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Abstract 

Four research projects were carried out and they are described in this dissertation.  

Glycogen synthase kinase-3 beta (GSK3β) plays a pivotal and central role in the pathogenesis of 

Alzheimer's disease (AD) and protein kinase C (PKC) controls the function of other proteins via 

phosphorylation and involves in tumor promotion. In pursuit of identifying novel GSK3β and/or 

PKC inhibitors, substituted quinoline molecules were designed and synthesized based on the 

structure-activity-relationship studies. Synthesized molecules were evaluated for their neural 

protective activities and selected molecules were further tested for inhibitory activities on GSK3β 

and PKC enzymes. Among these compounds, compound 2 was found to have better GSK3β 

enzyme inhibitory and MC65 cell protection activities at low nanomolar concentrations and poor 

PKC inhibitory activity whereas compound 3 shows better PKC inhibitory activity. This 

demonstrates the potential for uses of quinoline scaffold in designing novel compounds for AD 

and cancer. 

Pharmacokinetics and distribution profiles of two anti-Alzheimer molecules, CP2 and TP70, 

discovered in our laboratory were assessed using HPLC/MS. Plasma samples of mice and rats fed 

with TP70 via different routes over various times were analyzed to quantify the amounts of TP70 

in plasma of both species. Distribution profiles of TP70 in various tissues of mice were studied 

and results show that TP70 penetrated the blood brain barrier and accumulated in the brain tissue 

in significant amounts. Similarly, the amount of CP2 in plasma of mice was analyzed. The HPLC 

analysis revealed that both compounds have good PK profiles and bioavailability, which would 

make them suitable candidates for further in vivo efficacy studies. 

Nanodelivery of specific dsRNA for suppressing the western corn rootworm (WCR, Diabrotica 

virgifera virgifera) genes was studied using modified chitosan or modified polyvinylpyrrolidinone 



  

(PVP) as nanocarriers. Computational simulation studies of dsRNA with these polymers revealed 

that nanoparticles can be formed between dsRNA and modified chitosan and PVP polymers. 

Nanocarriers of hydroxylated PVP (HO-PVP) and chitosan conjugated with polyethylene glycol 

(PEG) were synthesized, and analyzed using IR spectroscopy. Particle sizes and morphology were 

evaluated using AFM and encapsulation was studied using UV spectroscopy. However, the 

formation of stable nanoparticles with dsRNA could not be achieved with either of the polymers, 

and further efforts are ongoing to discover a better nanocarrier for nanodelivery of siRNA by using 

chitosan-galactose nanocarrier. 

In our efforts to discover a novel class of tripeptidyl anti-norovirus compounds that can strongly 

inhibit NV3CLpro, a set of tripeptidyl molecules were synthesized by modifying the P1 - P3 of 

the substrate peptide including a warhead. It was found that the replacement of P1 glutamine 

surrogate with triazole functionality does not improve the inhibitory activities of the compounds. 

In addition, the synthesis of a known dipeptidyl compound (GC376) was carried out for evaluating 

its efficacy on feline infectious peritonitis (FIP) in cats. 
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(PVP) as nanocarriers.  Computational simulation studies of dsRNA with these polymers revealed 

that nanoparticles can be formed between dsRNA and modified chitosan and PVP polymers.  

Nanocarriers of hydroxylated PVP (HO-PVP) and chitosan conjugated with polyethylene glycol 

(PEG) were synthesized, and analyzed using IR spectroscopy. Particle sizes and morphology were 

evaluated using AFM and encapsulation was studied using UV spectroscopy. However, the 

formation of stable nanoparticles with dsRNA could not be achieved with either of the polymers, 

and further efforts are ongoing to discover a better nanocarrier for nanodelivery of siRNA by using 

chitosan-galactose nanocarrrier. 

In our efforts to discover a novel class of tripeptidyl anti-norovirus compounds that can strongly 

inhibit NV3CLpro, a set of tripeptidyl molecules were synthesized by modifying the P1 – P3 of 

the substrate peptide including a warhead. It was found that the replacement of P1 glutamine 
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Chapter 1 - Design, Synthesis, and Evaluation of Bioactive 

Molecules 

 1.1 Introduction 

 

Structural modification of natural products and other widely used pharmacophores such as drug 

candidates is an important major field of research. The significant aspect of this approach is that it 

provides a way of rapidly synthesizing analogues of a common pharmacophore and therefore, 

would be helpful in modern drug discovery. The main objectives of these modifications are to 

obtain novel bioactive compounds with better pharmacological activity, physico-chemical, 

biochemical, pharmacokinetic and safety properties that could enhance the potency and selectivity 

along with better solubility, distribution and ionizability parameters. A number of research reports 

have aimed to design novel compounds that can function as inhibitors or enhancers through the 

interactions with important proteins, nucleic acids, protein-protein interacting surfaces, ion 

channels and signaling receptors etc. Consequently, they would have a broader therapeutic scope 

that could cover a wide range of diseases such as parasites, bacterial and fungal infections, 

allergies, cancer, cardiovascular and metabolic diseases, etc.  

This chapter summarizes the work I have carried out towards the design and synthesis of a set of 

quinoline compounds and evaluation of these compounds to identify whether they are capable of 

inhibiting glycogen synthase kinase-3 beta (GSK3β) and protein kinase C (PKC) enzymes using 

in vitro enzyme assays. 

Protein phosphorylation process is mainly governed by kinases and phosphatases and is one of the 

major post translational mechanisms used by cells to regulate enzymes and structural proteins and 

therefore numerous diseases are linked with abnormalities of protein phosphorylation.1 Glycogen 



 

2 

synthase kinase-3 (GSK3) is one such kinases and originally identified for its regulation function 

of glycogen metabolism.1 It is a proline directed serine/threonine kinase and currently a large body 

of evidences suggest that it is involved in variety of physiological processes such as glycogen 

metabolism, gene transcription, insulin action, apoptosis, microtubule stability and Wnt and 

Hedgehog signaling.1,2 There are three isoforms of GSK3 exist in mammals which are called 

glycogen synthase kinase-3 alpha (GSK3α), glycogen synthase kinase-3 beta (GSK3β), and 

GSK3β2.2 GSK3β is relatively abundant in the central nervous system and is involved in neuronal 

specific activities.3 Several lines of evidences suggest that GSK3 signaling plays a significant role 

in neurodegeneration and is associated with neurodegenerative diseases such as Alzheimer’s 

disease (AD).1,2  

AD is the most common form of dementia in elderly and about 35 million people worldwide have 

suffered from AD.4 AD is aggravated over time and at the early stage, it only induces a short-term 

memory loss; but the advanced-stage AD causes cognitive impairment, long term memory loss, 

and damage of motor functions as well.4 

So far, the exact cause of AD is not known and it is believed that AD develops as a result of 

multiple factors rather than a single cause. Two most commonly found pathological characteristics 

of familial AD (from inheritance; about 5% of all AD) include the accumulation of extracellular 

amyloid beta (Aβ) plaques and intra-cellular neural fibrillary tangles (NFTs) in the AD patients 

brain.5,6 Aβ plaques consist of beta amyloid peptides which are generated from the cleavage of 

amyloid precursor protein (APP), and NFTs are composed of the hyperphosphorylated tau 

proteins.5,6 It has been found that GSK3β is highly expressed in AD patient’s brain and involves 

in the hyperphosphorylation of tau protein.2,5 Tau is a neuronal microtubule associated 

phosphoprotein and hyperphosphorylation of tau protein by GSK3β has found to be altering the 
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binding to microtubules and leads to tau degradation and aggregation.2,5 Therefore, inhibition of 

GSK3β could be a potential approach to alleviate the symptoms of AD. 

Previously, Hua’s laboratory has synthesized a class of substituted quinolines (PQs) by 

derivatizing the C-8 amino function of 6-methoxy-4-methyl-5-(3-

(trifluoromethyl)phenoxy)quinoline-8-amine to study their anti-cancer activities. Among the 

synthesized PQ compounds: N-(3-aminopropyl)-6-methoxy-4-methyl-5-(3-

(trifluormethyl)phenoxy) quinolin-8-amine (PQ1), N-(furan-2-ylmethyl)-6-methoxy-4-methyl)-5-

(3-(trifluoromethyl)phenoxy)quinolin-8-amine (PQ7), 6-methoxy-4-methyl-N-(quinolin-4-

ylmethyl)-5-(3(trifluoromethyl)phenoxy)quinolin-8-amine (PQ15) were shown to have anti-

breast cancer activities.7,8 Moreover, PQ1 also shown to possess strong MC65 neuronal cell 

protection activity.  Notably, the structures of these compounds have a close similarity to that of 

known PKC inhibitors such as MT477, dequalinium, and chelerythrine chloride (these structures 

are shown in Figure 1.3).9 Therefore, with known anti-cancer and strong MC65 neuronal cell 

protection activities, we have hypothesized that PQ compounds can function as PKC and/or 

GSK3β inhibitors.  

In this chapter, structure guided design and synthesis of analogs of PQ molecules and evaluation 

of the inhibition of PKC and GSK3β enzymes are discussed. 

 

 1.2 Background 

 1.2.1 GSK3β and its relation with Alzheimer’s disease 

 

It is believed that oligomers of amyloid β peptide target the insulin or wnt signaling pathways and 

activates the GSK3β and the activated GSK3β can induce the subsequent phosphorylation of tau 
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protein.10 Studies have found that tau obtained from the brains of AD patients has about 40 

phosphorylation sites, 28 serines, 10 threonines and 2 tyrosines.5 Out of that, GSK3β can 

phosphorylate 17 of the serine and 6 of the threonine residues.5 Phosphorylation of tau by GSK3β 

predominantly occurs in the regions surrounding the microtubule binding domain, therefore, this 

prevents the interaction of tau with microtubules and may affects microtubule stabilization and 

dynamics.5 Moreover, the hyperphosphorylated tau proteins have different structures from original 

tau and precipitate out as neural fibrillary tangles.  As a consequence of this, the interaction 

between tau and microtubules weakens and tau gets detached from microtubules and may favor its 

self-aggregation.5 Therefore, several GSK3β inhibitors are currently being studied as a treatment 

option for AD. One such compound is lithium chloride, which has been found to reduce the Aβ 

oligomer production in AD mouse models as well as exerting a protection effect on neuronal cells 
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by inhibiting the GSK3β.11 Figure 1.1 shows the structures of some selective GSK3β inhibitors 

and some of those (such as tideglusib) are in clinical trial phases for AD.12  
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Figure 1.1: Structures of known selective GSK3β inhibitors and their inhibitory activities.12 

 

By looking at the structures of reported GSK3β inhibitors, it can be seen that most of these 

compounds possess either pyridine, pyrimidine, pyrazole and thiazole moieties. In order to expand 

the structural diversity of GSK3β inhibitors, our group has focused on a library of quinoline 
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compounds and the structure guided design and synthesis of those compounds. Evaluation of the 

inhibitory properties towards GSK3β enzyme was also carried out. 

 

 1.2.2 Inhibition of PKC phosphorylation by substituted quinolines 

Protein kinases are enzymes that catalyze the transfer of a γ-phosphate group from adenosine 

triphosphate (ATP) to serine, threonine, or tyrosine residues of specific substrate proteins.13 This 

will result in the phosphorylation of proteins and affect their structures, activities, cellular location, 

and protein-protein interaction, since specific negatively charged phosphate group(s) was 

introduced.13 There are several protein kinases. PKC is one such kinase, belongs to the family of 

serine/threonine protein kinases and was first reported by Yasutomi Nishizuka and coworkers in 

1977.14 There are at least 12 isozymes of PKC and they are further categorized into three sub 

families based on their mode of activation and similarities in amino acid sequence. These sub 

families include: (1) classical PKCs (cPKC: PKCα, PKCβI, PKCβII, and PKCγ) which are 

activated by calcium, diacylglycerol (DAG) and phosphatidylserine (PS); (2) novel PKCs (nPKC: 

PKCδ, PKCε, PKCη, PKCθ and PKCµ) which are activated by DAG and PS but are insensitive 

towards calcium; (3) atypical PKCs (aPKC; PKCζ and PKCλ) are insensitive towards both calcium 

and DAG but can be activated by 3-phosphoinositides (PIP3).15 PKC is composed of a single 

polypeptide chain in which the N-terminal regulatory domain (~ 20 - 40 kDa) has linked to a highly 

conserved C-terminal catalytic domain (~ 45 kDa) by a proteolytically labile hinge region (V3) 

(Figure 1.2).16 The regulatory domain of PKC is consisted of two regions (C1 and C2) and it varies 

among other PKC isozymes. However, the catalytic domain that consists of two regions (C3 and 

C4) is highly conserved among other PKC isozymes. In classical PKCs, the C1 region functions 

as a DAG or PS binding site, the C2 region contains the recognition site for acidic lipids and 
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calcium binding, and the C3 and C4 regions function as the ATP and substrate binding sites, 

respectively.14,16 The differences of novel and atypical PKCs are the absence of calcium binding 

site in C2 region of the novel PKC and presence of a structurally different C1 region with a lacking 

functional C2 region in atypical PKCs.14-16 There is a pseudo-substrate involved in PKC enzyme 

activity and it binds to the substrate binding site of C4 region in the absence of activators and keeps 

the enzyme in inactive state.16  

 

 

Figure 1.2: Schematic representation of the domain structure of PKC. 

 

 1.2.2.1 PKC and its relationship with cancer and other diseases 

PKCs are involved in wide variety of physiological processes in mammalian cells. Short term 

activation of PKC leads to short term events such as secretion and ion influx whereas sustained 

activation is believed to cause long term effects such as proliferation, differentiation, apoptosis, 

migration or tumorigenesis.17 The role of PKC as a tumor promoting agent has been recognized 

for decades. The finding of PKC isozymes is activated by tumor promoting agents such as phorbol 

esters, suggesting that PKC could be involved in tumor promotion and progression.17,18 

 It has been found out that the expression profiles of PKC isozymes are varied during cancer 

progression and the most common isozymes that display abnormal expression during cancer 

progression are α, β, and δ, but abnormal expression of other isozymes may also possible.14,17 For 
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example, immunohistochemical studies have shown that there is an over expression of PKCα in 

urinary bladder, prostate and endometrial cancers, in contrast, downregulation of PKCα can be 

seen in breast, colon, hepatocellular and basal cell cancers.14,17 In addition, PKCβ expression has 

been revealed to be upregulated in colon and prostate cancers and downregulated in bladder cancer. 

In contrast, PKCδ activity is more frequently linked to induce apoptosis.14 However, the expression 

profiles of PKC isozymes have not been extensively studied yet. Some of the important 

downstream events following PKC activation are MEK-ERK (mitogen activated protein kinase 

kinase–extracellular signal-regulated kinase), and PI3K–Akt pathways.14  

Moreover, studies have found out that increase PKC levels enhance the resistance and metastatic 

potential of human breast cancer cells.19 The other notable factor of PKC is its ability to inhibit 

gap junctional intracellular communication (GJIC) by inhibiting gap junctional channels.20,21 Gap 

junctions are formed from phosphoproteins called connexins through the process of the connexon 

of one cell docking with the connexon of an adjacent cell.22 Each connexon is composed of six 

proteins of connexin family such as Cx43 and Cx32.22 Except Cx26, most of the other connexins 

are phosphorylated by several kinases including mitogen-activated protein kinase (MAPK), 

protein kinase C (PKC), and protein kinase A (PKA).22 Studies have shown that when the 

expression of phosphorylated form of connexin increases, it weakens the gap junctional 

intercellular communication (GJIC).20-22 It is believed that restoring gap junctions by inhibiting 

PKC may be a treatment option for cancer since it will enhance the intercellular communication 

and thereby induce apoptosis.  

The idea of testing PQ compounds to identify their potential as PKC inhibitors came from the fact 

that, some of the substituted quinolines synthesized in our laboratory were speculated to inhibit 

PKC phosphorylation of Cx43 by disrupting the interactions between Cx43 and Nedd4, an E3 
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ubiquitin ligase, resulting in the enhancement of gap junctions in breast cancer cells.7,8,23-25 

Another notable factor is the structural similarities such as having common quinoline moiety 

between PQs and several known PKC inhibitors like MT477, chelerythrine chloride, and 

dequalinium which might be linked to the PKC inhibition properties of PQs. 

Several natural and synthetic PKC inhibitors have been reported. Some of the examples for natural 

compounds are safingol, calphostin C, miltefosine, curcumin, staurosporine and chelerythrine 

chloride.26-31 Synthetic PKC inhibitors include tamoxifen, dequalinium, MT477, and analogs of 

staurosporine such as midostaurin (PKC412), etc.32,33 Structures of these compounds are shown in 
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Figure 1.3. In most cases, these small molecules inhibit PKC by binding to either the catalytic 

domain (ATP binding site) or regulatory domain (diacylglycerol or calcium binding site) of PKC. 
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Figure 1.3: Structures of known PKC inhibitors. 
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 1.3. Results and discussion 

 1.3.1 Syntheses of substituted quinoline compounds 

 

The identification of potential GSK3β inhibitors has become an important area of research and 

currently more than 30 small molecule compounds have been identified as GSK3β inhibitors.34 

However, out of these molecules, only a few compounds are being evaluated in clinical trial 

phases.35 Since GSK3β enzyme exhibits a broad therapeutic scope, the compounds in clinical trial 

phases are not only limited to Alzheimer’s disease but rather testing for various other diseases such 

as diabetes, cancer, inflammation, epilepsy, mania and bipolar disorder etc.34,35 Among the few 

compounds in advanced clinical trial phases, the compounds called “tideglusib” and “IBU-PO” 

are being testing for AD disease.35 Therefore, discovery of novel compounds as GSK3β inhibitors 

may be highly warranted. 

In related to their mechanism of action, GSK3β inhibitors can be classified as ATP competitive, 

non ATP competitive, and substrate competitive inhibitors.36 These inhibitors are mainly the 

heterocyclic compounds and can be categorized as pyrazolopyrimidine, benzimidazole, 

pyridinone, pyrimidines, indolylmaleimide, imidazopyrimidines, oxadiazole and pyrazole 

derivatives.34,35 Quinoline compounds are not commonly reported as GSK3β inhibitors. However, 

the idea behind designing a class of quinoline compounds as GSK3β inhibitors is as follows. 

Previously, Hua’s laboratory has synthesized a number of quinoline compounds and out of those, 

two compounds named as PQ1 and PQ7 (Figure 1.4) have been tested for their potency on MC65 

neural cell protection assay.7,37 PQ1 and PQ7 had EC50 values of 147 ± 20 nM and PQ7 691 ± 27 

nM, respectively.7,37 MC65 cell assay can be used to identify compounds that can penetrate cells 

and inhibit Aβ oligomer induced neuronal toxicity. Therefore, the compounds identified from 
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MC65 cell assay may give a positive feedback for testing those compounds against GSK3β, 

because the imbalance of GSK3β is believed to promote Aβ oligomers through the elevation of 

enzymatic processing of APP.37  

N
HN

O
Me

O MeF3C

NH2

45

6

8

3'

PQ1

3'

N
HN

O
Me

O MeF3C
45

6

8

3'

O

PQ7
EC50 = 147 ± 20 nM EC50 = 691 ± 27 nM  

Figure 1.4: Structures and EC50 values for neural protection of MC65 cells of PQ1 and 

PQ7.37 

 

As shown in Figure 1.4, structures of PQ1 and PQ7 possess some similarities. They both have 

four substituents attached to the quinoline core which are 4-methyl group, 5-(3-

triflouromethylphenoxyl) group, 6-methoxyl and 8-amino group. The only structural difference of 

PQ1 and PQ7 is the substituent connected to the 8-amino group in which PQ1 has an alkyl amino 

group whereas PQ7 contains a furan moiety. However, since their EC50 values display a 

considerable difference suggesting that the substituent attached to the 8-amino group of PQ1 and 

PQ7 plays an important role in the activity of these molecules. Therefore, PQ1 and PQ7 were 
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used as models to design a new set of molecules (Figure 1.5) by altering the substituent attached 

to the 8-amino group of PQ1 and PQ7.  
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Figure 1.5: Synthesized substituted quinolines 1 – 8.37 

 

Compounds 1- 8 contains various heterocycles or other aromatic structures as the substituent 

attached to the 8-amino group and they were synthesized by Dr. Jianyu Lu in Prof. Duy Hua’s 

laboratory. Table 1.1 summarizes the results obtained for the MC65 neural cell protection assay 

for these compounds.7,37 MC65 cells induce the cell death due to the presence of SβC gene and 

this gene is responsible to produce toxic amyloid beta peptides of the amyloid precursor protein 



 

14 

(APP). Cleavage of the fragment of APP peptide promotes the generation of toxic Aβ peptides and 

the accumulation of these peptides induces cell death.38 By introducing tetracyclin (TC) in MC65 

cells, the cell death can be prevented as it suppresses the expression of SβC gene. Therefore, 

designed quinoline compounds were incubated with MC65 cells in the absence of TC to test their 

cell protection activities against the Aβ peptide induced cell death.7,37-38 This work was carried out 

by Dr. Izumi Maezawa in Dr. Lee-Way Jin’s laboratory, M.I.N.D. Institute and Department of 

Pathology, UC Davis Health System, California, United States. 

 

Table 1.1: EC50 (µM) and TD50 (µM) values of synthesized quinoline compounds on MC65 

cell protection assay.7,37 

Compound EC50 (µM) TD50 (µM) 

PQ1 0.15 ± 0.20 2.09 ± 0.02 

PQ7 0.69 ± 0.03 42.82 ± 2.43 

1 0.48 ± 0.03 2.91 ± 0.15 

2 0.12 ± 0.01 1.38 ± 0.08 

3 0.13 ± 0.01 3.35 ± 0.36 

4 0.46 ± 0.10 ˃ 50 

5 2.39 ± 0.06 20.32 ± 1.22 

6 0.39 ± 0.02 14.50 ± 1.68 

7 0.19 ± 0.02 ˃ 50 

8 3.47 ± 0.32 ˃ 50 

 

It can be seen from these results that, except compounds 2 and 3, the rest of the compounds display 

higher EC50 and TD50 (toxicity dosage at 50% concentration) values suggesting that they are not 

strong candidates to protect cells from Aβ peptide induced cell death. However, compound 2 

possesses nano-molar activity towards cell protection suggesting that the presence of 4-
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hydroxybenzyl substituent attached to the 8-amino terminal may be responsible to its higher 

activity compared to other molecules. This compound seems to be six times more active than PQ7, 

indicates the success of structural modification. Therefore, in order to further study the structure 

activity relationship, compound 2 was further modified as follows to generate compounds 9 - 12 

(Figure 1.6). Compound 9 was generated by replacing the 6- methoxy group of compound 2 into 

6- hydroxyl group without changing the other functional groups of compound 2 whereas 

compounds 10 and 11 was generated by replacing the 5-(3-triflouromethylphenoxyl) group into 5-

(3-fluorophenoxyl), 5-phenoxyl respectively. In the case of compound 12, 5-(3-

triflouromethylphenoxyl) group is absent. 
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Figure 1.6: Synthesized substituted quinoline compounds 9 – 12.37 

1.3.1.1 Syntheses of compounds 9 – 11 

 

In order to synthesize compound 9 -11, first, the corresponding precursors, aminoquinolines 28, 

29 and 30, needed to be prepared. The syntheses of compounds 28 -30 are outlined in Scheme 

1.1. 
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Scheme 1.1: Syntheses of compounds 28 – 30 
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(21) R = H  (80 % yield)

(22) R = CF3  (95 % yield)
(23) R = F (95% yield)
(24) R = H (98% yield)

(25) R = CF3  (25 % yield)
(26) R = F  (35 % yield)
(27) R = H  (45 % yield)

(28) R = CF3  (96 % yield)
(29) R = F  (95 % yield)
(30) R = H  (96 % yield)

120 °C

120 °C, 20 min

 
 

 

The synthesis of compound 28 was previously reported in Prof. Hua’s laboratory.7 2-Bromo-4-

acetamino-5-nitroanisole (15) was prepared by starting with commercially available 4-
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acetamidoanisole (13) via sequential C2 and C5 functionalizations which was achieved via the C2 

bromination of compound 13 to obtain compound 14 followed by nitration at C5 of the compound 

14.7 Displacement of bromide 15 with potassium 3-fluorophenolate (17) and potassium phenolate 

(18) in DMF at 120°C gave 4-acetamino-5-nitro-2-(3-fluoromethylphenyloxy)anisole (20) and 4-

acetamino-5-nitro-2-(phenyloxy)anisole (21) respectively. Since the presence of 3-fluorine 

moiety, an electron-withdrawing group could decrease the reactivity of the phenolate, the reaction 

yield for 20 was lower than that of 21. Removal of the acetyl protecting group of compounds 20 

and 21 with hydrochloric acid in ethanol afforded 4-amino-5-nitro-2-(3-

fluoromethylphenyloxy)anisole (23) and 4-amino-5-nitro-2-(phenyloxy)anisole (24), respectively 

in quantitative yields.  

Various reaction conditions have been studied in Prof. Hua’s laboratory to maximize the yield of 

the construction of the quinoline ring from compound 22 with methyl vinyl ketone.37,55 Treatment 

of 22 with vinyl methyl ketone, arsenic acid and 85% phosphoric acid at 100 °C after 20 minutes 

resulted a mixture of desired quinoline 25 and 1,4-adduct 31 along with starting material 22  in a 

ratio of 1:2:1.7,39  However, when the reaction was carried out at 120 °C for 20 minutes, a 7:1:1 

ratio of compounds 25:31:22 was achieved (Scheme 1.2).7 In addition, the longer reaction time 

had decomposed the product 25 resulting in a lower yield.7 Also the use of excess of vinyl methyl 

ketone did not improve the yield. It has been found that the 1,4-adduct (31) can be treated with 

arsenic acid and phosphoric acid under similar reaction conditions as that mentioned above to give 

quinoline 25 and amine 22 along with compound 31 in a ratio of ~7:1:1.7 Therefore, uses of a large 

excess of arsenic acid and 85% phosphoric acid may minimize the formation of intermediate 31. 

The results suggest that, adduct 31 is the reaction intermediate leading to quinoline 25, but it also 

underwent reversed Michael addition reaction to provide amine 22 and vinyl methyl ketone. This 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2453686/#R2
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suggests the importance of controlling the reaction conditions in this reaction. Hence, methyl vinyl 

ketone was added into a mixture of compound 23, arsenic pentoxide hydrate in 85 % phosphoric 

acid at 120 °C to give nitro quinoline 26. Nitro quinoline 27 was synthesized in the similar manner 

using compound 24 as the starting material. Finally, the nitro quinolines 26 and 27 were treated 

with iron powder and acetic acid to afford amine quinolines 29 and 30 respectively (Scheme 1.1). 

Isolation of the Michael addition product from the synthesis of compound 25 has been depicted in 

Scheme 1.2. 

 

Scheme 1.2: Isolation of the Michael addition product from the synthesis of compound 25 
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Compound 28, 29 and 30 serve as the precursor to produce compound 9, 10 and 11 respectively. 

Synthesis of compound 9 is outlined in Scheme 1.3. 

 

Scheme 1.3: Synthesis of compound 9 
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Compound 9 was prepared in two step process starting from compound 28. In the first step, 4-

methoxyl group was converted into hydroxyl by treating the compound 28 with boron tribromide 

(BBr3) in dry dichloromethane at 0 °C for 30 minutes and then at room temperature for 14 hours 

resulting compound 32 which was then coupled with 4-hydroxybenzaldehyde (33). First, the 

compound 32 and 33 in dry methanol was stirred at 25 °C for 30 minutes followed by acetic acid 

and sodium cyanoborohydride were added and the mixture was stirred at 25 °C for 14 hours. This 

method was proven to be effective as sodium cyanoborohydide could reduce the imine 

intermediate formed first into the desired product and therefore, drives the equilibrium in forward 

direction generating more product formation. However, the yield for this reaction is moderate. It 

might be due to the reasons of sodium cyanoborohydride could also slowly reduce the aldehyde 

over long reaction period and the secondary amine functionality of the desired product could also 
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undergo the imine formation with aldehyde resulting a dialkylated by product, which in turn lower 

the yield of the reaction. Imine formation of this reaction is outlined in Scheme 1.4. The desired 

compound 9 was purified by column chromatography followed by recrystallization to obtain the 

pure product. 

Scheme 1.4: Imine formation in the reaction of synthesis of compound 9 
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 Synthesis of compounds 10, and 11 is outlined in Scheme 1.5. 

Scheme 1.5: Syntheses of compounds 10 and 11 
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Under similar reaction conditions as those were used to synthesize compound 9, coupling of 

compounds 29 and 30 separately with 4-hydroxybenzaldehyde (33) gave compounds 10 and 11, 

respectively, in moderate to good yields. 

 1.3.1.2 Synthesis of compound 12 
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Synthetic scheme to synthesize compound 12 was outlined in Scheme 1.6.  

Scheme 1.6: Synthesis of compound 12 

 
 

To synthesize compound 12, amino quinoline 37 was needed. Treatment of N-Acetyl-p-anisidine 

(13) with 20 % HNO3 yielded deacetylated nitro compound 34 in 33 % yield. Then, this compound 

was treated with methyl vinyl ketone (35), arsenic pentoxide hydrate in phosphoric acid to obtain 

the nitro quinoline 36. Finally, it was reacted with iron powder in acetic acid to yield the quinoline 

compound 37. Compound 37 was condensed with 4-hydroxybenzaldehyde (33) to obtain 

compound 12. 
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The formation of the quinoline ring structure is the key step of these reactions. A possible 

mechanism is proposed in Scheme 1.7. 

 

Scheme 1.7: A possible mechanism for the generation of quinoline ring structure 
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The first step of this reaction is the Michael addition between the aniline NH2 with the methyl 

vinyl ketone to generate the intermediate 38. In the case of compounds 9 -12, these intermediates 

can be represented as follows (Scheme 1.8). 

Scheme 1.8: Representative structures of the Michael addition intermediates of compounds 

9 – 12 
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For compounds 9 – 11, the intermediates possess an aryloxy function at 6th position. Therefore, 

there are two possible mechanisms (Scheme 1.9) can be predicted for the intramolecular Friedel-

Craft reaction.  

Scheme 1.9: Possible mechanisms for the intramolecular Friedel-Craft reaction 
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In pathway (a), protonated aniline (NH2

+) undergoes deprotonation to generate its lone pair of 

electrons and then donates this lone pair of electrons to the aromatic ring to initiate the Friedel- 

Craft reaction process. Instead, in pathway (b), the lone pair of electrons present at oxygen at 6th 

position donates them to initiate the Friedel-Craft process. Since the reaction is carried out at highly 

acidic environment, the deprotonation of aniline nitrogen could be a slow process. Hence, the 

Friedel- Craft reaction can be mostly undergone via pathway (b). The di cation intermediate (41) 
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is generated after dehydration and finally the aniline nitrogen gets deprotonated to stabilize the 

structure and forms the intermediate 42, which is in resonance with compound 39. 

However, for synthesizing compound 12, the generated intermediate 38 does not possesses the 

aryloxy group at 6th position. Therefore, the desired product could mostly be achieved via pathway 

(a). In addition, due to the absent of aryloxy group at 6th position, the steric hindrance of the 

Friedel-Craft reaction is low. Therefore, a higher yield (87 %) could be achieved. However, for 

compounds 9 -11, the generated intermediates 28, 29 and 30 possess 3-(trifluoromethyl) phenoxyl, 

3-fluoropehnxoyl and phenoxyl groups respectively. The electron withdrawing capabilities for 

these groups are CF3 ˃ F ˃ H. Since the presence of electron withdrawing groups can destabilize 

the quinoline cation intermediate, the yields can be lower. This may be the reason for observed 

low yields of 25 %, 35 % and 45 % for compounds 25, 26 and 27 respectively. 

In addition, to retain the aromatic ring structure of the quinoline core, an oxidation step is needed. 

It is possible that the As2O5 acts as the oxygen source of this reaction as the yield of the reaction 

was not affected when it is carried out in the presence of argon or not. Upon heating, As2O5 

decomposes to As2O3 and molecular oxygen (Scheme 1.10), thus, As2O5 may provide the required 

oxygen in situ for this reaction.  

Scheme 1.10: Generation of molecular oxygen from As2O540 

As2O5 As2O3 + O2  
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 1.3.2 Evaluation of the synthesized quinoline compounds 9 – 12 on MC65 cell 

protection assayy 

The newly synthesized compounds 9 – 12 were tested for MC65 cell protection capabilities and 

Table 1.3 summarizes the results. This cell based study was carried out by Dr. Izumi Maezawa in 

Professor Lee-Way Jin’s laboratory at the University of California, Davis.37 

 

Table 1.2:  EC50 (µM) and TD50 (µM) values of quinoline compounds 9 - 12 on MC65 

neuronal cell protection assay.37 

Compound EC50 (µM) TD50 (µM) 

9 0.30 ± 0.01 3.31 ± 0.30 

10 0.70 ± 0.01 2.60 ± 0.20 

11 0.53 ± 0.01 4.00 ± 0.38 

12 2.62 ± 0.15 20.54 ± 0.21 

 

As shown in Table 1.2, the new structural analogues of PQ1 and PQ7, do not seem to be highly 

potent in MC65 cell protection assay. Compounds 9 - 12, exhibit moderate EC50 and TD50 values 

whereas, compound 12 does not seem to protect MC65 cells. This suggests that the changes made 

on the PQ1 structure, impair the bioactivity of these molecules. The detailed discussion of the 
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structure activity relationship with the observed bioactivities on these compounds is described in 

the latter part of this chapter. 

 

 1.3.3 Evaluation of the GSK3β inhibition by synthesized quinoline compounds using 

GSK3β assay 

Synthesized quinoline compounds that showed higher MC65 cell protection activities were further 

assessed using GSK3β assay. Out of all twelve compounds, four of the most active compounds, 2 

(EC50 = 0.12 ± 0.01µM), 3 (EC50 = 0.13 ± 0.01 µM), 7 (EC50 = 0.19 ± 0.02µM) and 9 (EC50 = 0.30 

± 0.01µM), were selected to test their enzyme inhibitory activities on GSK-3β using an ADP-

GloTM kinase assay.41,42 

ADP-Glo™ Kinase Assay + GSK3β Kinase Enzyme System (catalog # V9371) was purchased 

from Promega (Madison, Wisconsin, USA) and GSK3β inhibition studies were carried out 

following the protocol published by Promega.41 Detailed description of the conversion curves, 

kinase assays and inhibitor screening was also followed by the ADP-GloTM kinase assay technical 

manual (#TM313) published by Promega.42 

 

GSK3β kinase assay is a luminescent kinase assay that correlates the phosphorylation of GSK3β 

enzyme to the amount of ADP (adenosine diphosphate) produced from a kinase reaction.41 During 

a kinase reaction, ATP (adenosine triphosphate) is converted to ADP. In the GSK3β kinase assay, 

the addition of the “ADP-GloTM” reagent ensures the depletion of remaining ATP and generated 

ADP is simultaneously convert back to ATP from a reagent called “kinase detection reagent”.41 

This will allow the newly synthesized ATP to be measured using a luciferase / luciferin reaction 
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and the light generated is measured using a luminometer.41 Schematic diagram of the general 

procedure of the GSK3β kinase assay is depicted in Figure 1.7.  

 

 

Figure 1.7: Schematic representation of the general procedure of the GSK3β assay. 

 

The obtained luminescent signal can be positively correlated to the generated ADP concentration 

using an ATP- to -ADP conversion curve. Therefore, luminescent signal is also correlates with 

kinase activity. This assay relies on the properties of a proprietary thermostable luciferase (Ultra-

GloTM recombinant luciferase) which is formulated to generate a stable luminescent signal.41  

ADP-Glo™ Kinase Assay + GSK3β Kinase Enzyme System consists of the following:  GSK3β 

active enzyme (0.1 µg/µL) 10 µg, GSK3β substrate (1 mg/mL) 1 mL, 5X reaction buffer A 1.5 

mL, DTT (0.1 M) 25 µL. The components of the ADP-GloTM kinase assay kit include: ADP-GloTM 

Step 1: Kinase reaction  

Step 2: Addition of ADP-GloTM reagent 

Step 3: Addition of kinase detection  

            reagent 
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reagent, kinase detection buffer, kinase detection substrate, 10 mM ultra-pure ATP, and 10 mM 

ADP.42 The assay is performed in a 384 solid white multiwell plate in two steps. First, the kinase 

reaction is allowed to occur between the GSK3β enzyme and GSK3β substrate in the presence of 

ATP and inhibitor. Then ADP-GloTM reagent is added to terminate the kinase reaction and deplete 

the remaining ATP. Finally, the kinase detection reagent which was prepared by mixing the kinase 

detection buffer with kinase detection substrate is added to simultaneously convert ADP to ATP 

and to measure the newly synthesized ATP using a luciferase/ luciferin reaction. Luminescent 

signal was measured using the Glo-Max multi detection microplate luminometer in Prof. Jun Li’s 

laboratory at Kansas State University. Detailed description of the assay protocol is mentioned in 

the experimental section (1.5.2) of this chapter. 

 

 1.3.3.1 Studies of the correlation between kinase activity with (1) concentration of GSK3β, 

and (2) incubation time 

In order to find out the optimum assay conditions, first, the GSK3β kinase activity was determined. 

Briefly, 2 µL of different concentrations of enzyme which contain 0, 0.2, 0.39, 0.78, 1.56, 3.12, 

6.25 and 12.5 ng of GSK3β was added into the wells of 384 solid white microwell plate. In a 

separate tube, 10 mM ATP was diluted to 100 µM ATP and the appropriate volume of this solution 

was mixed with an equal volume of GSK3β substrate (initial substrate concentration is 1.0 µg/µL). 

Then 2 µL of this ATP/substrate mixture was added into each well which has enzyme and was 

incubated at room temperature for 60 minutes. After 60 minutes, 5 µL of ADP-GloTM reagent was 

added into each well and plate was incubated at room temperature for 40 minutes. Finally, 10 µL 

of kinase detection reagent was added and plate was incubated at room temperature for 30 minutes. 
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Luminescence was recorded for each enzyme concentration using Glo-Max multi detection 

luminometer with 0.5 seconds integration time per well. 

Table 1.3 and Figure 1.8 summarize the results and correlation of luminescence vs amount of 

GSK3β for the kinase activity determination.  

Table 1.3: Determination of the kinase activity for GSK3β. 

GSK3β, ng 0 0.2 0.39 0.78 1.56 3.12 6.25 12.5 

Luminescence (RLU) 1100 

± 300 

2886 

± 450 

4750 

± 150 

9015 

± 610 

16972 

± 1400 

30346 

± 2100 

47000 

± 3500 

49000 

± 3200 

 

 

 
Figure 1.8: Correlation graph of the luminescence with amount of GSK3β. 
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It can be seen from the Figure 1.8 that luminescence values are linearly correlate with the amount 

of enzyme up to 3.12 ng and then mostly behave as a plateau.  The middle point of the linear curve 

represents a luminescence value of about 15,000 (RLU) and it is relatively close to the 1 ng of 

enzyme. Therefore, 1 ng of enzyme was chosen as the optimal enzyme to be used in the assay.  

Upon finding out the optimum enzyme concentration, next was found the best reaction time. For 

that 2 µL of enzyme (1 ng) was mixed with 2 µL of substrate/ATP mixed prepared same as for the 

kinase activity determination experiment and incubated at different time intervals such as 1, 15, 

30, 45, and 60 minutes and then followed the same procedure applied to the kinase activity 

determination experiment. Figure 1.9 displays the correlation of luminescence with different 

incubation times of GSK3β enzyme. 

 

 
Figure 1.9: Correlation graph of the luminescence with varying incubation times of the 

kinase reaction. 

 

Since 60 minutes incubation time has given the highest luminescence value it was chosen as the 

optimal incubation time to carry out the kinase assay. 
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 1.3.3.2 Inhibition of GSK3β kinase activity by staurosporine 

In order to validate the assay conditions, a known GSK3β enzyme inhibitor, staurosporine was 

used as a positive control and was analyzed for its GSK3β inhibitory activity prior to analyzing 

the quinoline compounds. The experiment was carried out as per the protocol supplied by Promega 

and as explained in section 1.5.2 of this chapter. Figure 1.10 shows the results of enzyme inhibition 

activities of staurosporine. The literature reported IC50 value of GSK3β inhibition by staurosporine 

was 15 nM.43 However, it was obtained a IC50 value of 23 nM from the experiment. 

 

 

Figure 1.10: GSK3β enzyme inhibition curve for staurosporine. 

 

 1.3.3.3 GSK3β enzyme inhibition activities of synthesized quinoline compounds 
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The detailed procedure for GSK3β enzyme inhibition evaluation for selected quinoline compounds 

are listed on the experimental section of this chapter. Table 1.4 and Figures 1.11 and 1.12 display 

the results obtained for GSK3β assay for those compounds. 

Table 1.4: Enzyme inhibition activities of synthesized quinoline compounds on GSK3β 

assay.37 

Compound GSK3β Inhibition 

PQ1 ˃ 1 mM 

PQ7 ˃ 1 mM 

2 (PQ19) 35 ± 6.36 nM 

3 ˃ 1 mM 

7 ˃ 1 mM 

9 (GS37) 158 ± 19.1 nM 

 

As shown in Table 1.4, compound 2 and 9 exhibit strong GSK3β enzyme inhibition with values 

of 35 ± 6.36 and 158 ± 19.1 nM respectively. It suggests that compounds 2 and 9 may protect the 

neuronal cells by inhibiting GSK3β enzyme. This in turn proves from the observed low EC50 

values for compounds 2 and 9 (0.12 µM and 0.3 µM respectively) from MC65 cell protection 

assay. However, PQ1, PQ7, compounds 3 and 7 do not seem to inhibit GSK3β enzyme suggests 

that, they may protect the neuronal cells through different mechanism of action. The detailed 
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discussion of the structure activity relationship with the observed bioactivities on these 

compounds will be discussed later. 
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Figure 1.11: Graph of luminescence vs log10[concentration of PQ19] on GSK3β assay. Data 

points are the average of three determinations, and error bars are ± S.D. 
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Figure 1.12: Graph of luminescence vs log10 [concentration of GS37] on GSK3β assay. Data 

points are the average of three determinations, and error bars are ± S.D. 
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 1.3.4 Evaluation of the PKC inhibition by synthesized quinoline compounds using 

PepTag® non-radioactive PKC assay 

 

PKC inhibition by substituted quinoline compounds were evaluated using the PepTag® non-

radioactive PKC assay kit (catalog # V5330) purchased from Promega and PKC inhibition studies 

were carried out following the protocol published by Promega (technical bulletin #132) with few 

modifications.44 

PepTag® non-radioactive protein kinase C assay kit consists of the following: PepTag® C1 

peptide (0.4 µg/µL in water) conjugated to a fluorescent dye molecule; PKC enzyme (25 µg/mL) 

with 20 mM tris(hydroxymethyl)aminomethane hydrochloride (C(CH2OH)3NH2. HCl; Tris-HCl), 

pH 7.4, 2 mM ethylenediaminetetraacetic acid (EDTA), 1 mM DTT, 10 mM K3PO4, 0.05 % 

Triton® X-100 and 50 % glycerol; PepTag® PKC reaction buffer (pH 7.4) having 100 mM 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 6.5 mM CaCl2, 5 mM dithiothreitol 

(DTT), 50 mM MgCl2, and 5 mM adenosine triphosphate (ATP); gel solubilization solution; PKC 

activator solution having 1 mg/mL of phosphatidylserine (PS) in water; and peptide protection 

solution.44 

C1 peptide substrate of the PepTag® assay kit consists of eleven amino acid residues (amino acids 

sequence of C1 peptide: proline – leucine – serine – arginine – threonine – leucine – serine – valine 
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– alanine – alanine – lysine) and it is attached to a dye molecule which imparts a bright pink 

fluorescence to the C1 peptide (Figure 1:13).  
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 Figure 1.13: Amino acid sequence of C1 peptide substrate. 

 

The PKC assay is performed at pH = 7.4, in which C1 peptide exists in its nonphosphorylated form 

with a net +1 charge. When the PKC enzyme is phosphorylated by its substrate, it changes from 

net +1 charge to net -1 charge as illustrated in Figure 1.14. During the phosphorylation, only Ser -

7 residue is phosphorylated whereas Ser-3 and Thr-5 will not be phosphorylated due to steric 

hindrance. The phosphorylated and nonphosphorylated C1 peptides are then separated using 

agarose gel electrophoresis (Figure 1.14). During the electrophoresis the nonphosphorylated 

peptide (positively charged) moves towards the negatively charged anode whereas the 

phosphorylated peptide (negatively charged) moves toward the positively charged cathode and 

will be separated as shown in Figure 1.14.44 The phosphorylated and nonphosphorylated bands 

were visualized under UV light and the fluorescence intensities (pixel intensities) of the bands  

were quantified using Kodak Gel Logic 1500 Digital Imaging System and Imagequant 5.2 

software; in Dr. Govindsamy Vediyappan laboratory, in the Department of Biology, Kansas State 
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University. The percentage phosphorylation of the C1 peptide was quantified by means of the ratio 

of the phosphorylated band intensity to the sum of the phosphorylated and nonphosphorylated 

band intensities obtained from the Kodak Gel Logic 1500 Digital Imaging System and Imagequant 

5.2 software. Since this assay is a non-radioactive, it is more convenient than that of radioactive 
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assays that are used to determine the enzyme activity by measuring the transfer of radioactive 

phosphate (32PO4
2-) group from the enzyme to the substrate peptides or proteins. 
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NH3 NH3
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Figure 1.14: Schematic representation of the phosphorylation of C1 peptide by PKC and 

the separation of phosphorylated and nonphosphorylated C1 peptides by agarose gel 

electrophoresis. 

 

 

 1.3.4.1 Correlation of peptide phosphorylation with different concentrations of PKC 

 

Table 1.5 and Figures 1.15 and 1.16 indicate the results of percentage phosphorylation of C1 

peptide with different amounts of PKC (0, 5, 15, 20, 30, and 40 ng) as determined by photoimaging 

analysis. 

 

Table 1.5: Percentages phosphorylation of C1 peptide with different amounts of PKC (0, 5, 

15, 20, 30, and 40 ng) determined by photo imaging analysis. 

 

Amount of 

PKC (ng) 

Volume (Pixel Intensity) 
A+B 

(Intensity 

due to 0.8 

µg of C1 

peptide) 

Corrected 

amount of 

peptide 

phosphorylated 

(A’, µg) 

(0.8× A/(A+B) 

% Peptide 

phosphorylation 

(A’ × 100/ 0.8) % 

Phosphorylated 

peptide (A) 

Non 

phosphorylated 

peptide (B) 

0 0 129513 129513 0 0 

5 17595 133628 151223 0.093 11.63 

15 80358 148940 229298 0.280 35 

20 91876 134506 226382 0.325 40.58 

30 110573 104745 215318 0.411 51.35 

40 140443 94755 235198 0.478 60 
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Figure 1.15: Gel image of C1 peptide phosphorylation with various amounts of PKC. 

 

 

Figure 1.16: Correlation graph of % phosphorylation of C1 peptide with various amounts 

of PKC (ng). 

 

A correlation graph from the percentages of phosphorylation of C1 peptide and varying amounts 

of PKC enzyme was established using photo imaging analyses prior to the analysis of the quinoline 

compounds. As shown in Figure 1.16, phosphorylation of the substrate peptide increased linearly 

with the increased amount of PKC enzyme with the range of 0 – 40 ng. Negative control represents 

the experiment with 0 ng PKC enzyme. The amount of PKC required to phosphorylate 50% of the 

C1 peptide was found to be 30 ng from photo-imaging analysis (Table 1.5). PKC inhibition studies 
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of the quinoline compounds were carried out using 15 ng of PKC enzyme which produces about 

35% of C1 peptide phosphorylation.  

 

 1.3.4.2 Inhibition of PKC phosphorylation by synthesized quinoline compounds 

 

Inhibition of PKC phosphorylation was assessed for compounds 2, 3, 7 and 9. Compounds PQ1 

and PQ7 were analyzed by Dr. Keshar Prasain in Dr. Hua’s laboratory. Previously reported PKC 

inhibitor, staurosporine was used as the positive control to study the assay conditions and to 

examine whether it produced a similar range of IC50 value as that of reported value. 

The PKC assay was performed according to the protocol published by Promega and detailed 

description about the experimental procedures are mentioned in experimental section of this 

chapter. 

Figures 1.17, and 1.18 demonstrate the results for the staurosporine obtained from PKC assay. 

 

Figure 1.17: Gel images of C1 peptide phosphorylation with different concentrations of 

staurosporine. 
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Figure 1.18: Correlation graphs for % phosphorylation of C1 peptide (left) and % 

inhibition of C1 peptide (right) with different concentrations of staurosporine. The graphs 

are provided with (±) standard errors (± 2 - ± 8) obtained from three separate experiments. 

 

As shown in Figure 1.17, staurosporine seems to behave as a potent PKC inhibitor. The 

phosphorylated peptide band was appeared to be very faint with different concentrations of 

staurosporine suggesting that it strongly inhibited the PKC enzyme. The IC50 value for the 

inhibition of PKC phosphorylation by staurosporine was found to be 33 nM and an IC50 value of 
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22 nM has been previously reported.45 These two values are nearly close, hence the PKC assay 

conditions of the experiment can be assumed to be behaved properly. 

 

After studying the assay parameters, quinoline compounds 2, 3, 7 and 9 was studied for the PKC 

inhibition.  

 

Figures 1.19 and 1.20 demonstrate the results for the PKC inhibition by quinoline compound 2 

(PQ19). 

 

Figure 1.19: Gel image of C1 peptide phosphorylation with different concentrations of 

compound 2 (PQ19). 

 

Figure 1.20: Correlation graph of % phosphorylation of C1 peptide with different 

concentrations of compound 2 (PQ19).  
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Nano-molar concentrations of compound 2 was chosen for the initial screening. However, it did 

not result any inhibition of PKC phosphorylation up to 1,000 nM concentration. Therefore, micro 

molar concentrations were chosen. From the data on Figures 1.19 and 1.20, it can be concluded 

that compound 2 (PQ19) did not behave as a potent PKC inhibitor. However, it was the most 

potent compound from MC65 cell protection assay, and has a very good GSK3β enzyme 

inhibition. The resulted higher IC50 value (240 ± 21.2 µM) of compound 2 (PQ19) indicates that 

it is not selective for PKC enzyme. This in turn proves that compound 2 may be a selective inhibitor 

for GSK3β. However, in order to make a clear decision, compound must be tested with other 

kinases such as CDK1, CDK2, CDK5 as well. 

 

Figures 1.21 and 1.22 demonstrate the results for the PKC inhibition by quinoline compound 3 

(PQ15). 

 

 

Figure 1.21: Gel image of C1 peptide phosphorylation with different concentrations of 

compound 3 (PQ15). 
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Figure 1.22: Correlation graphs for % phosphorylation of C1 peptide (left) and % 

inhibition of C1 peptide (right) with different concentrations of compound 3 (PQ15). The 

graphs are provided with (±) standard errors (± 4 - ± 8) obtained from three separate 

experiments. 

 

As shown in Figures 1.21 and 1.22, the IC50 value for the inhibition of PKC phosphorylation by 

compound 3 (PQ15) was found to be 216.3 nM. Though, it is not a very potent PKC inhibitor, the 
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nanomolar concentration of IC50 value suggests that it can also inhibit PKC phosphorylation 

somewhat strongly compared to compound 2. 

Figures 1.23 and 1.24 demonstrate the results for the PKC inhibition by quinoline compound 7 

(PQ25). 

 

 

Figure 1.23: Gel image of C1 peptide phosphorylation with different concentrations of 

compound 7 (PQ25).  

 

 

 

 

 

 

 

Figure 1.24: Correlation graph of % phosphorylation of C1 peptide with different 

concentrations of compound 7 (PQ25).  
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Figures 1.25 and 1.26 demonstrate the results for the PKC inhibition by quinoline compound 9 

(GS37). 

 

 

Figure 1.25: Gel image of C1 peptide phosphorylation with different concentrations of 

compound 9 (GS37). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.26: Correlation graph of % phosphorylation of C1 peptide with different 

concentrations of compound 9 (GS37).  
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According to the results shown above, both compounds 7 and 9 do not show good inhibition 

against PKC enzyme. However, compound 9 was found as a strong GSK3β inhibitor. Therefore, 

compound 9 is a selective inhibitor for GSK3β and a weak inhibitor for PKC. 

 

Table 1.6: Summary of the results of the PKC inhibition activities and GSK3β activities of 

the synthesized quinoline compounds.37 

Compound  PKC inhibition GSK3β inhibition 

PQ1 35 ± 8 nM ˃ 1 mM 

PQ7 42.3 nM ˃ 1 mM 

2 (PQ19) 240 ± 21.2 µM 35 ± 6.36 nM 

3 (PQ15) 216.3 nM > 1 mM 

7 (PQ25) 400 ± 13.7 µM > 1 mM 

9 (GS37) 750 ± 9.3 µM 158 ± 19.1 nM 
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From the data summarized in Table 1.3, a structure activity relationship (SAR) could be derived 

and it will be helpful for the development of more potent and less toxic compounds for the AD 

therapy in future.  

N
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O Me
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Figure 1.27: Important functionalities for the overall activity of quinoline compounds. 

 

The replacement of the trifluoromethyl (CF3) group on the 5-aryloxy ring might not be a good idea 

as the newly designed compounds 10, 11 and 12 did not show better cell protection activities. In 

addition, PQ1 seems to be a better inhibitor for PKC instead of GSK3β enzyme.  

Among all the compounds tested, compound 2 (PQ19) shows the highest cell protection activity 

(EC50 = 120 ± 10 nM) and the GSK3β inhibition activity. By comparing the structures 1 and 2, the 

only difference present is the group which is attached to 8- amino group. The changes made on the 

8-amino group seem not good as when the 4-hydroxybenzyl group is replaced with other moieties, 

the cell protection capability of the molecule seem to be lost. In addition, 5-aryloxy group also 

seem to be important for the better cell protection activities of these molecules. Both compounds 

2 and 9 inhibits the GSK3β enzyme suggests that the replacement of the methoxy group with 
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hydroxyl group does not alter the SAR. However, by looking at the PKC and GSK3β inhibition 

results, it can be seen that there’s no clear relationship on the inhibitory activities of these 

molecules. For example, PQ1, PQ7 and PQ15 seem to have better inhibition against PKC, but 

they are almost not capable to inhibit GSK3β enzyme. Moreover, compound 2 and 9 were found 

to be strong GSK3β inhibitors, but they are not behaving as PKC inhibitors. This suggests that 

these molecules have separate mechanism of action towards these two enzymes. In summary it can 

be concluded that 3-trifluoromethylphenoxyl at 5- position, methoxyl at 6- position and 4- 

hydroxybenzyl at 8-amino position are all important features to the overall activities of the 

designed quinoline compounds. 

 

 1.3.5 Future perspectives 

In our initial efforts on identifying a new set of substituted quinolines as novel GSK3β inhibitors, 

compounds PQ1 (EC50 = 0.15 ± 0.20 µM, TD50 = 2.09 ± 0.02 µM) and 2 (EC50 = 0.12 ± 0.01 µM, 

TD50 = 1.38 ± 0.08 µM) were chosen as the lead compounds to design a new set of molecules. If 

we further expand this project to discover more potent as well as less toxic GSK3β inhibitors, it 

can be seen that compound 7 also a good candidate to generate novel analogues as GSK3β 

inhibitors due to its strong MC65 cell protection activities (EC50 = 0.19 ± 0.02 µM) along with a 

very low toxicity profile (TD50 = ˃ 50 µM). Therefore, following analogues derived from 

compound 7 are proposed herein as a future approach of this project. 
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Figure 1.28: Analogues of compound 7 to be prepared in future. 

 

 1.4 Conclusion 

A library of substituted quinoline compounds were designed, synthesized and evaluated to study 

their inhibitory activities towards GSK3β enzyme and PKC phosphorylation. Synthesized 

quinoline compounds 2 and 3 showed strong MC65 cell protection activities. Except compounds 

5, 8, and 12, the rest of the compounds too displayed low micro molar efficacies towards neuronal 

cell protection. Synthesized quinolines, which showed higher potency towards MC65 cell assays 

were further evaluated to test the selectivity and inhibitory activities towards GSK3β and PKC 

enzymes. Compounds 2 and 9 were found to be strong inhibitors towards GSK3β enzyme with 

IC50 values of 35 ± 6.36 nM and 158 ± 19.1 nM, respectively. In addition, these two compounds 

only showed weak inhibitory activities towards PKC enzymes, suggesting they are selective 

GSK3β inhibitors. From the PKC assay, it was found that PQ1, PQ7 and compound 3 showed 

better inhibitory activities in nanomolar range towards PKC enzyme. Moreover, they are not 

GSK3β inhibitors. SAR studies revealed that the importance of having 3-trifluoromethylphenoxyl 

at C5- position, methoxyl at C6- position and 4-hydroxybenzyl at 8-amino position for the better 
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inhibitory activities of the quinoline compounds towards GSK3β inhibition. In future, the potent 

compounds can be further evaluated for their specificities towards other enzymes such as CDK1, 

CDK2, etc. and can be tested in animal models to study whether they can reduce the level of 

hyperphosphorylated tau or neurofibrillary tangles and thereby lead to develop new AD drug 

candidates. 

 

 1.5 Experimental Section 

 

The structures, and syntheses of compounds described in this section have been reported recently.37 

(Syntheses, neural protective activities, and inhibition of glycogen synthase kinase-3β of 

substituted quinolines.  Jianyu Lu, Izumi Maezawa, Sahani Weerasekara, Ramazan Erenler, Tuyen 

D. T. Nguyen, James Nguyen, Luxi Z. Swisher, Jun Li, Lee-Way Jin, Alok Ranjan, Sanjay K. 

Srivastava, and Duy H. Hua. Bioorganic and Medicinal Chemistry Letters 24, 2014, 3392-3397. 

Copyright (2014), Elsevier. 

 1.5.1 General Methods   

Nuclear magnetic resonance (NMR) spectra were recorded on a Varian Unity plus 400 MHz or 

200 MHz spectrometer for 1H and 13C in deuterated chloroform (CDCl3), unless otherwise 

indicated. Tetramethylsilane was used as the internal reference and the data reported in ppm. Low-

resolution mass spectra were taken from an API 2000-triple quadrupole ESI-MS/MS mass 

spectrometer (from Applied Biosystems). Tetrahydrofuran (THF) and diethyl ether were dried and 

distilled over sodium and benzophenone. Methylene chloride was dried and distilled over calcium 

hydride (CaH2). Chemicals were purchased from Fisher Scientific Co., Aldrich Chemical Co., 
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Chem-Impex International, and VWR. Melting points were tested on Thomas Hoover capillary 

melting point apparatus. 

 

4-Acetamino-5-nitro-2-(3-fluorophenyloxy) anisole (20)  

NO2

NHAc

O
O

Me

F

20  

 

3-fluorophenol (300.0 mg, 2.678 mmol) and potassium t-butoxide (300.5 mg, 2.678 mmol) was 

dissolved in 10 mL dry t-butanol (distilled over sodium) and was stirred at 25 oC for 12 hours 

under argon atmosphere. Then, this mixture was concentrated and vacuum dried to obtain 

potassium 3-fluorophenolate (17) as a yellow solid. The 3-fluorophenolate (17) was dissolved in 

4 mL dry DMF (distilled over calcium hydride) and was added into N-(5-bromo-4-methoxy-2-

nitrophenyl) acetamide (15) (722.5 mg, 2.500 mmol) in 4 mL dry DMF at 60 oC under argon. This 

solution was stirred at 120 oC for 24 hours. The cooled solution was poured into ice-water with 

vigorous stirring. The solid precipitated was collected by filtration and recrystallized using ethanol 

to give 520.5 mg (65% yield) of compound 20 as a light yellow solid. Melting point: 125 – 126 

oC; 1H NMR δ 10.46 (s, 1H, NH),  8.37 (s, 1H),  7.78 (s, 1H), 7.37 (td, J =  8.4, 6.4 Hz, 1H), 6.94 

(td, J = 7.6, 2.4 Hz, 1H), 6.89 (dd, J = 8.0, 2.0 Hz, 1H), 6.81 (dt, J = 9.6, 2.4 Hz, 1H), 3.95 (s, 3H, 

OMe), 2.23 (s, 3H, Me);  13C NMR δ 169.2 (C=O), 164.7 (d, 1JCF = 247 Hz, CF), 156.2 (d, 3JCF = 

11 Hz), 152.9, 145.7, 131.141 (d, 3JCF = 10 Hz), 131.137, 115.4 (d, 4JCF = 3.6 Hz), 112.3 (d, 2JCF 
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= 21 Hz), 110.7, 108.7, 107.8, 107.5, 56.7 (OMe), 25.8 (Me); MS (electrospray), m/z 343.3 

(M+Na)+. 

 

4-Acetamino-5-nitro-2-phenyloxyanisole (21) 

NO2

NHAc

O
O

Me

21  

Compound 21 was prepared following the same procedure used for synthesizing compound 20. 

Potassium phenolate (18) was synthesized from the reaction of phenol (360 mg, 3.825 mmol) with 

potassium t-butoxide (429.3 mg, 3.825 mmol). The reaction of the potassium phenolate (18) with 

compound 15 (982 mg, 3.400 mmol) gave 821 mg (yield 80%) of compound 21 as yellow solid. 

Melting point: 124 – 126 oC; 1H NMR δ 10.46 (s, 1H, NH), 8.25 (s, 1H), 7.80 (s, 1H), 7.49 - 7.39 

(m, 2H), 7.29 - 7.22 (m, 1H), 7.12 - 7.09 (m, 2H), 3.96 (s, 3H, OMe), 2.23 (s, 3H, Me); 13C NMR 
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δ 169.2, 154.7, 154.3, 145.4, 131.4, 130.4, 125.8, 120.4, 109.20, 109.18, 108.48, 108.47, 56.7 

(OMe), 25.7 (Me); MS (electrospray), m/z 325.3 (M+Na)+. 

 

4-Amino-5-nitro-2-(3-fluorophenyloxy) anisole (23) 

 

NO2

NH2

O
O

Me

F

23  

A solution of compound 20 (310.0 mg, 0.968 mmol) in 35 mL of conc. HCl and ethanol (1:7) was 

stirred under reflux for 2 hours. After 2 hours, the reaction was cooled to room temperature and 

was poured onto ice-water mixture, and stirred for 30 minutes. The resulted solid was collected by 

filtration, washed with water, and vacuum dried to give 240 mg of 23 (95 %, yield) as orange solid 

which is sufficiently pure for carried out in the next step. Melting point: 120 - 121oC; 1H NMR δ 

7.70 (s, 1 H), 7.34 (td, J = 8.4, 6.4 Hz, 1H), 6.92 (td, J = 7.6, 2.4 Hz, 1H), 6.87 (dd, J = 8.0, 2.0 Hz, 

1H), 6.81 (dt, J = 9.6, 2.4 Hz, 1H), 6.13 (s, 1H), 5.96 (s, 2H, NH2), 3.90 (s, 3H, OMe); 13C NMR 

δ 163.6 (d, 1JCF = 247 Hz, CF), 156.2 (d, 3JCF = 10 Hz), 154.4, 142.2, 141.9, 131.1 (d, 3JCF = 10 
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Hz), 126.7, 115.7 (d, 4JCF = 3 Hz), 112.2 (d, 2JCF = 20.6 Hz), 108.3, 107.9 (d, 2JCF = 24 Hz), 106.1, 

56.6 (OMe); MS (electrospray), m/z 279.2 (M+H)+. 

 

4-Amino-5-nitro-2-phenyloxyanisole (24) 

NO2

NH2

O
O

Me

24  

Compound 24 was prepared via the same procedure as that of compound 23. Deprotection of 

compound 21 (260.0 mg, 0.839 mmol) gave 214 mg (98 % yield) of 24 as yellow solid. Melting 

point: 162 – 163 oC; 1H NMR δ 7.65 (s, 1H), 7.44 - 7.40 (m, 2H), 7.27 - 7.23 (m, 1H), 7.12 - 7.09 

(m, 2H), 6.01 (s, 1H), 6.10 – 5.3 (bs, 2 H, NH2), 3.92 (s, 3H, OMe); 13C NMR δ 155.8, 154.7, 

142.1, 142.0, 130.4, 125.6, 120.8, 108.0, 104.6, 56.6 (OMe); MS (electrospray), m/z 261.2 

(M+H)+. 

6-Methoxy-4-methyl-8-nitro-5-(3-fluorophenyloxy)quinoline (26) 

NO2

O
O

Me

F

N

Me

26  

A mixture of compound 23 (240.0 mg, 0.863 mmol) and H3AsO4 (395.2 mg; 1.736 mmol) in 3 mL 

85% H3PO4 was heated to 120 oC.  Methyl vinyl ketone (90.8 mg; 1.290 mmol) was added 
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dropwise into this mixture and stirred for 30 minutes. The dark solution was quickly poured onto 

ice-water solution and was basified to pH = ~ 10 with 2N NaOH, extracted 3 times with methylene 

chloride. The combined organic layers were washed with water, brine, dried (MgSO4), 

concentrated, and column chromatographed on silica gel using a mixture of hexane and ethyl 

acetate (2:1) as the eluent to give 99 mg (35% yield) of compound 26 as brown solid. Melting 

point: 167 – 169 oC; 1H NMR δ 8.76 (d, J = 4.3 Hz, 1H), 7.88 (s, 1H), 7.28 - 7.21, (m, 2H), 6.78 

(td, J = 2.4, 0.16 Hz, 1H), 6.76 - 6.56 (m, 2H), 3.89 (s, 3H, OMe), 2.73 (s, 3H, Me); 13C NMR δ 

163.9 (d, 1JCF = 246 Hz, CF), 159.1 (d, 3JCF =10 Hz), 150.9, 148.4, 146.9, 143.9, 140.1, 136.2, 

130.8 (d, 3JCF = 10 Hz), 125.9, 125.3, 111.9, 110.9 (d, 4JCF = 3 Hz), 109.7 (d, 2JCF = 21 Hz), 103.3 

(d, 2JCF = 25 Hz), 57.4 (OMe), 23.4 (Me); MS (electrospray), m/z 329.3 (M+H)+. 

 

6-Methoxy-4-methyl-8-nitro-5-phenyloxyquinoline (27) 

NO2

O
O

Me

N

Me

27  

Compound 27 was prepared using the same procedure as that of compound 26. Reaction of methyl 

vinyl ketone (89.8 mg, 1.275 mmol), 24 (220 mg, 0.846 mmol), H3AsO4 (387.0 mg, 1.689 mmol) 

and 3 mL of 85% H3PO4 gave 118 mg (45 % yield) of compound 27 as brown solid. Melting point: 

170 – 172 oC; 1H NMR δ 8.76 (d, J = 4.3 Hz, 1H), 7.88 (s, 1H), 7.28 - 7.21 (m, 2H), 7.22 (d, J = 

2.0 Hz, 1H), 7.05 (t, J = 6.0 Hz, 1H), 6.81 - 6.78 (m, 2H), 3.89 (s, 3H, OMe), 2.73 (s, 3H, Me); 
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13C NMR δ 158.0, 150.9, 148.6, 146.5, 144.3, 140.8, 136.4, 130.4, 130.0, 125.8, 125.5, 122.7, 

120.8, 115.2, 112.2, 57.4 (OMe), 23.5 (Me); MS (electrospray), m/z 311.2 (M+H)+. 

 

8-Amino-6-methoxy-4-methyl-5-(3-fluorophenyloxy)quinoline (29) 

NH2

O
O

Me

F

N

Me

29  

Compound 26 (35.0 mg, 0.106 mmol) and iron powder (33.6 mg, 0.636 mmol) was mixed with 5 

mL of aqueous 10% acetic acid solution and heated under reflux for 2 hours. The mixture was 

cooled to room temperature, diluted with water, extracted with 25 mL THF first, and followed by 

diethyl ether 2 times. The combined organic layers were washed with water and brine, dried 

(MgSO4), concentrated, and column chromatographed on silica gel using a mixture of hexane and 

diethyl ether (1:1) as an eluent to give 29 mg (92% yield) of compound 29 as yellow solid. Melting 

point: 146 - 147 oC; 1H NMR δ 8.45 (d, J = 4.3 Hz, 1H), 7.19 (dd, J = 8.2, 6.6 Hz, 1H), 7.08 (d, J 

= 4 Hz, 1H), 6.8 (s, 1H), 6.67 (td, J = 8.2, 2.3 Hz, 1H), 6.60 (dd, J = 8.2, 2.3 Hz, 1H), 6.48 (dt, J = 

10.9, 2.0 Hz, 1H), 5.15 (bs, 2H, NH2), 3.85 (s, 3H, OMe), 2.62 (s, 3H, Me); 13C NMR δ 164.0 (d, 

1JCF = 244 Hz), 161.0 (d, 3JCF = 10 Hz), 150.7, 145.6, 143.6, 143.0, 134.0, 130.4 (d, 3JCF = 9 Hz), 
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127.6, 125.1, 124.7, 111.0 (d, 4JCF = 3 Hz), 108.4 (d, 2JCF = 21 Hz), 102.9 (d, 2JCF = 25 Hz), 98.0, 

56.4 (OMe), 22.9 (Me); MS (electrospray), m/z 299.3 (M+H)+. 

 

8-Amino-6-methoxy-4-methyl-5-phenyloxyquinoline (30) 

NH2

O
O

Me

N

Me

30  

Compound 30 was prepared using the same procedure as that of compound 29. Reaction of 

compound 27 (57 mg, 0.184 mmol), iron powder (62.0 mg, 1.100 mmol) and 10 mL aqueous 10% 

acetic acid solution gave 47 mg (92% yield) of compound 30 as brown solid. Melting point: 145 - 

146 oC; 1H NMR δ 8.44 (d, J = 4.3 Hz, 1H), 7.26 - 7.20 (m, 2H), 7.03 (dd, J = 4.4, 0.8 Hz, 1H), 

6.97 (t, J = 3.6 Hz, 1H), 6.79 - 6.76 (m, 3H), 5.15 (bs, 2H, NH2), 3.78 (s, 3H, OMe), 2.63 (s, 3H, 
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CH3); 13C NMR δ 159.7, 150.8, 145.5, 143.3, 143.26, 134.1, 129.7, 128.0, 125.0, 124.9, 121.5, 

115.0, 98.4, 56.8 (OMe), 23.4 (Me); MS (electrospray), m/z 281.4 (M+H)+. 

 

8-Amino-4-methyl-5-(3-(trifluoromethyl)phenoxy)quinolin-6-ol (32) 

N
NH2

HO
O MeF3C

32  

To a solution of compound 28 (98.2 mg, 0.282 mmol) in 2 ml dry dichloromethane (distilled over 

calcium hydride) was added 1 mL of 1.0 M BBr3 in dichloromethane (4.0 eq) 0°C. This mixture 

was warmed to 25 oC and stirred overnight, diluted with aqueous sodium bicarbonate solution, and 

extracted three times with dichloromethane. The combined extract was washed with water, brine, 

dried (MgSO4), and concentrated to give 78 mg (83% yield) of compound 32 as brown solid which 

is sufficiently pure for carried out in the next step. Melting point: 133 – 135 oC; 1H NMR δ 8.46 

(d, J = 4.4 Hz, 1H), 7.38 (t, J = 8.0 Hz, 1H), 7.29 (d, J = 7.2 Hz, 1H), 7.14 (s, 1H), 7.08 (d, J = 3.6 

Hz, 1H), 6.93 (d, J = 7.6 Hz, 1H), 6.73 (s, 1H), 5.40 (bs, 1H, OH), 5.30 – 5.10 (bs, 2H, NH2), 2.55 

(s, 3H); 13C NMR δ 159.1, 147.8, 145.4, 144.2, 141.8, 134.9, 133.1 (q, 2JCF = 37 Hz, C-CF3) 130.9, 
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125.1, 124.5, 124.2, 123.0 (q, 1JCF = 270 Hz, CF3), 119.5, 118.2 (q, 3JCF = 4 Hz), 112.5 (q, 3JCF = 

4 Hz), 100.5, 22.7 (Me); MS (electrospray), m/z 335.1 (M+H)+. 

 

4-Methoxy-2-nitrobenzenamine (34) 

NO2

NH2

O
Me

34  

N-Acetyl-p-anisidine (2.0 g, 12.0 mmol) was mixed with 20% aqueous nitric acid, and this mixture 

was heated under reflux for 1 hour. After 1 hour, it was poured onto the ice-water mixture and 

stirred vigorously for 10 minutes. The solid precipitated was collected by filtration to give crude 

product of 34, which was purified by recrystallization in ethanol to give 413 mg (33% yield) of 

compound 34 as brown solid. 1H NMR δ 7.54 (d, J = 3.2 Hz, 1H), 7.08 (dd, J = 9.3, 4.3 Hz, 1H), 

6.76 (d, J = 9.3 Hz, 1H), 3.79 (s, 3H); MS, m/z 169.0 (M+H)+. 

 

6-Methoxy-4-methyl-8-nitroquinoline (36) 

NO2

O
Me

N

Me

36  

Compound 36 was prepared using the same procedure as that of compound 26. Reaction of methyl 

vinyl ketone (275 mg, 3.93 mmol), 35 (440.0 mg, 2.62 mmol), H3AsO4 (1.20 g, 5.24 mmol) and 

12 mL of 85% H3PO4 gave 500.0 mg (87% yield) of compound 36 as brown solid. Melting point: 

159 - 162 oC; 1H NMR (CDCl3) δ 8.77 (d, J = 4 Hz, 1H), 7.67 (d, J = 2.8 Hz, 1H), 7.40 (d, J = 2.8 
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Hz, 1H), 7.33 - 7.34 (m, 1H), 4.00 (s, 3H, OMe), 2.70 (s, 3H, CH3). 13C NMR δ 156.1, 149.9, 

143.4, 135.3, 130.3, 123.8, 115.6, 106.2, 56.4 (OMe), 19.4 (Me); MS (electrospray), m/z 241.0 

[M+Na]+, 219.1 [M+H]+. 

 

8-Amino-6-methoxy-4-methylquinoline (37) 

NH2

O
Me

N

Me

37  

Compound 37 was prepared using the same procedure as that of compound 29. Reaction of 

compound 36 (250 mg, 1.15 mmol) with iron powder (385.0 mg, 6.88 mmol) in 60 mL of aqueous 

10% acetic acid solution gave 212 mg (98% yield) of compound 37 as brown solid. Melting point: 

88 - 91 oC; 1H NMR δ 8.48 (d, J = 4.4 Hz, 1H), 7.17 (dd, J = 4.4, 0.8 Hz, 1H), 6.59 (d, J = 2.4 Hz, 

1H), 6.55 (d, J = 2.4 Hz, 1H), 5.13 (bs, 2H, NH2), 3.80 (s, 3H, OMe), 2.61 (s, 3H, CH3); 13C NMR 
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δ 158.8, 145.8, 144.8, 142.9, 135.1, 129.9, 122.8, 101.2, 91.5, 55.4 (OMe), 19.4 (Me); MS 

(electrospray), m/z 189.3 [M+H]. 

 

8-(4-Hydroxybenzylamino)-4-methyl-5-(3-(trifluoromethyl)phenoxy)quinolin-6-ol (9) 

9

N
HN

HO
MeOF3C

OH

 

A solution of 50 mg (0.149 mmol) of compound 32 and 20 mg (0.163 mmol) of 4-

hydroxybenzaldehyde in 2 mL dry methanol was stirred for 30 minutes under argon atmosphere 

until the solid dissolved. 3 drops of acetic acid were added, and the brown mixture was stirred for 

30 minutes at room temperature. In to this mixture, 28 mg (0.450 mmol) of sodium 

cyanoborohydride was added, and the solution was stirred for 12 hours. Yellow solids precipitated 

out from the solution. This mixture was diluted with 30 mL of aqueous NH4Cl solution, and 

extracted three times with ethyl acetate. The combined organic layers were washed with water, 

brine, dried (MgSO4), concentrated, and column chromatographed on silica gel using a mixture of 

hexane and diethyl ether (1:1) as an eluent; the obtained product was recrystallized with 2 mL of  

hexane and diethyl ether (1:1) to give 34 mg (52% yield) of compound 9 as yellow solid; Melting 

point: 194 – 195 oC; 1H NMR (DMSO-d6) δ 9.64 (bs, 1H, NH), 9.28 (s, 1H, OH), 8.37 (d, J = 4.0 

Hz, 1H), 7.47 (t, J = 8.4 Hz, 1H), 7.28 (d, J = 7.6 Hz, 1H), 7.20 (d, J = 8.4 Hz, 2H), 7.15 (d, J = 
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4.4 Hz, 1H), 7.01 (s, 1H), 6.97 – 6.93 (m, 2H), 6.72 (d, J = 8.4 Hz, 2H), 6.36 (s, 1H), 4.32 (d, J = 

6 Hz, 2H), 2.51 (s, 3H, Ar-Me; overlap with DMSO-d6 signal);  13C NMR (DMSO-d6) δ 160.2, 

157.1, 149.5, 144.4, 144.37, 141.3, 133.6, 131.6, 130.9 (q, 2JCF = 31 Hz, -C-CF3), 130.1, 129.1 

125.5, 124.6, 124.5 (q, 1JCF = 270 Hz, CF3), 123.1, 119.5, 118.3 (q, 3JCF = 4 Hz), 115.9, 112.0 (q, 

3JCF = 4 Hz), 97.2, 46.7 (CH2N), 23.1 (Me); MS (electrospray), m/z 441.5 (M+H)+. 

 

4-((5-(3-Fluorophenoxy)-6-methoxy-4-methylquinolin-8-ylamino)methyl)phenol (10) 

N
HN

O
Me

MeOF

OH

10  

A solution of 34 mg (0.114 mmol) of compound 29 and 15 mg (0.125 mmol) 4-

hydoxybenzaldehyde in 1 mL of dry methanol was stirred under argon atmosphere at 25 oC for 30 

minutes. To it, 2 drops of acetic acid were added. The mixture was stirred at 25 oC for 1 hour. 

Then, 21 mg (0.342 mmol) of sodium cyanoborohydride was added, and the solution was stirred 

for 12 hours, diluted with 30 mL of aqueous NH4Cl solution, and extracted three times with ethyl 

acetate. The combined organic layers were washed with water, brine, dried (MgSO4), concentrated, 

and column chromatographed on silica gel using a mixture of hexane and diethyl ether (1:1). The 

product was washed with 3 mL of hexane: diethyl ether (1:1) to obtain pure product of 10 29 mg 

(65%) as yellow solid. Melting point: 168 - 169 oC; 1H NMR δ 8.41 (d, J = 4.8 Hz, 1H), 7.28 (d, J 
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= 8.0 Hz, 2H), 7.19 (dt, J = 8.4, 6.8 Hz, 1H), 7.10 (dd, J = 4.4, 0.8 Hz, 1H), 6.79 (d, J = 8.0 Hz, 

2H), 6.66 (td, J = 6, 0.4 Hz, 1H), 6.62 (dd, J = 8.4, 0.4 Hz, 1H),  6.51 - 6.49 (m, 3H), 5.02 (s, 1H, 

OH), 4.44 (s, 2H, CH2N), 3.79 (s, 3H, OMe), 2.65 (s, 3H, Me); 13C NMR  δ 164.0 (d, 1JCF = 247 

Hz), 161.2 (d, 3JCF = 10 Hz), 155.4, 151.2, 145.0, 144.3, 143.4, 133.7, 130.7, 130.4 (d, 3JCF = 10 

Hz), 129.4, 126.4, 125.2, 124.7, 115.8, 111.0 (d, 4JCF = 3 Hz), 108.3 (d, 2JCF = 21 Hz), 103.0 (d, 

2JCF = 21 Hz), 93.9, 56.8 (OMe), 47.8 (CH2N), 23.4 (Me); MS (electrospray), m/z 427.1 (M+Na)+. 

Succinic salt of 10 was prepared using 20 mg (0.047 mmol) of 10 and 5.5 mg (0.047 mmol) of 

succinic acid. 

 

4-((6-Methoxy-4-methyl-5-phenoxyquinolin-8-ylamino)methyl)phenol (11) 

N
HN

O
Me

MeO

OH

11  

Compound 11 was prepared following the same procedure as that of compound 10. Reaction of 

compound 30 (58 mg, 0.207 mmol) with 4-hydroxbenzaldehyde (28 mg, 0.228 mmol) gave 74 mg 

(84%) of compound 11 as a yellow solid. Melting point: 181 - 182 oC; 1H NMR δ 8.41 (d, J = 4.0 

Hz, 1H), 7.31 – 7.23 (m, 4H), 7.08 (d, J = 4.4 Hz, 1H), 6.95 (t, J =7.2 Hz, 1H), 6.81 - 6.79 (m, 4H), 

6.54 (s, 1H), 6.53 (bs, 1H, OH), 6.08 (bs, 1H, NH), 4.45 (s, 2H, CH2N), 3.79 (s, 3H, OMe), 2.67 

(s, 3H, Me); 13C NMR δ 159.8, 155.4, 151.3, 144.9, 144.0, 143.7, 133.8, 130.7, 129.7, 129.4, 
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126.8, 125.04, 125.0, 121.4, 115.7, 115.1, 94.32, 94.30, 56.9 (OMe), 47.8 (CH2N), 23.5 (Me); MS 

(electrospray), m/z 409.2 (M+Na)+, 387.1 (M+H)+. Succinic salt of 11 was prepared in the same 

way as that of compound 10 by starting with 20 mg (0.052 mmol) of 11 and 6.1 mg (0.052 mmol) 

of succinic acid. 

 

8-Amino-6-methoxy-4-methylquinoline (12) 

N
HN

O
Me

Me

OH

12  

 

Compound 12 was prepared following the same procedure as that of compound 10. Reaction of 

compound 37 (100 mg, 0.532 mmol) with 4-hydroxbenzaldehyde (71 mg, 0.585 mmol) gave 114 

mg (73%) of compound 12 as a yellow solid. Melting point: 164 oC; 1H NMR δ 8.43 (d, J = 4.4 

Hz, 1H), 7.24 (d, J = 8.0 Hz, 2H), 7.20 (d, J = 4.0 Hz, 1H), 6.76 (d, J = 8.4 Hz, 2H), 6.46 (d, J = 

2.8 Hz, 1H), 6.43 (bs, 1H, -OH), 6.34 (d, J = 1.6 Hz, 1H), 6.07 (bs, 1H, -NH), 4.38 (d, J = 4.8 Hz, 

2H), 3.90 (s, 3H, -OMe), 2.62 (s, 3H, Ar-Me); 13C NMR δ 159.4, 155.4, 146.2, 144.2, 143.4, 134.8, 

130.8, 129.9, 129.3, 122.9, 115.6, 97.2, 89.3, 55.4, 47.5, 19.5; MS, m/z 295.2 (M+H)+. Succinic 
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salt of 12 was prepared in the same way as compound 10 by starting with 20 mg (0.068 mmol) of 

12 and 8.1 mg (0.068 mmol) of succinic acid. 

  

 

 1.5.2 GSK3β inhibition studies of substituted quinolines using GSK3β kinase assay 

  

GSK3β inhibition studies were carried out following the protocols based on Promega technical 

manual (TM313) and GSK-3β kinase assay manual published by Promega.41,42 

 

GSK3β kinase enzyme portion of the kit is consisted of following: GSK3β, 10 μg (Human, 

recombinant full-length), GSK3β Substrate which has the amino acid sequence of 

YRRAAVPPSPSLSRHSSPHQ(pS)EDEEE derived from human muscle glycogen synthase 1 and 

5X Reaction Buffer A consisted of 200 mM Tris, 7.5, 100 mM MgCl2, 0.5 mg/ml BSA and 0.1M 

DTT. ADP-Glo portion is consisted of following: ADP-Glo reagent, kinase detection buffer, 

kinase detection substrate, 10 mM ultra-pure ATP and 10 mM ADP. 

 

 1.5.2.1 Experimental procedure for the kinase activity determination 

Prior to analyzing the quinoline compounds, the optimal conditions to run the assay was 

determined.  

First, the concentration of GSK3β which gives optimal enzyme activity was found out.  

Different concentrations of GSK3β which contain 0, 0.2, 0.39, 0.78, 1.56, 3.12, 6.25, 12.5 and 25 

ng in 2 µL were prepared by using a stock solution of the enzyme in 1X kinase buffer (composition 

was listed previously). A 10 mM ATP and GSK3 substrate was diluted with 1X buffer to obtain 
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100 µM ATP and 0.8 µg/µL substrate respectively. Then 2 µL from each different concentration 

of the enzyme, 2 µL of substrate/ATP mix was added into the separate wells of 384 low volume 

plate and incubated at room temperature for 60 minutes in a low speed plate shaker. After 60 

minutes, 5 µL of ADP-Glo reagent was added into each well and further incubated at room 

temperature for 40 minutes. Then 10 µL of kinase detection reagent was added into each well and 

incubated at room temperature for 30 minutes. Finally, the luminescence was measured in a Glo-

Max multi detection luminometer within 0.5 seconds integration time. 

 

Next, the best reaction time was found out. The optimum concentration of the enzyme was found 

to be 1 ng from the previous experiment. Therefore, 2 µL of the enzyme which contains 1 ng of 

enzyme was mixed with 1 µL of 100 µM ATP and 1 µL of 0.8 µg/µL substrate in a 384 low volume 

plates. The plates were incubated at 1,15, 30, 45, 60 minutes at room temperature separately in a 

low speed shaker. After the desired time, similar procedure mentioned above (1.5.2.1) was 

followed to add ADP-Glo reagent and kinase detection reagent and the luminescence values were 

obtained in Glo-Max multi detection luminometer within 0.5 seconds integration time. 

 

 1.5.2.2 Experimental procedure for the GSK3β inhibition by staurosporine 

After finding out the optimum enzyme concentration and best time for the inhibition studies, a 

known inhibitor staurosporine was analyzed to compare the IC50 values. In which case, 1 µL of 

different concentrations of staurosporine prepared in 5% DMSO were added into the separate wells 

of 384 low volume plate first followed by 2 µL of the enzyme which contains 1 ng of enzyme was 

added. Then it was added 2 µL of substrate/ATP mix (1 µL of 100 µM ATP and 1 µL of 0.8 µg/µL 

substrate). The similar procedure mentioned above (1.5.2.1) was followed to add ADP-Glo reagent 



 

68 

and kinase detection reagent and the luminescence values were obtained from the luminometer. 

Finally, luminescence vs Log concentration of staurosporine was plotted and the IC50 value of 

staurosporine was calculated from the inhibition curve. 

 

 1.5.2.3 General procedure for the GSK3β inhibition studies of quinoline compounds 

Enzyme, substrate and ATP was diluted to obtain 0.5 ng/µL, 0.8 µg/µL, and 100 µM respectively 

in 1X kinase buffer.  

Then to the wells of the 384 low volume plate, they were added in the following order 

1 µL of inhibitor of various concentrations dissolved in either 5% DMSO or 1X buffer (based on 

the solubility of these compounds) were added into separate wells of 384 micro-well plate and into 

each well 2 µL of enzyme which contains 1 ng of enzyme was added followed by 2 µL of 

ATP/substrate mix (contains 1 µL from 0.8 µg/µL substrate and 1 µL of 100 µM ATP). As a 

control, 1 µL of 5% DMSO or 1X buffer was added without any inhibitors and the other 

components were added accordingly. Plate was incubated at room temperature for 60 minutes in a 

low speed plate shaker. After 60 minutes, 5 µL of ADP-Glo reagent was added into each well and 

further incubated at room temperature for 40 minutes. Then 10 µL of kinase detection reagent was 

added into each well and incubated at room temperature for 30 minutes. Finally, the luminescence 

was measured in a Glo-Max multi detection luminometer within 0.5 seconds integration time. 
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 1.5.3 PKC inhibition studies of substituted quinolines using Pep Tag non-radioactive 

PKC assay 

 

PKC inhibition studies of substituted quinolines were carried out following the protocol supplied 

by Promega (technical bulletin #132).44 The negative control of the experiments was consisted of 

C1 peptide without PKC enzyme and PKC inhibitor (staurosporine or PQs) and the positive control 

was consisted of both C1 peptide and PKC enzyme but without PKC inhibitor. The inhibition of 

phosphorylation of PKC by staurosporine or tested quinoline compounds with various 

concentrations was determined by the decrease in the intensities of their respective phosphorylated 

bands as compared to the phosphorylated bands of the positive controls.    

 

 1.5.3.1 Preparation of different reaction solutions  

Each experiment was consisted of 7 or 8 reactions namely one negative control, one or two positive 

controls, and five of the different concentrations of PKC inhibitor (staurosporine or PQs). The 

procedure was followed based on Promega technical bulletin (#132) and is described below: 

1. Eight 1-mL micro centrifuge tubes were labeled as mixture, negative control, positive control, 

and the remaining five with different PKC inhibitor concentrations.  

2. A 6 µL of deionized water was added to negative control, whereas to positive control 3 µL  

(15 ng) of diluted PKC (PKC dilution solution comprises of 100 µg/mL of bovine serum  

albumin (BSA) and 0.05% of Triton® X-100) and 3 µL of deionized water or 1:2 mixtures of 

DMSO and deionized water (based on the solvent used for dissolving PKC inhibitors) was added.   

3. Different concentrations of PKC inhibitors (5 tubes) were prepared by adding 3 µL (15 ng) of 

diluted PKC and 3 µL of solution of required concentration from the testing compound (each tube 
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had a different concentration of testing compound) in deionized water or 1:2 mixtures of DMSO 

and deionized water.  

4. For the tube labeled as mixture was added 17.5 µL of PKC reaction buffer, 17.5 µL of PKC 

activator solution, 3.5 µL peptide protection solution, and 14 µL (5.6 µg) of C1 peptide at 0 °C 

and incubated for 2 minutes in water bath maintained at 30 °C. Then 7.5 µL of this solution was 

added to each tube labeled as negative control, positive control, and five reactions with varying 

drug concentrations. Each tube had 0.8 µg of C1 peptide in the total volume of 13.5 µL.   

5. Negative control, positive control, and five tubes with different concentrations of testing 

compound were incubated in a water bath maintained at 30 °C for 45 minutes.    

6. The PKC enzyme in each tube was deactivated by placing the tubes in boiling water for 10 

minutes.  

7. The tubes were allowed to cool to room temperature and 0.5 µL of 80% glycerol was added to 

each tubes. At this point, the samples were ready to be loaded into the agarose gel for carrying out 

the horizontal gel electrophoresis. Agarose gel plate need to prepared and ready prior to load the 

samples into the gel. 

 

 1.5.3.2 Preparation of agarose gel for electrophoresis 

 

Agarose (0.4 g) was added to a solution of 50 mL of 50 mM Tris-HCl (pH 8.0) buffer, heated to 

boiling in a microwave till all of the agarose was dissolved.  It was cooled to about 60 °C, and was 

slowly added into a gel tray having required number of comb(s) placed in a mini horizontal 

electrophoresis apparatus. If there were any bubbles in the solution, they were carefully removed 

with a pipette tip. The agarose solution was solidified to a gel after about 20 minutes. The comb(s) 
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were removed carefully to obtain the desired number of wells for sample loading. Finally, the gel 

was covered with 50 mM Tris-HCl solution (pH 8.0) as a running buffer.   

 

 1.5.3.3 Separation of phosphorylated and nonphosphorylated peptides by electrophoresis  

 

The samples from each tube (as described in section 1.5.3.1) were loaded into the separate wells 

of the agarose gel placed in a horizontal gel electrophoresis chamber and electrophoresis was 

carried out at 100 V for 30 minutes. During the electrophoresis, the nonphosphorylated peptides 

(+Ve charged) move towards the negatively charged electrode (anode) and the phosphorylated 

peptides (-Ve charged) move towards the positively charged electrode (cathode) as they get a net 

-1 charge after phosphorylation, and separate from each other.    

 

 1.5.3.4 Quantification of phosphorylated and nonphosphorylated peptides by photo imaging 

technique 

 

After the electrophoresis, gel was removed from the electrophoresis chamber and was quickly 

photographed under UV by Kodak Gel Logic 1500 Digital Imaging System. Quantification of both 

phosphorylated and nonphosphorylated bands were carried out by Imagequant 5.2 software 

(Molecular Dynamics/Amersham Biosciences). Quantification of the bands using Imagequant 5.2 

software is referred as photo imaging. During the quantification, the tiff image file of the gel was 

inverted which results black colour bands with a white background, (opposite to the normal 

picture) and background correction was done to minimize noise. The obtained volumes of the 

bands (pixel intensities) were then used to determine the amounts of phosphorylated and non-

phosphorylated C1 peptide which is discussed in detailed in section 1.3.4.1.  To minimize the 
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effects result from diffusion and overflowing of the lanes during the sample loading, the sum of 

intensities or volumes of both phosphorylated and nonphosphorylated bands of each reaction were 

considered to be the contribution of 0.8 µg of peptide which was present in each reaction. The 

correlation studies between the peptide phosphorylation with different concentration of PKC (0 - 

40 ng) were carried out before testing the synthesized compounds. 
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Chapter 2 - Quantification of Tricyclic Pyrones From 

Pharmacokinetic Studies 

 

 2.1 Introduction 

Alzheimer’s disease (AD) was described by Alois Alzheimer, a German neurologist in 1906. AD 

features by lifelong progressive deterioration of cognitive function, most commonly of the 

memory, and motor functions. It affects patients’ daily activities ultimately leading to loss of 

independence. When the disease progresses, severe cognitive impairment will result in patients, 

who become susceptible to infections and pneumonia. To date, no specific drug has been approved 

by the Food and drug administration (FDA) that can prevent the progression of AD.1,2  

 

AD is the most common cause of dementia in the elderly and about 35 million people worldwide 

have been suffered from AD.3-4 In the United States, it is now considered as the fifth-leading cause 

of death for individuals at age 65 and older accounting for about 5.5 million US population.3,4 

Currently, only four medications are approved by the FDA that can temporarily relieve symptoms 

and these include Donepezil (Aricept®), rivastigmine (Exelon®), galantamine (Razadyne®) and 

memantine (Namenda®).5 Therefore, new AD therapeutic development is highly beneficial. 

 

It has been hypothesized that the accumulation of extracellular amyloid plaques generated from 

amyloid-beta (Abeta or Aβ) protein aggregation and the accumulation of intracellular 

neurofibrillary tangles (NFTs) formed from the aggregation of hyperphosphorylated tau proteins 

initiate a cascade of molecular events leading to synaptic dysfunction, inflammation and neuronal 

death observed in AD brains.6,7,8  It has also been hypothesized that intracellular Aβ induces a 



 

80 

higher toxicity, being at least 10,000 times more toxic than extracellular Aβ oligomers.6 Therefore, 

it is suggested that the intraneuronal accumulation of Aβ is the primary toxic species and might be 

the first step of amyloid cascade leading to the AD. Therefore, key designing strategies for AD 

therapeutics are the targeting methods to reduce the level of Aβ peptide, inhibition its further 

aggregation, and eliminate existing Aβ aggregates.9,10 

 

Drugs targeting Aβ and downstream events could be one of the primary therapeutic targets in AD. 

Previously, our laboratory has synthesized a class of tricyclic pyrone compounds (TPs).11 The lead 

compound, CP2 (code name; Figure 2.1) was found to prevent cell death associated with Aβ 

oligomers and inhibited Aβ aggregation in vitro and Aβ-induced cell death using MC65 cell 

assays.12 Moreover, it has been shown to reduce the level of amyloid plaques and soluble Aβ 

amyloids in vivo and disaggregate Aβ42 oligomers and protofibrils in vitro.12,13 In addition, it was 

found that long-term CP2 treatment not only restored memory but also improved motor functions 

in AD mouse models.14 CP2 was further modified at position C-13 to obtain similar analogues and 

one such compound called TP70 (code name; Figure 2.1) was found to possess strong cell 

protective properties against intracellularly induced Aβ toxicity, inhibitory activities against acyl-

CoA: cholesterol acyltransferase (ACAT), and enhancing properties of ATP-binding cassette 

subfamily A member 1 (ABCA1) cholesterol transporter gene with nanomolar efficacy.15 
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Figure 2.1: Chemical structures of CP2 and TP70. 

 

In this chapter, I summarized the work that I have carried out in analyzing pharmacokinetic 

properties of CP2 and TP70 via quantification of CP2 and TP70 in various tissues and plasma 

samples of mice (wild type and transgenic) using high performance liquid chromatography 

(HPLC). 

 

Oral feeding via drinking water or intravenous (iv) administration of CP2 were conducted by Dr. 

Liang Zhang in Dr. Eugenia Trushina’s laboratory at Mayo Clinic, Rochester, MN and Dr. 

Simon Xie at AfaSci Research Laboratory, Redwood City, CA.  Oral (po) or intravenous (iv) 

route administration of TP70 and tissues collection were done by Dr. Ximin Simon Xie group. In 

this chapter, the data of the distributions of CP2 and TP70 in different tissues and plasma of mice 

are described and discussed.  

 

 2.2 Background 

There are two major types of AD, termed as early onset or familial AD and late onset or sporadic 

AD.16 Patients who display the first symptoms of AD before the age of 65 are classified under 

early onset and this category of AD accounts for about 5% of all AD cases worldwide and is 
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believed to be occurred by genetic mutations.17 The remaining 95% of AD incidence are 

categorized under late onset of AD and still the exact cause for this category remains to be 

elucidated.17 

 

 2.2.1 AD hypothesis and Aβ generation 

Even though, the exact causes of AD are unknown, it is believed that, multiple factors such as 

genetic, environmental, and life style factors likely contribute to the late onset of AD patients. In 

early onset, several mutations related to amyloid precursor protein (APP) on chromosome 21, and 

presenilin 1 (PS1), and presenilin 2 (PS2) on chromosome 12 and chromosome 1, respectively, 

have shown to be involved under genetic factors.18-20 APP is a transmembrane glycoprotein and is 

found in many tissues and organs, including the brain and spinal cord (central nervous system). 

Though its primary function remains unknown, it has been implicated as a regulator of synapse 

formation, neural plasticity and iron export. Presenilins are a family of related multi-pass 

transmembrane proteins that function as a part of the gamma-secretase intramembrane protease 

complex. Vertebrates have two presenilin genes, called PSEN1 (located on chromosome 14 in 

humans) that encodes presenilin 1 (PS1) and PSEN2 (on chromosome 1 in humans) that codes for 

presenilin 2 (PS-2). These proteases have shown to increase the production of amyloid-β 40 (Aβ40) 

or amyloid-β 42 (Aβ42) through cleavage of the APP protein at position 711 and 713 via elevating 

the activity of γ secretase enzyme.20-22 Aβ42 is considered more toxic than Aβ40 and aggregates 

readily resulting most abundant isoform in amyloid plaques.1,23,24 These amyloid deposits are 

found in certain parts such as arterioles of the pia mater that surrounds the cerebrum, cortical 

arterioles, capillaries and vessels in other brain areas.1,25 It is believed that, vascular Aβ 

accumulation leads to a damage of the vascular wall, endothelial dysfunction, and vessel reactivity 
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etc. This will eventually lead to cerebrovascular dysfunction, subsequent neuronal loss and 

dysfunction resulting symptoms of AD.26 However, the afore mentioned mutations have been 

found to cause about less than 30% of the early onset of AD and majority of the disease origins 

still remain to be discovered. The “amyloid cascade hypothesis” proposed by Hardy and Allsop 

suggests that the accumulation and aggregation of Aβ would hamper the events like formation of 

neural fibrillary tangles (NFTs), lowering the neurotransmitters release, disruption of synaptic 

connections, lead to initiate neuronal loss and dementia.27 However, recent studies demonstrate 

that nonfibrillar oligomeric Aβ species are more toxic and better correlate with the severity of the 

disease and synaptic loss than the fibrillary Aβ deposits in AD brain.27  

 

 2.2.2 Tau protein aggregation in AD 

The presence of tau protein aggregates is another feature found in brains of AD patients. Tau is a 

microtubule stabilizing protein in axons, which binds with microtubules and favors its 

polymerization. Tau is more abundant in axons and the size of the tau oligomers can be varying 

between 94 - 1800 kDa with 3 - 10 monomers in a multimeric structure. It has been found that a 

tau protein in normal brain consists of 2 - 3 phosphates per mole of protein, whereas in AD 

condition, this could rise up to 3 - 4 fold hyperphosphorylation compared to that in normal brain. 

Phosphorylation takes place at serine and threonine residues. When tau protein undergoes 

hyperphosphorylation, its conformation changes and tends to detach from the microtubules, and 

accumulates in the cell soma. These insoluble aggregates form prefibrillar oligomeric and fibrillary 

aggregates such as paired helical filaments (PHFs) and neurofibrillary tangles (NFTs).23,28-32 Some 

recent studies show that, isolated oligomers have the potential to induce memory impairments and 

synaptic dysfunction than monomers or NFTs.33 However, neurofibrillary tangles truncated at 
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positions Glu 391 and Ser 421 has resulted apoptosis in cultured cells.34 When tau gets deviated 

from its native form, it can self-aggregate and causes a self-propagation of taupathy. Another factor 

responsible to AD in related to tau proteins is the impairment of the protein clearance mechanisms 

such as the chaperone/ubiquitin proteasomal and authophagy-lysosomal pathways.35,36 

  

 2.2.2.1 Kinases in tau hyperphosphorylation 

Since hyperphosphorylated tau is associated with AD, the attention has also been given to the 

kinases that are involved in the phosphorylation of tau proteins.34 The abnormally phosphorylated 

tau at over 30 serine/threonine residues and proline directed sites have found to be substrates for 

several protein kinases.34 These kinases include glycogen synthase kinase-3 (GSK-3), cyclin 

dependent protein kinase-5(cdk5), protein kinase A (PKA), calcium and calmodulin-dependent 

protein kinase-II (CaMKII), mitogen activated protein (MAP) kinase ERK 1/2, and stress-

activated protein kinases.37-41 Among all these kinases, the expression of GSK-3β and cdk5 are 

higher in brain and these two enzymes have been found to involve in phosphorylation of tau in a 

larger number of sites. In addition, the kinases belong to MAP kinase family such as ERK1, ERK2, 

p70S6 and the stress activated kinases (JNK and p38) have been associated with neurofibrillary 

degeneration in AD by phosphorylating tau at several different sites.42 Tau protein is also 

associated with abnormal glycosylation. It is implicated that abnormal glycosylation promotes the 

phosphorylation of tau by kinases such as PKA, GSK3β and cdk5.37,38 

 

 2.2.3 Diabetes mellitus and the risks of AD 

In addition to the above facts, some researchers showed evidences that diabetes mellitus may also 

contribute to AD. Generally, diabetic people have higher incidence of cognitive impairment and 
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therefore, they are at about 50 - 60% of increased risk for AD.43-45 However, there’s a complex 

mechanism associated with these two diseases and the exact relationship is not known yet. Studies 

have been done so far illustrate that key components which link these two diseases are insulin 

resistance and inflammatory signaling pathways which have close relationship with 

hyperphosphorylation of tau protein and abnormal regulation in the clearance process of amyloid 

beta in comparison to the non-diabetic AD cases.46,47 Deposition of Aβ plaques, mitochondrial 

dysfunction and inflammatory stress in peripheral tissues are common features between AD and 

type 2 diabetic mellitus (T2DM) patients.43-45 However, the underlying factors that governed those 

conditions in T2DM are remain unknown yet.  

 

T2DM is caused by selective destruction of pancreatic β cells and associated neuropathy as a result 

of the aggregation of neuroendocrine hormone called amylin. It is the most common form of 

diabetes and more than 95% of the patients show local amyloid deposits which is mainly composed 

of amylin.  Amylin is an amyloid polypeptide with 37 amino acids and derived from proteolytic 

cleavage of 89-amino acid islet amyloid precursor protein or proamylin.46,47 In diabetic patients it 

has been found that amylin is deposited in temporal lobe gray matter which represent a major part 

of the central nervous system. In addition, these amylin aggregates can be co-localized with Aβ 

aggregates to form amylin-Aβ plaques. Previously, it was believed that glucose uptake into the 

brain was insulin independent and mediated only by GLUT-1 and GLUT-3 transporters. However, 

later scientists have found out that, there are insulin sensitive insulin transporters present both in 

the brain and the blood brain barrier and they are significantly decreases in AD. Moreover, the 

substrate for insulin receptor, which is insulin receptor substrate-1 also binds to the amyloid 

precursor protein (APP). In addition, insulin degrading enzyme not only degrades insulin but also 
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degrades APP, Aβ and amylin and presence of insulin and insulin like growth factor (IGF-1) have 

found to prevent amyloid formation by decreasing APP in AD.46,47 Recent studies also proposed 

that the sequences of Aβ1-42 and amylin1-37 have about 25% identity and 50% similarity and 

therefore, some domains in Aβ and amylin participate in the co-assembly of Aβ-amylin. It is 

believed that, chemical depletion of insulin and insulin like growth factor (IGF) signaling 

mechanism and oxidative injury can lead to cause AD-type neurodegeneration.   

 

 2.2.4 Mitochondrial dysfunction and the risks of AD 

In addition to amyloid and tau associated mechanisms, other factors such as mitochondrial 

dysfunction and oxidative stress have also connected with AD.48-50 Mitochondria are involved in 

critically regulating cell death, a key feature of neurodegeneration. Since the major risk factors for 

AD is aging, studies have indicated that increased disorganization of the mitochondrial structure, 

damage to the components of the mitochondria, decline in mitochondrial oxidative 

phosphorylation, mutations in mitochondrial DNA such as large scale deletions and point 

mutations, accumulation of mitochondrial DNA mutations, and oxidative stress significantly 

contribute to aging and therefore there could be some associations of mitochondria for AD.48-50 

Mitochondria are one of the most metabolically active organelles in the cell. It has been found that 

several key mitochondrial components such as key enzymes of oxidative metabolism, including 

α-ketoglutarate dehydrogenase complex (KGDHC), pyruvate dehydrogenase complex (PDHC), 

cytochrome oxidase (COX) have been reduced in AD. Notably, the degree of dementia has been 

found to correlate well with the reductions in KGDHC activity than with the amount of senile 

plaques and neurofibrillary tangles (NFTs) in experiments performed with the brains of ApoE4-

positive AD patients.48-50  
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Recent studies hypothesize that there is a relationship between Aβ with the mitochondrial 

dysfunction. It has been proposed that mitochondria associated and/or intra-mitochondrial Aβ may 

directly cause neurotoxicity.51 However, the origin of mitochondrial Aβ is not well understood. 

The fact that, so far researchers were not able to find the beta-secretase activity inside the 

mitochondrial membrane, suggests two alternatives: (1) the products of beta-secretases are 

transported to the mitochondria; and (2) Aβ peptide is generated completely on a separated site 

and then moved inside the mitochondria.52 Some of the studies suggest that Aβ enters the 

mitochondria by binding with some proteins such as alcohol dehydrogenase. Recently, it was 

found out that Aβ moves inside the mitochondria using the mitochondrial outer-membrane 

translocase (TOM) and predominantly located in the inner membrane’s cristae.53 In vitro studies 

have shown that the interaction of Aβ with mitochondria induces a decrease in the respiratory 

states 3 and 4, and decrease in the activity of cytochrome c oxidase and some other Kreb’s cycles 

enzymes.52-55 Moreover, recent studies show that Aβ can inhibit the generation of mitochondrial 

ATP and alter the correct functioning of alpha-subunit of ATP synthase.52 Moreover, studies 

performed via chronic administration of subtoxic doses of Aβ have revealed that it can inhibit the 

transportation of nuclear proteins to the mitochondria and results the impairment of its membrane 

potential and increase the production of reactive oxygen species (ROS) via activating the enzymes 

such as NADPH oxidase, xanthine oxidase and the A2 phospholipases.52 All of these effects 

contribute to mitochondrial dysfunction and to the loss of synaptic function and plasticity which 

are highly believed as major mechanisms for memory loss in AD.56-58 Therefore, understanding 

the role of mitochondrial dysfunction in the pathogenesis of AD could be highly relevant for the 

early diagnosis of AD. 
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 2.2.5 The altered cholesterol metabolism in the pathogenesis of AD 

New findings also demonstrate the involvement of cholesterol metabolism in the control of both 

the generation and/or accumulation of Aβ.59 Moreover, the neurons with tangles were found to 

have higher levels of cholesterol compared to the healthy neurons.60,61 Cholesterol is transported 

through the cell membrane via ATP-binding cassette subfamily A member 1 (ABCA1), cholesterol 

transporters and they are also shown to mediate the secretion of Aβ from the cells.62 Acetyl-

coenzyme A acetyltransferases (ACAT)  is essential for the regulation of intracellular cholesterol 

homeostasis and distribution of cholesterol throughout the body by converting free cholesterol to 

neutral cholesteryl ester for storage.63 Therefore, the inhibition of ACAT will reduce the formation 

of cholesterol ester and increasing the level of free cholesterol inside the cells, which then induce 

cholesterol efflux by increasing the cholesterol transporter gene ABCA1. Thus, ACAT inhibitors 

are good candidates for regulating of amyloid pathology by regulating cholesterol homeostasis.64-

66 

The lead compounds CP2 and TP70 possess inhibitory activity against ACAT along with the 

upregulation of ABCA1 gene promoting the efflux of cholesterol, increasing the efficiency of 

cholesterol transporters, restoring axonal trafficking, and enhancing hippocampal synaptic 

activity.15 TP70 also protects the neuronal cell death.  In addition, both CP2 and TP70 were found 

to have high oral bioavailability, excellent blood brain barrier permeability and low toxicity.  These 

synergistic cellular actions could be potential mechanisms underlying the protective effects in vivo. 

 

 2.3 Pharmacokinetic analysis using HPLC 

High performance liquid chromatography (HPLC) is one of the most widely used analytical 

techniques for quantifying and analyze compounds administered via various methods. The 
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technique of HPLC separates the compounds through the mass transfer of analytes between 

stationary and mobile phases. HPLC is divided into two categories such as normal and reverse 

phase. In the normal phase chromatography, a polar stationary phase is used to separate polar 

analytes such as amines, anilines, nitroaromatics, phenols and pesticides, etc., whereas in reverse 

phase, non-polar stationary phase (long chain alkyls such as C-18 or C8) used along with the 

isocratic elution of a mobile phase mixture of two solvents such as water and another solvent of 

lower eluting strength (methanol, acetonitrile) to separate moderately polar to non-polar 

compounds. Mobile phase composition plays an important role in reverse phase HPLC (RP-

HPLC). Most commonly used RP-HPLC solvents are water, acetonitrile (ACN), methanol 

(MeOH) and tetrahydrofuran (THF) and have a low UV cut-off of 200, 210, 280 nm respectively. 

HPLC method can be set up for either isocratic or gradient elution. In isocratic elution the mobile 

phase composition remains constant throughout the analysis. In gradient elution, the mobile phase 

composition varies during the analysis and provides better resolution and decrease analysis time. 

The development of a proper chromatography method for the analysis is a major criteria when 

carrying out HPLC analysis. The most important parameters to consider during method 

development are resolution, sensitivity, precision, accuracy, limit of detection, limit of 

quantitation, linearity, reproducibility, time of analysis and robustness of the method.67-69  

 

Pharmacokinetics is the study of drug disposition in the body and it provides a mathematical basis 

to study the time course of drugs and their effects in the body (or their disappearance or metabolism 

in the body). The pharmacokinetics processes such as absorption, distribution, metabolism and 

elimination are the major factors need to be considered and the plasma concentration of the drug 

will rise and fall according to the rates of these processes. These pharmacokinetics processes 
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usually referred as ADME (absorption, distribution, metabolism and elimination) and a 

fundamental understanding of these parameters is required to understand the concentration of the 

drug in the body when administered.69,70  

 

Absorption of a drug refers to the movement of the drug into the blood stream, with the rate 

dependent on the physical characteristics of the drug and its formulation. A drug which is not given 

directly into the blood stream via intravenous administration, the drug need to be transported from 

the site of administration into the systemic circulation in order for it to be considered as absorbed. 

Distribution of a drug refers to the movement of a drug to and from the blood and various tissues 

of the body such as fat, muscle and brain tissues. Drug distribution is determined by the blood flow 

to the tissues and the ability of the drug to enter the vasculature system. The distribution of the 

drug across the membranes involves one or more of the several processes such as passive diffusion, 

filtration, bulk flow, active transport, filtrated transport, ion-pair transport, endocytosis and 

exocytosis. Elimination of a drug from the body is depend on two processes: biotransformation or 

metabolism of the drug to one or more metabolites mainly in the liver and the excretion of the 

parent drug or its metabolites which is mainly occurred in the kidney.71,72  

 

Once the drug is absorbed into the blood stream, the drug then distributes through the body. As 

the blood recirculates, the drug moves from bloodstream into the body’s tissues. The different 

organs and tissues can receive varying amount of doses of the drugs and the drug can remain for a 

varying amount of time in each organ and tissue. The distribution of drug among tissues of various 

organs depend on several parameters such as vascular permeability, regional blood flow, cardiac 

output, perfusion rate of the tissue, ability of the drug to bind to plasma proteins and the 
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lipophilicity and the solubility of the drugs. The drug can be easily distributed in highly perfused 

organs such as the liver, kidney and heart, whereas it distributed in small quantities through less 

perfused tissues such as muscles, fat and peripheral organs. The unbound drug present in plasma 

is moved from plasma to the tissues until the equilibrium is established. Understanding the 

distribution of a compound or its metabolites in biological fluids, primarily blood, plasma, serum, 

urine or tissue extracts is a major aspect of bioanalysis and is a subject of prime importance in the 

treatment of various diseases.  The determination of the drug concentration in biological fluids in 

animals and man is vital to understand the time course of drug action and it is an essential part of 

the drug discovery and development process. Currently, the main technique used in quantitative 

bioanalysis is HPLC which is coupled with tandem mass spectrometry (HPLC-MS/MS) of electron 

spray ionization (ESI) or atmospheric pressure chemical ionization techniques (APCI).70-72 

 

A compound is considered to have a good pharmacokinetics (PK) profile if it contains following 

properties: (1) acceptable solubility, (2) completely absorbed with high bioavailability (F ˃ 50 % 

for oral drug), (3) a low plasma clearance (<30% blood flow), long half-life (t1/2 ˃ 6 hours) and 

acceptable distribution of volume, (4) have linear kinetics and eliminates by renal excretion and 

hepatic metabolism pathways, and (5) a sufficient or at least acceptable safety margin (safety 

margin ˃10x, depending on different therapeutic targets).70-73 

 

For studying the pharmacokinetic and bioavailability parameters for in vivo applications, the drugs 

are mainly administered through three main routes that include oral (po), intravenous (iv) and 

intraperitoneal (ip). A key factor that determines the desired route is whether the compound is 

intended for a local or systemic or parenteral effect. However, it is also necessary to administer 
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the compound to selected animal by the intended route of administration as well as the 

intravenously as parenteral administration usually produce the highest bioavailability of the 

substances due to the avoidance of the first pass effect of hepatic metabolism. In oral route of 

administration, the drug in the form of solution is administered directly into the lower esophagus 

or stomach by the use of a feeding needle or through drinking water, which what we used in our 

drug treatment. The maximum volume that can be fed by oral route is 10 mL/kg body weight of 

mice. In intravenous administration, substances are administered as a bolus or infusion directly 

into blood vessels on either an acute or chronic basis. Intraperitoneal route (IP) is also commonly 

used to administer substances into mice in which the drug in the form of a solution is injected into 

the peritoneal cavity (a space that surrounds the abdominal organs). The volume of the solution 

that can be administered depends on species, strain, route and frequency of administration, and 

composition of the solution. Generally, for IP injections, the maximum volume of drug solution is 

2 mL in an adult mouse. 73  

There are some of the basic parameters that governs the effectiveness of the separation.73-76 

 

 2.3.1 Pharmacokinetics parameters 

 2.3.1.1 The retention factor (k) 

This is used to describe the migration rate of the analyte on the column and defined as follows. 

Generally, components display an ideal separation under the conditions in which k is between 1 - 

5. For the components which take a longer time to elute from the column compared to the mobile 

phase, will have a larger retention factor ( k  ˃ 20). k  can be manipulated by varying the 

composition of the mobile and stationary phases. 74-76 
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R M Mk t t t= −   

Rt  = retention time of a component 

Mt  = dead time (time required for the mobile phase to pass through the column) 

 

When a drug is administered intravenously, the amount of drug in the body immediately after the 

injection is equal to the dose that applied, Do.   Due to the elimination processes such as metabolism 

and excretion, the amount of intact drug in the body is declined exponentially according to the 

following equation. 74-76 

 

0
ktD D e−=  

D  = the amount of drug in the body at time t 

0D  = the intravenous dose 

k  = elimination rate constant 

 

 2.3.1.2 Elimination half-life ( 1 2t ) 

A more frequently used term to describe the rate at which a drug is removed from the body is the 

half-life. It is the time required for the amount of the drug in the body (plasma drug concentration) 

to decline to half of its value. Since k is inversely proportional to half-life, when the half-life is 

short, k  is high and plasma concentration decline rapidly. This term can be calculated from 

elimination rate constant as well as the plasma drug concentration curve. The half-life and 

elimination rate constant are related by the equation as shown below 
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1 2 0.693t k=   

 

 2.3.1.3 Bioavailability (absorption) 

This value is also called the absorption and it is the ratio of concentrations of a compound in blood 

following intravenous and oral administration. This value is usually expressed as a percentage and 

is defined as the fraction (F) of the administered dose of a drug that reaches the systemic circulation 

in an active form. 

  

  /  *  100oral iAbsorption D D=  

oralD = the distribution of a compound after oral administration 

 iD    = the distribution of the compound after intravenous administration 

 

The bioavailability of orally administered drugs can be reduced by many biological and 

pharmaceutical factors. Biological factors include the effects of gut and liver enzymes, which can 

metabolize a drug during the course of its absorption and first pass through liver, effects of food 

and gastric acid, which can sequester or inactivate a drug. Pharmaceutical factors include the rate 

and extent of tablet disintegration and dissolution. A compound will have a low bioavailability if 

it is associated with high metabolic clearance which results from an extensive first-pass effect.  
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Figure 2.2: A standardized plasma drug concentration curve with different time intervals 

after oral or intravenous administration of a drug.75 

 

The oral bioavailability of a drug is determined by dividing the area under the curve (AUC) of an 

orally administered dose of the drug by the AUC  of an intravenously administered dose of the 

same drug. Figure 2.2 shows an example75 of the standardized plasma drug concentration after oral 

and iv administration of a particular drug over the times. Y axis represents the plasma drug 

concentration and it is often denoted in μg/mL or mg/L. The X-axis represents the time scale 

usually in hours. The main parameters of the plasma drug concentration curve are the maximum 

plasma concentration (Cmax), and the time required to reach Cmax which is denoted by maxT . AUC  

represents the measure of the total amount of drug during the time course for a particular 

administration method.74,75 The bioavailability (F) can be defined as follows. 

 

Bioavailability ( F ) po ivAUC AUC=  



 

96 

poAUC  = the AUC  of the oral administration 

ivAUC  = the AUC  of the intravenous administered drug 

 

In order to calculate the AUC from the Figure 2.2, first, the area of each trapezoid need to be 

calculated. Finally, the addition of all trapezoid areas will represents the AUC. 

 

If the curve represents an increasing trend  

( ) ( )1 2 2 1 1 2    trapezoidArea C C t t= + −  

If the curve represents a decreasing trend 

( ) ( ) ( )1 2 2 1 1 2   –    logArea C C t t lnC lnC= − −  

C = drug concentration 

t = time  

The bioavailability of the drugs administered via other routes can also be determined in the same 

manner as the bioavailability of drugs administered orally. 74-76 

 2.3.1.4 Clearance 

Clearance is the ratio of the dose to the AUC . Therefore, higher the AUC  for a given dose, the 

lower the clearance. Clearance is also a function of the distribution and elimination. It can also be 

defined as follows.74-76 

  /Clearance dose AUC=  

  Clearance Vk=  

V = volume of distribution (volume of the fluid in which the dose is initially diluted) 

k = elimination constant 
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 2.4 Results and discussion 

  

 2.4.1 Distribution of TP70 in various organs of mice 

 

Pharmacokinetic and bioavailability studies of TP70 was carried out by quantifying the amount of 

TP70 in plasma and other vital organs such as brain, heart, liver, lungs, spleen and kidney. The 

purpose of these studies is to determine the optimal dosage of TP70 prior to carry out the efficacy 

studies of TP70 in AD mice. A dose of 25 mg/kg of TP70 in 2% DMSO in 0.5% HPC (based on 

in vitro studies) was administered to the male, 3 months old WT C57BL/6NHsd (Harlan) mice by 

intraperitoneal route (ip route). A detailed description about the administration of TP70 into mice 

and analytical procedures are provided in the experimental section of this chapter. After carrying 

out the HPLC analysis for plasma and each organ, the distribution of TP70 in plasma and other 

organs were determined by plotting a calibration graph with the ratios of peak areas of TP70 to 4-

methoxyphenol (as an internal standard in the HPLC measurement) vs. molar ratios of TP70 to 4-

methoxyphenol as mentioned in the experimental section of this chapter.  The calibration graph 

for TP70 is shown in Figure 2.3.  
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Figure 2.3: Correlation of ratios peak areas of authentic 4-methoxyphenol and pure TP70 

from HPLC chromatogram and molar ratios of TP70 and 4-methoxyphenol injected. 

 

The calibration graph was obtained by injecting a volume of 100 µL of solutions of different 

concentrations of authentic TP70 and pure 4-methoxyphenol into the HPLC. The peak areas 

corresponding to TP70 and 4-methoxyphenol was integrated from HPLC chromatogram, and the 

ratios of peaks were obtained. The results of the ratios of HPLC peak areas and the ratios from 

TP70 and pure 4-methoxyphenol concentrations were plotted, and a linear correlation line was 

obtained from the graph. 
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Figure 2.4: Representative HPLC chromatograms.  A is the HPLC chromatogram of the 

control (kidney without TP70).  B is the HPLC chromatogram of 1:1 mol ratio of 4-

methoxyphenol and pure TP70. C is the HPLC chromatogram of the kidney extract with a 

known amount of 4-methoxyphenol. The peak at 30 minutes retention time in C has the 

same mass as pure TP70 which was confirmed by mass spectrometry.    

 

The amount of TP70 in tissue extracts were determined by calculating the peak areas ratios of 

TP70 to 4-methoxyphenol from the HPLC chromatogram.  Figure 2.4.C represents the HPLC 

chromatogram of the tissue (kidney) extract injected with the known amount of 4-methoxyphenol 

and the peak at 30 minute corresponds to the amount of TP70 in the tissue extract and had the same 

retention time as that of authentic TP70. The representative mass spectrum of the eluent 

corresponding to the peak at 30 minute is highlighted in Figure 2.5. 
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Figure 2.5: Mass spectrum of the eluant corresponding to the peak at 30 minutes (of Figure 

2.4.C) which is identical to pure TP70. 

The summary of the results of the amounts of TP70 in various organs and the half-life values are 

shown in Table 2.1 and Figure 2.6. 
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Table 2.1: Results of PK study of TP70 (25 mg/kg body weight; ip route; n = 3) and 

distribution in various organs of mice.  

 

 

 

 

 

Figure 2.6: Results of PK study of TP70 (25 mg/kg body weight; ip route; n = 3) and 

distribution in various organs of mice.  Each bar represents the average concentration of 

TP70 measured from 3 mice and is provided with (±) standard error. 

 

Time (hr) 
Average concentrations of TP70 (mg/L) 

Plasma Brain Heart Liver Lung Kidney Intestine Spleen 

0.5 5.6 ± 0.5 18.6 ± 1.9 10.9 ± 0.65 13.4 ± 2.8 11.8 ± 1 16.7 ± 1.4 12.3 ± 3.3 11.3 ± 0.4 

1 3.7 ± 0.03 12.5 ± 1 0.9 ± 0.38 18.4 ± 4.9 5.3 ± 2.3 11.2 ± 1.3 8.8 ± 1.9 7.8 ± 1.6  

2 0.6 ± 0.07 8.5 ± 0.2 0.2 ± 0.04 5.7 ± 1.8 3.8 ± 1.3 9.9 ± 2 3.5 ± 2.2 2.5 ± 1.98 

4 0.2 ± 0.13 3.6 ± 0.4 0.03 4.9 ± 1.4 2.8 ± 0.7 7.2 ± 3.7 2.4 ± 0.28 0.8 ± 0.43 

6 0.02 2.5 ± 0.4 0.01 2 ± 0.8 0.6 ± 0.5 6 ± 1.4 0.2 ± 0.25 0.15 

24 0 1.12 ± 0.08 0 0 0 0.8 ± 0.6 0 0 

t1/2 (hr) 1.06 1.36 0.6 2 1.57 4.2 1.5 1.3 
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The distribution of TP70 was analyzed in 0.5, 1, 2, 4, 6 and 24 hours intervals for each organ. The 

TP70 was detected in major organs such as brain, heart, liver, lungs, spleen and kidney in 0.5 hours 

from the ip administration. Out of these organs, liver had the highest distribution of TP70 with the 

respective amount of 65 µg when considering the total amount of drug over 24 hours and brain 

had the next higher level of drug which implies the good penetration of the drug through the blood 

brain barrier. It can be seen that, the amount of TP70 gradually decreases from 0.5 hour to 6 hours 

in most of the organs. However, in the heart, the concentration of TP70, seems to be dramatically 

changes from 0.5 hour to 1 hour. Moreover, the amount of TP70 was decreased to 1.12 mg/L in 

brain and 0.8 mg/L in kidney after 24 hours from the administration and there had no detectable 

amount in other organs such as heart, lungs, intestine, spleen and liver. Notably, TP70 accumulates 

in the brain in effective quantity. These results indicate that TP70 can be absorbed, distributed and 

metabolized in various tissues successfully and able to excrete from the body of mice.  

 

 2.4.2 Pharmacokinetics (PK) and bioavailability of TP70 in plasma of mice/rats  from 

the intravenous (iv) and oral gavage (po) administration 

 

The quantification of TP70 in plasma samples were carried out for mice samples. A dose of 25 

mg/kg of TP70 dissolved in 2% DMSO in 0.5% HPC was administered to the male, 4 – 6 months 

old WT C57BL/6 mice (∼ 25 g) either intravenously (iv) or orally (po). The distribution of TP70 

in plasma samples were analyzed by withdrawing blood from tail vein at 5, 15, 30, 60, 120, 240, 

and 360 minutes’ intervals.  

To further examine the pharmacokinetics of TP70 in relatively larger species, rat models were 

used. A dose of 25 mg/kg of TP70 was administered to the male, 3-months old WT Sprague-
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Dawley rats (175 – 235 g) by iv and po routes. TP70 in plasma samples were determined by 

plotting a calibration graph with the ratios of peak areas of TP70 to 4-methoxyphenol vs. molar 

ratios of TP70 to 4-methoxyphenol as mentioned in the experimental section of this chapter.  

  

Tables 2.2, 2.3 and Figures 2.7, 2.8 summarize results of PK and bioavailability of TP70 in plasma  

from the iv and po administration for mice and rats. 

Table 2.2: Results of PK study of TP70 (25 mg/kg body weight; oral and iv routes; n = 3) in 

plasma for mice samples. 

 

 

 

 

 

  Average concentration of TP70 in plasma (mg/L) 
po route iv route 

5  16.6 ± 6.1 
15 2.8 ± 0.09 10.2 ± 4 
30 3.9 ± 0.14 8.2 ± 3.5 
60 6.9 ± 0.17 3.7 ± 0.8 
120 4.2 ± 0.19 2.02 ± 0.6 
240 2.4 ± 1.37 1.8 ± 0.5 
360 1.2 ± 0.23 0.9 ± 0.3 

AUC 
(mg.min/L) 678 989 

F 0.68 1 
t1/2 (hours) 2.05 1.06 
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Figure 2.7: Results of PK study of TP70 (25 mg/kg body weight; oral and iv routes; n = 3) 

in plasma of mice.  Each bar represents the average concentration of TP70 measured from 

3 mice and is provided with (±) standard error. 

 

Table 2.3: Results of PK study of TP70 (25 mg/kg body weight; oral and iv routes; n = 3) in 

plasma for rat samples. 

Time 

(min) 

Average concentration of TP70 in plasma (mg/L) 

po route iv route 

5 0 39.4 ± 6.86 

15 7.9 ± 3.4 34.9 ± 2.13 

60 19.2 ± 0.62 18.2 ± 1.56 

120 13.6 ± 2.63 15.4 ± 3.12 

240 9.2 ± 2.71 12.4 ± 2.33 

360 5.6 ± 0.95 5.5 ± 1.82 

AUC      3330 5221 

F 0.64 1 

t1/2 

(hours) 2.98 2.3 
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Figure 2.8: Results of PK study of TP70 (25 mg/kg body weight; oral gavage and iv routes; 

n = 3) in plasma for rats.  Each bar represents the average concentration of TP70 measured 

from 3 mice and is provided with (±) standard error. 

 

As shown from Table 2.2 and Table 2.3, the highest amount of TP70 can be detected in plasma 

after 5 minutes from the iv administration for both mice and rat species with a concentration of 

16.6 mg/L and 39.4 mg/L respectively. The time required to detect TP70 in plasma was higher 

when the drug was administered via po route and the highest concentration of TP70 can be seen 

after 1 hour for both mice and rat species with a concentration of 6.9 mg/L and 19.2 mg/L 

respectively. For the iv route in mice, at first the drug concentration reduces quickly from 16.6 

(mg/L) at 5 minutes to 3.7 (mg/L) at 1hour; then, it slowly decreases to 0.9 mg/L within 6 hours 

of the drug administration. In contrast, there is a quick increase from 15 minutes to 1 hour for TP70 

with a concentration of 2.8 (mg/L) and 6.9 (mg/L) respectively, when po administration in mice.  

After reaching the highest concentration of TP70 at 1 h, TP70 was found decrease steadily from 1 

hour to 6 hours. A similar pattern can be seen for rat samples for both iv and po route 

administration. Moreover, there’s a higher amount of TP70 can be seen in rat samples than that of 

mice samples at 6 hours for both iv and po route administration. Bioavailability (F) and elimination 
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half-life (t1/2) for po route is nearly similar for both species, whereas, t1/2 values for iv route is 

relatively higher for rat samples compared to that of mice. Overall, these results indicate that TP70 

has good clearance property and the values of area under the curve (AUC) and bioavailability (F) 

point out that the drug can be administered for efficacy evaluation in vivo. 

 

 2.4.3 Pharmacokinetic (PK) and bioavailability of TP70 in plasma and brain of the 

AD mice administered with TP70 in drinking water 

Apart from the studies carried out for wild type mice (WT mice), we further examined the 

pharmacokinetics and bioavailability of TP70 in AD mouse transgenic models. Since, WT mice 

may not completely represent the PK profile of AD mouse models, the following experiment was 

conducted using APP/PS1 AD mouse models. APP/PS1 (amyloid precursor protein/presenilin 1 

hybrid) mouse contains human transgenes for both APP bearing the Swedish mutation and PSEN1 

containing an L166P mutation, therefore good candidates for represent AD mouse models. A dose 

of 25 mg/kg (mice body weight) of TP70 in 6 ml of drinking water per mouse was administered 

for male, 10-12 month-old APP/PS1 mice housed in cages consisting of 3 - 4 mice per cage. Each 

group cage was supplied with a bottle of water with dissolved TP70 (70.7 mg TP70 per 504 mL 

of water) and mice were allowed to drink the TP70 water freely. Blood samples were collected 

from each mouse on day 7, day 14 and 4 months after the initial introduction of TP70 water and 

analyzed for quantifying the amount of TP70 on day 7, day 14 and 4 months. 

 

Table 2.4: Results of PK study of TP70 (25 mg/kg body weight; drinking water) in plasma 

samples of APP/PS1 mice. 
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Mouse ID 
Concentration of TP70 in plasma (mg/L)  

Day 7 Day 14 4 months 

   P1- 1 1.96 0.94 2.55 

   P1- 2 1.26 2.29 1.92 

   P1- 3 1.29 5.18 5.46 

   P1- 4 2.25 3.99 - 

Average 

concentration of 

TP70 in plasma- cage 

1 (mg/ L) 
 

          1.69 ± 0.5  

 

             3.08 ± 1.86  3.31 ± 1.89 

   P5 - 4 1.17 3.86 0.83 

   P7 - 5 1.70 2.64 1.42 

   P7 – 6 4.40 5.03 2.29 

   P7- 7 1.15 1.99 0.90 

Average 

concentration of 

TP70 in plasma- cage 

2 (mg/ L) 
 

          2.11 ± 1.56  

 

             3.38 ± 1.35  1.36 ± 0.67 

   P8 - 1 3.23 3.02 3.13 

   P8 – 7 1.35 1.39 2.00 

   P9- 11 1.76 1.23 3.64 

Average 

concentration of 

TP70 in plasma- cage 

3 (mg/ L) 

2.11 ± 0.99 

 

 

1.88 ± 0.99 2.92 ± 0.84 

Average 

concentration (mg/L) 

1.97 ± 0.24 2.78 ± 0.8 2.53 ± 1.03 
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Figure 2.9: Results of PK study of TP70 (25 mg/kg body weight; drinking water) in plasma 

for AD mice following TP70 in drinking.  Each bar represents the average concentration of 

TP70 measured from 11 mice and is provided with (±) standard error. 

 

As depicted in Table 2.4 and Figure 2.9, treatment of TP70 for longer period of time seems to be 

well tolerated in AD mice. Concentration of TP70 seems to be gradually increasing from day 7 to 

day 14 with a concentration of 1.97 mg/L and 2.78 mg/L respectively. However, TP70 

concentration in plasma is not significantly change from day 7 to 4 months. This indicates that, 

once it reached a particular range of concentration, plasma concentration remains nearly constant 

and TP70 may be distribute through the major organs of AD mice upon administrating for certain 

period of time. Therefore, TP70 seems to have a good clearance property. 

To further study the cytotoxicity of TP70 for WT and AD mouse models over long period of time, 

a dose of 50 mg/kg of TP70 was administered via ip to wide type (WT) C57BL/6 and 5xFAD mice 

for 2 months. 5xFAD mice contains five familial mutations of human APP and PSEN1 genes to 

generate a large amount of Aβ42, thus represents a suitable AD mouse model. After 2 months, 
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animals were assessed for cognitive and motor function and sacrificed to quantify the amount of 

TP70 in plasma and brain tissues after 2 months.  

 

 

Table 2.5: Results of PK study of TP70 (50 mg/kg) in plasma and brain of WT type and 

5xFAD mice. 

Mouse ID 

Concentration of 

TP70 in plasma 

(mg/L) 

Concentration 

of TP70 in 

brain (mg/L) 

  

   WT mice   

   2B 4.92 2.44 

   3N 2.92 2.24 

   3B  2.51 2.46 

Average concentration of TP70 in 

WT type mice (mg/L) 
 

      3.45 ± 1.3      2.38 ± 0.12 

5XFAD mice   

   2L 2.33 1.22 

   3R 4.91 1.58 

   3L 6.93 2.03 

   3R 11.93 1.73 

Average concentration of TP70 in 

5XFAD mice type mice (mg/ L) 
   6.52 ± 4.1   

    1.64 ± 0.34 

 

 

There’s a higher concentration of TP70 present in plasma at 2 months for AD mice compared to 

WT mice. When compared to plasma, brain has low concentration of TP70 in both WT and 

5XFAD mice. Moreover, AD mice brain have relatively lower concentration of TP70 (1.64 mg/L) 
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compared to that of WT mice (2.38 mg/L). However, when considering the total concentrations of 

TP70 in both plasma and brain, AD mice have about 8.06 mg/L and WT mice have about 5.83 

mg/L. Therefore, it seems that TP70 tolerates well in AD mice. Moreover, behavioral assessment 

of the mice suggests that high dose treatment of TP70 doesn’t cause any adverse effects. 

  

 2.4.4 Distribution of CP2 in plasma of rats 

Distribution of CP2 in the plasma were quantified for rat samples. A calibration graph was plot 

with the ratios of CP2 to 4-methoxyphenol vs. molar ratios of CP2 to 4-methoxyphenol as 

mentioned in the experimental section of this chapter. The calibration graph for CP2 is shown in 

Figure 2.10. 

 

 

 

Figure 2.10: Correlation of ratios peak areas of pure CP2 and authentic 4-methoxyphenol 

from HPLC chromatogram and molar ratios of pure CP2 and authentic 4-methoxyphenol 

injected. 
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Solutions of 100 μL of various concentrations of pure CP2 and authentic 4-methoxyphenol (as an 

internal standard for measurement in HPLC) were injected into an HPLC, the peak areas 

corresponding to CP2 and 4-methoxyphenol were integrated from the HPLC chromatogram, and 

the ratios of the peaks were obtained. These results of the ratios of HPLC peak areas and the ratios 

from CP2 and 4-methoxyphenol concentrations were plotted, and a linear correlation line was 

obtained from the graph. 

 

The amount of CP2 in the cell or tissues extract was calculated by determining the peak areas ratio 

of CP2 to 4-methoxyphenol and determining the number of moles of CP2 from the correlation 

graphs, as the number of moles of 4-methoxyphenol added to the cell and tissue extract was known.  

HPLC chromatograms of the plasma extract injected with a known amount of 4-methoxyphenol 

showed a peak at 14 minutes which had the same retention time compared to the authentic CP2 as 

shown in Figure 2.11.  
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Figure 2.11: Representative HPLC chromatograms.  A is the HPLC chromatogram of the 

pure CP2.  B is the HPLC chromatogram of pure 4-methoxyphenol. C is the HPLC 

chromatogram of the control (plasma without CP2) with a known amount of CP2. D is the 

HPLC chromatogram of the plasma with a known amount of 4-methoxyphenol. The peak 

at 14 minutes retention time in D has the same mass as pure CP2 which was confirmed by 

mass spectrometry.    

The representative mass spectrum of eluant corresponding to the peak at 14 minutes is highlighted 

in Figure 2.12.  
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Figure 2.12: Mass spectrum of the eluant corresponding to the peak at 14 minutes (of 

Figure 2.11.D) which is identical to pure CP2. 
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 2.4.5  Pharmacokinetic (PK) and bioavailability of CP2 in plasma of rats from the 

intravenous (iv) and oral gavage (po) administration 

 

The quantification of CP2 in plasma samples were carried out for rats samples. A dose of 25 mg/kg 

(rat body weight) of CP2 dissolved in 2% DMSO was administered to the male, 3-month old WT 

Sprague-Dawley rats (175 g – 235 g) either intravenously (iv) or orally (po). The distribution of 

CP2 in plasma samples were analyzed by withdrawing blood from tail vein at 5, 15, 30, 60, 120, 

240, and 360 minutes’ intervals.  CP2 in plasma samples were determined by plotting a calibration 

graph with the ratios of peak areas of CP2 to 4-methoxyphenol vs. molar ratios of CP2 to 4-

methoxyphenol as mentioned in the experimental section of this chapter.   

 

Table 2.6: Results of PK study of CP2 (25 mg/kg body weight) in rats; n =3. 

 

Time (min) 
Average concentration of CP2 in plasma (mg/L) 

IV route po route 
5 24.84 ± 0.62  
15 9.86 ± 0.61 4.71 ±  0.4 
60 6.57 ± 0.41                 14.0 ± 1.7 
120 3.99 ± 0.22 7.02 ± 0.63 
240 1.24 ± 0.23 2.46 ± 0.83 
360 0.32 ± 0.3 1.4 ± 0.37 

AUC 
(mg.min/L) 1248.69 935.58 

F 1 0.75 
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Figure 2.13: Results of PK study of CP2 (25 mg/kg body weight; oral gavage and iv routes; 

n = 3) in plasma for rats.  Each bar represents the average concentration of CP2 measured 

from 3 mice and is provided with (±) standard error. 

 

As shown from Table 2.6, the highest amount of CP2 can be detected in plasma after 5 minutes 

from the iv administration for rat species with a concentration of 24.8 mg/L. The time required to 

detect the CP2 in plasma was higher when the drug was administered via po route and the highest 

concentration of CP2 can be seen after 1hour with a concentration of 14.0 mg/L. For the iv route 

in rats, at first the drug concentration reduces quickly from 24.8 (mg/L) at 5 minutes to 6.6 (mg/L) 

at 1 hour; then, it is slowly decreasing to 0.3 mg/L within 6 hours of the drug administration. In 

contrast, there is a quick increase from 15 minutes to 1 hour with the CP2 concentration of 4.7 

(mg/L) and 14.0 (mg/L) when po administration in rats.  After reaching the highest concentration 

of CP2 at 1 h, CP2 was found decreasing steadily from 1 hour to 6 hours. Overall, these results 

indicate that CP2 has good clearance property and the values of area under the curve (AUC) and 

bioavailability (F) point out that the drug can be administered for efficacy evaluation in vivo. 
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 2.5 Conclusion 

Pharmacokinetics and bioavailability of compounds TP70 and CP2 were determined in mice and 

rat species. When IV administration of both compounds, considerable plasma concentration can 

be detected in both mice and rat species after 5 minutes. In PO route, for both compounds, the peak 

plasma concentration was reached after 60 minutes for both species. When considering about the 

distribution of TP70 in organs, the highest amount of TP70 was detected in brain after 30 minutes 

from ip route administration. Since AD drugs are targeting the brain region, the distribution of 

TP70 in the highest amount in brain region suggests that it can be a good candidate to proceed 

further. In addition, the clearance profile of TP70 suggests that it is not accumulated in any of the 

vital organs in relatively higher amounts for longer period of time. Moreover, the experiments 

performed with AD mice suggest that the administration of TP70 via drinking over longer period 

of time (4 months) did not cause significant accumulation of the drug in brain or plasma tissues.    

Therefore, it provides advantages when considering the toxicity and adverse effects of TP70. Area 

under the curve and bioavailability value F were calculated, and data show that both TP70 and 

CP2 has a good PK profile and bioavailability. Overall, these data will be helpful in estimating the 

optimum dose for efficacy studies in future.  

 

 2.6 Experimental Section 

 2.6.1 TP70 administration in mice and plasma/ tissue collection  

 

A dose of 25 mg/kg (mice body weight) of TP70 as trifluoroacetic acid (TFA) salt was dissolved 

in 2% DMSO in 0.5% hydroxypropyl-cellulose (HPC) was administered to the male, 3 months old 
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WT C57BL/6 (Harlan) mice (n = 3) via ip route and organ was collected in pre chilled (dry ice) 

tube and stored at –20 °C. 

 

A dose of 25 mg/kg (mice body weight) of TP70 as trifluoroacetic acid (TFA) salt was dissolved 

in 2% DMSO in 0.5% hydroxypropyl-cellulose (HPC) was administered to the male, 3 months old 

WT C57BL/6 (Harlan) mice (n = 3) and WT Sprague-Dawley rats (n = 3) by oral (po) or 

intravenous injection (iv).  Cardiac blood collection was withdrawn from tail vein at 5, 15, 30, 60, 

120, 240, and 360 minutes’ intervals and treated with ethylenediamine tetraacetic acid (EDTA).  

About 250 μL plasma was collected from each mouse.  All the plasma samples collected were 

stored at -78 0C until further analysis was carried. 

   

 2.6.2 TP70 treatments in mouse via drinking water and plasma samples collection 

 

A dose of 25 mg/kg (mice body weight) of TP70 in 6 ml of drinking water per mouse was 

administered for male, 10 - 12 months’ old APP/PS1 mice housed in cages consisting of 3 - 4 mice 

per cage. Each group cage was supplied with a bottle of water with dissolved TP70 (70.7 mg TP70 

per 504 ml of water) and mice were allowed to drink the TP70 water freely. Blood samples were 

collected from each mouse on day 7, day 14 and 4 months after the initial introduction of TP70 

water and was treated with ethylenediamine tetraacetic acid (EDTA).  About 250 μL plasma was 

collected from each mouse.  All the plasma samples collected were stored at -78 0C until further 

analysis was carried.   
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 2.6.3 TP70 treatments in mouse brain and plasma samples 

 

A dose of 50 mg/kg (mice body weight) of TP70 in 6 ml of drinking water per mouse was 

administered for male 4 months old, C57BL/6 and 5xFAD mice for 2 months. Mice were sacrificed 

by cervical dislocation. The isolated brain tissues and plasma were stored at -78 0C until further 

analysis was carried. 

   

 2.6.4 Extraction of TP70 from the cells and the tissues of mice 

 Plasma samples were added 3 mL of deionized water and 10 mL of 9:1 mixture of ethyl acetate 

and 1-propanol. This solution was sonicated for 6 minutes. The organic layer was separated from 

a separatory funnel.  The aqueous layer was extracted twice with 10 mL of a 9:1 mixture of ethyl 

acetate and 1-propanol.  The organic layers were combined, washed with 10 mL of brine, dried 

over anhydrous MgSO4, and concentrated to dryness on a rotary evaporator.  The residue was 

diluted with 1 mL of 1-propanol and filtered through a 0.2 µm filter disc (PTFE 0.2 µm, 

Fisherbrand). The propanol solution was concentrated to dryness on a rotary evaporator. The 

residue was added 300 µL of methanol and 100 µL of this solution was analyzed using HPLC and 

mass spectrometry as described below. 

 

In the case of organs, they were weighed first and cut into small pieces. The same procedure above 

mentioned was then conducted. 
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 2.6.5 Quantification of TP70 using HPLC 

 

HPLC analysis of TP70 was carried out on a Varian Prostar 210 with a UV-Vis detector.  A C18 

reverse phase column from Xper-chrom Aegis (S. No: 104117, 250 x 10 mm, 10 micron) was used 

for analysis of TP-70. A flow rate of 10 mL/min and detection wavelength of 254 nm were used. 

A gradient elution of solvent A, containing deionized water and solvent B, containing methanol 

was applied for the analysis of TP70. 4-methoxyphenol was used as the internal standard. 

  

Solutions of 100 µL of various concentrations of TP70 with 4-methoxyphenol were injected into 

the HPLC instrument and the peak areas corresponding to TP70 and 4-methoxyphenol were 

integrated from the HPLC chromatogram, and the ratios of the peaks were obtained.  The results 

of the ratios of the HPLC peak areas and the ratios from TP70 and 4-methoxyphenol concentrations 

were plotted, and a linear correlation line was obtained from the graph (Figure 2.3). With the use 

of this correlation diagram and the ratio of HPLC peak areas of TP70 and 4-methoxyphenol 

obtained by injecting cells or tissue extract with known amount of 4-methoxyphenol, the amount 

of TP70 in the cells or tissue extract was determined. 

 

Moreover, the peak resulted from the eluant of the injection of the cells or tissue extract which 

corresponds to the peak that has the same retention time as that of authentic TP70 was collected, 

concentrated on rotary evaporator and their mass spectrum were determined using mass 

spectrometer.  The mass spectrum acquired from the collected peak of TP70 from the cells or tissue 

extract were identical to that of TP70 mass spectrum and a mass of 382 and 404 corresponding to 
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[M+H+] and [M+Na+] of TP70 were found in their mass spectra which is identical to that of pure 

TP70 verifying the identity of TP70. 

 

The concentration of TP70 in the organs was obtained by finding the number of moles of TP70 in 

the given volume of the organs (assuming that mass of organs = volume of organs ~ 1). 

 

  2.6.6 CP2 administration and plasma collection of rats 

 

A dose of 25 mg/kg (rats body weight) of CP2 dissolved in 4% DMSO was administered to the 

male, WT Sprague-Dawley rats (n=3) by oral (po) or intravenous injection (iv). Oral dosing was 

performed with an oral feeding gavage in which a bolus deposit (1 mL) of CP2 was transferred 

directly to the stomach. Intravenous dosing was performed using the left catheters on the rats. 

While anesthetized in 3% isoflurane, the rat received a 0.5 ml bolus iv injection through the left 

catheter.  Cardiac blood collection was withdrawn from tail vein at 5, 15, 30, 60, 120, 240, and 

360 minutes’ intervals and treated with ethylenediamine tetraacetic acid (EDTA).  About 250 μL 

plasma was collected from each mouse.  All the plasma samples collected were stored at -78 0C 

until further analysis was carried.   

 

 

 2.6.7 Extraction of CP2 from the plasma of rats 

 

Plasma samples were added 3 mL of deionized water and 10 mL of 9:1 mixture of ethyl acetate 

and 1-propanol. This solution was sonicated for 6 minutes. The organic layer was separated from 
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a separator funnel.  The aqueous layer was extracted twice with 10 mL of a 9:1 mixture of ethyl 

acetate and 1-propanol.  The organic layers were combined, washed with 10 mL of brine, dried 

over anhydrous MgSO4, and concentrated to dryness on a rotary evaporator.  The residue was 

diluted with 1 mL of 1-propanol and filtered through a 0.2 µm filter disc (PTFE 0.2 µm, 

Fisherbrand). The propanol solution was concentrated to dryness on a rotary evaporator. The 

residue was added 300 µL of methanol and 100 µL of this solution was analyzed using HPLC and 

mass spectrometry as described below. 

 

 2.6.8 Quantification of CP2 using HPLC 

 

HPLC analysis of CP2 was carried out on a Varian Prostar 210 with a UV-Vis detector.  A C18 

reverse phase column from Xper-chrom Aegis (S. No: 104117, 250 x 10 mm, 10 micron) was used 

for CP2. A flow rate of 10 mL/min and detection wavelength of 254 nm were used. A gradient 

elution of solvent A, containing deionized water with 0.1% trifluoroacetic acid and solvent B, 

containing methanol with 0.1% trifluoroacetic acid was applied for the analysis of CP2. 4-

Methoxyphenol was used as the internal standard.  

 

Solutions of 100 µL of various concentrations of CP2 with 4-Methoxyphenol were injected into 

the HPLC instrument and the peak areas corresponding to CP2 and 4-Methoxyphenol were 

integrated from the HPLC chromatogram, and the ratios of the peaks were obtained.  The results 

of the ratios of the HPLC peak areas and the ratios from CP2 and 4-Methoxyphenol concentrations 

were plotted, and a linear correlation line was obtained from the graph (Figure 2.10). With the use 

of this correlation diagram and the ratio of HPLC peak areas of CP2 and 4-Methoxyphenol 
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obtained by injecting cells or tissue extract with known amount of 4-Methoxyphenol, the amount 

of CP2 in the cells was determined. 

 

Moreover, the peak resulted from the eluant of the injection of the cells or tissue extract which 

corresponds to the peak that has the same retention time as that of authentic CP2 was collected, 

concentrated on rotary evaporator and their mass spectrum were determined using mass 

spectrometer.  The mass spectrum acquired from the collected peak of CP2 from the cells or tissue 

extract were identical to that of CP2 mass spectrum and a mass of 394 corresponding to [M+H+] 

of CP2 were found in their mass spectra which is identical to that of pure CP2 verifying the identity 

of CP2. 
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Chapter 3 - Nanodelivery of siRNA Using Polymer Based 

Nanomaterials 

 3.1 Introduction 

Since its initial discovery by Mello, Fire and coworkers in 1903, RNA interference (RNAi) has 

achieved a greater therapeutic potential in the treatment of various diseases such as cancer, genetic 

disorders, autoimmune diseases and viral infections.1,2 In recent years, RNAi has been broadened 

to another major field, which is the genetic control of insect pests. Due to the availability of 

genomic sequences of insects of various groups, this technology has been achieved a significant 

advance in recent years and several studies have shown the potential use of RNAi to control 

agriculturally important insect pests.3-7 However, several obstacles and challenges are associated 

with genetic control of insect pests such as effective delivery of double stranded RNA (dsRNA) in 

insects, preventing its degradation by nucleases, enhancing its cellular uptake and endosomal 

release into insect cells etc.8-11 In addition, there’s a significant variation of RNAi efficiency 

present in different taxonomic group of insects.5 Therefore, the development of effective dsRNA 

delivery methods is highly warranted. 

Nanomaterials are found to be promising tools to enhance the delivery efficiency of small 

interfering RNA (siRNA) or dsRNA recently. Several nanocarriers such as polymeric 

nanoparticles, cationic lipids, dendrimers, proteins, peptides and polyamino acids have been 

introduced by several research groups that can encapsulate desired RNA molecules and thereby 

facilitate uptake into cell.12 Among them, polymeric nanoparticles have been widely exploited for 

use as a delivery method for nucleic acids in RNAi based gene therapeutics.  

In this chapter, I summarized the work that I have carried out to investigate the nanodelivery of 

specific dsRNA with the use of polymer based nanomatrials for suppressing the western corn 
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rootworm (WCR, Diabrotica virgifera virgifera) genes. Two nanoparticles (NPs) were 

synthesized as the delivery aids for dsRNA, namely chitosan: PEG, and α-OH -PVP polymer 

conjugates. They were encapsulated with specific dsRNA molecules and encapsulation of 

nanoparticles with dsRNA was studied from various techniques and finally observed the RNAi 

efficacy for the encapsulated materials. This research was done in collaboration with Dr. Kun Yan 

Zhu in the department of Entomology at Kansas State University.  All dsRNA’s provided and 

RNAi efficiency testing was performed by Dr. Young Ho Kim, in Dr. Kun Yan Zhu’s laboratory, 

Kansas State University. Preliminary results from Dr. Zhu’s laboratory have shown that dsRNA 

was effective in gene suppression in WCR. In order to address the problems associated with 

delivery of dsRNA into WCR, two different polymer-based nanomaterials have been synthesized 

and evaluated their encapsulation efficiency with different dsRNA molecules to investigate the 

nanodelivery of dsRNA for suppressing the WCR. In this chapter, the synthesis of the polymers 

encapsulation of dsRNA in forming nanomaterials, and the testing of their encapsulation 

efficiencies are discussed. 

 

 

 3.2 Background 

 3.2.1 RNAi technology in insect pests management  

Agricultural production of food needs to be continuously adapt to increasing consumers´ demand 

in conjunction with rising environmental concerns. Insect pests are one of the major causes for 

losses in agricultural production, and therefore results significant economic losses each year.12 

Currently, the crop damage caused by various insect pests species is managed by the application 

of pesticides or the use of transgenic crops expressing Bacillus thuringiensis (Bt) toxin proteins.11 
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When considering about pesticides, in the United States alone, it costs about $ 10 billion for the 

use of about 600 different pesticides to protect crop plants annually.13 Besides, they have now 

caused several escalating problems such as the evolution of insect resistance to the pesticides, the 

appearance of secondary pest outbreaks, and the potential hazards on environment etc.11,14 Though 

the use of Bacillus thuringiensis (Bt) toxin has shown considerable success over chemical 

insecticides in a range of crops, many important insect species are not controlled by Bt protection.14 

Therefore, the development of novel approaches to control agricultural pests are highly warranted.  

Recently, RNAi technology has been widely exploited for use in insect pest management. RNAi 

is a sequence specific post transcriptional gene silencing mechanism which is widely expressed in 

animals, plants, and microorganisms and act as a defense mechanism against abnormal DNA.16 

There are some reported studies, in which the successful delivery of double stranded RNA 

(dsRNA) to insects by ingestion resulted the expected gene target silencing and therefore, have 

caused death or affected the viability of the target insect, resulting in control of the pest.5,15 The 

major advantage of RNAi technology in insects pest management is it has low off target effects, 

thus significantly increases the safety of non-target organisms and the environment.5,15 

 

 3.2.2 siRNA mediated gene silencing mechanism 

In insects, it has been found that, dsRNA is more effective at producing RNAi than sense or anti 

sense RNA.16 The RNAi process occurred in insects can be divided into three main steps. First, a 

long endogenous or exogenous dsRNA molecule, that is either expressed in, or introduced into the 

cell binds to a RNase iii type enzyme called “Dicer” and the enzyme digest dsRNA into small 

interfering RNAs which are also called siRNA, short interfering RNA, or silencing RNA.16,17 

siRNAs are double stranded and contains 20 – 25 base pairs. In the second step, a multi-functional 
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protein called Argonaute 2, unwinds siRNA and sense strand of siRNA is cleaved and the guide 

stand is incorporated into the RNA induced silencing complex (RISC) in the cytosol.2,18,19 In the 

third step, guide strand in RISC cleaves the target messenger RNA (mRNA) that shares complete 

or partial sequence homology of the dsRNA using an endonuclease enzyme called “slicer”. The 

cleavage site of specific mRNA is at a position between nucleotides 10 and 11 relative to the 5′-

end on the complementary antisense strand.2,18,19 The inhibition of sequence specific mRNA will 

result the inhibition of targeted gene expression and therefore inhibit the protein production and 

protein function in a sequence specific manner.  

 

 3.2.3 Delivery of dsRNA into insects through the use of nanomaterials 

There are several challenges associated with delivering dsRNA into insects. Naked dsRNA alone 

cannot be administered into insects as they are not stable under environmental conditions, have 

poor penetration abilities into the cells, and readily cleave by nucleases.9 In order to result a 

successful RNAi machinery in insects, dsRNA needs to be directed into the cells of insects and 

thus there needs to be a system that can effectively deliver the dsRNA into target cells. 

Recently, nanomaterials have been considered as a method to incorporate dsRNA molecules. A 

successful nanodelivery platform must have certain advantages that include: (1) protect dsRNA 

from harmful effects from environment such as temperature, (2) successful delivery of dsRNA 

into target cells through the penetration of insect’s membranes (3) prevention the degradation of 

dsRNA by nucleases in insect’s body (4) maximize the cellular uptake of dsRNA by the target 

tissues.  

Nanomaterials have a particle size of 1 - 1,000 nm, and it should contain important characteristics 

properties to be used as a delivery vehicle.20-22 Surface properties of the nanomaterials play an 
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important role in terms of uptake and complex formation with polyanionic nucleic acids of 

dsRNA.21 Studies conducted in vitro have indicated that positively charged nanomaterials can 

interact with negatively charged cellular membranes and thereby promote uptake into the cell. 

Moreover, they can involve in the complex formation with polyanionic nucleic acids as well.22 It 

has been discovered several natural and synthetic polymer based nanomaterials for siRNA/dsRNA 

delivery over the past years and some of them demonstrate a great promise to be used as successful 

delivery agents.13 Most of the natural polymers offer nontoxic, biodegradable and biocompatible 

properties and some of the examples for natural polymers include chitosan, cationic polypeptides, 

cyclodextrin, and atelocollagen etc.23 Most commonly used synthetic polymers for siRNA 

administration includes linear and branched polymers of poly(ethyleneimine) (PEI) or conjugation 

of PEG chains with PEI, dimethylaminoethyl methacrylate, polyfluorene, and cyclodextrin based 

polycations` etc.23,24 

Members in Dr. Kun Yan Zhu’s laboratory have investigated different nanoparticles complexed 

with dsRNA for studying RNAi efficiency in different organisms.25 For example, they have studied 

the repression of two chitin synthase genes, AgCHS1 and AgCHS2, present in Anopheles gambiae 

using chitosan/AgCHS dsRNA-based nanoparticles and found that AgCHS1 transcript level and 

chitin content were reduced by 62.8 and 33.8%, respectively, in the larvae fed on chitosan/AgCHS1 

dsRNA nanoparticles compared with those of the control larvae fed on chitosan/GFP dsRNA 

nanoparticles.25 

 

 3.3 Results and discussion 

To study the RNAi based strategy for the control of insect pests, we have investigated the 

nanodelivery of specific dsRNA for suppressing the western corn rootworm (WCR, Diabrotica 
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virgifera virgifera) genes. Among the several insect pests that cause significant economic losses 

in agricultural sector in US, the WCR, is one of the country’s most devastating corn pests and 

causes about $1 billion losses annually in US.26 Corn rootworms are widely spread throughout US 

corn growing regions and cause their damage as a larva – the immature stage of the insect.26 

Previous results of Dr. Zhu’s laboratory suggested that dsRNA was effective in gene suppression 

in WCR. Therefore, to address the challenges associated with the delivery of dsRNA into insects, 

we studied the nanodelivery of dsRNA using modified chitosan and modified 

polyvinylpyrrolidinone (PVP) as nanocarriers.  

 

 3.3.1 Chitosan: PEG/dsRNA nanoparticles 

Chitosan which is derived from the alkaline deacetylation of chitin, is a linear polymer of an 

aminosaccharide (D-glucosamine). Chitosan based nanoparticles are preferably used worldwide 

for various applications due to their biodegradability, high permeability, non-toxicity to human 

and cost effectiveness.27 For example, chitosan/alginate, chitosan/tripolyphosphate nanoparticles 

have been reported as carrier systems for the herbicide paraquat.28,29 However, chitosan alone has 

been known to have relatively low transfection efficiency. This could be due the inefficient release 

of endosomally trapped nucleic acid (e.g., dsRNA) into the cytosol as chitosan can form 

electrostatic interactions with amino groups of chitosan with phosphate groups of nucleic acids 

(Figure 3.1). This will make chitosan to tightly bound to nucleic acids and creates low solubility 

of the complex in water.  
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Figure 3.1: Interactions between chitosan and dsRNA25. Figure adapted from Zhang, X. 

Insect molecular biology. 2010, 19, 683-693 with permission from John Wiley and Sons 

(copyright © 2010).  

 

Therefore, to enhance the efficacy of nanoparticle based RNAi, polyethylene glycol (PEG) was 

incorporated and nanoparticle was formed as chitosan: PEG conjugates (Figure 3.2).  
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Figure 3.2: Structure of chitosan: PEG polymer. 

 

In order to gain insight into whether chitosan: PEG nanocarriers are capable of forming complexes 

with nucleotides, a simulation of chitosan: PEG copolymer with dsRNA was performed. This was 

done by Dr. Jeffrey Comer in Nanotechnology Innovation Center of Kansas State Institute of 

Computational Comparative Medicine, Department of Anatomy and Physiology, College of 
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Veterinary Medicine, Kansas State University. Figure 3.3 indicates the simulation results of 

chitosan: PEG nanocarriers with dsRNA. 

                          

 

Figure 3.3: Simulation diagram of chitosan: PEG nanocarriers with dsRNA. 

It can be seen from Figure 3.3 that chitosan: PEG polymer conjugates are observed to physisorption 

to the surface of the RNA helix due to strong ionic interactions. With these ideas in hand, chitosan: 

PEG conjugates in which a PEGylation density of PEG’s (500 MW) groups per 5 chitosan 

monomers were synthesized to incorporate into dsRNA. 

 

 3.3.1.1 Synthesis of chitosan: PEG polymer conjugate and its characterization  

 

Synthetic scheme for the synthesis of chitosan: PEG (5:1) polymer conjugates is shown in Scheme 

3.1. 

Scheme 3.1: Synthesis of chitosan: PEG polymer nanocarrier 
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Synthesis of chitosan: PEG polymer (47) was achieved in two step process as outlined in Scheme 

3.1. PEG methyl ester (43) was dissolved in acetonitrile and it was added carbonyl diimidazole 

(CDI) (44) and heated to 40 °C to obtain the activated PEG (45) in 80 % yield.  Then it was reacted 

with commercially available 75% deacetylated chitosan (46) in DMF at 120 °C for 14 hours to 

obtain chitosan: PEG polymer (47) in 70% yield. Detailed experimental procedure is written in the 

experimental section of this chapter. 

 

The synthesized chitosan: PEG polymer (47) was characterized by IR spectroscopy. The molecular 

weight of polymer 47 was found to be 120,558 Da as determined by gel permeation 

chromatography using TSKgel GMHxl column and THF as eluent. It has been found that the C-2-

amino functions of chitosan, in which amino moieties have been acetylated by 25%, were 

covalently linked with polyethylene glycol (PEG) through carbamate function by ~30% thereby 

reducing the cationic character of the polymer.  A total of 55% of the amino groups have been 

transformed into carbamates. 
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3.3.1.2 Encapsulation of chitosan: PEG nanocarrier with adenine  

 

Ability of chitosan: PEG nanocarrier to encapsulate small molecules like adenine and adenosine 

monophosphate was evaluated before testing the encapsulation ability of chitosan: PEG 

nanocarriers with specific dsRNA. Hence, a 5% by weight of adenine (MW 135.13 g/mol) was 

encapsulated by chitosan: PEG nanocarrier (95% by weight) in water, and the resulting solution 

was lyophilized to give a solid. The detailed procedure of encapsulation will be discussed in 

experimental section of this chapter. 

NN

NH2N
NH

Adenine  
Figure 3.4: Structure of adenine. 

 

Figure 3.5 shows the computer simulation image of the chitosan: PEG nanocarrier with adenine. 

There are 2.2Å and 2.13 Å contacts between two chitosan hydroxyl groups and an adenine nitrogen 

suggest the possibility of interaction of nanocarrier with adenine. 
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Figure 3.5: Computer simulation image of the chitosan: PEG nanocarrier with adenine. 

 

Encapsulation of chitosan: PEG nanocarrier with adenine was studied using UV visible 

spectrometry over different time intervals. Chitosan: PEG/adenine nanoparticles were dissolved in 

deionized water to obtain 0. 0172 mM concentration. This solution was tested for UV absorbance 

over 0, 2, 4, 6, and 60 hours in the presence of deionized water as the blank. In addition, adenine 

powder was dissolved in deionized water to obtain 0.0172 mM concentration and the UV 

absorbance of this solution was taken in the presence of deionized water as the blank.  Figure 3.7 

indicates the corresponding UV spectrum. 
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Figure 3.6: UV visible spectrum of the encapsulated chitosan: PEG/ adenine nanocarrier 

solution over different time intervals. 

 

 
Figure 3.7: Correlation graph of percent encapsulation of adenine over different time 

intervals. 

 

As shown in Figure 3.6, UV absorbance for the adenine alone is higher compared to that of the 

adenine/nanocarrier solution, suggesting the possibility of the encapsulation of adenine in to 
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chitosan: PEG nanocarriers to form chitosan: PEG/adenine nanoparticles. The lowest absorbance 

was resulted in 0 minute and it was gradually increased up to 4 hours indicates that adenine 

gradually comes off from the nanocarrier. As shown in Figure 3.7, the highest percent 

encapsulation of adenine into nanocarrier can be seen at 0 minute and the lowest percent 

encapsulation was at 4 hours. When comparing the UV absorbance curves for 6 hours and 60 

hours, it seems that UV absorbance are smaller than that of 4 hours. This suggests that some of the 

released adenine gets re-encapsulated with nanocarrier to form adenine/polymer nanoparticles and 

this in turn can be proved from the higher percent encapsulation of adenine into nanocarrier at 6 

hours and 60 hours than that of 4 hours. 

 

 3.3.1.3 Encapsulation of chitosan: PEG nanocarrier with dsDNA 

 

We further tested the ability of chitosan: PEG nanocarrier to encapsulate relatively large dsDNA 

molecules. Clathrin heavy chain (CHC) ds DNA sample (523 base pairs; MW 509,402 Da) was 

provided by Dr. Kun Yan Zhu’s laboratory and 5 % by weight of dsDNA was encapsulated with 

chitosan: PEG nanocarrier (95 % by weight) in water, following the same procedure used for the 

encapsulation of adenine with chitosan: PEG polymer. 

Encapsulation ability of dsDNA with chitosan: PEG nanocarrier was studied using agarose gel 

electrophoresis by Dr. Youngho Kim in Dr. Kun Yan Zhu’s laboratory. A 10 µl of each of the 2.1 

µg/µl (left panel; two left lanes) and 21 µg/µl (right panel; left lane) nanoparticle solutions 

(chitosan: PEG /dsDNA) was loaded to each lane of the agarose gel. The amounts of dsDNA were 

approximately 0.1 (left panel) and 1.0 µg (right panel) respectively, based on the 5 % encapsulation 

of dsDNA into nanocarrier. Figure 3.8 shows the electrophoresis result. 
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Figure 3.8: Gel image of the encapsulated chitosan: PEG/dsDNA nanoparticles. 

 

As shown in Figure 3.7, the dsDNA is not moved in the nanoparticle lane suggests that dsRNA is 

successfully encapsulated by chitosan: PEG polymer conjugates. 

 

The particle sizes and morphology of the chitosan: PEG nanocarriers and encapsulated 

dsDNA/polymer nanoparticles were measured using atomic force microscopy (AFM) using a 

tapping mode with a high aspect ratio tip. Figure 3.8 shows the representative AFM images of 

chitosan: PEG nanocarriers and encapsulated chitosan-PEG/dsDNA nanoparticles. 

 

 



 

146 

 
Figure 3.9: Representative AFM images of chitosan: PEG nanocarrier (left panel - top), the 

width (40 nm) and height (25 nm) (bottom) of the nanocarriers and encapsulated chitosan: 

PEG/dsDNA nanoparticles (right panel- top), and the width (160 nm) and height (25 nm) 

(bottom) of the nanoparticles. Scale bar is 100 nm. 

 

As shown in Figure 3.8, AFM images of the chitosan-PEG/dsDNA nanoparticle complex has a 

spherical shape.  The average diameters of the spherical chitosan: PEG and incorporated chitosan: 

PEG/dsDNA are 40 nm and 160 nm, respectively.   

 

 3.3.2 Poly(N-vinyl-α-hydroxypyrrolidone)/dsRNA nanoparticles 

To further understanding the encapsulation of dsRNA with different nanocarriers, we modified 

PVP, an FDA approved polymer with the introduction of an α-hydroxy (α-OH) functional group 

to form poly(N-vinyl-α-hydroxypyrrolidone) or α-OH-PVP. We hypothesized that the presence of 

the α-OH group attached to PVP polymer can form hydrogen bonding with RNA and therefore 

incorporates RNA into α-OH-PVP. However, the affinity of α-OH-PVP to RNA may be smaller 

than that of positively charged chitosan conjugates. Figure 3.9 shows the computer simulation 
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image of RNA backbone with the α-OH-PVP, and it illustrates the hydrogen bonding between the 

α-OH group and RNA phosphodiester backbone. 

 

Figure 3.10: Computer simulation image of α-OH-PVP with dsRNA. 

 

 3.3.2.1 Synthesis of poly(N-vinyl-α-hydroxypyrrolidone) 

 

Synthetic scheme for the synthesis of poly(N-vinyl-α-hydroxypyrrolidone) polymer is 

shown in Scheme 3.2. 

Scheme 3.2: Synthesis of α-OH-PVP 
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Synthesis of α-OH-PVP was achieved as outlined in the Scheme 3.2. Commercially available N-

vinylpyrrolidone (48) was hydroxylated at C-3 position following the reported method in which 

the conversion of compound 48 to 49 was performed using the inverse addition procedure for 

MoOPH oxidation.30 

 

Scheme 3.3: Preparation of oxodiperoxymolybdlenum(pyridine) (hexamethylphosphoric 

triamide) (MoOPH) 30 

MoO3

(1) 30 % H2O2, 40 °C, 
     3.5 hours

(2) HMPA
       Vaccum desiccator,
       0.2 mm,
       24 hours over P2O5

MoO5.HMPA
Pyridine

THF
MoOPH

 
 

Briefly, the enolate of compound 48 was prepared using dropwise addition of titrated LDA solution 

in to a solution of 48 in dry THF at -78 °C. In a separate flask, MoOPH crystals were added dry 
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THF and it was cooled to -22 °C. Then the enolate of the compound 48 was introduced dropwise 

to the stirred MoOPH suspension at -22 °C and stirred for 15 minutes.  

 

Scheme 3.4: Synthesis of α-OH-PVP copolymer from 3-hydroxy- N-vinylpyrrolidone 
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The conversion of 49 to 54 was studied in the presence of vinyl acetate, catalytic amount of AIBN 

in acetone under reflux conditions. However, this reaction did not result the desired product. 

Therefore, compound 49 was acetylated using acetic anhydride under pyridine to obtain compound 

50. Copolymerization of compound 50 using vinyl acetate, catalytic amount of AIBN in acetone 

under reflux conditions yielded the copolymer 51. Reaction of compound 50 with catalytic 

amounts of compound 51, AIBN, in propyl acetate as the solvent at 100 °C resulted the polymer 

52. This reaction was initially tried using ethyl acetate as the solvent at 70 – 80 °C. However, the 

polymerization reaction did not take place under this condition. Therefore, propyl acetate was used 

as the solvent and reaction was heated to higher temperatures (100 °C) to obtain the desired 

polymer 52. Finally, the removal of the acetyl function with K2CO3 in methanol resulted the 

desired α-OH-PVP polymer (53) in 72% yield.  

The synthesized α-OH-PVP polymer (53) was characterized by IR spectroscopy. The IR spectrum 

for the polymer 53 clearly shows the absence of Ac group (absence of CO stretch) and the presence 
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of OH group. The molecular weight of polymer 53 was found to be 67,425 Da as determined by 

gel permeation chromatography using TSKgel GMHxl column and THF as eluent. 

 

 3.3.2.2 Encapsulation of α-OH-PVP nanocarrier with dsDNA 

 

The encapsulation ability of α-OH-PVP with dsDNA was studied. Clathrin heavy chain (CHC) ds 

DNA sample (523 base pairs; MW 509,402 Da)) was provided by Dr. Kun Yan Zhu’s laboratory 

and 5% by weight of dsDNA was encapsulated with α-OH-PVP nanocarrier (95% by weight) in 

water, following the same procedure used for the encapsulation of adenine with chitosan: PEG 

polymer. 

 The particle sizes of the α-OH-PVP nanocarriers and encapsulated dsDNA/polymer nanoparticles 

were measured using atomic force microscopy (AFM) using tapping mode with a high aspect ratio 

tip. Figure 3.10 shows the representative AFM images of α-OH-PVP nanocarriers and 

encapsulated α-OH-PVP /dsDNA nanoparticles. 
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Figure 3.11: Representative AFM images of α-OH-PVP nanocarrier (left panel - top), the 

width (90 nm) and height (25 nm) (bottom) of the nanocarriers and encapsulated α-OH-

PVP /dsDNA nanoparticles (right panel- top), and the width (~250 nm x 40 nm) and height 

(5 nm) (bottom) of the nanoparticles. Scale bar is 50 nm. 

 

As shown from AFM images in Figure 3.10, the initial shape of the α-OH-PVP nanocarrier is 

spherical with diameter of 90 nm. However, when it is incorporated with dsDNA, the shape 

changed to elongated structures and the size is ~250 nm x 40 nm. Since the dsDNA has 523 base 

pairs and its length is estimated to be ~157 nm, (which is based on the distance ~0.3 nm between 

two nucleotides in A-form RNA), the AFM images (Figure 3.10, right panel) suggest the dsDNA 

is wrapped around by α-OH-PVP polymer. 

 

 3.3.2.3 Encapsulation of α-OH-PVP nanocarrier with siRNA (18 mers) 

 

Similarly, the incorporation of siRNA (18 mers; MW ~6,120) with α-OH-PVP polymer was 

carried out by a mixing of siRNA (5% by weight) with α-OH-PVP (95% by weight) in water, and 

the resulting solution was lyophilized to give white solid. UV spectra of siRNA alone and the 

nanocarrier incorporated siRNA by α-OH-PVP were taken. 
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Figure 3.12: UV spectrum for the encapsulation of RNA with α-OH-PVP. 

 

As shown in Figure 3.11, results showed that in the siRNA/α-OH-PVP complex, the UV 

absorbance is lower than that of siRNA alone, suggesting the possible incorporation of siRNA into 

nanocarrier.  

 

 3.3.3. Analysis of RNAi efficiencies among dsRNA/chitosan: PEG and dsRNA/ α-OH-

PVP nanoparticles 

Inspired from above preliminary results, testing of RNAi efficiencies for polymers encapsulated 

with particular dsRNA compared to naked RNA was carried out finally. Dr. Kun Yan Zhu provided 

two of the gene specific dsRNA molecules that are responsible for the encoding genes of the 

synthesis of vacuolar (H+)-ATPase subunit (VhaSFD) protein of WCR. That two dsRNA will be 

denoted as (1) dsDvSFD (114 base pairs) and dsDvSFD2 (112 base pairs). As a control gene, 

double stranded green fluorescence protein (dsGFP) was used. 
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Nanoparticles of dsRNA/chitosan: PEG and dsRNA/ α-OH-PVP were made for each of the three 

different dsRNA molecules. Briefly, 5% by weight of dsRNA solution in deionized water was 

mixed with the corresponding amount of chitosan: PEG in 0.18% acetic acid in deionized water 

or α-OH-PVP (95% by weight) in deionized water, and this mixture was heated to 50 °C and 

cooled at 4 °C in ice water bath for 1 hour. This solution was lyophilized to give a solid.  

 

The encapsulated dsRNA/chitosan: PEG and dsRNA/ α-OH-PVP nanoparticles were examined 

for RNAi efficiency by Dr. Young Ho Kim, in Dr. Kun Yan Zhu’s laboratory. Briefly, 10 µg of 

encapsulated dsRNA containing nanoparticles or naked dsRNA was mixed with 30 mg of artificial 

diet and it was given to two days old total of 10 starved male and female adults separately. They 

were allowed to eat the diet for 10 hours. Then, they were given the normal artificial diet up to six 

days. Samples were obtained from each adult after two and six days of feeding and gene expression 

level was carried out using RT-qPCR. Two replicates were carried out.  

 

Figure 3.12 shows the results for the expression of DvVhaSFD transcripts after feeding with the 

nanoparticles containing or naked dsRNA diet for 2 days. 

 

 
Figure 3.13: Expression of DvVhaSFD transcripts after dsRNA feeding for 2 days. 
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It can be seen from the above results that, nanoparticles encapsulated with dsSFD, dsSFD2 and 

naked dsRNA treatments have caused the significant suppression of relative transcript levels of 

DvSFD1 and DvSFD2 variants compared to controls. Besides, dsSFD alone strongly suppressed 

the expression of both transcript variants whereas dsSFD2 selectively suppressed the expression 

of DvSFD2.  Moreover, there are no significant differences among α-OH-PVP/dsRNA, chitosan: 

PEG/dsRNA and naked dsRNA for the relative expression of DvVhaSFD transcripts after dsRNA 

feeding for 2 days. 

          

     
 

Figure 3.14: RNAi efficiency after dsRNA feeding for 2 days. 

As shown from above data, nanoparticles formulated with dsSFD RNA and naked dsSFD RNA 

effectively suppress the both DvSFD1 and DvSFD2 target transcripts (92.0 - 96.9%), 2 days after 

dsRNA feeding. Among the nanoparticles formed with dsSFD2 RNA, chitosan: PEG/dsSFD2 

shows a higher suppression (45.3%) of DvSFD1 transcript compared to that of α-OH-PVP and 

naked dsRNA feeding. Besides, there is an effective suppression of DvSFD2 transcript (94 – 
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96.9%) from the nanoparticles formed with dsSFD2 RNA and naked dsSFD2 RNA after 2 days of 

feeding. 

 

Figure 3.14 shows the results for the expression of DvVhaSFD transcripts after feeding with the 

nanoparticles containing or naked dsRNA diet for 6 days. 

 

 
Figure 3.15: Expression of DvVhaSFD transcripts after dsRNA feeding for 6 days. 

When comparing the DvVhaSFD transcript after dsRNA feeding for 6 days, it can be still seen 

that, dsSFD containing nanoparticles and naked dsSFD strongly suppressed the expression of both 

transcript variants whereas dsSFD2 selectively suppressed the expression of DvSFD2. There is no 

difference among nanoparticles and naked dsSFD. However, the relative transcript level of both 

variants seems to be higher compared to that of 2 days suggests that the suppression is gradually 

decreased after 6 days. 
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Figure 3.16: RNAi efficiency after dsRNA feeding for 6 days. 

 

It can be seen from the Figure 3.15 that, the suppression level of both target transcripts are 

relatively lower (68.9 – 86.4%) compared to that of 2 days, yet, RNAi efficiency is still can be 

seen. But, when comparing the results of nanoparticles containing dsSFD with naked dsSFD, it is 

clearly demonstrating that nanoparticles do not behave stronger than that of naked dsSFD, whereas 

naked dsSFD treatment seems act on insects better than the nanoparticles. The results implied that 

the dsRNAs did not form nanoparticles with the nanocarrier. 

 

 

 3.3.4 Future perspectives 

Since the above discussed two polymer conjugates are not successful as nanocarriers for gene 

delivery into WCR, a previously reported chitosan: galactose polymer was synthesized to study 
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the specific dsRNA delivery into WCR.31,32 The synthetic scheme for the synthesis of chitosan: 

galactose polymer is shown in Scheme 3.5. 

 

Scheme 3.5: Synthesis of chitosan: galactose polymer31,32 
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As shown in Scheme 3.5, chitosan: galactose polymer (CS-galactose) was synthesized following 

a reported method.31,32 Briefly, commercially available chitosan (46) was deacetylated using 50% 

NaOH followed by depolymerized by adding NaHSO4 into a solution of deacetylated chitosan in 

1 % AcOH in water. Finally, the deacetylated depolymerized chitosan (DADP-CS) was reacted 

with galactose and boron trifluoride diethyl etherate (BF3
.OEt2) to obtain chitosan: galactose 

polymer (CS-galactose). The synthesized polymer was characterized by proton NMR. In future, 

this polymer will be tested to identify whether it is a suitable nanocarrier for the delivery of dsRNA 

into WCR. 
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 3.4 Conclusion 

In pursuit of an investigating nanodelivery of specific dsRNA for suppressing the western corn 

rootworm (WCR, Diabrotica virgifera virgifera) genes, two of the novel polymer based 

nanomaterials have been designed and synthesized by modifying chitosan and PVP as 

nanocarriers. Chitosan is an Environmental Protection Agency (EPA) approved polymer and it 

was modified by PEGylating with activated PEG to obtain chitosan: PEG nanocarriers. By 

PEGylating the chitosan, we believed that it can improve the efficacy and solubility of the chitosan: 

PEG nanoparticles. In addition, another EPA approved polymer, PVP was modified by 

hydroxylating to obtain α-OH-PVP nanocarriers. The synthesized polymers were characterized by 

IR spectroscopy and used for the encapsulation of specific dsRNA molecules, which are important 

for the formation of an essential protein sub unit of WCR. The results from the RNAi efficacy 

testing experiments demonstrate that, dsRNA was effective in gene suppression in WCR, however, 

none of the polymer based nanomaterials show better RNAi efficacy profile than that of naked 

dsRNA. Therefore, stability testing of the encapsulated nanoparticles were studied and results 

showed that dsRNA are either dissociate quickly from the nanoparticles or stable nanoparticles are 

not formed between the nanocarriers and specific dsRNA molecules. In future, novel analogues of 

chitosan such as chitosan:galactose, and PVP are being designed and developed and will be 

evaluated for their ability to make nanoparticles with dsRNA. 
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 3.5 Experimental Section 

 3.5.1 General methods 

Nuclear magnetic resonance spectra were obtained from a Varian 400-MHz spectrometer using 

deuteriochloroform (CDCl3) as the solvent unless otherwise stated and all chemical shifts reported 

in ppm. Low resolution mass spectra were obtained from an API 2000-triple quadrupole ESI-

MS/MS mass spectrometer (from Applied Biosystems).  Infrared spectra were taken from a 

ThermoScientific Nicolet 380 FT-IR instrument. A Hewlett-Packard diode array UV/VIS 

spectrophotometer was used in the UV measurements. A Nanoscope IIIa scanning probe 

microscope (Digital Instruments Inc., Santa Barbara, CA, USA) workstation equipped with a 

multimode head using E-series or J-series piezoceramic scanner (Digital Instruments, Santa 

Barbara, CA) was used to obtain AFM images. Chemicals were purchased from Fisher Scientific, 

Aldrich Chemical Co., Chem-Impex International, and VWR. 

 

 

 3.5.1.1 Synthesis of chitosan/PEG (5:1) nanocarrier 

 

Chitosan: PEG polymer (47) 

 

O

NH

OH

HO

O

NH
O

OH

O
HO

O
O

O

O
MeO

n

m v
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A mixture of 2-(2-methoxyethoxy)ethyl 1H-imidazole-1-carboxylate (45) (294 mg, 0.456 mmol) 

and chitosan (25% N-acetylated) (46) (495 mg, 2.28 mmol) were vaccum dried for two hours. It 

was added 5 ml of dry DMF and the resulting suspension was refluxed at 120 °C for 12 hours 

under argon atmosphere. 10 mL of diethyl ether was added and the mixture was centrifuged at 

10,000 rpm for 10 minutes. Supernatant was removed and residue was added another 10 ml of dry 

ethyl ether and centrifuged at 10,000 rpm for 10 minutes. Residue was dried under vacuum to 

obtain chitosan: PEG polymer (47) as a brown color powder. The corresponding IR spectrum is 

shown in Appendix A. 

 

 3.5.1.2 Synthesis of α-OH-PVP nanocarrier 

Preparation of MoOPH (oxodiperoxymolybdlenum(pyridine) (hexamethylphosphorictriamide) 

has been reported previously.30 It was prepared as below. 

A 20 g of MoO3 was added to a 500 ml three neck round bottom flask fitted with a magnetic stirrer 

and it was added 100 mL of 30 % H2O2 and stirred vigorously. An oil bath preheated to 40 °C was 

used to heat the mixture until a mild exothermic reaction was observed. As soon as the internal 

temperature reached 35 °C, the mixture was stirred at 40 °C for a total of 3.5 hours while 

maintaining the internal temperature at 35 °C – 40 °C. After 3.5 hours, the reaction mixture was 

cooled to 20 °C and it was filtered to remove solids. The yellow solution was cooled to 10 °C and 

HMPA 24.3 mL was added slowly while stirring. The resulting yellow precipitate was collected 

on a Buchner funnel and recrystallized from methanol to obtain 25 g of yellow crystalline 

precipitate of MoO5.H2O.HMPA. Further drying over vacuum desiccator, 0.2 mm Hg of pressure, 

24 hours over P2O5 resulted MoO5.HMPA with a 42% yield. A 10 g of anhydrous complex of 

MoO5.HMPA was added dry THF 20 mL and it was stirred well until all dissolved. 2.1 mL of 
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pyridine was added dropwise while keeping the reaction in a 20 °C water bath. The yellow 

precipitate formed was filtered and washed with a small amount of dry THF followed by 25 mL 

of dry ether twice. It was dried over vacuum to obtain 4.6 g of MoOPH (94% yield). 

 

3-Hydroxy-1-vinylpyrrolidin-2-one (49) 

NO

HO

 

 

Diisopropylamine (0.825 mL, 5.85 mmol) was added to a solution of dry THF under argon 

atmosphere and cooled to -78 °C and n-BuLi (4.8 mL, 4.5 mmol) was added dropwise and stirred 

for 20 minutes at -78 °C. The prepared LDA solution was added dropwise to a solution of 1-Vinyl-

2-pyrrollidinone (48) (500 mg, 4.49 mmol) in dry THF and stirred at -78 °C for one hour. The 

prepared enolate of compound 48 was brought to -22 °C and it was added to a suspension of 

MoOPH (2.92 g, 6.75 mmol) in dry THF at -22 °C. This suspension was turned to a blue-green 

solution after 15 minutes and the reaction was neutralized by adding 25 mL of saturated sodium 

sulfite (Na2SO3) solution and reaction was warmed to 20 °C. 20 ml of H2O was added and further 

stirred for 15 minutes. Organic layer was separated and aqueous layer was extracted three times 

with ether. Combined organic layers were dried over Na2SO4, filtered, concentrated and column 

chromatographed using a mixture of DCM and methanol (15:1) as an eluent to give 300.0 mg 

(52% yield) of compound 49 as white solid. 1H NMR δ ppm 1.98 - 2.05 (m, 1 H), 2.38 - 2.67 (m, 

1 H), 3.29 - 3.49 (m, 1 H), 3.50 - 3.74 (m, 1 H), 3.75 (br s, 1 H), 4.32 - 4.66 (m, 3 H), 7.06 (br dd, 

J = 16.0, 9.0 Hz, 1 H); 13C NMR (CDCl3), δ 175.14, 129.3, 96.16, 70.32, 41.28, 27.47. 
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2-Oxo-1-vinylpyrrolidin-3-yl acetate (50) 

NO

AcO

 

To a solution of 3-hydroxy-1-vinylpyrrolidin-2-one (49) (300 mg, 2.36 mmol) in 5 mL dry 

pyridine was added Ac2O dropwise. Reaction was stirred at 50 °C – 60 °C overnight under argon 

atmosphere. Reaction was diluted with 50 ml DCM. It was extracted with 25 mL of H2O followed 

by 25 mL of 5 % HCl. Organic layer was dried over Na2SO4, filtered, concentrated and column 

chromatographed using a mixture of hexane and diethyl ether as an eluent to give 344.0 mg (86% 

yield) of compound 50 as white solid. 1H NMR (400 MHz, CHLOROFORM-d) δ ppm 2.03 (br 

dd, J=13.28, 9.37 Hz, 1 H), 2.15 (s, 3 H), 2.66 (s, 1 H), 3.33 - 3.51 (m, 1 H), 3.61 (dd, J=9.76, 2.73 

Hz, 1 H), 4.42 - 4.64 (m, 2 H), 5.38 (t, J=8.40 Hz, 1 H), 7.03 - 7.25 (m, 1 H). 

 

Co-polymer (51) 

NO

n

AcO

OAc

m  

To a solution of 2-oxo-1-vinylpyrrolidin-3-yl acetate (50) (25 mg, 0.148 mmol) in 100 µL of dry 

acetone was added dry vinyl acetate (13 mg, 0.148 mmol) using a micro syringe. To this mixture, 

catalytic amount of AIBN (0.24 mg, 0.00148 mmol) was added and stirred at 70 °C for 18 hours. 

The reaction mixture was concentrated and 200 µL of ether was added to the residue. The resulted 
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white precipitate was washed with 100 µL of ether twice to remove unreacted starting material. 

The white solid was vacuum dried to obtain copolymer 51 (16 mg) as a white solid (39% yield). 

1H NMR (400 MHz, CHLOROFORM-d) δ ppm 1.19 (br d, J=6.64 Hz), 1.94 - 2.22 (m), 2.55 (br 

s), 3.45 (br d, J = 7.03 Hz), 5.33 (br s). 

 

Polymer (52) 

NO

n

AcO

 

Compound (50) (200 mg, 1.18 mmol) and catalytic amount of copolymer 51 (2 mg, 0.0118 mmol) 

was dried under vacuum and was added dry propyl acetate (100 µL) under argon atmosphere. This 

mixture was heated to 70 °C and then was added AIBN (3 mg, 0.4 mol %) in 100 µL of dry propyl 

acetate. The mixture was heated at 100 °C under argon atmosphere for 18 hours. The reaction 

mixture was concentrated to remove propyl acetate and crude was washed with 100 µL of ether to 

remove unreacted starting material. The resulted white solid was then put under vacuum to obtain 

polymer 52 (180 mg) as a white solid (90 % yield). 1H NMR (400 MHz, CHLOROFORM-d) δ 

ppm 1.68 (br s), 1.73 - 1.91 (m), 2.14 (br d, J = 7.42 Hz), 2.6 (br s), 3.27 (br s), 5.35 (br s). 

 

 Polymer 53 

NO

n

HO
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To a solution of compound 52 (100 mg, 0.592 mmol) in 2 ml of methanol was added anhydrous 

K2CO3 (121 mg, 0.88 mmol) slowly and stirred at room temperature for 48 hours. Acetic acid (101 

µL in 1 mL deionized water, 1.76 mmol) was added to neutralize the K2CO3 and the solution was 

transferred into 3500 MWCO dialysis tubing using 6 mL deionized water and carried out the 

dialysis for 18 hours. The resulted solution was lyophilized to obtain polymer 53 (52 mg) as a 

white solid (72% yield). The polymer 53 was characterized by IR spectroscopy and corresponding 

IR spectrum is attached in Appendix A. 

 

 3.5.1.3. Synthesis of chitosan: galactose nanocarrier 

 

Deacetylated depolymerized chitosan (DADP-CS) 

O O

OH

HO
NH2 n  

A solution of commercially available chitosan (46) 2 g in 40 mL of 50 % w/v NaOH solution was 

refluxed at 140 °C in an oil bath for 4 hours.31 After 4 hours, reaction mixture was cooled to room 

temperature and was added a large amount of deionized water to remove NaOH. The mixture was 

filtered and the resulted light brown color solid was dried in the oven at 40 °C overnight to obtain 

1 g of deacetylated chitosan. Then to a solution of 1 g of deacetylated chitosan in 100 mL of 1% 

acetic acid solution was added 0.1 M NaHSO4 (1.51 g of NaHSO4 in 10 mL water) dropwise and 

stirred for 3 hours at room temperature. Reaction mixture was filtered and the filtrate was added 

1N NaOH aqueous solution until the product is precipitated. The precipitate was isolated by 
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centrifugation it was lyophilized to obtain deacetylated depolymerized chitosan (DADP- CS). The 

polymer was characterized by IR spectroscopy and the spectrum is attached in Appendix A. 

 

Chitosan: galactose polymer (CS-galactose) 

O O
O

HO
NH2 n

O
OH

HO
HO

HO

 

To a solution of DADP-CS (30 mg, 0.167 mmol) and galactose (76 mg, 0.42 mmol) in 2 mL dry 

THF was added 0.02 mL of boron trifluoride diethyletherate (BF3.OEt2) (0.167 mmol) and the 

mixture was heated at 60 °C under argon atmosphere for 24 hours. After 24 hours, solvent was 

removed by rotary evaporation and the mixture was transferred into a 1000 MWCO dialysis tubing 

using 5 ml deionized water and carried out the dialysis for 18 hours. The resulted solution was 

lyophilized to obtain chitosan: galactose polymer (CS-galactose) (40 mg) as a light brown solid 

(95 % yield). 1H NMR (400 MHz, D2O) δ ppm 3.3 – 4.0 (br m), 2.95 (br s). 

 

 3.5.1.4 General procedure for the formation of chitosan/adenine nanoparticles 

A 5% by weight of adenine (MW 135.13 g/mol) in deionized water was added to a solution of 

chitosan: PEG nanocarrier (95% by weight) in 0.18 % acetic acid in deionized water, and the 

resulting solution was heated to 50 °C for one minute and then was cooled in 4 °C for one hour. 

The solution was finally lyophilized to give a solid. 

 

 3.5.1.5 General procedure for the formation of chitosan: PEG/dsDNA nanoparticles 
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A 5% by weight of dsDNA (523 base pairs; MW 509,402 Da) in deionized water was added to a 

solution of chitosan: PEG nanocarrier (95% by weight) in 0.18 % acetic acid in deionized water, 

and the resulting solution was heated to 50 °C for one minute and then was cooled in 4 °C for one 

hour. The solution was finally lyophilized to give a solid. 

 

 3.5.1.6 General procedure for the formation of chitosan: PEG/dsRNA nanoparticles 

The formation of chitosan: PEG/dsRNA nanoparticles was same as that described in section 

3.5.1.4.  

 

 3.5.1.7 General procedure for the formation of α-OH-PVP/dsDNA nanoparticles 

A 5% by weight of dsDNA (523 base pairs; MW 509,402 Da) in deionized water was added to a 

solution of α-OH-PVP nanocarrier (95% by weight) in deionized water, and the resulting solution 

was heated to 50 °C for one minute and then was cooled in 4 °C for one hour. The solution was 

finally lyophilized to give a solid. 

 

 3.5.1.8 General procedure for the formation of α-OH-PVP/dsRNA nanoparticles 

The formation of α-OH-PVP /dsRNA nanoparticles was same as that described in section 3.5.1.4.  

 

 3.5.1.9 Atomic Force Microscopy (AFM) Imaging 

AFM was used to examine the nanoparticles using a tapping mode with a high aspect ratio tip. 

Briefly, 30 μL of the nanoparticle solution in deionized water was placed onto freshly cleaved 

mica, and dried with air. AFM images on different locations of the mica were then obtained using 

a Nanoscope IIIa scanning probe microscope (Digital Instruments Inc., Santa Barbara, CA, USA).  
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Chapter 4 - Synthesis of Viral Protease Inhibitors 

 4.1 Introduction 

 

Infections caused by viruses result severe detrimental effects to human way of life and it has been 

estimated that approximately 25% of people will be died from an infection.1 Not only humans, but 

also other multi cellular organisms on earth get affected from viral infections and therefore create 

even far more threat to humans.  

In principle, antiviral drugs could be designed to target either at viral proteins or host cellular 

proteins and both approaches have certain advantages and disadvantages.2 Targeting viral proteins 

more likely result more specific, less toxic compounds, yet, it can result compounds with a narrow 

spectrum of activity and likely create a higher chance of virus-drug resistance. Targeting host 

cellular proteins may afford compounds with a broader spectrum of activity, yet, it can result 

higher toxicity.2  

Among the several diseases caused by viruses, gastroenteritis has attracted public attention as it is 

globally responsible for great morbidity and mortality among all ages. There are about 70,000 

hospitalizations and over 800 deaths annually, in the United States, alone.3 The leading pathogen 

for the majority of cases of gastroenteritis are noroviruses (NV) and is responsible for ~58% of all 

food borne illnesses.3 NV associated gastroenteritis results symptoms such as diarrhea, fever, 

nausea, vomiting etc and usually last for about three days in healthy adults, however, elderly, and 

immunocompromised patients experience prolong symptoms. There is no specific medication 

available for the treatment of NV infections, and therefore discovery of novel anti-norovirus drugs 

is highly warranted. 
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In our efforts of discovering potent novel anti-NV compounds, we focused on synthesizing several 

tripeptidyl analogues by changing the P1, P2, P3 positions and the N-terminal cap (P4) as shown 

in Figure 4.1.4,5  

H
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N
H

R1

O

H

O
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N
H

O

R4

P1P2P3P4  

Figure 4.1: Generic tripeptidyl protease inhibitor structure. 

 

In the first part of this chapter, I summarized the work I carried out in the synthesis of novel anti-

NV analogues by changing the R1 and R4 positions and in the second part, I discussed the work I 

carried out in the large scale synthesis of known dipeptidyl compound (GC376) for evaluating its 

efficacy on feline infectious peritonitis (FIP) in vivo using cats. 

 

 4.2 Background 

NVs are non-enveloped, single stranded RNA viruses with a positive sense genome (∼7.5 kb) and 

belongs to the genus Norovirus in the family of Caliciviridae. RNA genome of NVs have 

organized into three open reading frames (ORFs). ORF1 encodes a polyprotein of six/seven 

nonstructural protein products, ORF2 encodes major structural capsid protein VP1 and ORF3 

encodes minor structural capsid protein VP2. NV genome is covalently linked to a viral protein 

called VPg at the 5′end and is polyadenylated at the 3′ end (Figure 4.2).3 
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Figure 4.2: Schematic representation of the RNA genome of NVs. 

 

NV outbreaks often occur in semi-closed environments such as hospitals, cruise ships, nursing 

homes, schools etc and usually difficult to control due to their low infectious dose (17 virus 

particles), prolong persistence in the environment, and their ability to withstand general sanitary 

measures used against other microorganisms.3 

Viruses belongs to the picornavirus-like supercluster, which includes picornaviruses, caliciviruses, 

and coronaviruses possess important nonstructural enzymes called 3C or 3C-like proteases (3Cpro 

or 3CLpro, respectively), which contain a typical chymotrypsin-like fold and a catalytic triad (or 

dyad) with a Cys residue as a nucleophile.4 These enzymes act as promising targets to focus on 

drug discovery due to their central roles play on these viruses. 3Cpro or 3CLpro involves in the 

cleavage of the viral polyprotein into mature or intermediate virus proteins, thus being an essential 

part in viral replication and propagation.4 Both 3Cpro or 3CLpro share common characteristics 

which include, a typical chymotrypsin-like fold; catalytic triad consists of cysteine (Cys), histidine 

(His), and glutamine (Glu) (or Asp) residues; use a Cys (SH side chain) as the active site 

nucleophile to cleave the peptide substrate scissile bond and a preference for a Glu or Gln residue 

at the P1 position on the substrate.4 

Our efforts to create potent anti-NV compounds primarily targeted on the inhibition of NV 3C-

like protease (NV3CLpro).5 Apart from having the above mentioned features, studies have shown 

that His30, Glu54 and Cys139 are conserved in all NV3CLpro enzymes and the His30/Cys139 

pair work as an acid-base dyad that is essential for protease activity.6 X ray crystal structures of 
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the NV3CLpro have been reported.7 The substrate binding site of NV3CLpro consists of substrate 

binding pockets (S1, S2, S3…) which have been defined in an order of moving away from the 

active site toward the bound substrates N-terminus end. When considering about the interactions 

between the NV3CLpro with natural substrates, it has been found that, the residues Thr134, His157 

and Ala16028 in the S1 pocket interact with the P1 glutamine (Gln)/ glutamic acid (Glu) of the 

substrate.7 The S2 pocket is hydrophobic in nature and contains residues such as Ile109, Arg112 

and Val114 to favor the accommodation of bulky hydrophobic P2 side chains such as Leu and 

Phe.7 By designing peptidyl molecules as the inhibitors, we believed that it can mimic the primary 

substrate of the NV3CLpro to interact well with the enzyme. 

Coronaviruses in the family of Coronaviridae are another important viruses that infect both 

animals and humans creating wide range of diseases.8 Feline coronavirus cause feline infectious 

peritonitis (FIP), a highly fatal disease among domestic and wild cats and is associated with 

immune responses and involves depletion of T cells.8 Groutas and coworkers have discovered a 

potent dipeptidyl compound (GC376) that targets 3C-like protease (3CLpro) with broad-spectrum 

activity against various human and animal coronaviruses.4,9 As a collaboration with that group, I 

was involved in the gram-scale (15g -20g) synthesis of GC376 to evaluate its therapeutic efficacy 

as a 3CLpro inhibitor in laboratory cats with FIP.8 

Therefore, this chapter will discuss the syntheses of tripeptidyl compounds and GC376 as 3CLpro 

inhibitors in NV and FECV respectively.  

 

 4.3 Results and discussion 

Previous studies done by Groutas and coworkers were able to discover a potent dipeptidyl 

compound (GC373) that shows micromolar inhibition (IC50 = 1.82 µM, EC50 = 2.1 µM) of 
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NV3CLpro in vitro using a fluorescence resonance energy transfer (FRET) enzyme assay and in a 

NV cell based assay.4,9-11 GC373 possesses Gln “surrogate” at P1 position which can be recognized 

by the S1 enzyme pocket, Leu at P2 position that will be recognized by the S2 pocket and a Cbz 

N-terminal cap. The presence of aldehyde function at C-terminal position can act as the 

electrophilic site for nucleophilic attack from Cys139. With this knowledge in hand, our initial 

research efforts focused on synthesizing a new class of NV protease inhibitors using a structure-

activity relationship (SAR) approach. As a part of that project, I was involved in testing the effect 

of the substituents at P1 and N-terminal cap positions on the anti-NV activity. In order to 

investigate how the nature of P1 affects the anti-NV activity of these compounds, two molecules 

had been synthesized by changing the substituent at P1 position. We proposed the triazole 

functionality to mimic Glu/ Gln residue of the natural P1 substrate to investigate how it affects the 

activity of the synthesized molecules as anti-NV compounds.12 The 1,2,3-triazole functionality 

offers a hydrolysis-stable amide replacement of glutamine surrogate, thus believed to have better 

anti-NV activity.12,13 
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Figure 4.3: Synthesized anti-NV compounds for structure activity relationship studies to 

evaluate the effect of P1 residue. 
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In order to prepare compounds 55 and 56, intermediates 62 and 66 need to be prepared first. The 

synthetic scheme to prepare 62 and 66 is shown in Scheme 4.1. 

 

Scheme 4.1: Syntheses of intermediates 60 and 66  
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Intermediate 62 was achieved in total of four steps. The replacement of the hydroxyl functionality 

of N-(tert-Butoxycarbonyl)-L-serine methyl ester (57) using CBr4 and triphenyl phosphine (PPh3) 

yielded brominated product 58 in 75% yield.12 The nucleophilic substitution reaction (SN2) 

occurred between compound 58 with sodium azide in DMF resulted azide intermediate for the 

click triazole formation (59). However, the yield for this step was significantly low due to the 

formation of E2 elimination product in 3:1 ratio. Reacting the chiral azide (59) with the 

ethynyltrimethylsilane in the presence of Cu(II) and sodium ascorbate in water/tert-butanol solvent 

yielded the corresponding 1,2,3-triazole (60) in high yields. Subsequent removal of the 
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trimethylsilyl functionality using nBu4NF followed by TFA treatment to deprotect the Boc group 

resulted the target compound (62) as the TFA salt. 

 

Intermediate 66 was prepared in total of three steps. Starting with Boc-L-proparglycine 

dicyclohexylammonium) salt, the carboxylic functionality was converted to methyl ester using 

methyl iodide under basic conditions. Reaction of trimethylsilyl azide with the compound 64 in 

the presence of Cu(II) and sodium ascorbate in water/tert-butanol solvent yielded the 

corresponding triazole (65).13 Subsequent removal of the Boc protecting group resulted the target 

compound (66) as the TFA salt. 

 

Scheme 4.2: Syntheses of compounds 55 and 56 

O
H
N

O
OH

O

+ H2N

R

O

OMe EDCI, DMAP,

DMF, CH2Cl2
25 °C

O

O

N
H O

N
H

R

O

OMe

1. 10 % TFA in CH2Cl2
2. EDC, DMAP

O N
H

O
OH

O

1. NaBH4, CH2Cl2
MeOH, 0°C

2. Dess-Martin
periodinane
CH2Cl2

(72 % yield)

67

(62) N N
N

H

R =

(66) R = N
NHN

(68)  R =
N N

N

H

(69)  R = N
NHN (78% yield) 70

O N
H

O
N

O

H

N
H

O R
OMe

O

(72 % yield)(71)  R =
N N

N

H

(72)  R = N
NHN (74% yield)

55

56

(50 % yield)

(48 % yield)

 
 



 

178 

Synthetic scheme for the preparation of compounds 55 and 56 using the intermediates 62 and 66 

is shown in Scheme 4.2. Hence, the reaction of 62 and 66 with (S)-N-Boc-leucine (67) in the 

presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDCI) afforded dipeptides 68 and 

69 respectively, which upon removal of the Boc group and coupling with (S)-N-Cbz-1-

napthylalanine gave tripeptides 71 and 72 respectively in good yields. Reduction of the methyl 

ester function with sodium borohydride followed by oxidation with Dess-Martin periodinane 

(DMP) furnished corresponding compounds 55 and 56 respectively in moderate yield. 

We also studied the involvement of N-terminal cap on the activity of anti-NV compounds. 

Therefore, Cbz cap was replaced by thiazoles and amino-4-methylcoumarin (AMC) functionalities 

to evaluate the activity of the newly designed compounds and these compounds were synthesized 

by me and Dr. Allan Prior. 
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Figure 4.4: Synthesized anti-NV compounds by modifying N-terminal cap. 

 

Synthetic scheme for the preparation of compound 73 is shown in Scheme 4.3. 

 

Scheme 4.3: Synthesis of compound 73 
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The reaction of triphosgene (77) with N-hydroxysuccinamide (76) in the presence of tributyl amine 

and THF as the solvent yielded compound 78. The reaction of compound 78 with compound 79 in 

a mixture of CH3CN and THF followed by the addition of NEt3 resulted the activated alcohol 80 

followed by the addition of compound 81 resulted the compound 82. The reaction of 82 and 83 in 

the presence of EDCI afforded compound 84 in 63% yield. Reduction of the methyl ester function 

with sodium borohydride followed by oxidation with Dess-Martin periodinane (DMP) furnished 

corresponding compound 73 in moderate yield. 

Synthetic scheme for the preparation of compounds 74 and 75 is shown in Scheme 4.4. 

 

Scheme 4.4: Syntheses of compounds 74 and 75 
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Synthesis of compounds 74 and 75 was achieved as shown in Scheme 4.4. Deprotection of the 

Cbz group in compound 85 afforded free amine 86. Coupling of compound 86 with 

corresponding acid 87 and 88 in the presence of EDCI afforded tripeptidyl ester 89 and 90. The 

acid precursor 88 was prepared as shown in Scheme 4.5. Reduction of the methyl ester function 

of compounds 89 and 90 followed by oxidation with DMP furnished corresponding compounds 

74 and 75 in 45% and 81% yields, respectively. 

 

Scheme 4.5: Synthesis of acid precursor 88 
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Table 4.1: Activity Data for Compounds 55, 56, 73 - 75 in NV 3CLpro (enzyme) and NV 

(cell) Assays. 

Compound IC50 (Enzyme), µM EC50 (Cell), µM 

55 >10 >10 

56 >10 >10 

73 >10 >10 

74 0.5 0.08 

75 1.5 2.5 

 

As shown in Table 4.1, compounds 55 and 56 in which the glutamine surrogate had been replaced 

with traizole functionalities seem not act as inhibitors towards NV 3CLpro. This suggests the 

importance of having the glutamine surrogate moiety in the P1 position. Since the natural substrate 

for NV 3CLpro possesses Glu/Gln at the P1 site, it seems that the P1 position of the synthesized 

compounds need to have glutamine moiety for better NV 3CLpro activity. Among the compounds 

in which the Cbz N-terminal cap had been replaced, the smaller thiazole cap in compound 74 

proved to be better than the compounds 73 and 75. 
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 4.3.1 Synthesis of GC376 

Large scale synthesis (15 g -20 g) of GC376 (discovered by Dr. Groutas’s group) was carried out 

to evaluate its therapeutic efficacy as a 3CLpro inhibitor in laboratory cats with FIP.8 Synthetic 

scheme is shown in Scheme 4.6 and 4.7. 

 

Scheme 4.6: Synthesis of glutamine surrogate methyl ester (98) 
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In order to prepare the GC376, first, the glutamine surrogate methyl ester (98) was prepared (40-

50 g) following a recent literature procedure as shown in Scheme 4.6.14 In brief, N-Boc glutamic 

acid (94) was treated with methyl iodide and sodium bicarbonate in DMF for 5 days to give N-

Boc-glutamic dimethyl ester (95). Double deprotonation of 95 using lithium hexamethyldisilazane 

(LiHMDS) followed by dropwise addition of bromoacetonitrile at -78oC, stirring for 3 hours 

followed by quenching with acetic acid furnished the alkylated nitrile compound (96) with 

excellent diastereoselectivity, as only one diastereomer (1,3-anti) of 96 was observed from the 

reaction. The nitrile (96) was reduced with sodium borohydride and cobalt(II) chloride in methanol 



 

183 

to give an amine intermediate which undergoes ring closure by an acyl substitution reaction with 

the side chain ester group to produce the lactam ring as seen in compound 97. The removal of the 

Boc group of 97 using 4M HCl in dioxane gave the glutamine surrogate methyl ester (98) in good 

yield. 

 

Scheme 4.7 : Synthesis of GC376 
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GC376 was prepared following the reported procedure.4 (S)-N-Cbz-leucine (99) which was 

prepared by reacting L-leucine with the benzylchloroformate under basic conditions in 

water/dioxane mixture was allowed to react with compound 98 in the presence of 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDCI) to afford dipeptidyl methyl ester (100). The reduction 

of compound 100 using NaBH4 followed by oxidation with DMP resulted the compound 101, 

which was then converted to bisulfite adduct (102) using sodium bisulfite to afford GC376 in high 

yield. 
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 4.4 Conclusion 

In pursuit of identifying novel tripeptidyl compounds which can inhibit NV3CLpro, the effects of 

the substituents attached to P1 and N-terminal cap positions on the activity of the molecules were 

studied by synthesizing various compounds. It can be seen that the presence of glutamine surrogate 

at P1 position, and the presence of N-terminal Cbz cap are important features for better activity of 

these molecules. In addition, the work done by Dr. Allan prior on this project, was able to discover 

a potent tripeptidyl anti-noroviral compound which strongly inhibit NV3CLpro in enzyme and cell 

based assays with IC50 0.14 µM and EC50 0.04 µM. This compound has an aldehyde warhead, a 

P1 glutamine surrogate, a P2 leucine, a P3 L-1-napthylalanine and an N-terminal Cbz cap.5 In 

addition, this compound also possess strong inhibitory activities against other viral strains in the 

caliciviridae, picornaviridae, and coronaviridae families especially human rhino virus (HRV) and 

SARS. Prompted by these encouraging results, further SAR studies are ongoing to improve the 

activity and bioavailability of the lead compounds.  

 

 4.5 Experimental Section 

(R)-Methyl 3-bromo-2-(tert-butoxycarbonyl)propanoate / L-N-Boc-β-bromoalanine methyl ester 

(58) 

BocHN

Br

OMe

O  

To a solution of N-(tert-butoxycarbonyl)-L-serine methyl ester (57) (1.00 g, 4.56 mmol) in 25 ml 

of dry CH2Cl2 was added PPh3 (1.79g, 6.84 mmol) and carbon tetrabromide (CBr4) (2.27g, 6.84 

mmol) and mixture was stirred at room temperature for 12 hours. Upon addition of diethyl ether, 

(200 mL) the resulting precipitate was removed by filtration and organic layer was washed with 
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saturated NaHCO3 (50 mL) followed by brine (50 mL), dried over anhydrous sodium sulfate, and 

concentrated. The concentrate was column chromatographed on silica gel using a gradient mixture 

of hexane and ethyl acetate as eluants to give 0.975 g of product 58 (75% yield). 1H NMR (400 

MHz, CHLOROFORM-d) δ ppm 5.39 (br s, 1 H), 4.76 (br d, J = 8.20 Hz, 1 H), 3.81 (s, 3 H), 3.71 

(br dd, J = 10.54, 3.51 Hz, 2 H), 1.46 (s, 9 H). 

  

(S)-Methyl 3-azido-2-(tert-butoxycarbonyl)propanoate (59) 

BocHN

N3

OMe

O  

 

To a solution of compound 58 in dry DMF 5 ml was added NaN3 and was stirred for 2 hours at 

room temperature. It was diluted with 5 ml of water and extracted with CH2Cl2 (15 mL x 2). The 

combined organic layers were washed with brine, dried over sodium sulfate, filtered, concentrated 

and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate as 

eluants to give 17 mg of product 59 (20% yield). 1H NMR (400 MHz, CHLOROFORM-d) δ ppm 

5.38 (s, 1 H), 4.47 (s, 1H), 3.79 (s, 3 H), 3.72 (br d, J=3.51 Hz, 2 H), 1.45 (s, 9 H). 

 

  

(S)-Methyl 2-(tert-butoxycarbonyl)-3-(4-(trimethylsilyl)-1H-1,2,3-triazol-1-yl)propanoate (60) 

N N
N

SiMe3

BocHN CO2Me  
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Azide (59) (72.8 mg, 0.298 mmol) and 1 equivalent of ethynyltrimethylsilane (29.3 mg, 0.298 

mmol) were dissolved in a mixture of 1 mL t-BuOH and 0.5 ml water. With vigorous stirring, 

sodium ascorbate (5.9 mg, 0.0298 mmol) was added followed by copper sulfate (0.47 mg, 0.00298 

mmol) solution in 500 µL water. The mixtures were stirred at room temperature for 24 hours. It 

was added 30 mL water and extracted with EtOAc. The combined organic layers were washed 

with brine, dried over sodium sulfate, filtered, concentrated and column chromatographed on silica 

gel using a gradient mixture of hexane and ethyl acetate as eluants to give 17 mg of product 60 

(20% yield).  1H NMR (400 MHz, CHLOROFORM-d) δ ppm 7.47 (s, 1 H), 5.38 (s, 1 H), 4.82 (br 

d, J=4.30 Hz, 3 H), 3.77 (s, 3 H), 1.43 (s, 9 H), 0.31 (s, 9 H). 

 

(S)-Methyl 2-(tert-butoxycarbonyl)-3-(1H-1,2,3-triazol-1-yl)propanoate (61) 

 

N N
N

BocHN CO2Me  

A 35 µL of 1M NBu4NF was syringed into a solution of compound 60 (8 mg, 0.0234 mmol) in 

THF. The mixture was stirred at room temperature under argon for one hour. Two drops of acetic 

acid were added and was concentrated to dryness. 

 

(S)-Methyl 2-amino-3-(1H-1,2,3-triazol-1-yl)propanoate (62) 

N N
N

H2N CO2Me  
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A 20% TFA in CH2Cl2 was added to compound 61 (20 mg, 0.074 mmol) in 2 mL CH2Cl2. Stirred 

at room temperature for one hour. It was concentrated to obtain 11.3 mg of compound 62 (90% 

yield). 

 

(S)-Methyl 2-(tert-butoxycarbonyl)pent-4-ynoate (64) 

BocHN

H

O

OMe

 

To a solution of compound 63 (189.14 mg, 0.888 mmol) in dry DMF (8 mL) was added NaHCO3 

(149.18 mg, 1.776 mmol) followed by MeI (183 µL, 3.552 mmol) and was stirred at room 

temperature under argon atmosphere for 12 hours. The reaction was diluted with 30 mL water and 

extracted with EtOAc (75 mL x 3). The combined organic layers were washed with 0.1% HCl 

followed by H2O (50 mL x 2), brine, dried over sodium sulfate, filtered, concentrated and column 

chromatographed on silica gel using a gradient mixture of hexane and EtOAc as eluants to give 

198 mg of product 64 (98% yield). 1H NMR (400 MHz, CHLOROFORM-d) δ ppm 5.33 (br s, 

1H), 4.46 – 4.49 (m, 1H), 3.78 (s, 3 H), 2.64 - 2.81 (m, 2 H), 2.03 -2.04 (m, 1H), 1.45 (m, 9 H). 

 

(S)-Methyl 2-(tert-butoxycarbonyl)-3-(3H-1,2,3-triazol-4-yl)propanoate (65) 

BocHN

N
NHN

OMe

O  

Azido trimethylsilane (328 mg, 2.85 mmol) and 1 equivalent of compound 64 (162 mg, 0.714 

mmol) were dissolved in a mixture of 1 mL t-BuOH and 0.5 ml water. With vigorous stirring, 
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sodium ascorbate (70.69 mg, 0.357 mmol) was added followed by copper sulfate (5.7 mg, 0.036 

mmol) solution in 500 µL water. The mixtures were stirred at 65 °C under argon atmosphere for 

24 hours. The reaction was diluted with 50 mL water and extracted with EtOAc (100 mL x 3). The 

combined organic layers were washed with 10% NH4OH, brine, dried over sodium sulfate, filtered, 

concentrated and column chromatographed on silica gel using a gradient mixture of hexane and 

ether as eluants to give 49.4 mg of product 65 (26% yield). 1H NMR (400 MHz, CHLOROFORM-

d) δ ppm 7.51 (s, 1 H), 5.46 (br d, J=8.20 Hz, 1 H), 4.67 (br s, 1 H), 3.74 (s, 3 H), 3.26 (br s, 2 H), 

1.42 (s, 9 H).  

 

(S)-Methyl 2-amino-3-(3H-1,2,3-triazol-4-yl)propanoate (66) 

H2N

N
NHN

OMe

O  

 A 20% TFA in CH2Cl2 was added to compound 65 (48 mg, 0.178 mmol) in 2 ml CH2Cl2. Stirred 

at room temperature for one hour. It was concentrated to obtain 28 mg of compound 66 (93% 

yield). 

 

(S)-Methyl-2-((S)-2-(tert-butoxycarbonyl)-4-methylpentanamido)-3-(1H-1,2,3-triazol-1-

yl)propanoate (68) 

O

O

N
H O

N
H O

OMe

N N
N
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To the amine compound (62) (67.7 mg, 0.238 mmol) was added (S)-N-boc-leucine (65.37 mg, 

0.262 mmol), EDCI (91.06 mg, 0.477 mmol) and DMAP (72.70 mg, 0.596 mmol) followed by dry 

CH2Cl2 (10 mL), dry DMF (2 mL) and the resulting solution was stirred at 25oC for 18 hours under 

argon atmosphere. The reaction mixture was partitioned between water (100 mL) and CH2Cl2 (10 

0 mL), the aqueous layer was acidified to pH = 2 using 2 N HCl, and extracted three times with 

CH2Cl2 (100 mL each). The combined organic layers were dried (anhydrous MgSO4), filtered, and 

concentrated to yield a solid which was purified by silica gel chromatography using a gradient 

elution of CH2Cl2: MeOH) to yield compound 68, 70 mg (72% yield) as a white solid. 1H NMR 

(400 MHz, CHLOROFORM-d) δ ppm 7.62 -7.68 (2 H), 7.13 (br s, 1H), 5.05 (br s, 1H), 4.84 – 

4.92 (m, 3H), 4.07 (br s, 1 H), 3.77 (s, 3 H), 1.58 - 1.84 (m, 2 H), 1.40 (s, 9 H), 0.85 - 0.98 (m, 6 

H). 

 

(S)-Methyl-2-((S)-2-(tert-butoxycarbonyl)-4-methylpentanamido)-3-(3H-1,2,3-triazol-4-

yl)propanoate (69) 

O

O

N
H O

N
H O

OMe

N
NHN

 

Compound 69 was prepared via the same procedure as that of compound 68 to obtain 70 mg (78% 

yield) as a white solid. 1H NMR (400 MHz, CHLOROFORM-d) δ ppm 7.46 – 7.49 (m, 1H), 7.39 

(s, 1 H), 5.24 – 5.27 (m, 1H), 4.91 - 4.97 (m, 1 H), 4.20 (br s, 1H), 3.76 (s, 3 H), 3.27 (br d, J = 

5.08 Hz, 2 H), 1.66 (br d, J = 6.64 Hz, 1 H), 1.59 (br dd, J = 13.67, 7.42 Hz, 2 H), 1.43 (s, 9 H), 

1.23 - 1.35 (m, 1 H), 0.82 - 0.96 (m, 6 H). 13C NMR (CDCl3), δ 172.98, 171.37, 162.86, 156.33, 

80.77, 53.41, 52.87, 51.94, 41.37, 36.76, 31.72, 28.55, 24.87, 22.89,22.28. 
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(S)-Methyl-2-((S)-2-((S)-2-(benzyloxycarbonyl)-3-(naphthalen-1-yl)propanamido)-4-

methylpentanamido)-3-(1H-1,2,3-triazol-1-yl)propanoate (71). 

 

O N
H

O
N

O

H

N
H

O
OMe

O

N N
N

 

The N-Boc-dipeptide 68 (70 mg, 0.19 mmol) was dissolved in 10% TFA/CH2Cl2 (5 mL) and 

stirred at 25oC for 4 hours. The solvent was removed on the rotary evaporator to yield a sticky oil 

that was re-dissolved in chloroform followed by removal of the solvent once again on the 

rotary evaporator to yield a semi-solid material. After sitting under high vacuum for 0.5 hours, a 

white solid (amine intermediate) was obtained in quantitative yield. To this amine intermediate 

(90 mg, 0.22 mmol) was added (S)-N-Cbz-1-naphthylalanine (70) (77 mg, 0.22 mmol), EDCI (84 

mg, 0.44 mmol) and DMAP (54 mg, 0.44 mmol) followed by dry CH2Cl2 (15 mL) and the resulting 

solution was stirred at 25oC for 18 hours under argon atmosphere. The reaction mixture was 

partitioned between water (100 mL) and CH2Cl2 (100 mL), the aqueous layer was acidified to pH 

= 2 using 2 N HCl, and extracted three times with CH2Cl2 (100 mL each). The combined organic 

layers were dried (anhydrous Na2SO4), filtered, and concentrated to yield a solid which was 

purified by silica gel chromatography using a gradient elution of CH2Cl2: MeOH) to yield 

compound 71, 114 mg (72% yield) as a white solid. 1H NMR (400 MHz, CHLOROFORM-d) δ 

ppm 0.76 - 0.91 (m, 6 H), 0.91 - 1.11 (m, 1 H), 1.20 - 1.49 (m, 2 H), 3.56 (br d, J = 6.64 Hz, 1 H), 

3.68 (br dd, J = 14.45, 6.64 Hz, 1 H), 3.78 (s, 3 H), 4.16 - 4.42 (m, 1 H), 4.43 - 4.69 (m, 1 H), 4.70 
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- 4.94 (m, 3 H), 4.94 - 5.18 (m, 2 H), 5.12 (m, 2H), 6.22 (br d, J = 6.64 Hz, 1 H), 6.92 (br s, 1 H), 

7.26 - 7.41 (m, 6 H), 7.42 - 7.62 (m, 3 H), 7.72 - 7.81 (m, 1 H), 7.81 - 8.00 (m, 2 H), 8.19 (m, 1H). 

 

(S)-Methyl-2-((S)-2-((S)-2-(benzyloxycarbonyl)-3-(naphthalen-1-yl)propanamido)-4-

methylpentanamido)-3-(3H-1,2,3-triazol-4-yl)propanoate (72) 

O N
H

O
N

O

H

N
H

O
OMe

O

N
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Compound 72 was prepared via the same procedure as that of compound 71 to obtain 74 mg (74% 

yield) as a white solid. 1H NMR (400 MHz, CHLOROFORM-d) δ ppm 0.66 - 0.93 (m, 1 H), 0.77 

(br t, J = 6.05 Hz, 5 H), 1.24 (br s, 1 H), 1.33 - 1.62 (m, 4 H), 1.98 (br s, 1 H), 3.07 - 3.34 (m, 2 

H), 3.44 (br s, 1 H), 3.53 - 3.68 (m, 2 H), 3.73 (s, 3 H), 4.42 - 4.61 (m, 1 H), 4.61 - 4.79 (m, 1 H), 

4.80 - 5.03 (m, 3 H), 5.77 (br s, 1H), 6.80 - 7.08 (m, 2 H), 7.17 (br s, 2 H), 7.30 - 7.51 (m, 4 H), 

7.67 (br d, J = 16.40 Hz, 2 H), 7.73 - 7.88 (m, 1 H), 8.06 (br s, 1 H). 

 

Benzyl-(S)-1-((S)-4-methyl-1-oxo-1-((S)-1-oxo-3-(1H-1,2,3-triazol-1-yl)propan-2-

ylamino)pentan-2-ylamino)-3-(naphthalen-1-yl)-1-oxopropan-2-ylcarbamate (55) 

N
H

N N
N

H
OH

N

O O
N
H

O

O
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To a solution of ester 72 (53 mg, 0.086 mmol) in CH2Cl2/MeOH (1:1) (8 mL) at 0oC was added 

NaBH4 (2.81 mg, 0.129 mmol) in small portions over a period of 4 hours. The reaction was 

quenched with water (0.5 mL) and diluted with 100 mL of CH2Cl2. The solution was passed 

through a short plug of silica gel and the organic material washed thoroughly with 30:1 

CH2Cl2/MeOH (100 mL). The filtrate was concentrated to yield a solid which was dissolved in 

distilled CH2Cl2 (10 mL) and treated with Dess-Martin periodinane (DMP) for 2 h at 25oC. The 

reaction mixture was filtered and the filtrate was concentrated and purified by silica gel 

chromatography using a gradient solvent elution of 25% acetone/CH2Cl2 to 100% acetone. The 

fractions containing the product were combined and concentrated to give a white solid to which 

was added CHCl3 (20 mL). After sitting for 10 min the mixture was filtered through a glass frit 

funnel (fine) and the filtrate was concentrated to provide aldehyde 55 (50% yield) as a white solid. 

1H NMR (400 MHz, CHLOROFORM-d) δ ppm 0.84 (br t, J = 6.44 Hz, 6 H), 3.41 (br dd, J = 

14.25, 8.40 Hz, 1 H), 3.55 - 3.79 (m, 1 H), 4.37 (br s, 2 H), 4.40 - 4.64 (m, 2 H), 4.65 - 4.88 (m, 2 

H), 4.90 - 5.13 (m, 2 H), 5.17 - 5.41 (m, 1 H), 5.30 (s, 1 H), 6.10 - 6.36 (m, 1 H), 7.30 - 7.43 (m, 

3 H), 7.45 - 7.70 (m, 3 H), 7.72 - 7.83 (m, 1 H), 7.87 (br d, J = 6.64 Hz, 1 H), 8.15 (br d, J = 8.20 

Hz, 1 H), 9.50 – 9.55 (s, 1H). 

 

Benzyl (S)-1-((S)-4-methyl-1-oxo-1-((S)-1-oxo-3-(3H-1,2,3-triazol-4-yl)propan-2-

ylamino)pentan-2-ylamino)-3-(naphthalen-1-yl)-1-oxopropan-2-ylcarbamate (56) 

O N
H

O
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H
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Compound 56 was prepared via the same procedure as that of compound 55 to obtain 5.3 mg 

(48% yield) as a white solid. 1H NMR (400 MHz, CHLOROFORM-d) δ ppm 0.84 (br t, J = 6.44 

Hz, 6 H), 3.41 (br dd, J = 14.25, 8.40 Hz, 1 H), 3.55 - 3.79 (m, 1 H), 4.37 (br s, 2 H), 4.40 - 4.64 

(m, 2 H), 4.65 - 4.88 (m, 2 H), 4.90 - 5.13 (m, 2 H), 5.17 - 5.41 (m, 1 H), 5.30 (s, 1 H), 6.10 - 

6.36 (m, 1 H), 7.30 - 7.43 (m, 3 H), 7.45 - 7.70 (m, 3 H), 7.72 - 7.83 (m, 1 H), 7.87 (br d, J = 

6.64 Hz, 1 H), 8.25 (br d, J = 8.20 Hz, 1 H), 9.50 (s, 1H). 

 

Compound 78 

N

O

O

O O

O

N

O

O
 

To a mixture of triphogene (77) (1.4572 g, 4.9 mmol) and N-hydroxysuccinamide (76) (2.82 g, 

24.55 mmol) in THF (20 mL) at 0°C was added tributylamine (5.43 g, 29.4 mmol) dropwise. The 

resulting mixture was stirred at room temperature under argon atmosphere for six hours. The white 

solid formed was separated via filtration and was washed with cold THF and dried under vaccum 

to obtain 1.93 g of compound 78. 

 

Compound 80 

O O

O

N

O

O

N

S
 

To compound 79 (120 mg, 0.93 mmol) in a mixture of CH3CN (3 ml) and THF (10 mL) was 

added compound 78 (150 mg, 0.93 mmol) and trimethylamine (0.4 g, 0.5 mL) and was stirred at 
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room temperature for five hours. The resulting compound 80 was used in next step without 

further purification. 

 

(S)-2-(((2-Methylthiazol-5-yl)methoxy)carbonyl)-3-(naphthalen-1-yl)propanoic acid (82) 

NH
OH

O
O

O

N

S

 

To compound 81 (0.158 g, 0.73 mmol) in 3 mL THF was added NEt3 until it gets basic. This 

mixture was transferred into the solution of activated alcohol (80) and was stirred for 36 hours 

until precipitate is disappeared. The reaction was added 15 mL water and it was acidified to pH = 

5-6. It was extracted with CH2Cl2 (100 mL x 3). The combined organic layers were dried 

(anhydrous Na2SO4), filtered, and concentrated to yield a solid which was purified by silica gel 

chromatography using a gradient elution of CH2Cl2: MeOH to yield compound 82, 154 mg (45% 

yield) as a white solid. 1H NMR (400 MHz, CHLOROFORM-d) δ ppm 2.61 (br s, 3 H), 3.36 (br 

s, 1 H), 3.74 (br s, 1 H), 4.77 (br s, 1 H), 5.05 (br s, 2 H), 5.41 (br s, 1 H), 7.43 (br s, 4 H), 7.70 (br 

s, 1 H), 7.80 (br s, 1 H), 8.06 (br s, 1 H). 

 

(S)-Methyl-2-((S)-4-methyl-2-((S)-2-(((2-methylthiazol-4-yl)methoxy)carbonyl)-3-(naphthalen-

1-yl)propanamido)pentanamido)-3-((S)-2-oxopyrrolidin-3-yl)propanoate (84) 
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To the amine intermediate 83 (25 mg, 0.062 mmol) was added compound 82 (23 mg, 0.062 mmol), 

EDCI (24 mg, 0.124 mmol) and DMAP (15 mg, 0.124 mmol) followed by dry CH2Cl2 (8 mL) and 

the resulting solution was stirred at 25oC for 18 hours under argon atmosphere. The reaction 

mixture was partitioned between water (100 mL) and CH2Cl2 (100 mL), the aqueous layer was 

extracted three times with CH2Cl2 (100 mL each). The combined organic layers were dried 

(anhydrous Na2SO4), filtered, and concentrated to yield a solid which was purified by silica gel 

chromatography using a gradient elution of CH2Cl2: MeOH) to yield compound 84, 25 mg (72% 

yield) as a white solid. 1H NMR (400 MHz, CHLOROFORM-d) δ ppm 0.90 (d, J=6.25 Hz, 6 H), 

1.46 (br d, J=13.67 Hz, 1 H), 1.53 - 1.72 (m, 2 H), 1.76 - 1.95 (m, 2 H), 2.09 - 2.21 (m, 1 H), 2.31 

- 2.46 (m, 2 H), 2.67 (s, 3 H), 3.18 - 3.39 (m, 2 H), 3.44 (br d, J = 7.42 Hz, 1 H), 3.64 (br d, J = 

14.84 Hz, 1 H), 3.72 (s, 3 H), 4.45 (br s, 1 H), 4.51 - 4.64 (m, 2 H), 5.11 (br s, 2 H), 5.55 (br d, J 

= 7.42 Hz, 1 H), 6.43 (br s, 1 H), 6.86 (br d, J = 8.59 Hz, 1 H), 7.27 - 7.37 (m, 2 H), 7.43 - 7.55 

(m, 3 H), 7.73 (br d, J = 6.64 Hz, 1 H), 7.81 - 7.86 (m, 1 H), 7.95 (br d, J = 5.86 Hz, 1 H), 8.13 (br 

d, J = 7.03 Hz, 1 H). 

 

(2-Methylthiazol-4-yl)methyl (S)-1-((S)-4-methyl-1-oxo-1-((S)-1-oxo-3-((S)-2-oxopyrrolidin-3-

yl)propan-2-ylamino)pentan-2-ylamino)-3-(naphthalen-1-yl)-1-oxopropan-2-ylcarbamate (73) 
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To a solution of ester 84 (25 mg, 0.038 mmol) in CH2Cl2/EtOH/MeOH (5:3:2) (6 mL) at 0oC was 

added NaBH4 (11.61 mg, 0.307 mmol) in small portions over a period of 4 hours. The reaction 

was quenched with water (0.5 mL) and diluted with 50 mL of CH2Cl2. The solution was passed 

through a short plug of silica gel and the organic material washed thoroughly with 30:1 

CH2Cl2/MeOH (50 mL). The filtrate was concentrated to yield a solid which was dissolved in 

distilled CH2Cl2 (10 mL) and treated with Dess-Martin periodinane (DMP) (18 mg, 0.043 mmol) 

for 2 h at 25oC. The reaction mixture was filtered and the filtrate was concentrated and purified by 

silica gel chromatography using a gradient solvent elution of 25% acetone/CH2Cl2 to 100% 

acetone. The fractions containing the product were combined and concentrated to give a white 

solid to which was added CHCl3 (20 mL). After sitting for 10 min the mixture was filtered through 

a glass frit funnel (fine) and the filtrate was concentrated to provide aldehyde 73 (50% yield) as a 

white solid. 1H NMR (400 MHz, CHLOROFORM-d) δ ppm 0.89 (br d, J = 5.86 Hz, 6 H), 1.13 - 

1.34 (m, 2 H), 1.38 - 1.63 (m, 2 H), 2.02 (br d, J = 12.50 Hz, 1 H), 2.36 (br s, 3 H), 2.67 (s, 3 H), 

3.11 - 3.37 (m, 3 H), 3.47 (br d, J = 8.98 Hz, 1 H), 3.54 - 3.83 (m, 2 H), 4.22 (br s, 1 H), 4.37 - 

4.66 (m, 3 H), 5.13 (br s, 2 H), 5.48 (br s, 1 H), 5.98 (br s, 1 H), 6.67 – 6.68 (m, 1H), 7.29 - 7.39 

(m, 1 H), 7.39 - 7.60 (m, 3 H), 7.62 - 7.78 (m, 1 H), 7.83 (br d, J = 7.81 Hz, 1 H), 8.14 (br s, 1 H) 

9.41 (s, 1H). 
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2-[2-(2-Amino-3-naphthalen-1-yl-propionylamino)-4-methyl-pentanoylamino]-3-(2-

oxopyrrolidin-3-yl)-propionic acid methyl ester (86) 

H2N
N

O

H

N
H

O

NH

OMe

O

O

 

Palladium (on carbon) (10 mg) was added to a solution of 85 (0.16 mmol) in MeOH (2 mL) and 

the flask was flushed with hydrogen gas (1 atm). The reaction was stirred for 3 h at 25oC. The 

reaction was filtered through a layer of celite and the filtrate was concentrated to yield compound 

86 (80 mg, 100%) as a white solid.  1H NMR δ 8.22 (d, J = 7.81 Hz, 1H), 8.17 (d, J = 5.86 Hz, 

1H), 7.87 (d, J = 7.42 Hz, 1H), 7.78 (d, J = 8.20 Hz, 1H), 7.47 - 7.57 (m, 2H), 7.31 - 7.44 (m, 3H), 

6.34 - 6.61 (m, 1H), 4.68 - 4.75 (m, 1H), 4.34 - 4.44 (m, 1H), 3.92 - 4.00 (dd, J = 2.73, 11.15 Hz, 

1H), 3.82 (dd, J = 2.73, 10.15 Hz, 1H), 3.72 (s, 3H), 3.24 - 3.39 (m, 2H), 2.85 (dd, J = 10.35, 13.86 

Hz, 1H), 2.30 - 2.44 (m, 2H), 2.14 - 2.26 (m, 1H), 1.68 - 1.92 (m, 4H), 1.54 - 1.63 (m, 1H), 0.91 - 

1.03 (m, 6H); 13C NMR δ 179.8, 174.8, 173.2, 134.2, 134.2, 132.0, 129.0, 127.9, 127.6, 126.4, 

126.0, 125.5, 124.0, 55.9, 52.5, 51.8, 51.1, 42.2, 40.7, 38.7, 38.6, 32.9, 28.3, 24.9, 23.1, 22.3.  

 

2-(4-Methyl-2-{2-[(2-methyl-thiazole-5-carbonyl)-amino]-3-naphthalen-1-ylpropionylamino}-

pentanoylamino)-3-(2-oxo-pyrrolidin-3-yl)-propionic acid methyl ester (89) 
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To a mixture of compound 86 (53 mg, 5.59 mmol), compound 87 (5.59 mmol), 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDCI) (10.2 mmol), and 4-(dimethylamino)pyridine 

(DMAP) (10.2 mmol) under argon was added dry DMF (10 mL). The solution was stirred at 25oC 

and dry CH2Cl2 (25 mL) was added, and the resulting solution was stirred for 18 h. The reaction 

was partitioned between water (100 mL) and CH2Cl2 (100 mL). The pH of the aqueous layer was 

adjusted to 3 using 2N HCl. The organic layer was removed, and the aqueous layer was extracted 

twice with CH2Cl2 (100 mL each). The combined organic layers were dried (anhydrous MgSO4), 

filtered and concentrated to yield a sticky solid which was purified by silica gel chromatography 

(30:1 CH2Cl2: MeOH) to yield compound 89, 37 mg (74% yield) as a white solid. 1H NMR δ 8.17 

(d, J = 8.20 Hz, 1H), 7.92 (d, J = 7.42 Hz, 1H), 7.83 (s, 1H), 7.79 (d, J = 7.81 Hz, 1H), 7.70 (d, J 

= 7.81 Hz, 1H), 7.27 - 7.51 (m, 6H), 6.59 (br. s., 1H), 4.98 - 5.05 (m, 1H), 4.48 - 4.58 (m, 2H), 

3.72 (s, 3H), 3.59 - 3.63 (m, 2H), 3.21 - 3.32 (m, 2H), 2.60 (s, 3H), 2.33 - 2.44 (m, 1H), 2.10 - 2.20 

(m, 1H), 1.96 (br. s., 1H), 1.84 - 1.92 (m, 1H), 1.76 - 1.83 (m, 1H), 1.62 - 1.71 (m, 1H), 1.53 - 1.61 

(m, 1H), 1.42 - 1.50 (m, 1H), 0.85 (d, J = 6.25 Hz, 6H); 13C NMR δ 180.0, 172.5, 172.3, 171.3, 

170.7, 160.9, 143.5, 134.1, 133.8, 132.8, 132.2, 129.1, 128.1, 127.8, 126.7, 126.0, 125.6, 123.7, 

54.7, 52.6, 52.5, 51.5, 41.7, 40.8, 38.7, 35.0, 33.6, 29.9, 28.4, 24.9, 23.0, 22.2, 19.6; MS, m/z 644.2 

(M+Na)+.  
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2-[4-Methyl-2-(2-{2-[methyl-(4-methyl-2-oxo-2H-chromen-7-yl)-amino]-acetylamino}-3-

naphthalen-1-yl-propionylamino)-pentanoylamino]-3-(2-oxo-pyrrolidin-3-yl)-propionic acid 

methyl ester (90) 
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N
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Compound 90 was prepared via the same procedure as that of compound 89 to obtain 36 mg (62 

% yield) as a yellow solid. 1H NMR δ 8.06 (d, J = 7.01 Hz, 1H), 7.94 (d, J = 7.03 Hz, 1H), 7.76 

(dd, J = 2.93, 6.44 Hz, 1H), 7.60 - 7.64 (m, 1H), 7.41 - 7.48 (m, 2H), 7.17 - 7.25 (m, 3H), 7.06 (d, 

J = 8.20 Hz, 1H), 6.78 (d, J = 7.03 Hz, 1H), 6.37 (d, J = 2.34 Hz, 1H), 6.30 (dd, J = 2.34, 8.98 Hz, 

1H), 6.27 (s, 1H), 6.04 (s, 1H), 4.76 - 4.84 (m, 1H), 4.47 - 4.60 (m, 2H), 3.86 - 3.92 (m, 2H), 3.72 

(s, 3H), 3.63 (dd, J = 5.86, 14.45 Hz, 1H), 3.38 (dd, J = 8.98, 14.45 Hz, 1H), 3.27 - 3.33 (m, 2H), 

2.76 (s, 3H), 2.36 - 2.47 (m, 1H), 2.34 (s, 3H), 2.09 - 2.19 (m, 1H), 1.85 - 1.93 (m, 1H), 1.76 - 1.85 

(m, 1H), 1.66 - 1.75 (m, 1H), 1.53 - 1.63 (m, 1H), 1.39 - 1.48 (m, 1H), 0.90 (d, J = 6.25 Hz, 6H); 

13C NMR δ 180.0, 172.4, 172.3, 170.8, 170.2, 161.8, 155.5, 152.8, 151.6, 134.0, 132.5, 132.2, 

129.1, 128.1, 127.7, 126.7, 126.0, 125.8, 125.4, 123.5, 111.4, 110.8, 109.1, 99.5, 57.5, 54.4, 52.6, 

52.2, 51.7, 41.8, 40.7, 39.6, 38.7, 34.2, 33.3, 28.7, 25.0, 23.2, 22.2, 18.7; MS, m/z 748.2 (M+Na)+.   

 

2-Methyl-thiazole-5-carboxylic acid (1-{1-[1-formyl-2-(2-oxo-pyrrolidin-3-yl)ethylcarbamoyl]-

3-methyl-butylcarbamoyl}-2-naphthalen-1-yl-ethyl)-amide (74) 
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Compound 74 was prepared via the same procedure as that of compound 73 to obtain 30 mg (45 

% yield) as a white solid. 1H NMR δ 9.42 (s, 1H), 8.25 (d, J = 8.59 Hz, 1H), 8.17 (d, J = 5.86 Hz, 

1H), 7.80 - 7.85 (m, 1H), 7.73 (d, J = 8.20 Hz, 1H), 7.51 - 7.57 (m, 1H), 7.45 - 7.51 (m, 1H), 7.32 

- 7.43 (m, 3H), 6.96 (d, J = 7.03 Hz, 1H), 6.84 (d, J = 7.81 Hz, 1H), 5.89 (br. s., 1H), 4.97 - 5.05 

(m, 1H), 4.46 - 4.54 (m, 1H), 4.20 - 4.27 (m, 1H), 3.62 - 3.67 (m, 2H), 3.25 - 3.40 (m, 2H), 2.66 

(s, 3H), 2.32 - 2.41 (m, 1H), 1.60 - 1.94 (m, 5H), 1.39 - 1.56 (m, 2H), 0.81 - 0.90 (m, 6H); 13C 

NMR δ 200.1, 180.1, 173.0, 170.9, 161.0, 143.7, 135.9, 134.2, 133.5, 132.7, 132.3, 129.2, 128.3, 

128.1, 126.8, 126.1, 125.7, 123.9, 58.3, 54.9, 52.5, 41.5, 40.8, 38.7, 35.1, 30.0, 29.2, 25.0, 23.1, 

22.0, 19.8; MS, m/z 614.4 (M+Na)+. 

 

4-Methyl-2-(2-{2-[methyl-(4-methyl-2-oxo-2H-chromen-7-yl)-amino]-acetylamino}-

3naphthalen-1-yl-propionylamino)-pentanoic acid [1-formyl-2-(2-oxo-pyrrolidin-3-yl)ethyl]-

amide (75) 
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Compound 75 was prepared via the same procedure as that of compound 73 to obtain 27 mg (81 

% yield) as a white solid. 1H NMR δ  (major isomer) 9.48 (s, 1H), 8.30 - 8.38 (m, 1H), 8.10 (d, J 

= 8.98 Hz, 1H), 7.83 - 7.93 (m, 1H), 7.76 (d, J = 8.59 Hz, 1H), 7.62 (d, J = 8.98 Hz, 1H), 7.42 - 

7.51 (m, 2H), 7.18 - 7.29 (m, 4H), 6.81 (d, J = 8.59 Hz, 1H), 6.70 (d, J = 6.25 Hz, 1H), 6.42 (s, 

1H), 6.33 (br. s., 1H), 6.07 (s, 1H), 5.80 - 5.86 (m, 1H), 4.75 - 4.83 (m, 1H), 4.54 - 4.62 (m, 1H), 

4.45 - 4.53 (m, 1H), 4.26 - 4.35 (m, 1H), 3.85 - 3.89 (m, 2H), 3.65 - 3.75 (m, 2H), 3.29 - 3.38 (m, 

2H), 2.72 (s, 3H), 2.36 (s, 3H), 1.37 - 1.93 (m, 6H), 0.88 - 0.93 (m, 6H); MS, m/z 718.3 (M+Na)+. 

 

(4-Methyl-2-oxo-2H-chromen-7-ylamino)-acetic acid methyl ester (92) 

OO N
H

OMe

O  

A solution containing 7-amino-4-methylcoumarin 91 (0.57 mmol), NaI (0.57 mmol), 

methylbromoacetate (0.63 mmol) and DIPEA (0.63 mmol) in dry acetonitrile (6 mL) was heated 

at 82oC for 18 h. The reaction was filtered and the filtrate was concentrated to give an oil that was 

purified by silica gel column chromatography (15:1 CH2Cl2: MeOH) to afford compound 92 (120 

mg, 85%) as a yellow solid. 1H NMR δ 7.39 (d, J = 8.98 Hz, 1H), 6.56 (dd, J = 2.34, 8.98 Hz, 1H), 

6.42 (d, J = 2.34 Hz, 1H), 6.02 (s, 1H), 4.78 - 4.84 (m, 1H), 3.97 (d, J = 5.08 Hz, 2H), 3.82 (s, 3H), 

2.35 (s, 3H); 13C NMR δ 170.8, 161.9, 156.0, 153.0, 150.3, 125.9, 111.6, 110.8, 110.4, 98.7, 52.8, 

45.1, 18.8; MS, m/z 270.1 (M+Na)+. 

 

[Methyl-(4-methyl-2-oxo-2H-chromen-7-yl)-amino]-acetic acid methyl ester (93) 

 



 

202 

OO N
OMe

O  

Methyl iodide (0.73 mmol) and K2CO3 (0.98 mmol) were added to a solution of 92 (0.49 mmol) 

in dry acetonitrile (5 mL) and refluxed at 82oC for 18 hours. The reaction was filtered and 

partitioned between CH2Cl2 (20 mL) and water (20 mL). The organic layer was removed and the 

aqueous layer was extracted with CH2Cl2 (20 mL x 3), the combined organic layers were dried 

(MgSO4), filtered and concentrated to give a yellow oil that was purified by silica gel 

chromatography (15:1 CH2Cl2: MeOH) to yield compound 93 (31 mg, 24%) as a yellow solid. 1H 

NMR δ 7.43 (d, J = 8.83 Hz, 1H), 6.61 (dd, J = 2.54, 8.83 Hz, 1H), 6.53 (d, J = 2.54 Hz, 1H), 6.02 

(s, 1H), 4.15 (s, 2H), 3.76 (s, 3H), 3.15 (s, 3H); 13C NMR δ 170.6, 162.0, 155.8, 152.9, 151.9, 

125.7, 110.9, 110.3, 109.0, 99.1, 54.2, 52.5, 39.9, 18.7; MS, m/z 284.0 (M+Na)+.  

 

[Methyl-(4-methyl-2-oxo-2H-chromen-7-yl)-amino]-acetic acid (88) 

OO N
OH

O  

 

The ester 93 (0.08 mmol) was dissolved in 1:1 dioxane:water (1 mL) and treated with 2N NaOH 

(0.12 mL). After stirring at 25oC for 1 hour, the reaction was partitioned between water (20 mL) 

and CH2Cl2 (20 mL) then acidified to pH 2 using aq. HCl. The aqueous layer was extracted with 

CH2Cl2 (15 mL x 3), the combined CH2Cl2 layers were dried (Na2SO4), filtered and concentrated 

to yield compound 88 (20 mg, 100%) as a yellow solid. 1H NMR δ 8.58 (br. s., 1H), 7.42 (d, J = 

8.98 Hz, 1H), 6.62 (d, J = 8.98 Hz, 1H), 6.51 (s, 1H), 6.01 (s, 1H), 4.16 (s, 2H), 3.13 (s, 3H), 2.34 
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(s, 3H); 13C NMR δ 174.4, 162.7, 155.6, 153.5, 151.9, 125.8, 110.9, 110.0, 109.2, 99.0, 61.4, 39.9, 

18.7; MS, m/z 270.0 (M+Na)+.  

 

The syntheses of compounds 94 – 102 (syntheses procedures for glutamine surrogate and GC376) 

have been reported previously and they were prepared following the reported procedures.4,14 
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Appendix A - 1H NMR, 13C NMR, and IR  
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