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GIAPTER 1

INTRODUCTION

1.1. Identify The Problem

Simulation is a technique used to study the dynamic properties
of a system in which the elements of this system are represented by
arithmetic and laogical process. This technique may be used in the fol-
lowing instances:

(1) To investigate a model so complex that we can not obtain

the answer any other way.

(2) To model a new previously non-existant system.

(3) To evaluate an altermative to an existing system.

By running a simulation, we can obtain an uninterrupted recording
of a system's performance. This recording is a set of observations
which is a segment of a run sufficient for estimating the value of each
of the desired performance measures.

Two methods of estimating a simulation output can be distinguished

(1) The instantaneous value of a variable observed at a uniform
time interval. For example consider the number of items
waiting in a queue, the mean and variance of the variable

'can be derived as follow;

N
Yy % (1.1.)



N ~ 2 '
o = .21 (X; = uy) T/ (8-1) (1.2.)
1=

where N is the number of observations, and Xi is the ob-
servation (number of items waiting in a queue at time
T, + 1iAT

0 » To

(2) The time integrated average of the system performance is a

is beginning record time, AT is the time interval).

continuous weighted measure with high autocorrelation.
Measures of system performance are taken when the variable
changes level, see Figure 1.1. This method could be used to

represent the average number of items waiting in the system;

. N
D)
X, AT, (1.3.)
N g Tpier * 01

=
=3
L]

™D 2 i ~ 2 .
g = z B o % P 5 (1.4.)
Ly =1 *Ihy Iy
§
T -T, = AT, (1.5.)
N b i1 i

where T is the present time, and T, is the beginning time,

N b

ﬁTi = time increment between changes in the level of Xi

and X,

i-1° This method can not be applied to our technique.

According to Harris (12), the mean of the simulation output will



THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.



A

DINVIOIYTd WALSAS AHL J0 FOVYIAV CQIIVEOILNI TATL 40 INTWRIASYVIW HSNOASHY T°T 2an8T1g

L AL ANEad

|

| | | I | i I {

{TEMS

AVERAGE NUMBER oF

WAITING IN A BuUEUE



converge first, then the variance.

where N is the number of observations, and

21
Ty L &

i=1

i"UN) ?

The reason can be summarized as

{16 )

(1.7.)

If the mean is biased (affected by the transient period), the variance

is inflated because E(Xi) # u for all i.

When the biased mean gradually

approaches steady state, the variance also converges toward the ninimum

sum of squares, I

estimate;

T -
By, = 72 U +

N N NT
2.2,

N N NT

where y: 1 the

NT

g : the

pN :  the

02 :  the

t is more

N

—ﬁ)

N
Tg?

N

estimated

estimated

abvious if we decompose the variance

S)

~2
g?

mean in the transient stage,

mean in steady state,

overall estimated mean,

estimated

variance in the transient stage,

(1.8.)

(1.9.)



05 : the estimated variance in steady state,

"2 ; ;

ON ¢ the overall estimated variance,

NT': the number of observations in the transient stage

(fixed value)

N

.

the total number of observations.

For N sufficiently large,

M. .

= g ® 3 §, (8§ is a small value) (1.10.)
N NT
then,
NT " N->wo 2 2 ’
- : i 1
(1 N) GS > cx, (ox is true variance) (1.11.)

At this stage, the variable becomes statistically stable, i.e.,
there is no change in expected value (mean) and variance. On the con-
trary, a system whose behavior does not satisfy the steady state con-
diticns is usually described as in a transient stage, see Figure 1.2.

The transient properties of a system may be caused by:

(1) The atypical starting conditions used to initiate the model.

(2) A natural transient phenomenon that may occur in the system

being simulated.

To the analyst, the information gathered during the transient
stage is of little use if his main poal is to estimate a steady state
level of performance. In the transient stage, the variance estimates

are inflated and the mean estimates are biased. Therefore, in simulatiocn
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experimentation, the first and most important peint is to remove this
unwanted transient. Two methods are commonly used to remove the
effects of transients. The first cne is to use a long simulation run
so that data being collected from the transient period becomes insig-
nificant relative to the data in the steady state period. From the
econonic point of view, this method is not attractive because the cost
of the computing time is excessive. The second method, is not to record
the statistics until the simulation goes into a steady state condition.
The condition at the end of the transient stage becomes an a priori
estimate of the steady state condition and, in effect, is used to start
a new run.

Now, a question is raised as to how one should decide the length
of the transient stage. In other words, where is the end of the tramnsient
period. GCenerally speaking, there is no clear-cut point estimate to
indicate the end of the transient period. A reasonable way to solve the
transient period problem is to determine a better method of estimating
the end point of the phase. Many techniques have been developed, and

will be discussed in length in the next section.

1.2, Literature Review

Conway (4) suggested making several pilot runs and analyzing the
results, This procedure is experimental, not statistical, because the
investigator may either pre-load the system at the expected value of the
parameters, or determine the average length of the transient stage and

begin data collection at that point in the next simulation. It is nct



a well-defined solution because it does not indicate the end of the

transient stage while the simulation is in process, I.e., it is nct a

dynamic decisien making procedure. In addition it requires long simu-

lation runs which increases the computation cost. However, this method

is very attractive to those people whose problem is not complicated.
Bueno (3), approached the problem by comparing sample means with

a grand mean through a student's t-test. He mentioned that the individual

stochastic processes of a simulation seems to stabilize before the entire

system reaches equilibriuﬁ. The simulation is divided into N time

periods. The process mean within the :i.t‘nl period, Ei is compared to

the grand process mean for period i+l through N periods. Bueno sug-

gested discarding the first period as we can assume it to contain trans-

ient biases. Bueno states that since the sample mean and grand mean

are calculated from several single observations, they are normally dis-

tributed by virtue of the Central Limit Theorem. This technique is

formulated below:

jn

X., i=1, ..., N (1.12.)

Sample mean X, = 5

J i=(j-1)n+l

=TS

where n is the number of observations in each time period, N is the

number of time periods.

N
=‘. l — 2 i by -~
Grand mean X= N1 'z Xi, since we ignore Xl, (1134
i=2 .
N
?__L’ ay _=2 N
S; =5 Zz &, - 0%, (1.14.)



]
wall

U.C.L. + 25 [ vN-1, (1.15.)

- 25 / M1 (1.16.)

X

>l

L.C.L. =

Starting the search from 22’ one finds the first im such that both im

and im+ lie within the range bounded by UCL and LCL. The period 1

1
through m-1 are defined as the transient stage. This is a dynamic
test, with the restriction that all observations (ii) are required to
be independent, Unfortunately, Fishman (8) and Reese (20) both point
out that successive estimates of the mean cof simulation-generated time
series are highly autocorrelated.

Reese (20) developed a technique to compare successive sample
means by using a sequential t-test of observations made at m intervals.
He suggestad selecting a lag time of length m, which ceorresponds to the
largest autocorrelation interval, then observing the sample separated
only by m time units. The samples, if taken or used in this manner,

form a normal distribution and are independent. Reese states a simple

hypothesis, HO: g = 60 with the alternate H 8 # 8, The decisien

criterion is B < E% f(X,u,0) < A, where f(X,u,0) is the normally dis-
tributed density function of which u and ¢ are parameters, and where
A= oa/l-f and B = B/1-a. If the sample statistic is less-than B, accept
HO; If the sample statistic is greater than A, reject HO' If the sample

statistic is between A and B, no decision can be made, i.e., the simu-

lation still in the transient stage.
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Dynamic testing can be made continuously in time using the sequential
t-test. In this test we first give our sample lag associated with the

process, m

_ N
Grand mean X =% I X, (1.17.)

where N is the number of observations to the present.

| mhj
Sample mean X, = o E Xi’ j=1, v, J. (1.18.)
J i=(j=1)n+mrtl

where j is the number of sample group, J is the group number which

the solution is obtained.

2 y SR = .2
sample variance ST = -y (Xi -X), j=1, s J
X5 P i=(§-1)ntmtl J
(1.19.)
1 ortin _ -
Sample autocovariance RT = i (X. - X,)(Xi_T - X,
3 i=(j-1)ntmtl 4 4
(1.20.)
where T < n.
Variance, adjusted for autocovariance
m
2 1
8 =< Calt T R ). (1.21.)
X, X =1 j
| J

Let the sample statistic be An’ the test is B < An < A, where

v o= 1/2(n+1) +
n

[+ €2)/(n + c§>]1’2(“+1)}

(ST

3

{[(n TRESVICRI Y
(1.22,)
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where

X, - X X, -X-38 X, - X+
t =—J—_, t s-—-J—-———-’ t z-—J————-—-—’
0 S_ 1 S_ 8
X, X, X
b ] ]

§ is the longest correlated interval. j =1, 2, ... .

This method is dynamic, thus no repetitive simulations are necessary.
Reese admitted that this method is tco conservative and forces the ac-
cumulation of a large number of samples. The grand mean is biased, and
this bias diminishes only after the transient stage haé been passed.

We also noted that Reese adjusts the sample variance for autocorrelation.
This removes information provided by the autocorrelation, thus decreasing
comprehension of the s?stem being studied.

Fishman and Kiviat (9) present a discussion of spectral analysis
and show how it can be applied to simulation-penerated time series.

They advocate spectral analysis for two reasons. First, as mentioned

e

before, simulation data is autocorrelated; thus, the researcher can not
apply commonly used statistical tools. Second, they do not believe that
the autocorrelation can be removed; 1f it is removed, the information
which the researcher would be concerned with will be found to be altered.
Fishman (8) suggested a technique to determine the saﬁgie size of auto-
correlated data sc that its mean can be estimated with a prespecified
level of confidence. In other words, Fishman's technique estimates the

sample mean such that the variance of this sample mean is within pre-

specified limits. Thus, if we can obtain the condition in a time series



where the sample mean and the variance of this mean become stable, it
will indicate that the system has reached steady-state. This approach,
is dynamic and the sample elements are not independent, but it is not
easy to calculate and is disturbed by a cyclic behavior of the time
series.

Kirtane (16) also, worked with Fishman's technique. He estimated
the parameters of the linear autoregressive scheme that represents the
autocorrelated data. His basic idea is that when the process reaches
steady-state condition, the successive samples are expected to have the
same relative size and the same order for the data, and proved that
autocorrelation between observations does occur. However, it failed to
give any conclusive results regarding the end cof the transient stage
in the simulation.

Harris (12), investigated the use of cross-spectral analysis. He
;easoned that if two successive spectra were of different character,
the transient stage will still be in process, or conversely, if two
successive spectra appeared to be similar, then the transient phase
will have terminated. He used cross-spectral analysis to illustrate
this thought. The similaritf of two spectra can be reflected in the
coherence diagram which is a smoothed plot of the squared correlation
against the frequency over all frequencies. If the two segments are

from stationary time series, the coherence will be approximately one

for all frequencies. Similarly, if the two segments are from dissimilar

i

time series, the coherence diagram will approach zero for all frequencies.



This seems to be a fruitful approach but requires much computer time,
Harris calculated the spectrum and the cross spectrum for each
of the two segments. From an econcmic point of view, if we could solve
the problem by calculating only one spectrum, we could expect to reduce
the cost to approximately a third of that of Harris' method. This ap-
proach would require the comparison of the sample spectrum with an
idealized spectrum from a stationary time series. If the comparison is
significant, then the process is still in the transient phase. Con-
versely, if the difference approaches zero, then the process has reached
steady state.
Rao and Shapiro's paper (19) derived the confidence interval
(control limit) of an idealized spectrum. They introduced a simple

stationary time series,

X(t) = a + e(t), where a is a constant, (1.23.)
and where

Efa(x)] = 0O, (1.24,)
thus

E[X(t)] = a, and (1.25.)

Ele(tYe(t+1t)] = R(1), which is a function of T only. (1.26.)

If the stationary time series is changed to a nonstationary time series,

for example to a step pattern, the changing of the time series can be
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indicated by observing when the spectral estimates exceed the control
limit. They examine two successive segments of the series. TIf these
two successive segments are dissimilar, the process has changed. If
these two successive segments are similar there has been no change in
the process. Expanding this idea, we shall inspect two successive seg-
ments of simulation output. We shall assume they are dissimilar at the
beginning and indicate the end of the transient stage as soon as two
successive segments become "similar'". Hence, we can solve our problem

by creating a process,

X(t) = T(t) + a + e(t), (l.27.)

where T(t) is a trend function which can be interpreted as the transient
stage in a simulation run. This trend function will approach zero as
time goes to infinity, i.e., the process becomes a staticonary time series.
Theoretically at the beginning of the nonstationary time series, the
spectral estimates should lie outside the control limit, and as the
process becomes stationary, the spectral estimates will fall within the
control limit. Therefore, from this observation we can conclude that

the transient phase has been passed.

1.3. Proposal for identifying the end of a transient stage

(1) Expand upon Rao and Shapiro's control limit calculation to
make it easy to identify the control limit for various

paraneter combinations.



(2)
(3

Program and validate the Rac and Shapiro's algorithm.

Apply the algorithm to "pseudo" simulation data. A "pseudo"
simulation is not a simulation but it has the character

of a simulation. We use a pseudo simulation for ease of con-

trol and minimal computer expense. If the statistic works

15

well on the "pseudo" data, then it should work for a simulatiom.



16

THEORY AND PROCEDURE

2.1, Theory

The output of a simulation can be interpreted as a time series. 1In
general it is a sequence, either discrete or continuous, of quantitative
data observed at uniformly spaced points in time.

Time series can be categorized as stationary and nonstationary. A
stationary time series is a series whose parameters do not change with
tima. Let Xt represent a stationary time series. Its mean, variance

and covariance can be formulated as

E[Xt] = y, (constant), (2.1.)
2
Var[Xt] = ¢, (constant), (2.2.)
and
Cov[Xt, Xt+T] = Yo (2.3.)

where 7 is an integral multiple of the time ("lags') between observations.
Any series whose paraneters exhibit a different behavior can be defined

as a nonstationary time series. Box and Jenkins (1, pp.- 35 ) state that
for a stationary time series, the autocorrelation function dies out
rapidly when the number of lags increase. Tha autocorrelation function

of a stationary time series is sometimes difficult to interpret especially
if more than one cyclic process is affecting the generation of the

original time series. This means that the autocorrelation function may
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be complex. Thus the spectrum, which is the ?burier transformation of
the autocorrelation function of the time series, has been introduced as
an analysis tool. It is used to decompose the process' variance into
contributions for various frequency components. Jenkins and Watts (15)
state that the spectrum is often preferable to the autocorrelation
function in the analysis of a finite length of record. The estimates

of the spectrum at neighboring frequencies are approximately independent,
and the interpretation of the spectrum is usually easier than of the
autocorrelation function.

Let a decomposable ncn-stationary series be

X, = T(t) + C(t) + e(o), C(2.4.)

where T(t) is a trend term whose mean value is generally a monotonic

function of time and C(t) is a cyclic function of time that for some

period P
c(t) = C(t + P), , £2:5:])

T+P
7 oc(t) = 0. (2.6.)

t=T+1

And €(t) is white noise which is an independent random series, such that
E[e(t)] = 0, 7 (2.7.)

Var[e(t)] = 62, (fixed value), (2.8.)

E[e(ti) e(ti+1)] =0, 1=1,2, ... . (2.9.)
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Hence, the mean, variance, and ccvariance cof the noise process are not
a function of time. Thus, white noise can be interpreted as a stationary
time series which has a "flat" stratum.

Now, if we adjust the series, it becomes

Xt = T(t) - C(t) = e(r), (2.10.)

which is a stationary time series. In the basic idea, T(t) represents
the transiernt. The cyclic terms will contribute only at one frequency

band and destroy the white noise terms. If

EfX, - T(t) - C(8)] = 0, (2.11.)

Var[x, - T(t) - ()] = ¢°, (constant) (2.12.)
and

COV[Xt - T(e) - C(t)] = Yo (constant) . (2.13.)

For a simulation, this means that the process reached steady state.
On the other hand, if E[Xt - T(t) - C(t)] is not close to zero, then
the trend term is inadequate. The spectral estimates are inflated,
especially at lower frequencies (first frequency band). This means
the process still remains in the transient stage.

The estimated power spectrum (i.e., the Fourier transformation

of the autocorrelation function) is defined as (19)
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2 N m-1
Sx(hﬁf) = [CX(O) + le Cx(P) cos (Phaf) +
Ex(m) cos (mhAE)], h = 0,1, +eo, m. (2.14.)

where Af = g%, is the resolution bandwidth, and

N-P

" 1
CX(P) =¥ . Xi(t) Xi+P(t) -
i=1
N-P N-P
. I X ] x () P=0,1 m. (2.15.)
2 " i . i+P 2 gly ¢ ooy - - o
(N-P)" i=1 i=1

Hannan'(ll) states that the estimate of the spectrum does not
provide a smooth lag function. Thus, for ease of interpretation, it
is necessary to add a weighting factor, a spectral window, in order to
get a smoothed estimate of the spectrum. Rao and Shapiro in their
example choose a so-called Hanning window, a simple moving average of

the spectral estimates.

Thus
T T
£(0) = 35 (0) + 5 5 (D),
F(haf) = L8 ((h=1)Af) + 2§  (hAf) + L § ((h+D)af)
4 "x 2 x 4 "x ’

h = l’ 20 8y m-l, (21160)



and

Etomty = -;- éx((m-lmf) +-;- éx(mAf).

A Hanning window is eaéy to program. It has a very small amount
of leakage from one frequency band to another frequency band. The esti-
mated spectra for non-adjacent frequency bands is effectively uncorre-

lated. For further discussion of weighting factors, see Granger (10),

Hannan (11), and Jenkins and Watts (15).
. . AT
Here, it should be indicated that in this estimate, the integer m,
is called "the number of lags used”. It represents the number of fre- -
quency bands for which the spectrum is estimated. In usage, the larger
the variance of the estimate at each point and the smaller m is, the re-
sult will be a more accurate estimate. Granger (10) states, it is

reasonahble for m = N/3 if ¥ ic a large value, m = N/5 or N/6 for N is

small.

2.2. Rao And Shapiro's Technigue

Rao and Shapiro have introduced a technique using evolutionary
spectra to inspect the structure changes in a time series. This is
equivalent to watching the time series through a moving window of
fixed length. Two contradictory conditions should be considered when
choosing the window length:

(1) The length of the window must be long enough so that a

stable estimate can be obtained for a reasonable number
of spectral components (i.e., small standard error of

estimation).

20
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(2) The length of the window should be short so that the pro-

cedure is sensitive to small changes in the process mean.

Two parameters are to be chosen, sample length N and the maximum

lag to be considered m. Rao and Shapiro require repeated estimates of

mtl spectral bands for overlapping samples.

shown in Table 2.1.

A typical situation is

TIME SERIES

SPECTRAL ESTIMATES

DATA

ae se 0 n

s Bys vowswavas By

Fp oo Fyps seeeeres By

XZ’ X3’ cesseasay XN+1

Fyor Ty gs wreeeeens By

X3, X4’ sesasucey XN+2

~ ~

Fy oo Fa ps seeveeees By

Table 2.1 THE EXHIBITION OF THE SPECTRAL

Where

A

F; p = Ln £;(hAD),

Oy 1, oesay m,

(2.17)

i, h denote the ith spectrum for the hth frequency band and fi(hAf) is

defined by equation (2.16). Ln f(hAf) is usually plotted rather than f(hAf).

Since the confidence interval of the spectrum is a constant when plotted

on a logarithmic scale.

Since th Fi,h

are subject to sampling variation, it is necessary to



introduce a moving average to smooth them before comparing the latest
spectral estimates with previous estimates.

Thus

(2.18.)

and

Ay = maxhlﬁi (2.19.)

,ﬁ]'

Now, following Rao and Shapiro, we can obtain the distribution and

contrel limits of the A series.

i ~ ~
6i,h ~ .E alJ j,h - Fl,h’ (2.26.)
j=1
where
0 < 244 <1, (2.21.)
and
i
Z a;. = 1.
j=1
Let Fh be the true value of the spectral estimates Fi h Then,
3
1~:[Fi h] =F, {2.22:)

therefore
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i
() a,.-1) B (2:23.)

E[S h] = 0. (2.24.)
;]
The variance of §. h has been defined as (19)
3
i i i
. Km 2 2
Var[6, ] === (1 + &) { Z (a')™ + a!'. a! }, (2.25.)
i,h N n 521 3 §#8=1 2=1 ij "ig RP
where
di'_j=313’ j=1, .., -1,
' - -
Brp = By

and K is a constant which depends on the spectral window being used

(K = 0.75 for the Tukey and Hanning window) and

5, =1, h =0, m,

& =10, otherwise.

2 . ; ; ;
Rp is the coherence between two segments cof N points with P time

periods apart. It has been formulated (19) as

2 2 2
2 _ [ 1 P R, |
% Ll+ij =G sd-y (2.26.)



Rao and Shapiro state that the F, are asymptotically normally

i,h
distributed, and ﬁi p 2s well, because the Si p 2re a linear combination
b} ]
of the Fi h As known, the two spectral estimates are independent
b
if they are not adjacent. Thus Gi,O’ 6i,l’ ey Gi,m is a l-dependent

sequence of random variables that are distributed asymptotically as the
Chi-distribution with one degree of freedom (19). A sequence of random
variables Xt has been called l-dependent if li-j[ > 1 implies that Xi
and Xj are independent (23), then from Watson (23),

lim P(Max_ |6,

1,h|

n—>o
where
o= nP(]ﬁi’h] > Cn(a)), for fixed u,

n=m+l, is the number of spectral components, Cn(a) is the control iimit.
Thus,

—nP(|f5i’h| > %)

P(a, <) =e . (2.28.)

¥ is the Chi value (J;z). From equation (2.28), the control limit of
the idealized spectral estimates can be built up for various confidence
levels. For a detailed derivation of the control limit, see (19). As
a numerical exanmple, let N = 50, m = 10, therefore n = 11 and the de-

sired confidence level be 0.95, then

—nP(lai,hl > x)
P(a; <x) = e = 0.95,

<c (@) =e™, (2.27.)

24



taking the natural logarithm

np(]ai’hl >-x) = 0.051;

P(|5i’h| > x) = 0.0046,

interpolating from Chi-Square Table,

2
J—z = 9_ 151,
a
%1 .h
thus
X = 9 -« 3.025.

i,h

Thus, the control limit can be computed (see Appendix B). The confi-
dence levels (a) plotted are for 0.99, 0.5, and 0.90. For each con-

fidence level, the control limit is plotted (see Fig. A, B, C in Ap-

pendix C) against sample size for various m = 3, 5, 6, 10. The control

limit is a smooth surface, decreasing with an increase in sample size
but increasing as the number of spectral bands increases.
Theoretically if the process is not a stationary time series, if
for example it has a trend, then the A series should lie outside the
control limit. However when the process reaches steady-state the 4
gseries should fall within the control limit. Thus, by noticing this
phenomenon we can determine where the structure of the time series

changes.

25
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2.3, Computational Program

The computer program consisted of a main program, three subroutines
and a randcm numBefrgEnerating function. The main program is used to
generate a time series. The subroutines process the generated time
series to obtain a series of 4 values. Subroutine FIRST computes the
gummations for the covariance function (Eq. 2.15.). Subroutine SECOND
stores the generated observation and updates the summations racursively.
Subroutine THIRD is used to calculate the A value and return this value
to the main program. Everytime an observation, X, is generated, a A
value is obtained. The programming list is shown in Appendix A. The
three subroutines have been made general; the maximum number of ob-
servations (N) allowed is 200, and the maximum number of lags (m) al-
lowed is 1C. However, more observations or lags or both may be used by
changing the proper dimension statement.

When studying simulationAbehavior we do not know the length of the
transient stage, therefore, if we keep storing generated observations
we wili need an unlimited storage area. This may restrict the storage
available for other purposes. We pfopose a recursive approach which
does not store all the generated observations. Consider a summation

term which is part of the covariance function (Eq. 2.15.)

JHN-P-1
Sj(N,P) =k Xi Xi+j’ 0 <P <m, 1= Xy By ammy (202950
1=]
o33
Sj(N,?) = Sj_l(N,P) + Xj+N—P—l X1~ X401 Xj+P—l, 7 le (243050
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For each time period we add the newly generated observation to the

summation and subtract the oldest observation from the summation in

order to update the summation. In this case, the newly generated ob-

servation X, ., occupied the location of the old X, and remains in
-1 j-2

storage until it becomes the oldest generated observation, i.e., N+1

time periods later. The location will be occupied by the newly generated

observation Xj+ . Therefore, the newly generated observation occupies

2N
the location of an old observation with a subscript difference of N+1,
i.e., only N+1 spaces are necessary for storing the observations. Sub-
routine FIRST calculates the initial summations which are needed to
initialize the recursive approach.

However, when applying the recursive idea to the computer program,
a complication is encountered due to different subscript series, gen-
erated observations and storage spaces. Subroutine SECOND does the
indexing job. Everytime an observation is generated, subroutine SECOND
will compute its index and store the walue in the proper cell. We use
a modular statement to adjust the subscript of the generated observation.

Suppose we want to index X Tis 1, 2, ..., and the total storage is

T*
§ = N+1, then,

T = C MOD (S}, (2.31.)
where

C=T, ifE T < §,

€C=T - q.5 if T > 5, q 1s maximum integer such that

0<C<s.
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If T is an integral multiple of 5, C becomes 0. In this case, we set

C equal to S (the last cell of the storage). The computer program is
dynamic since these calculations may be made while the simulatiom is

in progress. Everytime an observation is generated in the main program,
subroutine SECOND adjusts its index and returns it to the main program.

We can analyze the behavior of the A series while the process is still

running.

2.4, Validation of the A computation

Rao and Shapiro illustrate their procedure by applying it to various
perturbed time series, in their example the step process, a spike process
and a ramp process. To test the validation of the A value:‘we shall
reproduce the step process and compare these results with those of Rao
and Shapiro. For testing, we generated a step process with a mean of
15.0 for the first 170 values, then Imposed a jump to 16.5 for the next

170 data points and then drop back to 15.0 for the remaining data points.

The generated time series is formulated as

Xt = 15.0 + Ztc, 0 <t <170, 340 < t < 511,
= 16.5 + Z 0, 170 < t < 340,
where
Z -~ N(O,1),
¢ = 0.15.

Figure 2.1 shows the behavior of the process. Part of the output (A series)
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for the parameters N = 50, m = 5 is shown in Table 2.2. The A series

recorded were from A to A Let the confidence level of the con-

101 140°
trol limit be 0.95, then from Appendix C, we know the control limit is
0.15490. UWext we replace the rapidly fluctuating A series by a Binary
sequence such that each A less than the control limit is replaced by
an I and each A out of control is replaced by an 0, see cclumn 2,

Table 2.2. Now we must construct a statistic from the binary sequence
whose distribution is known. The crucial peint in constructing such

a statistic is the behavior of the original A values since all but one
of the observations used to calculate Ai are used to calculate &i+l'

An investigation of the A behavior was made by computing the autocorre-
lation function of two time series. Figure 2.2a is the autocorrelation
function for A from a conmstant process, (N = 50, m = 6). Thus it is
not unreasonable to assume that the A series of a constant process will
behave as if they had formed an independent series. Contrary, Figure
2.2b shows a similar plot for a decay process (non-statiomary, N = 70,
m = 5) and from it, it is obvious that independence is not a reasonable

assumption here. Hence for the constant process we shall assume that

the binary sequence is generated by a series of Bernmoulli trials where

30

the probability of exceeding the control limit is given by the confidence

level of the control limit. Therefore, we divide the binary sequence
into several sub-intervals and count the number outside the control

linit for each sub-interval, i.e., K(n,a) in column 3, where n is the
sub-interval size, and @& is the confidence ievel of the control limit.

This K(n,z) is binomially distributed, and can be formulated (17) as



C50(0.95) = 0.15490

A VALUE

IN CR OUT THE C.L.

K(10,0.95)

0.07073
0.05733
0.05644
0.03592
0.02853
0.05120
0.04064
0.03240
0.04149
0.04469

Lo B e B I B B B e B e B B

0.04418
0.02428
0.11164
0.06936
0.06089
0.05950
0.05236
0.11991
0.05281
0.70678

O HM H HH = H HH

0.75035
0.56565
0.40642
0.27141
0.25026
.11866
12271
.21902
. 20851
.19186

OO0 QOO0

COoOO0OHHOOQOQOOCO

.07288
06539
. 05667
.23832
.109860
.17478
.13528
.09786
.18697
. 14419

[l oo I o I B e Y - B o Y - Y e

HOHHOHOMHH

TABLE 2.2

WUMBER OF & VALUE OUTSIDE THE CONTROL LIMIT

FOR EVERY SET (10 OBSERVATIONS)

bR
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(2.32.)

(2.33.)

where r = K(n,a) with probability p = 1 - o in single trial, q = a,

and n is the total number of independent trials (sub-interval size).

Therefore, a significance level (SL(n,2,B8)) for various confidence limits

{8} on the sub-interval can be computed.

n=12, q'= a = 0.95, 8 = 0.05, then

o n
D (P

S=r

(s > ) S qn—S

I

=< 0.05.

from the Binomial Table,

P(S > 2) = 0.0861384 > 0.05,

P(S > 3)

]

0.0115036 < 0.05.

Thus, the significance level SL{n,a,B) = 3.

For a numerical example, let

Here, we make a hypothesis

that the observations are generated from a stationary time series

If a subinterval is significant (i.e. K(n,a) > SL(n,a,8)),

then we reject the hypothesis and consider the observations which are
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not generated from that time series. Otherwise, if if is not signifi-
cant (i.e. K(n,¢) < SL(N,x,B)), then we accept the hypothesis.

Three runs of the same step process have been tested, each one
for 500 A observations for the parameters (N = 50, m = 3), (N = 50, m = 5),
and (¥ = 160, m = 10). The results for n = 10, a = 0.95, p = 0.95,
g = 0.05 are shown in Figure 2.3a, 2.3b and 2.3c. A significant sub-
interval appears N/n sub—intervals ahead of the step occurence because
at that time we start to pick up the observations with a different mean.
According to Rao and Shapiro, the significant sub-intervals should last
for N/n sub-intervals, then the N observations are all taken from the
same mean. This pattern is repeated twice in the experiment, once for
each change in the mean. From Figure 2.3a, 2.3b and 2.3c, we know that
whenn m is increasing, the method is more sensitive to detecting a change

in the time series.
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CHAPTER 3

COMPUTATIONAL EXPERIMENTATION AND CONCLUSION

3.1. The Experiment

A generated time series is introduced to represent a simulation for
simplicity of comparison and economy in computing. This simulation is
called a pseudo-simulation. The generated time series has a decaying

exponential trend and is formulated as

b
Il

Constant + Trend Function + Error Term

A+ Be + Z g,

where A, B, C are constants (arbitrary chosen) which could be used to
control this generated process. Ve could let the process reach
staticonarity quickly, or not at all, by assigning those constants (A, B,

C) with bigger or smaller values. The random normal variable is gen-
erated by use of a modified random nusber generator. This generator yields
uniformly distributed random numbers from the interval {0,1). In con-
version to a normally distributed random number, the formula from Burr

(2) is used:

-0.16239 _ ,,0.20517 _ .-0.16239 _ .

] k

)

0.20517} / 0.324,

Z = {[(I—R)

where R is a uniformly distributed random number on the interval (0,1),

and Z is a random variate from the standard normal distribution. Thus,
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for a fixed value o, Ztc represents an errcr term (white noise) and is
also normally distributed with N(O, 021. Figure 3.1 shows the shape

of the generated process. This process is very easy to perform and
costs little to simulate. If this pseudo-simulation works well for the
X value, the real simulation could be tried.

The experiment will be run by feeding different walues of the
parameters N and m. Each run collected 500 A observations for an-
alyzing the transient problem. Similarly as mentioned in section 2.4,

a binary sequence can be obtained by comparing the A series to the “
control limit, CSO(O.QS). Here, two decision rules have been used to
investigate the end of the transient stage;

(1) We divide the binary sequence (length of 500) into 50 sub-
intervals, and count the number of A points outside the con-
trol limit, K(n, a). Thus, the significance level, SL(n,a,8)
can be computed for variousuponfidence limits of K(n,a), 1-B.
For instance, let n = 10, o = 0.95, B = 0.05, then from the
Binomial Table, the significance level is 3. Therefore, for
each sub-interval it is easgbto determine’whether'it is sig-
nificant or not by comparing K(10,0.95) with SL(10, 0.95, 0.05).
Theoretically, the sub-intervals should be significant (i.e.,
K(n,o0) > SL(N,o,B8)) at the beginning, because the observations
were generated from a trend at that time. If two successive
sub-intervals are both non-significant, then the generated
process has reached steady state, i.e., the tramsient stage

is passed. Figure 3.2 shows that the K(n,a) are plotted against
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sub-intervals. From Figure 3.2, sub-interval 19 and 20
are first two successive non-significant sub-intervals.
Thus, the transient stage is terminated at sub-interval
18, i.e., the length of the transient stage is 180.

(2) Ve take 30 elements of the binary sequence each time and ob-
tain K(n,a). This is similar to a recursive form. First,
we observe the binary sequence from 1 to 30, then 2 to 31,
and so on. The significance level is 5 for o = 0.95,

B = 0.05. If there is a set of 30 elements whose K(n, a)

42

is less than the significance level, then the generated process

has reached steady state, i.e., no more transient stage left
in the process. The transient stage is said to terminate
at the last element of the previcus set. Hopefully, this
decision rule will consider a shorter length of the transient
stage because it is decided element by element of thé binary

sequence instead of by a sub-interval.

3.2. Test Low Noise Level (o/A = 0,01)

In this test, we set A = 15.0, g = 0.15, thus the noise level
(o/A) is small, Basically, this noise level will not disturb the
behavior of the A series. The length of the transient stage will be
decided by both of two decision rules which were explained in previous
section. -

Table 3.1a to 3.1d shows the length of the transient stage for

various combinations of N and m. This length was decided by first

decision rule for the significance level, SL(10, 0.95, 0.05) = 3.
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Table 3.1

LENGTH OF THE TRANSIENT STAGE USING

FIRST DECISION RULE

SL(10, 0.95, 0.05) = 3

MAXIMUM NUMBER NUMBER OF LENGTH OF THE
OF LAG OBSERVATIONS TRANSIENT STAGE
3 40 110
3 50 110
3 60 110
Table 3.1a

SL(10, 0.95, 0.05) = 3

MAXIMUM NUMBER NUMBER OF LENGTH OF THE
OF LAG OBSERVATIONS TRANSIENT STAGE

5 30 140

5 50 140

5 70 170

5 80 180

5° " 90 180

5 100 180

Table 3.1b




SL(10, 0.95, 0.05) = 3

MAXIMM NIMBER NUMBER OF LENGTH OF THE
OF LAG OBSERVATIONS TRANSTENT STAGE
6 10 110
6 20 130
6 30 140
6 40 130
6 50 150
6 60 150
6 70 170
6 80 190
6 90 190
6 100 180
6 120 190

Table 3.1c

SL(10, 0.95, 0.05) = 3

MAXIMUM NUMBER OF NUMBER OF LENTH OF THE
OF LAG OBSERVATIONS TRANSIENT STAGE

10 40 140

10 60 180

10 80 190

10 100 210

10 140 190

10 150 230

10 160 220

10 200 190

Table 3.1d

45
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Again, Table 3.2a to 3.2d showed the length of tﬁe transient stage

using second decision rule. The significance level, SL(30, 0.95, 0.05) = 5.

Table 3.2 LENGTH OF THE TRANSIENT STAGE USING SECOND DECISION RULE

SL(30, 0.95, 0,05) =5
MAXIMUM NUMBER NUMBER OF LENGTH OF THE
OF LAG OBSERVATIONS TRANSIENT STAGE
3 40 112
50 107
3 . 60 112
Table 3.2a

SL(30, 0.95, 0.05) =5

MAYIMUM NUMBER NUMBER OF LENGTH OF THE
OF LAG OBSERVATIONS TRANSIENT STAGE

5 30 124

3 50 139

5 70 167

5 80 174

5 90 174

5 100 181

Table 3.2b



SL(30, 0.95, 0.05) = 5

MAXIMUM LiUMBER NUMBER OF LENGTH OF THE
OF LAG OBSERVATIONS TRANSTERT STAGE

6 10 103

6 20 128

6 30 132

6 40 124

6 50 142

6 60 147

6 70 163

6 80 181

6 90 182

6 100 175

6 120 181

Table 3.2c

SL(30, 0.95, 0.05) = 5

MAXIMUM NUIBER

NUMBER OF

LENGTH OF THE

OF LAG OBSERVATIONS TRANSIENT STAGE
10 40 139
10 60 174
10 80 295
10 100 202
10 140 182
10 150 225
10 160 214
10 200 181

Table 3.2d

47
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Freo Tigure 3.1, we know that the process starts at the value A+B,
then goes down to A gradually and stays there for the remaining time
periods. Thus, when the process reaches stationarity, there is no more
trend in the process, i.e., the transient stage is terminated. The

range for the trend function is B. If we consider

-C-t
R.E. = —B-E—E—- = O,

where R.E. is relative error, and

LT i pe—

o

Therefore, the estimated length of the transient stage can be transformed
into the form of the relative error. Figure 3.3 and 3.4 are plotted with
the reiative error (transformed length of the transient stage) against
N/m ratio. Each Figure contains four curves, m = 3, 5, 6, 10. These
curves are decreasing as the N/m ratio is inereasing. The advantage of
using this figure is to give the researcher an easier choice of the
parameters N and m.

Suppose one decides that the maximum lag is to be m = 10, and
relative error to be 0.02 as an acceptable level for considering the
process a scationary time series. Thus, from Figure 3.3, 85 should be
chosen as the number of the observations (N). In one way or antoher,
if two out of three parameters (N, m, and R.E.) are known, the third
can be obtained from the curve. However, Figure 3.3 and 3.4 only pro-
vide a rough idea, so it is not advisable to regard the value precisely.

Unfortunately, the curves in Figure 3.3 and 3.4 showed that there

were some points which do not behave as they should be, i.e., the curve
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does not decrease as the N/m ratio increases. Thus, to clarify the
curve, we made additional runs with same N and m combination but with

a different process value to test those irregular points. For instance,
when m = 10, N = 80, the estimated length of the transient stage is 295
(see Table 3.2d). This seemed to be an unreasonable length for the
transient stage estimated as noted by comparing it to the length of

the transient stage estimated by first decision rule for the same
parameters. Four different process values have been run to explore this
point. The results showed that the length of the transient stage for
m= 10, ¥ = 80 is between 190 and 225. Obviously, the 295 figure is a
biased length of the transient stage. Thus sometimes, the low noise

level will interfere with the estimation of the length of the transient stage

3.3. Variation of Noise Level

Now, we want to see what will happen to the behavior of the series
if we raise the noise level to 0.05 and 0.10 (i.e., A= 15, o = 0.75
and A = 15.0, ¢ = 1.5). Results are shown in Table 3.3 and 3.4,

Both of the Tables 3.3, 3.4 showed that the noise term does disturb
the estimated length of the transient stage when the noise level is
high, and the length of the transient stage is not proportional to

the noise level.

3.4, Error of the Second Type

A phenomenon has occured in that the A series collected at the
beginning of the time periods usually fall within the control limit.

Theoretically, most of the A values should be outside the control



SL(30, 0.95, 0.05) = 5

MAXIMUM NUMBER NUMBER OF LENGTH OF THE
OF LAG OBSERVATIONS TRANSIENT STAGE

6 40 31

6 50 42

6 60 34

6 70 65

6 80 41

6 90 70

6 100 63

Table 3.3 NOISE 1ILVEL = 0.1

SL(30, 0.95, 0.G5) =5

MAXIMUM NUMBER NUMBER OF LENGTHE QOF THE
OF LAG OBSERVATION TRANSIENT STAGE

6 40 43

6 50 53

6 60 82

6 70 81

6 80 84

6 90 79

6 100 86

Table 3.4 NOISE LEVEL = 0.05
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limit while the process still remains in the transienf stage. However,
the phenomenon is regarded as the second type of error which means that
after testing the samples, we accept the samples as being gooed although
it is in fact a bad. The ;;tputs showéé.that this error of the second

type will be reduced when the m value is increasing, i.e., the larger

the m value, the earlier the A points appeared outside the control limit.

3.5. Conclusion

(1) This procedure does indicate the change of stage for the time
series, There is no clear—-cut point estimate to determine
the end of the transient stage, thus, the approach presented
above provides a rough estimate of the transient length.

(2) The length of the transient stage will be longer if more ob-
servations (N) are taken.

(3) The maximum number of lag (m) taken can not be too small,
otherwise, this approach will not be able to detect the
change of the time series clearly because of the noise term
interference. It is advisable to use the value m > 5 in
this approach.

(4) The noise level (o/A) affects the behavior of the A series.
The high noise level reduces the length of the transient
stage, but the noise level is not proportional to the esti-
mated length of the transient stage.

(5) The A series gives a false test at the beginning of the
transient stage. This tendency is reduced by choosing a

sufficiently large m, m > 10.



54

(6) For a better estimation of the length of the transient stage,
a ratio of N/m around 15.0 is suggtested. Too small or too
big (the N/m ratio) will cause noise trouble in the A series.
A reasonable technique which is to be used to inspect the end of
the transient stage should be dynamic and should not cost teo much in
terms of computing time. The study as presented above, has achieved both
requirements.. The A series is programmable and is capable of indicating
the end of the transient stage dynamically. The time for calculating

500 A points is 0.018 hours on the IBM 360/50.



APPENDIX A

THE COMPUTER PROGRAM LIST OF DERLVING A VALUES

AND A SAMPLE CUTPUT
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APPENDIX B

THE COMPUTER PROGRAM LIST OF CONTROL LIMIT

AND THE RESULTS
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APPENDIX C

THE CONTROL LIMIT CHART AT 0.99, 0.95, 0.90 CONFIDENCE LEVEL
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ABSTRACT

In simulation a problem is encountered in identifying the transient
stage. The information gathered during the transient stage is of little
use if the researcher's main goal is to estimate a steady state level of
performance. When analyzing statistics gathered during the transient
stage, the mean is biased and the variance is inflated. Therefore, a
sensitive method of indicating the end of the transient stage is de-
sirable. By identifying the end of the transient stage one may collect
true statistics of the simulated process.

The output of a simulation can be interpreted as a time series.
This time series is nonstationary when the process is in the transient
stage and is stationary when the process reaches steady state. The basic
idea of this study is to determine this stationarity using spectral
analysis. An exponential decay time series is generated to represent
the output of a simulation. The specfra of the generated obséfvations
was computed and compared to the spectra of a stationary time series.

If two successive spectra are different, the generated time series is
nonstationary and the process is still in the transient stage. On the
other hand, if two spectra are the same, the generated time series is
a stationary time series and the process is said to be in steady state.
This method is applied to a generated time series. The results show
this technique to be a possible means of determining the end of the

transient stage.





