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ABSTRACT 

Linear Systems (a.k.a., Signals and Systems) is an important class in an Electrical Engineering 

curriculum. A clear understanding of the topics in this course relies on a well-developed notion 

of lower-level mathematical constructs and procedures, including the roles these procedures play 

in system analysis. Students with an inadequate math foundation regularly struggle in this class, 

as they are typically able to perform sequences of the underlying calculations but cannot piece 

together the higher-level, conceptual relationships that drive these procedures. 

This dissertation describes an investigation to assess and improve students’ higher-level 

understanding of Linear Systems concepts. The focus is on the topics of (a) time-domain, linear 

time-invariant (LTI) system response visualization and (b) Fourier series conceptual 

understanding, including trigonometric Fourier series (TFS), compact trigonometric Fourier 

series (CTFS), and exponential Fourier series (EFS). Support data, including exam and online 

homework data, were collected since 2004 from students enrolled in ECE 512 - Linear Systems 

at Kansas State University. To assist with LTI response visualization, two online homework 

modules, Zero Input Response and Unit Impulse Response, were updated with enhanced plots of 

signal responses and placed in use starting with the Fall 2009 semester. To identify students’ 

conceptual weaknesses related to Fourier series and to help them achieve a better understanding 

of Fourier series concepts, teaching-learning interviews were applied between Spring 2010 and 

Fall 2012. A new concept-based online homework module was also introduced in Spring 2011. 

Selected final exam problems from 2007 to 2012 were analyzed, and these data were 

supplemented with detailed mid-term and final exam data from 77 students enrolled in the Spring 

2010 and Spring 2011 semesters. In order to address these conceptual learning issues, two 

frameworks were applied: Bloom’s Taxonomy and APOS theory.  

The teaching-learning interviews and online module updates appeared to be effective treatments 

in terms of increasing students’ higher-level understanding. Scores on both conceptual exam 

questions and more traditional Fourier series exam questions were improved relative to scores 

received by students that did not receive those treatments.  
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CHAPTER 1:  INTRODUCTION 

A.  Project Overview 

One primary goal of the projects that supported this work (NSF grants DRL–0816207 and DUE–

0206943) was to create a knowledge base related to the evolution of students’ problem solving 

skills. Over the course of these projects, the broader team has investigated the development and 

transfer of problem solving skills in undergraduate mathematics, physics, and electrical 

engineering courses at Kansas State University (KSU). The target course in the KSU Electrical 

and Computer Engineering (ECE) department was Linear Systems – a required course taken by 

all electrical engineering and computer engineering students that relies on the understanding of 

mathematical concepts learned in earlier courses, up to and including differential equations. 

The problem solving skills of Science, Technology, Engineering, and Mathematics (STEM) 

students clearly develop and change during their education.  However, this educational process is 

not necessarily a well-coordinated effort in which the complexity and type of problems change in 

an orderly fashion. In the limited scope of these short-term NSF projects, the team cannot 

investigate students’ problem-solving characteristics and changes through these students’ entire 

academic careers. However, it is sensible to piece together parts of this knowledge base by 

looking at the development of these skills in several related academic courses within the 

mathematics, physics and electrical engineering programs. 

For example, in the KSU ECE curricula, the senior-level Linear Systems course is a late course 

that relies on fundamental math and physics knowledge. This course, described in the next 

section, was the host course for this work. A combination of qualitative and quantitative methods 

were applied in the research to (a) better understand where students struggle, (b) identify tools 

and methods that can be used to help students learn, and (c) increase the understanding level of 

signals concepts in this higher level class. 
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B.  Linear Systems 

Linear Systems is a required course in most electrical and computer engineering curricula that 

addresses subjects such as convolution, Fourier series, and continuous/discrete Fourier 

transforms.  Linear Systems (a.k.a., "Signals and Systems") is often seen as a “weed out” class 

for electrical engineering programs and is dreaded by some students as such [1-3]. This course is 

widely perceived as useful but difficult, as the subjects tend to be higher-level concepts that rely 

on a well-developed understanding of lower-level mathematical constructs and procedures. The 

study of these topics requires a certain level of mathematical sophistication. Students with an 

inadequate mathematical foundation and a poor sense of the underlying systems theory regularly 

struggle with such subjects, as they are typically able to perform sequences of the underlying 

calculations but cannot piece together the higher conceptual relationships that drive these 

procedures.  As a result, many students are unable to address exam questions and analysis 

problems that deviate from a solution recipe described in the textbook, and they often cannot 

explain how slight changes in mathematical renderings will affect system or signal behavior.  

To improve students’ learning experiences in Linear System courses, substantial research has 

addressed course content rearrangement, exam redesign and development, virtual laboratory 

environments, employment of computer software, etc. For example, since 1999, active learning 

techniques (e.g., concept tests) have supported student learning in the Department of Aeronautics 

and Astronautics at the Massachusetts Institute of Technology, and some of these techniques 

have been used in the Signals and Systems module. In Fall 2002, oral problems were introduced 

as part of the requirements in Signals and Systems. “Even though a wide range of active learning 

techniques were found to be effective in revealing some student misconceptions, the results of 

this study indicate that these techniques had limited power to expose the breadth and depth of 

misconceptions [4]” (excerpt shortened – see original source). Interviews revealed a more 

detailed set of student misconceptions and helped to uncover their origins. Such information can 

help teachers adjust instruction techniques and develop improved active learning methods, 

increasing students’ conceptual knowledge [4]. 

At the University of California, Berkeley, Signals and Systems courses have been recently 

redesigned and have involved efforts to teach early parts of these courses completely in the 
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digital domain. This is driven by the idea that some concepts are more sensible to introduce in a 

discrete-time setting [5]. Their approach to teaching Fourier analysis starts with rudimentary 

Cartesian vectors and builds up to complex Euclidean vector spaces. It identifies a geometric 

structure that brings together Fourier decompositions, with a benefit of reducing the need for 

lengthy derivations and algebra [6].  

At Kansas State University, researchers began implementing more active and ‘intentional’ 

education techniques for Linear Systems in 2002, such as detailed score recording/analysis and 

online homework module development and implementation [7, 8]. Each semester, final scores 

consisted of points earned from homework, projects, three mid-term exams, and a final exam, 

where homework contained handwritten and online portions. Homework scores have been tallied 

per problem (versus per assignment), projects have been graded with detailed rubrics, and exam 

scores have been recorded question by question, yielding a substantial database of performance 

metrics to use for cross correlations and other analyses. This was an important first step towards 

analyzing students’ overall performance and the specific areas where they students. 

In Spring 2010, teaching-learning interviews were added to this KSU course, focusing on 

parameter variations in Fourier series [9]. Such interviews are a powerful method to capture a 

person’s knowledge and the fluidity of his or her thinking [10]. Fourier series are important in a 

Linear Systems course, which connects the time domain to the frequency domain, and an 

understanding of the roles of Fourier series parameters, as well as the relationships between 

them, relates directly to a student’s knowledge of these time-frequency concepts. Trigonometric 

Fourier series and compact trigonometric Fourier series were used as the starting point for this 

work, where a knowledge of parameter variations as they relate to changes in signal behavior are 

assumed to indicate higher-level understanding. Such parameter questions had existed in mid-

term and final exams for a while, but in Spring 2010, these relationships were better formalized 

into exam problems that would allow students’ understanding of these ideas to be more readily 

tracked. Finally, in the Spring 2011 semester, a new online homework module was developed 

and offered to students that focused on parameter relationships without the requirement for 

significant student calculations. The details of this work and the associated results are presented 

later in this dissertation.
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CHAPTER 2:  BACKGROUND 

A. Fourier Series 

A.1. Overview of Fourier Series Theory 

Any periodic signal, f(t), can be decomposed into a sum of sinusoids, each with a different 

amplitude, phase, and frequency.  A trigonometric Fourier series (TFS), fTFS(t), can be 

expressed as [11] 
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is the ‘DC,’ or average, value of the signal over a time interval of duration T0 = 1/f0 seconds, 

where f0 = ω0/2π is referred to as the “fundamental” frequency.  The coefficients an and bn 

represent the amplitudes of the cosines (even functions) and sines (odd functions), respectively, 

that constitute the signal.  These coefficients are determined using the expressions 
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where n is an integer that represents the number of harmonics used to reconstruct the signal.  The 

coefficients an and bn are positive or negative real numbers.  Also, note that if the original signal, 
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f(t), is not periodic, the Fourier series approximation assumes periodicity outside of the original 

time range (i.e., for t < t1 and t > t + T0).  

The information in a trigonometric Fourier series can be encapsulated in a set of coefficients, Cn 

and θn, that represent the magnitudes and phases of these sinusoidal components.  The affiliated 

series is known as a compact trigonometric Fourier series (CTFS), where the signal f(t) is 

expressed as [11] 
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These compact coefficients are related to the original Fourier series coefficients through the 

following relationships:  
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The Dn coefficients for the exponential Fourier series are complex numbers:  Dn = |Dn| at ∠ Dn  

and  D–n = |D–n| at ∠ D–n.  Further, 
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( ) )0(
2

1 ≠−= njbaD nnn . 

The index n for an exponential Fourier series is valid over the interval -∞ ≤ n ≤ +∞:  negative 

frequencies are present in the exponential Fourier series. 

A.2. Fourier Series Parameter Concepts 

The TFS parameters play clear roles in the signal shape/behavior, so when the signal shape 

changes in a certain way, the parameters will change in a commensurate manner. These changes 

can be identified by a student that understands sine/cosine properties and has a good 

understanding of Fourier series. For example, a0 and C0 represent the signal baseline, and if the 

signal maintains its shape but shifts up/down, only a0 and C0 will change. In this case, there is no 

need to recalculate these parameters using their definitions. Additional types of changes in signal 

behavior have straightforward effects on these coefficients. Such behavioral changes include 

vertical inversion, time scaling, amplitude changes, time inversion, and time shifts – see Table 1. 

These relationships were covered in lecture but were not always practiced with in-class 

examples. Since students need solid trigonometric and function knowledge, coupled with a good 

understanding of Fourier series, to explain these relationships, this topic space was considered a 

good arena within which to assess their higher level understanding.  

Table 1. Signal behavior versus Fourier series parameter variations (N/C means ‘no change’). 

Signal 

Behavior 

Change 

Fourier Series Parameter Variations 

a0 & C0 an bn ω0 Cn θn |Dn| ∠ Dn 

Baseline shift Shift N/C N/C N/C N/C N/C N/C N/C 

Vertical 

inversion 

*(-1) *(-1) *(-1) N/C N/C ±� N/C ±� 

Time scaling N/C N/C N/C Scaling N/C N/C N/C N/C 

Amplitude 

Scaling 

Scaling Scaling Scaling N/C Scaling  N/C Scaling  N/C 

Time 

inversion 

N/C N/C *(-1) N/C N/C *(-1) N/C *(-1) 

Time shift N/C   N/C N/C ±Scaling N/C ±Scaling 

 



 7  

Coefficient changes that result from changes in signal behavior are illustrated in the upcoming 

figures and the mathematical expressions that follow each figure:  

• Figure 1 – vertical inversion,  

• Figure 2 – time scaling,  

• Figure 3 – amplitude scaling, 

•  Figure 4 – time inversion, and  

• Figure 5 – time shift. 

 

Figure 1. Vertical inversion example. 
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Figure 2. Time scaling example. 
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Figure 3. Amplitude scaling example. 
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 Figure 4. Time inversion example. 
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Figure 5. Time shift example. 
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In this case, it is difficult to achieve the change in signal behavior by making simple 

changes (by inspection) to the TFS parameters. 

For the CTFS representation: 
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B.  Time-Domain Analysis of LTI Systems 

Linear time-invariant (LTI) systems relate to applied mathematics and have direct applications 

in spectroscopy, circuits, signal processing, control theory, and other technical areas. A good 

example of an LTI system is an electrical circuit made up of resistors, capacitors, and inductors. 

Two methods of LTI system analysis are often applied: the time-domain method and the 

frequency-domain method [11]. In the time-domain method, the response of a linear system can 

be expressed as the sum of two components – the zero-input component and the zero-state 

component: 

Total Response = Zero-Input Response + Zero-State Response. 

The zero-input response is the system response when the input is zero, or 0)( =tf , which means 

the system output is the result of the initial system conditions alone. On the other hand, the zero-

state response is the system response that results from the non-zero external input, )(tf , when 

the system is in a ‘zero’ state, meaning the internal energy storage is zero. 

A linear differential equation consistent with the total response of such a system is introduced for 

the purpose of analysis. The input signal, f(t), and the output signal, y(t), are related through this 

expression: 

(Dn + an-1D
n-1+ … + a1D + a0) y(t) = (bmDm + bm-1D

m-1 + … +b1D + b0 ) f(t) 

where D represents d/dt, yielding 

Q(D) y(t) = P(D) f(t) 

where 
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Q(D) = Dn + an-1D
n-1+ … + a1D + a0  

and 

P(D) = bmDm + bm-1D
m-1 + … +b1D + b0. 

Zero-Input Response 

When the input signal, f(t), equals zero, then 

Q(D) y0(t) = 0,  

where the notation for the output signal, y0(t), is chosen to represent the system output due to 

initial conditions only. The notion that y0(t) should have the same form for all of its n successive 

derivatives yields 

y0(t) = ceλt, 

which is a solution to  

(Dn + an-1D
n-1+ … + a1D + a0) y0(t) = 0. 

Therefore, 

Dy0(t) = dy0(t)/dt = cλeλt 

D2y0(t) = d2y0(t)/dt = cλ2eλt 

…… 

Dny0(t) = dn y0(t)/dt = cλneλt 

so  

c (λn + an-1λ
n-1+ … + a1λ + a0 ) e

λt = 0 

and 

λn + an-1λ
n-1+ … + a1λ + a0 = 0. 

The left side of this equation has the same form as the polynomial Q(D), yielding  

Q(λ) = (λ – λ1) (λ – λ2) … (λ – λn) = 0 

The equation has n solutions (characteristic roots, or eigenvalues): λ = λ1,  λ2, …, λn, so Q(D) 

y0(t) = 0 also has n possible solutions: c1e λ1
t, c2e λ2

t, … , cne λn
 t, where c1, c2, … , cn are arbitrary 

constants. A general solution is given by the sum of these n solutions as 

��(�)  = ��
���  +  ��
���  +  … + ��
���   
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Repeated Roots 

The solution above assumes that the n characteristic roots are distinct. If repeated roots occur, the 

solution form needs to be modified slightly as 

��(�) = (�� + ��� + ⋯ + ������)
���  + ����
�����  +  … + ��
���  

with the characteristic polynomial 

Q(λ) = (λ – λ1)
k (λ – λ2) … (λ – λn) 

Complex Roots 

The solution for complex roots is similar to that for real roots.  For a real system, when the 

coefficients of Q(λ) are real, the complex roots must occur in conjugate pairs. The zero-input 

response given a pair of complex conjugate roots can be presented as  

y0(t) = c1e (α+jβ)t + c2e (α-jβ)t. 

For a real system, the response y0(t) must also be real, which requires c1 and c2 to be conjugates 

as well:  

c1 = 
�

�
 e jθ  and  c2 = 

�

�
 e -jθ 

so that 

y0(t) = 
�

�
 e jθ e (α+jβ)t + 

�

�
 e -jθ e (α-jβ)t, 

or 

 y0(t) = ceαt cos(βt + θ).  

Unit Impulse Response 

The unit impulse function, δ(t), is utilized to determine the response of a linear system to an 

arbitrary input, f(t). The entire system response to an input can be seen as the sum of its 

responses to a collection of unit impulse functions that comprise the input, so if the system 

response to a unit impulse input is found, the system response to an arbitrary input can be 

determined. The following is a method to determine the unit impulse response, h(t), of an LTI 

system described by the nth-order differential equation 

Q(D) y(t) = P(D) f(t) 

where Q(D) and P(D) are the same polynomials as used above in the zero input response analysis 

[11]. The unit impulse response, h(t), is given by 
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h(t) = bnδ(t) + [P(D) yn(t)] u(t), 

where bn is the coefficient of the nth-order term in P(D), and yn(t) is a linear combination of the 

characteristic modes of the system subject to the following initial conditions: 

��
���(0) =  1, and ��(0) = ��

! (0) = ��
!!(0) = ⋯ =  ��

���(0) =  0 

This implies the following: 

 n = 1: ��(0) = 1 

 n = 2: ��(0) = 0, ��
! (0) = 1 

 n = 3: ��(0) = 0, ��
! (0) = 0, and ��

!!(0) = 1 

 … 

If the order of P(D) is less than the order of Q(D), bn = 0, and the impulse term in h(t) is zero. 

Given the unit impulse response, h(t), the system’s response to a delayed impulse,  δ(t - nΔτ), 

will be h(t - nΔτ), and the system’s response to [f(nΔτ) Δτ] δ(t - nΔτ) will be [f(nΔτ) Δτ] h(t - nΔτ). 

As a result, the zero-state response, y(t), to the input, f(t), is given by 

�(�) = " �(#) ∗
%

�%
h(� − #)'#  

otherwise known as the convolution integral. 

C.  Online Homework Modules 

Online education tools are more and more popular, since they offer flexible access to learning 

resources and help to maintain student engagement. Some of these resources, offered through 

universities and publishers, provide alternatives to traditional homework or are used in tandem 

with it [12-14]. Automatic grading is always implemented as well, which offers benefits for both 

students and instructors: the grading cycle is shortened (meaning students can get immediate 

feedback and guidance from the system), and instructors are released from grading, which is 

always time consuming. Database support offers researchers the opportunity to track learning 

elements that are not often recorded directly but may offer insight into learning [7, 15, 16]. 

In the KSU ECE 512 – Linear Systems course, online homework modules have been applied 

since the Spring 2004 semester [7, 8, 17]. The online system was developed with the thought that 

it would improve the homework experience and yield data sets useful to assess mathematical 

knowledge retention over multiple semesters. Prior to that work, and continuing to the present, 
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the KSU Department of Mathematics has also developed and utilized online homework tools for 

trigonometry, calculus, and differential equations courses [15, 16]. To facilitate the assessment of 

knowledge retention between these early mathematics courses and follow-on linear systems 

courses in Electrical and Computer Engineering, the architecture of the software system for the 

mathematics modules was mirrored in the online homework modules for Linear Systems. Ideally, 

this architectural mapping could be applied to learning modules for numerous types of courses 

that rely on results in mathematical format, such as statistics, accounting, and so on. 

The software architecture is shown in Figure 6. The main webpage is written primarily in 

PHP[18] embedded into HTML [19] scripts, which displays problem sets, receives student 

responses, and provides help [20]. In the back end, the grading parser is programmed in Java 

[21], and the database is constructed with PostgreSQL [22]. Some JavaScript [23] code, called as 

Java parser, is used for the main page to check expression syntax. The relationships between 

these languages are also depicted in Figure 6, as well as the software capabilities of the online 

system. On the left, the client tier represents the system users and requires an Internet browser, 

such as Internet Explorer (IE), Firefox, and Google Chrome. The Java runtime environment must 

be installed on the client computer. The middle (application) tier contains an Apache server [24], 

which fulfills basic web server requirements and supports PHP. The resource tier hosts the 

PostgreSQL database. The functionality of the online homework system consists of the problem 

generator, the expression parser, and the database. The problem generator creates problem 

parameters, prepares problem statements, determines solutions, grades answers, and creates help 

listings. The expression parser checks student input syntax and ‘reads’ the input functions. The 

PostgreSQL database stores student information, records student/system interactions, and saves 

problem set scores [7, 8, 17].  



 15  

 

Figure 6. Online homework software configuration [20].  

The module problems are similar to hand-written exercises employed in class. However, for 

each assignment, the online system generates a random set of problems that are unique to 

each student. Additionally, prior to the due date, a student can work as many homework 

sets as they desire (each one is new) until they obtain the desired score. Ten modules have 

been utilized to date [20]: 

1. Complex Arithmetic: The first complex number module addresses multiplication, 

division, and complex number magnitudes in Cartesian coordinates. 

2. Complex Conversions: The second module starts with Cartesian-polar conversions then 

finishes with a problem to merge sine/cosine functions at the same frequency into one 

cosine with a magnitude and a phase. 
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3. Signal Graphing: Each of three multiple choice problems gives a mathematical 

expression that is a combination of impulse, rectangle, exponential, sinusoidal, and unit 

step functions. The student must choose one graph of four that matches the expression. 

4. Zero Input Response: This transient response module seeks the output expression for an 

unforced 2nd-order, time-invariant system. The differential equation and initial conditions 

are specified, and the student must enter the time-domain expression. Three problems 

address three types of eigenvalue (root) pairs: distinct real roots, repeated real roots, and 

complex roots. 

5. Unit Impulse Response: The second transient response module seeks a system’s unit 

impulse response given its differential equation. It addresses 2nd-order systems with 

distinct, repeated, and complex roots. 

6. Trigonometric Fourier Series: Given three problems, the student must calculate the 

Fourier coefficients for the sine and cosine basis sets used to rebuild each function. Time-

domain signals consist of even/odd functions built from pulse, saw tooth, parabola, 

triangle, trapezoid, ramp, and exponent functions. Coefficients are entered as expressions 

of n, the harmonic index. 

7. Compact Trigonometric Fourier Series: This module assumes a basis set of cosines 

with different magnitudes and phases. The coefficients can be complicated expressions of 

n, so the students find and enter numerical coefficients for n = 0 to 3. 

8. Exponential Fourier Series: This module uses reconstructions that employ complex 

exponential basis sets. 

9. Fourier Series Concepts:  This experience emphasizes changes in Fourier coefficients 

that occur as a result of changes in signal behavior. 

10. Discrete Fourier Transforms: Given analytical signals, the student chooses sample 

rates and signal durations that retain important signal information. 

As part of the recent research described in this dissertation, signal plots were added to the Zero 

Input Response and Unit Impulse Response modules to aid with visualization [8]. A new module 

focusing on Fourier series conceptual understanding (module 9 in the listing above) was inserted 

between the Compact Trigonometric Fourier Series module and the Exponential Fourier Series 

module. Details of this work will be introduced in Chapter 4. 
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D. Learning Theory/Framework Application 

Learning frameworks for education have been discussed for over a century and should be part of 

any attempt to understand how material is learned and how changes in teaching methods can 

affect learning and retention. As noted in Dubinsky and McDonald [25], “models and theories in 

mathematics education can  

• support prediction,  

• have explanatory power,  

• be applicable to a broad range of phenomena,  

• help organize one’s thinking about complex, interrelated phenomena,  

• serve as a tool for analyzing data, and 

• provide a language for communication of ideas about learning that go beyond superficial 

descriptions.” 

The Linear Systems course that supports this research is based on mathematics, and these six 

features map well to the facets of this work. To better understand how to address the important 

issues in this research, Bloom’s Taxonomy [26] and APOS Theory [25] were applied. Both 

frameworks are briefly introduced in the next two sections, and elements of these frameworks 

will be applied to this research in Chapter 5. 

D.1 Bloom’s Taxonomy 

Bloom's taxonomy presents a scheme to classify the various levels of cognition associated with 

learning and expertise [26]. It organizes cognitive ability and behavior into six levels of 

increasing abstractness or complexity (see Figure 7 ).  Subject areas within a linear systems 

course often address multiple levels within Bloom’s taxonomy simultaneously, which is in 

contrast to some courses leading up to linear systems which focus primarily on procedural 

calculations and plotting (Bloom’s levels 1 through 3/4).  Even in Linear Systems, traditional 

homework and exam questions can lean toward the lower levels of this taxonomy, and higher-

level questions intentionally inserted into exams (to separate students that truly understand from 

those that do not) can draw complaints. In summary, students often struggle with, e.g., higher-

level Fourier series concepts that are more consistent with levels 4 through 6, where they are 

asked to construct signals out of more rudimentary building blocks, assess changes in signal 
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behavior due to changes in the associated coefficients, describe signal characteristics based 

solely on a depiction of the Fourier series coefficients versus frequency, etc.  

1. Knowledge:  arrange, define, duplicate, label, list, memorize, name, order, recognize, relate, 

recall, repeat, reproduce, state (Remembering:  Can the student recall or remember the 

information?) 

2. Comprehension:  classify, describe, discuss, explain, express, identify, indicate, locate, 

recognize, report, restate, review, select, translate (Understanding:  Can the student explain 

ideas or concepts?) 

3. Application:  apply, choose, demonstrate, dramatize, employ, illustrate, interpret, operate, 

practice, schedule, sketch, solve, use, write (Applying:  Can the student use the information 

in a new way?) 

4. Analysis:  analyze, appraise, calculate, categorize, compare, contrast, criticize, differentiate, 

discriminate, distinguish, examine, experiment, question, test (Analyzing:  Can the student 

distinguish between the different parts?) 

5. Synthesis:  arrange, assemble, collect, compose, construct, create, design, develop, 

formulate, manage, organize, plan, prepare, propose, set up, write (Evaluating:  Can the 

student justify a stand or decision?) 

6. Evaluation:  appraise, argue, assess, attach, choose, compare, defend, estimate, judge, 

predict, rate, core, select, support, value, evaluate (Creating:  Can the student create a new 

product or point of view?) 

Figure 7. Classification levels in Bloom’s taxonomy [9].  

D.2 APOS Theory 

APOS theory “begins with the hypothesis that mathematical knowledge consists in an 

individual’s tendency to deal with perceived mathematical problem situations by constructing 

mental actions, processes, and objects and organizing them in schemas to make sense of the 

situations and solve the problems [25].” This hierarchy of mental constructions is therefore 

referred to as APOS Theory. 

An action is a “transformation of objects perceived by the individual as essentially … step-by-

step instructions on how to perform the operation [25].” That is to say, the individual can only do 

the calculation to get the correct result with the specific algorithms they have been introduced, 

but without any further thinking of the meaning of the steps and the ideas lying behind. For 

example, when the student is facing a question which seems familiar but doesn’t know how to do 

it, he or she will go back to the catalog of procedures and find one that matches [27].  
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A process represents the level at “which the individual can think of as performing the same kind 

of action, but no longer with the need of external stimuli [25].” An individual at the process level 

of understanding can reflect on the process, describe the steps, and recognize the reason for steps  

[27]. As an example, to solve a problem, the student doesn’t need to check the notes or standard 

algorithms, but they can perform the correct procedures and calculations. 

“An object is constructed from a process when the individual becomes aware of the process as a 

totality and realizes that transformations can act on it [25].” The individual can reflect on a set of 

similar processes and construct transformation on the concept [28]. All the steps can be 

rearranged or reversed, and the whole process can be viewed as an “input-output” process  

Finally, “a schema for a certain mathematical concept is an individual’s collection of actions, 

processes, objects, and other schemas which are linked by some general principles to form a 

framework in the individual’s mind that may be brought to bear upon a problem situation 

involving that concept [25].” All of the related objects and concepts are interconnected in the 

individuals’ mind to form the schema; schemas can also perform as objects to be parts of higher 

schemas [28, 29]. 

APOS Theory is a description of the cognitive process and “can be used directly in the analysis 

of data by a researcher [25].” In this linear systems research, some students’ cognitive 

development seemed to be located between two of these levels depending on the topic. As a 

result, intermediate levels are introduced as well: 

Action to Process: An individual moves back and forth between Action and Process [30]. This 

implies the individual still needs external guidance, such as a prescribed set of steps; however, 

s/he also has some understanding of the steps and can recognize mismatches between the 

example algorithms and the question of the moment, perhaps through mistakes that are made. 

However, the student cannot fully correct the mistakes without assistance.  

Process to Object: The individual has a good understanding of all the steps and is able to 

rearrange the steps when necessary without checking their notes. S/he has the ability to make 

decisions at every step and may be able to construct concept transformations on some of the 
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topics. However, the concept ideas are still not fully clear, and a bit of guidance is therefore 

needed to form some of these concept transformations. 

Conceptual understanding was the focus of this linear systems research, and overall it appears 

that the object level is a suitable level to target for this type of course. To target the schema level, 

more analysis from later courses is required: courses for which Linear Systems is a prerequisite. 
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CHAPTER 3:  TEACHING-LEARNING INTERVIEWS 

Interactive teaching-learning interviews were conducted with Linear Systems students to gauge 

their levels of conceptual understanding with regard to the linear systems material, specifically in 

the area of Fourier series. This approach has the potential to identify student thought processes 

and areas of misunderstanding that may be difficult to observe from typical course examinations. 

This chapter addresses the interview method, the questions placed in front of the students, and 

the thematic areas where students appear to struggle when reasoning their way through Fourier 

series exercises. 

A.  Method 

A.1 Overall Approach 

Student Population and Interview Timing.  The author interviewed one hundred and forty 

students in the Spring 2010, Spring 2011, Fall 2011, Spring 2012, and Fall 2012 sections of ECE 

512 – Linear Systems, a course offered by the Kansas State University (KSU) Department of 

Electrical & Computer Engineering.  These students were predominantly undergraduate seniors 

in Electrical Engineering or Computer Engineering. The interviews were conducted at the point 

in the semester (a) after the students had submitted Fourier series handwritten assignments, used 

the online linear systems modules, and taken exams on these same subjects but (b) before the 

final exam, implying that the students had absorbed the material to a level of understanding that 

would be typical at the end of a semester.  All interviews were conducted over a period of two 

weeks just prior to the final exam for the course. 

Interview Protocol.  Each interview was conducted as a one on one, teaching-learning interview 

and was videotaped for follow-on analyses, where the camera was directed over the shoulder of 

the student so that it recorded video of only the work surface in front of them.  Prior to each 

interview, the student signed a consent form (KSU IRB protocol #4691) stating their willingness 

to participate in this research exercise within the context of the overarching course experience.  

Four separate Fourier series problems were provided to each student (see the next section), 

where the student was asked to describe their work out loud as they progressed through each 
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problem.  Note that these interview components were not provided in interactive “question form” 

(questions followed by responses) but rather in “exercise form,” as if the student was thinking 

out loud as they sat down to work a sequence of homework problems.  When a student reached a 

point where their response was incorrect or they could not continue, the interviewer provided 

help/prompts in comment/question format.  On average, the interview process took about an hour 

per student.  Areas of conceptual misunderstanding were recorded both during each interview 

and during follow-on analyses of the video recordings. 

Motivation for the Focus on Coefficient Roles.  These interview problems were chosen to 

specifically address the roles of the Fourier series coefficients with respect to the shapes or 

behaviors of the reconstructed Fourier series.  An understanding of these roles is an indication 

that a student has learned Fourier series concepts at a higher conceptual level, and past 

experience with exams that address Fourier series has taught the authors that describing these 

coefficient roles is a task where students begin to falter, even if they are adept at performing the 

calculations to determine the coefficients. 

Interview Protocol and Updates. The interview protocol was updated twice. The interviews in 

the first two semesters (Spring 2010 and Spring 2011) shared the exact same protocol – protocol 

#1. The Fall 2011 and Spring 2012 protocols were the same (protocol #2), and then the interview 

questions were updated again for the Fall 2012 semester (protocol #3). The main part of the 

protocol was almost the same in all three cases, focusing on TFS and CTFS parameter variations 

and coefficient roles with regard to signal behavior (refer to the next section and the Appendices 

for specific problem descriptions). In the first update, one EFS coefficient question was added to 

the protocol, which had already incorporated TFS and CTFS coefficient exercises in prior 

semesters. In the second update, the relationships between the TFS, CTFS, and EFS coefficients 

were addressed. The first update was based on the nature of learning Fourier series, where 

students typically learn TFS and CTFS representations before moving to EFS problems. The 

second update to protocol #3 was driven by students’ areas of doubt that were identified when 

working with protocol #2. In short, both updates were focused on the addition of EFS concepts, 

where the aim was to enhance each student’s understanding of EFS coefficients roles. To control 

the interview time, the TFS and CTFS questions were scaled back, where the dropped questions 

covered areas where students struggled the least. 
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A.2 Interview Questions and Answers 

Three versions of interview questions existed because of the two protocol updates. The questions 

listed in the following sections represent the entire question set and the associated answers; 

questions that were moved around are marked. 

Problem #1:  A trigonometric Fourier series is used to describe the signal f(t) = t2 – 2 over the 

time range of t = [-2, 2] seconds (see Figure 8).  Determine the trigonometric Fourier series, 

fTFS(t), for this signal.  (Answers are listed in Table 2.) 

• Before you start to solve the problem, estimate the sign of a0. 

• Can you describe how you solved the problem? (Use of even/odd symmetry or neither; 

the overall process; other details) 

• Given fTFS(t), what is the value of f(t) at t = 0? 

• Assume the signal is represented as an Exponential Fourier Series (EFS), where the nD

coefficients contain both real and imaginary parts. Explain these coefficients in detail 

(added in Fall 2011). 

 

Table 2. Answers for interview problem #1. 

• Sign of a0:  negative 

• a0 = –2/3;  ( )π
π

n
n

an cos
16

22
= ;  bn = 0. 

• f(0) = –2.  Note:  f(0) =  ∑
∞

=

+−
13

2

n

na cos(0) does not provide a direct result, so the 

student must understand the need to consult the plot rather than the Fourier series. 

• Dn = 0.5*an contains only real parts, because bn = 0. 
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Figure 8. The parabolic function, f(t) = t2 – 2, used in interview problem #1. 

 

Problem #2 (Spring 2010 and Spring 2011):  The parameters for fTFS(t) (a0, an, and bn) are 

known for the original signal in Figure 9a. Identify how the parameters ω0, a0, an, and bn change 

if the original signal changes to each of the signals in Figure 9a, Figure 9b, and Figure 9c.  

(Answers are listed in Table 3.) 

Figure 9b was deleted starting with the Fall 2011 interviews to accommodate the EFS additions 

to the protocol. Figure 9c was moved to Problem #4 in Fall 2012. 

Table 3. Answers for interview problem #2. 

Figure 9b 

• ωωωω�
!  = (�/2 

• +�
!  = +� 

• +�
!  = +� 

• ,�
!  = ,� 

Figure 9c 

• ωωωω�
!  = (� 

• +�
!  = +� 

• +�
!  = +� 

• ,�
!  = −,� 

Figure 9d 

• ωωωω�
!  = (�/2 

• +�
!  = +� + 1 

• +�
!  = +� 

• ,�
!  = ,� 
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Figure 9.  Signals for interview problem #2. 
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Problem #3 (Spring 2010, Spring 2011, Fall 2011 and Spring 2012 Version):  The parameters 

for fCTFS(t) (C0, Cn, and θn) are known for the original signal in Figure 10a. Identify how the 

parameters ω0, C0, Cn, and θn change given the signals in Figure 10b and Figure 10c.  (Answers 

are listed in Table 4.) 

Figure 10c was moved to Problem #4 in the Fall 2012 semester. 

Table 4. Answers for interview problem #3. 

Figure 10b 

• ωωωω-
!  = .- 

• /-
!  = /- 

• /0
!  = /0 

• θθθθ0 
! = θθθθ0 −

�

1
2.- 

Figure 10c 

• ωωωω-
!  = .- 

• /-
!  = −/- 

• /0
!  = /0 

• θθθθ0
!  = θθθθ0 + � 
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Figure 10.  Signals for interview problem #3. 
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Problem #4 (Added in Fall 2012): In this problem, the original parameters are all known for the 

original signal in Figure 11a. Identify how all of the parameters in Table 5 change given the 

signals in Figure 11b and Figure 11c.   

Table 5. Question format and answers for interview problem #4. 

 

 

Figure 11b Figure 11c 

ω�
!  = (�  (N/C) = (� (N/C) 

+�
!  = +�  (N/C) = −+� 

+�
!  = +�  (N/C) = −+� 

,�
!  = −,� = −,� 

3�
!  = 3�

!   (N/C) = 3�
!   (N/C) 

θ�
!

 = −θ� = θ� ± 5 

|'| nD  = || nD  = || nD  

'nD∠  = nD∠−  = π±∠ nD  

'nD
 

= 
*

nD  

(Complex conjugate of nD ) 
= - nD  
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Figure 11.  Signals for interview problem #4. 

 

Problem #5 (Added in Fall 2012): A periodic signal is represented with a CTFS, and the plots 

of nC and nθ are given in Figure 12.  Draw the plots of nD∠ and || nD . (Answers are noted in 

Figure 13.) 
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0* wnw =  

Figure 12. Coefficients for interview problem #5. 

  

 

 

 

 

 

 

 

 

 

Figure 13. Coefficient solutions for interview problem #5. 
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Problem #6 (Problem #4 in Spring 2010 and Spring 2011):  The parameters for fCTFS(t) (C0, 

Cn, and θn) are known for the three original signals in Figure 14. If we wish to use these signals 

as building blocks to construct the signals in Figure 15, which signal(s) should we use? What 

changes in the respective fCTFS(t) parameters would be needed to make that happen? 

One Acceptable Answer for Figure 15a. We choose the signal in Figure 14b to generate the 

signal in Figure 15a. In this case, the signal in Figure 14b will be used twice. First, an instance of 

the signal, ��, can be flipped about the t axis, yielding  3��
!  = −3�� (here 3�� = 0).  Then, the 

result will be delayed by half of the period (π/2 seconds in this case), which means a new phase 

θ��
!  = θ�� −

7

�
n(�. Another instance of the signal in Figure 14b, called ��, can be added to  �� to 

obtain signal �9. Further, the amplitude of �9will be multiplied by ½, which means  3�9
!  = 

�

�
3�9. 

The final step is to raise the entire signal by ½, which means 3�9
!  =  3�9 + 1/2. 

One Acceptable Answer for Figure 15b.  The signals in Figure 14a and Figure 14c can be used 

to generate the signal in Figure 15b given their period and duty cycle. The dashed lines in Figure 

15b are drawn to assist the reader. The procedure is similar to that used for Figure 15a, only a bit 

more complex. 
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Figure 14.  Building block signals for interview problem #4. 



 33  

 

t 
 

t 
 

(a)  

(b) 

f(t) 

f(t) 

1  

 2
1  

 

4
π  

4
3π  

4
5π  

 

4
π  

 

4
5π  

π  

1  

-1  
2

3π  

 

 

Figure 15. Target signals for interview problem #4. 
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B.  Hints and Example Student Answers  

Since these were teaching-learning interviews, hints and other necessary help were given to the 

students when they really struggled and were stuck in the interview sessions. In most cases, the 

answers and correct procedures were not given to the students directly, but related hints were 

provided. The main purpose of a hint would be to help a student recall the related domain rules 

or facts that the student may have misunderstood or forgotten. When a student gave unexpected 

answers, hints would help them find their mistake(s) and correct those answers. Hints could be 

general questions to help the students think or specific questions that more directly related to the 

areas of difficulty. 

General hint examples: 

• How do we get this answer? 

• What equation should we use to derive the result? 

• Can you explain the fomulas you are using? 

• Can you think about this question from another perspective? 

• Are you sure about the answer? If not, which part do you think might have some problems? 

Specific hints could relate to specific questions. For example, referring to Problem #3 earlier in 

this chapter (original version - Figure 10), the correct answer should be 

ω�
′ = (�; 3�

′ = −3�; 3�
′ = 3� ; θ�

′

= θ� + 5 

One procedure could be the following: 

- )()( tftg −=  

- )()( tftg CTFSCTFS −=  

- Same period, so ω�
!  = (� 

- )''cos('' 0

1

0 n

n

n ntCC θω ++∑
∞

=

= ))cos(( 0

1

0 n

n

n ntCC θω ++− ∑
∞

=

 

- '0C  = – 0C  

- )''cos(' 0

1

n

n

n ntC θω +∑
∞

=

= )cos( 0

1

n

n

n ntC θω +−∑
∞

=
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Because of the definition of nC , where 
22

nnn baC += , nC is positive or zero, so 

'nC = , and )''cos( 0 nnt θω + = )cos( 0 nnt θω +−  

- To make the cosine function negative, we can apply θ�
!

 = θ� + 5. 

The mistakes students often made when addressing problem #3 included the following: 

1. When interpreting the figure, some students were not sure how the new signal related to the 

original signal: whether )()( tftg −=  or )()( tftg −= ; 

2. The baseline looked like it had a zero offset, which it did not, and some students would give 

the wrong answer of 0'0 =C ; 

3. To make the whole summation negative, some students would assign 'nC = nC− , which was 

mathematically more straight forward. But, as explained above, is the positive square root 

of
22

nn ba + ; we do not allow it to be negative. The way to make the summation negative is to 

induce a phase change in the cosine function. 

4. Some students were unsure how to make the cosine function negative. For example, they did 

not think about the possibility of a phase change, or they would apply the wrong phase 

change, such as 2/π+ . 

Hints provided to help the students address their mistakes: 

1. For a general function, how does )(tf  behave compared to )(tf− ? In our problem, could 

you find a method to double check your answer? 

2. Back to the first problem, we talked about the physical meaning of an integral as “the area 

under the curve.” Here, could you apply that knowledge and place a shadow inside the area 

we should focus on? 

3. What is the defination of ? If cannot be negative, what else we can do to make the 

summation negative? 

4. In general, how do you negate a cosine function? If we draw a random cosine function and 

then draw the negative version of that signal, how much of a phase shift needs to be applied 

to accomplish this change? 

nC

nC

nC nC
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Other frequently-used hints for the various questions follow. 

Problem 1 

• To estimate the sign of  +� using the defination of +�, we just need to find the sign of the 

integral. How can we find the sign of the definite integral? 

• The definite integral of a function can be considered the area under the curve. Could you 

darken the area we should seek? 

• What is the definition of even/odd functions?  

• When we integrate an even function, can we apply techniques to simplify the calculation? 

• How does Dn relate to an and bn? (Added in the first update.) 

Problem 2 

• How has the new signal changed in comparison to the original signal? 

• Mathematically, how should the function change to achieve this change in appearance? 

• From the plot, the frequency of the signal has obviously changed: the signal looks stretched 

out. How does the frequency then change? Can we calculate the new frequency? Which 

parameter relates directly to the periodicity of the signal? 

• The whole signal is shifted up by 1. How will the baseline, or +� in the TFS, change here? 

• The original signal is represented in the TFS expression. How could the new signal relate to 

the original parameters? For example … 

)()( tftg TFSTFS −= ; 

))sin()cos(()( 00

1

0 tnbtnaatf n

n

nTFS ωω ++= ∑
∞

=
; 

))'sin(')'cos('(')( 00

1

0 tnbtnaatg n

n

nTFS ωω ++= ∑
∞

=
; 

What is the relationship between the parameters of )(tgTFS and )(tfTFS ? 

Problem 3 

• There is a delay in the signal.  What delay is it? 

• How can we achieve this ‘time delay?’ 

• We can change the phase θn to achieve the time delay. But, is the phase shift equal to the 

time delay? 
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• To shift the signal to the right, or delay it, how should the function change?

)()( atftg +=  or )()( atftg −=  (assuming a is positive)? 

• Is 0C positive, negative, or zero? Could you draw a shadow on the area we should count 

as the ‘area under the curve?’ How then should '0C  change? 

• What is the definition of nC ? If nC cannot be a negative number, what can we do to 

make the whole result negative? 

• How do we make a cosine function the negative of itself, meaning cos(??))cos( =− x ? 

• Compare the two phase shifts. What are the differences between them? 

Problem 4 (Some overlapping hints are not listed) 

• How does nD relate to nθ  and nC ? Then, how do nC  and nθ  relate to || nD  and nD∠ ? 

• If two complex numbers have the same real part and opposite imaginary parts, what are 

these complex numbers are called? 

• If two complex numbers have the same real part and opposite imaginary parts in 

Cartesian form, what are the relationships between their absolute values and angles? 

• Could you draw a random complex number, such as jbaz += , in both Cartesian form 

and Polar form? 

• If || nD  remains the same and nD∠  shifts by π , how will nD  change? 

Problem 5 

• What is the relationship between 0D  and 0C ? How about nC  and || nD ? 

• How do nD  and nD−  relate to each other? 

• Does 0D  equal || 0D ? What if 0D  is negative? If we have a real number with a π  phase 

shift, what does that mean? Is it still real? Could you draw the number on a polar 

coordinate system?  

• Is || nD  even or odd? Is nD∠  even or odd? What if 0D  is negative? 
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Problem 6 

• To build a new periodic signal based on the original one(s), the frequency is important. In 

our case, should the frequency be equal to the original one(s), or should be even or odd 

times of the original? 

• An auxiliary line is provided to help the student – see Figure 16: 

Figure 16. Auxiliary line to help the student solve Problem 6. 

 

How can we get the auxiliary line? How can we get our desired signal from this? 

• What can we do to change the frequency? 

• How can we make a signal all positive? We cannot use the absolute value of the signal 

because the absolute value of an addition is not the addition of the absolute values 

( |||||| baba +≠+ ). 

• What are the final parameters of the new signal? Can you present these parameters in 

terms of the original parameters? 

 

π/4 
-π/4 

1 

-1 

π3/4 

t 

f(t) 
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C.  Interview Results and Discussion 

C.1 Overall Themes: Concepts that Cause Students to Struggle 

Notes taken during the individual interviews were analyzed to summarize the types of concepts 

that caused students to struggle and the types of hints that were often necessary to help students 

make progress on certain types of problems.  Videos acquired during each of these sessions were 

also analyzed to corroborate and supplement these findings.  This section provides an annotated 

listing of the types of concepts that were problematic for the students and the types of hints that 

were supplied to help them move forward. The number of students that struggled with each of 

the issue below are tallied as a function of semester in Table 6. 

1. Physical meaning of the term ‘integral.’  For a one-dimensional function, the meaning of the 

term ‘integral’ is often defined functionally as accumulation but visually as ‘the area under the 

curve’, meaning the area between the curve and the independent axis.  This is one concept that 

all students in an upper-level linear systems course should understand, as they have experienced 

it multiple times in various contexts.  The first question in the first problem sought to assess this 

understanding when the interviewer asked students to estimate the sign of +� by looking at the 

f(t) curve.  Some of the students (about 1/5) had forgotten the meaning of ‘integral’ altogether, 

and another group of students (about 1/5) understood the concept but either did not know how to 

apply it or applied it in the wrong way for this problem, such as visualizing the area between the 

curve and minus infinity as a literal interpretation of ‘area under the curve.’ 

2. Properties of even and odd functions.  For a function with even symmetry, fe(t) = fe(–t), 

whereas a function with odd symmetry has the property fo(t) = –fo(–t).  In a trigonometric Fourier 

series formulation, cosine (even) and sine (odd) functions specify the building blocks of the 

series and are paired with the coefficients  +� and ,� with the understanding that these 

coefficients specify the amplitudes of these basis functions.  Students are instructed that if a 

function, f(t), is even, then its Fourier series will only require +� coefficients; if it is odd, only ,� 

coefficients are required.   Even so, these interviews indicated that about 40% students still had 

trouble understanding the even or odd character of cosine and sine functions.  For example, if t is 

changed to –t, these students had difficulty understanding the commensurate change in  
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sin( <5(��) and cos(<5(��) behavior and therefore the related changes to an and bn.  Regarding 

integration of an even function, as in problem #1, the definite integral from –t to t should be 

twice the integral from 0 to t, while the definite integral of an odd function from –t to t yields 0.  

When addressing integrals in these interviews, about 40% students did not use this concept to 

save time or used it in the wrong way, such as choosing wrong integration limits. 

3. Properties of the sine and cosine functions.  Other sine and cosine properties were also used 

in the interview problems. For example, when working with a compact trigonometric Fourier 

series representation, the 3� coefficient is defined as a magnitude (positive number), so when a 

term such as  3�×cos(<5(�)� is negated, the minus sign must be addressed through the angle of 

the cosine by changing cos(<5(�)� to cos(<5(�� ± 5). 35% of the students struggled with this 

idea. 

4. Inverse frequency/period relationships.  One of the problems required each student to find 

the period and then the fundamental frequency (problem #1, question 2).  Others addressed 

changes in period or frequency, such as problem #2 question 1 (see Figure 9b), which asked how 

the frequency would change if the signal was stretched to be doubly wide. The equations for the 

relationship between frequency and period, such as (� = 25�� and ?� =
�7

@A
, were given on a 

formula sheet, yet 15% students still had trouble; some students were inclined to say the 

frequency also doubled. 

5. Math-to-plot versus plot-to-math disconnect.  Students seem uncomfortable establishing 

relationships between mathematical equations and plots and explaining changes in one given 

changes in the other.   In problem #2, question 2 and problem #3, question 2, the plots were 

flipped about the vertical axis and horizontal axis, respectively.  In the first case, most of the 

students could reason that the function changed from f (t) to f(–t), whereas a few students (about 

10%) misunderstood.  In the second case, some of the students described the result as f(–t) rather 

than the correct response, –f (t). If they needed a hint, students were asked to compare the 

previous f(–t) plot with the plot in front of them and consider the differences.  Eventually, most 

of the students came up with the correct answer, but about 80% students struggled with this 

concept at some level. 
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6. The mistaken equivalence between phase shift and time shift.  In problem #3, question 1, 

the plot was moved π/4 seconds to the right in the time domain, so the CTFS function would 

become 

( ) )4/cos())4/(cos(4/ 00

1

00

1

0 ωπθωθπωπ ntnCCtnCCtf n

n

nn

n

nCTFS −++=+−+=− ∑∑
∞

=

∞

=
, 

where the phase representation has changed to θ� − π<(�/4. Most students specified a phase of 

θ� − 5/4 as the answer, which implies their willingness to accept ‘phase shift’ as equal to ‘time 

shift,’ which is incorrect. This issue was arguably the most common mistake in the interview, as 

over 90% students did not get the right answer without a hint, and 5% of the students made an 

initial mistake but soon corrected themselves.  Only 5 students out of over 100 interviewees 

answered this question completely correct. 

7. Incorrect use of lookup aids.  A few students (less than 10%) have trouble using lookup aids 

such as integral tables and Fourier series conversion tables.  Both types of tables were made 

available during these interviews, yet two students stumbled by using the wrong integral table or 

wrong Fourier series equations, such as the use of " DE<F 'F instead of " FDE<F 'F. 

8. Inability to start in the middle.  When addressing CTFS problems, some of the students feel 

the need to start back at the TFS representation and then move those coefficients into the CTFS 

and EFS (after the first update) domain, which inevitably adds calculations and therefore time.  

This usually leads to the correct answers but also implies a reliance on calculations and recipes 

rather than an understanding of the concepts of magnitude and phase. 

9. Poor understanding of Dn’s absolute value, |Dn |, and argument, Dn∠ (after the first 

update). About 1/3 of the students are not confident when using an absolute value and angle to 

present Dn, whereas most the students are able to use the Cartesian form: Dn = ½(an – jbn). These 

students also have doubts when using Cn and θn to represent Dn, and they have trouble building a 

direct connection between Cn and |Dn | and between θn and nD∠ . This is the main reason why the 

second update was implemented: to address their knowledge of the connections between 

parameters in different types of Fourier series. 
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10. Lack of clarity about the relationship between D0 and C0 (after the first update).Some 

students (about 10%) mistakenly apply the relationship between | Dn| andCn (| Dn| = 0.5Cn for n ≠ 

0) to the relationship between D0 and C0 when drawing D0 (Problem #5 in A.2). Most of these 

students could correct their mistakes with some hints, but the number of the students who have 

trouble with this is considerable. 

Table 6. Concepts with which students struggled as a function of semester. 

Semester 

(Population) 

S10 

(24) 

S11 

(24) 

F11 

(21) 

S12 

(14) 

F12 

(20) 

Total 

(103) 

Issue 1 10 9 9 5 7 40 

Issue 2 11 9 8 6 7 41 

Issue 3 6 12 8 5 5 36 

Issue 4 5 3 2 1 4 15 

Issue 5 20 15 16 10 17 78 

Issue 6 24 22 20 13 19 98 

Issue 7 2 2 1 2 1 8 

Issue 8 2 1 3 2 3 11 

Issue 9 N/A N/A N/A 6 6 12 (/34) 

Issue 10 N/A N/A N/A 3 5 8 (/34) 

 

C.2 Additional Notes 

Unforeseen Benefits of Tutoring Sessions. One unforeseen benefit of this interview process 

was that, in some cases, the interview as planned turned into more of a personal tutoring session.  

This led to unsolicited feedback from many of the participants that indicated the hour-long 

interview was worth their time from that viewpoint alone, irrespective of the fact that they 

received course credit for participating in the interviews.  More specifically, some students 

mentioned that the pace and feel of the interview were different from in-class learning (which 
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would be expected), since they could work with the instructor individually and spend their 

interaction time on issues directly related to their areas of misunderstanding. 

Findings Regarding Interviewer Help/Prompts.  From these interviews, it is clear that most of 

the students have reached a satisfactory level of capability with regard to the types of 

mathematical calculations that one must perform in order to calculate Fourier series 

representations of signals. Based on students’ responses to the help, most of their issues with 

learning Linear Systems were not problems associated with basic mathematics knowledge, but 

rather with the Linear Systems course material only. 

Generalizations of Areas Where Students Struggle.  Section C.1 noted specific areas where 

students struggled within the context of the Fourier series problems presented in the interviews.  

The following listing seeks to generalize and expand upon these areas of struggle with the 

thought that more overarching changes in pedagogy might be applied to address them.   

• Students often have difficulty ‘seeing’ the relationship between (a) mathematical 

representations and signal features and (b) changes in mathematical representations as they 

relate to changes in the visual appearance of a signal. 

• The general issue of performing the mathematical operations versus understanding their 

impact or purpose is an important discussion point.  For signals constructed from basic 

functions, students have trouble getting past the details of a mathematical process that 

employs basis functions so that they can visualize the way in which these signals are 

constructed from those fundamental building blocks.  In the case of Fourier series, these basis 

functions are cosines and sines, but other basis sets exist (e.g., tn for polynomial functions). 

• Visually pulling a signal apart can be a struggle for some students.  For example, in a Fourier 

series context, it is hard for some students to visually remove the baseline (even component) 

of a signal and realize that the remaining signal may actually have odd symmetry on its own. 

• Presenting a student with a mathematical shortcut does not ensure that they will understand 

when its use is or is not justified.  This is demonstrated in Fourier series calculations by the 

use of symmetry to shorten the coefficient calculation process. 

• The inverse relationship between time and frequency is always an issue.  This issue not only 

relates to the misperception that a wider sinusoid means a higher frequency, but it includes 



 44  

misperceptions such as (a) making a signal longer increases its bandwidth as represented by 

its TFS coefficients, or (b) (in the discrete domain) sampling a signal more quickly improves 

the resolution of the coefficients in the frequency domain. 

• The mistaken equivalence between time shift and phase shift speaks to students’ fundamental 

misunderstandings about Fourier series.  If a waveform is shifted, then all of the sinusoids 

that comprise that waveform must also be shifted.  These sinusoids are at different 

frequencies, yet they must retain alignment relative to one another in order to retain the 

overall signal shape, so each sinusoid (building block) experiences a different phase shift, 

even though the time shifts are all equal. 

• Students find the absolute value and angle form (i.e., the polar form) of a complex number to 

be uncomfortable. They prefer to use the Cartesian form, z = a + jb, and calculate the 

absolute value and argument from this. When plotting a complex number on a set of 

coordinate axes, the polar form is seldom used, even if these numbers are originally given in 

polar form. For example, when asked to draw a stem plot of Dn based on Cn and θn, some 

students need to convert Cn and θn back to an and bn first instead of using |Dn | and nD∠ , 

which come from Cn and θn more directly. 

• When students do not know quite how to proceed, they fall back on process and recipe rather 

than think about the problem at a high level.  For example, to describe the change in phase 

due to a time shift, most would be more comfortable recalculating the Fourier Cn and θn 

values from scratch rather than reason through the change in coefficient values. 
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CHAPTER 4:  ONLINE HOMEWORK MODULE ENHANCEMENT 

A.  Signal Visualization in the ZIR and UIR Modules 

The former instantiations of the zero-input response (ZIR) and unit-impulse response (UIR) 

modules required homework-like solutions, where mathematical answers were entered into text 

fields.  Updates to these modules include plotting facilities in the help files that graphically 

depict the solution for the system response, note the initial conditions on the curve, and mark 

features such as bounding curves and zero crossings.   

An example zero-input response for an underdamped system is plotted in Figure 17. Note that 

the solid red line representing the response is a dashed line for t < 0 to indicate that the signal 

does not exist prior to time zero. Bounding exponentials are marked as gray dashed lines.  Zero 

crossings are marked with red circles, and the initial condition and slope at time zero are 

represented by the dashed green line.  Colors of the expressions in the text above the plot are 

matched to the colors of the corresponding curves/marks. 
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Figure 17: Output signal visualization for a zero-input response problem. 

These visualizations are intended to offer the students a better understanding of the ZIR and UIR 

signal features relative to the mathematical expressions that describe them. These include the 

signal envelopes, relative time delays, zero-crossing points, bounding curves, signal trajectories, 

and the roles that the pieces of the mathematical expressions play in the shapes of the curves. 

B.  New Homework Module for Fourier Series Conceptual 

Understanding 

B.1 Protocol and Timing 

As mentioned above, during the Spring 2010 semester, 24 students enrolled in Linear Systems 

were interviewed, and the interview results indicated that the students’ understanding of Fourier 

series concepts needed to improve. Based on the problems the students faced during the 

interviews, a new module was added to the online homework set after the TFS/CTFS modules. 

In this module, the students are offered an experience related to TFS/CTFS ideas that does not 

require computations but rather focuses on concepts. Each question asks the student to identify 

the differences between an original signal and a signal generated from it, then specify changes to 

the main parameters (based on the original parameters) that are required to realize the new 

signal. The goal is to help students understand each parameter’s contribution to the entire signal 

as well as the relationship between the graphical representation and the functional representation, 

ideally improving their conceptual understanding and moving them to, e.g., a higher conceptual 

level within to Bloom’s taxonomy. 

B.2 Questions and Solutions 

The new module contains three questions that cover basic changes in signal appearance and the 

resulting parameter variations. These questions are similar to the major part of the interview 

questions about the parameter variations, but the shapes of the signals are generated randomly 

(neither even nor odd), and the variations are randomly generated and combined. In this case, it 

is hard to address these parameter-variation questions just by memorizing answers to previously 

generated problems. Care was taken to avoid combining too many parameter changes in one 
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question, which could cause misunderstanding and possibly frustration and guessing. To make 

each variation obvious and clear to the students, every question involves only one or two shape 

changes. 

Example questions are illustrated in Figure 18, Figure 19, Figure 20, and Figure 21. All of these 

signals are periodic: the first three are depicted in TFS form, and the last is depicted in CTFS 

form. Students need to fill in the blanks as shown. The solution procedures are similar to the 

examples utilized in the interview session in Chapter 3. 
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Figure 18. Example comparison signals and answer entry fields (TFS). 

In Figure 18, the amplitude of the signal is inverted and doubled. The answer should be 

• +�
′

 =  −2 ∗ +� + 0 

• +�
′

 = −2 ∗ +� 

• ,�
′

 = −2 ∗ ,� 

• ω�
′

 = 1 ∗ (� 
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Figure 19. Example comparison signals and answer entry fields (TFS). 

In Figure 19, the signal is time inverted relative to the original signal (flipped over the y 

axis).The answer should be 

• +�
!  = 1 ∗ +� + 0 

• +�
!  = 1 ∗ +� 

• ,�
′

 = −1 ∗ ,� 

• ω�
!  = 1 ∗ (� 



 50  

 

Figure 20. Example comparison signals and answer entry fields (TFS). 

In Figure 20, the frequency of the signal is doubled, and the baseline of the signal is shifted up 

by 3. The answer should be 

• +�
!  = 1 ∗ +� + 3 

• +�
!  = 1 ∗ +� 

• ,�
′

 = 1 ∗ ,� 

• ω�
!  = 2 ∗ (� 
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Figure 21. Example comparison signals and answer entry fields (CTFS). 

In Figure 21, the signal is time advanced by 1 second. The answer should be 

• ω�
′ 

 = (� 

• 3�
′

  = 3� 

• 3�
′

  = 3� 

• θ�
! = θ< + n(0 
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CHAPTER 5:  FRAMEWORK APPLICATION 

In this engineering education research, two frameworks were applied to address the issues 

associated with student conceptual understanding: Bloom’s Taxonomy and APOS Theory. This 

chapter presents an analysis of this research in the context of these frameworks. 

A. Bloom’s Taxonomy 

Bloom’s Taxonomy was applied in this research first. It divides educational objectives into three 

"domains": cognitive, affective, and psychomotor (sometimes loosely described as 

"knowing/head", "feeling/heart" and "doing/hands" respectively [26]). Within the domains, 

learning at the higher levels is dependent on having attained prerequisite knowledge and skills at 

lower levels. The work presented here focuses solely on the cognitive domain with reference to 

the levels of cognition noted in see Figure 7. 

A.1 Previous Exam Questions Analysis 

The idea of “higher level learning” or “conceptual learning” in Linear Systems has been 

implemented in practice for some time. For example, the signals in Error! Reference source 

ot found. and Figure 23, along with the accompanying questions listed below, have been used 

regularly on the final exam since 2007. The question addresses the students’ understanding of 

Fourier series, and the sub-questions have been mapped to Bloom’s taxonomy level(s). 

Typical higher-level exam questions related to the signals in Error! Reference source not 

found. and Figure 23: 

A periodic signal f(t) is depicted below (Error! Reference source not found.): A periodic signal f(t) is depicted below (Error! Reference source not found.): 

a) Is f(t) even, odd, or neither? (circle one)     a) Is f(t) even, odd, or neither? (circle one)     

even odd neither 

 Is F(ω) purely real, purely imaginary, or neither?  (circle one)  

real imaginary neither 

b) If you represent f(t) with a trigonometric Fourier series, fTFS(t), which coefficients of 

fTFS(t), if any, can be determined by inspection, and what is their value? 

c) What is fTFS(0.5)?  
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d) Find the trigonometric Fourier series, fTFS(t), that represents the signal.  Take advantage 

of symmetry if possible.  Simplify the expression(s) for the Fourier coefficients so that 

they do not contain any trigonometric functions. 

e) What 3 ways would the Fourier series from part (d) need to be altered before it could 

represent the signal g(t) below (Figure 23)?  (You do not need to know the answer to part 

(d) to address this question.) 

 

A

1 
t

… …

f(t) 

2 0 -1 -2 

3A

 

Figure 22. Example signal for a final exam question related to TFS. 

 

A

2 
t

… …

g(t) 

4 0 -2 -4 

0

 

Figure 23. Altered signal with parameter changes. 

It is not always possible to create a clear one-to-one mapping between a problem and a Bloom’s 

level. However, this set of levels is offered as a generally sensible match to FS concepts. In the 

example above, sub questions a, b, c and d are traditional and are addressed in the Knowledge, 

Comprehension, Application, and Analysis stages. Items a and b could be addressed by 

memorizing/classifying, so they could be mapped to Knowledge/Comprehension. For item c, a 

basic understanding of Fourier series is required, and the students need to apply Fourier series 

knowledge and basic function knowledge to get the answer, which implies the Application level. 

Item d is a basic and classic TFS question – find the TFS that represents the signal. To address 
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this item correctly, a student needs to memorize the procedures, select the parameters/equations 

to use, apply the existing equations, and calculate the result, addressing Bloom’s levels 1→4. 

Item e introduces the idea of parameter variations versus signal appearance in Fourier series. It 

requires an understanding of the role each parameter plays and the effects that parameter changes 

induce in signal plots. The knowledge was discussed in the class, but the relationships were not 

given to the students directly for memorizing. So, the students need to form their own 

understanding to interpret the question and respond. This short question therefore reflects 

conceptual understanding as related to Bloom’s levels 4→6 to some degree. This question was 

used for several consecutive years on the final exam, and student ability to better address the 

question as teaching tools were introduced will be discussed in Chapter 6. 

A.2 Interview and New Online Homework Module Analyses 

The questions in the interviews and in the new online homework module are similar in nature, 

addressing comparable elements of Fourier series conceptual understanding. Student 

performance in both situations is therefore analyzed together in the context of the Bloom 

framework. 

In comparison to the existing questions above that have been used in the final exam, the 

interview and module questions have more variation and involve more parameters. The hope was 

that the increased variation in these questions would lead to a more detailed understanding of the 

students’ conceptual Fourier series knowledge relative to the Bloom’s taxonomy levels. These 

questions do not ask for significant calculations, meaning the solution procedures were not 

required directly as with traditional questions. Rather, in order to give acceptable answers 

(especially in the interviews, where the interviewee needed to explain their answers to the 

interviewer), the students needed to comprehend the concepts well. These concepts included not 

only Fourier series ideas, but also the definition of a function, the properties of even/odd 

functions, the properties of trigonometric functions, the notion of period/frequency in periodic 

functions, and the purpose of integrals. These interview and module questions can be matched 

with Bloom’s taxonomy levels, perhaps not one to one directly, but generally paired with the 

higher levels: 4 to 6. The following paragraphs analyze the details of the interview questions 
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from a more cognitive perspective. Given their similarity between the interview questions and 

the new online module questions, this kind of analysis could be applied to the module as well. 

Refer back to Chapter 3 where the interview questions are listed. The first question – the ‘warm-

up’ question of the interview, is more like a traditional question. The student can just follow the 

procedures they learned in class or in the book to solve the major part: the question can be 

mainly addressed in Bloom’s Taxonomy levels 1 to 3, or Knowledge, Comprehension, and 

Application. 

The main content of the interview – signal appearance changes with parameter variations – starts 

in the second question and continues to the next-to-the-last question in all the three versions of 

the interview. This whole part of the interview maps to Bloom’s levels 3 to 6 (Application, 

Analysis, Synthesis, and Evaluation in the framework), similar to sub-question e in the final 

exam problem set above. In this part of the interview, all parameter roles need to be understood 

well, and the properties of a function need to be utilized sensibly. The general procedures to 

address these questions, as noted in Chapter 3, involve representing the function in the Fourier 

series expanded form, then utilizing the properties of the trigonometric or exponential basis 

functions to identify how the parameters will change when the associated signal changes. Each 

student needs to identify the differences between the new and original signals, then determine 

how these changes could be represented mathematically in function form (step � - refer to the 

example affiliated with Figure 24, which is discussed below). Next, the new and original signals 

can both be expanded as Fourier series (step �), and the student needs to rearrange and 

reconstruct the expression to match the standard Fourier series form (step �). Finally, the 

student needs to assess the restrictions of the new parameters (e.g., definitions or properties of 

these parameters) to achieve the correct result (step �). 

Back to the example analysis in Chapter 3, these four procedures can be applied: 

- The parameters for fCTFS(t) (C0, Cn, and θn) are known for the original signal in Figure 

23 below. Identify how the parameters ω0, C0, Cn, and θn change given the signal in 

Figure 23c. 
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Figure 24. Example signals for matching Bloom’s taxonomy levels to interview analyses. 
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• '0C  = - 0C ;-------------○3  

• )''cos(' 0
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n ntC θω +∑
∞

=

= )cos( 0

1

n

n

n ntC θω +−∑
∞

=

-------------○3  

Because of the definition of nC  as 
22

nnn baC += , nC is positive or zero, so 

'nC = nC , and )''cos( 0 nnt θω +  = )cos( 0 nnt θω +− ; -------------○4  

• To make the cos function negative, we can apply θ�
!

 = θ� + 5; -------------○4  

From the analysis above, the process could be mapped to levels 4 to 6 in Bloom’s taxonomy, 

consistent with key words such as “compare,” “analyze,” “arrange,” and “construct.” 

In the final interview question, the student is asked to build a new signal using the original 

signal(s). The student needs to be well-versed in parameter roles and function properties, 

since they need to select the signal(s) to use, arrange the signal(s), and construct the new 

signal. They need to explain their idea and defend their design through mathematical 

derivation. It is a creative procedure, and the product will be the new signal, so this question 

relates to levels 5 and 6 in Bloom’s taxonomy.  
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B. APOS Theory Application and Results 

As introduced in Chapter 2 – Background, APOS Theory is most widely used in mathematics 

education. Since Linear Systems is math intensive, APOS theory functions well as a framework, 

as it is easy to apply lessons learned from the literature to the analyses performed here. 

Using detailed APOS theory analyses, the researcher can compare the success or failure of a 

student on a mathematical task with the specific mental constructions they may or may not have 

made. For example, if two students appear to agree in performance up to a specific mathematical 

point and then one student can take a further step while the other cannot, the researcher can try to 

explain the difference by pointing to the mental constructions of actions, processes, objects 

and/or schemas that the former student appears to have made but the other has not. The mapping 

between student understanding and the APOS levels seems natural. 

Each semester, the interviews were offered about four or five weeks after the students initially 

focused on Fourier series in class, so students were not expected to remember all Fourier series 

details. All of the useful equations were provided, as well as an integral table. In the interview, 

the first traditional question maps to the action and process levels. Most of the students can 

calculate the parameters for the TFS expression readily, either with help from the given formulas 

or by themselves. Fewer than 20% of the students needed hints about which expanded form to 

use or how to properly apply the integral tables. About 40% of the students needed hints to apply 

the “area under the curve” concept. From an educational perspective, it appeared that about 80% 

of the students had reached the Process level, while the rest were still stuck in the Action level. 

In the rest of the interview, the interviewee needed to think at the process and object levels to 

complete most of the questions. In the general procedure, as introduced above in this chapter – 

section A. 2 – an interviewee needed to understand parameter roles and the relationships between 

the parameters and the plots/functions to get the correct results. As a simple example, if the 

student understands the baseline, a0 or C0, as an object and can identify the sign of this parameter 

by looking at the plot, then they can describe changes in this parameter as the visual character of 

the signal changes without performing any calculations. In the example in section A.2, the 

baseline of the signal was sometimes (about 40% of the time) assumed to be equal to zero 

because of mistakes or carelessness. So, even in this simple case, an individual needs an object-
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level understanding to finish the question correctly without hints. Other signal-shape changes are 

considered harder than baseline changes, so most follow-on questions need at least an object-, if 

not schema-level, understanding. For example, in Chapter 3, section A.2, Problem #3b (the time 

shift question), over two thirds of the students were aware that the time shift related to a phase 

shift, however less than 5% of the students got the correct result without any hints. To obtain the 

correct answer to this question, an object-level understanding of Compact Trigonometric Fourier 

Series (CTFS) is required, specifically with regard to the role of θn in accomplishing the time 

delay while maintaining the relative alignment of the sinusoids that make up the Fourier series. 

For the student to understand CTFS thoroughly at the object-level, a schema-level understanding 

can be needed with regard to function behavior, signal appearance as it relates to a mathematical 

function, n-term summations, and other background mathematics knowledge. 

Based on the analysis of the students’ performances in these interviews, four groups of students 

can be identified: 

1. Action/Action-to-Process Level: About 10% of the students performed at a level lower than 

the process level. Since no examples and notes were provided in the major part of each interview, 

these students could not finish the interview easily, even with lots of hints. For this group, each 

interview session was more like a tutoring class. The interviewer needed to provide the results 

and explain all of the questions in detail. 

In the interview, the basic TFS equations were given as were listed in Chapter 2, section A.1. 

When facing the first question in the interview (see Chapter 3, section A.2, Problem #1), the 

students in the Action/Action-to-Process range had a sense of which equations they needed and 

followed the equations on the note sheet to find all of the parameters one by one. They could not 

deviate from the notes and did not rely on shortcuts, such as using the even nature of a function 

to simplify an integral calculation. When asked about the sign of a0, they would get confused, 

and the did not appear to know or understand the meaning of “area under the curve.” For the 

major part of the interview, which addressed parameter variations without any notes, they did not 

have the understanding of the concepts to finish the questions. They needed hints or explanations 

in most of the problem steps. For example, in Problems #2 to #5, almost all of the hints listed in 

Chapter 3, section B needed to be provided. For some questions, the full solutions needed to be 
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provided with detailed explanations, which led to the interview being an extra tutoring session 

for the students in this level. These students might even have trouble understanding the meaning 

of certain parameters. For example, when a signal was time inverted (refer to Chapter 2, section 

A.2, Time Inversion), some students in this group wanted to apply negative time, –t, or negative 

frequency, –ω, directly to achieve the change. The hint of “the definition of frequency” would be 

given, and they would need further help to get the correct answer. 

2. Process Level: More than 50% of the students were located in this zone. They have a solid 

understanding of Fourier series and have some sense of the changes in signals brought about by 

changes in coefficients. They can answer most questions with hints. The correction ratio for their 

answers in the major part of the interview was not very high, and in some cases they could not 

prove their results mathematically. These students could understand the procedures the 

interviewer showed to them and apply these procedures to later questions with hints or by 

themselves. 

The students in the process level and higher had no trouble working on the first question in the 

interview (refer to Chapter 3, section A.2, Problem #1). The students in the process group did not 

rely on the notes as much as the first group, but they still did not use any shortcuts to simplify the 

integral calculations. They have knowledge of the “area under the curve” but might need hints to 

get correct results. For the parameter variation question, once they got started, they had the basic 

idea of the relationship between the parameters and the signal appearance, but their 

understanding of the parameters was limited. They could realize how the signal changed, and 

they tried to build connections between the changes and the parameters. However, since either 

they could not prove the relationships mathematically, or their answers were not calculated 

directly from the math equations, their correction ratio was not high, and they were not confident 

in their answers. In this case, hints and explanations were provided, and the idea of how to get 

the relationship between the parameters and the signal appearance through math equations was 

introduced to these students. As the interview progressed, these students would have a better 

understanding of the role of the mathematical equations and would use them more often, but they 

still needed hints to use all of the equations correctly in most cases. For example, when they 

were asked to address amplitude inversion (refer to Chapter 2, section A.2, Amplitude Inversion), 
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some of the students just applied the negative sign to the summation )cos( 0

1

n

n

n tnC θω +∑
∞

=

, but 

they forgot about C0. Most of the students in this group wanted to use a negative Cn to solve the 

problem. Here, hints regarding “the sign of C0” and “the definition of Cn” would be provided. 

For the time-delay question (refer to Chapter 2, section A.2, Time Delayed), students invariably 

had trouble relating the time delay to the phase shift. Even with hints, they made mistakes, such 

as assuming that the time shift was equal to the (constant) phase shift – ignoring the n term in the 

phase shift. A full explanation would then be needed. Most students in this group did not reach 

the last question (signal reconstruction – refer to Chapter 3, section A.2, Problem #6) because of 

time limitations. 

3. Process-to-Object Level: About 35% of the students were categorized in this level. They 

could understand most questions and the Fourier series expressions, and they had the basic 

understanding to identify changes in signal appearance and which parameters would change as a 

result. The students in this group always made some mistakes, but they were able to correct their 

mistakes with hints in most cases. They could explain their thoughts, and some mistakes were 

corrected during their self-explanations. 

During the interview, the students in this group had the ability to finish the first question in a 

short time. They had a good understanding of the basic Fourier series expressions, and they were 

able to apply simplifications (such as even function properties in the context of integrals) to 

accelerate their calculation procedures. Most of them could use “area under the curve” 

knowledge to estimate a0 and its sign. For the parameter variation questions, they were able to 

start the questions without any hints. When they made mistakes, they were asked to explain their 

answers, which allowed some mistakes to be found and corrected. If they still could not get the 

correct answer, hints would be provided, and in most cases, the difficulties could be overcome. 

One exception was still the time delay problem. Most of the students in this group tried to build 

the connection between the time delay and a phase change. However, they could not perform the 

mathematical procedures correctly. The most common mistake was the mistaken equivalency 

between the time shift and a constant phase shift, the same area of struggle for the students in the 

Process group, but their method to deal with the mistake was different. In this group, with the 

hint “does the time shift always equal the phase shift?,” the interviewee always reacted with “no” 
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and then tried to find the mathematical solution for the question. With the hint of, “As with the 

amplitude change, what is the expression of the new function in terms of the original function?,” 

they were able to find the correct expression and then derive the phase change in terms of the 

original phase, θn, and the index n. At this point, they were able to get the answer, but they still 

had difficulty explaining it clearly, and the explanation would be given to help them understand. 

Most students in this group could reach the last question, and most of them needed the reference 

line to perform the reconstruction of the signal, as was introduced in Chapter 3, section A.2, 

Problem #6 and Figure 16. With the guide (auxiliary) line and other hints, such as, “How do you 

move the baseline of a signal?,” they were able to get the correct answer by themselves. 

4. Object Level: Only about 4% of the students (5 out of 140) were considered to perform at the 

full object level. They did not appear to feel challenged by the interview, and they finished most 

of the questions correctly without any hints. While they might make some slight mistakes, they 

were not critical. Hints provided to this group did not need to be specific; they can troubleshoot 

by themselves. All five of these students finished their interviews. They understood Fourier 

series very well and could link back to the related mathematics concepts of functions, 

summations, and signal plotting.  

These four students had solid mathematics backgrounds in functions, integrals, and trigonometric 

functions, which helped them to get results faster than the other students, allowing them to finish 

the whole interview question set. For the parameter variation questions, they were able to solve 

the problems by deriving the math equations from the definition of the Fourier series, and they 

could also explain the changes from the signal graphing perspective, using the properties of 

sine/cosine functions and even/odd functions. For the time delay question, they could apply 

similar strategies in mathematic form to derive the result, and three of these four students could 

explain the results clearly. For the last question, two students needed the guide lines to get the 

correct results, but they could explain the result thoroughly. Based on their performance, the 

students in this group had a schema level understanding of the basic mathematics concepts, and 

they could utilize their knowledge fluently and build connections easily between Fourier series 

expressions and the visual representations of signals.  
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C. Reasons to Switch from Bloom’s Taxonomy to APOS Theory  

During the previous research, Bloom’s taxonomy was applied as a framework to help quantify 

the cognitive levels of students in terms of their abilities to reason their way through Fourier 

series problems. Some value was generated from this framework – particularly the need to push 

the students toward exercises that required critical thinking and higher-level understanding. 

However, the primary limitation of this framework is that it is very broad and can therefore be 

difficult to apply within a technical learning environment. Each type/category of mathematical 

reasoning can arguably fall within several Bloom’s levels depending on the type of problem, 

making it difficult to quantify the conceptual understanding state of a student.  

APOS theory, which has broader use in mathematics education, is more ‘object-like.’ It deals in 

a more focused way with the state of a student and the characteristics that place the student in a 

certain conceptual level. The theory focuses on the cognitive process of mathematics concepts 

and the psychology of the learning process. As noted in the previous section, APOS theory 

appears to be a good match for education research in the area of linear systems; likely because of 

the mathematical nature of the topic. The matching of APOS theory to the students’ behavior in 

this course is very natural.  

Within the context of the NSF REESE program that funded this effort, the KSU Mathematics 

Department also employed APOS theory, but in the context of differential equations [31]. 

Applying APOS theory to Linear Systems also therefore helps to maintain some local 

consistency in terms of educational research frameworks. Bloom’s Taxonomy is more general, as 

mentioned, not only with regard to the cognitive process, but also with regard to affective and 

psychomotor studies; we just looked at one part of the framework. 
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CHAPTER 6:  EXAM MODIFICATION AND RESULT ANALYSIS 

A. Exam Data Analysis - Short Term 

Exam data from two semesters, Spring 2010 and Spring 2011, were analyzed to evaluate how the 

interviews and the new conceptual module were working. Each semester prior to that time, 

students would learn Trigonometric Fourier Series (TFS) and Compact Trigonometric Fourier 

Series (CTFS) before the second mid-term exam, and these subjects would be covered on that 

second exam as well as on the final exam. In Spring 2010 and Spring 2011, some conceptual 

understanding questions based on TFS and CTFS parameters were added to the second midterm 

exam. Conceptual questions had actually been consistently used on the final exam since Spring 

2007. In summary, four sets of exam scores are of note here and relate to mid-term exam 2 and 

the final exam for the two semesters. 

Four groups of students are of interest for this two-semester, short-term analysis. In Spring 2010, 

the Fourier series conceptual module was not ready, so none of the students used the module. 

However, 24 students participated in the interviews, while 18 others did not. In Spring 2011, all 

of the students used the conceptual module and 24 students participated in the interviews, while 

11 did not. The four groups are noted in Table 7 below. The analysis in this section is based on 

student scores for the four exams: two in each semester, where each group had two exam scores. 

 2010 2011 

Treatment 

Group 

Group 1 Group 2 Group 3 Group 4 

Interview Yes (24) No (18) Yes (24) No (11) 

New Module No No Yes (35) Yes (35) 

Table 7. Four groups of students assessed for the short-term analysis. 
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1. Interviewed Versus Non-Interviewed Students 

As mentioned before, four groups of students are of interest (two groups per semester): 

interviewed students and non-interviewed students. To analyze the influence of the interviews, 

students from the same semester were compared against each other.  

From the Spring 2010 exam data (scores on the conceptual Fourier series questions only), as 

shown in Figure 25, the average scores of the two groups were less than 10% apart after the 

second mid-term exam, which was taken before the interviews. The interviewed students 

received (on average) about 68%, while the non-interviewed received about 60%, a difference of 

about 8%. For the final exam, the scores of the interviewed students improved by 9 percent 

overall, from 68% to 77%; whereas the non-interviewed students’ average score regressed to 

56%. The difference was therefore about 20% between two groups. 

 

Figure 25. Spring 2010 exam scores (mid-term 2 and final exams) for 

interviewed and non-interviewed students 

In Spring 2011, the result was a bit different. For mid-term exam 2, the average scores on the 

conceptual problems for the two groups were close: 75% compared to 73%. For the final exam, 

the average scores on the conceptual questions were lower for all the students, no matter whether 

they were interviewed or not. The average scores of the interviewed students dropped by 6% 
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from 75% to 69%, while the average scores of the non-interviewed students dropped by 30%, 

from 73% to 43%. This disparity is substantial. 

 

Figure 26. Spring 2011 exam scores (mid-term 2 and final exams) for 

interviewed and non-interviewed students. 

From the two figures above, the interviews appear to have increased the disparity in student 

scores on the conceptual questions related to parameter variations – for both semesters. If the 

interviewed and non-interviewed students are placed in two big groups, the difference in scores 

was increased from about 5 percent on mid-term exam 2 to over 20 percent on the final exam.  

Although in Spring 2011 neither of the two groups improved (the mid-term and final exam 

conceptual questions were not the same), the difference in performance between the interviewed 

students and the non-interviewed students was substantial. Note that the performance for both 

groups could have been influenced by the overall difficulty of the exam and the setting of the 

questions. In Spring 2010, more filter questions were included on the final exam at the expense 

of the traditional Fourier series questions, which were on most of the final exams since 2007, 

including Spring 2011. (Different filter topics were covered at the end of Spring 2010 and 

therefore also included on the final exam.) However, it is clear in both cases that students 

performed better if they participated in the interviews. Based on this exam performance and the 

students’ responses to the interviews (refer to Chapter 3, section C.2), the interviews appear to 
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have a positive influence with regard to student understanding of parameter variation questions, 

or conceptual understanding in TFS and CTFS. 

2. Student Performance With/ Without the Enhanced Online Homework Module 

To analyze the effect of the homework module on conceptual understanding, students were 

grouped by semester: the Spring 2011 students used the new conceptual module, which was not 

available in Spring 2010. In Spring 2011, the conceptual module was used before the second 

mid-term exam. As shown in Figure 25 and Figure 26, the average scores on the conceptual 

questions for the second mid-term exam increased significantly, from 64% to 74%. However, in 

Spring 2011, the,students did not perform well on the same types of questions for the final exam. 

As noted above in section A.1, the reasons may be varied. To get a better understanding of the 

students’ overall performance on both the individual exams versus the entire semester, the grade 

point averages (GPAs), based on 4.0 scale, of each exam and the two overall semesters were 

calculated, as listed in Table 8. The reason we are using GPA other than average test score is that 

GPA can reflect the students’ performance on the entire course (homework and projects included) 

with little effect from the difficulty levels of the test questions. 

Table 8. Student exam performance in the Spring 2010 and Spring 2011 semesters. 

 2010 2011 

Exam GPA Mid-Term 2 Final Mid-Term 2 Final 

2.25 2.38 2.30 1.76 

Overall Class GPA of the Course 2.14 2.03 

 

From Table 8, the comparison data yield the following: 

- Mid-Term 2: the two semester GPAs were close, with a difference of 0.05 

- Final exam: the Spring 2010 GPA was higher by 0.6, which was a significant difference 

- Overall: the Spring 2010 GPA was higher by 0.1, which was considerable 

The following thoughts are therefore offered: 

1. The Mid-Term 2 exams in both semesters had similar difficulty levels. 

2. The students in Spring 2010 performed better in the course in general. 

3. The students in Spring 2011 faced more difficulty on the final exam. 
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This information suggests that the decrease in average score on the conceptual questions in the 

final exam might have been caused by other effects (in the exam or the students) that had little 

relation to the conceptual questions themselves. Analyzing the data from Figure 25 and Figure 

26 in this light, one can surmise that the new online homework module has a positive effect on 

the conceptual understanding of Fourier series.  

Also, if the conceptual questions on the mid-term 2 and final exams are combined together for 

the four groups, then Group 3, which benefited from both the interviews and the new module, 

had the best performance, which suggested the two treatments in aggregate were successful with 

regard to helping the students with Fourier series conceptual understanding. 

Because these analyses were performed using data from such a short time frame, longer term 

data involving 8 semesters and over 200 students were addressed, as discussed next. 

B. Exam Data Analysis - Long Term 

As mentioned before, in the final exam, conceptual questions have been included since Spring 

2007. The data were traced back to that semester, focusing on student grades on (a) the 

TFS/CTFS conceptual questions and (b) the traditional TFS questions. The results are depicted in 

Table 9 and Figure 27. Before Spring 2010, there were no practice problems available that were 

related to parameter variations, but since then, both interviews and online modules have become 

available. Similar conceptual problems from final exams were analyzed semester by semester 

and then compared in two big groups: those that received the treatments (interviews and online 

modules) and those that did not. The questions were the same and comparable, resembling the 

example question in the Bloom’s taxonomy portion of the Background. Some final exams did 

not have traditional TFS questions where students solved for parameters using integrals, so they 

were not counted. One example is the Spring 2010 semester – although that final exam contained 

conceptual questions, only small additional basic TFS questions were included, so that final 

exam was included in the analysis from last section but is not included here. 
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Table 9. Long-term student performance on final exams (basic TFS questions and coefficient 

variation questions) 

 

S07 S08 F08 S09 F09 S11 F11 S12 

No. of Students  33 29 38 30 21 35 23 22 

Basic TFS  Totally 17 Points 

Average 11.50 11.95 11.50 12.98 10.04 13.12 13.48 13.93 

Average% 67.65 70.32 67.65 76.38 59.06 77.16 79.29 81.95 

Average(Two Groups) 11.68 13.47 

Change Percentage % 10.52 

TFS Coeff Shift  Totally 5 Points 

Average 2.88 2.28 3.03 2.07 2.64 3.52 3.80 3.68 

Standard Deviation 1.31 1.15 1.42 1.25 1.35 1.50 1.39 1.45 

Average% 57.59 45.56 60.53 41.33 52.86 70.33 75.91 73.64 

STDEV% 26.28 23.09 28.37 25.01 27.04 30.00 27.89 29.04 

Average(Two Groups) 2.61 3.65 

Change Percentage % 20.87 

 

 

Figure 27. Long-term student performance on final exam conceptual questions. 
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From Table 9 and Figure 27, the grades received for TFS questions clearly increased with the 

help of the interviews and the online homework modules. The average scores on the TFS 

conceptual questions increased from 2.61 to 3.65, or 20%. Likewise, the scores for the traditional 

TFS questions increased from 11.68 to 13.47, or 10.5%. Attempts were made to keep the whole 

final exam and the individual questions in the same difficult level – indeed, with the exception of 

just a couple of exams, all of these final exams were the same and were not returned to students. 

The conceptual questions were graded to the same standard for every semester. The treatments 

were aimed at the conceptual questions, so a better understanding of this type of problem was 

expected. However, from the data, the students also improved their scores on the traditional TFS 

questions. Even the highest average score of the previous semesters (76.38% in S09) was still 

lower than the S11 semester, whereas the lowest average score was 77.16% after the treatments 

were applied. 
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CHAPTER 7:  FUTURE WORK 

This section addresses future efforts that can continue the work described in this dissertation. 

The research presented here focused on time-domain LTI systems and Fourier series, where the 

research team was able to identify areas of struggle and implement treatments, including 

teaching-learning interviews and a conceptual online homework module. These enhancements 

have made a positive impact on student learning, and Bloom’s taxonomy and APOS theory have 

offered theoretical support and guidance to this work. Future work may continue with similar 

research applied to a broader area. 

A. Application to Additional Linear Systems Topics and Method 

Enhancement 

In Linear Systems, a wide range of topics are covered in both the time domain and frequency 

domain, as noted in Chapter 1, section B. This research addressed only a subset of those topics. 

Other topics, such as convolution, Fourier transforms, Laplace transforms, and discrete systems 

can prove difficult for students, based on their previous performance, but these topics are 

important to future studies in electrical engineering. Further research on these topics using 

methods similar to those employed here could help to improve student learning and help 

instructors to better understanding student difficulties in these topic areas. 

The future research design could roughly imitate this current method using four main steps:  

1. find areas where students struggle given exam scores and survey results,  

2. create interviews, which can be the initial treatment, to gather in-depth data and more 

detailed information, 

3. generate treatments in addition to the interviews, such as new online homework modules 

or innovative projects, and  

4. apply detailed analyses on these data to evaluate the effectiveness of the treatments and 

enhance these methods.  

The APOS learning framework has the potential to support these efforts. As discussed earlier, 

Fourier series form a connection between the time and frequency domain, so further studies 

related to frequency domain knowledge (e.g., Fourier Transforms, modulation, windowing, 

filters, etc.), naturally reflect students’ conceptual understanding of Fourier series and earlier 
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time domain topics. If applying APOS theory, this may allow a schema-level assessment of that 

earlier knowledge. 

B. Applying This Research Method in Other Engineering Classes 

As introduced in Chapter 1, Linear Systems is an important fundamental class in an Electrical 

Engineering curriculum. Several high level classes, such as Communication Systems, Digital 

Filtering, Electro-acoustics, and other courses related to signal analysis and processing, are based 

on the knowledge from Linear Systems. The current research can be expanded into those courses, 

as described above in section A, allowing the whole curriculum to gain similar benefits as were 

experienced in this course. In other engineering majors, such as mechanical engineering, this 

kind of research method can be applied as well. A learning framework such as APOS theory can 

help to guide and organize these research methods and directions, where the ultimate goal is to 

improve mathematics- and physics-based learning experiences for all engineering students. 

 

 



 73  

CHAPTER 8:  CONCLUSION 

In this research, we addressed conceptual learning of junior and senior students enrolled in a 

Linear Systems class offered by the KSU Electrical and Computer Engineering Department. The 

areas of interest included Fourier series and LTI system response visualization. Fourier series 

provide an important connection between knowledge in the time and frequency domains, while 

LTI systems are important for signal processing and areas of electrical engineering study. 

Teaching-learning interviews and online homework modules were offered as treatments to 

improve student learning experiences and increase their conceptual understanding of these 

topics.  

Students considered the teaching-learning interviews to be helpful and even considered them to 

be tutoring sessions in some cases. Enhancements of the online homework modules were useful 

as well. Exam data were analyzed to assess the effectiveness of these treatments for Fourier 

series learning, and the results were positive and matched expectations in most cases. Average 

scores on conceptual TFS problems, both on mid-term and final exams, were increased, and the 

better conceptual understanding also led to performance improvements on traditional TFS 

questions. 
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