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Abstract 

Aging, heart failure and diabetes each compromise the matching of O2 delivery (Q
．

O2)-to-

metabolic requirements (O2 uptake, V
．

O2) in skeletal muscle such that the O2 pressure driving 

blood-myocyte O2 flux (microvascular PO2, PmvO2) is reduced and contractile function 

impaired.  In contrast, β-guanidinopropionic acid (β-GPA) treatment improves muscle contractile 

function, primarily in fast-twitch muscle (Moerland and Kushmerick, 1994).  We tested the 

hypothesis that β-GPA (2% wt/BW in rat chow, 8 wk; n=14) would improve Q
．

O2-to-V
．

O2 

matching (elevated PmvO2) during contractions (4.5 V @ 1 Hz) in mixed (MG) and white (WG) 

portions of the gastrocnemius, both predominantly fast-twitch).  Compared with control (CON), 

during contractions PmvO2 fell less following β-GPA (MG -54%, WG -26%, p<0.05), elevating 

steady-state PmvO2 (CON, MG: 10±2, WG: 9±1; β-GPA, MG 16±2, WG 18±2 mmHg, P<0.05).  

This reflected an increased Q
．

O2/V
．

O2 ratio due primarily to a reduced V
．

O2 in β-GPA muscles.  It 

is likely that this adaptation helps facilitate the β-GPA-induced enhancement of contractile 

function in fast-twitch muscles. 

 

Key words: β-guanidinopropionic acid; microvascular O2 exchange; muscle fiber type; O2 

extraction; phosphorescence quenching 
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Introduction  

Skeletal muscle fibre types are highly stratified with respect to contraction speed 

(Armstrong and Phelps, 1984; Baldwin et al., 1972; Barclay et al., 1993; Bottinelli et al., 1996; 

Delp and Duan, 1996), oxidative capacity (Delp and Duan, 1996; Gollnick et al., 1972), 

capillarity (Folkow and Halicka, 1968), and O2 uptake (V
．

O2) kinetics (Barstow et al., 1996), as 

well as blood flow (Q
．

) and O2 delivery (Q
．

O2) (Ferreira et al., 2006b).  Investigation of the 

mechanistic bases for the heterogeneity of Q
．

 and hence Q
．

O2 among muscles of disparate fiber 

types supports that inter fibre-type differences are attributable, in part, to a differential arteriolar 

vasomotor control (Behnke et al., 2011; Behnke et al., 2002a; Laughlin et al., 1997; McDonough 

et al., 2005).   

We have previously demonstrated that, compared with its fast-twitch counterparts 

(medial and white gastrocnemius, peroneal), the contracting, slow-twitch soleus muscle achieved 

a higher Q
．

O2 per unit V
．

O2 (Behnke et al., 2002a; Behnke et al., 2004).  The Q
．

O2:V
．

O2 ratio is of 

crucial importance because it determines the microvascular O2 partial pressure (PmvO2) which 

drives blood-myocyte O2 flux and also helps “set” intracellular PO2 and thus muscle energetics 

(Behnke et al., 2002a; Haseler et al., 2004; Hogan and Welch, 1986; McDonough et al., 2005).  

The regulation of PmvO2 demonstrates considerable plasticity, for example, in aging (Behnke et 

al., 2005) and chronic diseases such as heart failure (Diederich et al., 2002) and diabetes 

(Behnke et al., 2002c; Padilla et al., 2007). Specifically, PmvO2 in the spinotrapezius muscle 

falls more rapidly and to far lower levels during contractions in aging and these disease states 

than observed in young healthy controls.  Whereas these conditions are associated with slowed 

pulmonary V
．

O2 kinetics and compromised muscle oxidative function (Behnke et al., 2004; 

Behnke et al., 2002c; Belardinelli et al., 1997; Brandenburg et al., 1999; Chilibeck et al., 1997; 
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McDonough et al., 2004a; Pfeifer et al., 2001; Regensteiner et al., 1998; Sietsema et al., 1994) 

(though see (Wilkerson et al., 2011) for an exception in long-term diabetic patients) the lowered 

PmvO2 indicates a reduced Q
．

O2-to-V
．

O2 ratio in skeletal muscle. 

In addition to depleting intramuscular creatine and phosphocreatine stores (Moerland and 

Kushmerick, 1994; Moerland et al., 1989), chronic dietary β-guanidinopropionic acid (β-GPA) 

treatment up-regulates adenosine monophosphate -activated protein kinase (AMPK) activity 

(Bergeron et al., 2001; Williams et al., 2009).  AMPK is a serine/threonine kinase that is 

expressed in several tissues including endothelial and smooth muscle cells and contributes to the 

regulation of endothelial nitric oxide synthase (eNOS) activation and NO synthesis (Morrow et 

al., 2003).  Further, Bradley et al. (Bradley et al., 2010) have recently demonstrated that 

activation of AMPK has a direct vasodilatory action on skeletal muscle resistance arteries 

through increased NO activity.  In muscle-specific AMPK dominant negative transgenic mice 

there is a faster PmvO2 decline (i.e., reduced time-constant) during the rest-to-contractions 

transition versus that observed from mice demonstrating a normal AMPK phenotype (Kano et 

al., 2011).  Thus, the absence of AMPK induces a disproportionate slowing of Q
．

O2 versus V
．

O2 

kinetics across the rest-to-contractions transition (Kano et al., 2011).  Therefore, long-term β-

GPA treatment would likely have an indirect influence on vasomotor regulation (e.g., faster 

vasodilatory dynamics) through enhanced nitric oxide signaling elicited by increased AMPK 

activity.  Based upon this reasoning, we investigated whether β-GPA treatment would elevate the 

Q
．

O2-to-V
．

O2 ratio during contractions in fast-twitch muscle (which is affected more than slow 

twitch muscle with β-GPA treatment at least with respect to mitochondrial adaptations (Bruton et 

al., 2003)).  Specifically, we tested the hypotheses that chronic β-GPA supplementation would 

reduce the magnitude and slow the rate of the PmvO2 fall (presumably due to faster blood flow 
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kinetics) during muscular contractions resulting in an elevated steady-state contracting PmvO2.  

As β-GPA treatment improves muscle contractile function primarily in fast-twitch muscle 

(Moerland and Kushmerick, 1994), we reasoned that these contractile improvements in fast-

twitch muscle would result, in part, from an enhanced PmvO2, which would then help facilitate 

transcapillary O2 flux and act to increase intramyocyte PO2.  
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Methods 

All procedures were approved by the Institutional Animal Care and Use Committee at Kansas 

State University.  Rats were housed individually at 23
o
C and were maintained on a 12:12-h light-

dark cycle.  All rats were fed rat chow (control or containing 2% β-GPA for 8 wk, see below) 

and water ad libitum.   

Surgical Preparation.  All rats were anesthetized prior to experimentation with pentobarbital 

sodium (40 mg/kg ip to effect) and supplemented (5-10 mg/kg) as needed.  The carotid and tail 

(caudal) arteries were catheterized with polyethylene tubing (PE-10 connected to PE-50).  This 

allowed for the infusion of the phosphorescent probe [palladium meso-tetra (4-carboxyphenyl) 

porphine dendrimer (R2)], measurement of arterial blood pressure (Digi-Med BPA model 200, 

Louisville, KY) and withdrawal of arterial blood for blood gas measurement (Nova Stat Profile 

M, Waltham, MA).   

The muscles used in the current study (i.e., mixed gastrocnemius, (MG) and white 

gastrocnemius, (WG); (McDonough et al., 2005)) were chosen as previous research 

demonstrates that the effects of β-GPA are manifest primarily in fast-twitch musculature 

(Freyssenet et al., 1995; Moerland, 1995).  Both the MG (3% type I, 6% type IIa, 34% type IId/x 

and 57% type IIb) and the WG (8 % type IId/x, 92% type IIb; (Delp and Duan, 1996)) are 

comprised primarily of fast twitch fiber phenotypes.  Whereas the soleus (predominantly slow-

twitch) may have provided an interesting ‘control’ comparison this would have required more 

animals for what was expected to be a negative result. 

Each muscle was exposed for PmvO2 measurements as previously detailed (McDonough 

et al., 2005).  The tibial nerve was isolated and a stimulating electrode was attached.  The ground 

electrode was attached distally, near the Achilles tendon.  Care was taken to minimize the extent 
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of the surgery in all cases.  The exposed tissue was superfused with a Krebs-Henseleit 

bicarbonate-buffered solution (38C, equilibrated with 5% CO2-N2 balance) and body 

temperature was maintained at ~38C via a heating pad.    

 

β-GPA supplementation.  Experimental animals were fed β-GPA for 8 weeks which has been 

demonstrated to reduce phosphocreatine (PCr) (Moerland and Kushmerick, 1994) and up-

regulate AMPK activity (Bergeron et al., 2001; Chaturvedi et al., 2009).  The β -GPA was 

incorporated into the rat chow at 2% wt/ body wt. 

 

Contractions Protocol.  The rat was positioned on a custom-built ergometer and secured as 

detailed previously (McDonough et al., 2005).  Fifteen minutes later the MG or WG was 

stimulated at 1-Hz for 3 minutes (twitch 4.5 V, 2 ms pulse duration) using a Grass S88 

stimulator.  This contraction intensity was chosen as it corresponds to approximately 65% of the 

voltage which produces a minimal PmvO2 for these two muscles (McDonough, Behnke, Musch 

& Poole; Unpublished observations).  All animals were euthanized with an overdose of 

pentobarbital sodium (>80 mg/kg
 
i.a.) following the conclusion of the experimental protocol.  

 

Phosphorescence Quenching.  Fifteen minutes prior to the beginning of the contraction protocol 

the R2 probe was infused (15 mg/kg via the arterial catheter) and the probe of a PMOD 1000 

Frequency Domain Phosphorimeter (Oxygen Enterprises Ltd., Philadelphia, PA) was positioned 

~2 mm above the exposed muscle.  A light guide contained within the probe focuses excitation 

light (524 nm) on the medial region of the exposed muscle (~2.0 mm diameter, to ~500 μm 

deep).  The PMOD 1000 uses a sinusoidal modulation of the excitation light (524 nm) at 
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frequencies between 100 Hz and 20 kHz, which allows phosphorescence lifetime measurements 

from 10 s to ~ 2.5 ms.  In the single frequency mode, 10 scans (100 ms) were used to acquire 

the resultant lifetime of the phosphorescence (700 nm) and repeated every 2 seconds (for review 

see (Vinogradov and Wilson, 1994)). The phosphorescence lifetime was obtained 

computationally based on the decomposition of data vectors to a linearly independent set of 

exponentials (Moerland et al., 1989).   

 The Stern-Volmer relationship allows the calculation of PmvO2 from a measured 

phosphorescence lifetime using the following equation : 

   PmvO2 = [(t
o
/t)-1] / (kQ* t

o
) 

where kQ is the quenching constant (mmHg/s) and t
o
 and t are the phosphorescence lifetimes in 

the absence of O2 and at the ambient O2 concentration, respectively.  For R2, in in vitro 

conditions similar to those found in the blood, kQ is 409 mmHg
-1

.s
-1

 and t
o
 is 601 μs.  Since the 

R2 is tightly bound to albumin in the plasma and is negatively charged, in combination with the 

extremely high albumin reflection coefficients in skeletal muscle, the PO2 measurements are 

ensured to result from signals within the microvasculature, rather than the surrounding muscle 

tissue (Poole et al., 2004).  The phosphorescence lifetime is insensitive to probe concentration, 

excitation light intensity, and absorbance by other chromophores in the tissue.  The effects of pH 

and temperature are negligible within the normal physiological range which was maintained 

herein. 

 

Muscle blood flow and oxygen uptake.  Muscle blood flow ( Q ) was measured using the 

radiolabelled microsphere technique (Musch and Terrell, 1992) at rest and at the end of the 3 

minute contraction protocol and expressed as milliliters of blood per minute per 100g tissue 
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(ml.min
-1

.100g
-1

).  Microspheres (15 m-diameter; 
46

Sc, 
85

Sr or 
141

Ce; New England Nuclear, 

Boston, MA) were agitated via sonication and ~5 x10
5
 microspheres were injected into the 

ascending aorta at the specified time point.  Tissue radiation counts were performed using a 

gamma scintillation counter (Packard Auto Gamma Spectrometer, Cobra model 5003).  

Adequate distribution of the microspheres was verified with a difference of ≤15% in blood flow 

between right and left kidneys. 

Muscle oxygen uptake (V
．

O2) was calculated as previously described (Behnke et al., 

2002b).  Arterial O2 content (CaO2) was measured directly (carotid arterial blood) and mixed 

venous O2 content (CvO2) was calculated from PmvO2 (assuming PmvO2 is a valid approximation 

of mixed venous PO2; (McDonough et al., 2001)) using the rat O2 dissociation curve 

(constructed using an “n” of 2.6, the measured [Hb], P50 of 38 mmHg and an O2 carrying 

capacity of 1.39 mlO2.g Hb
-1

).  V
．

O2 was then calculated via the Fick equation, i.e. V
．

O2 = Q  * 

(CaO2- CvO2).    

 

Citrate synthase measurement.  Following the experimental protocol, contralateral (i.e., non-

stimulated) muscles were excised rapidly, frozen in liquid N2 and stored in sealed containers at -

80
o
C until analysis. Citrate synthase activity was measured in duplicate using spectrophotometric 

analysis from homogenates prepared from the MG and WG muscles according to the methods of 

Srere (Srere, 1969).  Activity levels were expressed as mol per minute per gram wet weight. 
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Curve Fitting and Statistical Analysis.  For the PmvO2 data, curve fitting was accomplished using 

KaleidaGraph software (version 3.5; Synergy Software, Reading, PA) and was performed on 

each data set using a one-component:  

PmvO2 (t) = PmvO2 (BL) +  PmvO2 * (1-e
-(t-TD)/

) 

or a two-component model:   

PmvO2 (t) = PmvO2 (BL)  + 1 * (1-e
-(t-TD1)/1) + 2 * (1-e

-(t-TD2)/2) 

Where, PmvO2 (t) is the PmvO2 at any time t, PmvO2 (BL) is the baseline pre-contracting PmvO2, 

1and 2 are the amplitudes of the PmvO2 components, TD1 and TD2 are the independent time 

delays and 1 and 2 are the time constants for each component. Goodness of fit was determined 

by three criteria: 1. the coefficient of determination (i.e., r
2
), 2. the sum of the squared residuals, 

and 3. visual inspection and analysis of the residual fit to a linear model.   

The relative rate of change in PmvO2 (dPo2/dt) was defined as the initial  PmvO2/ for 

the on-transient to contractions (McDonough et al., 2004b). In addition, area under the curve was 

calculated using the following formula for calculating the area of a trapezoid, AUC = ba + 

((b*(c-a))/2, where a = the nadir of PmvO2, b = time and c = baseline PmvO2.  AUC was 

calculated every 2 s and then summed to obtain a total AUC for the entire contractions protocol. 

PmvO2 values (e.g., baseline, steady-state contracting and delta), modeling dependent 

(e.g., TD, τ, MRT) results, V
．

O2 and Q  data were analyzed using standard analysis of variance 

techniques between muscles (MG and WG).  When a significant F value was demonstrated by 

the ANOVA, a Student-Newman-Keuls (SNK) post-hoc test was performed to determine 

differences among mean values.  Pearson product-moment correlations were performed upon 

select variables.  Statistical significance was accepted at P≤0.05. 
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Results 

Body weight and citrate synthase activity 

Body weight was significantly reduced in β-GPA vs. CON (275±4 vs. 317±10 g; P<0.05).  

Citrate synthase was not altered in either MG (MG: 25.9±0.8 vs. 25.7±3.7 µmol.min
-1

.g
-1

 β-GPA 

vs. CON), or WG (WG: 11.3±0.6 vs. 11.0±0.7 µmol.min
-1

.g
-1

, both P>0.05 β-GPA vs. CON). 

Microvascular PO2 

Representative PmvO2 responses for both muscles from β-GPA and CON animals are illustrated 

in Figures 1A & B, respectively.  Mean PmvO2 profiles between groups for each muscle are 

illustrated in Figure 2 and kinetic parameters described in Table 1.  Mixed Gastrocnemius:  No 

difference was noted for baseline PmvO2 prior to contractions (Table 1).  However, the steady-

state contracting PmvO2 was significantly elevated in the β-GPA group.  The delta PmvO2 (i.e., 

pre-contracting baseline minus steady-state contracting value) was significantly reduced in β-

GPA vs. CON (Table 1).  Furthermore, delta PmvO2 for the secondary component was 

significantly and directionally different for MG between CON and β-GPA (Table 1).  In addition, 

the overall change in PmvO2 per unit of time (dPO2/dt) was significantly slowed for β-GPA 

(Table 1), indicative of a slower fall to an elevated steady state baseline. In addition, the area 

under the curve (a model independent representation of the time taken to achieve a particular 

steady state) was substantially greater for β-GPA (Table 1).  White Gastrocnemius: Similar to the 

MG there were no differences in the pre-contracting baseline PmvO2 in the WG between groups, 

but the contracting steady-state value was elevated in the β-GPA group.  Similar to the results 

noted for the MG noted above, the overall (dPO2/dt) was reduced and the AUC was greater for β-

GPA (Table 1).  

 Muscle blood flow (Q
．

) and oxygen uptake (V
．

O2) 
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 Q
．

 was not different between conditions at rest or during contractions in either muscle (Figure 3).  

There was a slight reduction in the calculated resting muscle V
．

O2 in the WG for β-GPA vs. CON 

(Figure 4), and no change in resting V
．

O2 in the MG.  However, contracting V
．

O2 was 

significantly reduced in both muscles for β-GPA vs. CON (Figure 4).   
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Discussion 

The principal original finding of this investigation is that β-GPA supplementation induces 

marked changes in the PmvO2 response to contractions (Figure 1, Table 1) within the fast-twitch 

MG and WG muscles.  Specifically, in both the mixed and white portions of the gastrocnemius 

muscle β-GPA treatment reduced the fall in PmvO2 with contractions which led to an elevated 

contracting steady-state PmvO2.  In addition, PmvO2 dynamics were slowed in the MG (but not 

WG) after β-GPA demonstrating an enhanced Q
．

O2-to-V
．

O2 ratio across the rest-to-contractions 

transition.  In both muscles these effects enhanced blood-myocyte O2 driving pressure (PmvO2) 

throughout the majority of the on-transient (i.e. AUC was significantly greater in β-GPA).  

Further, the change in PmvO2 with β-GPA occurred in the absence of an altered hyperemia; at 

least during the steady-state of contractions (Figure 3).  Finally, there was a reduction in the 

steady-state contracting V
．

O2 (Figure 4) in both muscles, possibly indicating an enhanced 

efficiency of muscular contractions, which has been demonstrated previously following 

experimental creatine depletion (Moerland and Kushmerick, 1994).  Thus, in many respects β-

GPA transformed the PmvO2 profile in these fast-twitch muscles such that the qualitative 

responses were similar to that of slow-twitch muscle (see (McDonough et al., 2005).  

Interestingly, the slowed PmvO2 response and elevated contracting steady-state PmvO2 occurred 

in the absence of an elevated oxidative capacity (i.e., no change in citrate synthase activity for 

either muscle).  These results indicate that, following experimental creatine depletion via β-GPA, 

the ratio of Q
．

O2/ V
．

O2 is raised during contractions, indicative of an overall enhancement of 

muscle O2 availability which may contribute to the improved oxidative and contractile function 

demonstrated for this condition (Moerland and Kushmerick, 1994). 

β -GPA and PmvO2 dynamics  
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In  β-GPA  PmvO2 dynamics were slowed (↓dPO2/dt) and the AUC was greater indicating 

that Q
．

O2 responded with faster dynamics than V
．

O2, across the rest-to-contractions transition 

(Table 1).  Whereas we did not measure Q
．

 or V
．

O2 dynamics in separatum, based upon the 

modeling of Diederich et. al. (Haseler et al., 2004) with β-GPA compared to control, the slower 

PmvO2 dynamics could arise from either: 1) a faster increase in Q
．

 (and hence Q
．

O2) relative to 

V
．

O2, 2) slower Q
．

O2 and V
．

O2 dynamics but with a greater proportional slowing of the V
．

O2 

response, or 3) a similar Q
．

O2 response but slower V
．

O2 kinetics.  According to Meyer’s electrical 

analog model of mitochondrial respiratory control (Meyer, 1988; as recently validated in vitro by 

Glancy et al. 2008): 

τV
．

O2  =  Rm • C 

where Rm is the mitochondrial resistance to energy transfer and C is the metabolic capacitance 

of the total creatine pool (i.e., PCr + Cr).  In the present investigation, Rm as reflected by 

oxidative enzyme capacity, would be unchanged (as also found for superficial and mixed 

gastrocnemius by Shoubridge et al. (1985)) but β-GPA would act to reduce C, thereby speeding 

V
．

O2 kinetics (reduced τV
．

O2) and refuting options 2 and 3 above.  In contrast, there is a wealth of 

experimental evidence supporting that impediments to the CK reaction evoked either by MM 

creatine kinase knockout (Roman et al. 2002) or by stripping CK of useable substrate (β-GPA, 

Moerland and Kushmerick, 1994; iodoacetamide, Kindig et al. 2005) lead to a faster increase of 

ADPfree and V
．

O2 during contractions (Freyssenet et al., 1995; Moerland and Kushmerick, 1994).  

Thus the CK reaction (and its ability to temporally buffer ATP levels) may be a large component 

of the “lag” in V
．

O2 (i.e., finite V
．

O2 kinetics) following the onset of contractions.  

In accord with option 1 above, several lines of evidence support faster Q
．

O2 dynamics with β-

GPA.  Specifically, β-GPA supplementation up-regulates AMPK activity (Bergeron et al., 2001) 
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even in the absence of increased oxidative capacity/ mitochondrial volume (Williams et al., 

2009)).  The pleiotropic effects of AMPK include increased endothelial NO synthase (eNOS) 

activation (Chen et al., 2009; Chen et al., 1999) and inhibition of NADPH oxidase activity 

(Schulz et al., 2008), both of which may increase the bioavailability of NO.  In addition, 

activation of AMPK enhances resistance artery vasodilation via activation of eNOS (Bradley et 

al., 2010).  Therefore, during conditions of increased vascular shear-stress (e.g., onset of 

contractions), a greater production (and bioavailability) of endothelium-derived NO would be 

expected in the β-GPA group, which may act to accelerate the Q
．

O2 response during contractions.  

In the current study, the fall in  PmvO2  was slowed and the contracting steady-state elevated  in 

the β-GPA group with no difference PmvO2 between groups at rest.  Accordingly, the altered 

PmvO2 response with contractions indicates that any augmentation of NO bioavailability in the β-

GPA group would have greater effects  during contractions versus rest.  Indeed, increasing NO 

bioavailability in healthy skeletal muscle does not alter resting PmvO2, but does slow the PmvO2 

response across the rest-exercise transition (Ferreira et al., 2006a; Ferreira et al., 2006c), 

suggesting an enhanced Q
．

O2 relative to V
．

O2 during the exercise on-transient and the steady-state 

(Figures 2-4).   

 

Effects of β-GPA on the O2  Delivery (Q
．

O2) Oxygen Uptake (V
．
O2) Relationship 

In healthy control muscles, there exists a strong linear relationship between V
．

O2 and Q
．

O2 

such that increased Q
．

O2 is driven by an elevated Q-to-Vo2 ratio ( typically 5-6 L Q
．

 /L V
．

O2  

(Poole et al., 2011).  The unchanged steady-state Q
．

 (Figure 3, and therefore Q
．

O2) in the face of 

decreased V
．

O2 (Figure 4) indicates that β-GPA changed the fundamental relationship between 

V
．

O2 and Q
．

.   
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A β-GPA-induced reduction in the steady-state energy cost (i.e., increased efficiency) of 

contractions is a consistent finding (Moerland and Kushmerick, 1994), (Shoubridge and Radda, 

1984).  In the absence of increased mitochondrial oxidative capacity one putative mechanism for 

the elevated contractile efficiency herein is the elevated PmvO2  which would act to increase 

intramyocyte PO2 and thereby reduce disturbance of the intracellular milieu (e.g., decrease [Pi]; 

(Wilson et al., 1977)).  As [Pi] has numerous negative effects on contractile function (e.g., 

reduces the number of force-generating cross bridges (Allen et al., 2008) and may decrease free 

Ca2
+
 available for release (Fryer et al., 1997), an enhanced intramyocyte PO2 may mitigate 

increases in [Pi] and improve contractile function.  Furthermore, this effect would be in addition 

to faster V
．

O2 kinetics which in itself would allow a given V
．

O2 to be achieved with less change in 

phosphate-linked controllers of mitochondrial function (i.e., Δ[PCr], [ADPf],[Pi]).  It is pertinent 

to note that exercise training also facilitates this ‘tighter’ metabolic control.  While β-GPA 

achieves this through a decrease in the total usable creatine pool (“C” in Meyer’s model; see 

above), exercise training will typically result in an increased mitochondrial enzyme activity (or 

decreased Rm in Meyer’s model)   (Phillips et al., 1996) in addition to improvements in 

capillarity that will enhance blood-myocyte O2 transport (Saltin and Gollnick, 1983; Poole et al. 

1989; Poole and Mathieu-Costello, 1990).  Thus, while β-GPA results in faster V
．

O2  kinetics, the 

mechanism is different than that achieved through exercise training  

 

Directions for future research 

This study raises several intriguing possibilities that could usefully be addressed in future 

investigations using the β-GPA intervention.  These include determining whether: 1. β-GPA 

supplementation alters the dynamics of resistance artery vasodilation, 2) despite an unaltered CS 
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activity, biochemical adaptations in mitochondrial phenotype (i.e., intermyofibrillar versus 

subsarcolemmal) elicited by creatine depletion (Roussel et al., 2000) alter the “metabolic work” 

of the muscle due to the differential bioenergetics behaviors of distinct mitochondrial 

populations (Cogswell et al., 1993) and impact the V
．

O2 per unit work/tension (i.e., efficiency), 

3) the heterogeneity of Q
．

O2 is reduced and/or its speed increased with β-GPA treatment (likely 

through an AMPK mediated pathway (Poole et al., 2011)) during exercise. Addressing these 

possibilities may provide important insight into how alterations in the creatine kinase and/or 

AMPK pathways might contribute to oxidative and contractile function in skeletal muscle. 

 

Conclusions 

In the two fast-twitch skeletal muscles utilized in the current study (i.e., the mixed and 

superficial white portion of the gastrocnemius muscle) β-GPA supplementation induced 

significant changes in matching of Q
．

O2-to-V
．

O2 during the rest-to-contractions transition, 

including a slower dPmvO2 /dt (MG)  and an elevated contracting steady-state PmvO2 (MG and 

WG).  Further, despite an unaltered steady-state contracting Q
．

 between groups, β-GPA 

supplementation resulted in a lower contracting V
．

O2 in both muscles versus their controls.  

Interestingly, the altered PmvO2 profile and reduced V
．

O2 occurred in the absence of any changes 

in citrate synthase activity (marker of oxidative capacity) but, with respect to the dynamic 

matching of Q
．

O2 and V
．

O2, make these fast-twitch muscles resemble slow twitch muscles (e.g., 

soleus, Behnke et al. 2003; McDonough et al. 2005).  
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Figure Legends 

 

Figure 1.  Microvascular O2 partial pressure (PmvO2) responses for the mixed (MG) and white 

gastrocnemius (WG) from representative animals in A) control and B) β-GPA groups following 

the onset of 1 Hz contractions (time 0).  Note that while baseline PmvO2 is not different between 

muscles or conditions, β-GPA supplementation significantly increased the steady state 

contracting PmvO2.  The thin line is the measured PmvO2 value whereas the smoothed line is the 

model-fit of the response. 

 

Figure 2.  Mean microvascular O2 partial pressure (PmvO2) profiles from control and β-GPA 

treated animals across the rest-to-contractions transition in the A) mixed gastrocnemius and B) 

white gastrocnemius.  Contractions were initiated at time zero.  Average kinetic parameters are 

described in Table 1. 

 

Figure 3.  Muscle blood flow ( Q ) in the A) mixed and B) white portions of the gastrocnemius 

muscle at rest (i.e., immediately prior to the onset of contractions) and during the steady-state of 

contractions (i.e., 3 min after the onset of contractions) in both control and β-GPA groups.  * 

denotes significantly higher Q  compared to MG (p<0.05).   

 

Figure 4.  Calculated muscle oxygen uptake (V
．

O2) in the A) mixed and B) white portions of the 

gastrocnemius muscle at rest (i.e., immediately prior to the onset of contractions) and during the 

steady-state of contractions (i.e., 3 min after the onset of contractions) in both control and β-GPA 
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groups. * denotes significantly different compared to MG for the same condition (p<0.05).  # 

P<0.05 versus control group.   

 

Table 1. 

Microvascular PO2 following the onset of contractions in mixed (MG) and white (WG) 

gastrocnemius muscles from Control and β-GPA rats. 

________________________________________________________________________ 

 

            MG                    WG 

Control 

Primary component 

Pre-contractions PmvO2 (mmHg)                   25.1  1.1   20.2  2.0  

Delta PmvO2 (mmHg)                                -16.3  1.7           -12.3  1.8 

Time delay (s)                             5.3  1.0              5.1  1.1 

Time constant (s)                                      7.0  1.3            12.6  3.0 

dPO2/dt (mmHg/s)                            3.2  0.4     1.4  0.2  

Secondary component 

Delta PmvO2 (mmHg)                           2.1  1.4              1.3  0.5 

Time delay (s)                                     34.5  8.1            63.0  2.7 

Time constant (s)                                          50.4  22.0          72.0  27.7 

Overall 

SS PmvO2 (mmHg)              10.3  1.6              8.7  1.0 

dPO2/dt (mmHg/s)                1.0  0.3     0.6  0.2 

AUC (mmHg/180s)             3932  195          3535  228  

 

β-GPA 

Primary component 

Pre-contractions PmvO2 (mmHg)                   25.9  1.4   25.0  2.1  

Delta PmvO2 (mmHg)                                    -7.5  1.5#          -9.1  1.8# 

Time delay (s)                             7.1  1.6              5.6  1.1 

Time constant (s)                                      9.6  6.0            10.8  2.8 

dPO2/dt (mmHg/s)                 2.1  0.2     1.3  0.2  

Secondary component 

Delta PmvO2 (mmHg)                                    -4.0  2.5              2.1  2.6 

Time delay (s)                                     30.3  8.4            39.7  8.9 

Time constant (s)                                          36.8  10.9          52.9  15.4 

Overall 

SS PmvO2 (mmHg)                                    15.5  2.1#   17.4  1.9# 

dPO2/dt (mmHg/s)                0.4  0.1#     0.3  0.1# 

AUC (mmHg/180s)             4642  394#        4423  308#  
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Values presented as mean  SE.  # denotes significant difference from Control.  SS PmvO2, the 

steady-state contracting PmvO2.  AUC (area under the curve), the sum PmvO2 from the onset of 

contractions through the end of the contracting paradigm (180 s). 
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