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INTRODUCTION

A technique that is often used when solving a system of

equations involves representing the equations in matrix form.

To solve the system we then work with the matrix of coefficients.

Closely related to this problem is that of finding the inverse

of a matrix. The connection between the two problems will be-

come more apparent when we discuss Gaussian elimination.

In addition to the technique of Gaussian elimination, we

will discuss three other techniques for finding the inverse of

a matrix. They are partitioning, rank annihilation, and the

L-P method. Some variations of these methods will be discussed

in the corresponding sections.

With each method, a general outline of the theory behind

it will be discussed. This will be followed by a short dis-

cussion of the actual computation of the inverse matrix and an

example using the particular technique. Throughout the paper,

the same example is used in order to tie the methods together.

GAUSSIAN ELIMINATION

One of the methods for finding an inverse of a matrix is

based on Gaussian elimination. The theory behind this method

of finding an inverse is derived from the solution of a system

of equations by elimination.

A system of n equations in n unknowns,



l llxl + a 12x2 + + aln^n = b-

a21xl + a 22x2 + • • - + e 2nxn = bb

anlxl + a n2x2 + ..-..+ annxn = bn

can be written in matrix form as

a ll a 12 • • •
a ln

a 21 a 22 • • • a 2n

!nl an2 • •
ann_

i

xl *r
x2 b 2

• •

• «

xn_ _v
or AX = B. We augment the matrix A with the column vector B,

'

then reduce [_ABJ to [_^_J by a series of operations on the

augmented matrix. These operations, known as elementary row

operations, consist of three types: type I, multiplication of

a row by a constant; type II, addition of a multiple of one row

to another; and type III, interchange of rows.

The aforementioned operations can be carried out by matrix

multiplication. The matrices used to perform these operations

are called elementary matrices and are denoted as E. . They are

derived from the identity matrix. That is, if we perform these

operations (multiplication of a row by a constant, addition of

a multiple of one row to another, and interchange of rows) on

the identity matrix, we obtain the corresponding elementary

matrix E^

To perform the elimination, it is then necessary to mul-

tiply A by a series of these E. 's to obtain the matrix I. Bv
j. "



applying these elementary operations to the augmented matrix

[~ABJ , we also change the column vector B to the solution

vector X.

For the actual mechanics of Gaussian elimination, we use

the following procedure. Consider the matrix of coefficients,

a ll a 12

'21 a 22

. a

. a

In

2n

!nl an2 "nn

To change this matrix to the identity matrix we first of all

convert the 8,1 to 1 by dividing all elements of the first row

by a-,-,. This is a type I operation. Next we perform a series

of n - 1 type II operations to make the remaining elements of

the first column zeros. As a result, we have a new matrix whose

first column consists of a 1 in the first position and zeros

elsewhere.

Next we consider the auxiliary system consisting of the

principal submatrix formed by deleting the first row and the

first column. .Applying the previous procedure to this submatrix,

we obtain a column vector with 1 in the first position and zeros

elsewhere. Continuing this process results in a matrix composed

of l's on the diagonal and O's below it. This procedure is

called the forward solution.

Now, the problem is to change the coefficients above the

diagonal to zeros. The procedure used for this is known as the

backward solution. Consider the element in the n^*1 row and n"^1
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column. This element will be 1, but all other elements in the

column could be nonzero numbers. To change these elements to

-t-y.

zeros, we subtract the corresponding multiple of the n row

from the other n - 1 rows. This series of type II operations

will give all zeros in that column except for the element on

the diagonal of the matrix.

Considering the principal submatrix formed by deleting the

n row and n column, we repeat the procedure. If the matrix

is nonsingular, a continuation of this process gives the

identity matrix for the final result.

A problem could arise if the leading element (the element

in the upper left-hand corner of the matrix or submatrix is 0.

If the matrix is nonsingular, this is easily resolved by using

a type III operation to interchange this row with another which

has a nonzero element in the corresponding column.

Applying this same series of operations to the column

vector B gives the solution vector X. Or, if we augment the

matrix A with B, we can carry out the operations simultaneously.

This completes the solution of a system of equations by Gaussian

elimination. Now we shall consider the problem of inverting

matrices using Gaussian elimination procedures.

Letting the E^ stand for the needed elementary matrices,

we could represent the transformation of A to I by multiplica-

tion by a series of S i 's. That is, EkEk _ 1 . . . E 2E 1A = I.

Multiplication on the right by A gives EkE 1<;
_ 1 . . . E 2E ]

_I

= A . But then these same elementary operations applied to

the identity matrix will give the inverse matrix A"-
1-.



For computational purposes, as we did in the solution of

a system of equations by elimination, we augment the matrix A

with the matrix I and perform the operations on both simultan-

eously. Hence EkEk_]_ . . . ^2^ [All = QlA" 1
] • If A is

n x n, then A" will be the last n columns of the augmented

form after the backward solution has been completed.

To illustrate this discussion we can find the inverse of

the matrix

A =

2 l 3

k 5 6

5 7 5_

Note how at each step the augmented matrix is multiplied by a

suitable elementary matrix until the identity matrix is

obtained.

caih .

213100
h, 5 6 1

5 7 5 1

1/2

1

d
M-

1
0~

k 1

1_

Mi -

'l 1/2 3/2 1/2 0"

k 5 6 10
_5 7 5 o o i_

"l 1/2 3/2 1/2 0*

3.^ o -2/3 1/3

5 7 5 o oi

= M x

= M 2



1 0~

10 LAI1 =

-5 o i_

"l 1/2 3/2 1/2 0"

3 -2 10
9/2 -5/2 -5/2 1

= DO

10
o 1/3 o

oo i

1 1/2

£ai2
3

: o 1 .

3/2 1/2 0*1

o -2/3 1/3 o = Taij^

J) 9/2 -5/2 -5/2 1_

1 o o"
1

1 Mt-
-9/2 1_

i

"l 1/2

1

3/2 1/2

-2/3

5/2 1/2

1/3 o

3/2' 1

LAIJ:

1

1

-2/5

1 -3/2

1

1

QQ

[All =

"l 1/2 3/2 1/2

1 -2/3 1/3

_o o l -1/5 3/5

"l 1/2 k/S -9/10

oi o -2/3 1/3

oo 1-1/5 3/5

1 -1/2

1

fi o o 17/15 -16/15

I CAI_I7
=

J

1 -2/3 1/3

lj |_° ° 1 _1/5 ^/5

2/5J

3/5^

2/5

3/5

2/5

= CaiT

-Cii

Thus A -1 _

"17/15 -16/15 3/5

-2/3 1/3

-1/5 3/5 -2/5



COMPACT SCHEMES

A set of methods called compact schemes Is derived from

Gaussian elimination. In the basic Gaussian elimination we

worked with the entire matrix A and finally at the last step

came up with the matrix A" . The compact schemes use formulas

to obtain A element by element. ^

Some of the schemes utilize the factorization of the matrix

into the product of two triangular matrices. We then work with

these triangular matrices to find the inverse of the original

matrix.

In the forward solution by Gaussian elimination, we change

the matrix A to a matrix U with ones on the diagonal and zeros

below it. This can be carried out by a series of elementary row

operations E*. Representing the forward solution in matrix form,

we have

EkEk-l ' ' '
E 2E 1A

= u

where U is an upper triangular matrix with ones on the diagonal.

The E^ are going to have nonzero elements only on the diagonal

or below it (provided no type III operations are used). That

is, they are lower triangular matrices. As can be easily veri-

fied, the product of the Ej_'s is also going to be a lower tri-

angular matrix C. Thus we have

CA = U

so that

A = C
_1
U

where C"-1
- is also a lower triangular matrix.
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Now with A factored into the product of two triangular

matrices, the problem of finding A is reduced to finding the

inverses of U and C , This is easily seen since if

A = C^U ,

then

A" 1 = ^C _1U] IT 1 QC -1] = U_1C .

To illustrate the method of obtaining the inverse, let us

consider the 3x3 case. We have A = C U, or

a ll a 12 a 13

a 21 a 22 a 23

'31 a 32 a
33

c
i:L

o o

c 21 c 22 °

c3l c32 c
33

1 u12 u13

1 U23

1

where the c • • and u^j are unknown. By multiplying the rows of
i

1
C by the first columns of U, we obtain

c ll
= a ll

c 21 = a 21

c31
= a31

Multiplying the first row of C"-'- by the second and third column

of U, we obtain

a 12 a 12
C-nUllu12 - a 12

C 11U13
= a

13

a 10 or u12

or u13

c ll a ll

a 13 a 13

11 a ll

The element a-Q will not be zero because the type III operations

will remove all zero elements from the diagonal.
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In a similar manner, we can compute the unknown elements

of the second column of C ~. We obtain f irst of all the

equations

:

c 21u12 + C22 = a 22 or c 22
= a 22 - c 21u12

c 31u12 + C02 = 332 or C32 = 832 " c31u12

and then for the unknown element of the second row of U we obtain

-

c 21u13 + C22u23 = a 23

s

or U23 = -
23 ~ c 21u13

c 22

•

The element c 22 cannot be zero since this : would make the de-

terminant of C
-

-'- equal to zero, and hence 1 A would be singular.

The last unde termined element coo is computed from the equation

c31u13 + C32U23 + C33 = 333

or
•

C33 = a33 " c3lu13 " c32u23 •

General equations can be set up for obtaining these ele-

men t s . They are

a ij - jr c ikukj

i-l

i 2 j (1)

uij =

a ij " £" cik^kj

i < 3 • (2)
c ij

To have the c j_j'fl and Uj_ .•
' s available as needed for bhe formulas,

we follow a certain scheme for obtaining the element:3. We com-

pute the elements of the firs-t column of C" 1 , followed by the
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elements of the first row of U, then the elements of the second

column of C , followed by the elements of the second row of U,

and so on.

These calculations bring us up to the point where we have

the factors C and U of A. To obtain A~ , we then have to find

the inverses of C and U and form their product. That is,

A"
1 = U

_1
C .

With the matrices in triangular form we can use Gaussian elimi-

nation to produce the IT and C. Gaussian elimination is par-

ticularly easy with a triangular matrix since we need only com-

pute the forward solution on a lower triangular matrix and the

backward solution on an upper triangular matrix.

A good example of the compact scheme is the Crout process.

To carry out this process, we augment the matrix A with I and

proceed with the calculation in two parts called the forward

and the backward solutions. Note that since A is n x n, the

augmented matrix is n x 2n.

For the forward solution, we calculate the elements p. .

of the n x 2n matrix P by using the following formulas.

pij
= a ij "

J^
pkj pik ± * J ( 3)

i-1
8 ij " £ PikPkj

P±1
= i < J • (k)

J p.. .

These formulas look similar to the ones used in computing the

Cj_,- and Uj4. ^he first equation is used when i ^ j . This holds
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only when p. . is on the diagonal or below it. Formula (3) then

gives us the elements corresponding to the c • . Similarly,

formula (If.) changes those elements to the right of the diagonal,

and if we consider those where j -£ n, we have the previously

computed u. .
' s.

Through the use of the previous formulas, the I part of

the augmented matrix j~AI~l has been changed only in its elements

on or below its diagonal. By comparing the following example

with that presented during the discussion of Gaussian elimina-

tion, it is readily seen that we have changed I to the form

obtained by the forward solution in Gaussian elimination. Hence

the name forward solution for this part of the Crout process.

To complete the process, we carry out the backward solution

and obtain an n x n matrix D = A • We calculate the d^ .
' s by

rows starting with the last row. The formulas are

d. = p ,. 1 = 1. ..n
nj Fn n+j J

d -, . = p -, ,.-Pt d. i = l. ..n
n-1 j

Hn-1 n+j yn-l n nj J

n
d ij = Pi n+j " J Pikdkj for i = n - 2, ... 2, 1

j = 1 . . . n .

These last formulas actually correspond to computing the

backward solution by Gaussian elimination. With the backward

solution completed, the I part of the matrix L-AIJ has been

changed to A"^-.

Working with the previously used matrix
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A =

2 13
k 5 6

L5 7 5_!

we augment with I and obtain

M-
2 13 10
Ij. 5 6 1

5 7 5 1

Carrying out the forward solution, we obtain

"2 1/2 3/2 1/2

k 3 o -2/3 1/3

_5 9/2 -5/2 -1/5 3/5 -2/5

The backward solution then yields

,-1

'17/15 -16/15 3/5

-2/3 1/3 o

-1/5 3/5 -2/5

Waugh and Dwyer present a method for obtaining the inverse

matrix that is similar to the compact schemes. It depends

upon the solution of two systems of equations.

Given that A = C~nJ, where the elements of the C
-1

and U

are computed by formulas (1) and (2), we obtain A' 1 = TJ
-1

C.

Multiplying on the right by C" 1
, we obtain A~

1
C"

1 = U" 1
. But

U is an upper triangular matrix with ones on the diagonal and
n(n + 1) n(n - 1)

zeros below. We thus know of its elements;
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will be zeros and n will be ones. Similarly, multiplying

A" 1 = U
_1

C on the left by IT, we obtain UA" 1 = C. This gives

n(n - 1)
equations in the elements above the diagonal.

2

As an example, take the case where n = l±. Then. AC -1
= U" 1

gives the following ten equations, where the a . . denote the

elements of A" .

i = k 3 2 1

ViV
.

= 1

%3 a
±h

+ c
33

a i3'
=01

c l|2 a ii/ + c32 a i3' + c 22 a i2
f = 1

c
2j.l

a
il|.

T + c31 a i3'
+ c 21a i2' + c ll a il'

=
1

Also from TJA = C, six more equations for the case n =
If. are:

j = k 3 2
•

^l^j' + a 3j' =0
u 2i^a l+ j

T + u23 a 3j' + a 2j' =00
ulL^j' + u13 a3j' + u12 a 2j' + a lj' =

From these 16 equations, we can compute the a^,' . We de-

termine from the first set of equations in succession aj
| | [

'

,

ajt, 3 > ah p

'

, and a^ ' (the case i = I}.) . Next we compute a^j,',

8
2[l > and a

ll±
(the case j - I4.) . Continuing analagously, using

the first and second groups of equations in turn, we obtain

a31 '
a 32 * an(^ a33* > f°ll°we d by 823', a-jo', and so on.

Other compact schemes exist such as the Doolittle process

and modernized Gauss. They are variations based on the same

theory.



111.

PARTITIONING

Two other methods for inverting matrices arise from the

concept known as partitioning. These methods consist of break-

ing up a large matrix into smaller matrices, the inverses of

which can be found more easily.

Starting with a matrix A, we partition it in such a manner

that we have two sa.uare matrices on the diagonal, at least one

of which is nonsingular. Let A be partitioned so that

A =
A

A

11 A 12

21 A 22

Then if B is the inverse of A, it can be partitioned in the

same manner. Thus

B =

L

Bll B12

B21 B22

Forming the product of A and its inverse B, we have

All A 12

A21 A 2 2

Bll B12

B21 B22

I Z

Z I

Bll B12
r

B21 B
22J j_

A21 A22_

A11 A12

where Z denotes a matrix whose elements are all zeros.

Multiplying the matrices, we obtain the following sets of

equations.

An -i Bt i + At oBon - Ik llDll 12D21 B11A 11 + B12A 21 - T

A 11B12 + A 12B22
- Z B11A 12 + B12A 22 ~ Z
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A 21B11 + A 22B21 = Z

A21B12 + A 22B22
= I

B21A11 + B22A 21 = ^

B21A12 + B22A 22 = I

Suppose that we had partitioned A in such a manner that

-1
A ll existed. Then we could solve the equations for values

of the Bl1v

322
1 -1

22 " *21*11 A ^ o)= (AQ9 - A 01 A

1
l 12<

B12
= ~A 11 A 12B22

B21
= ~B22A21A11

Bll
= A ll" + A ll~ A 12B 22A 21A 11

-1

(5)

(.6)

(7)

(8)

The solution of these formulas will depend upon the solu-

tion for B22 . This requires finding an inverse of a matrix of

the same dimension as A 22 . If the dimension of B22 is large,

we may wish to find its inverse by partitioning also. Hence we

can reduce the problem of inversion of a large matrix to the

problem of finding inverses of smaller matrices. The inverses

of these smaller matrices can be computed by again using par-

titioning or by the use of other techniques.

As a simple example to. illustrate the technique, we can

again compute the inverse of the matrix

A =
2 l 3

k 5 6

5 7 *_

Partitioning as follows,
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r_

A =

_

2 1
!

3"

k 5

5
~7

i 6
1 _

1

$_

so that

we obtain

Also

A

*11

2 1

lll
-1 5/6 -1/6"

2/3 1/3

12
I

, A 21 = [5, 7j , and A 22 = [5]
3

6
,

Computing the B- .,

b22 (do - p ?]

B 12

5/6 -1/6-)

2/3 1/3

5/6

-2/3

"3"

6

-1/61 I3
-t\-l

1/3 L6_,

5/21j 2/5 ,

L-2/5:

"3/5"

B21 = - [-2/5] [5 7l

3
11

5/6 -l/6~l

•2/3 1/
+

r 5/6 -1/6'

[_-2/3 l/3_

5/6 -1/6"

-2/3 1/3

[-1/5 3/5Q ,

3 1 r Mr -if 5/6 -
1/6

T-2/51 T52 7] I

17/15 -16/15

-2/3 1/3
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As a result, we have

A" 1 = B =

311 D12
3-

321 B22

/5"17/15 -16/15

-2/3 1/3

-1/5 3/5 -2/5

as has been previously verified.

Prom the method of partitioning, we can develop the method

known as bordering. The bordering method starts with a sub-

matrix and successively borders it with another row and column.

To find the inverse of a matrix

"11. a 12

'21 a 22

•
a ln

•
a 2n

• a.*nl dn2 • • "nnj >

we first take a-^ and find its inverse a-^
-

. Bordering it

with the elements a 12 , a 2l> and a 23> we can flnd the inverse of

a ll a 12

a 21 a 22
^

Having computed this inverse, we can border again and find

the inverse of

a ll a 12 a
13

a 21 a 22 a 2^

_
a
31 a

32 a
33

Continuing the process we eventually find the inverse of

the matrix
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a ll a 12

a 21 a 22

•
a ln

•
a 2n

}nl an2 • • * 3nn

The formulas needed at each step of the process. can be deter-

mined by considering the core of the k x k matrix A. Then let

A =
A11 A 12

A 21 A 22

where A-]1 is a k-1 x k-1 matrix, A 1? is a k-1 x 1 column vector'11

uk'-l' A 21 is a 1 x ^-1 row vector v-^_-^, and A 22 i s a scalar

which we shall denote as •
The BH> rk-l> %:-!> akk are

"*k-l

respectively the corresponding parts of the inverse matrix B,

where B is partitioned in the same manner as A. We have the

following equations from AA 1 _
I.

A 11B11
+ uk-l °4<-l

= X

Vk-1B11 + akk^k-l = Z

uk-l
A
ll

rk-1
+ = Z

^k-1

a

v
k
rk-l'

+
kk

= 1 .

-<ik-1

Solving these equations we obtain
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-<i, t = a Vi, iAn Ui,_n SOk-1 " dkk " v k-r"ll uk-l
j.k-1

A - 1
a kk " Vk-1A 11 uk-l

*k-l

"Vk-1A 11

kk-l

-1
(9)

(10)

k-1

-A11
" uk _ 1

;k-l

B
ll

= A
ll

-1 All'^k-lVk-lAll"
1

^k-1

(11)

(12)

Note that these equations are the same as equations (5) - (8),
1

—
>

B12
= 3k-1 >

an(^ B21 ~ rk-l * ** ^- s evident
^k-1

that to solve these equations it is necessary to find the in-

verse of A-,-,.

If we let A be the 3*3 matrix used previously, then the

inverse of a-^ is 1/2. By bordering, we work with the matrix

2 1

k 5

Thus

B

5 - k (1/2) (i) = 3 ,

(1/2) (1) (1+) (1/2)

11

v-, =

*1

3

-(1/2)

3

(1)
= . 1/6 ,

-4(1/2)
= .2/2 •

= 5/6 ,
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Then the inverse of

2 1

k 5

IS

5/6 -1/6'

L-2/3 1/3

Bordering with the third row and third column, we compute

<a = 5 - \J 7]
r 5/6 -i/6"

L-2/3 l/3j L6.

- -5/2 ,

B11

"

5/6 -1/6"

-2/3 1/3

+

5/6 -1/6 3

t$-f}
5/6 -1/6"

_-2/3 V3_ L6J _-2/3 V3J
-5/2

"17/15 -16/15

-2/3 1/3

r =

5/6 -1/6'

•2/3 1/3

I
3

-5/2

[5 7]
5/6 -1/6"

2/3 1/3
q2

Thus

"5/2
= [-1/5 3/5] .
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,-1 == B =

'17/15 -16/15 3/5"

-2/3 1/3

-1/5 3/5 -2/5

Observe that the last step in this example of bordering

is the same as the example used for partitioning.

RANK ANNIHILATION

The methods presented thus far will work for most non-

singular matrices. For large matrices, however, hand computa-

tion is impractical if not impossible. For this reason, the

computations of the various methods have to be applicable for

use on a computer. A method which in its development was in-

tended for a computer is the method of rank annihilation.

Effectively, what rank annihilation does is to relate the

matrix whose inverse is not known to a matrix whose inverse is

known. For our purposes we will be relating it to the identity

matrix.

From Householder's Principals of Numerical Analysis (p. 79)

we have

(A + USV*) = A" A
-1
US(S + SV

t
A~

1
US)"

1
SV

t
A~

1

provided that the indicated inverses exist and that the dimen-

sions are properly matched. The t as a superscript denotes the

transpose of the matrix. The A and S are square matrices and

U and V are rectangular. To verify that the above formula gives

the inverse we must have that, (A + \]SV t ) (A + USV t
)

_1 =
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(A + TJSV*) = I. We shall verify that (A + USV*) (A + USV t )" 1

I. A similar procedure shows that (A + USV t )~ 1 (A + LTSV t
) = I

(A + USV*) A
-1

- A
-1
US(S + SV tA~ 1US)~ 1SV tA" 1

= I + USV^" 1 - US(S + SV tA" 1US)" 1SVtA" 1

- USV tA" 1US(S + SV tA~ 1US)~ 1SV tA" 1

= I + USV^ -1
- U(S + SV tA" 1US)(S + SV tA~ 1LTS)" 1SVtA" 1

= I + USV^ -1
- UISV^ -1

= I + USV^ -1
- TJSV tA~ 1

= I .

If we let TJ and V be column vectors and S be the scalar 1,

we obtain

(a + uv r 1
= a

-1
- (a

-1
tj) (i + vV^rW 1

.

Householder states that if 1 + Y tA~ 1
TJ = 0, then (A + UV t )" 1

does not exist. The dimension of VtA" 1U Is 1 X I since U and V

are column vectors. Hence (1 + V tA~ 1U) is a nonzero scalar so

1
that the inverse of it is —

. Now, we can write
(1 + V tA~ 1U)

f , . (A- 1U)(V tA" 1
)

(A + UV t )" 1 = A
-1

.

(1 + V tA~ 1H)

n
If A is an n x n matrix, we write A = D + ^ ^1^^°

,

1=1

where D is a matrix whose inverse is known. The U
i

and V- also

can be determined to satisfy the particular problem.



23

Set up then a sequence of matrices \cA so that

CQ
= D

C
1

= D + U
1
V
1
t = C

Q
+ U

1
V

]_

t

C2 = D + U 1V 1
t

+ U 2 V2
t ~ Cl + u 2V 2

t

C n = D + IlUiV^ = C^ + U^* - A

By using the formula

. - - (A" 1U)(V tA- 1
)

(A + UV^)" 1 = A
-1

(1 + V^" 1
!!

we can compute at each step the inverse of C . . This gives a

sequence of matrices \C-~ / with C ~ = A

^ tThe expansion A = D + £__ ^i^i 1S dearly not unique. A
i=l

simple form of the expression would be to let D = I. If we

then let U = A - I, this U can be partitioned by columns so

that U = fu^Ug . . . Un
~| • Similarly, let V± be the i column

tvector of the identity matrix. Then A = I + ^ U-? V\-

1=1 *

This form actually involves adding (at the ith step) the i th

column of the matrix A - I.

Again working with our example matrix:



2k

A =

2 l 3

I* 5 6

5 7 5_

Then

U = A - I =

2 13"

h $ 6 -

P 7 5_

i o"

1 =

1

1 l 3

1*. k 6

5 7 k_

so that

1 l
3"

U
l

= k , u
2

= k , and U, = 6

5 7 _k

Thus

A =

1
0~ 1

1 + k

1 J_

fl oj +

1

k

7

po 1 cfj +

3

6

1|

Co o l]

Then

C

10
1 I so that C

1

•1

1

1

ij

Ci =

1
0~ ~1

1 + k

1 J_

f~i o o] =

2
0~

k i

5 1
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So

Cl
-1

10
10

1

1
0~

l"

1 *

1Ju
[i o ol

-I 0~

1

1

i + Ql o ol

1 0~
1

1 k

1— _5_

1/2 0~

-2 10
_-5/2 1

J

.

Similarly,

C 2
=

2 0~ i~

k .1 + i*.

i_5
o i_ _7_

[0 10]=
2 l 0~

4 5

5 7 1

-1 _

1/2 0"

2 1

5/2 1

'

1/2 1

-2 10 k

-5/2 1 u7_

E° i o
-1

1/2 0~

! -^ 1

L-5/2 1

l + Co i o]

' 1/2 0*

-2 10
.-5/2 lj j_7_

k

5/6 -1/6

2/3 1/3

1/2 -3/2 !_

Finally we will get
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2 1 3

k 5 6

5 7 5

= A

and

1
17/15 -16/15 2/$

-2/3 1/3

1/5 3/5 -2/5

= A
-1

L

The disadvantage in this method is that it fails if any

0* is singular. This occurs if and only if one of the prin-

cipal submatrices of A is singular.

L-F METHOD

The last means of inverting matrices to be discussed is

the keverrier-Faddeev method. 1 The L-F method is a byproduct

of a technique of finding the coefficients of the character-

istic polynomial of a matrix. The method is very convenient

for finding inverses of matrices of small order. For n > l|,

computation becomes quite lengthy.

To present a development of the method requires an approach

involving the characteristic polynomial of a matrix. Conse-

quently we shall just present the technique. In the discussion

we will use trA to denote the trace of the matrix A (the sum

of the elements on the diagonal)

.

iFaddeev, D. K. and Faddeeva, V. N., Computational Methods

of Linear Algebra , San Francisco, W. H. Freeman and Company,

pp. 260-26J?.
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We shall first compute a series of matrices Ak and Bk

where

A 1 - A

A 2 = AB1

q1
= trA-L

2q2 = trA 2

B
l = A l ~ ^l 1

B2 = A 2 - q2^

Ak = ABk-l kqk = trAk Bk = Ak " Qk1

An
= ABn-l nqn = trAn

B
n = An ~ %Z

Note that k ranges from 1 to n where n is the rank of the matrix

A. By use of the Cayley-Hamilton theorem it can be shown that
1

Bn
= Z so that A n

- qnI
= Z, or — An = I. Since An = A3n _ x ,

we have

1
1 _ABn _ 1

= I, and thus A
x = — Bn _-L

*n ^

For A =

so

2 l 3

k 5 6

5 7 5_

*! = 12

B-, =

~~2
l 3n

It 5 6 - 12

_5 7 5_
1

1

1

1

-10 l 3

k -7 6

5 7-7

Then



28

A
2

=

2 l 3

fc 5 6

5 7 *J

-10 l
3~^

fc -7 6 =

5 7 7.

32
q2

= 16

-1 16 -9~

10 11

3 -9 22

B 2
=

-1 16 -9"

10 11 - 16

3 -9 22

1

1 o

1_

A3 =

[~2 1 3"

k 5 6

5 7 5

f-17 16 -9"

10 -5

3-9 6

l"-17 16 -9"

I
10 -5

.3 -9 6_

-15 (T

o -15 o

o o -15

q
-3

3

15

Note that for An it is only necessary to compute the elements

on the diagonal. The other elements can be computed as a

check. Now

f-17 16 -9"

-1 x
A L = — B2 =

q3
-15

io -5

3 -9

o

6

'17/15 -16/15 3/tf

-2/3 1/3 o

.-1/5 3/5 -2/5
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CONCLUSION

Of the various methods of matrix inversion presented, none

of them is particularly applicable for all cases. For hand com-

putation each becomes rather lengthy when we have a matrix of

dimension greater than four. For matrices of small dimension,

Gaussian elimination and the L-F method make hand computation

of the inverses possible and efficient. If one has access to a

calculator, then the compact schemes are particularly useful

and allow computation of inverses of matrices of somewhat larger

order. The method of rank annihilation was developed for use

on a computer, and thus is applicable to matrices of large

dimension.

Partitioning gives us a scheme or technique to use in

breaking large matrices into matrices of a more manageable size.

This can make it possible to use hand computation on matrices

of higher degree than one would normally care to handle in

this manner.

This paper did not present all the methods of matrix in-

version. There are, for example, many others that fall in the

category of compact schemes. Methods have also been developed

for particular types of matrices such as the symmetric matrix.

Basically, though, these other methods will be found to be

variations of the four types presented.
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In this paper various methods of inverting matrices are

considered. For our purposes we grouped the many methods of

matrix inversion into four basic types: Gaussian elimination,

partitioning, rank annihilation, and the L-F method.

In considering the first type, Gaussian elimination, we

showed the relation of matrix inversion to the solution of a

system of equations. Then we proceeded to show how the Gaussian

elimination technique could be applied to the inversion problem.

From the elimination technique it was possible to derive var-

ious other matrix inversion schemes known as compact schemes.

The second basic type, partitioning, was then presented.

This type consists of breaking up a large matrix into smaller

matrices, the inverses of which can be more readily found. The

theory behind the method was discussed and a special case of

partitioning, known as bordering, was presented.

The method of rank annihilation was then discussed.

Effectively what rank annihilation does is to relate a matrix

whose inverse is not known to a matrix whose inverse is known.

This is done through a series of changes to the matrix whose

inverse we know. The theory behind the process is discussed

and then the method for inverting the matrix is presented.

Last of all, we discussed briefly the L-F method. The

method involves computing a series of matrices and then using

a relation of the matrices in this series to produce the in-

verse. Because the theory is based on the concept of the char-

acteristic polynomial of a matrix, it was not possible to give

a development of the theory. Instead, just the technique



used in the L-P method was presented.

In conclusion, we compared the merits of the methods

and gave an idea of when each was particularly applicable.


