (NLCD) metadata published in 2007 by the 
U.S. Geological Survey, Sioux Falls, South Dakota.  

 

NLCD 2001 Land Cover Class Definitions  

11. Open Water - All areas of open water, generally with less than 25% cover of vegetation or 
soil.  

12. Perennial Ice/Snow - All areas characterized by a perennial cover of ice and/or snow, 
generally greater than 25% of total cover.  

21. Developed, Open Space - Includes areas with a mixture of some constructed materials, but 
mostly vegetation in the form of lawn grasses. Impervious surfaces account for less than 20 
percent of total cover. These areas most commonly include large-lot single-family housing units, 
parks, golf courses, and vegetation planted in developed settings for recreation, erosion control, 
or aesthetic purposes  

22. Developed, Low Intensity - Includes areas with a mixture of constructed materials and 
vegetation. Impervious surfaces account for 20-49 percent of total cover. These areas most 
commonly include single-family housing units.  

23. Developed, Medium Intensity - Includes areas with a mixture of constructed materials and 
vegetation. Impervious surfaces account for 50-79 percent of the total cover. These areas most 
commonly include single-family housing units.  

24. Developed, High Intensity - Includes highly developed areas where people reside or work in 
high numbers. Examples include apartment complexes, row houses and commercial/industrial. 
Impervious surfaces account for 80 to100 percent of the total cover.  

31. Barren Land (Rock/Sand/Clay) - Barren areas of bedrock, desert pavement, scarps, talus, 
slides, volcanic material, glacial debris, sand dunes, strip mines, gravel pits and other 
accumulations of earthen material. Generally, vegetation accounts for less than 15% of total 
cover.  

41. Deciduous Forest - Areas dominated by trees generally greater than 5 meters tall, and greater 
than 20% of total vegetation cover. More than 75 percent of the tree species shed foliage 
simultaneously in response to seasonal change.  

42. Evergreen Forest - Areas dominated by trees generally greater than 5 meters tall, and greater 
than 20% of total vegetation cover. More than 75 percent of the tree species maintain their leaves 
all year. Canopy is never without green foliage.  
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43. Mixed Forest - Areas dominated by trees generally greater than 5 meters tall, and greater than 
20% of total vegetation cover. Neither deciduous nor evergreen species are greater than 75 
percent of total tree cover.  

52. Shrub/Scrub - Areas dominated by shrubs; less than 5 meters tall with shrub canopy typically 
greater than 20% of total vegetation. This class includes true shrubs, young trees in an early 
successional stage or trees stunted from environmental conditions.  

71. Grassland/Herbaceous - Areas dominated by grammanoid or herbaceous vegetation, 
generally greater than 80% of total vegetation. These areas are not subject to intensive 
management such as tilling, but can be utilized for grazing.  

81. Pasture/Hay - Areas of grasses, legumes, or grass-legume mixtures planted for livestock 
grazing or the production of seed or hay crops, typically on a perennial cycle. Pasture/hay 
vegetation accounts for greater than 20 percent of total vegetation.  

82. Cultivated Crops - Areas used for the production of annual crops, such as corn, soybeans, 
vegetables, tobacco, and cotton, and also perennial woody crops such as orchards and vineyards. 
Crop vegetation accounts for greater than 20 percent of total vegetation. This class also includes 
all land being actively tilled.  

90. Woody Wetlands - Areas where forest or shrubland vegetation accounts for greater than 20 
percent of vegetative cover and the soil or substrate is periodically saturated with or covered with 
water.  

95. Emergent Herbaceous Wetlands - Areas where perennial herbaceous vegetation accounts for 
greater than 80 percent of vegetative cover and the soil or substrate is periodically saturated with 
or covered with water.  

 

 

 

 

 

 

 

Appendix B - Feature Attribute Description  
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Taken from “ENVI Feature Extraction Module User’s Guide (2008), ENVI Feature Extraction 
Preferences,” Copyright © ITT Visual Information Solutions. 
 
 
Spatial Attributes 
Attribute Description 

AREA Total area of the polygon, minus the area of the holes. Values are in map units. 

LENGTH The combined length of all boundaries of the polygon, including the boundaries of 
the holes. This is different than the MAXAXISLEN attribute. Values are in map 
units. 

COMPACT A shape measure that indicates the compactness of the polygon. A circle is the most 
compact shape with a value of 1 / pi. The compactness value of a square is 1 / 
2(sqrt(pi)). 
COMPACT = Sqrt (4 * AREA / pi) / outer contour length 

CONVEXITY Polygons are either convex or concave. This attribute measures the convexity of the 
polygon. The convexity value for a convex polygon with no holes is 1.0, while the 
value for a concave polygon is less than 1.0. 
CONVEXITY = length of convex hull / LENGTH 

SOLIDITY A shape measure that compares the area of the polygon to the area of a convex hull 
surrounding the polygon. The solidity value for a convex polygon with no holes is 
1.0, and the value for a concave polygon is less than 1.0. 
SOLIDITY = AREA / area of convex hull 

ROUNDNESS A shape measure that compares the area of the polygon to the square of the 
maximum diameter of the polygon. The "maximum diameter" is the length of the 
major axis of an oriented bounding box enclosing the polygon. The roundness value 
for a circle is 1, and the value for a square is 4 / pi.  
ROUNDNESS = 4 * (AREA) / (pi * MAXAXISLEN2) 

FORMFACTOR A shape measure that compares the area of the polygon to the square of the total 
perimeter. The form factor value of a circle is 1, and the value of a square is pi / 4.  
FORMFACTOR = 4 * pi * (AREA) / (total perimeter)2 

ELONGATION A shape measure that indicates the ratio of the major axis of the polygon to the 
minor axis of the polygon. The major and minor axes are derived from an oriented 
bounding box containing the polygon. The elongation value for a square is 1.0, and 
the value for a rectangle is greater than 1.0. 
ELONGATION = MAXAXISLEN / MINAXISLEN 
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RECT_FIT A shape measure that indicates how well the shape is described by a rectangle. This 
attribute compares the area of the polygon to the area of the oriented bounding box 
enclosing the polygon. The rectangular fit value for a rectangle is 1.0, and the value 
for a non-rectangular shape is less than 1.0.  
RECT_FIT = AREA / (MAXAXISLEN * MINAXISLEN) 

MAINDIR The angle subtended by the major axis of the polygon and the x-axis in degrees. The 
main direction value ranges from 0 to 180 degrees. 90 degrees is North/South, and 0 
to 180 degrees is East/West. 

MAJAXISLEN The length of the major axis of an oriented bounding box enclosing the polygon. 
Values are map units of the pixel size. If the image is not georeferenced, then pixel 
units are reported. 

MINAXISLEN The length of the minor axis of an oriented bounding box enclosing the polygon. 
Values are map units of the pixel size. If the image is not georeferenced, then pixel 
units are reported. 

NUMHOLES The number of holes in the polygon. Integer value. 

HOLESOLRAT The ratio of the total area of the polygon to the area of the outer contour of the 
polygon. The hole solid ratio value for a polygon with no holes is 1.0.  
HOLESOLRAT = AREA / outer contour area 

 

Spectral Attributes 

Attribute Description 

MINBAND_x Minimum value of the pixels comprising the region in band x. 

MAXBAND_x Maximum value of the pixels comprising the region in band x. 

AVGBAND_x Average value of the pixels comprising the region in band x. 

STDBAND_x Standard deviation value of the pixels comprising the region in band x. 

 

Texture Attributes 
Attribute Description 

TX_RANGE Average data range of the pixels comprising the region inside the kernel. A kernel 
is an array of pixels used to constrain an operation to a subset of pixels. Refer to 
the Texture Kernel Size preference (see "ENVI Feature Extraction Preferences" 
on page 60). 

TX_MEAN Average value of the pixels comprising the region inside the kernel. 
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TX_VARIANCE Average variance of the pixels comprising the region inside the kernel. 

TX_ENTROPY Average entropy value of the pixels comprising the region inside the kernel. ENVI 
Zoom computes entropy, in part, from the Max Bins in Histogram preference. 

 

Band Ratio Attributes 

Attribute Description 

BANDRATIO Values range from -1.0 to 1.0. See “Band Ratio” on page 30. 

HUE Hue is often used as a color filter and is measured in degrees from 0 to 360. A value of 
0 is red, 120 is green, and 240 is blue. 

SATURATION Saturation is often used as a color filter and is measured in floating-point values that 
range from 0 to 1.0. 

INTENSITY Intensity often provides a better measure of brightness than using the AVGBAND_x 
spectral attribute. Intensity is measured in floating-point values from 0 to 1.0. 
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Appendix C - Attributes Selected For Classification  

Taken from “ENVI Feature Extraction Module User’s Guide (2008), ENVI Feature Extraction 
Preferences,” Copyright © ITT Visual Information Solutions. 
 
 
Attribute Description 

AREA Total area of the polygon, minus the area of the holes. Values are in map units. 

LENGTH The combined length of all boundaries of the polygon, including the boundaries of 
the holes. This is different than the MAXAXISLEN attribute. Values are in map 
units. 

COMPACT A shape measure that indicates the compactness of the polygon. A circle is the most 
compact shape with a value of 1 / pi. The compactness value of a square is 1 / 
2(sqrt(pi)). 
COMPACT = Sqrt (4 * AREA / pi) / outer contour length 

CONVEXITY Polygons are either convex or concave. This attribute measures the convexity of the 
polygon. The convexity value for a convex polygon with no holes is 1.0, while the 
value for a concave polygon is less than 1.0. 
CONVEXITY = length of convex hull / LENGTH 

ROUNDNESS A shape measure that compares the area of the polygon to the square of the 
maximum diameter of the polygon. The "maximum diameter" is the length of the 
major axis of an oriented bounding box enclosing the polygon. The roundness value 
for a circle is 1, and the value for a square is 4 / pi.  
ROUNDNESS = 4 * (AREA) / (pi * MAXAXISLEN2) 

ELONGATION A shape measure that indicates the ratio of the major axis of the polygon to the 
minor axis of the polygon. The major and minor axes are derived from an oriented 
bounding box containing the polygon. The elongation value for a square is 1.0, and 
the value for a rectangle is greater than 1.0. 
ELONGATION = MAXAXISLEN / MINAXISLEN 

RECT_FIT A shape measure that indicates how well the shape is described by a rectangle. This 
attribute compares the area of the polygon to the area of the oriented bounding box 
enclosing the polygon. The rectangular fit value for a rectangle is 1.0, and the value 
for a non-rectangular shape is less than 1.0.  
RECT_FIT = AREA / (MAXAXISLEN * MINAXISLEN) 

MAINDIR The angle subtended by the major axis of the polygon and the x-axis in degrees. 
The main direction value ranges from 0 to 180 degrees. 90 degrees is North/South, 
and 0 to 180 degrees is East/West. 
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MAJAXISLEN The length of the major axis of an oriented bounding box enclosing the polygon. 
Values are map units of the pixel size. If the image is not georeferenced, then pixel 
units are reported. 

MINAXISLEN The length of the minor axis of an oriented bounding box enclosing the polygon. 
Values are map units of the pixel size. If the image is not georeferenced, then pixel  

HOLESOLRAT The ratio of the total area of the polygon to the area of the outer contour of the 
polygon. The hole solid ratio value for a polygon with no holes is 1.0.  
HOLESOLRAT = AREA / outer contour area 

MINBAND_x Minimum value of the pixels comprising the region in band x. 

MAXBAND_x Maximum value of the pixels comprising the region in band x. 

AVGBAND_x Average value of the pixels comprising the region in band x. 

STDBAND_x Standard deviation value of the pixels comprising the region in band x. 

TX_MEAN Average value of the pixels comprising the region inside the kernel. 

TX_VARIANCE Average variance of the pixels comprising the region inside the kernel. 

BANDRATIO Values range from -1.0 to 1.0. See “Band Ratio” on page 30. 

HUE Hue is often used as a color filter and is measured in degrees from 0 to 360. A value 
of 0 is red, 120 is green, and 240 is blue. 

SATURATION Saturation is often used as a color filter and is measured in floating-point values 
that range from 0 to 1.0. 

INTENSITY Intensity often provides a better measure of brightness than using the AVGBAND_x 
spectral attribute. Intensity is measured in floating-point values from 0 to 1.0. 
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Appendix D - Procedures for using the ENVI Zoom 4.5 Feature 
Extraction Module 

 

1. Imagery Collection  

 To obtain aerial imagery for Kansas Counties go to www.kansasgis.org.  Click on the 

‘Browse and Download’ data tap, this will prompt a new window where the ‘Imagery’ Tab 

should be selected. Look for the 2008 NAIP Imagery tab and select it. 105 zip folders labeled 

with Kansas County abbreviation will appear, select the county of interest and download the zip 

folder. Inside the zip folder will be a .jp2 CCM of the county selected. Unzip the folder and save 

the contents.  

 

2. Image Preprocessing  

 Because ENVI Zoom 4.5 Feature Extraction Module does not recognize .jp2 file formats 

the NAIP imagery must be converted to a compatible file format. To convert files to .tiff which 

the software will recognize the imagery must be reduced to less that 4GB.  

 Load the imagery into ArcGIS 9.3 and display bands 1,2, and 3. This will produce a true 

color composite. Next select the Feature Analyst tab → Raster Tools → Resample Images. A 

pop up window will appear next. Set the resample Method to Nearest Neighbor and the 

Resample factor to 6.  

 

 
 

When the resampling algorithm has finished export the resulting image to .tiff format in ArcGIS 

9.3. To do this, right click on the image file name in the Layers contents box and select ‘Export 

Data.’ In the window that appears name the file and save it as file type .tiff.  
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3. ENVI Zoom 4.5 Feature Extraction Work Flow  

 
Source: ENVI Zoom Feature Extraction Module Users Guide (2008) 
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4. Image Segmentation, Merging, and Thresholding   

Launch ENVI Zoom 4.5. Click on the ‘File’ tab and select ‘Open…’ Locate the resampled 

imagery and select the .tiff file. Click the ‘Data Manager’ button located just below the ‘Edit’ tab 

in the upper right corner of the display window. In the resulting dialog box begin by selecting the 

Red, Green, and Blue bands for display, this will ensure that you have a true color image to view 

during image processing (Note: information from the NRI band will be analyzed even if it is not 

displayed in the data view screen).  

 

With the image displayed properly select Processing → Feature Extraction, in the resulting 

window select the .tiff image file for processing, click OK. Next a pop up window like the one 

below will appear (if the imagery changes color which it will reload the red, green, and blue 

bands as outlined earlier).  

 
 

This is the segmentation parameter setting window. Move the slider bar circled in red to adjust 

scale level/parameter. Scale parameter is an area measure that determines how large of objects to 

select. Scale parameter values range from 0-100 with objects increasing as values move toward 

100. For Ford County a Scale level of 78 was used. Click the preview box in the bottom left of 

the segmentation parameter setting box. A viewing portal outlined in red will appear in the 

middle of the data view screen. In this window segmentation results can be viewed ‘on the fly.’ 

Move the viewing portal throughout the imagery to ensure that the scale level settings are 

isolating windbreaks from neighboring fields throughout the image. The features outlined in 

green below will be objects created after the segmentation algorithm runs. When the desired 

scale level settings are set click the ‘Next’ button in the Segmentation parameter setting window.  
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Once the segmentation process has completed a ‘Merge Segments’ window will appear as well 

as a ‘Region Means’ image. The Region Means objects contain mean BV’s for all of the objects 

created in the segmentation process. The Merge Segments option allows smaller segments to be 

merged together with larger segments having similar spectral values. A merge factor of 50 was 

used to grasp the overall homogeneity of windbreaks in Ford County. (Depending on the nature 

of windbreaks in other counties, the merge factor may need to be reduced or increased) 
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Use the slider bar to adjust Merge Level just like in the Segmentation process. Notice how the 

object sizes have increased as the Merge level was placed at 50 in the image below. Click next in 

the Merge level window when the desired setting has been established.  

 

 
 

After merging is complete the option for ‘Thresholding.’ This options allows superfluous objects 

to be eliminated based on their ‘Region Means’ values.  
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Click the circle next to the Thresholding (advanced) option as seen in the image above. 

Increasing the minimum Region Means threshold will eliminate most impervious features such 

as roads, parking lots, buildings etc… all things that can cause confusion in future classification 

steps and slow down processing time.   A minimum threshold value of 90 was use in Ford 

County, however this setting may need to be adjusted for other Counties just like the Scale level 

and Merge level parameters.  
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After setting the minimum threshold value, areas that will be masked from further analysis can 

be seen in white in the viewing portal. The black objects will remain. Note that the upper 

threshold limits should not be decreased, this could cause vegetative features to be eliminated. 

When the desired minimum threshold value has been established click Next. After Thresholding 

has processed the only remaining objects should be vegetative features.  

 

5. Calculate Attributes  

When the Threshold process is complete a ‘Compute Attributes’ window will appear. In this step 

select all of boxes next to the attribute options as seen in the image below. (Spatial, Spectral, 

Texture, Color Space, and Band Ratio) This step will calculate for all objects the attributes 

outlined in Appendix B. After selecting all the boxes click Next and the ‘Compute Attributes’ 

process will begin. 
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Next a window will appear with the option to ‘Classify by selecting examples,’ Classify by 

creating rules,’ and ‘Export Vector.’ Select Export vectors as seen below and click Next.  

 

 
 

The Feature Extraction Module will not export the attributes that have been calculated after 

classifying the object in future steps. These attributes are only used within the software for 

classification, which is why it is very important to export the unclassified vectors that contain 

this information to ensure that a spatial data file will exist with such information. Click Next 
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after selection ‘Export Vectors.’ A new window will appear, in the ‘Select Output File’ dialog 

box select ‘Shapefile’ from the dropdown menu. Choose the appropriate directory and name the 

file something like “object attributes.” Also, Make sure to select the ‘Export Attributes’ box in 

the bottom left of this window. Click Next.  

 

 
 

After the objects have been exported with their associated attributes the window below will 

appear. Select the ‘Previous’ tab.  
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In the next window select the ‘Previous’ Tab on the bottom right again. After that the window 

offering the option to ‘Classify by selection examples’ will reappear. Select ‘Classify by 

selecting examples’ and click Next.  
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6. Supervised Classification of Objects  

Next a Supervised Classification window will appear in which object classes must be established 

based on their underlying landcover/landuse. In Ford County 6 remaining land cover classes 

were identified after thresholding (Windbreak, Riparian Areas, Individual Tree/Shrub Stands, 

Manicured Landscapes, Crops, and Ditches). Additional classes may need to added or removed 

in different counties. In the window below click the ‘Add Feature’ button circled in red 6 times 

to establish 6classes.  

 

 
 

To label the classes right click on the class labeled ‘Feature_1(1Object).’ The ‘Properties 

window of that feature will appear. In the ‘Feature Name’ dialog box type “Windbreak” and 

click OK.  Repeat this step to label all the feature classes with their appropriate landcover name.  
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Next click the ‘Show Boundaries’ box in the bottom right of Supervised classification window.  

 

 
 

The object boundaries will now be displayed in red and ready to be selected as training sites. To 

select training sites click on a landcover class in the Supervised Classification window then using 

the mouse pointer click on the features in the image that correspond with said landcover class. 

Select at least 10 training sites per feature class.  

 

Once training sites have been selected click the ‘Attributes’ tab in the Supervised classification 

window. Select the ‘Auto Select Attributes’ button in the circled in red in the image below. This 

option statistically tests how well any given attribute can distinguish between a set of features 

then measures the significance of each attributes ability to distinguish between classes.  
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After classification attributes have been selected click the ‘Algorithm’ tab to the right of the  

‘Attributes’ tab in the Supervised Classification window.  

 

In the ‘Classification Algorithm’ dropdown menu select ‘Support Vector Machine’ (SVM) then 

in the ‘Kernel Type’ dropdown dialog box select ‘Radial Basis Function.’ Accept the rest of the 

default values concerning the SVM algorithm and click Next at the bottom the Supervised 

Classification window.   

 

When the objects have all been classified a final window will appear, this is the Export 

Classification Results window (See Below).  Select the ‘Export Vector Results’ and ‘Export 

features to a single layer’ box. Additionally make sure to select ‘Polygon’ as the feature type and 
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‘Shapefile’ as the output file format. Name the file something like “SVM_AllVectors” and save 

it in the appropriate directory.  
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