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Abstract

West Nile virus (WNV) —a mosquito-borne arbovirus— entered the USA through New

York City in 1999 and spread to the contiguous USA within three years while transition-

ing from epidemic outbreaks to endemic transmission. The virus is transmitted by vector

competent mosquitoes and maintained in the avian populations. WNV spatial distribution

is mainly determined by the movement of residential and migratory avian populations. We

developed an individual-level heterogeneous network framework across the USA with the

goal of understanding the long-range spatial distribution of WNV. To this end, we proposed

three distance dispersal kernels model: 1) exponential —short-range dispersal, 2) power-law

—long-range dispersal in all directions, and 3) power-law biased by flyway direction —long-

range dispersal only along established migratory routes. To select the appropriate dispersal

kernel we used the human case data and adopted a model selection framework based on ap-

proximate Bayesian computation with sequential Monte Carlo sampling (ABC-SMC). From

estimated parameters, we find that the power-law biased by flyway direction kernel is the

best kernel to fit WNV human case data, supporting the hypothesis of long-range WNV

transmission is mainly along the migratory bird flyways. Through extensive simulation from

2014 to 2016, we proposed and tested hypothetical mitigation strategies and found that

mosquito population reduction in the infected states and neighboring states is potentially

cost-effective.
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Chapter 1

Introduction

West Nile disease (WND) is a vector-borne zoonosis which may result from infection by West

Nile virus (WNV), a member of the family Flaviviridae, genus Flavivirus. This virus is the

most common cause of arboviral disease in the United States.4 From 1999 to 2017, more

than 48 thousands WNV disease cases were reported to the Centers for Disease Control and

Prevention (CDC) and more than two thousands of these reported cases resulted in death.1

WNV is maintained in an enzootic transmission cycle between competent mosquitoes and

birds. Birds are the reservoir and amplifying host for this virus. The US Centers for Diseases

Control and Prevention (CDC) has identified WNV infection in more than three hundred

species of birds. Infected bird movement is likely a key factor that affects the geographic

spread of WNV, especially given the different habitats and routes of various species. Al-

though many bird species may be infected with WNV, the American robin is considered an

important amplifier of WNV and maybe a driver geographic spread because WNV-infected

American robins have low mortality and high viremia.5;6 Members of the Culex genus of

mosquito are the principal vectors of this virus in the United States.7 Humans, horses, and

other mammals can be infected with WNV. However, these infections result in relatively

low virus titers (viremia) therefore the infected animals and people are considered dead-end

hosts (not capable of infecting feeding mosquitoes). Therefore, they do not have any epi-

demiological impact on WNV transmission or geographic spread.8
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To understand the transmission dynamics of WNV, several mathematical models have been

developed.5;9–12 These models predict the threshold conditions for WNV spreading in differ-

ent scenarios. However, most of these models do not consider the spatial dynamics of WNV.

Space or geographic spread has a significant role in WNV disease dynamics and modeling of

WNV spatial spreading is complex because of the interactions of multiple potential mosquito

vectors, avian amplifiers, and mammalian hosts. Liu et al.11 developed a patchy model to

analyze the spatial spreading of WNV, where patches are geographical space. They as-

sumed patches are identical, spatial dispersal of birds and mosquitoes are symmetric within

patches, and movement of birds and mosquitoes are only one-dimensional. According to

this investigation, long-range dispersal of infected bird populations determines the spatial

spread of WNV, not the dispersal of infected mosquito populations. Other investigators

proposed a reaction-diffusion model12, where they have spatially extended the non-spatial

model of Wonham et al.10 to mathematically estimate the spread of WNV. Here, diffusion

terms in the reaction-diffusion partial differential equations represent vector mosquito and

host bird population movements. They identified traveling wave solutions in their model and

calculated the rate of spatial spread of infection. Durand et al.13 developed a discrete time

deterministic meta-population model in order to analyze the circulation of WNV between

Southern Europe and West Africa. Another spatial model proposed by Maidana and Yang14

used a system of partial differential reaction-diffusion equations. They also calculated the

speed of disease dissemination by investigating the traveling wave solution of their model.

They concluded, mosquito movements do not play an important role in disease dissemina-

tion. In addition, they included vertical transmission in their model and determined that

vertical transmission is not an important factor for the spatial spread of WNV.

Most WNV spread models are mathematical deterministic compartmental models. However

WNV spread is highly stochastic because of the demography and movement of hosts and

vectors varies between different locations. The major weaknesses of these models are the

number and complexity of the compartments required to account for the many host and

vector populations. In turn, the number of compartments increases the number of unknown

parameters. Approximation of these parameters in any biological system is very challenging
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and prone to estimation errors which can create inaccuracies in the model outputs.

We developed an individual-based heterogeneous network framework to understand WNV

geographic spread. To build the network framework, we used the American Robin popula-

tion density across the contiguous United States. The demographic characteristics of avian

host populations and vector populations are not homogenous geographically, so we used

a heterogeneous network framework. The transmission intensity of WNV depends on the

abundance of WNV-infected vector mosquitoes in a given location. Mosquito population

numbers fluctuate with local weather and season throughout the year, therefore we used a

temperature dependent transmission rate. Although dead-end hosts cannot spread WNV to

mosquitoes, we have quantified WNV case data only for humans, which we used to estimate

unknown parameters.

To understand the WNV spatial distribution, we proposed distance dispersal kernels, which

describes the probability of dispersal with respect to distances. In this framework, we pro-

posed three types of distance dispersal kernels: 1) exponential, 2) power-law, and 3) power-

law biased by flyway. Then we compared the three distance kernels using approximate

Bayesian computation based on sequential Monte Carlo sampling (ABC-SMC) method.15–20

After conducting an extensive simulation for 2014-2016, we observed that an adapted fat-

tailed or power-law kernel, which has long-distance links in specified directions can best

describe the WNV human case data. We tested this network framework for the best kernel

with the human case data and found that simulated results for more than 41 states of 49

states are consistent with the reported WNV cases. We proposed several theoretical mitiga-

tion strategies to control WNV and calculated their estimated costs. From the analysis of

mitigation strategies, we suggest that potentially effective mitigation policies would include

the application of mitigation control in areas with active transmission and in immediate

neighboring states.
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Chapter 2

Materials and methods

In this section, we present data sources, an epidemic model for WNV, then develop a network

framework for WNV geographic spread across the United States. At the end of this section,

we present a statistical tool, approximate Bayesian computation with sequential Monte Carlo

sampling (ABC-SMC) for parameter estimation and model selection.

2.1 Data

The study area of this research was the contiguous United States where WNV is considered

endemic. We modeled WNV case distributions for 2014-2016. We used three data sets each

year to develop our model. The first dataset contained the average monthly temperatures.

Mosquito vector abundance correlated with temperature. Temperature data was from the

National Centers for Environmental Information.2 The second dataset contains American

Robin population data from eBird.3 This is a database for bird abundance and distribution,

which is formed by the Cornell Lab of Ornithology and National Audubon Society. We used

total observation of American Robin in each state of the USA for each month. The robin data

set was used to train the network model. The American Robin is abundant throughout the

United States and is a preferred food source for many WNV-competent mosquito species.21

Based on host feeding patterns of the Culex genus of mosquitoes, robins are the most common
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WNV amplifying host.22–24 Other important susceptible birds, such as American crow were

not used because although they are an indicator species (high crow mortality), they are

unlikely to spread virus geographically as they are mostly a residential species. In addition,

as an indication of epidemic start point, we used WNV human incidence data. Many species

of birds have long-distance migration during the spring and fall. Therefore the network does

not focus on one long-distance migrating bird species but aggregates all species along the

known flyways. To estimate model parameters we used human case data for WNV from

CDC,1 which is the third dataset.

2.2 WNV Epidemic model

To explore WNV long-distance spatial distribution in the USA, we used an individual-based

heterogeneous network framework. In this framework, birds are on the individual level, a

node represents an individual bird and connection between nodes is the possibility of virus

dispersal from one infected bird to another susceptible bird by mosquito vectors. Links or

connections are formed by movement of birds or movement of vectors. If there is no link

between nodes then infected birds and insects are not moving virus between nodes. All virus

transmission occurs by local competent vector mosquitoes. There is some evidence of bird-

to-bird transmission, but it likely does not contribute to or maintain outbreaks. We split

the bird population into four compartments; susceptible, exposed, infected, and recovered.

Although, in the literature most mathematical models do not consider the exposed avian

class when modeling WNV.10;14;25;26 Birds transmit virus to mosquitoes when a susceptible

mosquito vector takes an infected blood meal, then the mosquito becomes infectious after

the extrinsic incubation period (EIP), or the time needed for the virus to spreads from

the mosquito mid gut to the salivary glands; usually this process takes 7 to 14 days.5;27

In addition, an infected bird can infect many mosquitoes simultaneously and also an in-

fected mosquito can bite many susceptible or infected birds. Therefore, there is some delay

in the system, to represent this delay we added the exposed class. We estimated exposed

period from data by using the approximate Bayesian computation with sequential Monte
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Carlo sampling (ABC-SMC) method. After the exposed period, birds entered the infected

compartment and an infected bird transitions to recovered after 4-5 days. To simulate this

model, we used generalized epidemic mean-field (GEMF) framework developed by the Net-

work Science and Engineering (NetSE) group at Kansas State University.28 In GEMF, each

node stays in a different state and the joint state of all nodes follows a Markov process.28–30

The node level description of this Markov process is:

Pr[xi(t+ ∆t) = 1|xi(t) = 0, X(t)] = β(T )Yi∆t (2.1)

Pr[xi(t+ ∆t) = 2|xi(t) = 1, X(t)] = λ∆t+ o(∆t) (2.2)

Pr[xi(t+ ∆t) = 3|xi(t) = 2, X(t)] = δ∆t+ o(∆t) (2.3)

Here, X(t) is the joint state of all individual nodes at time t. xi(t) is a node state,

xi(t) = C means node i is in C compartment at time t, C = 0, 1, 2, 3 corresponds to

susceptible, exposed, infected, and recovered compartment. Yi is the number of infected

neighbors of node i, β(T ) is the probability of transmission from one infected bird to one

susceptible bird, which is a function of temperature, λ is the rate for exposed to infectious

state, and finally, a node recovers from infectious state at a rate δ.

2.2.1 Zoonotic spillover transmission

To model disease transmission from the bird population to human population, we added a

zoonotic spillover transmission compartment. We modeled occurrence of human cases as a

Poisson process.26;31 This part of the framework can be expressed as the following equation:

∆Ihns = Poisson(ηYns) (2.4)

In this equation, Ihns is number of infected human cases at n sub-network in s time steps,

where s = 1, 2, 3..... are the discrete time steps, Yns is infected bird population in sub-network

n, and η is a scaler quantity, accounts for the contact rate and probability of pathogen
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transmission from bird to human. We calculated WNV spilling over to humans by using a

Poisson random number generator.

2.2.2 Temporal transmission rate and environmental conditions

The transmission rate for WNV is sensitive to weather data as mosquito abundance depends

on the environmental conditions. Temperature, precipitation, landscape features, daylight

conditions etc. are environmental conditions, which has an impact on the transmission

dynamics of WNV.32 In this research, we considered average monthly temperature data,

optimal mosquito season,33 and suitable temperature range for co-occurrence of WNV and

competent mosquito species. Temperature plays a very important role in the transmis-

sion dynamics of WNV because mosquito longevity and EIP are sensitive to temperature.

Mosquito longevity and EIP decrease with the increase of temperature. However, there is no

straightforward relationship of vectorial capacity for WNV with temperature. If incubation

period decreases more than longevity, then mosquitos will be infective longer. However if

longevity decreases more than incubation period, then mosquitos will not be able to trans-

mit the virus. We used information about rainfall in this research implicitly through optical

mosquito season. Optimal mosquito season of any location is estimated from monthly av-

erage temperature and rainfall data for that location.33 In this model, we used a simple

linear relation of transmission rate with temperature in a temperature window from 12◦C to

32◦C in the optimal mosquito season. Outside this window, transmission rate is very low.

Suitable temperature for co-occurrence of WNV and Culex pipiens is around 12◦ to 27◦C

and for Culex quinquefasciatus is 20◦C to 32◦C.33 Survival rate to adult stage for Culex quin-

quefasciatus is significantly high when temperature is in 20◦C to 30◦C.34 For Culex tarsalis

favorable temperature for WNV development start after 14◦C,35 however larval survival re-

duced after 30◦C temperature.36 To compute the transmission rate of any link from node a

to node b, we used temperature of the location of node b. Transmission rate for a location l

is, βl(T ) = β◦(Tlm − T◦); here, β◦ is the proportional constant, what we estimated by using

ABC-SMC method, Tlm is the average temperature for month m in location l and T◦ is the
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threshold temperature. Threshold temperature for this model is 12◦C. As the temperature is

space dependent, our transmission rate also differs across the network. This individual-level

heterogeneous network model gives us this flexibility to use different transmission rate at a

time for different parts of the network.

2.3 Network framework

For the spatial dynamic characteristics of WNV transmission, we built a network framework,

which has 49 sub-networks one for each adjoining states of the contiguous United States plus

the District of Columbia. The number of nodes in each sub-network is proportional to the

size of the avian population in that state.3 We considered the mosquito season June-October

for the simulation period. Although the mosquito season is not the same for all states,

mosquitoes are active from June to September in all of the states at these times.33

The network for the avian population is (V, E). Here, V is the set of nodes, which is the

union of nodes of all sub-network, V = SN1∪ SN2∪ SN3∪ ...........∪ SN49, here SNi is a

set of nodes in the sub-network i and E is the set of links among individual nodes. To build

sub-networks, we used the total number of observations of American Robin for states per

month in the simulation time period. |SNi| = max
mj=m1:m2

(OBSimj) ∗ Sc +N0, here, OBSimj is

the total number of observations of American Robins in state i in month mj, N0 is the error

term and N0 ∼ N(5, 2) for this model. m1 is the first month after May and m2 is the last

month before October when the average monthly temperature is greater than T0. Sc is the

scaling constant.

In each sub-network, we assumed that nodes are connected through Erdos-Renyi (n,p) ran-

dom network topology.37 In this network topology, we created links randomly among nodes

with a probability p. Here, n is the number of nodes in a sub-network and p is the probability

to form an edge. We set the probability p = R ∗ log(n)/n, here R is a constant (R ≥ 2), as

this value is more than the threshold value for the connectedness of an Erdos-Renyi graph,38

so nodes of a sub-network are locally connected. We will refer these networks as a local net-

work in the subsequent sections of this paper. To build connections among sub-networks, we

8



considered long-distance dispersal kernels, which describe the probability of dispersal with

respect to distances. Dispersal kernels provide a simple model of dispersal to model dispersal

events. For long-distance events, we used three types of kernel models; 1) Exponential, 2)

power-law, and 3) power-law-flyway, which is a power-law kernel biased by flyway. A simple

caricature of the network is shown in Fig. 2.1. There are three sub-networks, A, B, and C.

The links, which formed local networks are shown by solid lines. These links are introduced

by Erdos-Renyi (n,p) network topology. Dashed lines are inter-links among sub-networks.

These links established by using long-distance dispersal kernels.

Figure 2.1: A simple caricature of the actual contact network for the avian popula-
tion. Here, A, B, C are three sub-networks. Solid lines represent intra-links in a sub-network
and dashed lines represent inter-sub-network links.

2.3.1 Exponential distance kernel

In this distance kernel, connection probability among sub-networks will decrease exponen-

tially with distance. Probability to form a link is:

P (dij) = Ke ∗ exp(−Ke ∗ dij) (2.5)

Here, dij is the distance between sub-network i and j, Ke is the shape parameter of expo-

nential distribution kernel. For distance between two states, we took the distance between

their centroids. The network with the exponential dispersal kernel was created as follows:

Step 1 Calculate the distance among sub-networks. dij is the distance between sub-
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network i and j.

Step 2 Calculate P (dij), this is the probability to form a link between sub-network i and

j.

Step 3 Generate a random number rand for each pair of nodes (a,b), where a ∈ i and

b ∈ j.

Step 4 If rand < P (dij) then an undirected link will form between node a and b.

Inter-links among sub-networks, generated by exponential distance kernel are shown in Fig.

2.2a.

2.3.2 Power-law distance kernel

Power-Law, heavy-tailed, or fat-tailed distribution allows occasional long-range transmis-

sions of infection with frequent short-range transmissions. In this fat-tailed distance kernel,

there is a greater chance of creating links over the same long-distances compared to the expo-

nential kernel. Power-law transmission kernel was used previously to model spatial dynamics

of several infectious diseases, for example, in plant epidemiology,39 in 2001 foot-and-mouth

disease epidemic,40 and also, in human diseases.41 In power-law connections,42 the probabil-

ity of connectivity among sub-networks will decrease with distance according to the following

equation:

P (dij) = (Kpl − 1)/dmin ∗ (dij/dmin)−Kpl (2.6)

Here dmin is minimum distance among sub-networks and Kpl is the power-law parameter.

The process to build this network is similar to a network for exponential kernel with the

only difference being the calculation of P (dij). Inter-links among sub-networks for power-

law distance kernel are shown in Fig. 2.2b.
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2.3.3 Power-law distance kernel biased by flyway

To form this distance kernel, we included the migratory behavior of birds. Migratory birds

can spread pathogens during the migration periods.43;44 According to the United States Fish

and Wildlife Services and Flyway Councils, there are four flyways in the United States; the

Atlantic flyway (AF), the Mississippi flyway (MF), the Central flyway (CF), and the Pacific

flyway (PF).45 Although flyways overlap and the migratory patterns are very complex, these

migratory routes play a vital role in the long-distance spreading of WNV.46 To build this

distance kernel, we considered two types of links among sub-networks; 1) links which are

formed for residential or short-distance migratory bird movements and 2) links which are

formed for long-distance migratory bird movements. For the first type of links, we used an

estimated movement range of 500 km,47 these connections are unrelated to flyways. For the

second type of connections, we considered two migration periods; spring migration (April -

June) and late summer/fall migration (July - September);30 during the spring migration, we

established long links from south to north and in late summer/fall migration, the reverse.

To establish any long link, we picked two sub-network and establish a link if they were in the

same flyway with probability P (dij) (Eq. 2.6), these links were directional and direction was

imposed with respect to migratory period. Inter-links among sub-networks for this kernel

were shown in Fig. 2.2c. The algorithm to create this network was:

Step 1 Calculate the distance among sub-networks. dij is the distance between sub-

network i and j.

Step 2 Calculate P (dij) using Eq. 2.6, this is the probability to form a link between

states i and j.

Step 3 Generate a random number rand for each pair of nodes (a,b), where a ∈ i and

b ∈ j.

Step 4 If rand < P (dij) and dij < 500km then an undirected link will form between

node a and b.
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Step 5 If rand < P (dij) and dij > 500km and states i and j are in the same flyway then

an directed link will form between node a and b according to the migration period.

2.3.4 Temporal network behavior

Bird populations are not constant in any region, they change with time because of bird

movement. To consider this fact, this study adds a node property, namely, Activity. This

property can hold two values: 1 = Active and 0 = Inactive. In the entire network, only Active

node can contribute to the spreading of the WNV. By controlling this property, we varied

the size of the active node population in any sub-network with respect to the variation of

the avian population in that region. The length of the simulation each year was five months

(June - October). Then, each month nodes are activated randomly according to the total

number of birds observed in that region in that month.

2.4 ABC-SMC for parameter estimation and model

comparison

In this framework, we adopted approximate Bayesian computation based on a sequential

Monte Carlo sampling (ABC-SMC) method for parameter estimation and model selec-

tion.15–20

2.4.1 Parameter estimation

ABC-SMC is a computational method of Bayesian statistics that combines a particle filter-

ing method with summary statistics. This method is ideal for a stochastic complex model

where likelihood function is intractable or computationally expensive to evaluate. ABC

estimates the posterior distribution of parameters from data. Let, θ is a parameter vec-

tor to be estimated. The goal of the ABC is to approximate the posterior distribution,

Π(θ|d) ∝ f(d|θ)Π(θ), where prior distribution of parameters Π(θ) are given and f(d|θ) is

12



Figure 2.2: Inter-links among sub-networks; a) for exponential distance kernel, b) for
power-law distance kernel, and c) for power-law distance kernel biased by flyway. Gray links
represent undirected links and orange links represent directed links (for spring migration
–northbound; for late summer/fall migration –southbound). Intra-links are not visible here.
These are one realization of the stochastic networks, which are rescaled by 0.1 for better
visualization. 13



the likelihood of θ given the data d. This method samples parameter values from their prior

distribution through subsequent SMC rounds. Intermediate distribution of the parameter is

Π(θ|dist(x, d) ≤ εi); i = 1, 2, ....P . The target posterior distribution is Π(θ|dist(x, d) ≤ εP ).

Here, x is the simulated data set, dist is the distance function, ε is the tolerance and P is the

number of SMC rounds or the number of populations, where εP < ..... < ε2 < ε1.
48 This is

an adapted sequential importance sampling. In each SMC round, it uses perturbation kernel

to sample a parameter set. After each simulation of the model, the model output and data

are compared using some goodness-of-fit metrics. A parameter set is accepted if the distance

between the model output and data is less than the tolerance level. The accepted parameter

set is a particle and accepted particles form a population for that SMC round. We used two

goodness-of-fit metric or distance function in this research. The first goodness-of-fit metric

is squared root of the sum of squared error between observed incidence data and simulated

incidence data for any proposed parameter set. The first goodness-of-fit metric for this model

is:

dist1(x, d) =

√√√√ w∑
i=1

s∑
j=1

(x(i, j)− d(i, j))2 (2.7)

Here, x(i,j) is simulated incidence model data for i week and for j location. The second

goodness-of-fit metric is the absolute difference between the number of infected states from

observed data and simulated data, infected state defined as a state where at least one infected

individual has reported. The ABC-SMC algorithm, we adopted for this model from Toni

et al.,15 which has given in Appendix B. We used this algorithm separately for estimating

parameters for this three distance dispersal kernel network models. As our models are an

event based stochastic simulation, we simulated them 30 times with GEMF for each particle

to get 30 realizations of the system. Then we take the average of these realizations. As the

average over the multiple runs of a stochastic system holds more information than a single

stochastic run.
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2.4.2 Model comparison

In many areas, researchers deal with model selection. Bayesian theory is a comprehensive

method to make inference about models from data. Approximate Bayesian computation was

used in many research areas for model selection.49 To compare among three distance kernels,

this investigation used ABC-SMC model selection framework.15;50;51 For given data d, the

marginal posterior probability of model m is:

Pr(m|d) = Pr(d|m)Pr(m)/Pr(d) (2.8)

Here, Pr(d|m) is the marginal likelihood and Pr(m) is the prior probability of the model. We

used a uniform distribution for prior distribution of unknown parameters. For each model,

we have four unknown parameters; network parameter K (Ke is the network parameter for

the exponential kernel and Kpl is the network parameter for the both power-law kernels),

constant for transmission rate β0, transition rate from exposed to infectious state λ, and

zoonotic transmission spillover rate η. In each population, we took 1000 particles. We used

Bayes factor to compare a model with another model. For model mi and mj, Bayes factor52

is,

Bij =
Pr(mi|d)/Pr(mj|d)

Pr(mi)/Pr(mj)
, (2.9)

Here, Pr(mi) is the prior and Pr(mi|d) is the marginal posterior distribution of model mi.

The Bayes factor is a summary evidence in favor of one model over another supported by

the data. If Bij is in range 1-3, we can conclude that summary of the evidence against mj

in favor of mi is very weak. If Bij is in range 3-20, we can conclude that summary of the

evidence against mj in favor of mi is positive.52 The ABC-SMC model selection algorithm

is very similar to the algorithm for parameter estimation. Here, m is the model indicator,

m ∈ 1, 2, .....,M , M is the number of model. In this research, we had three network models

(M = 3) to compare.

m = 1: exponential kernel network model,

m = 2: power-law kernel network model, and
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m = 3: power-law kernel influenced by flyway network model.

In each population, the model selection algorithm starts by sampling the model parameter

m from the prior distribution Π(m). Then the algorithm proposes a new set of parameters

(particle) from the sets of parameters of the model m from the previous population. The

Bayes factor was calculated from the final population of m. The algorithm for model selection

has given in Appendix B. Although ABC-SMC is an accurate statistical tool for parameter

estimation and model selection, however, the results of this method are sensitive to summary

statistics.53 For our case, no summary statistics were required because we used the entire set

of data and we compared the simulated and observed dataset directly by using goodness-of-fit

or distance metric. A full dataset is sufficient to get the consistent result from approximate

Bayesian Computation.54

2.5 Mitigation strategies

The role of mosquito populations in WNV transmission is expressed by disease transmission

rate β. This framework used different transmission rates in different parts of the network

corresponding to the local mosquito abundance. Using this heterogeneous feature in the

framework, we evaluated theoretical mosquito population management measures to reduce

the outbreak size or transmission rates in the state level. Some states such as Kansas, do not

have statewide mosquito surveillance or management, but in these theoretical scenarios, it

is assumed they can develop or benefit from effective statewide mosquito management pro-

grams. The framework will simply estimate how much the mosquito abundance is reduced

or maintained based on the theoretical outcomes of coordinated control. Furthermore, we

realize mosquito control is generally conducted on a county or municipal level, but the hu-

man case data is only available on a state level. Therefore the recommendations are for the

lowest resolution of the data, which is state level but applies to counties and municipalities

as well. If vector management is increased in a sub-network, then transmission rates will

be changed by, βr = β
RF

, here βr is the reduced transmission rate and RF is the reduction

factor. Then management costs will be Cost = RF ∗NSc, here NSc is the number of states
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where control measures were applied. We considered supplemental management measures

with the existing management measures. We used two types of mitigation strategies across

the United States, 1) dynamic infected place tracing strategy and 2) static ranked based

strategy.

In the infected place tracing, we traced the infected states, then plan the mitigation strate-

gies according to them. For this type of mitigation strategies, we considered three cases;

1) case-1: only infected : applied control only in the infected states; 2) case-2: infected &

first neighbors : applied control in the infected states with its first neighboring states (whose

distance is less than 500km), and 3) case-3: infected & first neighbors & second neighbors :

applied control in the infected states with its first neighboring states, and also with its sec-

ond neighboring states (whose distance is in 500 − 1000km). For infected tracing control

measure, we kept track of infected places monthly. If SNi sub-network is infected for month

t, then control measures were applied for the month t+ 1 based on these three cases.

In the static ranked based mitigation strategy, we ranked the states by different variables

(for example, temperature, size of the avian population etc.). For this strategy, we consid-

ered three cases; 1) temp.: states ranked by temperature, 2) pop.: states ranked by avian

population size, and 3) temp. & pop.: states ranked by temperature and avian population

size both, then we applied management measures in the top 30% of the states.
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Chapter 3

Results

We developed a novel flexible individual based heterogeneous network framework to test

three WNV dispersal kernels across the contiguous United States based on human case data

distributions. We used this framework for the year 2014, 2015, and 1016. The results for

network formulation, parameter estimation, and dispersal kernels selection using Bayesian

inference are given below for the year 2015 and the results for other two years are given in

the Appendix A.

3.1 Network framework

In this spatial-temporal individual-based heterogeneous network framework, we used three

distance kernel models. The fundamental basic WNV epidemic model is the same for all

the three network kernels. In the entire network, there are 49 sub-networks representing

the 48 adjoining contiguous states plus the District of Columbia. All sub-network nodes are

locally connected. The topology of the local network is Erdos-Renyi. The total nodes for

the year 2015 was |V | = 7657 and the scaling constant is Sc = 0.02. Here, E = El ∪ Edd;

|El| is the number of total intra-links for all local networks, which is around 167000-170000

and |Edd| is the number of total inter-links among sub-networks. The description of sub-

networks is provided in S4 Table in the Appendix C. We started the epidemic from states
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with the highest human incidence prior to June. We started the epidemic for the year 2015 by

adding two infected nodes, one in sub-network SN4 (California) and another in sub-network

SN42 (Texas). Connections among sub-networks are developed by distance dispersal kernels.

Parameters for these kernels are estimated from the ABC-SMC method.

3.2 ABC-SMC for parameter estimation and model

comparison

3.2.1 Parameter estimation

ABC-SMC parameter estimation was applied to three dispersal kernel network models sep-

arately. For each set of prior distributions, convergence to the posterior distribution was

achieved after 13-15 SMC rounds. Convergence of the posterior distributions was monitored

by visual inspection of the outputs from consecutive SMC rounds. The prior distribution

for exponential network parameter was, Ke ∼ U(0.1, 0.3), for power-law Kpl ∼ U(2, 4), for

power-law biased by flyway was Kpl ∼ U(2, 4). Prior distribution for constant of transmis-

sion rate β0, transition rate from exposed to infectious λ, and human spillover rate η is same

for three kernel models; β0 ∼ U(0, 15), λ ∼ U(0.025, 10) and η ∼ U(0, 50). Perturbation

kernels were also uniform, PK = αU(−1, 1), with α = 0.5(maxθp−1−minθp−1), here θp−1 is

the set of a parameter values in the previous population. We used weekly human case data

for 49 locations, as observed data. The estimated parameters for this three dispersal kernel

network models for 2015 are presented in Table 3.1.

3.2.2 Model comparison

ABC-SMC for model selection allows us to estimate posterior model distributions. We

used this algorithm to compare the three distance kernels. Prior distributions and per-

turbation kernels are the same for both the model selection and the parameter estima-

tion algorithm. Here we used one more prior distribution for discrete model parame-
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Table 3.1: Estimated parameters for the year 2015 from ABC-SMC parameter
estimation. *Estimated using data from the Centers for Disease Control and Prevention
(CDC),1 the National Centers for Environmental Information,2 and Clements et al..3

Parameter Exponential Power-law Power-law
biased by flyway

Source

Network Parameter, K
mean 0.1264 3.3844 2.3147

median 0.1216 3.3924 2.2690 Estimated*
(95% CI) (0.1235, 0.1294) (3.3329, 3.4260) (2.3030, 2.3264)

Constant for transmission rate, β0
mean 0.0439 day-1 0.2026 day-1 0.0059 day-1

median 0.0362 day-1 0.0526 day-1 0.0061 day-1 Estimated*
(95% CI) (0.0354, 0.0524

day-1)
(0.0574, 0.3478

day-1 )
(0.0058, 0.0059

day-1 )
Transition rate from exposed to infectious node, λ

mean 0.0884 day-1 0.1069 day-1 0.0721 day-1

median 0.0823 day-1 0.1059 day-1 0.0706 day-1 Estimated*
(95% CI) (0.0820, 0.0948

day-1)
(0.0940, 0.1197

day-1 )
(0.0718, 0.0724

day-1)
Bird Recovery rate, δ

range 0.2-0.25 day-1 0.2-0.25 day-1 0.2-0.25 day-1 Komar et
al.55

Human spillover, η
mean 0.2175 day-1 0.2141 day-1 0.4558 day-1

median 0.2173 day-1 0.2154 day-1 0.4599 day-1 Estimated*
(95% CI) (0.2098, 0.2252

day-1)
(0.2071, 0.2210

day-1)
(0.4479, 0.4637

day-1)

ter; m ∼ U(1, 3). The tolerance vector for ABC-SMC model selection algorithm is, ε =

{2200, 2000, 1800, 1600, 1400, 1200, 1100, 1000}. The target and intermediate distributions

of model parameters are shown in Fig. 3.1.

We calculated the Bayes factor from the marginal posterior distribution of m, which we

took from the final or last population. In the final population for 2015, exponential distance

kernel model (m = 1) was selected for 64 times, power-law distance kernel (m = 2) was

selected for 95 times and power-law influenced by flyway distance kernel model (m = 3)

was selected for 841 times. Bayes factor B3,1 = 841/64 = 13.1406, B3,2 = 841/95 = 8.8526.

In the marginal posterior distribution of three models, there is positive evidence in favor

of power-law influenced by flyway distance kernel when compared with other two models.15
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Figure 3.1: Population of the marginal posterior distribution of the three models
for the year 2015. Model-1 represents exponential kernel, model-2 represents power-law
kernel, and model-3 represents power-law influenced by flyway kernel. Here, Population-8
is the approximation of the final marginal posterior distribution of model parameter m and
population 1-7 are intermediate distributions. Population-0 is the discrete uniform prior
distribution, which is not shown here.

The distribution of parameters for power-law influenced by flyway for 2015 are presented in

Fig. 3.2. Calculation of the Bayes factor for 2014 and 2016 are provided in the Appendix A.

3.3 Performance of the power-law-flyway network model

To test the performance of this framework, we used estimated parameters from Table A.1

for power-law kernel influenced by flyway. We set the parameters value; Kpl = 2.3147,

β0 = 0.0059day-1, λ = 0.0721day-1, and δ = 0.2031day-1. The simulation period for the

avian population model is from week-23 to week-44. The output of avian population was

used as the input of zoonotic spillover compartment. Then we compared the output of

zoonotic spillover compartment with human case data for week 24 to week 45. We consid-

ered a one-week lag between WNV incidence in birds and WNV incidence in humans. In

humans, WNV-infected individuals (approximately 20%) develop a mild febrile illness after
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Figure 3.2: Histograms of the approximated posteriors distribution of parameters
for power-law influenced by flyway kernel for the year 2015. a) Network Parameter
K ; b) constant for transmission rate β0; c) transition rate from exposed to infectious node
λ, and d) human spillover η.

36 days.56 Peak of reporting of dead birds is one week prior than the reporting peak of

human incidence.57 In Fig. 3.3, the mean simulated human case from the 49 sub-networks is

compared with the weekly human case data for 2015 for the contiguous USA. The absolute

errors between them are shown here. From this whisker plot, we can see that the median of

the absolute error for the states is close to zero. In Fig. 3.3, the largest outlier is California

(marked by black circles). These outliers result from a mismatch between the simulated

peak human incidence time and the observed human incidence peak time possibly because
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the very long state (north to south) has weather which is very different in southern Cali-

fornia (warmer and drier) than northern California (cooler and wetter) causing a difference

between peak mosquito seasons in the southern and northern parts.

Figure 3.3: Absolute errors of the simulated human cases of 49 states by weeks
with the observed data for the year 2015. Mean of 1000 realizations has used as the
simulated data. On the blue boxes, the red horizontal lines show the median and the bottom
and top edges of the boxes indicate 25th and 75th percentile respectively. The whiskers show
the ranges of data points not considered outliers and outliers are showing by red + symbol.
Californian outliers are marked by black circles.

We compared the total yearly incidence of human WNV from this model with the state

level reported case data. The results are shown in Fig. 3.4. For 2015, we found that the

case data for 42 of 49 locations were within the simulation results. The states where hu-

man cases were different from the simulation results were over-reported states (Nevada) and

under-reported states (Louisiana, Mississippi, Nebraska, North Dakota, South Dakota, and

Washington). The possible reason for this mismatch are reporting error or overwintering of

virus in birds or mosquitoes or another bird species (not robins) is the key reservoir species

for that state

To build a disease prevalence map, we grouped the states in four categories; 1) higher
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Figure 3.4: WNV human incidence by states for the year 2015 from power-law
influenced by flyway kernel model (for Kpl=2.3147, β0 = 0.0059day-1, λ = 0.0721day-1,
η = 0.4558day-1 ), generated from 1000 simulation and observed data are indicated by blue
colored star points. states name are given in the short form. Simulated results are represented
with a box plot in which the red horizontal lines show the median and the bottom and top
edges of the boxes indicate 25th and 75th percentile respectively, The whiskers show the
ranges of data points not considered outliers and outliers are showing by red + symbol.
Broken scale is used for sake of visualization.

prevalence —incidence is more than 100, 2) intermediate prevalence —incidence is in between

50-99, 3) moderate prevalence —incidence is in between 25-49 and 4) low prevalence —
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incidence is less than 25. To group the states, we used the median of the simulation results.

The disease prevalence map from the model are presented in Fig. 3.5a and from observed

data are presented in Fig. 3.5b. Among 49 locations, 40 locations are in the same prevalence

group in both maps.

Figure 3.5: Disease prevalence map for WNV human incidence for the year 2015.
The darker regions imposed greater prevalence. States are divided into four groups by
incidence number; group-1: more than 99, group-2: 50-99. group-3: 25-49, and group-4: less
than 25 incidences. a) States are divided by the median of the output of 1000 simulations,
b) states are divided by observed data.

3.4 Mitigation strategies

We applied mitigation strategies on the power-law-flyway kernel network model to find the

optimal mitigation plan. Fig. 3.6a shows the number of infected states or epidemic size for

dynamic infected places tracing. Epidemic size decreased faster with increased reduction

factor for case-2 (infected & first neighbors) and case-3 (infected & first neighbors & second

neighbors) than case-1 (only infected). The number of states where control measures were

applied is displayed in Fig. 3.7, which is proportional to cost. Therefore, the cost was

minimal for case-2 than other two cases for RF > 2. From the cost analysis, we concluded

that, although the cost for case-1 is less at the beginning of the yearly outbreak, we need to

apply management only in the infected places, however by the end of the year the total cost

for case-2 will smaller because of the smaller epidemic size.
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Figure 3.6: Infected states for two types of mitigation strategies; a) Dynamic infected
places tracing; case-1: control measures are applied only in the infected states, case-2: control
measures are applied in the infected states plus in their first neighboring states, case-3:
control measures are applied in the infected places plus in their first and second neighboring
states, and b) static ranked based strategy –states are ranked by; 1) temperature (Temp.),
2) avian population size (Pop.), 3) both(Temp & Pop.), then control measures are applied
in the top 30% states. Log scale has used in x-axis for better visualization.
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Figure 3.7: Number of states where control measures are applied for the infected
places tracing mitigation strategy. Log scale has used in x-axis for better visualization.

The results of the static ranked based mitigation strategy measure are presented in Fig.

3.6b. We observed that, before RF = 4.5, number of infected states for temp. & pop.
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dropped earlier than others. Number of infected states or epidemic size was smaller for

temp. than pop. after RF > 3, infected population of a sub-network are more positively

correlated with temperature. The NSc is always the same for these three cases. For all

mitigation strategies, minimum epidemic size could be 2, as we started the epidemic from

two states.
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Chapter 4

Discussion

We proposed an individual-based heterogeneous network framework and tested three disper-

sal kernels to understand the spatial spread patterns of WNV human case data across the

contiguous United States.

This framework requires fewer parameters and has more flexibility to represent the

spatial-temporal dynamics of WNV. Adding parameters will make the framework more real-

istic, for example, more competent bird species, landscape features for habitat preferences of

host and vector species, daylight conditions,32 pathogen invasion from outside of USA, vari-

able susceptibility among different hosts and vectors, WNV strain variability, mosquito and

virus overwintering, vertical transmission, human movement characteristics etc.. However,

inclusion of too many factors increases model complexity which makes model optimization

difficult given the availability of limited observational data. On the other hand, a simple

model may insufficient to represent WNV spatial dynamics. Computational models need

to be developed and parameters calculated with sufficient detail to be biologically accurate

if they are used to evaluate epidemic management measures. However, for most biological

systems, reliable parameter information is unknown. Unknown parameters or inaccurate

assumptions add uncertainty to the model. Our framework has only four parameters to

estimate (network Parameter K, transmission rate β, transition rate from exposed to infec-
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tious state, λ, and human spillover, η). This framework has compartments only for the avian

population (susceptible, exposed, infected, and recovered), which does not have to be species

specific. We reduced the compartments for vector population by implementing them implic-

itly through transmission rate between infected nodes and susceptible nodes. The presented

framework and dispersal kernel network model has an intermediate complexity that approxi-

mate Bayesian computation based on sequential Monte Carlo sampling (ABC-SMC) method

successfully calibrated and estimated the parameters with the available data. If more data

becomes available, it is possible to add them in this model for improved performance of the

model.

Furthermore, this framework is flexible and therefore can represent various hosts and vectors

including with population seasonality, which plays an important role in WNV dynamics. For

host population seasonality, we added a node property Activity, this property allows us to

control active host populations in the network in a specific time period. We added vector

seasonality in this framework through temperature dependent transmission rate. This frame-

work proposed one exponential and two fat-tailed distance kernel models for long-distance

transmission of WNV. WNV spatial distribution is very complex because WNV can infect

more than 300 bird species, some of which are residential birds and short-distance migra-

tors which disperse less than 500 km distances (short connections) whereas some species are

long-distance migratory birds creating long connections. The long-distance migratory birds

are the long-distance dispersal (LDD) agents for WNV. Previous studies tried to analyze

spreading of WNV using a traveling wave with constant velocity, however, WNV spread

more rapidly across the North America than would be expected from the assumption of con-

stant velocity traveling wave.58 Likely this is because traveling wave models unlike distance

dispersal kernel models for WNV spreading do not capture the long-distance migrating birds

which can have various migratory ranges and distances. Distance dispersal kernels have

more flexibility to represent the different bird migration distances and can account for accel-

erating invasions. However, exponential kernels produce short-connections and therefore like

traveling waves are limited to constant expansion, unlike fat-tailed power-law kernels which

can generate accelerating invasions by creating the long-distance connections from migratory
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birds.59 However, a general fat-tailed power-law kernel makes long-distance links in every

direction which does not follow the incidence of WNV. Instead, a power-law-flyway kernel

can be used to produce the long connections in the direction of flyways and short links in

other directions. Bayesian inference was used to test which of the three kernel models best

described WNV distribution on the network for three most recent years (2014- 2016). The

power-law-flyway kernel best described the distribution of WNV cases because the long-range

WNV transmission was concentrated mainly along the migratory bird flyways. The general

power-law kernel overestimated the incidence data in some states because it was creating

long-distance links in all directions.

The performance for the power-law-flyway dispersal kernel model was evaluated for the

three most recent years (2014-2016) when WNV was endemic in the USA. The observed

case data for the 49 locations were within the range of the simulated results for 41 states

for 2014 (Fig A.2), 42 states for 2015 (Fig. 3.4), and 45 states for 2016 (Fig A.4). For all

three years, the simulated results were similar to the observed data, except in Colorado,

Louisiana, Mississippi, Nevada, Nebraska, North Dakota, and Washington. Nevada was

over-reported for 2015 and all others were under-reported. The power law flyway dispersal

kernel network model reported more WNV human incidence in Nevada than reported cases,

one possible reason for over-reporting cases in Nevada has rural areas, which tend to under

report human cases, whereas mosquito control districts and health departments, focused in

urban areas, must test birds and mosquitoes, which explains why CDC reported WNV in-

fected mosquitoes in 25% of counties in Nevada. The under-reported states had more human

cases than predicted by the model. Under-reporting by the power-law-flyway kernel network

model is likely because overwintering of the virus in some states (for example, Louisiana,

Mississippi etc.), which was not considered. The overwintering infected Culex mosquitoes

can stay in hibernacula such as sewers, houses, caves, and other warm areas in urban, sub-

urban, and rural areas and initiate the outbreak in the spring. Furthermore, there may be

under-reporting of cases by the model if robins are not the main reservoir species in a state,

which would be predicted between gulf coast states (Louisiana and Mississippi) and northern
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states such as North and South Dakota and Washington.

Mitigation strategies for WNV were tested using the power-law dispersal kernel network

model. The management measures are not specific to larvae or adults, rather simply gen-

erally accepted best practices to reduce mosquito abundance for the purpose of reducing

pathogen transmission. The mitigation strategy analysis proposes supplemental measures in

addition to the existing mosquito management in each state because the states had yearly

reported WNV cases despite the existing management methods. To reduce WNV spread, a

theoretical policy would be management in neighboring regions and not exclusively in the

infected places. Although this approach can cost more at the beginning of the epidemic

season however at the end, it can reduce total cost by decreasing the size of the epidemic.

If management measures are applied only in the infected states, it is not possible to control

the epidemic because of long-distance migratory birds. This is a statewide management in

a unified effort. We acknowledge that states do not conduct mosquito management in this

way, but to test the spillover it was necessary to do the simulation in this way because only

state level data was available.

Cooperation and communication equal early treatment and reduced outbreak sizes be-

cause of reduced WNV dispersal by American robins. This novel model can be applied to

find out the invasion patterns of other long-distance dispersing pathogens.
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spread in space and time of an airborne plant disease. Journal of the Royal Statistical

Society: Series C (Applied Statistics), 57(3):253–272, 2008.

[40] Irina Chis Ster and Neil M Ferguson. Transmission parameters of the 2001 foot and

mouth epidemic in great britain. PLoS One, 2(6):e502, 2007.

[41] Sebastian Meyer, Leonhard Held, et al. Power-law models for infectious disease spread.

The Annals of Applied Statistics, 8(3):1612–1639, 2014.

36



[42] Mark EJ Newman. Power laws, pareto distributions and zipf’s law. Contemporary

physics, 46(5):323–351, 2005.

[43] Tommy Tsan-Yuk Lam, Hon S Ip, Elodie Ghedin, David E Wentworth, Rebecca A

Halpin, Timothy B Stockwell, David J Spiro, Robert J Dusek, James B Bortner, Jenny

Hoskins, et al. Migratory flyway and geographical distance are barriers to the gene flow

of influenza virus among north american birds. Ecology letters, 15(1):24–33, 2012.

[44] Mathieu Fourment, Aaron E Darling, and Edward C Holmes. The impact of migratory

flyways on the spread of avian influenza virus in north america. BMC evolutionary

biology, 17(1):118, 2017.

[45] Frederick C Lincoln. Migration of birds. Number 16. Government Printing Office, 1999.

[46] Sotirios Tsiodras, Theodoros Kelesidis, Iosif Kelesidis, Ulf Bauchinger, and Matthew E

Falagas. Human infections associated with wild birds. Journal of Infection, 56(2):83–98,

2008.

[47] John H Rappole and Z Hubalek. Migratory birds and west nile virus. Journal of applied

microbiology, 94(s1):47–58, 2003.

[48] Ellen Brooks-Pollock, Gareth O Roberts, and Matt J Keeling. A dynamic model of

bovine tuberculosis spread and control in great britain. Nature, 511(7508):228, 2014.

[49] Chris P Barnes, Daniel Silk, and Michael PH Stumpf. Bayesian design strategies for

synthetic biology. Interface focus, 1(6):895–908, 2011.

[50] Tina Toni and Michael PH Stumpf. Simulation-based model selection for dynamical

systems in systems and population biology. Bioinformatics, 26(1):104–110, 2009.

[51] Anis Ben Abdessalem, Nikolaos Dervilis, David Wagg, and Keith Worden. Model se-

lection and parameter estimation in structural dynamics using approximate bayesian

computation. Mechanical Systems and Signal Processing, 99:306–325, 2018.

37



[52] Robert E Kass and Adrian E Raftery. Bayes factors. Journal of the american statistical

association, 90(430):773–795, 1995.

[53] Xavier Didelot, Richard G Everitt, Adam M Johansen, Daniel J Lawson, et al.

Likelihood-free estimation of model evidence. Bayesian analysis, 6(1):49–76, 2011.

[54] Jean-Michel Marin, Natesh S Pillai, Christian P Robert, and Judith Rousseau. Relevant

statistics for bayesian model choice. Journal of the Royal Statistical Society: Series B

(Statistical Methodology), 76(5):833–859, 2014.

[55] Nicholas Komar. West nile virus: epidemiology and ecology in north america. Advances

in virus research, 61:185–234, 2003.

[56] G Dauphin and S Zientara. West nile virus: recent trends in diagnosis and vaccine

development. Vaccine, 25(30):5563–5576, 2007.

[57] Glen D Johnson, Millicent Eidson, Kathryn Schmit, April Ellis, and Martin Kulldorff.

Geographic prediction of human onset of west nile virus using dead crow clusters: an

evaluation of year 2002 data in new york state. American Journal of Epidemiology, 163

(2):171–180, 2005.

[58] Christopher C Mundt, Kathryn E Sackett, LaRae D Wallace, Christina Cowger, and

Joseph P Dudley. Long-distance dispersal and accelerating waves of disease: empirical

relationships. The American Naturalist, 173(4):456–466, 2009.

[59] Mark Kot, Mark A Lewis, and Pauline van den Driessche. Dispersal data and the spread

of invading organisms. Ecology, 77(7):2027–2042, 1996.

38



Appendix A

Simulation results for 2014 and 2016

In this research, we compared three distance dispersal kernel to understand the spatial

distribution of WNV. Distance dispersal kernels are: 1) Exponential kernel, 2) power-law

kernel, and 3) power-law influenced by flyway kernel. We used this framework in the USA for

2014-2016. Approximate Bayesian computation based on sequential Monte Carlo sampling

(ABC-SMC) was used for parameter estimation and for selection of the best kernel. The

results for 2014 and 2016 are given below.

A.1 Results for 2014

In 2014, WNV infected human cases in the USA was 2205. All the states were infected

except Alaska, North Carolina, and West Virginia. The inputs of this framework for 2014 are

weekly human incidence data by states, avian population data by states, and average monthly

temperature data by states for 2014. The target and intermediate distributions of model

parameter m from ABC-SMC model selection method are given in Fig. A.1. Bayes factor

was calculated from the last population (population-8 in Fig. A.1). In the last population,

exponential kernel was selected for 79 times, general power-law kernel was selected for 96

times, and power-law-flyway was selected for 825 times.
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Figure A.1: Population of the marginal posterior distribution of the three models
for 2014. Model-1 represents exponential kernel, model-2 represents power-law kernel, and
model-3 represents power-law influenced by flyway kernel. Here, Population-8 is the approx-
imation of the final marginal posterior distribution of model parameter m and population
1-7 are intermediate distributions. Population-0 is the discrete uniform prior distribution,
which is not shown here.

The obtained Bayes factors for 2014 are:

B3,1 =
825

79
= 10.4430 (A.1)

B3,2 =
825

96
= 8.5938 (A.2)

From the analysis of Bayes factor for 2014, we can conclude that power-law influenced by

flyway distance kernel network model has positive evidence against other two kernels. The

estimated parameters are provided in Table A.1.

Performance of the power-law flyway kernel network model for 2014. To see

the performance for this framework for 2014, we used estimated parameters from ABC-SMC

parameter estimation method for power-law influenced by flyway kernel network model. The

parameters are presented in the Table A.1. The results from 1000 simulation are aggregated

in the box plot of Fig. A.2. Total observed human cases by states from CDC are given by blue
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Table A.1: Estimated parameters for power-law biased by flyway network model for 2014,
2015 and 2016 from ABC-SMC parameter estimation algorithm.

Parameter 2014 2015 2016

mean 2.4091 2.3147 2.4233
Network parameter,
K

median 2.3495 2.2690 2.3889

(95% CI) (2.3469, 2.4713) (2.3030, 2.3264) (2.3353, 2.5114)
mean 0.0028 day-1 0.0059 day-1 0.0029 day-1

Constant for trans-
mission rate, β0

median 0.0026 day-1 0.0061 day-1 0.0031 day-1

(95% CI) (0.0025, 0.0032
day-1 )

(0.0058, 0.0059
day-1)

(0.0028, 0.0035
day-1 )

mean 0.0445 day-1 0.0721 day-1 0.0452 day-1

Transition rate from
exposed to infec-
tious node, λ

median 0.0436 day-1 0.0706 day-1 0.0460day-1

(95% CI) (0.0434, 0.0455
day-1)

(0.0718, 0.0724
day-1)

(0.0443, 0.0461
day-1 )

star. We found that from 49 locations, the total human incidence case for 41 locations falls

within the range of simulation results. The simulation results could not follow the observed

data for Arizona, Colorado, Kansas, Louisiana, Mississippi, Nebraska, New Mexico, and

Washington.

A.2 Results for 2016

In 2016, WNV infected human cases in the USA was 2149. All the states were infected

for WNV (except Hawaii and Alaska). 27 states had more than 10 WNV disease cases.

California, Colorado, Illinois, South Dakota, and Texas had more than 100 WNV disease

cases. This is the most recent year when weekly WNV incidents are publicly available from

CDC.1 For host population, we used American Robin population data for 2016 from eBird.3

The description of the host population and sub-networks are provided in Table S3 in the

Text S3. We started the epidemic from Arizona because we found highest disease cases in

Arizona among all other states before June (in this framework, simulation has started from
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June). The target and intermediate distributions of model parameter m from ABC-SMC

model selection method are shown in Supporting Fig. A.3. The Bayes factor is obtained from

the marginal posterior distribution of m, which we got from the final population (Population

8 in Fig. A.3). The calculated Bayes factors are:

B3,1 =
879

88
= 9.9886 (A.3)

B3,2 =
879

33
= 26.6364 (A.4)

From the interpretation of Bayes factors,52 we found positive evidence in favor of power-

law influenced by flyway distance kernel network model compared to exponential distance

kernel network model and strong evidence in favor of power-law influenced by flyway dis-

tance kernel network model compared to power-law distance kernel network model for 2016.

Performance of power-law flyway kernel network model for 2016. Fig. A.4

are showing the simulation results of 1000 realizations of the framework for 2016 for power-

law-flyway network. We found that, observed data for 45 states among 49 locations falls

within the range of the simulated results for 2016. The simulated results could not follow for

observed human WNV incidence for Colorado, Louisiana, Mississippi, and North Dakota.

Table A.2: Summary of evidence among three network models from ABC-SMC model selec-
tion algorithm for 2014, 2015 and 2016.

Evidence 2014 2015 2016

Power-law-flyway ker-
nel network model
against exponential
kernel network model

positive positive positive

Power-law-flyway ker-
nel network model
against power-law
kernel network model

positive positive strong
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A.3 Discussion

The results from ABC-SMC (approximate Bayesian computation with sequential Monte

Carlo sampling) model selection method are similar for 2014, 1015, and 2016. The results

from ABC-SMC model selection method are summarized in Table A.2. The ABC-SMC

method selected power-law-flyway kernel as the best kernel than other two kernels. Power-

law-flyway kernel can best describe the WNV human case data in the USA. The estimated

parameters values from ABC-SMC parameter estimation method are slightly different for

these three years. The reasons for this difference is the different initial condition, different

host population, and seasonality (different temperature data).
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Figure A.2: WNV human incidence by states for 2014 from power-law influenced
by flyway kernel model (for network parameter K=2.4091, constant for transmission rate
β0 = 0.0028day-1, and transition rate for exposed to infectious λ = 0.0445day-1), generated
from 1000 simulation and observed data are indicated by blue colored star points. states
name are given in short form. Simulated results are represented with a box plot in which
the red horizontal lines show the median and the bottom and top edges of the boxes indi-
cate 25th and 75th percentile respectively, The whiskers show the ranges of data points not
considered outliers and outliers are showing by red + symbol. Broken scale is used for sake
of visualization.
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Figure A.3: Population of the marginal posterior distribution of the three models
for 2016. Model-1 represents exponential kernel, model-2 represents power-law kernel, and
model-3 represents power-law influenced by flyway kernel. Here, Population-8 is the approx-
imation of the final marginal posterior distribution of model parameter m and population
1-7 are intermediate distributions. Population-0 is the discrete uniform prior distribution,
which is not shown here.
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Figure A.4: WNV human incidence by states for 2016 from power-law influenced
by flyway kernel model (for K=2.4233, β0 = 0.0029day-1, and λ = 0.0452day-1), gen-
erated from 1000 simulation and observed data are indicated by blue colored star points.
states name are given in short form. Simulated results are represented with a box plot in
which the red horizontal lines show the median and the bottom and top edges of the boxes
indicate 25th and 75th percentile respectively, The whiskers show the ranges of data points
not considered outliers and outliers are showing by red + symbol.
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Appendix B

Approximate Bayesian Computation

based on sequential Monte Carlo

sampling (ABC-SMC) method

This research has used ABC-SMC methods to estimate parameters and to select best kernel

network model among three distance dispersal kernels.

B.1 Parameter estimation

The steps for approximate Bayesian computation with sequential Monte Carlo sampling

(ABC-SMC) algorithm for parameter estimation are:15–20

Step 1 Initialize tolerance ε for each SMC round, where εP < ..... < ε2 < ε1. Set

Population indicator, p=0.

Step 2 Particle indicator, n=1.

Step 3 Generate a particle (set of parameters),θnp

(a). if p=1, sample from prior of parameters, π(θ);
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(b). if p>1, sample the particle from previous population {θnp−1} with weights Wp−1

and then perturb the particle, θ
′

by using perturbation kernel, PKp to get θ
′′
.

(c). if π(θ
′′
) == 0, return to Step 3.

Step 4 Run the model R times with the new particle and compare the simulated weekly

human WNV incidence with observed weekly WNV incidence using the goodness-of-

fit metric, We calculated rp(θ
′′
) = (1/R) ∗

R∑
r=1

1(dist(x, d) < εp), if rp(θ
′′
) == 0 reject

the particle; go back to Step 3(a).

Step 5 Calculate the weight for the accepted particle,

(a). if p=1, Wn,p = rp(θ
′′
);

(b). if p>1, the weight is given by, Wn,p =
π(θip)∗rp(θ

′′
)

N∑
j=1

Wi,p−1PKp(θ
j
p−1,θ

i
p)

.

Step 6 Repeat steps 3 - 5 until N= 1000 particles have been accepted.

Step 7 Normalize the weights. If p < P , set p= p+1, go to Step 2.

B.2 Model seclection

The steps for approximate Bayesian computation with sequential Monte Carlo sampling

(ABC-SMC) algorithm for model selection are:15–20

Step 1 Initialize tolerance for each SMC round εP < ..... < ε2 < ε1. Set Population

indicator, p=0.

Step 2 Particle indicator, n=1.

Step 3 Generate a particle

(a). if p=1, sample model parameter m and parameters for that model from prior,

π(m, θ);
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(b). if p>1, sample model m
′

with probability Prt−1(m
′
) and then perturb by pertur-

bation kernel PKmp, sample the particle from previous population {θ(m′′)p−1}

with weights Wp−1 and then perturb the particle θ
′

by using perturbation kernel

to get θ
′′
.

(c). if π(m
′′
, θ
′′
) == 0, return to Step 3.

Step 4 Run the model m
′′
, R times with the new particle and compare the simu-

lated weekly human WNV incidence with observed weekly WNV incidence using the

goodness-of- fit metric, We calculated rp(θ
′′
) = (1/R)∗

R∑
r=1

1(dist(x, d) < εp), if rp(θ
′′
) ==

0 reject the particle; go back to Step 3.

Step 5 Calculate weight for the accepted particle, set (mn
p , θ

n
p ) = (m

′′
, θ
′′
),

(a). if p=1, Wn,p(m
n
p , θ

n
p ) = (1/R) ∗

R∑
r=1

1(dist(x, d) < εp); Here R is the number of

replicate simulation run for a fixed particle.

(b). if p>1, the weight is given by, Wn,p(m
n
p , θ

n
p ) =

π(mn
p ,θ

n
p )∗(1/R)∗

R∑
r=1

1(dist(x,d)<εp)

N∑
j=1

Wi,p−1PKp(θ
j
p−1,θ

i
p)

.

Step 6 Repeat steps 3 - 5 until N= 1000 particles have been accepted.

Step 7 Normalize the weights for every m. If p < P , set p= p+1, go to Step 3.
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Appendix C

Network Description for 2014-2016

Table C.1: Description of sub-networks for 2014. |V | = 9373 and scaling constant Sc = 0.03
for 2014

Sub-

network

Id

Location Nodes (% of

|V |)

Probability of Active nodes

Jun. Jul. Aug. Sept. Oct.

SN1 AL 0.4588 % 0.4651 0.4884 0.4186 0.9767 1.0000

SN2 AZ 0.5334 % 1.0000 0.7600 0.4600 0.5200 0.5800

SN3 AR 0.3521 % 0.6970 1.0000 0.8182 0.6061 1.0000

SN4 CA 5.4732 % 0.6121 0.3996 0.3801 0.5166 1.0000

SN5 CO 2.2298 % 1.0000 1.0000 0.9139 1.0000 1.0000

SN6 CT 2.2511 % 1.0000 0.9716 0.7109 0.7630 1.0000

SN7 DE 1.4510 % 0.2868 0.3529 0.6397 1.0000 1.0000

SN8 DC 1.6964 % 0.2013 0.2830 0.6289 1.0000 0.8742

SN9 FL 0.1174 % 0.5455 0.4545 0.6364 0.6364 1.0000

SN10 GA 1.6003 % 0.5867 0.6600 0.5067 0.8400 1.0000

SN11 ID 0.6401 % 1.0000 1.0000 0.5333 1.0000 1.0000
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SN12 IL 8.5778 % 0.7923 0.7923 0.8022 1.0000 1.0000

SN13 IN 1.7177 % 1.0000 0.9503 0.6584 0.9814 1.0000

SN14 IA 0.8855 % 0.8554 1.0000 0.7108 0.8313 1.0000

SN15 KS 1.2696 % 0.5378 0.7311 0.5882 1.0000 1.0000

SN16 KY 1.0135 % 0.9263 0.7158 0.8947 1.0000 1.0000

SN17 LA 0.2454 % 0.4783 0.4348 0.4348 0.5217 1.0000

SN18 ME 0.8322 % 1.0000 1.0000 0.5256 0.7308 1.0000

SN19 MD 3.3180 % 0.7878 0.8103 0.8842 1.0000 1.0000

SN20 MA 4.6623 % 0.8558 1.0000 0.9085 1.0000 1.0000

SN21 MI 4.0435 % 1.0000 0.9367 0.9604 1.0000 1.0000

SN22 MN 1.4403 % 1.0000 0.8296 0.6148 1.0000 1.0000

SN23 MS 0.1814 % 0.8235 0.5882 0.5882 0.6471 1.0000

SN24 MO 2.5605 % 0.5458 0.5417 0.4958 1.0000 1.0000

SN25 MT 1.3016 % 1.0000 1.0000 0.7131 0.6475 0.3689

SN26 NE 0.9175 % 1.0000 0.8837 0.6512 0.8488 1.0000

SN27 NV 0.3201 % 0.9667 0.7667 0.8000 1.0000 1.0000

SN28 NH 0.6828 % 1.0000 1.0000 0.6875 1.0000 1.0000

SN29 NJ 4.0435 % 0.6544 0.6781 0.7018 1.0000 1.0000

SN30 NM 0.5975 % 0.8036 0.6429 0.7857 1.0000 1.0000

SN31 NY 7.8843 % 0.8917 0.9107 1.0000 1.0000 1.0000

SN32 NC 1.4830 % 0.8633 0.7050 0.6835 1.0000 1.0000

SN33 ND 0.3627 % 1.0000 0.7647 1.0000 1.0000 1.0000

SN34 OH 4.4063 % 0.9637 1.0000 0.9274 1.0000 1.0000

SN35 OK 1.3016 % 0.2295 0.3033 0.3361 0.4098 1.0000

SN36 OR 2.0911 % 1.0000 1.0000 0.7041 1.0000 1.0000

SN37 PA 5.9853 % 0.8824 0.9037 1.0000 1.0000 1.0000

SN38 RI 0.4801 % 0.8000 1.0000 0.6444 0.8667 1.0000
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SN39 SC 0.5334 % 0.4600 0.4600 0.5000 0.6600 1.0000

SN40 SD 0.4481 % 0.9762 1.0000 0.7619 0.9286 1.0000

SN41 TN 1.4403 % 0.6296 0.9259 0.8000 1.0000 1.0000

SN42 TX 1.6003 % 0.2333 0.3800 0.5333 0.6533 1.0000

SN43 UT 1.2056 % 1.0000 0.7345 0.3894 0.5044 0.8142

SN44 VT 0.8322 % 1.0000 1.0000 0.7436 0.8462 1.0000

SN45 VA 5.3558 % 0.3665 0.3546 0.5936 1.0000 1.0000

SN46 WA 3.8622 % 1.0000 1.0000 0.5884 1.0000 1.0000

SN47 WV 0.5868 % 1.0000 0.8000 0.4727 0.5455 1.0000

SN48 WI 4.2462 % 1.0000 0.7236 0.5829 0.9020 1.0000

SN49 WY 0.4801 % 1.0000 1.0000 0.8000 0.7778 0.3111

Table C.2: Description of sub-networks for 2015. |V | = 7657 and scaling constant Sc = 0.02
for 2015

Sub-

network

Id

Location Nodes (% of

|V |)

Probability of Active nodes

Jun. Jul. Aug. Sept. Oct.

SN1 AL 0.2612% 1.000 0.9000 0.9000 0.9956 1.000

SN2 AZ 0.6138% 1.000 0.9149 0.6595 0.7021 0.5106

SN3 AR 0.4832% 0.9730 0.6757 1.000 0.7027 1.000

SN4 CA 3.1213% 1.000 0.6192 0.6443 0.6066 1.000

SN5 CO 3.3172% 1.000 0.6181 0.4645 0.9094 0.7834

SN6 CT 2.1027% 1.000 0.8695 0.6894 0.6894 1.000

SN7 DE 0.8620% 1 0.6969 0.9242 1.0000 1.000

SN8 DC 0.7183% 0.5636 0.5636 1.0000 0.9989 1.000
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SN9 FL 0.1437% 0.9091 1.0000 1.0000 0.9911 1.000

SN10 GA 1.0317% 1.0000 0.8101 0.7848 0.8354 1.000

SN11 ID 1.2146% 1.0000 0.7204 0.6344 1.0000 0.6666

SN12 IL 6.6083% 1.0000 0.7608 0.8023 1.0000 1.000

SN13 IN 1.3974% 1.0000 0.9345 0.8317 1.0000 1.000

SN14 IA 0.8880% 1.0000 0.6764 0.7794 1.0000 1.000

SN15 KS 0.9011% 1.0000 0.5942 0.8260 1.0000 1.000

SN16 KY 1.0709% 0.7073 0.7682 1.0000 1.0000 1.000

SN17 LA 0.2742% 0.6190 0.7619 1.0000 0.9978 1.000

SN18 ME 1.0709% 1.0000 0.8414 0.5609 0.4878 1.000

SN19 MD 3.3433% 0.6914 0.5898 1.0000 0.8906 1.000

SN20 MA 3.9963% 0.7778 0.8725 1.0000 1.0000 1.000

SN21 MI 4.3620% 1.0000 0.8353 0.6946 1.0000 1.000

SN22 MN 1.3974% 1.0000 0.7196 0.9065 0.9111 1.000

SN23 MS 1.7239% 1.0000 0.8461 0.9230 0.9876 1.000

SN24 MO 1.7239% 0.9697 0.8181 1.0000 0.9976 1.000

SN25 MT 2.8862% 1.0000 0.4117 0.7013 0.7058 0.1719

SN26 NE 0.8358% 1.0000 0.8437 0.6718 1.0000 1.000

SN27 NV 0.3917% 1.0000 0.6333 0.6000 0.7333 1.0000

SN28 NH 0.6007% 1.0000 0.9130 0.6956 0.9876 1.0000

SN29 NJ 4.4142% 0.5769 0.5118 1.0000 0.9977 1.0000

SN30 NM 0.6007% 1.0000 0.6739 0.8043 0.9767 1.0000

SN31 NY 7.9404% 0.8125 0.7960 1.0000 0.9876 1.0000

SN32 NC 1.3582% 1.0000 0.7788 0.7692 0.9879 1.0000

SN33 ND 0.7444% 1.0000 0.5087 0.9473 0.9871 0.6491

SN34 OH 4.3750% 1.000 0.8328 0.8746 0.9899 1.0000

SN35 OK 0.5093% 0.7949 1.0000 0.8461 0.8974 1.0000
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SN36 OR 2.9776% 1.0000 0.6403 0.4210 0.9342 1.0000

SN37 PA 10.1475% 0.5534 0.9317 1.0000 0.7657 1.0000

SN38 RI 0.5876% 0.9556 1.0000 0.9333 0.9777 1.0000

SN39 SC 0.3395% 0.730 0.7692 1.0000 1.0000 1.0000

SN40 SD 0.6921% 1.0000 0.6226 0.3962 0.8113 1.0000

SN41 TN 1.0317% 0.9873 0.9240 1.0000 1.0000 1.0000

SN42 TX 1.1884% 0.3846 0.4835 1.0000 1.0000 1.0000

SN43 UT 1.319054% 1.0000 0.5049 0.3366 0.5148 0.5049

SN44 VT 1.0709% 1.0000 0.7804 0.5365 0.6219 1.0000

SN45 VA 2.6119% 0.7550 0.6600 1.0000 0.9950 1.0000

SN46 WA 4.2575% 1.0000 0.6809 0.5920 0.9190 1.0000

SN47 WV 0.5876% 1.0000 0.8666 0.6444 0.4444 1.0000

SN48 WI 6.6475% 1.0000 0.6620 0.4027 0.6149 0.6699

SN49 WY 0.8097% 1.0000 0.5967 0.8064 0.5483 0.2580

Table C.3: Description of sub-networks for 2016. |V | = 7430 and and scaling constant
Sc = 0.015 for 2016

Sub-

network

Id

Location Nodes (% of

|V |)

Probability of Active nodes

Jun. Jul. Aug. Sept. Oct.

SN1 AL 0.6999 % 0.3654 0.2885 0.4423 0.5962 1.0000

SN2 AZ 0.5922 % 1.0000 0.6364 0.4545 0.3409 1.0000

SN3 AR 1.2113 % 0.2778 0.1556 0.1556 0.2111 1.0000

SN4 CA 2.7052 % 1.0000 0.6667 0.5423 0.5721 0.7363

SN5 CO 3.3513 % 1.0000 0.5783 0.4257 0.9036 1.0000
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SN6 CT 1.8708 % 1.0000 0.6835 0.5108 0.6259 1.0000

SN7 DE 1.3324 % 0.2828 0.2828 0.3333 1.0000 1.0000

SN8 DC 0.6999 % 0.5000 0.4423 0.8077 1.0000 1.0000

SN9 FL 0.7402 % 0.0909 0.0909 0.0909 0.0909 1.0000

SN10 GA 1.5882 % 0.3898 0.3559 0.3305 0.4576 1.0000

SN11 ID 0.6864 % 1.0000 1.0000 0.4902 1.0000 1.0000

SN12 IL 8.1157 % 0.6683 0.5605 0.5423 1.0000 1.0000

SN13 IN 1.8708 % 0.8561 0.6547 0.5324 1.0000 1.0000

SN14 IA 0.8210 % 1.0000 0.8033 0.5738 0.9016 1.0000

SN15 KS 0.9421 % 0.7000 0.4429 0.4714 1.0000 1.0000

SN16 KY 1.1440 % 0.5647 0.5647 0.5765 1.0000 1.0000

SN17 LA 0.2153 % 0.5000 0.4375 0.5000 0.6250 1.0000

SN18 ME 0.7672 % 1.0000 1.0000 0.4561 0.6842 1.0000

SN19 MD 2.9206 % 0.7512 0.6083 0.6221 1.0000 1.0000

SN20 MA 4.8991 % 0.7555 0.6978 0.6951 1.0000 1.0000

SN21 MI 3.9435 % 1.0000 0.7782 0.8055 1.0000 1.0000

SN22 MN 1.8170 % 1.0000 0.5630 0.4444 1.0000 1.0000

SN23 MS 0.1750 % 0.4615 0.5385 0.5385 0.6923 1.0000

SN24 MO 2.1803 % 0.5741 0.4691 0.5185 1.0000 1.0000

SN25 MT 1.3190 % 1.0000 1.0000 0.8571 1.0000 0.6633

SN26 NE 0.8479 % 1.0000 0.4762 0.5079 0.8730 1.0000

SN27 NV 0.3634 % 1.0000 0.5926 0.3333 0.4074 0.8148

SN28 NH 0.5518 % 1.0000 1.0000 0.5854 1.0000 1.0000

SN29 NJ 3.9973 % 0.6801 0.4276 0.4377 1.0000 1.0000

SN30 NM 0.4980 % 1.0000 0.8108 0.6486 0.7838 1.0000

SN31 NY 6.6891 % 0.9819 0.8692 1.0000 1.0000 1.0000

SN32 NC 1.5612 % 0.5776 0.4741 0.4828 1.0000 1.0000
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SN33 ND 0.6326 % 1.0000 0.5745 0.8723 1.0000 1.0000

SN34 OH 4.4145 % 0.9787 0.8780 0.7713 1.0000 1.0000

SN35 OK 1.3728 % 0.2647 0.2549 0.3039 0.4510 1.0000

SN36 OR 2.0054 % 1.0000 1.0000 0.5101 0.8322 1.0000

SN37 PA 8.7079 % 0.6955 0.5363 0.6584 1.0000 1.0000

SN38 RI 0.5787 % 1.0000 0.8372 0.4419 0.5581 0.9070

SN39 SC 0.5653 % 0.3333 0.2857 0.2619 0.4286 1.0000

SN40 SD 0.6191 % 1.0000 0.4348 0.3913 0.6304 1.0000

SN41 TN 3.3647 % 0.2680 0.2400 0.2920 0.4520 1.0000

SN42 TX 1.9246 % 0.1958 0.2587 0.3986 0.3846 1.0000

SN43 UT 1.0902 % 1.0000 0.6173 0.3704 0.5556 0.7654

SN44 VT 0.7268 % 1.0000 1.0000 0.6667 0.8148 1.0000

SN45 VA 2.7322 % 1.0000 0.6059 0.6158 0.8325 1.0000

SN46 WA 1.9112 % 1.0000 1.0000 1.0000 1.0000 1.0000

SN47 WV 0.5653 % 1.0000 0.7381 0.4762 0.6429 0.9762

SN48 WI 7.2275 % 1.0000 0.4991 0.2048 0.2365 0.5270

SN49 WY 0.4441 % 1.0000 1.0000 0.8788 1.0000 0.4545
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