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Abstract

In financial mathematics, asset prices for European options are often modeled according to

the Black-Scholes-Merton (BSM) model, a stochastic differential equation (SDE) depending

on unknown parameters. A derivation of the solution to this SDE is reviewed, resulting

in a stochastic process called geometric Brownian motion (GBM) which depends on two

unknown real parameters referred to as the drift and volatility. For additional insight, the

BSM equation is expressed as a heat equation, which is a partial differential equation (PDE)

with well-known properties. For American options, it is established that asset value can be

characterized as the solution to an obstacle problem, which is an example of a free boundary

PDE problem. One approach for estimating the parameters in the GBM solution to the

BSM model can be based on the method of maximum likelihood. This approach is discussed

and applied to a dataset involving the weekly closing prices for the Dow Jones Industrial

Average between January 2012 and December 2012.
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Chapter 1

Introduction

Oftentimes the mathematical modeling of numerous phenomena lead to solutions of differen-

tial equations which involve unknown parameters. Consider, for instance, the Black-Scholes

model, or Black-Scholes-Merton model, which was first presented inSB. Merton and Scholes

received the 1997 Noble prize in Economics for their work. Though ineligible for the prize

due to his death in 1995, Black was mentioned as a contributor by the Swedish academy. It

is a model for the asset prices given by the stochastic differential equation :

dS(t) = S(t){rdt+ σdW (t)}, t ≥ 0, (1.1)

where S is the asset value, r ≥ 0 is the drift rate, σ is the volatility, W (t) is Brownian

motion, and t is time in years.

Equation (1.1) can also be written in integral form as:

S(t) = S(0) + r

∫ t

0

S(s)ds+ σ

∫ t

0

S(s)dW (s), t ∈ R+.

In chapter 2 we introduce options. Options are rights to buy or sell underlying assets for

an exercise price (strike), which is fixed by the terms of the option contract. That is, the

purchaser of the option is not obligated to buy or sell the asset. This decision will be based

on the payoff, which is contingent on the underlying assets behavior. Both American and
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European option contracts are discussed.

In chapter 3 the Black-Scholes model is derived, including a discussion of Brownian motion

and Itó’ s integral. The Black-Scholes equation used to price European call and put op-

tions based on an asset price dynamic model. This model is a stochastic dynamic systems

model that may be written as a stochastic differential equation. SeeFM. The solution to this

model takes the form of a stochastic process called geometric Brownian motion (GBM). The

model contains two real parameters: drift (r) and volatility ( σ). In chapter 4, we express

the Black-Scholes model as a heat equation, a partial differential equation whose properties

are well known.

We discuss free boundary problems in Chapter 5. We also establish that asset value can be

characterized as the solution to an obstacle problem. In particular, the American option is

expressed as an obstacle problem, which is an example of a free boundary problem.

In chapter 6, we discuss estimation procedures. Specifically we use the method of Maxi-

mum Likelihood Estimation (MLE) to estimate the parameters r and σ. We also construct

a 95% confidence interval for the parameters of the GBM. In chapter 7, we do a simulation

for sample mean variance of GBM. We conclude the report by giving a summary in chapter 8.

To summarize, in this report we establish relationships between Statistics, Finance and

Partial Differential Equations.
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Chapter 2

Option Theory

An option is the right (but not the obligation) to buy or sell a risky asset at a prespecified

fixed price within a specified period. An option is a financial instrument that allows, among

other things, one to make a bet on rising or falling values of an underlying asset. The

underlying asset typically is a stock, or a parcel of shares of a company. An option is a

contract between two parties about trading the asset at a certain future time. One party

is the writer, often a bank, who fixes the terms of the option contract and sells the option.

The other party is the holder, who purchases the option, paying the market price, which is

called a premiumS.

The holder of the option must decide what to do with the rights that the option contract

grants. The decision will depend on the market situation, and on the type of options. But

first, a few definitions, as given inS, are collected that are relevant to the discussion.

The maturity date T fixes the time horizon. At this date the rights of the holder expire,

and for later times (t > T ) the option is worthless. There are two basic types of options.

The call option gives the holder the right to buy the underlying asset for an agreed price K,

known as the strike or exercise price , by the date T . The put option gives the holder

the right to sell the underlying asset for the price K by the date T . Thus, in summary, at

time t the holder of the option can choose to:
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1. sell the option at its current market price on some options exchange at (t < T ),

2. retain the option and do nothing,

3. exercise the option (t ≤ T ), or

4. let the option expire worthless (t ≥ T ).

If you are the writer of these options, you have received a premium, but may be forced to

either buy or sell the underlying asset in the future, according to the terms of the contract.

Not every option can be exercised at any time t ≤ T S. For European options, exercise is

only permitted at expiration time T . American options can be exercised at any time up

to and including the expiration date.

If we denote the current price of the underlying asset by S, then the payoffs at expiration,

T , for a given strike price, K, of European calls and puts are, respectively,

V (S, T ) = max(S −K, 0) = (S −K)+ and V (S, T ) = max(K − S, 0) = (K − S)+.

The value of V (S, t) also depends on other factors. Dependence on the strike K and the

maturity T is evident. Market parameters affecting the price are the interest rate r, the

volatility σ of the price St, and dividends in case of a dividend-paying asset.
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Chapter 3

The Black-Scholes Model

The Black-Scholes option pricing formula is the most famous continuous-time derivative

pricing model which gives the price of a European put or call based on five quantities:

• the intial price of the underlying stock, which is known,

• the strike price of the option, which is known,

• the time to expiration, which is known,

• the risk-free rate during the lifetime of the option, which is assumed to be constant

and can only be estimated,

• the volatility of the stock price, a constant that provides a measure of the fluctuation

in the stock’s price, and thus is a measure of the risk involved in the stock. This

quantity can only be estimated as well.

In this chapter we will derive the Black-Scholes option pricing model. But first Brownian

motion.

3.1 Brownian Motion

In 1827, just 35 years after the New York Stock Exchange was founded, an English botanist

named Robert Brown studied the motion of small pollen grains immersed in a liquid
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mediumRO. Brown wrote that pollen grains exhibited a continuous swarming motion when

viewed under the microscope. Brownian motion is the most important stochastic process,

being the archetype of Gaussian processes, of continuous time martingales, and of Markov

processes. It is fundamental to the study of stochastic differential equations, financial math-

ematics, and filtering, for example. A formal mathematical construction of Brownian motion

and its properties was first given by the mathematician Norbert Wiener beginning in 1918,

based on Fourier series. Subsequently, martingale techniques have been employed to con-

struct Brownian motion as well.

In this section we describe Brownian motion and construct the associated Itó stochastic

integral. First, some relevant definitions are given. SeeP

3.1.1 Definition. A stochastic process is a family (Xt)t∈T of random variables Xt : Ω→ R

indexed by a set T.

Real-life examples of stochastic processes include:

• the time evolution of a risky asset. In this case Xt represents the price of the asset at

time t ∈ T

• the time evolution of a physical parameter. For instance, Xt represents a temperature

observed at time t ∈ T.

Brownian motion is a fundamental example of a stochastic process. Here we work on

a probability space (Ω,F, P ), where Ω = C0(R+) is the space of continuous real-valued

functions on R+ started at 0.

3.1.2 Definition. Brownian motion is a stochastic process (Wt)t∈R+ such that

1. W0 = 0 almost surely
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2. the sample trajectories t→ Wt are continuous with probability 1

3. for any finite sequence of times t0 < t1 < ... < tn, the increments Wt1 −Wt0 ,Wt2 −
Wt1 , ...,Wtn −Wtn−1 are independent

4. for any times 0 ≤ s < t, Wt−Ws is normally distributed with mean zero and variance

t− s.

The existence of Brownian motion as a stochastic process (Wt) is given inP.

Continuing the treatment as inP, we regard Brownian motion as a random walk over in-

finitesimal time intervals of length ∆t, with increments ∆Wt over the time interval

[t, t+ ∆t] given by

∆Wt = ±
√

∆t (3.1)

with equal probabilities.

By splitting the interval [0, T ] into N intervals

(
k − 1

N
T,

k

N
T ], k = 1, ..., N,

of length ∆t = T
N

, with N large and letting

Xk = ±
√
T = ±

√
N
√

∆t =
√
N ∆Wt

with V ar(Xk) = T ,

∆Wt =
Xk√
N

= ±
√

∆t

is the increment of Wt over ((k − 1)∆t, k∆t] and we get

WT '
∑

0<t<T

∆Wt '
X1 + ...+XN√

N

Hence, by the central limit theorem we recover the fact that Wt has a centered Gaussian

distribution with variance T , see point (4) of definition 3.1.2.
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Next, to illustrate, we generate GBM sample paths with S(0) = 1, r = 1 and σ = 0.2. See

figure 3.1.

Figure 3.1: Ten Geometric Brownian Motion Sample Path

3.1.3 Definition. A stochastic process of the form {rt + Wt|t ≥ 0} where r is a constant

and Wt is Brownian motion with volatility σ is called Brownian motion with drift r and

volatility σ. If we let St = eWt , then the process St, t ≥ 0 is said to be a Geometric

Brownian Motion.

3.1.4 Definition. A Brownian motion process {Zt|t ≥ 0} with drift r = 0 and volatility

σ = 1 is called Standard Brownian motion. In this case Zt has mean 0 and variance t.

If {Wt|t ≥ 0} is Brownian motion with drift r and variance σ2, then we can write

Wt = rt+ σZt

where {Zt|t ≥ 0} is Standard Brownian motion.
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We next describe stochastic integrals, also known as Itó integrals, with respect to Brownian

motion. SeeK.

Consider integrals of a non-random simple process Xt, which is a function of t and does not

depend on Wt. By definition a simple non-random process Xt is a process for which there

exist times 0 ≤ t0 < t1 < ... < tn = T and constants c1, ..., cn, such that

Xt =
n∑
i=1

ci χ(ti−1,ti]
(t), t ∈ R+.

3.1.5 Definition. The Itó integral
∫∞
0
Xt dWt is defined as the sum∫ ∞

0

Xt dWt =
n∑
i=1

ci (Wti −Wti−1
). (3.2)

As given inP, the probability distribution of
∫∞
0
Xt dWt is independent of the representation

of Xt. A relevant definition and results follow next.

3.1.6 Definition. A measurable function f ∈ L2(R+) if and only if
∫∞
0
|f(x)|2 dx <∞.

3.1.7 Proposition. For Xt ∈ L2(R+), the integral
∫∞
0
Xt dWt has a centered Gaussian distribution

∫ ∞
0

Xt dWt ' N(0,

∫ ∞
0

|Xt|2 dt)

and we have the Itó isometry

E{(
∫ ∞
0

Xt dWt)
2} =

∫ ∞
0

|Xt|2 dt.

Proof. See Proposition 4.1 ofP.

By a Taylor expansion,

df(x) = f ′(x)dx+
1

2
f ′′(x)(dx)2 +

1

3!
f ′′′(x)(dx)3 + ...
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and by applying Taylor’s formula to Brownian motion

dWt = Wt+dt −Wt,

and letting

df(Wt) = f(Wt+dt)− f(Wt),

we have

df(Wt) = f ′(Wt)dWt +
1

2
f ′′(Wt)(dWt)

2 +
1

3!
f ′′′(Wt)(dWt)

3 + ...

By (3.1) and dropping higher order terms gives

df(Wt) = f ′(Wt)dWt +
1

2
f ′′(Wt)dt, for a small dt.

By integrating and applying the fundamental theorem of calculus gives the integral form of

Itó’s formula for Brownian motion

f(Wt) = f(W0) +

∫ t

0

f ′(Ws)dWs +
1

2

∫ t

0

f ′′(Ws)ds.

Next a general expression of Itó’s formula is given which applies to an Itó process of the

form

Xt = X0 +

∫ t

0

usdWs +

∫ t

0

vsds, t ∈ R+. (3.3)

3.1.8 Theorem (Ito’s formula for Itó process). For any Itó process (Xt)t∈R+ of the form

(3.3) and any f ∈ C1,2(R+,R), we have

f(t,X) = f(0, X0) +

∫ t

0

Vs
∂f

∂x
(s,Xs)ds +

∫ t

0

Us
∂f

∂x
(s,Xs)dWs +

∫ t

0

∂f

∂s
(s,Xs)ds

+
1

2

∫ t

0

|Us|2
∂2f

∂x2
(s,Xs)ds

Proof. SeeP
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3.1.9 Theorem. The solution to (1.1) is given by

S(t) = S(0)e(r−
1
2
σ2)t+σWt , t ∈ R+. (3.4)

Proof. First rewrite (1.1) in integral form as

S(t) = S(0) + r

∫ t

0

S(s)ds+ σ

∫ t

0

S(s) dW (s), t ∈ R+.

By applying Itó’s formula to f(S(t)) = logS(t) with f(x) = log x, we have

dlogS(t) = rS(t) f ′(S(t))dt+ σS(t)f ′(S(t))dW (t) +
1

2
σ2S2(t) f ′′(S(t))dt

= rdt+ σdW (t)− 1

2
σ2dt

=

(
r − 1

2
σ2

)
dt+ σdW (t).

Hence,

logSt − logS(0) =

∫ t

0

d logS(x)

=

∫ t

0

(r − 1

2
σ2) dx+

∫ t

0

σ dW (x)

= (r − 1

2
σ2)t+ σW (t), t ∈ R+,

and

S(t) = S(0)e(r−
1
2
σ2)t+σW (t) , t ∈ R+.

Asset prices can be modeled by the following stochastic differential equation (SDE)R :

dS(t) = S(t){rdt+ σdW (t)}, t ≥ 0,

where S is the asset value, r ≥ 0 is the drift rate, σ is the volatility, W (t) is Brownian

motion (as described in the preceding), and t is time in years. Because of the dW term, S

11



itself is also a random variable.

3.1.10 Lemma. If S satisfies the above SDE, then the value function V (S, t) satisfies the

following

dV = σS
∂V

∂S
dW +

(
rS
∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
+
∂V

∂t

)
dt

Proof. SeeHu

3.2 The Black- Scholes Equation

For the value function V (S, t), the Black-Scholes equation is given by

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ (r − δ)S∂V

∂S
− rV = 0 (3.5)

where δ = 0 for the European option, as no dividend is paid.

The assumptions that led to (3.5) areS:

1. There are no arbitrage opportunities. (Arbitrage means the existence of a portfolio

which requires no investment initially, and which with guarantee makes no loss but

very likely a gain at maturity.

2. The market is frictionless. This means that there are no transaction costs (fees or

taxes), the interest rates for borrowing and lending money are equal, all parties have

immediate access to any information, and all securities and credits are available at

any time and in any size.

3. The asset price follows a geometric Brownian motion.

4. r and σ are constant for 0 ≤ t ≤ T. No dividends are paid in that time period. The

option is European.

12



Under the above assumptions, there exists a closed form solution to some types of option.

For some of the more advanced option contracts, the closed form solution may not be pos-

sible to determine, and thus a numerical solution is usually obtained.

A closed form solution for the European put option given byHu is

P (S, t) = Ke−r(T−t)N(−d2)− SN(−d1)

where

N(x) =
1√
2π

∫ x

−∞
e−

1
2
s2 ds, d1 =

log S
K

+ (r + 1
2
σ2)(T − t)

σ
√
T − t , and d2 =

log S
K

+ (r − 1
2
σ2)(T − t)

σ
√
T − t .

13



Chapter 4

Basic Partial Differential Equations

When considering a partial differential equation, there are few things one needs to ask. The

first question is: Do we have a well-posed problem? In other words, does a solution to the

problem exist and is it unique. And the other question: Is the solution well-behaved? In

other words, does the solution depend continuously on the initial and boundary conditions,

so that a small perturbation in the conditions does not bring a big change in the solution?

One also wants to know the regularity of the solution, that is, which conditions give the

best regularity etc. In this chapter we describe the techniques of deriving the solution of

the Black-Scholes by converting the Black-Scholes equation to a heat equation, a partial

differential equation whose properties are well known.

4.1 The Heat Equation

The heat equation, also know as the diffusion equation, in R is given by:
uτ = uxx for x ∈ R, τ > 0

u(x, 0) = g(x).
(4.1)

By using the Fourier transform, it is known that the solution of equation (4.1) is:

14



u(x, τ) =
1

2
√
πτ

∫
R
g(y)e−

(x−y)2
4τ dy for −∞ < x <∞, τ > 0. (4.2)

4.2 Black-Scholes as a Heat Equation

The main purpose of this section is to express the Black-Scholes equation as a heat equation.

As described in the above section, the solution of a heat equation is known, and consequently

this will allow us to find the solution of the Black-Scholes for a European call.

The Black-Scholes equation and boundary conditions for a European call with values V (S, t),

as described in (3.5) , is given by

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0

with

V (0, t) = 0, V (S, t) ∼ S as S →∞,

and

V (S, t) = (S −K)+.

To write the Black-Scholes equation as a heat equation requires a series of change vari-

ablesDHW. The first change of variable is to let

S = Kex, t = T − 2τ/σ2, V = Kv(x, τ).

This results in

∂v

∂τ
=
∂2v

∂x2
+ (b− 1)

∂v

∂x
− bv and v(x, 0) = (ex − 1)+

where b = 2r/σ2.

15



If we do a change of variable one more time by setting v = eαx+βτu(x, τ), for some constants

α and β to be specified later, we get

βu+
∂u

∂τ
= α2u+ 2α

∂u

∂x
+
∂2v

∂x2
+ (b− 1)

(
αu+

∂u

∂x

)
− bu.

Now set α = −1/2(b− 1) and β = −1/4(b+ 1)2, to obtain

v = e−1/2(b−1)x−1/4(b+1)2τu(x, τ)

where
∂u

∂τ
=
∂2u

∂x2
for −∞ < x <∞, τ > 0,

with

u(x, 0) = g(x) :=
(
e1/2(b+1)x − e1/2(b−1)x

)+
.

Now that we have transformed the Black-Scholes equation into a heat equation, the solution

of the Black-Scholes equation will take the form of (4.2) .

In the next chapter, the American option will be expressed as a free boundary, specifically

as an obstacle problem.
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Chapter 5

Free boundary Problems

Free boundary problems deal with solving partial differential equations (PDEs) in a domain,

a part of whose boundary is unknown in advance. That portion of the boundary is called

a free boundary. In addition to the standard boundary conditions that are needed in or-

der to solve the PDEs, an additional condition must be imposed at the free boundary. One

then seeks to determine both the free boundary and the solution of the differential equations.

Free boundary problems have applications in Finance, and we will express the American

option as an obstacle problem, which is an example of a free boundary problem. A brief

description of the obstacle problem is first given.

5.1 The Obstacle Problem

What happens when we pull an elastic membrane down over an obstacle?

To formulate what is happening mathematically:

assume the membrane is given by the graph

u : B1 ⊂ Rn −→ R, u ≡ 0 on ∂B1, and ϕ : B1 ⊂ Rn −→ R, ϕ < 0 on ∂B1.

17



Obstacle

Membrane
Contact Set

Figure 5.1: The Obstacle problem

We want to find a function u (the “membrane”) which minimizes the Area integral:

I1(u) :=

∫
B1

√
1 + |∇u|2 among u satisfying :

• u = 0 on ∂B1 (i.e. the membrane is “pinned down”) and

• u ≥ ϕ in B1 (i.e. the membrane is above the obstacle).

From the calculus of variations, it follows that functions which minimize I1 in a neighborhood

among functions with fixed boundary data satisfy the minimal surface equation. Observe

that for a small deflection of the membrane, |∇u|2 is the first important term in the Taylor

expansion of
√

1 + |∇u|2. (i.e.
√

1 + x ≈ 1 + 1
2
x, for x small.) Thus, we want to find a

function u which minimizes

I2(u) :=

∫
B1

|∇u|2 i.e. Energy - The Dirichlet Integral

among u satisfying:

• u = 0 on ∂B1 (i.e. the membrane is “pinned down”) and

• u ≥ ϕ in B1 (i.e. the membrane is above the obstacle).

18



It is known that functions which locally minimize I2 satisfy Laplace’s equation. Linearizing

the Area integral is standard in the study of the obstacle problem, mainly because it adds

technical simplification in that it changes the operator from nonlinear to linear, without

altering the real difficulties of the problem.

Therefore, the obstacle problem involves finding a function u which solves the problemC:

minimize

∫
B1

|∇u|2 dx among all functions u ∈ Kϕ,

where we define Kϕ to be the closed convex set:

Kϕ := {u ∈ W 1,2
0 (B1), u ≥ ϕ}

We also have

∆u = 0, for u > ϕ and ∆u ≤ 0, everywhere. (5.1)

If we define the “height function” w := u− ϕ, and we let f := −∆ϕ, then w satisfies:

∆w = χ{w>0}f .

Since the problem above is variational, existence and uniqueness of solutions follows.

Regularity of the solution has been studied by many authors, and in the case where ϕ is

smooth, Frehse showed in 1972 that the solutions belong to C1,1. Finally, in Caffarelli’s

famous Acta paper in 1977, the regularity of the free boundary was addressed in the case

where f was Hölder continuous and positive.

Since the obstacle problem was formulated, but especially in the last 15 years, there has been

interest in extending some of these results to related problems. Ki-Ahm Lee studied the

case where the Laplacian is replaced with a fully nonlinear (but smooth) operator. Blank

studied the case where the function f was not assumed to be Hölder continuous. Blank and
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TekaBT studied the the case where the Laplacian is replaced with a general second order

elliptic operator in nondivergence form. Many people (e.g. Blanchet, Caffarelli, Dolbeault,

Monneau, Petrosyan, Shahgholian, Weiss) have recently studied the case where the Lapla-

cian is replaced with the Heat Operator.

5.2 American Options as an Obstacle Problem

The explicit formula discussed in chapter 4 is valid for European options where early ex-

ercise is not allowed. It does not necessarily give the values for American options which

has the additional feature that exercise is permitted at any time during the life of the option.

A European option can have a value that is smaller than the payoff. This cannot happen with

American optionsS. If, for instance, an American put would have a value V Am
p < (K−S)+,

one would simultaneously purchase the asset and the put, and exercise immediately. Thus,

there is an obvious arbitrage opportunity, even though this opportunity would not last long

before the value of the option is pushed up by the demand of the arbitragers. The same

is true for an American call if V Am
c < (S − K)+. Therefore, the following constraints are

imposed:

V Am
p ≥ (K − S)+ and V Am

c ≥ (S −K)+ for all (S, t) (5.2)

Thus, there must be a value of S for which it is optimal from the holder’s point of view

to exercise the American option. The valuation of the American options is therefore more

complicated, since at each time we have to determine not only the option value, but also,

for each value of S, whether or not it should be exercised. This is what is known as a free

boundary problemDHW.

If we focus on an American put, then for 0 ≤ t ≤ T and for a contact point Sf (t) ∈ (0, K)
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we have

V Am
p (S, t) > (K − S)+ for S > Sf (t)

and

V Am
p (S, t) = (K − S) for S ≤ Sf (t).

The curve Sf is the boundary separating the area with V > payoff and the area with V =

payoff. The curve Sf of a put is illustrated in the diagram below.

Figure 5.2: American put - pay off function

A priori, just as in the obstacle problem, the location of the boundary Sf is unknown, the

curve is free. This explains why the problem of calculating V Am
p (S, t) for S > Sf (t) is called

free boundary problem, and specifically the obstacle problem.

Let us introduce an operator L̃ defined by
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L̃V :=
1

2
σ2S2∂

2V

∂S2
+ (r − δ)S∂V

∂S
− rV.

Thus, (3.5) can be written as
∂V

∂t
+ L̃V = 0.

For the case of a put, S ≤ Sf and we have

V = K − S, ∂V
∂t

= 0,
∂V

∂S
= −1,

∂2V

∂S2
= 0.

Thus,
∂V

∂t
+ L̃V = −(r − δ)S − r(K − S) = δS − rK < 0.

But since δS < rK, we have

∂V

∂t
+ L̃V < 0.

The same holds for the call.

Thus, American options satisfy
∂V

∂t
+ L̃V ≤ 0.

Now let us consider the obstacle problem in R1. Graphically this can be described as in fig.

5.2.

We express equation (5.1) as

u′′ = 0, for u > ϕ and u′′ ≤ 0, u > ϕ.

It turns out we can express American options as

1. If V > payoff, then Black-Scholes equation∂V
∂t

+ L̃V = 0
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Classical Obstacle problem Obstacle problem for the fractional laplacian Thin Obstacle problem main tools

Classical Obstacle problem

4u = 0 where u > ', since there u is free to move

4u  0 everywhere, since the surface pushes down

u � '

u

'

Figure 5.3: The Obstacle problem in R1

2. If V = payoff, then Black-Scholes inequality∂V
∂t

+ L̃V < 0

Expressing the Black-Scholes model in terms of an obstacle problem serves to aid better

understanding of the model as the theory of the obstacle problem is well developed. The

purpose of this section was to establish the relationship between the Black-Scholes model

and the obstacle problem for future investigation.
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Chapter 6

Overview of estimation procedure

From (3.4) , the solution to the Black-Scholes model is given by

S(t) = S(0)e(r−
1
2
σ2)t+σWt , t ∈ R+.

Thus, for S(t) > 0,

ln(S(t)) = ln(S(0)) + (r − 1

2
σ2)t+ σWt , t ∈ R+,

and for k = 1, 2, ....,

ln(S(tk))− ln(S(tk−1)) = (r − 1

2
σ2)(tk − tk−1) + σ(Wtk −Wtk−1

) , tk ∈ R+ (6.1)

where Wtk −Wtk−1
is normally distributed with mean zero and variance tk − tk−1 so that

ln(S(tk))− ln(S(tk−1)) ∼ N((r − 1

2
σ2)(tk − tk−1), σ2(tk − tk−1))

for discrete time points tk.

Further, as given inB, the mean and variance of S(t) are, respectively,

E[S(t)] = S(0) ert and Var[S(t)] = e2rtS2(0)
(
eσ

2t − 1
)
.

Also, as noted byB, to simulate this process, the continuous equation between discrete

instants t0 < t1 < ... < tn needs to be solved as follows:
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S(tk) = S(tk−1)e
[(r− 1

2
σ2)(tk−tk−1)+σ

√
tk−tk−1 Zk ] (6.2)

where Z1, Z2, ...Zn are independent random draws from the standard normal distribution.

The parameters to be estimated are θ = (r, σ) in the GBM process. Since GBM is a con-

tinuous time process, an approximate MLE based on discrete observations will be obtained

(seeAP andHN).

6.1 Maximum Likelihood Estimation

The maximum likelihood estimation method is illustrated on data comprised of the weekly

closing prices for the Dow Jones Industrial Average for the year 2012. This data is given in

the Appendix.

Figure 6.1: Weekly Closing Prices for the DJIA between Jan 2012 - Dec 2012
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First set x(tk) := ln(S(tk)) − ln(S(tk−1)). As indicated in figures 6.2 and 6.3, the auto-

correlation and partial autocorrelation graphs for x(tk) do not exhibit any significant lags.

Thus, an assumption of independence for the x(tk) is tenable. Moreover, x(tk), satisfies the

assumption of normality. See figure 6.4.

Figure 6.2: Autocorrelation Function for x(tk)

With independence and normality tenable, the log likelihood function is given by

L(θ) =
n∑
k=1

ln (fθ(x(tk))) (6.3)

where the probability density function fθ is given by

fθ(x(tk)) =
1

S(tk)σ
√

2π(tk − tk−1)
exp

(
−
[
x(tk)− (r − 1

2
σ2)(tk − tk−1)

]2
2σ2(tk − tk−1)

)
.

To determine θ̂, let ∆t := tk − tk−1 in (6.1) . The mean and variance parameters are
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Figure 6.3: Partial Autocorrelation Function for x(tk)

identified and computed as

m̂ :=

(
r̂ − 1

2
σ̂2

)
∆t and v̂ := σ̂2∆t. (6.4)

The estimates for the GBM parameters are then deduced from the estimates of m and vB.

To get a closed form expression for the parameters m and v, the derivative of the above

density function is taken with respect to these parameters and setting the resulting deriva-

tives equal to zero, yielding

m̂ =
n∑
k=1

x(tk)

n
and v̂ =

n∑
k=1

(x(tk)− m̂)2

n
. (6.5)

Thus, for the dataset under consideration,

m̂ =
52∑
k=1

x(tk)

52
= 0.00112
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Figure 6.4: Probability plot for x(tk)

and

v̂ =
n∑
k=1

(y (x(tk))− m̂)2

n
=

52∑
k=1

(x(tk)− 0.00112)2

52
= 0.00023.

6.2 Confidence Level

The 95% confidence intervals for the parameters m and v, respectively, are given byB

m̂− 1.96

√
v̂√
n
≤ m ≤ m̂+ 1.96

√
v̂√
n

(6.6)

and
n

χ2
n,0.025

v̂ ≤ v ≤ n

χ2
n,0.975

v̂ (6.7)

where χ2
n,0.025 and χ2

n,0.975 are the quantiles of the chi-square distribution with n degrees of

freedom corresponding to a 95% confidence level.
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The computed 95% confidence intervals for the mean and variance as given in equations

(6.6) and (6.7) , respectively are

0.00112− 1.96

√
0.00023√

52
≤ m ≤ 0.00112 + 1.96

√
0.00023√

52

−0.003 ≤ m ≤ 0.005

and

52

594.62423519
0.00023 ≤ v ≤ 52

467.16334532
0.00023

0.00002 ≤ v ≤ 0.00003.

For ∆t = 1
52

, and from (6.4) ,

σ̂2 =
v̂

∆t
= (0.00023)(52) = 0.01196 and hence σ̂ = 0.1094

and

r̂ =
1

2
∗ 0.01196 + (52)(0.00112) = 0.06422.

Thus,

r̂ = 0.06422 and σ̂ = 0.1094. (6.8)

In the next chapter, simulated parameter distributions are considered based on the so-called

first parameters being taken as the estimates of r̂ and σ̂. Such can be considered in the

absence of explicit relationships as discussed inB.
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Chapter 7

Simulations for Sample Mean and
Variance of GBM

We generated 15,000 data sets each containing 52 normal random values with mean m̂ =

0.00112 and standard deviation of v̂ = 0.01525. This can be done in Matlab by using:

normrnd(0.00112, 0.01525, 15000, 52)

Figure 7.1: Simulation of Sample Mean of GBM
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The mean and variance are computed for of each of the 15,000 data sets. These values are

used in (6.4) , to compute the sample estimates for the GBM parameters corresponding

to each of the 15,000 data sets. The ∆t in this case is 1
52

as we are considering the weekly

closing prices for the DJIA.

Figure 7.2: Simulation of Sample Standard Deviations of GBM

The frequency histograms for the sample estimates are given in figure 7.1 and 7.2, respec-

tively. The sample mean, 0.06603, and sample standard deviation, 0.1086, are observed to

be very close to the closed form theoretical estimates found in (6.8) . These computations

were done in Matlab. The Matlab code is given below.

Code: For Simulation of Sample mean and Standard deviations of GBM

Z = normrnd(0.00112, 0.01525, 15000, 52);
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R = Z ′;

m = sum(R)/52;

p = m′;

for k = 1 : 15000;

for j = 1 : 52;

D(k, j) = (Z(k, j)− p(k, 1)).2;

end;

end;

V = sum(D′)/52;

V = V ′;

t = 1/52;

S = sqrt(V/t)

A = 0.5 ∗ S.2 + (1/t) ∗ p
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Chapter 8

Summary

Stochastic differential equations are utilized in financial applications, as well as science and

engineering applications involving chemical engineering and neurobiology, for example. Such

equations generally involve unknown parameters, requiring statistical estimation techniques.

The Black-Scholes-Merton model used in financial mathematics for European options has

been considered in this report, and the method of maximum likelihood for parameter esti-

mation used for estimating the unknown drift and volatility parameters. This approach is

discussed and applied to a dataset involving the weekly closing prices for the Dow Jones In-

dustrial Average between January 2012 and December 2012. In addition, it was established

that asset values for American options can be characterized as the solution to an obstacle

problem, which is an example of a free boundary partial differential equation problem. For

future work, comparison of maximum likelihood estimation techniques with recent methods

involving data smoothing along with a generalization of profiled estimation would be of

interestCHR.
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1 
 

DJIA     

Date t_k S(t_k) ln(S(t_k)) x(t_k)=ln(S(t_k)) - ln(S(t_k-1)) 

3-Jan-12 0 12,359.92 9.422214258  

9-Jan-12 1 12,422.06 9.427229203 0.005014945 

17-Jan-12 2 12,720.48 9.450968572 0.023739369 

23-Jan-12 3 12,660.46 9.44623903 -0.004729542 

30-Jan-12 4 12,862.23 9.462050389 0.015811359 

6-Feb-12 5 12,801.23 9.457296539 -0.00475385 

13-Feb-12 6 12,949.87 9.468841028 0.011544489 

21-Feb-12 7 12,982.95 9.471392237 0.002551209 

27-Feb-12 8 12,977.57 9.470977762 -0.000414476 

5-Mar-12 9 12,922.02 9.466688112 -0.00428965 

12-Mar-12 10 13,232.62 9.490440272 0.02375216 

19-Mar-12 11 13,080.73 9.478895434 -0.011544838 

26-Mar-12 12 13,212.04 9.488883814 0.00998838 

2-Apr-12 13 13,060.14 9.477320123 -0.011563692 

9-Apr-12 14 12,849.59 9.461067183 -0.016252939 

16-Apr-12 15 13,029.26 9.474952876 0.013885693 

23-Apr-12 16 13,228.31 9.490114509 0.015161632 

30-Apr-12 17 13,038.27 9.475644158 -0.014470351 

7-May-12 18 12,820.60 9.458808531 -0.016835627 

14-May-12 19 12,369.38 9.422979343 -0.035829188 

21-May-12 20 12,454.83 9.429863778 0.006884436 

29-May-12 21 12,118.57 9.402494266 -0.027369513 

4-Jun-12 22 12,554.20 9.43781055 0.035316284 

11-Jun-12 23 12,767.17 9.454632311 0.016821761 

18-Jun-12 24 12,640.78 9.444683375 -0.009948937 

25-Jun-12 25 12,880.09 9.463437987 0.018754613 

2-Jul-12 26 12,772.47 9.455047352 -0.008390635 

9-Jul-12 27 12,777.09 9.455409002 0.00036165 

16-Jul-12 28 12,822.57 9.458962178 0.003553176 

23-Jul-12 29 13,075.66 9.478507766 0.019545587 

30-Jul-12 30 13,096.17 9.4800751 0.001567334 

6-Aug-12 31 13,207.95 9.4885742 0.0084991 

13-Aug-12 32 13,275.20 9.493652912 0.005078712 

20-Aug-12 33 13,157.97 9.484782938 -0.008869974 

27-Aug-12 34 13,090.84 9.479668028 -0.00511491 

4-Sep-12 35 13,306.64 9.496018438 0.01635041 

10-Sep-12 36 13,593.37 9.517337453 0.021319015 

17-Sep-12 37 13,579.47 9.516314372 -0.00102308 

24-Sep-12 38 13,437.13 9.50577705 -0.010537323 

Appendix A

Data
Weekly closing price for the Dow Jones Industrial Average between Jan, 2012 and Dec,

2012.
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2 
 

1-Oct-12 39 13,610.15 9.518571117 0.012794067 

8-Oct-12 40 13,328.85 9.497686138 -0.020884979 

15-Oct-12 41 13,343.51 9.498785403 0.001099265 

22-Oct-12 42 13,107.21 9.480917739 -0.017867664 

31-Oct-12 43 13,093.16 9.479845235 -0.001072504 

5-Nov-12 44 12,815.39 9.458402071 -0.021443164 

12-Nov-12 45 12,588.31 9.440523885 -0.017878187 

19-Nov-12 46 13,009.53 9.473437445 0.03291356 

26-Nov-12 47 13,025.58 9.474670395 0.001232951 

3-Dec-12 48 13,155.13 9.484567076 0.00989668 

10-Dec-12 49 13,135.01 9.483036463 -0.001530612 

17-Dec-12 50 13,190.84 9.487277928 0.004241465 

24-Dec-12 51 12,938.11 9.467932499 -0.01934543 

31-Dec-12 52 13,104.14 9.48068349 0.012750991 
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