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Abstract 

The pig gastrointestinal tract hosts a large and diverse microbial community, representing 

a complex and dynamic ecosystem. The microbial communities are not uniformly distributed and 

differ across the locations of the gastrointestinal tract. The microbial community composition 

influences the prevalence and distribution of antimicrobial resistance (AMR) in the gut. The 

microbial taxonomic composition, richness, and diversity are influenced by age of the pig, 

dietary composition, and antimicrobial drug use. The association between antimicrobial use and 

AMR development is of interest because of public health implications. Several studies in swine 

and cattle have reported a decrease in AMR in fecal bacteria with animal age; however, exact 

dynamics and contributing factors are largely unknown. Investigations on the AMR dynamics in 

gut microbiome during the production phase of food animals could aid in the design of a 

framework to address the problem of AMR in the food chain in a sustainable manner. 

The primary hypothesis of our study was that the dynamics of gut microbiome and AMR 

in swine are largely a function of age and dietary composition. Therefore, the objectives of the 

studies were: 1. Perform a scoping review of the literature on the age-dependence of AMR of 

fecal bacteria in food animals. 2. Conduct longitudinal studies to evaluate the dynamics of fecal 

bacteriome and mycobiome taxonomic compositions and AMR prevalence between cohorts of 

production pigs (n=12) from birth to harvest and breeding sows (two cohorts, n=6 and n=12) 

from 3 weeks through first farrowing and weaning, to test the hypothesis that the dynamics are a 

function of age, rather than the production system. 3. Investigate interactions between the age-

related dynamics and effects of diet (levels and sources of fiber) and antimicrobial treatments 

(injectable ceftiofur or penicillin G) in influencing the fecal microbiome taxonomic composition 

and AMR in finisher pigs. 4. Conduct a study to describe bacterial community composition 



  

associated with luminal contents and mucosal epithelium from different segments of the gut of 

piglets. Culture-based and metagenomic analyses coupled with statistical modeling were utilized 

to monitor microbiome changes and estimate and infer AMR occurrence in gut bacterial 

communities in relation to age and diet.  

The scoping review of published data suggested that the animal-level prevalence and 

within-animal abundance of AMR in enteric or fecal bacteria decreased with age during the 

production life-span in pigs, in beef and dairy cattle. The age-dependent dynamics of fecal 

bacteriome and mycobiome taxonomic compositions and associated animal-level prevalence and 

within-animal abundance of AMR were similar in a cohort of production pigs and two cohorts of 

breeding sows. The highest AMR prevalence and abundance occurred at the youngest age-points 

and decreased with age and stabilized around 5 to 6 months of age. The data suggested a strong 

age-dependence and additional independent diet effects on the fecal microbiome composition 

and AMR. Data also showed that the concentrations of ceftiofur metabolites in swine feces were 

lower on day 3 compared to day 1 of the 3-day ceftiofur treatment, irrespective of the animal diet 

or gender. In a study conducted in piglets (6-7 weeks old: n=3), luminal contents and mucosa 

were collected from the stomach, duodenum, ileum (at two locations), cecum, spiral colon, and 

the rectum. The bacterial community composition and AMR genes were determined, and the 

study showed that the bacterial taxonomic composition and AMR gene repertoire changed 

throughout the gastrointestinal tract of piglets. Genes encoding bacterial resistance or reduced 

susceptibility to tetracyclines, β-lactams, aminoglycosides, and glycopeptides were most 

abundant AMR genes in the samples. In summary, age and diet, in addition to the use of 

antimicrobials, play an important role in the establishment and maintenance of gut microbial 

diversity and AMR in pigs. 
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Abstract 

The pig gastrointestinal tract hosts a large and diverse microbial community, representing 

a complex and dynamic ecosystem. The microbial communities are not uniformly distributed and 

differ across the locations of the gastrointestinal tract. The microbial community composition 

influences the prevalence and distribution of antimicrobial resistance (AMR) in the gut. The 

microbial taxonomic composition, richness, and diversity are influenced by age of the pig, 

dietary composition, and antimicrobial drug use. The association between antimicrobial use and 

AMR development is of interest because of public health implications. Several studies in swine 

and cattle have reported a decrease in AMR in fecal bacteria with animal age; however, exact 

dynamics and contributing factors are largely unknown. Investigations on the AMR dynamics in 

gut microbiome during the production phase of food animals could aid in the design of a 

framework to address the problem of AMR in the food chain in a sustainable manner. 

The primary hypothesis of our study was that the dynamics of gut microbiome and AMR 

in swine are largely a function of age and dietary composition. Therefore, the objectives of the 

studies were: 1. Perform a scoping review of the literature on the age-dependence of AMR of 

fecal bacteria in food animals. 2. Conduct longitudinal studies to evaluate the dynamics of fecal 

bacteriome and mycobiome taxonomic compositions and AMR prevalence between cohorts of 

production pigs (n=12) from birth to harvest and breeding sows (two cohorts, n=6 and n=12) 

from 3 weeks through first farrowing and weaning, to test the hypothesis that the dynamics are a 

function of age, rather than the production system. 3. Investigate interactions between the age-

related dynamics and effects of diet (levels and sources of fiber) and antimicrobial treatments 

(injectable ceftiofur or penicillin G) in influencing the fecal microbiome taxonomic composition 

and AMR in finisher pigs. 4. Conduct a study to describe bacterial community composition 



  

associated with luminal contents and mucosal epithelium from different segments of the gut of 

piglets. Culture-based and metagenomic analyses coupled with statistical modeling were utilized 

to monitor microbiome changes and estimate and infer AMR occurrence in gut bacterial 

communities in relation to age and diet.  

The scoping review of published data suggested that the animal-level prevalence and 

within-animal abundance of AMR in enteric or fecal bacteria decreased with age during the 

production life-span in pigs, in beef and dairy cattle. The age-dependent dynamics of fecal 

bacteriome and mycobiome taxonomic compositions and associated animal-level prevalence and 

within-animal abundance of AMR were similar in a cohort of production pigs and two cohorts of 

breeding sows. The highest AMR prevalence and abundance occurred at the youngest age-points 

and decreased with age and stabilized around 5 to 6 months of age. The data suggested a strong 

age-dependence and additional independent diet effects on the fecal microbiome composition 

and AMR. Data also showed that the concentrations of ceftiofur metabolites in swine feces were 

lower on day 3 compared to day 1 of the 3-day ceftiofur treatment, irrespective of the animal diet 

or gender. In a study conducted in piglets (6-7 weeks old: n=3), luminal contents and mucosa 

were collected from the stomach, duodenum, ileum (at two locations), cecum, spiral colon, and 

the rectum. The bacterial community composition and AMR genes were determined, and the 

study showed that the bacterial taxonomic composition and AMR gene repertoire changed 

throughout the gastrointestinal tract of piglets. Genes encoding bacterial resistance or reduced 

susceptibility to tetracyclines, β-lactams, aminoglycosides, and glycopeptides were most 

abundant AMR genes in the samples. In summary, age and diet, in addition to the use of 

antimicrobials, play an important role in the establishment and maintenance of gut microbial 

diversity and AMR in pigs. 
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Chapter 1 - Introduction 

 Background  

The links between antimicrobial resistance (AMR) in humans, environment, and food 

animals are not fully understood. Several cross-sectional and longitudinal observational studies 

have suggested that AMR in enteric bacteria decreases with the age of the human or animal host. 

For example, the relative abundance of AMR in enteric populations of the fecal indicator 

bacterium Escherichia coli appeared to decrease during early life in humans (Kalter et al., 2010a; 

Literak et al., 2011b), cattle (Hoyle et al., 2004a; Hoyle et al., 2004b; Khachatryan et al., 2004; 

Berge et al., 2010; Edrington et al., 2012a; Mainda et al., 2015a), and pigs (Agga et al., 2015b). 

It is unclear whether the bacterial genes conferring AMR are present, introduced, or 

disseminated at or before the birth of the host or at some other point during early life. 

Antimicrobial resistance genes (ARGs) can be transferred between indigenous native and 

transient gut bacteria picked up from the food, water or the environment (Sommer et al., 2010; 

Hu et al., 2014).  

The taxonomic composition, richness, and diversity of the pig gut microbiome change 

with the age of the pig (Slifierz et al., 2015b; Chen et al., 2017; Han et al., 2018). Similar 

observations have been made in humans (Claesson et al., 2012; Conlon and Bird, 2014), most 

noticeably regarding the bacterial genus Prevotella and associated genera (O'Toole and Jeffery, 

2015). Mariat et al. (2009) found that the ratio of phyla Firmicutes to Bacteroidetes in the human 

gut was  0.4, 10.9, and 0.6 in infants (3 weeks to 10 months), adults (25–45 years), and elderly 

individuals (70–90 years), respectively, indicating that the relative abundances of major 

components of the human microbiota change with the age of the host. Similarly, in pigs, the 

taxonomic diversity of the gut microbiota increased as the age of the host increased from 25 days 
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to 240 days, with Fusobacterium as the dominant genus during the preweaning stage and 

Firmicutes and Bacterioidetes as the dominant phyla later on (Ke et al., 2019). Similarly, in 

another study, age-dependent shifts in the gut microbiome were reported in healthy pigs (n=32) 

born to five different sows, with Bacteroides, Lactobacillus, and Prevotella dominating at 10, 21, 

and 63 days after birth, and Clostridium, Prevotella, and an unclassified genus of family S24-

7 dominating at 93 and 147 days after birth (Han et al., 2018). Because the physiology of the 

human gut is similar to that of the pig gut, Firmicutes and Bacteroidetes were the dominant 

phyla in the enteric microbiomes of both species; although, their relative abundances varied 

among individuals (Tilocca et al., 2017). 

The mechanisms of the fecal microbiome changes with animal age are not fully 

understood. Furthermore, age-related microbiome dynamics may be influenced by dietary and 

environmental factors (De Filippo et al., 2010; Yatsunenko et al., 2012; O'Toole and Jeffery, 

2015). For example, in humans, a decrease in dietary fiber leads to a decrease in microbiome 

diversity (Flint et al., 2012), whereas increased dietary fiber leads to an increased diversity with 

enrichment of Bacteroidetes and depletion of Firmicutes (De Filippo et al., 2010). Similarly, 

dietary factors, especially the intake of crude fiber from corn, had a significant impact on the 

composition of the pig gut microbiome (Wang et al., 2019). Although the bacterial constituents 

of the gut microbial communities have been studied extensively, gut-associated fungi and their 

roles are poorly understood in humans (Seed, 2014) as well in animals (Lai et al., 2019). 

Antimicrobial resistance is a natural phenomenon, and bacteria have been evolving 

resistance mechanisms to naturally occurring antibacterials produced by other bacteria and fungi 

(Blair et al., 2015). A longitudinal study of commercial production pigs with high levels of 

antimicrobial drug exposure showed that the AMR genes prevalence and abundance, microbiome 
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alpha diversity were not significantly influenced by the antimicrobial use; however, AMR 

abundance was higher in nursing piglets with low fecal microbiome diversity (Pollock et al., 

2020).  

In 2016, Xiao et al. (Xiao et al., 2016a) described the effects of antimicrobial use on the 

composition of the pig gut resistome. They reported that age, gender, and other host factors 

influenced the gut microbiome and resistome composition. Similarly, a study found that the 

presence of AMR genes in commercially raised pigs was not associated with the intensity of 

antimicrobial use; however, they did find a strong correlation between the pig gut resistome and 

the bacterial composition at the genus level (Munk et al., 2018b). Another study (Joyce et al., 

2019) found a positive correlation between the total AMR gene abundance and the total 

microbial abundance in fecal samples from healthy pigs, indicating that the microbiome 

composition influences the resistome composition.  

 Study objectives 

The primary hypothesis of our study was that the dynamics of gut microbiome and AMR 

in swine are largely a function of age and dietary composition. We hypothesized that the fecal 

AMR composition and abundance are driven by age-based dynamic changes in the taxonomic 

composition and interactions within the gut microbial community. 

The main objectives were to:  

1. Perform a scoping literature review to examine the extent, range, and nature of research 

activity and summarize the available data on the research question: “Does AMR in 

enteric/fecal bacteria shift in accordance with animal age?”  

2. Compare the dynamics fecal microbiome and mycobiome taxonomic compositions and AMR 

between cohorts of production pigs and breeding sows. 
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3. Evaluate age-related dynamics and effects of dietary interventions with and without 

concurrent antimicrobial treatments (injectable ceftiofur or penicillin G) on the fecal 

microbiome taxonomic composition or AMR of finisher-stage production pigs. 

4. Describe the bacterial taxonomic composition and AMR genes prevalence in the luminal 

contents and mucosal epithelium in different locations of the gastrointestinal (GI) tract of 

piglets. 

Microbial culture-based and metagenomic analyses coupled with statistical analyses were 

used to estimate and infer AMR occurrence in fecal microbial communities in relation to age and 

diet.  
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Chapter 2 - Literature Review 

 Antimicrobial resistance in fecal bacteria of swine 

Bacteria can be intrinsically resistant to certain antimicrobials, but resistance can arise in 

a susceptible bacteria population as a result of horizontal gene transfer or mutations in 

chromosomal genes (Blair et al., 2015). Different techniques have been applied to characterize 

AMR and ARGs in bacteria given samples, using culture-based and non-culture-based methods. 

Current efforts to monitor AMR are primarily based on the culturing of indicator bacteria 

followed by phenotypic AMR determination (Munk et al., 2018b), which likely overlooks a large 

portion of the resistome. The gut contains a collection of genes and genetic materials that exist 

within gut microbial ecosystem, conferring AMR to diverse the gut bacterial community 

(D'Costa et al., 2006). 

 Culture-based analysis  

The culturing of samples on agar or selective medium has often been used to isolate fecal 

bacteria, which can subsequently be tested for antimicrobial susceptibility using phenotypic and 

genotypic methods. Such testing is a time-consuming process, and is often limited to culturable 

bacteria such as Enterobacteriaceae and Enterococcaceae, which means that many AMR 

phenotypes and ARGs may go undetected (van Schaik, 2015; Singh et al., 2019). In traditional 

phenotypic testing, bacteria are grown in the presence of different concentrations of various 

antimicrobials. Nowadays, however, detailed information of given bacteria can be obtained 

through new techniques called whole genome sequencing (WGS). With this method, entire 

genomic DNA or genes in bacteria can be evaluated, which allows us to understand AMR at a 

deeper level (Oniciuc et al., 2018). Further, bacteria that have similar AMR patterns caused by 

different mechanisms can be differentiated using WGS. In the US, the National Antimicrobial 
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Resistance Monitoring System (NAMRS) is currently monitoring AMR in foodborne culturable 

bacteria (mainly E.coli, Salmonella spp., Campylobacter spp.) incorporating the WGS method 

(McDermott et al., 2016). However, the culturable bacteria represent only a small portion of the 

enteric bacterial diversity, the majority of which cannot be cultured or evaluated in the 

laboratory. Similarly, bacteria may lose the whole plasmid or part of the plasmid (that encode the 

AMR genes), or all the resistance genes may not be fully expressed during culture. Further, 

single bacteria may not represent the source or target bacterial populations. Therefore, results 

from the WGS study may be biased if the organism does not truly represent microbial 

populations (Kanwar et al., 2014b). 

 Culture-independent approach to assess the epidemiology of AMR 

Complex interactions among different bacterial species and culture media affect the 

growth of bacteria in culture. In general, it is believed that less than 20% of gut bacteria can be 

grown at all in defined growth media and that fast-growing microbes always dominate slow-

growing microbes in heterogeneous cultures. Microbial populations and their constituent 

microorganisms evolve differently under different selection pressures in different ecological 

niches. Under the selective pressures of a controlled laboratory environment, which are likely 

very different from those of the natural environment, bacteria can lose whole plasmids or parts of 

plasmids that encode an ARG, and ARGs might not be adequately expressed to produce an AMR 

phenotype. Thus, a culture-based study might not capture the full picture of AMR in a bacterial 

community, and single bacterial species might not represent, in terms of ARGs, the source or 

target population in an epidemiological sense.  

There are several culture-independent methods to identify ARGs and characterize the 

resistome of the gut microbiome using community DNA extracted directly from fecal samples 
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(van Schaik, 2015). For example, ARGs from gut microorganisms can be detected and quantified 

using quantitative polymerase chain reaction (PCR)/primer-based PCR (Kanwar et al., 2013); 

Gerzova et al. (2015b); (Birkegård et al., 2017) or by microarray hybridization (Card et al., 

2014). Quantitative results and relative abundances of resistance genes or gene families can be 

determined using real-time PCR-based metagenomic methods. The results of targeted PCR 

methods tend to be skewed toward known ARGs and mechanisms; however, they can also be 

skewed by sequence heterogeneity in resistance genes of different species (Penders et al., 2013). 

In the sequence-based metagenomic approach, community DNA is isolated from a 

sample (e.g., feces) and sequenced at a depth of 1.2 GB to 12.6 GB per sample (Raymond et al., 

2019). The sequence data can be analyzed by mapping the sequence reads to a reference database 

or by assembling the reads into larger contiguous DNA fragments (van der Helm et al., 2017). 

AMR determinants are identified by aligning the sequence reads or assembled contigs to curated 

ARGs in one or multiple reference databases and identifying DNA fragments with 80% amino 

acid identity or 95% nucleotide identity with known ARGs (Ho et al., 2020). 

Metagenomics allows the presence and dynamics of the resistome to be analyzed in the 

context of diverse microbial ecosystems. Metagenomic analysis has been used to explore the 

abundance and diversity of ARGs in various types of samples, such as fecal samples from pigs, 

cattle, and poultry (Ma et al., 2016; Munk et al., 2017). Recently, a metagenomic study found 

that the gut microbiome could serve as an ARG reservoir in which ARGs can be transferred 

between native and transient gut bacteria (Sommer et al., 2010; Hu et al., 2014). The 

metagenomic approach allows comparisons of the resistome and microbiome between samples 

and provides information about evolutionary shifts in AMR and the distributions of diverse 

ARGs among different ecological niches (Noyes et al., 2017). Although the metagenomic 
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approach has been expanded for use in AMR surveillance efforts, high-throughput 

metagenomics-based analysis of AMR still suffers from a lack of standard bioinformatic tools 

(Oulas et al., 2015). Also, the low sensitivity and specificity of current metagenomic tools and 

methods preclude the detection of minor microbial taxa and allelic variants, which are often 

present at levels below the detection limit but still exert an effect on the host phenotype (Lanza et 

al., 2018). Another challenge in metagenomics-based resistome analysis is the fact that the 

resistome comprises only a small portion of the total community DNA in given sample (Noyes et 

al., 2016a), and even relatively deep sequencing might not capture some portions of the 

resistome (Munck et al., 2015). The methods used to annotate metagenomic sequence data are 

still developing and improving; however, metagenomic sequencing data provide no information 

about the expression of ARGs. 

Functional metagenomics is an approach in which a library of 5–40 kbp DNA fragments 

randomly isolated from a fecal sample is cloned into E. coli using a fosmid vector. The bacteria 

are then plated on antibiotic containing medium, resulting in the isolation of AMR clones (van 

Schaik, 2015). The functional metagenomics approach allows the identification of novel ARGs. 

For instance, Sommer et al. (Sommer et al., 2009a) characterized the resistance reservoir in fecal 

and saliva samples from healthy humans using functional screening of metagenomic DNA. They 

identified 95 unique functional ARGs that were evolutionarily distant from known AMR genes. 

Because of functional incompatibilities and the limited capacity of E. coli as a host for ARGs, 

not all ARGs can be expressed in functional metagenomics studies.   

An alternative approach is to investigate how ARGs in gut microbial communities 

influence overall microbiome dynamics under certain environmental and clinical conditions. For 

example, one study found that the microbiomes of formula-fed infants are enriched with class D 
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β-lactamase genes, and with Clostridium difficile strains harboring those genes (Rahman et al., 

2018). 

 Ecological drivers of the swine gut resistome  

 The age-dependent dynamics of the swine gut microbial community  

The mammalian gut harbors a large, complex, and dynamic ecosystem that typically 

consists of diverse microbes, including bacteria, archaea, viruses, fungi, and protists (Ke et al., 

2019). The majority of gut bacteria in the gut are yet to be discovered and are unculturable using 

current standard methods. The number of studies evaluating the bacterial communities of food-

production animals has increased with the development of high-throughput sequencing 

technologies (Yeoman and White, 2014; Kim et al., 2017). Those microbial communities have 

important roles in host nutritional, immunological, and physiological processes (Carding et al., 

2015). Recently, nearly 7.7 million unique genes representing more than 700 species were 

identified by deep metagenomic sequencing of fecal DNA from 287 pigs (Xiao et al., 2016a). 

Nearly 96% of the functional pathways in humans are also present in pigs, making pigs a 

preferred model species for biomedical research and investigations of gene function (Lunney, 

2007; Xiao et al., 2016a). Several studies showed that age, host genetics, diet, and gender 

influence the microbiomes of both pigs and humans (Wagner et al., 2018; Ke et al., 2019). 

Therefore, given the high variability among individuals, longitudinal studies are needed to better 

understand the overall dynamics of gut microbial communities and outcomes of interest such as 

AMR. 

Fecal microbiome composition 

 16s rRNA based microbiome study 
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The most commonly used method for gut microbiome analysis is the sequencing of the 

16S rRNA gene, which is carried by bacteria and archaea and encodes a component of the 30S 

ribosomal subunit (Morgan and Huttenhower, 2012; Panek et al., 2018). The 16S rRNA gene 

contains roughly 1500 bp and includes both highly conserved regions, which can be targeted 

with PCR primers, and hypervariable sites (V1–V9), which are specific to each microbial 

species. V1–V3 and V4 are the sites most commonly targeted for the identification of different 

bacterial species (Goodrich et al., 2014).  

Briefly, community DNA is isolated from samples (e.g., feces), and the bacterial taxa 

present in the community are identified by amplification and subsequent sequencing of the 16S 

rRNA gene. Then, highly similar sequences are clustered into OTUs. OTU clustering algorithms 

fall into three main categories: de novo (sequences clustered into OTUs without any external 

reference sequences/databases), closed (sequences are clustered on the basis of alignment to a 

reference database such as  SILVA, GREEN GENES, or the ribosomal database project), and 

open –reference OTU (a two-step process comprising alignment to a reference database followed 

by de novo clustering of sequences that fail to match the reference database (Morgan and 

Huttenhower, 2012; Goodrich et al., 2014). OTUs can be defined at different taxonomic levels 

(phylum, class, order, family, genus, or species). One drawback of 16S RNA-based methods is 

that they are limited to bacterial species and ignore other members of the microbial community, 

such as viruses and fungi.  

Shotgun metagenomics-based microbiome study 

Metagenomics was first described by Handelsman and Rodon and has become an 

alternative method to identify taxa in community samples (Handelsman et al., 1998). 

Metagenomics provides a catalog of all the genes in a community by random sequencing of 
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DNA isolated from community samples, allowing improved taxonomic resolution (Wang et al., 

2015). Functional metagenomics can be used to detect microbial community composition and 

diversity, novel functional genes, microbial pathways, ARGs, and interactions and co-evolution 

between microbial communities and hosts (Morgan and Huttenhower, 2012). Metagenomics are 

now widely used not only to study microbiomes but also to evaluate the ecological level of AMR 

in conjunction with microbiome analysis in humans and food-producing animals (Lepage et al., 

2013; Xiao et al., 2016a; Noyes et al., 2017; Joyce et al., 2019).   

Metagenomic approaches can help to provide a comprehensive understanding of the 

structure and function of microbial populations as a whole. There are still some limitations to 

metagenomic studies, however. For example, they cannot identify microbial gene expression; 

they require higher sequence coverage than 16S RNA analysis; they depend on complex 

bioinformatics analysis; and they involve substantial time and cost investments (Wang et al., 

2015). Furthermore, millions of sequences are generated from each sample, and it is challenging 

to assign functions unambiguously on the basis of sequence similarity, which leads to 

misannotation (Schnoes et al., 2009).  

The creation of standardized microbial DNA-isolation techniques, robust computation 

algorithms, a complete standardized reference database, and a standard for statistical analysis 

would improve metagenomics. With the rapid development of metatranscriptomics, 

metaproteomics, and metabolomics, now of studies tries to understand and identify the functional 

activities of microbial communities (Poretsky et al., 2009; Kolmeder et al., 2012; Heinken et al., 

2014).  
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 Fecal mycobiome composition  

The study of fungal microbiota, known as the mycobiome, is a relatively new and rapidly 

progressing field. Microbial colonization of the GI tract begins at birth. Several studies have 

shown that the fungi present in the pig gut are ubiquitous members of the rare biosphere of 

microorganisms (Huffnagle and Noverr, 2013; Summers et al., 2019). Although the bacterial 

constituents of the gut microbiome have been studied intensely, gut-associated fungi and their 

functions are poorly understood and remain largely unexplored in humans (Seed, 2014) and 

animals (Lai et al., 2019). There is currently no accurate estimate of the gut mycobiome, but it is 

assumed to represent ≤0.1 of the total gut microbiome (Qin et al., 2010). Despite that, the gut 

mycobiome is thought to be more diverse than the bacterial microbiome (Dethlefsen et al., 2008) 

and essential for the maintenance of microbial community structure, immune response, gut 

homeostasis, and host physiology in humans (Huffnagle and Noverr, 2013; Lai et al., 2019), 

pigs, and other animals (Zlotowski et al., 2006; Erb Downward et al., 2013). In addition, studies 

suggest that commensal fungal communities might enhance immune tolerance of commensal 

bacteria (Li et al., 2019). The phenomena in which fungi interact with non-fungal communities 

and their role in AMR is still unexplored. 

Transitions between different facilities (weaning, nursery, and finisher) are stressful 

events in a pig's life and can lead to increased susceptibility to diarrhea and other production-

related diseases. The abrupt shift from a milk-based diet to a solid-based diet during the weaning 

transition can lead to a significant change in the gut microbiota of pigs (Dou et al., 2017; 

Guevarra et al., 2018). Several authors have investigated the effects of housing, age, and diet on 

the pig gut microbiome diversity and composition (Frese et al., 2015b; Guevarra et al., 2018; 

Wang et al., 2019), but the effects of the mycobiome remain poorly understood.  
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Ingestion of feed contaminated with mycotoxins led to immunosuppression in piglets and 

susceptibility to infectious diseases (Arfken et al., 2019). Similarly to humans, pigs harbor 

Candida species (Van Uden et al., 1958), which are known to be opportunistic pathogens under 

stressful conditions. Recently, (Summers et al., 2019) assessed the temporal dynamics of the 

mycobiome and microbiome compositions using internal transcribed spacer (ITS) and 16S rRNA 

sequencing of the feces of swine from birth to weaning age (35 days after birth). Overall, 

microbiome diversity and abundance increased over the study period. The dominant fungi were 

Saccharomycetaceae, Dipodascaceae, Cladosporiaceae, Aspergillaceae, Malasseziaceae, and 

Nectriaceae. The mycobiome also showed a shift in the relative abundance throughout the 

weaning transition. From day 1 through day 21, the mycobiome composition was highly variable 

but showed a predominance of Cladosporiaceae. After weaning, 

Dipodascaceae and Aspergillaceae, began to appear. In another study, (Arfken et al., 2019) 

investigated the microbiome and mycobiome sampled from the GI tract and feces of pigs (n = 

23) from birth through day 35 after birth using the V4 and ITS2 regions of the bacterial 16S 

rRNA and fungal ITS genes, respectively. The piglets were nursed with their mother until 21 

days of age (weaned on day 21) and then received nursery diet 1 (days 21–28) followed by 

nursery diet 2 (days 29–35). These piglets were not treated with antimicrobials or antifungal at 

any time during the study period. The most dominant bacterial phyla in the GI tract and feces 

were Bacteroidetes, Firmicutes, and Epsilonbacteraeota, and the dominant fungal phyla were 

Ascomycota (90%) and Basidiomycota (9%).  

The mycobiome composition of newborns is poorly understood. (LaTuga et al., 2011) 

performed a fecal microbiome and mycobiome analysis of preterm infant babies (n = 7) and 

found that the most abundant fungal order was Saccharomycetales, which was represented by 
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several Candida species. Members of the Malasseziales, Eurotiales, Botryosphaeriales, and 

Filobasidiales were also observed in fecal samples. Similarly, Hoffmann et al. (2014) conducted 

deep sequencing of ITS1 regions to characterize the fecal mycobiome of healthy humans (n = 

98) and identified a total of 184 species, including 66 fungal genera along with 13 additional 

unidentified fungal taxa. Among the known taxa, Saccharomyces were the most abundant (89%), 

followed by Candida (57%) and Cladosporium (42%). In the same study, Candida and 

Saccharomyces were positively correlated with the archaea Methanobrevibacter and the 

bacteria Prevotella and were most abundant in individuals with high-carbohydrate diets. 

The Human Microbiome Project investigated the mycobiome diversity and abundance in 

317 fecal samples using the ITS2 region, the 18S rRNA gene, and a shotgun metagenomics 

approach (Nash et al., 2017). The fungal diversity was lower than the bacterial diversity, with 

Saccharomyces cerevisiae, Malassezia restricta, and Candida albicans being the most abundant 

species, appearing in 97%, 88%, and 81% of the samples, respectively. Th 

 Identification of fungi in the metagenome samples 

Two approaches can be used to identify the fungal taxonomic composition of samples. 

Briefly, DNA extracted from samples (e.g., pig feces) and preparation of libraries via either-a) 

shotgun metagenomic approach (DNA fragmented, adapter and multiplexing barcode ligation 

and sequencing) - b) targeted-amplicon approach (amplification of fungal marker, ITS1, or ITS 2 

region between 18s, 5.8s and 28S rRNA gene and multiplexing barcodes and sequencing). The 

bioinformatics analysis of the raw reads generated from sequencing for each method differs 

significantly (Forbes et al., 2018), and both methods have their own disadvantages. 

The molecular identification of fungal species in community samples is mostly based on 

high-throughput, “next-generation” sequencing of rRNA regions. The 18S rRNA gene and the 
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ITS regions between the 18S, 5.8S, and 28S rRNA genes have been used in sequencing-based 

approaches to determine fungal abundance and diversity (White et al., 2013; Nilsson et al., 

2019). The ITS regions are made up of space DNA situated between the small-subunit and large-

subunit rRNA genes in the chromosome.  

Only a fraction of the DNA of soil fungi (≥ 40%) is accounted for by ITS sequences 

(Carini et al., 2016). Hence, genetic markers, primers, and PCR amplification are critical for 

mycobiome studies. For ITS sequencing of fungal communities, ITS4ngs reverse primer can be 

used in combination with the gITS7ngs and ITS9MUNngs forward primers to target the ITS2 

subregion and the full ITS region, respectively (Nilsson et al., 2019). Taxonomic resolution can 

be improved by using ITSx to remove flanking genes, USEARCH to eliminate chimeras, and 

VSEARCH for quality assessment (Nilsson et al., 2019). Most mycobiome studies cluster the 

final sequences into species-level OTUs using 97–98.5% ITS sequence-similarity thresholds.  

Although new approaches that cluster free OTUs (e.g. DADA2) have been used for 

microbiome studies, however DADA2 is not recommended for fungal analysis, given that fungal 

genes are sometimes present multiple times in each genome (Lindner et al., 2013).  

With the decreasing cost of sequencing, the research gradually shifts away from 16S 

rRNA amplicon sequencing toward shotgun metagenomic sequencing. Unlike 16S rRNA 

sequencing, shotgun metagenomic sequencing can read all genome DNA in a sample, rather than 

just one region of DNA. Thus, the advantage of shotgun metagenomics is that sequencing data 

can be used to identify a wide range of species (bacteria, fungi, viruses, etc.) in the given 

metagenomic sample. However, only a few studies applied to fungal identification in 

metagenomic samples. Recently, Soverini and his colleagues (Soverini et al., 2019) proposed the 

“HumanMycobiomeScan,” a new bioinformatics tool, for the characterization of fungal 



16 

communities in metagenomic samples. Similarly, Donovan and his colleagues (Donovan et al., 

2018) developed  “FindFungi” to identify fungal sequencing in public metagenomic databases. 

In any analysis based on high-throughput sequencing, biases should be evaluated and 

corrected for high-quality and reproducible results. Examples of such biases include those related 

to DNA/RNA extraction, markers, primers, PCR amplification, library preparation, sequencing, 

and bioinformatics/analyses. For instance, in the case of the shotgun metagenomic approach, 

fungal genome databases are not comprehensive; thus, the fungal taxonomic resolution could be 

low due to incomplete databases or low fungal reads generated in comparison to bacterial reads. 

Similarly, in the case of amplicon sequencing, there is a high possibility of primer and 

amplification bias, which requires adjusting the region (e.g., ITS1) specific analysis during the 

bioinformatic steps (Forbes et al., 2018). In addition, strong bacterial and fungal interactions or 

antagonisms have been inferred from ARGs, indicating that the bacterial and fungal biomes need 

to be considered together for a better understanding of the AMR phenomenon in complex 

systems (Lindner et al., 2013). Recently, metatranscriptomics has emerged as an approach that 

allows researchers to target expressed genes in community samples, providing information about 

functional aspects of the fungal community.  

 Microbiome-mycobiome interactions 

Several studies have revealed antagonism between certain members of the mycobiome 

and mycobiome. For instance, mouse models demonstrated that immune suppression or 

disturbances of the mycobiome promote Candida colonization of the gut (Naglik et al., 2008). A 

study suggested that the bacterial microbiome produces inhibitory substances such as volatile 

fatty acids or secondary bile acids that can reduce C. albicans adhesion to the gut epithelium 

(Yamaguchi et al., 2005). Furthermore, a reduction of Lactobacilli in the gut of mice that were 
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fed a purified diet contributed to long-term gastric candidiasis (Yamaguchi et al., 2005). Other 

studies showed that Lactobacillus-Candida antagonism could be a two-way process in which the 

presence of Candida inhibits the regrowth of Lactobacillus after antimicrobial therapy (Mason et 

al., 2012). (Arfken et al., 2019) observed potential interactions between bacterial and fungal 

genera in the porcine gut, with positive correlations between the fungus Kazachstania and 

several bacterial species, including Lactobacillus. Conversely, Aspergillus demonstrated 

negative relationships with the short-chain fatty acid-producing 

bacteria Butyricoccus, Subdoligranulum, and Fusicatenibacter. The results of another study 

indicated that differences in microbiome structure and diversity coupled with antibiotic use at 

different time points could manifest as a microbiome-mediated physiologic process leading to a 

fungal expansion in the gut (Huffnagle and Noverr, 2013). 

Operational taxonomic units (OTUs) versus amplicon sequence variants (ASVs) for 

microbiome and mycobiome analysis 

Analyses of targeted microbiome sequencing (16S ribosomal RNA (rRNA) gene 

amplicon sequencing) data commonly use bioinformatics pipelines such as Quantitative Insights 

into Microbial Ecology (QIIME), MOTHER, and USEARCH as well as tools such as DADA2 

and Qimme2-Deblur. The Qimme-uclust, MOTHUR, and USEARCH-UPARSE pipelines 

usually group sequences that share 97% identity (or clusters of reads that differ by fixed 

threshold, typically 3%) into clusters called OTUs, whereas other pipelines (e.g., Qiime2-Deblur, 

DADA2, and USEARCh-UNOISE3) attempt to generate the exact biological sequences that are 

present in the metagenomic sample, also known as ASVs (Callahan et al., 2017; Prodan et al., 

2020). The DADA2 pipeline resolved ASVs better than other methods, and the USEARCH-

UPARSE and MOTHUR pipelines performed well, generating OTUs, but with lower specificity 
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than the ASV pipelines (Prodan et al., 2020). Several studies showed that ASV methods had 

better sensitivity and specificity and discriminate ecological patterns better than OTU methods 

(Tikhonov et al., 2015; Callahan et al., 2016; Caruso et al., 2019). Furthermore, the methods to 

define OTUs can be problematic. De novo OTUs (i.e. sequence reads are grouped into OTUs 

based on sequence similarity) are invalid outside of a given data set, whereas closed reference 

OTUs (i.e. reads are mapped to a sequence in a reference database) cannot capture real variation 

outside of the reference database. By contrast, the ASV method captures the biological variation 

in the data and also allows independent comparisons among different studies or different samples 

(Callahan et al., 2017). Furthermore, the ASV method can distinguish sequence variations as 

small as 1 nucleotide within a gene region. Among the methods for ASV determination, DADA2 

has been shown to be the most sensitive to low-abundance sequences.  Overall, the use of the 

ASV approach is increasing in studies of the swine microbiome (Raman et al., 2019; 

Bergamaschi et al., 2020) and the human microbiome (Bodkhe et al., 2019; Martinson et al., 

2019). Some researchers argue, however, that existing sequencing methods is not sufficient to 

resolve exact sequences accurately, and that overall biological trends can be obscured by the 

ASV method and are easier to identify using the OTU method. 

 Microbial composition, diversity, and AMR across the GI tract  

The mammalian GI tract is comprised of a complex ecosystem that harbors a diverse 

microbial community. The microbial community differs along the GI tract of pigs and is the most 

abundant in the lower part of the intestine, cecum, and colon (Simpson et al., 1999). Similarly, 

mucosa-associated bacterial communities differ from those recovered from feces and intestinal 

contents (Zoetendal et al., 2002). At birth, the piglet GI tract is sterile, but after fetal membrane 

rupture, the piglet is exposed to diverse microbes via contact with the vagina, feces, and skin of 
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the sow, so that within a few days, the piglet microbiome changes and becomes unique for each 

individual (Katouli et al., 1997). A meta-analysis to define the core microbiome of the swine GI 

tract found that Proteobacteria were common to all GI samples and that Firmicutes and 

Bacteroidetes accounted for nearly 85% of the total 16S rRNA sequences across all GI locations 

(Holman et al., 2017a). Another study showed that a moderate change in dietary protein level did 

not affect the fecal microbiome composition as dramatically as it affected the small-intestinal 

microbiome (Fan et al., 2017). In that study, the ileal bacterial richness declined from 16% to 

10% in finishing pigs when the crude protein of the diet was descreased from 16% to 10%. When 

the pigs were fed a high-protein diet, Clostridium sensu stricto 1 was the dominant genus in the 

ileum. When the dietary protein was reduced, the proportion of Clostridium sensu stricto 1 

increased significantly in the colon. 

The mammalian GI tract is a diverse ecosystem with a unique, stratified environment. 

Hence, it contains a variety of distinct microbial communities along its length spanning the small 

intestine, cecum, and large intestine (Donaldson et al., 2016). The variation in the bacterial 

community across the GI tract might be due to physiological, chemical and nutrients gradients 

and differences in the host immune activity at different locations. It has been demonstrated that 

the cecum and colon have a denser and more diverse microbial community than other locations 

in the GI tract. One study showed a heterogeneous distribution of bacterial species along the 

large intestine and further suggested that intestinal bacteria are distributed along two axes 

corresponding to the distal axis and the radial axis (from the lumen to the mucosa) (Takahashi 

and Sakaguchi, 2006). A mouse study using laser-capture microdissection found a significant 

difference between the central lumen and the interfold region, with the Firmicutes families 

Lachnospiraceae and Ruminococcaceae enriched explicitly in the interfold region and the 
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Bacteroidetes families Prevotellaceae, Bacteroidaceae, and Rikenellaceae enriched in the 

digesta, suggesting that the inner lining of the intestinal tract (mucosa) is an important location 

for the microbial cluster (Nava et al., 2011). A different study found distinct microbial 

communities in the mucosa of humans and mice that differed from those in fecal samples 

(Zoetendal et al., 2006). Hill et al. (Hill et al., 2010) found that mucosa-associated microbial 

communities differ from those in the intestinal lumen and may vary across the different parts of 

the GI tract. Further phylogenetic analysis demonstrated significant temporal and spatial effects 

on the luminal and mucosal microbial communities that included a reduction in luminal 

Firmicutes and mucosa-associated Lactobacilli following antibiotic treatment, which led to a 

reduction of IFNγ and IL-17A production by mucosal CD4+ T lymphocytes (Hill et al., 2010).  

Looft et al. (2014) performed a metagenomic study of the different sections of the GI 

tract (ileum, cecum, and mid-colon) as well as the gut contents and freshly voided feces from 

piglets ~3 months of age and found that the mucosa-associated ileal microbiota harbored greater 

bacterial diversity than the lumen, and the ileal contents (control and medicated) had reduced 

richness and abundance compared with other parts of the intestinal tract. These results further 

suggest that the mucosal bacterial community of the ileum might serve as a source for the large 

intestine. In the same study, an oral antibiotic led to a significant increase in the size of the E. 

coli population in the ileum (lumen and mucosa) relative to that in the feces and other parts of 

the GI tract. Similarly, an analysis of multiple colonic mucosal sites and feces from healthy 

humans indicated significant variability in microbial communities among individuals and also 

between feces and mucosa (Eckburg et al., 2005). That study also showed that the microbial 

concentration increases along the GI tract, with the lowest concentration in the stomach and the 

highest concentration in the colon. A different study showed that Bacteroides and Firmicutes 
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were the dominant mucosa-associated bacteria in the small intestine and colon (Sekirov et al., 

2010). In the proximal gut, Lactobacilli, Veillonella, and Helicobacter were the most abundant 

taxa; Bacilli, Streptococcaceae, Actinomycinaeae, and Corynebacteriaceae were abundant in the 

duodenum, jejunum, and ileum; Firmicutes and Bacteroidetes were dominant in the colon. 

 Influence of diet on microbiome and mycobiome composition 

Several studies have shown that diet and age contributed to the gut microbial community 

composition (Gill et al., 2006), and this may, in turn, influence the fecal resistome.  A study has 

demonstrated age and diet-dependent microbial community succession process in piglets (Bian et 

al., 2016). Of these factors, the diet would be the easiest approach to modify for short- or long-

term intervention. The study showed that the fecal microbial communities were clustered into 

major enterotypes - Bacteroides (protein and animal fat-based diet) and Prevotella 

(carbohydrate-based diet) based on the long-term dietary intervention. The microbial community 

changes were detected within 24 hours of introduction of high fat/low fiber or low fat/high fiber-

based diet (Wu et al., 2011). Similarly, a bacterial community dominated by Firmicutes (65-

75%) was reported during the first 3 days after the birth of the piglet. However, the introduction 

of solid feed and subsequent weaning was found to be the major event contributing to the gut 

microbial communities in the early life of pigs (Bian et al., 2016).   

Similarly, Frese et al. (Frese et al., 2015a) reported that the diversity of bacterial taxa 

increased with dietary changes from sows milk to a plant-based diet, and the relative abundance 

of Lactobacillaceae, Rumimococcaae, Veillonellaceae, and Prevotellaceae increased in the 

weaned piglet. Recently, (Zhang et al., 2016) reported that moderately increased fiber (both 

soluble and insoluble) in the diet influenced the gut microbial composition in piglets fed with 

different levels of fiber-containing feed compared with a control diet from postnatal day 7 to day 
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22. A study also showed changes in the relative abundance of Lactobacillus spp. and 

Streptococcus suis in the stomach, jejunum, and ileum of piglets after weaning (Su et al., 2008). 

These studies show that the gut microbial community could be modulated by various dietary 

treatments such as dietary fiber, dietary protein level etc. for long term intervention. 

Other studies showed that dietary changes coupled with other management factors such 

as in-feed antimicrobials, prebiotics, and probiotic administration, played an important role in 

shaping the gut microbial community in pigs (Bian et al., 2016; Guevarra et al., 2019). It is still 

unclear how quickly the gut microbial community responds to dietary modification.  

Similarly, an earlier study showed that the first fungi detected in the infants gut are 

Saccharomycetalean yeasts, particularly Candida species. These Candida species are common 

fungi of the skin, colon, and vaginal mucosa (Bliss et al., 2008). These fungi are often influenced 

by the availability of the type and source of the diet. For instance, dietary-induced changes in the 

gut microbial communities depend on whether animal-based or plant-based diets. Overall 

microbiome composition was mostly driven by the type of diet (fiber vs. protein and fats), while 

mycobiome composition appeared to be affected by food colonization (David et al., 2014). They 

also found that an animal-based diet had a more significant impact on the gut microbiome than 

the plant-based diet. However, in the same study, the species diversity (Shannon index) did not 

significantly change during either the plant-based or animal-based diet. 

Further, Hoffmann and his colleagues (Hoffmann et al., 2013) found that the Candida 

abundance was significantly associated with a carbohydrate diet, while Bacteroides (bacterial 

taxa) were more abundant in a diet with high protein. The study also suggests that the 

metabolism of the fungal cell wall (e.g., Beta-glucan) may influence the growth of E. coli and 

other bacteria in the gut; for example, dietary beta-glucan decreased the fecal E. coli counts and 
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benefited the growth performance in weaned pigs (Zhou et al., 2013). Further, the gut 

mycobiome of the healthy cohort from the Human Microbiome Project showed that the diet, 

environment,  and host genetic factors played a significant role in influencing the human gut 

mycobiome composition (Nash et al., 2017). 

 Antimicrobial use and their effects on microbial communities and antimicrobial 

resistance 

 Antimicrobial use in swine production 

Antimicrobials have been used in swine production for disease treatment, control, and 

prevention and to increase feed efficiency and growth performance since the early 1950s 

(Zeineldin et al., 2019). Swine are usually raised in confinement in farrow-finish or aggregated 

management systems with the purpose of controlling infectious diseases. Antimicrobials are 

given to all animals at low (subtherapeutic) concentrations to promote growth, whereas they are 

given at higher (therapeutic) concentrations to control the spread of infection (metaphylaxis) or 

to prevent infection (prophylaxis) (Aarestrup, 2005). Antimicrobial use for the treatment, 

control, or prevention of disease is considered therapeutic use, whereas antimicrobial use to 

promote growth is considered non-therapeutic use (Lekagul et al., 2019). 

Antimicrobials for growth promotion or disease prevention are given in feed at low 

concentrations, especially after weaning (as starter feed), and are typically removed at the 

finisher stages of production to avoid drug residues in the final products (McEwen and Fedorka-

Cray, 2002). It is suggested that 50% of all antimicrobials are used in food production animals, 

and nearly 33–62% of nursery units and 30–44% of grower-finisher units use antimicrobials for 

growth improvement (Holman and Chenier, 2015; Zeineldin et al., 2019). In addition, 46% of 

breeding sows regularly receive antimicrobials in their feed (Cromwell, 2002). Parenteral 
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therapy via intramuscular injection is generally used for acute and severe infections. The average 

duration of antimicrobial use for disease prevention typically ranges from 20 days to 40 days 

(Stone et al., 2009), whereas that for growth promotion can last up to 77 days (Dewey et al., 

1997). Prolonged exposure to low antimicrobial concentrations might increase the risk of AMR 

development, which might subsequently be transferred to humans (Aarestrup et al., 2008).  

Many classes of antimicrobials used in swine (or other food animals) are also used in 

humans, including critically important antimicrobials used in human medicine. One study 

suggested that the penicillin and tetracycline classes of antimicrobials, used mainly to treat age-

specific, production-related diseases, were the most commonly used antimicrobials in many 

countries (Lekagul et al., 2019). Another study showed that the most common antimicrobials 

given to production pigs during the nursery stages for any reason were ceftiofur and penicillin G 

(APHIS, 2008). The common antimicrobial classes and agents used in swine production are 

presented in Table 2.1. 

Table 2.1  The common antimicrobial classes used in swine production 

The common antimicrobial classes used in swine production 

Antimicrobial Class and Agent Used in Animal Species Used in Human 

Medicine 

Aminocoumarinsd   

          Novobiocin   Beef and dairy cattle, poultry No 

Aminoglycosidesa   

          Dihydrostreptomycin Beef and dairy cattle, swine No 

          Gentamicin Beef and dairy cattle, swine, poultry Yes 

          Hygromycin B Poultry, swine No 

          Neomycin Beef and dairy cattle, poultry, swine Yes 

          Spectinomycin Beef and dairy cattle, poultry, swine Yes 

Amphenicolsb   

          Florfenicol Beef and dairy cattle, poultry Closely related 

analogs 

Cephalosporinsa   

          Ceftiofur  Beef and dairy cattle, poultry, swine Analogs 

          Cephapirin Beef and dairy cattle, poultry, swine No 

Diaminopyrimidinesd   

          Ormetoprim  Poultry No 

Fluoroquinolonesa   



25 

          Danofloxacin  Dairy cattle Analogs 

          Enrofloxacin Beef cattle Analogs 

Glycolipidsd   

          Bambermycins  Beef and dairy cattle, poultry, swine No 

Ionophoresd   

          Laidlomycin  Cattle No 

          Lasalocid Cattle No 

          Monensin Poultry No 

          Narasin Poultry No 

          Salinomycin Poultry No 

Lincosamidesb   

          Lincomycin  Beef and dairy cattle, poultry, swine Yes 

          Pirlimycin Beef and dairy cattle Analogs 

Macrolidesa   
 Erythromycin Beef and dairy cattle, poultry, swine Yes 

          Gamithromycin Nonlactating dairy cattle, beef cattle No 

          Tildipirosin Dairy and beef cattle No 

          Tilmicosin Poultry, swine Analogs 

          Tulathromycin Beef and dairy cattle, swine No 

          Tylosin Beef and dairy cattle, poultry, swine Analogs 

          Tylvalosin swine No 

          Orthosomycinsd   

          Avilamycin  swine No 

Penicillinsa   

          Amoxicillin  Beef and dairy cattle, poultry, swine Yes 

          Ampicillin Beef and dairy cattle, poultry, swine Yes 

          Cloxacillin Beef and dairy cattle Yes 

          Penicillin Beef and dairy cattle, poultry, swine Yes 

Pleuromutilinsb   

          Tiamulin  Swine No 

Polymyxinsa   

          Polymyxin B  Beef and dairy cattle Yes 

Polypeptidesc   

          Bacitracin  Beef and dairy cattle, poultry, swine Yes 

Quinoxalinesd   

          Carbadox  Poultry, swine No 

Streptograminsb   

          Virginiamycin  Poultry, swine Analogs 

Sulfonamidesb   

          Sulfadimethoxine  Beef and dairy cattle, poultry, swine Analogs 

          Sulfamethazine Beef and dairy cattle, poultry, swine Analogs 

Tetracyclinesb   

          Chlortetracycline  Beef and dairy cattle, poultry, swine Analogs 

          Oxytetracycline Beef and dairy cattle, poultry, swine Yes 

          Tetracycline Beef and dairy cattle, poultry, swine Yes 
a Critically important antimicrobials, b highly important antimicrobial, c important antimicrobials, 
d not medically important classified according to World Health Organization Human Medicine 5th 

revision Advisory Group on Integrated Surveillance of Antimicrobial Resistance (AGISAR) 

October 2016; adapted from (Mathew et al., 2007; Collignon et al., 2016; FDA, 2018; Zeineldin 

et al., 2019). 
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 Bacterial resistance mechanisms 

Bacteria can be intrinsically resistant to certain antimicrobials, but they can also acquire 

or develop resistance to antimicrobials via mutations in chromosomal genes or via horizontal 

gene transfer. Resistance to antimicrobials can be mediated by several different mechanisms, 

including those that minimize the intracellular concentration of the antimicrobial as a result of 

reduced cell-membrane permeability or increased efflux, those that modify the molecular target 

of the antimicrobial by genetic mutation or post-translational modification, and those that 

inactivate the antibiotic by enzymatic hydrolysis or modification (Blair et al., 2015).  

Cephalosporins are members of the β-lactam class of antimicrobials and are widely used 

in human and veterinary medicine. They exhibit antimicrobial properties by binding to 

penicillin-binding proteins (PBPs) and disrupting the synthesis of the peptidoglycan layer of the 

bacterial cell wall (Fair and Tor, 2014). Since their introduction in 1964, cephalosporins have 

commonly been prescribed for human patients because of their clinical utility (FDA, 2012; 

Chaudhry et al., 2019). The World Health Organization declared third-generation and fourth-

generation cephalosporins to be critically important for human health (Collignon et al., 2016).  

There are two cephalosporins currently approved for use in food animals in the United 

States: ceftiofur and cephapirin (FDA, 2012). Ceftiofur is a semisynthetic, broad-spectrum, third-

generation cephalosporin (NCBI, 2020) and is approved for intramuscular injection to treat 

bacterial respiratory diseases in beef and dairy cattle and swine. Ceftiofur is marketed in a short-

acting formulation (ceftiofur sodium, Naxcel®), a more consistent formulation introduced in 

1996 (ceftiofur hydrochloride, Excenel®), and a longer-acting formulation introduced in 2003 

(ceftiofur crystalline free acid, Excede®) (Zoetis Animal Health, NJ, U.S.A.). Following 

intramuscular administration, ceftiofur is absorbed in its free-acid form and rapidly metabolized 
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into desfuroylceftiofur (DFC) and furoic acid (Beconi-Barker et al., 1996). DFC quickly forms 

conjugates in plasma and tissues or is further metabolized into disulfides (e.g., DFC–cysteine 

disulfide, DFC-dimer; (Beconi-Barker et al., 1995; Beyer et al., 2015). Free forms of DFC 

contain an intact beta-lactam ring and a major biologically active metabolite. The association 

between antimicrobial use and the development of AMR in swine production has been 

documented (Allen et al., 2011; Holman and Chenier, 2013). The use of antimicrobial agents in 

animals selects for resistant bacteria that in turn, can serve as a reservoir of resistance genes to 

(Wegener, 2003).   

Cephalosporins bind to bacterial PBPs and are responsible for the hydrolysis of the cross-

linkages of newly formed peptidoglycan. Resistance occurs when the PBPs (transpeptidases) are 

modified or protected by β-lactamases. The β-lactamases are produced by bacteria from 

chromosomal or plasmid DNA. The level of β-lactamase-mediated resistance depends on the 

amount of enzyme produced by the bacteria with or without induction and the kinetics of the 

enzymatic activity (Livermore, 1987). 

β-lactamases are grouped into four classes according to the Amber structural 

classification based on sequence similarity: A, B (metallo-β-lactamases, B1, B2, and B3), C, and 

D (serine β-lactamases) (Silveira et al., 2018). Class A β-lactamases (TEM, SHV, CTX-M, and 

the carbapenemases KPC) are often associated with plasmids. Class B metallo-β-lactamases 

(NDM, IMP, and VIM) provide resistance to penicillin, cephalosporins, carbapenems, and other 

β-lactamase inhibitors. The genes encoding class B metallo-β-lactamases can be located on the 

bacterial chromosome, on plasmids, or on integrons. Class C enzymes (AmpC β-lactamases and 

CMY) are usually encoded by bla genes located on the bacterial chromosome, but they can also 

be encoded on plasmids. Class D β-lactamases confer resistance to penicillins, cephalosporins, 
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extended-spectrum cephalosporins (OXA-type extended-spectrum β-lactamases (ESBLs)), and 

carbapenems (OXA-type carbapenemases) (Bonomo, 2017). The most important β-lactamase 

enzymes for cephalosporin resistance are the ESBLs and AmpC cephalosporinases. 

Impact of antimicrobial therapy on the gut microbial community 

Antibiotics also have significant effects on the gut microbiome composition. It has been 

demonstrated that exposure to ciprofloxacin changes the fecal microbiome composition, 

particularly to a shift in the abundance of Bacteroides, Faecalibacterium, and Ruminococcadeae 

(Dethlefsen and Relman, 2011) but then stabilized by the end of the study period. Such effect 

could be manifested by both the direct effect of antibiotics and the indirect effect due to the 

microbial interaction community, which is often driven by age and diet. Further, the effect of 

antibiotics on the gut microbial community depends on the antibiotic class. For instance, an 

earlier study (Kanwar et al., 2014a) found a significant increase in ceftiofur resistance and 

decrease in tetracycline resistance among a treated group of steers (randomized control field trial 

with two treatment regimens-ceftiofur crystalline free acid with and without therapeutic doses of 

chlortetracycline in 176 steers) measured by changes in the target AMR gene (blaCMY-2, blaCTX-M, 

tet(A), tet(B) and 16s rRNA genes) copies. Similarly, the effect of macrolides on fecal bacterial 

composition persisted up to two years after treatment, while the effect of β-lactams lasted less 

than one year in two to seven-year-old children studied (Korpela et al., 2016). It is also possible 

that age can affect AMR in regard to the microbiome composition. For instance, a study also 

showed that AMR gene diversity in the human gut microbiome was age related (Lu et al., 

2014b). 

Longitudinal studies have attempted to identify the impact of antimicrobial interventions 

on the swine GI microbial community (Gerzova et al., 2015a; Holman et al., 2018; Zeineldin et 
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al., 2018). For instance, one study found that geographic location had a greater influence on 

AMR in the fecal microbiome than the method of husbandry (organic or conventional) (Gerzova 

et al., 2015a). Similarly, Kalmokoff et al. (Kalmokoff et al., 2011) reported that the addition of 

either tylosin or virginiamycin to pig feed over 15 weeks had no effect on the animals’ fecal 

microbiome (16S rRNA). In another study, tylosin supplementation in pig feed resulted in an 

increase in the presence of tylosin-resistant anaerobes  (from 11.8% to 89.6%) and also a ten-fold 

increase in the frequency of the macrolide-resistance gene erm(B) in fecal samples (Holman and 

Chenier, 2013). Another study showed that the frequency of ampicillin-resistant fecal coliform 

bacteria and the resistance patterns of fecal E. coli isolates were not different between the control 

and experimental weaned pigs, suggesting that antimicrobial administration in newborns has 

little influence on the development of a normal intestinal microbiome and the selection of ARGs 

(Yun et al., 2017). Similarly, Kim et al. (2012) found no difference in bacterial phyla between 

control pigs and tylosin-fed pigs (n = 10) (Kim et al., 2012).  

 A study showed that young pigs had higher ARG diversity than that of sows, but ARG 

abundance and prevalence were not influenced by antibiotic use (Pollock et al., 2020). In a 

different study, tetracycline-resistance genes and macrolide-resistance genes were frequently 

detected in pigs that were not exposed to antimicrobials (Holman and Chenier, 2013). A shotgun 

metagenomic approach was performed to evaluate the effect of therapeutic doses of 

oxytetracycline on the microbiome and resistome dynamics in the feces of weaned pigs (n = 16) 

over 21 days (Ghanbari et al., 2019). Antimicrobial use significantly increased the abundance of 

the resistome (mainly tetracycline, β-lactams, and MDR—multidrug resistance). In addition, 

there was a shift in bacterial taxa, mainly in the Escherichia (Proteobacteria) and Prevotella 
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(Bacteroidetes) populations, after seven days of antibiotic administration. Other study showed 

that antimicrobials exposure is not the single factor of ARG levels (Birkegard et al., 2017). 

(Graesboll et al., 2019) evaluated the influence of antimicrobial use on resistome levels 

over time by following 1,167 pigs from five different farms in Denmark. Antimicrobial use 

resulted in increased abundances of the efflux pump-encoding tet(A) gene and the ribosomal 

protection proteins tet(O) and tet(W), although there were no significant differences between five 

different treatment strategies using oxytetracycline. Looft et al. (2012) investigated the effect of 

3 weeks of in-feed administration of ASP250 (chlortetracycline, 100 mg/kg feed; 

sulfamethazine, 100 mg/kg feed; penicillin, 50 mg/kg feed) on the diversity and abundance of 

ARGs in post-weaned pigs. The ARG diversity increased in the treated pigs, with notable shifts 

in the gut microbiome (Bacteroidetes and Proteobacteria). Similarly, in a different study, the 

abundance of blaTEM genes was increased in the feces of ampicillin-treated pigs, and the 

frequency of AMR in Enterobacteriaceae exceeded 50% in all treated pigs by days 4 and 7 

(Bibbal et al., 2007). Agga et al. (2014) found that pigs that were fed with chlortetracycline after 

weaning had a higher abundance of the tet(A) gene in their feces than pigs that were not fed with 

chlortetracycline. Similarly, a study was conducted to determine the impact of parental 

antibiotics (ceftiofur crystalline free acid, ceftiofur hydrochloride, oxytetracycline, procaine 

penicillin G, and tulathromycin) administered according to the label dose and route on fecal 

microbiome composition of grower pigs (n = 20). Analysis of 16S rRNA showed an 

antimicrobial-dependent shift in microbiome composition over time from day 0 (before 

antimicrobial administration) and almost a return to the pretreatment composition by day 14 

(Zeineldin et al., 2018). 

https://www.sciencedirect.com/topics/medicine-and-dentistry/ceftiofur
https://www.sciencedirect.com/topics/medicine-and-dentistry/oxytetracycline
https://www.sciencedirect.com/topics/medicine-and-dentistry/procaine-benzylpenicillin
https://www.sciencedirect.com/topics/medicine-and-dentistry/procaine-benzylpenicillin
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 The role of the gut microbiome in ARGs dissemination 

The gut microbiome typically consists of diverse microbial communities, some of which 

possess antibiotic resistance determinants (ARDs) or serve as reservoirs for ARGs (Joyce et al., 

2019; Ruppé et al., 2019; Singh et al., 2019). Bacteria in the gut can exchange genetic material 

through transformation, conjugation, and transduction, and they can increase level of their 

resistance by acquiring external ARDs present on mobile genetic elements such as plasmids, 

transposons, integrons, and phage (Huddleston, 2014). The gut microbiome is composed of 

diverse microbial flora, including bacterial pathogens such as Enterobacteriaceae and 

Enterococcus spp. that can transfer their mobile resistome to other members of the community. 

One study showed that mobile ARGs are mainly present in four bacterial phyla: the 

Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes (Huddleston, 2014). The same 

study showed that Streptococcus agalactiae, E. coli, and Streptococcus suis are the three most 

abundant bacterial species that are shared between animal and human intestines and consistently 

harbor known ARGs. Recently, several studies suggested that the gut microbiota forms a large 

reservoir for diverse ARGs (van Schaik, 2015) that may play a significant role for the emergence 

of AMR in human pathogens (Sommer et al., 2009b). 

Recently, a study used comparative modeling to compare the structures of known AMR 

proteins to those of proteins produced by the human gut bacterial microbiome (Ruppé et al., 

2019). A total of 6,095 ARDs were predicted among a catalog of 3.9 million proteins from the 

human intestinal microbiome. The predicated ARDs shared ~30% amino acid identity with the 

known ARDS. The same study grouped 663 participants into six primary resistome clusters 

(resistotypes) based on resistome composition. The results showed that the different resistotypes 

were linked to specific enterotypes. Resistotypes 1 (rich in ANT- aminoglycoside 
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nucleotidyltransferase) and 3 (driven by tet(M) and class C β-lactamases) were associated with 

the Clostridiales enterotype. Similarly, resistotype 4 (enriched with tet(X) and class A β-

lactamases) was associated with the Bacteroides enterotype, and resistotype 6 (class B1 β-

lactamases and sul) was associated with the Provotella enterotype. 

Deep metagenomic sequencing of fecal DNA from 287 pigs identified 7.7 million unique 

genes representing 719 species (Xiao et al., 2016a). The study further quantified the relative 

abundances of AMR in the samples and the genes conferring resistance to tetracycline, 

bacitracin, cephalosporin, macrolide, and streptogramin B in the fecal DNA of all of the pigs. In 

another study, a positive correlation between the total resistome size (257 unique ARGs) and the 

total number of OTUs in the microbiome was demonstrated in fecal samples from 16 sows, 

indicating that the microbiome composition might influence the resistome composition (Joyce et 

al., 2019). It may also be true that, conversely, microbial communities are shaped in part by the 

resistome. Antibiotics are used at different stages of pig growth to treat production-related 

diseases such as diarrhea- especially in weaning piglets. Thus, strong selective pressure is 

exerted on the gut microbial community. There is evidence that the diversity of ARGs in the gut 

microbiome is related to the age of the host, increasing and becoming more complex from an 

early age to adulthood (Lu et al., 2014a). 

 Statistical approaches to the analysis of microbiome, mycobiome, and AMR 

data 

The data from microbiome studies can be used to build statistical models for hypothesis 

testing. Currently, most microbiome studies are performed to characterize the microbiome 

composition and understand the biotic and abiotic factors associated with the microbiome (Spor 

et al., 2011). Although statistical tests primarily focus on a core theme that explores the impacts 
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of external factors or interventions on the dynamics of microbiome composition, they can also be 

used to investigate microbial diversity (alpha and beta diversity), richness, evenness, dominance, 

or OTU abundance. Recently, a statistical association between AMR determinants in microbial 

communities and different agricultural or environmental conditions was reported (Noyes et al., 

2016b; Yang et al., 2016b). Given the high dimensionality, excessive zero, non-normality, and 

hierarchical or phylogenetic nature of the data, an appropriate statistical approach is needed as 

microbiome research shifts from hypotheses about correlations to hypotheses about causal 

associations between different factors. 

 Comparisons of diversity across groups 

One of the primary goals in studies of gut community ecology is to understand species 

compositional diversity and its relative influences. The term diversity usually refers to the 

number of different species that can be identified in a particular environment. Diversity indices 

applied to microbiome data consist of differing weights of two-component richness and 

evenness. For instance, the number and variety of taxa present in metagenomic samples can be 

described using several alpha diversity indices, such as the diversity of taxa (Shannon diversity 

index or Fisher’s alpha diversity index), the evenness of taxa (Simpson’s index), the richness of 

taxa (Chao1, Menhinick's richness index, or Margalef's richness index), and the dominance index 

of taxa (1-Simpson’s index and Berger-Parker dominance index). Similarly, beta diversity refers 

to how different the microbial composition is between communities or samples. Beta diversity 

can be measured by several statistics, such as Bray-Curtis dissimilarity (abundance or count-

based), Jaccard distance (does not depend on abundance information but is based on the presence 

or absence of species), and UniFract distance, which is based on the fraction of branch length 

shared between two communities within a phylogenetic tree of 16S rRNA sequences from 
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community DNA samples. The UniFrac distance can be further classified as Unweighted Unifrac 

(based on sequence distances with no abundance information) or Weighted UniFrac (branch 

lengths are weighted by the relative abundance). 

An understanding of gut microbial diversity is important in investigations of how the 

composition, abundance, function, and dynamics of the gut microbial community are associated 

with host physiology (Kim et al., 2017). The diversity indices compare the diversity among and 

between samples (for example, treatments and controls); however, there are no standards for 

which microbial diversity index is the best to use. Taxonomic diversity explains how many 

different bacteria are found in terms of their taxonomic ranking as species, genera, orders, or 

phyla. Depending on how the index values are distributed, several tests such as the T-test and 

parametric and nonparametric analysis of variance (ANOVA) can be applied to test hypotheses 

(Rosner, 2011). 

 Classical univariate statistical analysis 

Many traditional statistical tests, including the t-test and parametric and nonparametric 

ANOVA, can be used to test hypotheses on microbial taxa by comparing alpha and beta diversity 

metrics. For instance, a t-test can be used to compare alpha diversity metrics between two 

groups, and the two-sample t-test and its nonparametric analogs (Wilcoxon rank-sum test and 

Mann–Whitney test) are commonly used in microbiome studies to compare continuous variables 

between two groups (Bokulich et al., 2016; Chen et al., 2017; Xia and Sun, 2017). Depending on 

the normality of response variables, ANOVA or the nonparametric Kruskal−Wallis test can be 

used to compare more than two groups. For example, alpha diversity indices (richness and 

evenness, Simpson reciprocal index, and equitability indices) were compared between various 

locations in the GI tract of swine using two-way ANOVA (Holman et al., 2017b). The non-
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parametric Kruskal−Wallis one-way ANOVA was used to compare the fungal and bacterial 

proportions of microbiome data within samples (Gorzelak et al., 2015). A Chi-square test can 

also be used to compare categorical microbiome data. A simple univariate correlation analysis 

was performed to determine if there was a linear relationship (Pearson’s correlation) or a 

monotonic relationship (Spearman's correlation) between genes or taxa and metabolites (Chong 

and Xia, 2017). However, univariate methods do not have enough power to reduce the high rate 

of false-positive results that are inherent in metagenomic studies. 

 Negative binomial (NB), zero-inflated, and overdispersion models 

The abundance of the gut microbial community is often characterized by overdispersion 

and zero-inflation, especially at low levels of taxonomic resolution. In addition, distributions can 

be skewed by the low sensitivity of diagnostic methods and, therefore, require transformation. 

Hence, the normality and homogeneity of variance assumptions are not typically relevant for the 

relative abundances of taxa. Such count analyses are usually handled using NB, zero-inflated, or 

hurdle models, which can be applied to fit microbiome count data by extending the Poisson 

distribution and allowing the variance to be different from the mean (McMurdie and Holmes, 

2014; Xia and Sun, 2017; Calle, 2019). Several zero-inflated models, including zero-inflated 

Gaussian, lognormal, NB, and beta models, were used to analyze excess zero counts and over 

dispersed counts in microbiome data. For example, a zero-inflated Gaussian distribution mixed 

model (metagenomeSeq R package) was used to evaluate different microbiome features and 

resistome (Rovira et al., 2019). One study showed that hurdle and zero-inflated models are more 

accurate for parameter estimation with high power, strong goodness of fit, and well-controlled 

type I errors (Xu et al., 2015). 
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Longitudinal studies are commonly used in veterinary medicine to capture the inherent 

dynamic properties of microbiome composition. An appropriate statistical model is, therefore, 

required for time series as well as microbiome count data. It is important to accurately identify 

and understand these associations in order to make predictions about which taxa harbor AMR. A 

mixed-effects ANOVA model with the enterotype-cluster type as a fixed effect and the piglet 

nested within pen as a random effect was used to test for dependencies between animals within a 

given pen (Le Sciellour et al., 2019). Similarly, several studies used linear mixed models 

(LMMs) to account for time-dependent correlations in longitudinal microbiome studies by 

assuming a normal distribution of response variables (Benson et al., 2010).  

Recently, (Zhang et al., 2018) proposed a negative binomial mixed model (R package 

NBZIMM) for longitudinal microbiome studies to account for time-dependent/changing trends 

and correlation structures among samples with various fixed and random effects. Similarly, Jian 

et al. (Jiang et al., 2019) proposed an integrative Bayesian zero-inflated NB regression model 

that can distinguish between differently abundant taxa with distinct phenotypes while estimating 

the covariate-taxa effect. 

 Multivariate analysis 

Multivariate data imply that there are multiple numeric values for each data point. Given 

the high-dimensional, hierarchical, and sparsity characteristics of microbiome data, multivariate 

statistical analysis (distance-based or model-based) can be useful to address complex ecological 

questions (Ramette, 2007; Calle, 2019). Several tests such as Permutational Multivariate 

Analysis of Variance Using Distance Matrices (PERMANOVA), principal coordinate analysis 

(PCoA), analysis of group similarities (ANOSIM), multi-response permutation procedure, and 
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Mantel’s test (MANTEL) are commonly used to test differences between groups, time-points, or 

other variables in microbiome data (Rivera-Pinto et al., 2018). 

PERMANOVA is a nonparametric, multivariate ANOVA test based on dissimilarities 

with permutations (Anderson, 2001). PERMANOVA can be performed with non-transformed 

data and is perhaps the most widely used distance-based method to test a null hypothesis of no 

difference in composition (e.g., OTU abundances) among groups. Distance measures such as 

unweighted similarity metrics (e.g., Jaccard or unweighted UniFrac) or weighted similarity 

metrics (e.g., Bray-Curtis or weighted UniFrac) can be used in a PERMANOVA test. The 

unweighted UniFrac takes into account the presence or absence of OTUs (community 

membership) or the number of taxa that are unique to either sample, whereas the weighted 

UniFrac accounts for the relative abundance of OTUs in the microbial community (Navas-

Molina et al., 2013). Then, the variability within and between groups is tested using the ANOVA 

F test, but the partition of the sums of squares is applied to dissimilarities. Statistical significance 

is evaluated by a permutation to generate a distribution of pseudo-F-tests under the null 

hypothesis (Calle, 2019). Like PERMANOVA, ANOSIM was used to determine whether there 

were differences in microbial composition between nursing and weaned pigs based on weighted 

as well as unweighted UniFrac distance metrics (Guevarra et al., 2018). Recently, MANTEL was 

used to test for an association between cecal microbial composition and the plasma metabolome 

in pigs (Wu et al., 2020).  

The Dirichlet-multinomial distribution, a parametric multivariate analysis for count data, 

was found to be suitable for hypothesis testing across groups based on location (mean) as well as 

scale (variance) (La Rosa et al., 2012). The Dirichlet-multinomial distribution accounts for 

overdispersion and is used to estimate parameters describing microbiome properties. Several 
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authors proposed Dirichlet multinomial mixtures (DMM) for the probabilistic modeling of 

microbial community data to determine enterotypes (Holmes et al., 2012). For instance, 

probabilistic modeling using DMM was used to examine the microbial communities associated 

with different production stages of pigs (Slifierz et al., 2015b). Because a simple DMM model 

does not account for the strong positive and negative correlations that can exist between different 

species, (Ren et al., 2017) proposed a Bayesian approach using a joint model for the multinomial 

sampling of OTUs in multiple samples that allows for correlations between OTUs and thus gives 

more accurate estimates of the microbial distributions. 

Machine learning methods are commonly used to identify patterns in highly complex 

microbiome data and can be used to characterize differences between microbiomes in different 

types of communities, and also to build models that accurately classify unlabeled data (Knights 

et al., 2011). Several classifier tools such as random forests (RFs), nearest shrunken centroids, 

the elastic net, and support vector machines have been applied to microbiome classification. 

Recently, RF models were used to classify the resistome of formula-fed babies and breast milk-

fed babies, and feature importance scores were used to select ARGs (Rahman et al., 2018) and to 

investigate the association between avian taxonomic orders and functional profiles (Marcelino et 

al., 2019). 

 Ordinations 

Given the high dimensionality of microbiome data, dimensionality reduction techniques 

(i.e., ordinations) such as principle component analysis, PCoA/multidimensional metric scaling, 

non-metric multidimensional scaling, correspondence analysis, and Procrustes analysis have 

been used to visualize microbiome data (Vázquez-Baeza et al., 2017). The main purpose of 

dimension reduction is to optimally represent (dis)similarities between samples so that samples 
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that are similarly represented are depicted close together in a two—or three—dimensional plot, 

while the main trends of the data and the distances among samples are preserved as much as 

possible. Both unconstrained ordination (variability in data) and constrained ordination 

(exploration of the role of sample-specific variables in shaping microbial communities) have 

been used to visualize high-dimension data (Hawinkel et al., 2019). 

 Correlation/interaction-based microbial community networks 

The reduction of the dimensionality of the microbial community structure might obscure 

intra-microbiome interactions. The relationships among microbial species can be represented as a 

network (correlation/interaction-based) where taxa or genes are presented as nodes, and their 

interactions are presented as edges connecting the nodes (Chong and Xia, 2017). Such networks 

provide information about links within the microbial community. Faust et al. (2012) analyzed 

microbial co-occurrence and co-exclusion patterns among 18 body sites in a cohort of 239 

healthy humans (from the Human Microbiome Project) using an ensemble method based on 

multiple similarity measures in a combination of generalized boosted linear models to develop a 

single global microbial association network for taxa in the healthy commensal microbiome. 

Recently, (Ke et al., 2019) developed phylogenetic co-occurrence networks of the pig fecal 

microbiome at different host-ages, with nodes showing the abundances of OTUs and edges 

representing correlations between OTUs. Similarly, network analysis using the SparCC 

algorithm was used to indicate growth stage-associated interactions between bacterial features in 

pigs (Wang et al., 2019). Recently, associations between sexual habits, menstrual hygiene, 

demographics, and the vaginal microbiome were evaluated using bayesian network analysis 

(Noyes et al., 2018). 
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 Summary of literature review 

Several studies have used phenotypic or genotypic assays to evaluate antimicrobial use 

and levels of resistance in food animals. AMR in the commensal bacteria of food animals is 

often complex. The effects on AMR development due to antibiotic use for disease treatment or 

growth enhancement in livestock is still not clear. A study of commercial production pigs (with 

high antimicrobial usage) showed that the prevalence and abundance of ARGs were not 

influenced by antibiotic use. Other studies found that age, diet, and environmental/management 

factors could affect the level of AMR in gut microbial communities. Recently, studies 

demonstrated that the gut microbiome could serve as a reservoir from which ARGs can be 

transferred to native or transient gut bacteria. The gut microbiome (and mycobiome) 

composition, richness, and diversity change significantly with the age of the pig. The diet, 

especially the crude fiber content, was found to be an important factor shaping the pig gut 

microbiome. Although the bacterial constituents of the gut microbiome have been intensely 

studied, the gut-associated fungal diversity, abundance, and functions are poorly understood in 

food animals. Recent studies have shown potential interactions between bacterial and fungal 

genera in the porcine gut.  

There has been extensive research to understand AMR in single microbial species of 

interest, but results in single species do not truly represent whole microbial communities and 

cannot fully explain AMR in a natural host system that consists of diverse microbial 

communities. It is evident that microbial communities (e.g., the gut microbiome) are highly 

dynamic and often depend on dietary and environmental factors. Therefore, diet and the timing 

of sampling need to be considered because they influence the diversity and composition of the 

microbial community. It is important to understand the factors that drive the evolution, 
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enrichment, and persistence of AMR in complex microbial communities to develop sustainable 

solutions. Various tools have been applied to characterize AMR in gut microbial communities, 

including culture-based and metagenomics-based approaches. Even in an era of molecular 

techniques, bioinformatic tools and increasingly advanced statistical approaches, it is still a 

complicated matter to address core hypotheses. 

This study summarizes the literature published since the early 1970s on the age-

dependency of AMR in fecal bacteria from animals raised in different geographical locations. 

Our study examines AMR in fecal microbial communities in swine using culture-dependent and 

metagenomic methods coupled with statistical analyses in order to estimate and make inferences 

about the relationships between AMR and the age and diet of the host animals. It investigates the 

potential linkage between AMR and the taxonomic compositions of the bacterial and fungal 

communities. It also examines differences in the bacterial community and ARG frequencies 

among the different parts of the GI tract of piglets. An understanding of the relationships among 

host factors, the microbiome/mycobiome, and AMR in pigs will help scientists and other 

stakeholders to design a systematic framework to address the problem of AMR in a sustainable 

way.
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Chapter 3 - Age Dependence of Antimicrobial Resistance Among 

Fecal Bacteria in Animals: A Scoping Review 

 

 Abstract 

A phenomenon of decreasing antimicrobial resistance (AMR) among fecal bacteria as 

food animals age has been noted in multiple field studies. We conducted a scoping review to 

summarize the extent, range, and nature of research activity and the data for the following 

question: “Does AMR among enteric/fecal bacteria predictably shift as animals get older?”. This 

review followed a scoping review methodology framework. Pertinent literature published up 

until November 2018 for all animals (except humans) was retrieved using keyword searches in 

two online databases: namely, PubMed® and the Web of ScienceTM Core Collection, without 

filtering publication date, geographical location, or language. Data were extracted from the 

included studies, summarized, and plotted. Study quality was also assessed using GRADE 

guidelines for all included papers. The identified papers with detailed relevant data (n=62) were 

conducted in food animals, poultry, and dogs. These included longitudinal studies (n=32), cross-

sectional studies of different age groups within one food animal production system or small-

animal catchment area (n=16), and experimental or diet trials (n=14). A decline in host-level 

prevalence and/or within-host abundance of AMR among fecal bacteria in production beef, dairy 

cattle, and swine was reported in nearly two-thirds (65%) of the identified studies in different 

geographic locations from the 1970s to 2018. Mixed results, with AMR abundance among fecal 

bacteria either increasing or decreasing with age, have been reported in poultry (broiler chicken, 

layer, and grow-out turkey) and dogs. Quantitative synthesis of the data suggests that the age-
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dependent AMR phenomenon in cattle and swine is observed irrespective of geographic location 

and specific production practices. It is unclear whether the phenomenon predates or is related to 

antimicrobial drug use. However, a majority of the identified studies predate recent changes in 

antimicrobial drug use policy and regulations in food animals in the United States and elsewhere. 
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 Introduction 

Epidemiological studies in food animals have suggested that enteric antimicrobial 

resistance (AMR) changes as the host ages. For example, studies in beef and dairy cattle 

production systems in the Pacific Northwestern and Southwestern U.S. (Khachatryan et al., 

2004; Berge et al., 2010; Edrington et al., 2012b), Great Britain (Hoyle et al., 2004a; Hoyle et al., 

2004b), and Zambia (Mainda et al., 2015b) have shown that AMR gene copy abundance 

decreases in the fecal indicator bacterium Escherichia coli (E. coli) in cattle as animals age 

during early life. One of the studies conducted in the U.S. suggested that the decline in the 

abundance of multidrug-resistant (MDR) fecal E. coli in cattle during the first months of life may 

be independent of the transition from milk to solid diet (Edrington et al., 2012b). Other studies in 

pig production systems in the Midwestern U.S. showed that AMR gene copy abundance 

decreases in fecal E. coli in pigs during early life; in fact, the effect of age surpasses in relative 

magnitude that of concurrent feeding with antimicrobial drugs (Agga et al., 2015b). Others have 

reported that this decline in pigs continues beyond the first two weeks in the nursery, when the 

enteric microbiome changes due to the transition from milk to solid diet (Kim et al., 2011; Frese 

et al., 2015a; Slifierz et al., 2015a). Hence, the decline does not seem to be solely driven by the 

dietary transition of weaning. Understanding the dynamics of AMR is essential because, first, the 

body mass and fecal output of food animals increase with age (ASAE, 2005). Thus, AMR among 

the fecal bacteria of larger older animals poses greater mass burden for AMR transmission via 

manure from production systems to the environment. Second, AMR among fecal bacteria at the 

age when the animal is harvested poses the greatest direct risk of AMR transmission to the 

consumer via carcass contamination at slaughter. Understanding the age-dependent AMR 

dynamics and their drivers could help lower both environmental and food safety risks. 
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Assessing the available research reports pertaining to age-related AMR in food animals 

enhances our understanding of how the prevalence of animals carrying antimicrobial-resistant 

bacteria or else the abundance of antimicrobial-resistant bacteria (or AMR genes) within those 

animals will change according to host age; in turn, this will help to formulate a risk-based AMR 

mitigation program to lower the environmental and food safety risk. However, it is unclear what 

kind of research information is available in the literature about age-dependent AMR in animals 

in different geographical regions of the world and across different time periods. Thus, the 

objectives of this review were to examine research reports and summarize the available data per 

the following question: “Does AMR among enteric/fecal bacteria predictably shift as animals get 

older?”. A scoping review was chosen as the approach for the study, given the goal was to 

examine the nature, extent, and range of research activity on this broad question (Levac et al., 

2010; Murphy et al., 2016) as well as to identify research gaps in the existing literature. 

Here, we explore, summarize and present data on age-related AMR dynamics from the 

available literature that was systematically searched for all animals without filtering date, 

geographical location, or the language of the publication. Using the Grades of Recommendation, 

Assessment, Development, and Evaluation (GRADE) guidelines (Guyatt et al., 2011), we 

summarized the quality of the evidence for all those identified studies containing relevant data. 

Moreover, following the scoping review approach, data from all the identified studies were 

charted and compiled. The outputs from the review results were summarized to directly address 

the study question. 
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 Materials and methods 

We followed the scoping literature review methodology framework outlined by Arksey 

and O’Malley (Arksey and O'Malley, 2005). For rigor and reproducibility of the study, the 

review was implemented by adhering to the Preferred Reporting Items for Systematic Reviews 

and Meta-Analyses (PRISMA) guidelines (Liberati et al., 2009; Moher et al., 2009); more 

specifically, to the PRISMA extension for conducting scoping reviews (PRISMA-ScR) (Tricco 

et al., 2018) and for reporting purposes. 

 Study outcomes relevant to the study question 

The following outcomes were defined for “AMR among enteric/fecal bacteria” in a 

sampled animal population: the abundance of AMR bacteria; the relative fraction of AMR 

bacteria; the quantities of total or specific genes encoding AMR in feces of the animals; and the 

proportion of animals carrying AMR bacteria or genes in their feces collected by individual fecal 

or rectal swabs or in a pooled sample from the pen/flock/barn. The study designs included any 

observational design employing a comparison group. 

Keyword-based search strings were developed, refined, and implemented in two online 

databases: PubMed® maintained by the U.S. National Center for Biotechnology Information 

(NCBI) and Web of ScienceTM Core Collection maintained by the Thomson Reuters 

Corporation. The string for each database was refined until the search returned all publications 

known to the study team on the study question. The following final algorithms were used in 

PubMed®: 

(antibiotic resistance OR antibiotic resistant OR drug resistance OR multiple drug 

resistance OR resistance genes OR antimicrobial resistance OR antimicrobial resistant OR 

bacterial resistance) AND (fecal OR feces OR faecal OR faeces OR stool OR intestinal OR 
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intestine OR enteric OR bacteria OR bacterial OR faecal coliforms OR fecal coliforms OR faecal 

coliform OR fecal coliform OR coliform bacteria OR faecal flora OR fecal flora OR feces 

collection OR faeces collection OR faecal examination OR fecal examination OR cecal OR 

caecal OR ceca OR caeca OR cecum OR caecum OR intestinal microorganism OR intestinal 

microorganisms OR Enterobacteriaceae OR Escherichia coli OR E. coli OR Salmonella OR 

Campylobacter OR Enterococcus OR Klebsiella OR Citrobacter OR microbial flora OR 

microbiome OR intestinal microorganisms) AND (age OR animals by age OR age groups OR 

age structure OR aging OR maturation OR cohort OR cohort studies OR longitudinal studies OR 

longitudinal distribution). 

Similarly, the following final algorithms were used in the Web of ScienceTM Core 

Collection: 

(antibiotic resistance OR antibiotic resistant OR drug resistance OR multiple drug 

resistance OR resistance genes OR antimicrobial resistance OR antimicrobial resistant OR 

bacterial resistance) AND (fecal OR feces OR faecal OR faeces OR stool OR intestinal OR 

intestine OR enteric OR bacteria OR bacterial OR faecal coliforms OR fecal coliforms OR faecal 

coliform OR fecal coliform OR coliform bacteria OR faecal flora OR fecal flora OR feces 

collection OR faeces collection OR faecal examination OR fecal examination OR cecal OR 

caecal OR ceca OR caeca OR cecum OR caecum OR intestinal micro-organism OR intestinal 

microorganisms OR Enterobacteriaceae OR Escherichia coli OR E. coli OR Salmonella OR 

Campylobacter OR Enterococcus OR Klebsiella OR Citrobacter OR microbial flora OR 

microbiome OR intestinal microorganisms) AND (age OR animals by age OR age groups OR 

age structure OR aging OR maturation OR cohort OR cohort studies OR longitudinal studies OR 



48 

longitudinal distribution) NOT (human OR man OR human disease OR human feces OR human 

stool OR children OR women OR infants). 

Literature for all animals other than humans was searched (including farm, pet, or hobby 

animals and wildlife) without filtering the language, geographical location, or date of 

publication. The final searches were performed in November 2018. All citations identified by the 

searches in the two databases were imported, merged, and deduplicated in the web based 

RefWorks© v.2.0 platform (ProQuest, LLC, Ann Arbor, MI, USA). After deduplication, the 

citation list was imported into the web-based Rayyan platform for systematic reviews (Ouzzani 

et al., 2016). 

 Relevance screening and study selection criteria 

The identified citations (n=8,073) were subjected to a title-based screening. A citation 

was excluded if the title indicated that the study was conducted in humans, was performed on the 

resistance to disease of multicellular organisms, was on infectious agents other than enteric/fecal 

bacteria, or was on bacterial resistance to drugs other than antimicrobial drugs. The citations 

retained after the title screening (n=383) were subjected to an abstract-based screening. A 

citation was excluded if the abstract met any of the title exclusion criteria. In addition, a citation 

was retained if the abstract identified that the study met these inclusion criteria: (a) performed in 

farm-, shelter-, or household-animals; (b) longitudinal study of >3 weeks or a cohort study or a 

cross-sectional study of multiple age groups in one production system or local population (e.g., 

animals from multiple farms or owners); (c) enteric/fecal culturable bacteria or microbiome 

studied; and (d) AMR (phenotype or genes) measured in the bacteria or microbiome. The 

citations retained after the abstract screening (n=199) were subjected to full-text screening. The 

full text was excluded if any of the abstract exclusion criteria were met or if it was an in vitro 
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study or a cross-sectional study of animals at one age point or if the animal age was not 

specified. The full text was included if it met the abstract inclusion criteria if the publication 

contained age-specific data on enteric/fecal AMR in animals of a given species (and in a given 

production system for food animals) at more than one age point, and either the fecal/enteric 

bacterial species were isolated and antimicrobial drugs to which the isolate susceptibility was 

tested were specified or the fecal/enteric bacterial antimicrobial genes tested were specified. The 

screening was performed on the Rayyan platform. These steps yielded 62 studies. The references 

for all included studies are provided in Supplementary Table S 3.3. 

Each title screening and abstract screening was performed independently by two 

reviewers. Citations on which the two disagreed were reviewed independently by a third 

reviewer whose judgment was the final decision. For refinement of the inclusion and exclusion 

criteria at the start of the title review, 50 titles were randomly selected from the citation list from 

PubMed® and independently reviewed following draft criteria by the first two reviewers. The 

three reviewers met to discuss the results and to clarify and refine the criteria. A similar criteria 

refinement procedure was performed at the start of the abstract review using 50 abstracts 

randomly selected from the citations (n=383) retained after the title screening. The scoping 

review diagram was created following the PRISMA guidelines (Liberati et al., 2009; Moher et 

al., 2009) using the PRISMA extension for scoping reviews (PRISMA-ScR) (Tricco et al., 2018). 

Given the difference in objectives from a systematic review, some PRISMA checklist items 

might not be relevant, while other important considerations may be missing; therefore, for 

transparent reporting purposes, we have followed a complete checklist relevant to PRISMA-ScR. 

In addition, an assessment of the quality of the final retained citations was made based on 

GRADE assessment and risk-of-bias approach (Guyatt et al., 2011). 
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 Data extraction, characterization, and analyses 

The characteristics of each full text, such as year of publication, geographical location of 

the study, study design (longitudinal, experimental trial of antimicrobial drug use or diet, and 

cross-sectional), sample size for the fecal sampling, animal species; animal production system 

(e.g., dairy or beef), animal production category (e.g., broiler breeder or chicken), age or age 

group of the sampled animals, individual or pooled fecal sampling (e.g., from individual animals 

or pooled from multiple animals), sample type (e.g., rectal swab, cloacal swab, fecal grab per 

rectum, grab sample from voided feces), and AMR assessment method (e.g., testing phenotypic 

antimicrobial drug susceptibility of culturable bacterial species isolates, quantifying AMR genes 

in culturable bacterial species isolates, or AMR gene quantification via metagenomic sequencing 

of fecal samples) were recorded. For studies based on phenotypic AMR assessment, bacterial 

species isolated for testing the phenotypic susceptibility to antimicrobial drugs; number of 

isolates of each of the bacterial species; identity and class of each antimicrobial drug tested; 

percentage of the isolates of each bacterial species resistant to each individual antimicrobial 

drug; animal-level prevalence of AMR to each individual drug; percentage of the isolates of each 

bacterial species concluded to be MDR (≥3 drug classes); and animal-level prevalence of 

multidrug AMR were used in the study. For studies based on AMR gene quantification via 

metagenomics of fecal samples, the quantities of total and specific genes encoding bacterial 

AMR, identity and number of antimicrobial drug classes for which resistance is encoded by the 

detected genes, animal-level prevalence of the detected genes being carried in feces, the total 

number of isolates, and funding sources were extracted from the full-text citations. The above-

described categories were not established a priori but were developed iteratively by reviewers 

and characteristics based on individual studies. 
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All the data captured above were recorded in Microsoft Excel 2010. To visualize the 

AMR data with the age of animals, data from individual studies were combined based on 

outcomes such as prevalence/proportion of animals carrying antimicrobial-resistant bacteria or 

AMR genes, abundance or proportion of phenotypically antimicrobial-resistant bacteria and 

quantities of total or specific AMR genes within the same enteric bacterial group (e.g., E. coli, 

Enterococcus spp., Salmonella spp., Campylobacter spp.). Some studies recorded the age of 

animals as the stage of production cycle, for instance, piglet, nursery, grower, and finisher in the 

age data for pigs. To make the data consistent, data from such studies were categorized based on 

production stages (e.g. for pigs, piglet 1-3 weeks, weaner 3-4 weeks, nursery 4-10 weeks, grower 

10-14 weeks, and finisher 14-26 weeks). We used R software with the ggplot2 package (V.3.3.4) 

(Wickham, 2016) to summarize and visualize the data. 

 Results 

A flow diagram of the process and the number of citations in the literature review is 

presented in Figure 3.1. The keyword searches in the NCBI PubMed database yielded 3,802 

articles. The keyword search in the Web of ScienceTM Core Collection yielded 4,769 articles. 

The article sets were merged, and duplicate records were removed. This left 8,073 unique 

articles, the titles of which were screened by following the title exclusion criteria. After the 

removal of 7,690 titles, the abstracts of 383 records were reviewed and further screened based on 

inclusion and exclusion criteria, and finally, 199 full articles were reviewed. After further 

exclusion, a total of 62 studies met the inclusion criteria, providing relevant information based on 

the review question, and were included for qualitative analysis. A list of all the studies included 

in this review is presented in Supplementary Table S 3.5. 
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Based on the data gathered in this review, age dependency of AMR among fecal bacteria 

in animals has been reported since 1970. The absolute level of research activity peaked in 2010-

2018 (n=33, 53%) (Figure 3.2). Of the n=62 studies, 48% (n=30) were conducted in Europe, 

35% (n=22) in the U.S., 11% (n=7) in Asia and the remainder 5% (n=3) in Canada. The animal 

populations studied in the retained citations (n=62) were cattle (n=22, 35% including n=1 cattle 

and pig), pigs (n=24, 39% including n=1 pig and poultry), poultry (n=14, 23%) and dogs (n=2, 

3%). The most common study type was observational (n=48, 77%) (Figure 3.3). The most 

frequently investigated enteric/fecal bacteria were E. coli (n=44, 71%), Salmonella enterica 

subsp. enterica (n=7, 11%) and Enterococcus spp. (n=6, 10%). All the studies were published as 

journal articles. The general characteristics of the retained articles are presented in Table 3.1, and 

details are presented in Supplementary Table S 3.3. 

For the 22 cattle studies (including n=1 cattle and pig study), data outcomes were 

reported as: (n=9, 41%, the proportion of the animals carrying antimicrobial-resistant E. coli; 

n=8, 36%, abundance of antimicrobial-resistant E. coli or proportion of antimicrobial-resistant E. 

coli; n=1, 4%, proportion of antimicrobial-resistant Salmonella enterica; n=1, 4%, relative 

abundance of AMR in bacterial taxa; n=1, 4%, quantity of total or specific genes encoding AMR 

in feces of the animals; n=1, 4%, proportion of both the animals carrying both antimicrobial-

resistant E. coli and abundance of antimicrobial-resistant E. coli; and n=1, 4%, abundance of 

both antimicrobial-resistant E. coli and AMR genes in feces of animals. Similarly, of the 24 pig 

studies (including one pig and poultry study), one study (cattle and pig) generated 25 combined 

data points, where the outcome was reported as n=2, 8%, the proportion of the animals carrying 

antimicrobial-resistant E. coli; n=12, 50%, abundance of antimicrobial-resistant E. coli or 

proportion of antimicrobial-resistant E. coli; n=4, 16%, proportion of antimicrobial-resistant 
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Salmonella spp.; n=1, 4%, proportion of antimicrobial-resistant Campylobacter spp.; n=1, 4%, 

proportion of antimicrobial-resistant Enterococcus spp.; n=3, 12%, quantities of total or specific 

genes encoding AMR in feces of the animals; and n=2, 8%, both abundance of antimicrobial-

resistant E. coli or proportion of antimicrobial-resistant E. coli and quantities of AMR genes in 

feces of the animals. 

Similarly, from a total of 14 poultry studies and one study from pigs and poultry, 15 data 

points were generated, where outcomes were reported as: n=7, 50%, abundance or proportion 

of antimicrobial-resistant E. coli; n=2, 14%, proportion of antimicrobial-resistant Salmonella 

enterica subsp. enterica; n=3, 21%, proportion of antimicrobial-resistant Enterococcus spp.; n=2, 

14%, quantities of total or specific genes encoding AMR in feces of the animals; and n=1, 7%, 

abundance or proportion of both antimicrobial-resistant E. coli and Enterococcus spp.. We 

captured only two studies conducted in dogs, where outcomes were reported as: n=1, 50%, the 

proportion of antimicrobial-resistant Enterococcus spp.; and n=1, 50%, quantities of total or 

specific genes encoding AMR in feces. 

Furthermore, we visualized the AMR dynamic data according to the age of the animals. 

Based on the combined data, we observed that the overall age-related AMR dynamics (both 

phenotypic and genotypic) were especially high at a young age and thereafter declined with the 

age of animals among fecal E. coli in cattle (Figure 3.4) and pigs (Figure 3.5). However, mixed 

age-related AMR dynamics were observed in fecal E. coli, Enterococcus spp. and Salmonella 

enterica subsp. enterica. in poultry (including broiler chicken, layer, and meat-type turkey) 

(Figure 3.6) and fecal Enterococcus spp. in dogs. Furthermore, we also combined the age-related 

AMR data for other bacterial species to determine whether there were any discrepancies among 

bacterial species in terms of age-related AMR dynamics. In contrast, in an experimental study in 



54 

cattle where animals were treated with third-generation cephalosporin and chlortetracycline, the 

proportion of MDR Salmonella enterica subsp. enterica increased from day 4 through day 26 

during the feeding period. 

In addition to phenotypic AMR, we also evaluated the combined data for AMR genes 

from cattle, pigs, poultry, and dogs from the included studies. The combined data plot showed 

that the overall abundance of genes encoding AMR to different drug classes among fecal E. coli 

or among the total genes are similar to the phenotypic AMR data, with especially high values at 

earlier ages or sampling points in cattle and pigs. The age-related AMR genes among fecal 

bacteria were also observed in pigs (Figure S 3.7). Overall, two-thirds (65%, n=46) of the 

included studies from cattle and pigs showed a high prevalence and abundance of antimicrobial-

resistant enteric/fecal bacteria early in life that subsequently declined with age. In contrast, half 

of the included studies in poultry showed an increase in the prevalence and abundance of AMR 

in fecal or cloacal bacteria with age. In dogs, mixed AMR dynamics with age were reported in 

the identified studies. 

 GRADE-based study evaluation to summarize the research activity (quality 

assessment) 

To summarize the quality of research activity for the study question, an evaluation of the 

quality of evidence in the retained studies (n=62) was performed by adapting the GRADE 

assessment of study quality and the risk-of-bias approach (Guyatt et al., 2011). In summary, 

nearly all studies (n=60, 97%) clearly defined study objectives and sampling procedures (e.g., 

description of participant/animal). However, the description of animal selection 

(inclusion/exclusion criteria for subject selection in the case of observational studies) was 

inadequate. In addition, very few studies (n=6, 10%) estimated the sample size. A majority of the 



55 

studies (n=13, 93% of experimental studies) clearly described the experimental group, but there 

were very few studies (n=6, 43%) that performed randomization for treatment allocation. Nearly 

all the studies (n=61, 98%) clearly defined the method to measure the outcomes. Finally, more 

than 50% of the studies described potential biases and/or confounders and adjusted or explained 

the results in the outcome and analysis section. Specific definitions used for quality assessment 

are provided in Table 3.2. The details of the quality assessment criteria are presented in 

Supplementary Table S 3.4. In addition to the GRADE assessment, we also found that most 

studies (n=51, 82%) reported the source of funding in their studies. 

 Discussion 

This review assessed the extent, range, and nature of available research activity and 

systematically and transparently charted the main characteristics of AMR among enteric/fecal 

bacteria according to host age in food animals, poultry, and pet dogs. We identified research 

reports relating AMR prevalence or quantity among fecal bacteria with the age of the animal 

since the 1970s in different geographical regions of the world, with a surge of research (over 

50% of papers) since 2010. Additionally, most of the studies were from Europe and North 

America. We believe that this distribution likely reflects the geographical location in which the 

phenomenon is frequently investigated. 

The available evidence, including study findings, shows declining host-level prevalence 

and within-host abundance of AMR among fecal bacteria from early life in cattle and pigs to 

later production stages in the different production systems. Both observational and experimental 

field studies showed that the prevalence of AMR in fecal bacteria declined with the age of 

animals, and interestingly, this phenomenon has been observed over the decades across dispersed 

geographical locations and different production practices: from small-scale cattle farms in 
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Tajikistan in 1971 (Turushev, 1971) to housing of thousands of cattle in the Southwestern U.S. in 

the 2010s (Berge et al., 2010; Edrington et al., 2012b) to cattle farms in Zambia (Mainda et al., 

2015b) and pig farms in Canada (Rosengren et al., 2008b) and the U.S. (Moro et al., 1998). This 

lends credibility to the notion that the phenomenon may not be driven solely by antimicrobial 

drug practices on farms. Similarly, healthy calves were reported to be rapidly colonized by 

antimicrobial-resistant E. coli shortly after birth and to shed MDR bacteria that are resistant to 

nine and ten antibiotics as early as one day of age (Donaldson et al., 2006). Furthermore, 

intestinal microbiomes are unique in younger calves compared to adult animals, favoring the 

survival of MDR bacteria (Khachatryan et al., 2004). Additionally, age-related dynamics are not 

limited to animals and have also been reported in humans (Kalter et al., 2010b; Literak et al., 

2011a). For instance, age-specific AMR among E. coli was reported in a human in the UK, 

where the abundances of E. coli resistant to amoxicillin, co-amoxicillin/clavulanic acid, 

ciprofloxacin, cephalexin and extended spectrum beta-lactamase (ESBL)-producing E. coli were 

high at a young age and decreased with age, followed later by an increase (Robey et al., 2017b). 

On the other hand, increased AMR in E. coli was reported in beef cattle (Catry et al., 

2016) and in Enterococcus spp. in pigs (Butaye et al., 1999) for production systems in European 

countries that have dramatically altered antimicrobial drug use practices since the 1990s 

(Casewell et al., 2003; Hammerum et al., 2007). For example, in Belgium and other European 

countries, the use of avoparcin was banned in 1997. In Belgium, most surprisingly, the pigs in 

which the growth promoter was banned (sows) demonstrated the highest prevalence of 

vancomycin-resistant Enterococci (VRE) compared to piglets and finishers from later birth 

cohorts. Another finding from the same study was that the prevalence of VRE was higher in 

broilers compared to layers of the same age group; importantly, avoparcin had been used in the 
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past in broilers but never in layer chicks. In Denmark, higher tetracycline and sulfonamide 

resistance was observed in S. Typhimurium isolates from pigs as well from a human following 

ban on growth promoters went into effect (Casewell et al., 2003). Recently, analysis of the 

abundance and diversity of the fecal resistome in pigs and broilers in nine European countries 

found that resistome abundance and composition were very different in pigs and poultry; that is, 

with higher abundance in pigs but a more diverse resistome in poultry. However, estimated AMR 

genes were not associated with drug use, suggesting that some genes might be functional only in 

a specific host. Furthermore, the findings revealed that countries with similarity in antimicrobial 

use also exhibited the same general levels of AMR (Munk et al., 2018a). 

Similarly, our review findings showed that the dynamics of AMR associated with age in 

poultry were different from those in cattle and pigs. Both increased AMR (Welton et al., 1998a; 

Santos et al., 2007; Ozaki et al., 2011) and decreased AMR (Hinton et al., 1982; Butaye et al., 

1999) among enteric bacteria were reported in the poultry production cycles. These results might 

be due to blanket use of antimicrobials in feed or else due to direct and close contact between 

birds carrying antimicrobial-resistant strains. We did not capture a large number of citations for 

age dependency of AMR in dogs; however, we observed mixed dynamics of AMR in the 

included studies. 

Based on the results, the following question arises: is this age-related phenomenon the 

result of previous or current antimicrobial exposure? For instance, a longitudinal study on calves 

demonstrated that there was no significant association between calves fed waste milk containing 

antibiotic residue or calves fed fresh milk in terms of the proportion of animals that shed CTX-

M-positive E. coli during the 1- to 12-week age period (Brunton et al., 2014). Similarly, other 

studies have shown that resistome richness decreased significantly during the feeding period 
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(arrival and exit, ~ 32 weeks) of feedlots when they traced AMR in the feedlots; but at the same 

time, other resistome elements were detected against antimicrobials that are not approved for use 

in cattle production, suggesting that the relationship between antimicrobial use and AMR is not 

straightforward and that the use of antimicrobials alone cannot directly explain the presence of 

AMR (Noyes et al., 2016b). It has also been concluded that the elevated AMR in early life in 

cattle is not of maternal origin but likely acquired during the first weeks of life (due to factors 

other than antimicrobials added to fresh milk, if any) (Berge et al., 2005; Berge et al., 2010; 

Edrington et al., 2012b). More extensive research on the sources of AMR in the young has been 

performed in humans. Human newborns carry diverse AMR genes in their enteric microbiome 

before receiving antimicrobial treatments, and such individuals also have been born to mothers 

not treated with antimicrobial drugs during the last trimester of pregnancy (Zhang et al., 2011). 

The purpose of this review was to extract essential information from the diverse body of 

work conducted to address the relevant research questions; scoping reviews typically do not 

assess the quality of the studies included in the review (Arksey and O'Malley, 2005). Quality 

assessment to control the biases in research analyses other than systematic reviews is rarely 

applied and poorly reported in veterinary science (Sargeant et al., 2006). For instance, some have 

reported quality assessments in scoping reviews (Murphy et al., 2016), whereas others did not 

report any quality assessment to identify the risk of biases (Greig et al., 2015; Rose et al., 2017; 

Travers et al., 2017; Baker et al., 2018; Gabriele-Rivet et al., 2019). A rigorous scoping review 

of scoping reviews was conducted by (Pham et al., 2014) to examine the approach and 

consistency. In these reviews, quality assessment of the included studies was infrequent, and 

only 22.4% of the 335 scoping reviews performed quality assessment checks. However, 

evaluation of quality or risk of bias in the included studies is recommended (O'Connor and 
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Sargeant, 2015). For this review, first, we adopted the PRISMA extension for scoping review 

(PRISMA-ScR) (Tricco et al., 2018) for the purposes of transparency and reproducibility; 

second, we implemented quality assessment of all retained citations by adapting GRADE 

assessment and a risk-of-bias approach (Guyatt et al., 2011) and summarized the data based on 

quality criteria (Table 3.2); however, we did not remove any articles from the assessment. In 

doing so, our review was able to provide a complete overview of all available research reports 

related to a topic, as per the objectives of the scoping review, and at the same time, we became 

aware of the quality of the evidence from the research analysis. 

There are some limitations to our scoping review. Although nearly all (97%) the studies 

clearly mention the research objectives and outcome and are from journal articles, the data were 

from different types of study designs, and different interpretative criteria for antimicrobial 

susceptibility testing may have affected the findings. Any citations that were not listed in one of 

the search databases were not captured by this study. Therefore, this is something that needs to 

be taken into consideration when interpreting the data of this review. 

Our scoping review has shown that the age-related dynamics in fecal/enteric AMR in 

food animals, including poultry and pet animal dogs, were consistent with other field study 

results. Although we do not fully understand the mechanism underlying the high AMR at early 

ages, it seems that the epidemiology of the age group of the animal population has been found to 

be an important factor in the quantification of AMR. We believe that this age-dependent AMR 

data finding helps to stratify further individual risk based on the study area, allowing potential 

targeting of surveillance (i.e., threshold-based action-driven monitoring) or any other 

intervention in specific animal age groups in the population. However, this review specifically 

aimed to summarize the research reports related to the age-dependency of AMR, so many policy-
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related questions remain unanswered. The higher AMR observed at early age is of concern, but 

there was no clear difference in animal age-specific trends between different antimicrobial 

agents, which could represent differences in antimicrobial use and, in turn, selection pressure. 

Well-researched areas of interest were identified in this review (for example, why higher AMR 

in fecal bacteria is observed at early ages in animals), and this finding could be extended to other 

food animals and to aquaculture, which will ultimately help with AMR risk categorization and 

planning for interventions to reduce environmental- and foodborne-risks to public health. 

 Conclusions 

The decline in the prevalence and abundance of antimicrobial-resistant enteric/fecal 

bacteria with age in production pigs, beef, and dairy cattle has been reported since the 1970s in 

various geographical locations, and in two-thirds of the included studies in our scoping review. 

In broiler chickens and meat turkeys, mixed AMR dynamics associated with age have been 

reported. We captured very few studies in dogs, where mixed AMR dynamics with age also were 

reported. We found that the age of animals could be one of the factors affecting both phenotypic 

and genotypic AMR; however, other management factors may influence the overall findings. 

Hence, identifying such risk factors associated with resistance in the different production phases 

of food animals and poultry is crucial, and such findings could guide judicious antimicrobial use. 

The scientific evidence from the existing studies in these areas is limited. Therefore, further 

longitudinal research into related AMR phenomena should be undertaken to better guide the 

interpretation of our findings. 
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Table 3.1  Characteristics of included studies (n=62) from which the data were charted in this scoping review of literature on age dependency of antimicrobial resistance of fecal bacteria in animals. 

Characteristics of included studies (n=62) from which the data were charted in this scoping 

review of literature on age dependency of antimicrobial resistance of fecal bacteria in animals. 

Characteristic Number of studies Percentage of n=62 studies 

Publication date   

1970-1979 1 2% 

1980-1989 4 6% 

1990-1999 5 8% 

2000-2009 19 31% 

2010-2018 (November) 33 53% 

Study location   
UK, continental Western Europe, Eastern   

Europe, and USSR 30 48% 

USA 22 35% 

Canada 3 5% 

Asia 7 11% 

Study design   

Longitudinal 32 52% 

Cross-sectional 16 26% 

Experimental (antimicrobial drug treatment or 

diet trial) 14 23% 

Animal species   

Cattle* (1 cattle and swine) 22 35% 

Swine* (1 swine and poultry) 24 39% 

Poultry (chicken, turkey) 14 23% 

Dog 2 3% 

Fecal sample   

From individual animals 51 82% 

Pooled from multiple animals 11 18% 

AMR identification   

   Phenotypic AMR in culturable fecal bacteria 34 55% 

   Genes encoding AMR in fecal metagenome 

   or culturable bacteria 1 2% 

   Both phenotypic AMR and AMR genes 27 44% 

Fecal bacteria cultured   

E. coli 44 71% 

Salmonella spp. 7 11% 

Campylobacter spp. 1 2% 

Enterococcus spp. 6 10% 

E. coli and Salmonella spp. 1 2% 

E. coli and Enterococcus spp. 1 2% 

Staphylococcus spp. 1 2% 
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None, AMR genes in fecal microbiome 

analyzed 1 2% 
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Table 3.2  Descriptive summary of quality assessment of the retained studies (n=62) on age dependency of antimicrobial resistance of fecal bacteria in animals. 

Descriptive summary of quality assessment of the retained studies (n=62) on age dependency of 

antimicrobial resistance of fecal bacteria in animals. 

Yes, quality criterion is met; No, quality criterion is not met; Partially, the criterion is not entirely 

met; Unclear, insufficient information to evaluate the quality criterion; N/A, not applicable 

 

Individual quality criterion 
Number 

of studies 
Percentage of n=62 studies 

Study objectives clearly defined (n=62)     

Yes 60 97% 

Unclear 2 3% 

Sampling method (animal selection) clearly described 

(n=62)     

Yes 59 95% 

Unclear 3 5% 

Sample size estimation included (n=62)     

Yes 6 10% 

No 56 90% 

Inclusion and exclusion criteria for the sampled animals 

stated (n=48 observational studies) 
    

Yes 15 31% 

Partially 19 40% 

No 14 29% 

Experimental groups (treatment and control) clearly 

defined for an experimental study (n=14)     

Yes 13 93% 

     Unclear 1 7% 

Sampling unit/animal randomly assigned to the treatment 

for an experimental study (n=14)     

Yes 6 43% 

Unclear 8 57% 

The methods for AMR analysis in the study clearly 

specified (n=62)     

Yes 61 98% 

Unclear 1 2% 

Potential biases or confounders listed and accounted for in 

the statistical analysis (n=62) 
    

Yes 36 58% 

Unclear (not fully listed) 18 29% 

Not reported 8 13% 
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Figure 3.1. The PRISMA flow diagram of the scoping review of literature on the age-dependency 

of antimicrobial resistance of fecal bacteria in animals. n, number of studies. 
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Figure 3.2. Bubble plot showing the number of published studies of age-dependent antimicrobial 

resistance in food animals by decade from the 1970s to 2010s (2000-November 2018). The bubble 

size is proportional to the number of studies in that decade. A total of 62 studies were identified 

and included in the analysis. 
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Figure 3.3. Distribution of the study design and animal species in the studies from which the data on the age-dependency of antimicrobial 

resistance of fecal bacteria in animals were extracted in this review. n, number of studies. 
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Figure 3.4. Age-dependent antimicrobial resistance dynamics in cattle. (A) Percentage of cattle yielding antimicrobial-resistant fecal E. 

coli by age (data from n=10 studies). (B) Percentage of antimicrobial-resistant fecal E. coli by age (data from n=7 studies). (C) 
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Abundance of antimicrobial-resistant fecal E. coli (CFU/g) by age (data from n=2 studies). Plotted individual observations represent 

antimicrobial resistance to individual drugs (AMC, amoxicillin-clavulanic acid; AMP, ampicillin; APR, apramycin; CHL, 

chloramphenicol; CIP, ciprofloxacin; CRO, ceftriaxone; CST, colistin; CTX, cefotaxime; DOX, doxycycline; ERFX, enrofloxacin; 

ERY, erythromycin; FLO, florfenicol; FLU, flumequine; FOX, cefoxitin; GEN, gentamicin; NAL, nalidixic acid; NEO, neomycin; 

OCT, oxytetracycline; SPT, spectinomycin, STR, streptomycin; SUL, sulfamethoxazole; SXT, trimethoprim-sulfonamides; TET, 

tetracycline; TIO, ceftiofur); MDR— multidrug resistance (to ≥3 drug classes). The blue trend lines with the confidence bands (the gray 

area around the blue line) are shown in A-C; these in each case were estimated using locally weighted scatterplot smoothing (LOESS). 
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Figure 3.5. Age-dependent antimicrobial resistance dynamics in production pigs. (A) Percentage of pigs yielding antimicrobial-resistant 

fecal E. coli by age (data from n=2 studies). (B) Percentage of antimicrobial-resistant fecal E. coli by age (data from n=13 studies). (C) 

Abundance of antimicrobial-resistant fecal E. coli (CFU/g) (data from n=2 studies). Plotted individual observations represent 
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antimicrobial resistance to individual drugs (AMC, amoxicillin-clavulanic acid; AMI, amikacin; AMP, ampicillin; APR, apramycin; 

CAR, carbadox; CARB, carbapenem; CAZ, ceftazidime; CEF, cephalothin; CFP, cefoperazone; CHL, chloramphenicol; CIP, 

ciprofloxacin; CLT, chlortetracycline; CRO, ceftriaxone; CTX, cefotaxime; CXM, cefuroxime; DOX, doxycycline; ERFX, 

enrofloxacin; FOX, cefoxitin; GEN, gentamicin; KAN, kanamycin; NAL, nalidixic acid; NEO, neomycin; NIT, nitrofurantoin; NOR, 

norfloxacin; STR, streptomycin; SUL, sulfamethoxazole; SXT, trimethoprim-sulfonamides; TET, tetracycline; TIO, ceftiofur). MDR— 

multidrug resistance (to ≥3 drug classes).  The blue trend lines with the confidence bands (the gray area around the blue line) are shown 

in A-C; these in each case were estimated using locally weighted scatterplot smoothing (LOESS). 
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Figure 3.6. Age-dependent antimicrobial resistance dynamics in poultry (broiler, layer, and turkey). (A) Broiler chicken, percentage of 

antimicrobial-resistant fecal E. coli (data from n=6 studies). (B) Broiler chicken, percentage of antimicrobial-resistant fecal Enterococcus 



72 

spp. (data from n=3 study). (C) Turkey and layer, percentage of antimicrobial-resistant fecal E. coli (data from n=2 study). (D) Turkey 

and layer, percentage of antimicrobial-resistant fecal Salmonella spp. (data from n=2 study). Plotted individual observations represent 

antimicrobial resistance to individual drugs (AMC, amoxicillin-clavulanic acid; AMI, amikacin, AMP, ampicillin; APR, apramycin; 

CAZ, ceftazidime; CEC, cefaclor, CEF, cephalothin; CEZ, cefazolin; CHL, chloramphenicol; CIP, ciprofloxacin; COL, colistin; CTX, 

cefotaxime; CXM, cefuroxime; DOX, doxycycline; ERFX, enrofloxacin; FEP, cefepime; FLO, florfenicol; FOX, cefoxitin; GEN, 

gentamicin; KAN, kanamycin; NAL, nalidixic acid; NEO, neomycin; OCT, oxytetracycline; PIP, piperacillin; Q-D, quinupristin–

dalfopristin; RIF, Rifampicin; SPT, spectinomycin; STR, streptomycin; SUL, sulfamethoxazole; SXT, trimethoprim-sulfamethoxazole; 

TET, tetracycline; TIO, ceftiofur; TMP, trimethoprim; TOB, tobramycin; TZP, piperacillin-tazobactam); MDR— multidrug resistance 

(to ≥3 drug classes). The blue trend lines with the confidence bands (the gray area around the blue line) are shown in A-B; these in each 

case were estimated using locally weighted scatterplot smoothing (LOESS). 
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Figure 3.7. The average percentages of antimicrobial resistance genes of individual classes in the resistome in fecal samples of 

production pigs by age (data from n=5 studies; the average in each study is plotted). 
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 Supplementary materials  

Table S 3.3  Characteristics of the individual studies included in the review (n=62).  

Characteristics of the individual studies included in the review (n=62). 

Species 

(number of 

studies) 

Author name 

(last), year 
Country Studied animal age Study design Study type 

Bacteria 

tested 
Sample 

AMR 

analysis 

Cattle 

(n=22) 
Mir et al., 2018 USA Birth-12 months Longitudinal Observational E. coli 

Fecal, 

individual 

Phenotypic, 

genotypic 

 
Pereira et al., 2018  USA Birth-6 weeks Trial Experimental Microbiota 

Fecal, 

individual 

Microbiome 

 taxa 

 

Maynou et al., 

2017  
Spain 6 weeks and 1 year Trial Experimental E. coli 

Fecal, 

individual 
Phenotypic 

 

Adler et al., 2017  Israel 

≤ 4 months, 5-10 

months, 11-24 

months, ≥ 25 months 

Cross-

sectional 
Observational E. coli 

Fecal, 

individual 
Phenotypic 

 
Ohta et al., 2017  USA 

Sampling days (0, 4, 

8, 14, 20, 26) 
Trial Experimental 

Salmonella 

spp. 

Fecal, 

individual 
Phenotypic 

 

Hutchinson et al., 

2017  
USA 110 days-6 months Longitudinal Observational E. coli 

Fecal, 

individual 

Phenotypic, 

genotypic 

 

Catry et al., 2016  Belgium 

Calves (4 and 23 

weeks), beef cattle 

(6-24 months), dairy 

cattle 

Longitudinal Observational E. coli 
Fecal, 

individual 
Phenotypic 

 

Pereira et al., 2015  USA 
3-5 months and 14-19 

months 

Cross-

sectional 
Observational 

E. coli, 

Salmonella 

spp. 

Fecal Phenotypic 

 

Brunton et al., 

2014 
UK Birth-13 weeks Trial Experimental E. coli 

Fecal, 

individual 

Phenotypic, 

genotypic 

 

Mazurek et al., 

2013 * 
Poland 

Cattle (beef and 

dairy); Pig (6 to 8 

weeks) 

Cross-

Sectional 
Observational E. coli 

Fecal, 

individual 

Phenotypic, 

genotypic 
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Watson et al., 

2012  
UK Day 1-day 161  Longitudinal Observational E. coli 

Fresh floor 

fecal 

samples 

Phenotypic, 

genotypic 

 

Alexander et al., 

2011  
Canada 

Beef cattle sampling 

days (1-175 days) 
Trial Experimental AMR genes 

Fecal, 

individual 
Genotypic 

 

Sharma et al., 

2008  
Canada 

6.5 months-11 

months 
Trial Experimental E. coli 

Fecal, 

individual 

Phenotypic, 

genotypic 

 

Berge et al., 2006  USA 4 weeks Trial Experimental E. coli 

Rectal fecal 

samples, 

individual 

Phenotypic 

 

Liebana et al., 

2006  
UK ~ 1 months Longitudinal Observational E. coli 

Fecal, 

individual 

Phenotypic, 

genotypic 

 

Hoyle et al., 2006  UK 

Calves (1-8 weeks); 

Cattle (≤30 months 

and ≥ 30 months) 

Longitudinal Observational E. coli 

Fecal, 

individual, 

and 

environment

al 

Phenotypic, 

genotypic 

 

Donaldson et al., 

2006  
USA 2.5-19 weeks Longitudinal Observational E. coli 

Fecal, 

individual 

Phenotypic, 

genotypic 

 
Berge et al., 2005  USA Birth-6 weeks Longitudinal Observational E. coli 

Fecal, 

individual 
Phenotypic 

 
Hoyle et al., 2005  UK 1-21 weeks Longitudinal Observational E. coli 

Fecal, 

individual 

Phenotypic, 

genotypic 

 
Hoyle et al., 2004  UK Birth-21 weeks Longitudinal Observational E. coli 

Fecal, 

individual 
Phenotypic 

 
Hoyle et al., 2004  UK 1-8 months Longitudinal Observational E. coli 

Fecal, 

individual 
Phenotypic 

 

Khachatryan et al., 

2004  
USA Pre-weaned calves 

Cross-

sectional 
Observational E. coli 

Fecal, 

individual 

Phenotypic, 

genotypic 

Pig (n=24) 
Ciesinsk et al., 

2018  
Germany 

24 days (one day 

before weaning), 38 

days (two weeks after 

weaning), 52 days 

(four weeks after 

weaning) 

Trial Experimental E. coli 
Fecal, 

individual 
Phenotypic 



76 

 

Randall et al., 

2018  
UK 

8 weeks, 17 weeks, 

24 weeks, 20 months 
Longitudinal Observational 

E. coli and 

mcr-1 gene 

Fecal, 

individual 

Phenotypic, 

genotypic 

 

Mollenkopf et al., 

2018  
USA Piglets to Finisher Longitudinal Observational 

Enterobacteri

aceae/blaIMP-6 

Fecal, 

Individual 
Genotypic 

 

Cameron-Veas et 

al., 2018  
Spain Day 7, 9, 14 and 187 Longitudinal Observational 

Salmonella 

spp. 

Fecal, 

individual 

Phenotypic, 

genotypic 

 
Lynch et al., 2018  Ireland Piglet Longitudinal Observational 

Salmonella 

spp. 

Fecal, 

individual 
Phenotypic 

 

Græsbøll et al., 

2017  
Denmark 

Nursery (4 to 7 

weeks) 

Randomized 

trial 
Experimental E. coli 

Fecal, 

individual 
Phenotypic 

 

Dohmen et al., 

2017  

The 

Netherla

nds 

Birth, 6, 12, 18 

months 
Longitudinal Observational E. coli 

Fecal, 

individual 

Phenotypic, 

genotypic 

 

Pruthvishree et al., 

2017  
India 

1 month, ~2-month, 

2-3 month 

Cross-

sectional 
Observational E. coli 

Fecal, 

individual 

Phenotypic, 

genotypic 

 

Fernandes et al., 

2016  
Portugal 

Piglet, weaner, 

finisher, sows 
Longitudinal Observational 

Salmonella 

spp. 

Fecal swab, 

individual 

Phenotypic, 

genotypic 

 

Cameron-Veas et 

al., 2016 
Spain 

Piglets (7-6 days) and 

finisher 
Trial Experimental E. coli 

Fecal swab, 

individual 
Phenotypic 

 

von Salviati et al., 

2014  
Germany Fattening pig  Longitudinal Observational E. coli 

Fecal, 

individual 

and pooled 

Phenotypic, 

genotypic 

 

Hansen et al., 

2013  
Denmark 

Piglet, nursery, 

weaner, finisher, 

sows 

Longitudinal Observational E. coli 
Fecal, 

individual 

Phenotypic, 

genotypic 

 

Quintana-Hayashi 

et al., 2012  
USA 

Nursery, finisher, 

farrowing 
Longitudinal Observational 

Campylobact

er spp. 

Fecal, 

individual 
Phenotypic 

 

Rosengren et al., 

2008  
Canada 

Nursery, grower-

finisher, and sows 

Cross-

sectional 
Observational 

Salmonella 

spp. 
Fecal, Phenotypic 

 

Alali et al., 2008  USA Farrow-finish Longitudinal Observational E. coli 

Composite 

fresh 

samples, 

pooled 

Phenotypic 

 

Kobashi, et al., 

2008  
Japan 4-6 weeks Trial Experimental E. coli 

Fecal, 

individual 

Phenotypic, 

genotypic 
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Dewulf et al., 

2007  
Belgium 

Nursery, grower, 

finisher 
Longitudinal Observational E. coli 

Fecal, 

individual 
Phenotypic 

 

Scott et al., 2005  USA Farrow-finish Longitudinal Observational E. coli 

Composite 

fecal 

samples 

Phenotypic 

 

Butaye et al., 1999  Belgium 

Pig (piglet, 

grower/finisher, and 

sows); poultry (9 and 

32 days) 

Cross-

sectional 
Observational 

Entero-

coccus spp. 

Fecal, 

individual 

Phenotypic, 

genotypic 

 

Mathew et al., 

1999  
USA 

Production pigs (7-63 

days) and sows 
Longitudinal Observational E. coli 

Fecal swab, 

individual 
Phenotypic 

 
Moro et al., 1998a  USA 

Grower, finisher, gilt, 

and sows 

Cross-

sectional 
Observational E. coli 

Fecal, 

individual 
Phenotypic 

 

Mathew et al., 

1998b  
USA 

Piglets (7-63 days) 

and sows 
Longitudinal Observational E. coli 

Fecal, 

individual 
Phenotypic 

 

Langlois et al., 

1988  
USA 

Weaner, grower, 

finisher, adults (11-

24 months) and sows 

Longitudinal Observational E. coli 

Rectal 

swab, 

individual 

Phenotypic 

 

Sogaard, 1973  Denmark Piglet, finisher, sows 
Cross-

sectional 
Observational E. coli 

Rectal 

swab, 

individual 

Phenotypic 

Poultry 

(broiler, 

layer or 

turkey, 

n=14) 

Baron et al., 2018  France 2, 7 and 77 days Longitudinal Observational E. coli 
Fecal, 

individual 

Phenotypic, 

genotypic 

 
Hume and  USA 

Day 1-6 weeks 

(weekly samples) 
Trial Experimental 

Entero-

coccus spp. 

Fecal, 

Cecum 
Phenotypic 

 
Trung et al., 2017  Vietnam 20 weeks, > 20 weeks 

Cross-

sectional 
Observational E. coli 

Fecal, 

individual 

Phenotypic, 

genotypic 

 

Laube et al., 2013 Germany 1-35 days Longitudinal Observational E. coli 

Cloacal 

swab, 

Individual 

Phenotypic, 

genotypic 

 

Schwaiger et al., 

2013  
Germany 21 days and 35 days 

Cross-

sectional 
Observational E. coli Fecal, floor 

Phenotypic, 

genotypic 
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Ozaki et al., 2011  Japan 2 days-50 days Longitudinal Observational E. coli 

Fresh 

Dropping 
Phenotypic 

 

da Costa et al., 

2009  
Portugal 2-33 days Trial Experimental 

E. coli and 

Enterococcus 

spp. 

Cloacal 

swab, 

individual 

Phenotypic 

 

Garcia-Migura et 

al., 2007  
UK 4 days-35 days Longitudinal Observational 

Enterococcus 

spp. 

Fecal, 

pooled 

Phenotypic, 

genotypic 

 
Santos et al., 2007  USA 3 weeks and 9 weeks 

Cross-

sectional 
Observational 

Salmonella 

spp. 

Fecal and 

litter sample 
Phenotypic 

 
Li et al., 2007  USA 18-72 weeks 

Cross-

sectional 
Observational 

Salmonella 

spp. 

Fecal, 

pooled 
Phenotypic 

 

Welton et al., 

1998b 
USA 24 days-130 days Longitudinal Observational 

Enterococci 

spp. 

Cloacal, 

individual 
Phenotypic 

 
Dubel et al., 1982  USA 1-28 weeks 

Cross-

sectional 
Observational E. coli 

Cloacal, 

individual 
Phenotypic 

 

Nakamura et al., 

1982  
Japan 5-360 days Longitudinal Observational E. coli 

Cloacal 

swab, 

individual 

Phenotypic 

 

Hinton et al., 1982  UK 1-100 days Trial Experimental E. coli 

Cloacal 

swabs, 

individual 

Phenotypic 

Dog (n=2) Bang et al., 2017  
South 

Korea 

3-6 weeks, 9-28 

weeks, 2-6 years and 

≥9 years 

Cross-

sectional 
Observational 

Enterococcus 

spp. 

Fecal, 

individual 
Phenotypic 

 Siugzdaite et al., 

2017  
Lithuania 

≤1 year, 1-5 years, 6-

10 years, ≥10 years 

Cross-

sectional 
Observational 

Staphylococc

i spp. 

Fecal, 

individual 

Phenotypic, 

genotypic 
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Table S 3.4  Quality assessment of the individual studies included in the review (n=62). 

Quality assessment of the individual studies included in the review (n=62). 

Species 

(number of 

studies) 

Author name (last), 

year 
Country 

1
. 

W
er

e 
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e 
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d
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 c
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3
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?
 

4
. 
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h
e 

st
u
d
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b
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n
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, 

w
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e 
in
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u
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a 
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n
? 

5
. 
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h
e 
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u
d
y
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x
p
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ta
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w
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e 
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e 
g
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u
p
s 

(t
re
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m
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t 
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d
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n
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o
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) 
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d
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5
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e 
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6
. 

W
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7
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W
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o
u
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o
m
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d
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Cattle (n=22) Mir et al., 2018  USA Yes Yes No Yes N/A N/A Yes No Yes 

 Pereira et al., 2018  USA Yes Yes No N/A Yes Yes Yes No Yes 

 Maynou et al., 2017  Spain Yes Yes No N/A Yes Unclear Yes No Yes 

 Adler et al., 2017  Israel Yes Yes No No N/A N/A Yes No Yes 

 Ohta et al., 2017  USA Yes Yes No N/A Yes Yes Yes No Yes 

 

Hutchinson et al., 

2017 
USA Yes Yes No Yes N/A N/A Yes No Yes 

 Catry et al., 2016  Belgium Yes Yes No Yes N/A N/A Yes No Partial 

 Pereira et al., 2015  USA Yes Yes Yes Yes N/A N/A Yes No Yes 

 Brunton et al., 2014  UK Yes Yes Yes N/A Yes Unclear Yes No Yes 

 Mazurek et al., 2013*  Poland Yes Yes No Partial N/A N/A Yes Unclear Partial 

 Watson et al., 2012  UK Yes Yes No Yes N/A N/A Yes No Yes 

 

Alexander et al., 

2011 
Canada Yes Yes No N/A Yes Unclear Yes No Partial 

 Sharma et al., 2008 Canada Yes Yes No N/A Yes Yes Yes No Partial 

 Berge et al., 2006  USA Yes Yes No N/A Yes Unclear Yes No Yes 

 Liebana et al., 2006  UK Yes Yes Yes Partial N/A N/A Yes No Partial 

 Hoyle et al., 2006  UK Yes Yes No Partial N/A N/A Yes No Partial 



80 

 

Donaldson et al., 

2006 
USA Yes Yes No Yes N/A N/A Yes No Yes 

 Berge et al., 2005  USA Yes Yes No Yes N/A N/A Yes No Yes 

 Hoyle et al., 2005  UK Yes Yes No Partial N/A N/A Yes No Yes 

 Hoyle et al., 2004a  UK Yes Yes No Partial N/A N/A Yes No Yes 

 Hoyle et al., 2004b  UK Yes Yes No Partial N/A N/A Yes No Yes 

 

Khachatryan et al., 

2004  
USA Yes Yes No Partial N/A N/A Yes No Partial 

Pig  

(n=24) 
Ciesinsk et al., 2018  Germany Yes Yes No N/A Yes Yes Yes No Yes 

 Randall et al., 2018  UK Yes Yes No Partial N/A N/A Yes No Yes 

 

Mollenkopf et al., 

2018  
USA Yes Yes No No N/A N/A Yes Unclear 

Not 

Reported 

 

Cameron-Veas et al., 

2018  
Spain Yes Yes No Yes N/A N/A Yes No Yes 

 Lynch et al., 2018  Ireland Yes Yes No No N/A N/A Yes No Yes 

 Græsbøll et al., 2017  Denmark Yes Yes No N/A Yes Yes Yes No Yes 

 

Dohmen et al., 2017  

The 

Netherla

nds 

Yes Yes No Yes N/A N/A Yes No Yes 

 

Pruthvishree et al., 

2017  
India Yes Yes Yes No N/A N/A Yes No Yes 

 Fernandes et al., 2016  Portugal Yes Yes No Partial N/A N/A Yes No Partial 

 

Cameron-Veas et al., 

2016  
Spain Yes Yes No N/A Yes Yes Yes No Yes 

 

von Salviati et al., 

2014  
Germany Yes Unclear No Partial N/A N/A Yes Unclear Partial 

 Hansen et al., 2013  Denmark Yes Yes No No N/A N/A Yes No Yes 

 

Quintana-Hayashi et 

al., 2012  
USA Yes Yes Yes Yes N/A N/A Yes No Yes 

 

Rosengren et al., 

2008  
Canada Yes Yes No Partial N/A N/A Yes No Yes 

 Alali et al., 2008  USA Yes Yes No Yes N/A N/A Yes No Yes 

 Kobashi, et al., 2008  Japan Yes Yes No N/A Yes Unclear Yes No Yes 
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 Dewulf et al., 2007  Belgium Yes Yes Yes Yes N/A N/A Yes No Yes 

 Scott et al., 2005  USA Yes Yes No Yes N/A N/A Yes No Yes 

 Butaye et al., 1999ǂ Belgium Yes Yes No Partial N/A N/A Yes Unclear Partial 

 Mathew et al., 1999  USA Yes Yes No Partial N/A N/A Yes Unclear Partial 

 
Moro et al., 1998a  USA Yes Yes No Partial N/A N/A Yes No 

Not 

Reported 

 Mathew et al., 1998  USA Yes Yes No Partial N/A N/A Yes Unclear Yes 

 Langlois et al., 1988  USA Yes Yes No Yes N/A N/A Yes No Partial 

 
Sogaard, 1973  Denmark Unclear Unclear No No N/A N/A Unclear Unclear 

Not 

Reported 

Poultry 

(broiler, 

layer or 

turkey, n=14) 

Baron et al., 2018  France Yes Yes No No N/A N/A Yes Unclear 
Not 

Reported 

 

Hume and Dunskey, 

2017  
USA Yes Yes No N/A Yes Unclear Yes No Partial 

 Trung et al., 2017  Vietnam Yes Yes No Yes N/A N/A Yes No Yes 

 Laube et al., 2013   Germany Yes Yes No Partial N/A N/A Yes No Partial 

 

Schwaiger et al., 

2013 
Germany Yes Yes No Partial N/A N/A Yes No Partial 

 Ozaki et al., 2011  Japan Yes Yes No No N/A N/A Yes No Yes 

 da Costa et al., 2009   Portugal Yes Yes No N/A Yes Unclear Yes No Yes 

 

Garcia-Migura et al., 

2007  
UK Yes Yes No No N/A N/A Yes No 

Not 

Reported 

 Santos et al., 2007  USA Yes Yes No No N/A N/A Yes Unclear Partial 

 Li et al., 2007  USA Yes Yes No Partial N/A N/A Yes No Partial 

 Welton et al., 1998  USA Yes Yes No Partial N/A N/A Yes No Partial 

 
Dubel et al., 1982  USA Yes Yes No No N/A N/A Yes Unclear 

Not 

Reported 

 

Nakamura et al., 

1982  
Japan Unclear Unclear No No N/A N/A Yes Unclear 

Not 

Reported 

 
Hinton et al., 1982  UK Yes Yes No N/A Unclear Unclear Yes No 

Not 

Reported 

Dog (n=2) Bang et al., 2017  Korea Yes Yes No No N/A N/A Yes No Yes 
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Siugzdaite et al., 

2017  
Lithuania Yes Yes No No N/A N/A Yes Unclear Yes 

Yes- quality criteria met; No- quality criteria not met; Partial- not entirely mentioned; Unclear- insufficient information to evaluate 

quality criteria; N/A- not applicable, n-number of studies 
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Table S 3.5   List of studies that were retained (n=62) for analysis in the scoping review. 

List of studies that were retained (n=62) for analysis in the scoping review. 

Species (number 

of studies) 

References Comments 

Cattle (n=22) (Hoyle et al., 2004a; Khachatryan et al., 2004; Hoyle et al., 2004a; Berge et al., 2005; Hoyle et 

al., 2005; Berge et al., 2006; Donaldson et al., 2006; Hoyle et al., 2006; Liebana et al., 2006; 

Sharma et al., 2008; Alexander et al., 2011; Watson et al., 2012; Mazurek et al., 2013*; Brunton 

et al., 2014; Pereira et al., 2015; Catry et al., 2016; Adler et al., 2017; Hutchinson et al., 2017; 

Maynou et al., 2017; Ohta et al., 2017; Mir et al., 2018; Pereira et al., 2018) 

*cattle and pig 

Pig (n=24) (Sogaard, 1973; Langlois et al., 1988; Mathew et al., 1998; Moro et al., 1998; Butaye et al., 

1999*; Mathew et al., 1999; Scott et al., 2005; Dewulf et al., 2007; Alali et al., 2008; Kobashi et 

al., 2008; Rosengren et al., 2008a; Quintana-Hayashi and Thakur, 2012; Hansen et al., 2013; von 

Salviati et al., 2014; Cameron-Veas et al., 2016; Fernandes et al., 2016; Dohmen et al., 2017; 

Graesboll et al., 2017; Pruthvishree et al., 2017; Cameron-Veas et al., 2018; Ciesinski et al., 

2018; Lynch et al., 2018; Mollenkopf et al., 2018; Randall et al., 2018) 

*pig and poultry 

Poultry (n=14) (Dubel et al., 1982; Hinton et al., 1982; Nakamura et al., 1982; Welton et al., 1998b; Garcia-

Migura et al., 2007; Li et al., 2007; Santos et al., 2007; da Costa et al., 2009; Ozaki et al., 2011; 

Laube et al., 2013; Schwaiger et al., 2013; Hume and Donskey, 2017; Trung et al., 2017; Baron 

et al., 2018) 

 

Dog (n=2) (Bang et al., 2017; Siugzdaite and Gabinaitiene, 2017)  



84 

Chapter 4 - A Longitudinal Study of the Gut Microbiome, 

Mycobiome, and Antimicrobial Resistance in Cohorts of Production 

Pigs and Breeding Sows 

 

 Abstract 

The objectives were to compare the fecal microbiome and mycobiome taxonomic 

compositions and antimicrobial resistance (AMR) dynamics in fecal bacteria between cohorts of 

production pigs and breeding sows. The study included a cohort of production pigs (from 2 days 

to 6 months old and balanced by gender, n=12) and two cohorts of breeding sows (from 3 weeks 

old to first farrowing/weaning at 1-year-old, n=6, and n=12 cohorts). The cohorts were fed corn-

soybean based diets (the diets varied in composition) and raised in several physical environments 

(barns) throughout their life-span. Fecal samples were collected per rectum from each animal at 

nine age-points. Taxonomic structures of the fecal microbiome and mycobiome were evaluated 

using 16S rRNA gene and internal transcribed spacer (ITS) sequencing, respectively (n=8 

production pigs and n=8 breeding sows). The phenotypic AMR at each age-point was evaluated 

based on the growth of fecal bacteria (coliforms as indicator Gram-negative and enterococci as 

indicator Gram-positive bacteria) on selective agar media supplemented with antimicrobial 

drugs. In a sub-study (n=2 production pigs) the fecal resistome was also assessed using a shotgun 

metagenomic approach. Our data showed the age dynamics of the microbiome and mycobiome 

compositions and AMR were comparable between the cohorts of production pigs and breeding 

sows. The fecal microbiome composition dynamics and changes in the evaluated descriptors of 

antimicrobial susceptibility of fecal bacteria from early-life to young-adult appeared similar 
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between the cohorts. Thus, in pigs, age could be one of the major factors affecting the microbial 

diversity and composition and along the phenotypic and genotypic AMR of fecal bacteria in this 

monogastric host. 
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 Introduction 

Antimicrobial resistance presents one of the major global threats to public health. 

Exposure to antimicrobials increases the level of antimicrobial resistance (AMR) in the gut 

commensal flora of both humans and animals. Several studies have reported the age-related 

colonization and diversification of the microbiome in pigs, starting from early life (Inoue et al., 

2005; Kim et al., 2012; Looft et al., 2012b; Mann et al., 2014; Mach et al., 2015). Similarly, age 

appears to be a dominant factor affecting gut colonization with AMR bacteria, with higher host-

level prevalence and within-host abundance of AMR enteric/fecal bacteria at younger ages in 

cattle and pigs (Hoyle et al., 2004a; Hoyle et al., 2004b) and human (Robey et al., 2017a). In the 

early 1960s, (Smith, 1961) demonstrated that human fecal bacterial composition varies 

enormously with age, with the bacterial flora changing from E. coli, Clostridium spp., and 

Streptococci spp. to Lactobacilli and Bacteroides. Another study revealed an age related AMR 

gene abundance, number or types, and diversity in humans (Lu et al., 2014b). 

Longitudinal studies of indicator fecal bacteria, such as E. coli and Enterococcus spp. in 

animals, have expanded our understanding of the temporal dynamics of animal-level prevalence 

and within-animal abundance of AMR in fecal bacteria (Berge et al., 2006; Adator et al., 2020). 

However, such studies may not fully represent the AMR dynamics in complex natural systems of 

microbial communities typically carried by the host populations. Several studies have shown the 

presence of AMR genes in the commensal gut microbiome in humans (Sommer et al., 2009a; Hu 

et al., 2013; Ravi et al., 2015) as well in pigs (Xiao et al., 2016b). However, the role of the 

microbiome structure in the evolution, persistence, and dissemination of AMR is poorly 

understood, and many key-related ecological questions remain unanswered. The recent 

advancement of metagenomics enables the detection of the majority of AMR genes present and 
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comparing the microbiome and AMR genes in different samples (Ma et al., 2016; Thomas et al., 

2017). For instance, metagenomic approaches have been used to evaluate the entire microbiome 

and their associated AMR genes (i.e., resistome) in different livestock production environments 

(Agga et al., 2015a; Noyes et al., 2016b; Yang et al., 2016b; Rovira et al., 2019).  

While several earlier studies have focused on the bacterial component of the fecal 

microbial community, recent studies show the fungal component—mycobiome—is also complex 

and multifaceted, and influences host health (Mukherjee et al., 2015). Previous studies showed 

dramatic shifts between birth to day 35 of age in both fecal bacterial and fungal communities in 

piglets (Summers et al., 2019; Arfken et al., 2020); although the bacterial community diversity is 

more predictable while the mycobiome composition demonstrated a significant discrease in 

diversity over time. Fungal taxonomic composition and diversity and their interaction with 

commensal bacterial communities in the gut of pigs are mostly unknown.  

The culture-dependent and culture-independent methods are used for profiling microbial 

species and AMR in fecal samples. The culture-dependent methods have an advantage of 

isolating single microbial species and their individual strains for detailed analyses, but the data 

do not truly represent the entire target microbial community and AMR gene diversity in the 

source population. Whereas, culture-independent methods, such as shotgun metagenomics, in 

which the microbial community DNA from a fecal sample is extracted and sequenced, help to 

understand the full microbial community structure, and evaluate AMR gene diversity. However, 

the results derived with such techniques depend on the depth of sequencing and then available 

bioinformatic pipelines for processing of sequencing data. The limitations include not being able 

to detect bacterial genes, including AMR genes, carried by low abundant species in the microbial 

community (Zaheer et al., 2018). In our approach, metagenomics was coupled with culture-based 
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methods to evaluate the presence and composition of AMR in the fecal bacterial populations at 

an ecological level and provide a broader picture. 

While extensive cross-sectional studies have been conducted to understand AMR gene 

abundance and diversity in different food animals (Pollock et al., 2020), these studies do not 

provide details of the dynamics of AMR gene diversity and composition in gut microbial 

communities in the different age groups of food animals. We hypothesized that fecal microbiome 

and mycobiome taxonomic compositions and AMR dynamics in a monogastric host are a 

function of the host age. The age is a stronger driver of the dynamics than the production 

environment, in the case of a farm-animal host. Therefore, the objectives of this study were to 

elucidate and compare the dynamics of fecal microbiome and mycobiome taxonomic 

compositions and phenotypic AMR in cohorts of production pigs and breeding sows.  

 Materials and methods 

 Study design and animals 

A production pig cohort (2 days to 6 months old, n=12 balanced by gender), born and 

raised in the Swine Teaching and Research Center of Kansas State University, was followed 

throughout all the production stages. The pigs were fed a corn grain-based diet designed for each 

growth stage. The pigs were allowed to nurse from birth to 21 days of age and then had access to 

feed and water as ad libitum. A total of 108 fecal samples were collected longitudinally from 12 

pigs. From each animal, a fecal sample was taken at each of the following age-points: day 2 (48 

hours after birth in the farrowing barn), day 22 (weaning), and after moving to a nursery barn at 

23 days, on day 26 (3 days after moving to the nursery barn and starting a nursery diet), day 40 

(a day before the next diet change in the nursey barn), day 54 (14 days after the diet change), day 

77 (a day before moving to a finisher barn), day 93 (14 days after moving to the finisher barn and 
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introduction of a finisher diet; diet was changed one more time at 114 days), day 128 (2 weeks 

after the diet change), and day 179 (day of harvest) (Figure 4.1). 

Similarly, two cohorts of breeder sows (21 days to 371 days old, first cohort n=6; second 

cohort n=12) were followed from arrival in the Swine Teaching and Research Center of Kansas 

State University through the first farrowing and weaning. The pigs were fed mainly corn grain-

based diet designed for each growth stage. A total of 162 fecal samples were collected 

longitudinally from 18 pigs. From each animal, a fecal sample was taken at each of the following 

age-points: day 21 (at the time of purchase/entering the first growing barn), day 42 days (21 days 

after entry into the first growing barn), day 70 (a day before moving to a second growing barn), 

day 84 (14 days after moving to the second growing barn), day 154 (a day prior to moving to the 

breeding barn), day 224 (at first breeding/artificial insemination – parity 1), day 343 (7 days 

prior to moving to the farrowing barn), day 350 (on the day of parturition) and day 371 (on the 

day weaning) (Figure 4.1). Fecal samples were kept on ice after each sampling, and whole feces 

and fecal aliquots mixed with 50% glycerol stored at -80°C until DNA extraction and 

quantification of total and antimicrobial-resistant coliforms and enterococci were performed. 

 Fecal DNA extraction  

Fecal DNA was extracted using the protocol published by (Yu and Morrison, 2004) and  

(Korte et al., 2020). Briefly, fecal samples were transferred into round-bottom tubes (2 mL) 

containing 800 µL of lysis buffer and a single steel bead (0.5 cm diameter). Samples were then 

heated at 70°C for 20 minutes with vortexing, then homogenized using a TissueLyser II (Qiagen, 

Venlo, the Netherlands) for 3 minutes at 30 per second, and then centrifuged at 5000 × g for 5 

minutes at room temperature. The supernatant then transferred into the new Eppendorf tube (1.5 

mL), added with 200 µL of 10 mM ammonium acetate, incubated for 5 minutes on ice, and then 
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centrifuged at 5000 × g for 5 minutes. The supernatant (up to 750 µL) was mixed with an equal 

volume of isopropanol, incubated for 30 minutes on ice, and centrifuged at 16,000 × g at 4°C for 

15 minutes. The recovered DNA pellet was washed and resuspended in 150 µL of Tris-EDTA. 

After the addition of proteinase-K (15 µL) and Buffer AL (200 µL) (DNeasy Blood and Tissue 

kit, Qiagen, Germany), samples were incubated at 70°C for 10 minutes. In each tube, 200 µL of 

100% ethanol added, vortexed, transferred to a spin column and processed according to the 

manufacturer’s instructions (Qiagen, Germany). The DNA concentration were measured via 

fluorometry (Qubit 2.0, Life Technologies, Carlsbad, CA) using Quant-iT broad range (or high 

sensitivity) dsDNA reagent kits (Invitrogen, Carlsbad, CA). 

 16S rRNA library preparation and sequencing 

Extracted pig feces DNA were processed at the University of Missouri Metagenomics 

Center. The 16s rDNA amplicons (V4 region of the 16S rRNA gene) were created with universal 

primers (U515F/806R) (Caporaso et al., 2011; Walters et al., 2011) against the V4 region 

(flanked by Illumina standard adapter sequences (Illumina Inc CA, USA). Oligonucleotide 

sequences are available at proBase (database of rRNA-targeted oligonucleotide probes and 

primers) (Loy et al., 2007). Dual-indexed forward and reverse primers were used in all reactions. 

Metagenomic DNA (100 ng) was used, and PCR was performed in 50 µL reactions with primers, 

dNTPs and DNA polymerase. PCR plate was transferred to the thermocycler for amplification 

(98°C (3 minutes) + [98°C (15 seconds) + 50°C (30 seconds) + 72°C (30 seconds)]× 25 cycles+ 

72°C (7 minutes). After amplification completion, amplicon pools (5 µL/reaction) were 

combined, mixed, and purified by adding of Axygen Axyprep MagPCR clean-up beads (50 µL 

beads were thoroughly mixed with 50 µL amplicons) and incubated for 15 minutes at room 

temperature. The plate was placed on the magnetic stand for 5 minutes until the supernatant was 
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cleared and then washed with 80% ethanol. The pooled amplicon was evaluated by using the 

Advanced Analytical Fragment Analyzer and quantified using Quant-iT HS dsDNA kits, and 

diluted based on Illumina’s standard protocol for sequencing (MiSeq instrument). 

 Sequencing data processing and bioinformatic analysis 

The amplicon sequencing data of taxonomic marker genes, such as the 16S rRNA gene in 

bacteria, internal transcribed spacer (ITS) region in fungi, and 18s rRNA gene in eukaryotes 

provides the community compositions (Callahan et al., 2016). The Division Amplicon Denoising 

Algorithm (DADA) enables taxonomic assignment without building into operational taxonomic 

units (OTUs), using a new quality-aware model of Illumina amplicon errors. This is termed the 

amplicon sequence variant (ASV) (also called exact sequence variants, ESVs) based analysis. 

The primers were designed to match to 5’ ends of the forward and reverse reads. The Cutadapt 

(Martin, 2011) algorithm was used to remove the primers at 5’end of forward reads. Read pairs 

were rejected if one read or the other did not match a 5’primer, and an error rate of 0.1 was 

allowed. Two passes were made over each read to ensure the removal of the second primer.  

Quality filtering, pairing, denoising, de-replication, and determination of count of ASVs 

was performed with the Division Amplicon Denoising Algorithm (DADA2) plugin (Callahan et 

al., 2016) in the QIMME2 platform. For quality trimming, forward and reverse reads were 

truncated to 150 bases and bacterial 16s rRNA gene were subsetted to retain only those 

sequences that are between 249 and 275 nucleotides inclusive. Taxonomy was assigned to the 

sequences using the SILVA database v132 (Pruesse et al., 2007) of 16S rRNA sequences of 

bacterial species of different taxonomy using the classify-sklearn procedure. The ASVs 

identified other than bacteria were removed from further analysis. For the rarification, if there 

were more 10,000 counts in one or more samples, they are rarefied to the value of the smallest 
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sample greater than 10,000 minus 1. Similarly, to identify fungal ASVs, the internal transcribed 

spacer (ITS) region was sequenced utilizing primers ITS3 and ITS4. The Cutadapt algorithm 

(Martin, 2011) was used to remove the primers at both ends of the contigs and cull contigs that 

did not contain both primers. The QIMME2 DADA2 plugin was used to perform similar quality 

filtering and ASV identification, similar to that described for the bacterial taxonomic assignment. 

Individual sample read count was normalized to 27,392 and used analysis of the gut microbiome 

and mycobiome taxonomic compositions.  

 Resistome analysis (pilot study) 

Fecal samples (n=18) from two production pigs at nine age-points (days 2, 22, 26, 40, 54, 

94, 128, and 179) were subjected to shotgun metagenomic sequencing for evaluating the age 

related dynamics of the fecal resistome in pigs. 

 Fecal DNA extraction, library preparation, and sequencing for resistome analysis 

Fecal DNA was extracted from each sample using the DNeasy PowerSoil Pro Kit 

(Qiagen, Germany) according to the manufacturer instructions. Briefly, 250 mg of the fecal 

samples were placed in power bead tubes and vortexed for 10 minutes at maximum speed and 

then centrifuged (15,000x g for 1 minute). After centrifugation, 600 µL supernatant was 

transferred into position 2 of the rotor adapter, which was then placed into the centrifuge of the 

Qiacube (Qiagen, Germany). All subsequent steps, including the removal of inhibitory 

substances, were performed on the Qiacube following the DNeasy PowerSoil Pro Kit (Qiagen, 

Germany) IRT method. DNA concentration and quality were determined by fluorometric 

quantification QubitTM (Thermo Fisher Scientific, Germany), and quality was assessed by 

measuring the A260/A280 ratio using Nanodrop 1000 Spectrophotometer (Thermo Fisher 

Scientific, Germany). After DNA extraction, libraries were constructed using the Qiagen QIAseq 
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FX DNA Kit (Qiagen, Germany) with 100 ng individual DNA samples. Paired-end sequencing 

was performed on the NovaSeq system (Novogene, Inc., CA, USA). 

 Resistance gene analysis 

The sequencing reads were aligned to the AMR genes database MEGAREs to identify 

the resistome composition using AMR++ pipelines (Lakin et al., 2017). Briefly, raw sequence 

reads were processed, and low-quality reads and adapter contamination were removed using 

Trimmomatic (Bolger et al., 2014) and merged reads were mapped using Burrows-Wheeler-

Alignment (BWA) (Li and Durbin, 2009) and then converted to SAM formatted file using 

Samtools (Li et al., 2009) which was then analyzed through ResistomeAnalyzer. The counts of 

aligned sequence reads were recorded at the gene (e.g., TEM-77), group (gene level group for 

that sequence, e.g., SHV β-lactamase, MCR-1), the mechanism (the biological mechanism of 

resistance, e.g., penicillin-binding protein), and class level major antimicrobial chemical class, 

e.g., β-lactams, aminoglycosides). MEGARes, provide explicit annotation and facilitates 

hierarchical statistical analysis at the population level. It is count-based, similar to microbiome 

analysis, and the annotation graph contains no cycles and contains only three hierarchical levels 

(Lakin et al., 2016). The AMR gene sequencing depth and length were normalized before 

performing the statistical analysis on ARGs count data. 

 Phenotypic AMR in fecal bacteria 

A total of 270 samples (n=108 fecal samples from production pigs (n=12/age-points), 

n=162 from breeding sows (n=18/age-points)) were subjected to bacteriological culture and 

quantified for coliforms and enterococci by spiral plating using an Eddy Jet 2 spiral plater 

(Neutech Group Inc., Farmingdale, NY, USA) as described previously (Chalmers et al., 2018). 

Briefly, the fecal sample was diluted in phosphate-buffered saline (PBS) at a 1:10 ratio. The 
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dilution was plated on MacConkey agar (Remel™, Lenexa, KS, USA) (MAC), and MAC 

supplemented with an antimicrobial drug (the drug concentrations are listed in Table 4.1). The 

dilution was also plated on m-Enterococcus agar (Remel™, Lenexa, KS, USA) (ENT), and ENT 

supplemented with an antimicrobial drug (the drug concentrations are listed in Table 4.1). The 

plates were incubated at 37° C for 18 hours for MAC and up to 48 hours for ENT. The bacterial 

density (CFU/mL) was determined by counting the colonies of bacteria. 

 Statistical analysis 

Statistical analysis was performed to evaluate age related dynamics of fecal microbiome 

and mycobiome taxonomic compositions and AMR in cohorts of production pigs and breeding 

sows. Alpha diversity of microbiome and mycobiome as captured by taxa richness (Chao1 

index), diversity (Shannon and Fisher alpha index) indices, and evenness were estimated on the 

rarefied microbiome and mycobiome taxonomic composition data using the PAleontological 

STatistics (PAST) software (Hammer-Muntz et al., 2001). A mixed-effects linear model (R 

package “lme4”) with pig identity as the random-effect variable (accounting for the repeated 

measurement) was used to determine significant trends in alpha diversity with pig age (predictor 

variable). Non-metric multidimensional scaling (NMDS) ordination plots were made using R 

vegan package (Jari Oksanen, 2019) on Hellinger transformed (Legendre and Gallagher, 2001) 

bacterial and fungal taxonomic counts using Bray-Curtis dissimilarity distances and visualized 

using ggplot2 package (Wickham, 2009). The plot was used if stress < 0.2. The ASVs present in 

< 1% samples were discarded prior to analysis. The difference in beta diversity based on Bray-

Curtis distance was evaluated by Permutational analysis of variance (PERMANOVA) with strata 

of individual pigs to account for the repeated measurement of individual pigs using the adonis in 

vegan package in R software (version 3.6). The permutational analysis of multivariate dispersion 



95 

(PERMDISP) was then performed to compare to the Bray-Curtis distance to group centroids 

among samples. 

Similarly, the richness and diversity of the fecal resistome (gene encoding AMR 

mechanisms of AMR encoded by the present genes, and by drug classes) were also estimated. 

The Procrustes (Peres-Neto and Jackson, 2001) was performed to compared resistome AMR 

genes and microbial species composition ordination based on Bray-Curtis similarity metrics with 

M2 statistic measure of fit and correlation (r).  

The changes in the total and antimicrobial-resistant coliforms and enterococci (log-

transformed) counts were analyzed using generalized linear mixed models ( “lme4” package in R 

software) (R, 2019) on data from pigs that had at least one positive count for a given 

antimicrobial. The pig identity was used as a random effect to account for the lack of 

independence between the samples.  

 Results 

 Age-dependent dynamics of the pig fecal microbiome (bacteriome) and mycobiome  

We profiled the dynamics of the fecal microbiome (bacteriome) and mycobiome 

taxonomic compositions in a longitudinal study of one cohort of production pigs and two cohorts 

of breeding sows. A cohort of production pigs (n=8 pigs) was sampled at nine different age-

points from ~ 2 days old to the market age of 179 days (Figure 4.1). Two cohorts of breeder 

sows (n=6 and n=12 per cohort) were sampled from the time of purchasing at ~21 days of age 

until weaning the first litter at 371 days of age (Figure 4.1).  

The results showed that the fecal microbial community was established rapidly after birth 

and the diversity increased with age. In the production pig cohort, measurements of alpha 

diversity of the species such as richness (Chao1 index; β1=0.69, SE=0.2, p <0.001) and diversity 
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indices (Shannon index β1=0.005, SE=0.002, p=0.01; Fisher alpha index β1=0.12, SE=0.03, p 

<0.001) demonstrated a significant positive increase from day 2 to day 177 of age (Figures 4.2, 

4.3 and 4.3, a). However, evenness did not significantly change with age (Figure 4.5, a). The pig 

housing environment (barn/facility) also significantly impacted alpha diversity (richness, 

diversity of bacterial taxa). For instance, richness and diversity significantly increased (p <0.05) 

after the pigs were moved from the nursery to the finisher facility.  

The significant shift in the overall microbiome taxonomic composition from 2 days old 

through day 179 in the cohort of production pigs is visualized using non-metric multidimensional 

scaling (NDMS plots) based on the Bray-Curtis dissimilarity distance (PERMANOVA p < 

0.001) (Figure 4.6 a). Further, each of the nine age-points showed unique clusters and centroids. 

There were significant separations in beta diversity among samples collected on days 2, 21 (end 

of weaning and moving to the nursery facility), and 26 (4 days in the nursery facility on a solid 

phase 2 diet) and the rest of the age-points. Variation of fecal microbiome composition among 

individual animals was highest at 2 days old, with a decrease and leveling of approximately 2 

months of age (PERDISP, p <0.001) (Figure 4.6, d). 

In contrast, alpha diversity of fecal mycobiome taxonomic composition at the species 

level demonstrated an overall decrease with age, as indicated by the decreasing richness (Chao1  

index; β1= −0.02, SE=0.007, p =0.03), diversity (Shannon diversity β1= −0.007, SE=0.002, p 

=0.001;  Fisher alpha diversity β1= −0.005, SE=0.002, p =0.01), and evenness (β1= −0.005, 

SE=0.002, p =0.02) indices from day 2 to day 179. the alpha diversity of the mycobiome showed 

a slight increase after weaning on day 22 and remained stable until day 54, then dropped by day 

77 and again increased from days 93 to 128 (Figures 4.2, 4.3 and 4.4, b). The evenness of fungal 

species steadily decreased from birth to day 40 and then slightly increased and remained similar 
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until the harvest on day 179 (Figures 4.5, b). The NMDS plots based on the Bray-Curtis 

distances show significant shifts in the fungal community composition from day 2 to day 179 

(PERMANOVA, p=0.001) (Figures 4.6, a). The variation of fecal mycobiome composition 

among individual animals was highest at 2 days old, with fecal samples at older ages becoming 

less variable in the mycobiome taxonomic composition (Figure 4.7, b). Variation of beta 

diversity of fecal mycobiome showed mixed trends, first increasing from day 2 to 40 (a day 

before the change from phase 2 to phase 3 diet in the nursery facility) and then gradually 

decreasing throughout the rest of the age-points until day 179 (PERMDISP; p < 0.001)  (Figure 

4.6, d).  

In breeder sows, alpha diversity of fecal microbiome at the species level as captured by 

richness (Chao1 index; β1= 0.21, SE=0.1, p =0.04) and diversity (Shannon index; β1= 0.007, 

SE=0.002, p =0.001 and  Fisher alpha index; β1= 0.03, SE=0.016, p =0.05) indices also 

significantly increased with age and these dynamics were comparable to that of production pigs 

in this study (Figures 4.2, 4.3 and 4.4,  c). In contrast, the evenness of taxa decreased with the 

age of the breeding sow (Figure 4.5, c). The richness and diversity of the microbial community 

increased starting from ~3 weeks old (at the time of purchase/entering the first growing facility) 

through day 154 and then leveled off. However, no significant changes in the evenness of taxa 

were observed (Figure 4.4, c). The significant shift in microbiome community composition and 

structure from days 21 to 371 (farrowing and weaning) were observed on the NMDS plots based 

on the Bray-Curtis distance (PERMNOVA, p <0.001) (Figure 4.6, b-c). Day 21 (time of entry at 

the farm, first growing facility) followed by day 42 (3 weeks after entry) were the most distinct 

from the rest of the age-points. Variation of beta diversity of fecal microbiome showed 
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decreasing dynamics from 3 weeks to farrowing (day 21-day 371) in breeder sows (PERDISP, p 

<0.001) (Figure 4.6, e-f).  

In contrast, fecal mycobiome of breeding sows showed mixed temporal trends in alpha 

diversity over the nine age-points from day 21 through day 371 (end of weaning the first litter) 

(Figures 4.2, 4.3 and 4.4, c). Overall, alpha diversity showed decreasing trends with age but did 

not change significantly. For instance, richness (Chao1 index; β1= −0.0013, SE=0.006, p =0.4) 

showed decreasing trends from day 21 to day 70 and then slight increase on day 84, day 224 to 

day 371. The diversity (Shannon diversity; β1= −0.002, SE=0.001, p =0.29 and Fisher alpha 

diversity; β1= −0.013, SE=0.002, p =0.33) and evenness (β1= −0.003, SE=0.001, p =0.33) 

showed increasing trends from day 21 to day 154 and a slight decrease following day 224 and 

then remained at the same level. 

However, non-metric multidimensional scaling (NMDS) plots based on the Bray-Curtis 

distance of mycobiome revealed a shift in the fungal community with the age of the breeding 

sow (PERMNOVA, p <0.001) (Figure 4.7, b-c). Further, the variation of fecal microbiome 

composition among individual animals showed a slight increase from day 21 to day 70 and then 

a decrease following day 84 and remained stable the rest of the age-points (PERMDISP; p < 

0.001) (Figure 4.7, e-f). 

 Microbial community taxonomic composition 

Taxonomic compositions of bacterial and fungal communities at the phylum, family, 

genus, and species levels were evaluated. A dynamic shift in bacterial and fungal taxa with the 

age of pigs were observed. For microbiome composition at the phylum level,  Bacteroidetes was 

the most abundant phylum (34% of the total phyla) followed by Fusobacter (~24%) and 

Firmicutes (~23%) at the first sampling of piglets (2 days old). Firmicutes appeared to be the 
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most abundant phylum followed by Bacteroidetes from weaning on day 21 to the day of harvest 

on day 179 (Figures 4.8). The abundance of Firmicutes, Tenericutes, Cyanobacteria, 

Kiritimatiellaeota, Patescibacteria significantly increased with age (false discovery rate adjusted 

p < 0.001), while Proteobacteria and Fusobacteria significantly decreased with age in 

production pigs. At the family level, there was also a significant shift in bacterial taxa detected 

from day 2 to day 179. For instance, several bacterial families including, 

Bacteroidales_RF16_group, unidentified bacterium RF39, Streptococcaceae, 

Anaeroplasmataceae, Saccharimonadaceae, and others (uncultured bacterium) significantly 

increased with the age of pigs while an abundance of Fusobacteriaceae and Enterobacteriaceae 

decreased with the age of the pigs (Figures 4.10, a). 

Similarly, in breeding sows, Firmicutes (~50%) and Bacteroidetes (~40%) were the two 

most dominant phyla across all age points (Figure 4.9). However, other less abundant phyla, such 

as Fibrobacteres, Spirochaetes, and Kiritimatiellaeota, significantly (p <0.001) increased with 

age, while Chlamydiae significantly decreased with the age of breeding sows. At the family 

level, Prevotellaceae, Spirochaetaceae, Peptostreptococcaceae, Anaeroplasmataceae, 

Fibrobacteraceae, Clostridiaceae_1, Erysipelotrichaceae, p251o5, and Veillonellaceae 

significantly increased (p <0.001) with age, while Coriobacteriaceae and Chlamydiaceae 

decreased with the age of breeding sows (Figure 4.10, b). 

The mycobiome was composed of a lower number of phyla compared to the microbiome 

of the fecal samples. Among the fungal phyla, Ascomycota and Basidiomycota were the most 

abundant in production pigs and breeding sows throughout all the age-points. The relative 

abundance of Basidiomycota significantly decreased with age in production pigs (p = 0.001), 

while the phylum Mucoromycota significantly increased (p = 0.001) with age in breeding sows. 
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At the family level, the abundance of several fungal families, including Nectriaceae. 

Mucoraceae, Diaporthaceae, Ustilaginaceae, Rhizopodaceae, and Aspergillaceae significantly 

(p <0.05, adjusted p-value at α = 0.05) increased with age, while Didymellaceae decreased with 

age in production pigs (Figure 4.11, a). Similarly, in breeding sows, the abundance of 

Nectriaceae, Rhizopodaceae, Orbiliaceae, and Ceratostomataceae significantly increased with 

age (Figure 4.11, b). 

 The overall dynamics of the pig phenotypic AMR in production pigs and breeding 

sows 

The temporal fluctuations in abundance of AMR fecal coliforms and enterococci (Figures 

4.12, 4.13, 4.14 and 4.15) in the presence of the resistant breakpoint concentrations of 

antimicrobials (Table 4.1) was observed in both cohorts of production pigs and breeding sows. 

Similarly, there was variability in pig yielding AMR fecal coliforms and enterococci (Table 4.2 

and 4.3). The higher abundance of AMR coliforms and enterococci were detected in the earliest 

ages in both cohorts of production pigs and breeder sows. 

Total coliforms and enterococci count (no antimicrobial) remained relatively stable over 

time and did not decline as the pigs aged in production pigs (total coliforms, p=0.16, enterococci 

p=0.6). There was no relationship between total coliforms or enterococci counts and being 

housed (different housing or changes in diet) in production pigs (p >0.1). Similarly, coliform 

counts (log10 CFU/g) in the presence of ceftriaxone (3rd generation cephalosporins), 

aminoglycosides (gentamicin and streptomycin), aminopenicillins, and macrolides 

(azithromycin) significantly declined with the pig age (p <0.05). The coliform counts (log10 

CFU/g) in the presence of tetracyclines or sulfonamides also declined with the pig’s age (p <0.1) 

but was lower than the above-mentioned antimicrobials. Similarly, enterococci count (log10 
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CFU/g) in the presence of tetracyclines, nalidixic acid (quinolones), and aminoglycosides 

(gentamicin and streptomycin) significantly declined with pig’s age (p <0.05). However, 

enterococci count (log10 CFU/g) in the presence of aminopenicillins, lincomycin (lincosamides), 

and nitrofurans did not significantly change with the age of the pigs (p >0.05). 

In breeding sows, the total counts (log10 CFU/g) of coliforms also remained relatively 

stable over time and did not decline with the pig’s age (p = 0.16); however, total enterococci 

counts declined with the pig’s age (p = 0.01). The coliforms in the presence of ceftriaxone (3rd 

generation cephalosporins) or tetracyclines significantly decreased with the pig’s age (p >0.05). 

Similarly, coliforms in the presence of aminoglycosides or aminopenicillins declined with age, 

but this relationship was not significant (p >0.1). Similarly, enterococci count in the presence of 

aminoglycosides or aminopenicillins declined significantly (p < 0.05) with the pig age. 

Our results showed that cohort pigs rapidly acquired the AMR coliform or enterococci 

shortly after birth. The abundance of fecal bacteria in the presence of the resistant breakpoint 

concentrations of antimicrobials within the cohort declined at the earliest age points over the 

study period (birth to harvest) in production pigs and breeding sows. The age-dependent 

dynamics of AMR abundance in fecal bacteria was the highest at the earliest age-points and 

decreased with age. 

 Resistome composition in production pigs 

The shotgun metagenomic sequence analyses were used to assess the resistome 

dynamics. In production pigs (n=2/age-points), the highest diversity and abundance of AMR-

genes occurred at the earliest age‐points and then decreased with age. A total of 116 AMR genes, 

which represent 34 AMR mechanisms and 13 AMR classes in production pigs. Antimicrobial 

resistance genes predicted to confer resistance to tetracyclines represented a significant portion 
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of resistome (~50%), followed by rifampin (~20%), aminoglycosides (~11%), macrolides-

lincosamides-streptogramin (~7%), multidrug resistance (~4%), β-lactams (1%), 

fluoroquinolones (1%), and cationic antimicrobial peptides (1%) (Fig 4-16). The total number 

within each AMR-gene class, such as with β-lactams, fluoroquinolones, tetracyclines, 

sulfonamides, trimethoprim, phenicols, and cationic antimicrobial peptides were relatively higher 

in earliest age-points, while other AMR genes such as macrolides, lincosamides, and 

streptogramins (MLS), increased with age. Similarly, the richness and diversity of genes 

encoding AMR, mechanisms, and drug classes revealed the fecal resistome changes over time in 

pigs (Figure 4.17 and 4.18). The Procrustes analysis based on the Bray-Curtis similarity metrics 

also showed a relationship (m2=0.48, p=0.1) between AMR gene composition and microbial 

community composition when pigs were housed in the finisher facility. 

 Discussion 

The composition, diversity and interactions of the gut microbial community of the pig 

from birth to the harvest age in production pigs and from early life through the first breeding, 

farrowing, and weaning in breeding sows are critical to the overall animal health and 

performance. Understanding these dynamics is also important for the overall epidemiology of 

AMR as microbial communities serve as a reservoir for AMR genes in which the AMR genes 

can be transferred between native and transient gut bacteria (Sommer et al., 2010; Hu et al., 

2014). Our longitudinal study of the pig fecal microbiome, mycobiome, and AMR in a cohort of 

production pigs (from day 2 through day 179 of age, n=12 pigs) and two cohorts of breeding 

sows (from day 21 through day 371/1st farrowing and weaning, n=6 and n=12 sows) revealed 

similar microbiome alpha diversity trends between production pigs and breeding sows. However, 

we found different mycobiome alpha diversity trends between production pigs and breeder sows. 
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Also, for either production pigs or breeding sows, the mycobiome trends differed from the 

microbiome trends. Further, phenotypic AMR in indicator fecal bacterial (coliforms and 

enterococci) and the resistome demonstrated age-dependent dynamics, with the highest AMR at 

the earliest age-points sampled and a decrease in AMR with age in either production pigs or 

breeder sows. 

 Microbiome taxonomic composition, richness, and diversity 

The observations of overall increasing diversity and richness of the fecal microbial 

species with the age of production pig are in agreement with the results of earlier studies (Chen 

et al., 2017; Lu et al., 2018; Wang et al., 2019). Similar dynamics of microbiome diversity were 

also noted in humans from early infants to adults (Kong et al., 2019). In our study, the bacterial 

species diversity (measured by Shannon index) and richness (measured by Chao1 index) was 

highest on day 98 and then plateaued until day 179. The diversity and richness demonstrated a 

sharp increase following the transition to a solid-phase diet around 3 weeks of age. Similar 

results of increasing bacterial diversity with age (birth, days 10, 21, 23,  62,  84, and market) 

were reported in production pigs (De Rodas et al., 2018). In the same study, they reported the 

effect of age on microbiome diversity and richness across all gut location samples 

(duodenum/jejunum, ileum, cecum, and colon) with a substantial shift in microbial community 

composition between days 21 and 33 of the pig’s age.  

Further, the beta diversity analysis of pig fecal microbiome composition showed clear 

clustering by age. Based on NMDS, bacterial communities appeared to separate on days 2, 22, 

and 26 and become more similar between individual pigs at later age-points. An earlier study 

also showed age related clustering of the microbial communities in pigs (Wang et al., 2019; 

Arfken et al., 2020) and calves (Hennessy et al., 2020). Fecal samples from piglets 48 hours after 
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birth could contain meconium; a study reported that meconium samples contain low but diverse 

microorganisms (Wang et al., 2019). 

 Firmicutes and Bacteriodetes were the most abundant fecal bacterial phyla detected 

throughout the study period, which agrees with an earlier study (Ke et al., 2019). The bacterial 

phyla, Fusobacteria, and Proteobacteria were dominant in early ages and decreased with the age 

of the production pigs. It has been reported that the phylum Fusobacteria was linked with the 

disease in the animal, suggesting that opportunistic pathogens are commonly found in nursing 

piglets (De Witte et al., 2017). The bacterial phyla such as Firmicutes, Tenericutes, 

Kiritimatiellaeota, and Cyanobacteria significantly increased with age, possibly because of the 

introduction of solid feed during nursery stages (after day 22). Interestingly, we also found that 

the relative abundance of bacterial families such as Enterobacteriaceae decreased with the pig’s 

age. This finding indicates an age-specific change of the microbiome abundance in production 

pigs (Ke et al., 2019). 

Similarly, the dynamics of alpha diversity patterns in breeding sows were similar in the 

cohort of production pigs (within overlapping age periods), with overall increasing diversity and 

richness of species. For example, Choa1 richness and Fisher alpha diversity increased from days 

21 to 154 and remained stable until day 371. This indicated that the bacterial communities in 

breeding sows increased until day 154 (closed to first breeding period) and then stabilized at 

subsequent farrowing and weaning. These results were comparable to those of the production 

pigs cohort, suggesting that swine gut microbial communities fully develop and mature before 

the market (Wang et al., 2019). Similarly, beta diversity of the microbiome composition showed 

distinct clusters on days 21 (at the time of arrival at the farm) and 42, from the rest of the age-
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points. Similarly, a study also reported a clear age-dependent succession of overall bacterial 

community structure in piglets and sows (Bian et al., 2016). 

Similarly, in breeding sows, consistent with the previous findings (Mach et al., 2015), 

Firmicutes and Bacteriodetes were the two predominant phyla present in the longitudinal study. 

Interestingly, the relative abundance of bacterial phyla such as Spirochaetes, Kiritimatiellaeota, 

and Fibrobacteres increased with age while the relative abundance of Chlamydiae decreased 

with the age of breeding sows. Similarly, the relative abundance of bacteria family such as 

Erysipelotrichaceae, Clostridiaceae1, Spirochaetaceae, and Peptostreptococcaceae increased 

with age, and Chlamydiaceae and Coriobacteriaceae significantly decreased with age. Han et al. 

(Han et al., 2018) also reported similar relative abundances of phyla at various growth stages in 

pigs (day 10 to day 147 of age). 

Domestic pigs have a life expectancy of 15 to 20 years but were only studied until 1 year 

of age. Therefore, whether the pig fecal bacterial diversity remains stable after the 1-year age-

point or how the gut microbiome composition changes during aging cannot be inferred. 

However, results showed that between early-life and 1 year of age, the dynamics of richness and 

diversity of the fecal microbiome composition were similar and comparable among the 

production pigs and breeding sow cohorts, which suggested that age is a major driver of the 

microbiome composition. 

 Mycobiome taxonomic composition, richness, and diversity 

In contrast, the fecal mycobiome in production pigs showed the richness (measured by 

Chao index) and diversity indices (Shannon index and Fisher alpha index) of fungal taxa 

remained relatively steady until the age of weaning and then slightly increased post-weaning 

(day 26) and then remained relatively unchanged. Interestingly, evenness was reduced from birth 
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to day 40 (2 weeks after diet changed in nursery barn) and remained relatively stable until the 

day of harvest (day 179). 

Further, the diversity and richness decreased on day 77 (i.e., a day before moving the 

nursery to the finisher barn). This indicates a potential fluctuation of fungal communities with 

age and when pigs moved to different facilities. Similarly, in breeding sows, the fecal 

mycobiome showed a reduction in Chao1 richness, Shannon diversity, and evenness of fungal 

taxa from day 21 through day 154 (a day prior to moving to the breeding barn) and remained 

stable until day 371. The similar dynamics of fungal diversity and richness were also observed in 

a previous mycobiome study in piglets from birth to weaning (Arfken et al., 2020) where the 

piglets were nursed with their mother until 21 days of age (weaned on day 21) and then received 

nursery diet 1 (days 21–28) followed by nursery diet 2 (days 29–35). No antibiotics, antifungals, 

or other additives were administered to the piglets at any time during the study period. The most 

abundant bacterial phyla in the GI tract and feces were Bacteroidetes, Firmicutes, and 

Epsilonbacteraeota, and the dominant fungal phyla were Ascomycota (90%) and Basidiomycota 

(9%).  

Similarly, low fungal diversity has been reported in healthy adult human fecal samples 

(Raimondi et al., 2019). The low fungal diversity in pigs corresponded to human findings as 

these samples are collected from apparently healthy animals. Data from the study showed a 

significant increase in the abundance of Aspergillaceae, Rhizopodaceae, Nectriaceae, and 

Mucoraceae with the age of pigs (both production and breeding sows). Interestingly, the 

abundance of Didymellaceae decreased with the age of the pigs. Further, there were 

compositional differences in early ages; however, the beta diversity indicated no distinct cluster 

of fungal taxa with the age of pigs (both production pigs and breeding sows). In addition to the 
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fungal taxa composition structure, greater variation among the fungal community was observed 

in both production and breeding sows. This indicates that the pig fecal mycobiome does not 

follow the defined pattern of colonization and succession that does a microbiome (Arfken et al., 

2019; Summers et al., 2019).  

 AMR in enteric bacteria 

In the present study, both abundance of fecal coliforms and enterococci (log10 CFU/g) in 

the presence of antimicrobials (resistant breakpoint concentrations) were higher at early ages in 

both production pigs and breeding sow cohorts. Several previous studies demonstrated carriage 

of AMR resistance bacteria associated with the age of food animals with a higher prevalence of 

AMR in fecal bacteria within the host shortly after birth and then a decline over time (Hoyle et 

al., 2004a; Hoyle et al., 2004b; Khachatryan et al., 2004; Berge et al., 2010; Edrington et al., 

2012a; Mainda et al., 2015a), and pigs (Moro et al., 1998; Agga et al., 2014; Agga et al., 2015b). 

We also observed similar dynamics of high levels of abundance of AMR fecal bacteria 

(coliforms and enterococci) within the cohorts of production pigs and breeding sows were 

observed. This phenomenon could be associated with an age-dependent shift of gut microbial 

communities (Chen et al., 2017; Grosicki et al., 2018; Ke et al., 2019; Wang et al., 2019), which 

often serve as an AMR gene reservoir and can transfer between native and transient gut bacteria 

(Sommer et al., 2010; Hu et al., 2014).   

To understand the age-dependent resistome dynamic, shotgun metagenomic sequencing 

was used for the analysis of the presence of AMR genes in production pigs (sub-study, n=2 pigs 

at 9 age-points). This was selected based on the fact that cohorts of pigs possess similar 

microbiome and mycobiome diversity and phenotypic AMR profiles at the early ages. In our 

preliminary study, we detected 116 AMR genes, which represented 34 AMR mechanisms and 13 
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AMR classes of drugs. This preliminary data indicated that the richness and diversity of the fecal 

resistome change overtime with pig age with the relatively highest diversity at an early age. The 

abundance of AMR gene-drug classes, such as β-lactams, fluoroquinolones, tetracyclines etc., 

were relatively higher in the earliest age-points. This age-dependent AMR in pig fecal bacteria 

could directly be related to the decrease in the relative abundance of specific microbial taxa, for 

instance, Enterobacteriaceae (i.e., significantly decreased with age in our pig fecal samples), 

which was considered to harbor the most AMR genes at an early age. However, resistance to 

MLS increased over time, indicating that not every AMR gene decreased in abundance with the 

pig’s age. It has been suggested that the resistome is mainly structured by the bacterial 

phylogeny and bacterial taxa Proteobacteria were more likely to drive the resistance than other 

phyla (Forsberg et al., 2014). Interestingly, in the production pigs taxonomic data, the relative 

abundance of Proteobacteria (which includes Enterobacteriaceae) decreased with age. One 

study showed that mobile AMR genes were mainly present in four bacterial phyla: the 

Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes (Huddleston, 2014). The same 

study showed that Streptococcus agalactiae, E. coli, and Streptococcus suis were the three most 

abundant bacterial species that are shared between animal and human intestines and consistently 

harbor known AMR genes.  

Recent studies have shown the fecal resistome significantly changed over time in food 

animal (e.g. dairy calves), with the highest being at early ages and then a decrease over time in 

dairy calves (Liu et al., 2019) and pigs (Pollock et al., 2020). Further, it has been shown that the 

prevalence and abundance of AMR genes were not influenced by antibiotic use. AMR gene 

abundance was higher in nursing piglets with low microbiome diversity (Pollock et al., 2020). 

Thus, consistent with the hypothesis, our data suggest that the gut microbiome in pigs may serve 
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as a natural reservoir of AMR genes. In addition, the Procrustes (based on Bray-Curtis distance) 

analysis showed the marginally significant relationship (m2=0.48, p=0.1) between AMR gene 

composition and microbial community composition when pigs were housed in a finisher 

facility). Furthermore, (Joyce et al., 2019) reported a significant positive correlation between the 

total resistome and the total microbiome from fecal samples of healthy pigs, further suggesting 

microbiome composition influenced the resistome composition.  

The microbial community is dynamic in early life in food animals as well as humans; it is 

typically established immediately after birth, and the microbial population composition is in 

fluctuation until maturity is attained (Yatsunenko et al., 2012; De Rodas et al., 2018). Alteration 

to the microbial community during development may alter both its phylogenetic composition and 

its associated resistome.  

 Conclusions 

In this study, the fecal microbiome, mycobiome, and AMR profiles (phenotypic and 

genotypic) at nine age-points using cohorts of production pigs (day 2 to harvest) and breeding 

sows (day 21 through first farrowing and weaning) were assessed. The results indicated that 

bacterial richness and diversity significantly increased with the age of pigs. The age-based 

dynamic shift of the ecological community in the swine gut microbiome was exhibited with 

Firmicutes as the dominant phylum in early life, followed by Bacteroidetes throughout the rest 

of the studied ages. The study also showed shifts in the fungal community composition, richness, 

and diversity in individual animals with age; however, the dynamics did not follow the same 

defined pattern as the bacterial colonization and succession and were less repeatable among the 

animals. Ascomycota was the most abundant fungal phylum at all ages, followed by 

Basidiomycota. The indicator fecal bacteria (coliforms and enterococci) in the pig cohorts 
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exhibited an age-dependent dynamic of AMR to many antimicrobial drug classes, including the 

third-generation cephalosporins, aminopenicillins, aminoglycosides, and macrolides, with the 

highest between-animal prevalence and within-animal AMR abundance in early ages, followed 

by a decrease with as the age of the pigs increased. The shotgun metagenomic approach revealed 

that the diversity of AMR genes was largest at earliest age-points and decreased with age. The 

variety of genes encoding resistance to each of the β-lactams, fluoroquinolones, tetracyclines, or 

cationic antimicrobial peptides was highest at the earliest age-points. The age-dependent 

dynamics of richness and diversity of the fecal microbiome and mycobiome taxonomic 

compositions, and phenotypic AMR in fecal bacteria were comparable among the production pig 

and breeding sow cohorts, indicating age rather than the production system was the bigger driver. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



111 

Table 4.1   Antimicrobial drug concentrations used to supplement the microbiological agar to evaluate the dynamics of the phenotypic AMR in production pigs and breeding sows. 

Antimicrobial drug concentrations used to supplement the microbiological agar to evaluate the 

dynamics of the phenotypic AMR in production pigs and breeding sows. 

Bacteria/Media 
Antimicrobial (class) 

supplemented 

Antimicrobial agent 

supplemented (Abbreviation) 

Concentration 

(µg/mL) a 

Coliforms    

MacConkey Agar 

(MAC) 

Aminoglycosides Gentamicin (GEN) 16 

 

 
Streptomycin (STR) 32 

 

3rd generation 

cephalosporins 

Ceftriaxone (AXO) 4 

 

Sulfonamides/folate path 

inhibitors 

Sulfamethoxazole (SMX) 512 

 
Macrolides Azithromycin (AZI) 32 

 
Aminopenicillins Ampicillin (AMP) 32 

 
Phenicols Chloramphenicol (CHL) 32 

 
Fluoroquinolones Ciprofloxacin (CIP 1 (and 0.25) 

 
Quinolones Nalidixic acid (NAL) 32 

 
Tetracyclines Tetracycline (TET) 16 

 
Fluoroquinolones Enrofloxacin (ENR) 0.125* 

Enterococci 

   

Enterococcus Agar 

(ENT) 

Aminoglycosides Gentamicin (GEN) 500 

 

 
Streptomycin (STR) 1024 

 
Lincosamides Lincomycin (LIN) 8 

 
Macrolides Erythromycin (ERY) 8 

 

 
Tylosin 32 

 
Nitrofurans Nitrofurantoin (NIT) 128 

 
Aminopenicillins Penicillin (PEN) 16 

 
Phenicols Chloramphenicol (CHL) 32 

 
Fluoroquinolones Ciprofloxacin (CIP) 4 

 

 
Enrofloxacin (ENR) 4 

 
Quinolones Nalidixic acid (NAL) 32ǂ 

  Tetracyclines Tetracycline (TET) 16 

a Breakpoints based on Clinical Laboratory Standards Institute guidelines (CLSI, 2008) and 

National Antimicrobial Resistance Monitoring System, * European Committee on Antimicrobial 

Susceptibility Testing (epidemiological cutoff value), ǂ adopted from E. coli break-point 

concentration
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Table 4.2   Percentage (95% confidence intervals) of production pigs (n=12) yielding antimicrobial-resistant coliforms or enterococci. 

Percentage (95% confidence intervals) of production pigs (n=12) yielding antimicrobial-resistant coliforms or enterococci. 

Fecal 

bacteria 

  Age, days 

Antimicrobials 2 22 26 40 54 77 93 128 177 

Coliforms 
Aminopenicillins 

100 

(73.5-100) 

91.6 

(61.5-99.7) 

100 

(73.5-100) 

83.3 

(51.5-97.9) 

75 

(42.8-94.5) 

83.3 

(51.6-97.9) 

91.7 

(61.5-99.8) 

83.3 

(51.6-97.9) 

100 

(73.5-100) 

 
3rd generation 

cephalosporins 

83 

(51.6-97.9) 

91.6 

(61.5-99.7) 

58.3 

(27.6-84.8) 

33.3 

(9.9-65.1) 

75 

(42.8-94.5) 

16.7 

(2.1-48.4) 

33.3 

(9.9-65.1) 

25 

(5.5-57.2) 

83.3 

(51.6-

97.9) 

 
Tetracyclines 

100 

(73.5-100) 

100 

(73.5-100) 

100 

(73.5-100) 

83.3 

(51.5-97.9) 

91.7 

(61.5-99.8) 

91.7 

(61.5-99.8) 

100 

(73.5-100) 

100 

(73.5-100) 

100 

(73.5-100) 

 
Macrolides 

75 

(42.8-94.5) 
0 

100 

(73.5-100) 

75 

(42.8-94.5) 

83.3 

(51.6-97.9) 

66.7 

(34.9-90.1) 

100 

(73.5-100) 

75 

(42.8-94.5) 
0 

 
Aminoglycosides 

91.6 

(61.5-99.7) 

91.6 

(61.5-99.7) 

75 

(42.8-94.5) 

83.3 

(51.6-97.9) 

83.3 

(51.6-97.9) 

66.6 

(34.8-90) 

83.3 

(51.5-97) 

50 

(21-78.9) 

100 

(73.5-100) 

 
Sulfonamides 

91.6 

(61.5-99.8) 

100 

(73.5-100) 

83.3 

(51-97.9) 

83.3 

(51.6-97.9) 

83.3 

(51.6-97.9) 

83.3 

(51.6-97.9) 

91.6 

(61.5-99.8) 

75 

(42.8-94.5) 

100 

(73.5-100) 

 

Phenicols 
25 

(5.4-57.2) 

41.67 

(15.2-72.3) 

33.3 

(9.9-65.1) 

33.3 

(9.9-65.2) 

25 

(5.5-57.2) 

33.3 

(9.9-65.1) 

41.6 

(15.2-72.3) 

33.3 

(9.9-65.1) 

41.6 

(15.6-

72.3) 

Enterococci 
Aminopenicillins 

58.3 

(27.6-84.8) 

50 

(21-78.9) 

25 

(5.5-57.2) 
0 0 0 0 0 

50 

(21-78.90) 

 

Quinolones 
100 

(73.5-100) 

100 

(73.5-100) 

91.6 

(61.5-99.8) 

100 

(73.5-100) 

91.6 

(61.5-

99.78) 

75 

(42.8-94.5) 

75 

(42.8-94.5) 

75 

(42.8-94.5) 

100 

(73.5-100) 

 

Tetracyclines 
100 

(73.5-100) 

100 

(73.5-100) 

100 

(73.5-100) 

100 

(73.5-100) 

91.6 

(61.5-

99.78) 

91.6 

(61.5-99.7) 

91.6 

(61.5-99.8) 

100 

(73.5-100) 

100 

(73.5-100) 

 

Macrolides 

66.6 

(34.8-

90.07) 

100 

(73.5-100) 

100 

(73.5-100) 

100 

(73.5-100) 

91.6 

(61.5-

99.78) 

58.3 

(27.6-84.8) 

100 

(73.5-100) 

83. 3 

(51.5-97.9) 

100 

(73.5-100) 

 
Aminoglycosides 

75 

(42.8-94.5) 

16.7 

(2-48.4) 

58.3 

(27.6-84.8) 

83.3 

(51.5-97.9) 

50 

(21-78.9) 

66.6 

(34.8-90) 

75 

(42.8-94.5) 

66.6 

(34.8-90) 
0 

 
Lincosamides 

75 

(42.8-94.5) 

100 

(73.5-100) 

83.3 

(51.6-97.9) 

33.3 

(9.9-65.1) 

75 

(42.8-94.5) 

50 

(21-78.9) 

50 

(21-78.9) 

58.3 

(27.6-84.8) 

100 

(73.5-100) 
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Nitrofurans 

66.6 

(34.8-90) 

8.33 

(2-38.4) 

41.6 

(15.1-72.3) 

41.6 

(15.2-72.3) 

8.3 

(2-38.5) 
0 

16.67 

(2-48.41) 

33.3 

(9.9-65.1) 
0 

*95% confidence interval (CI) is an exact confidence interval based on the binomial distribution 
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Table 4.3   Percentage (95% confidence intervals) of breeding sows (n=18) yielding antimicrobial-resistant coliforms or enterococci. 

Percentage (95% confidence intervals) of breeding sows (n=18) yielding antimicrobial-resistant coliforms or enterococci. 

Fecal 

bacteria 

  Age, days  

Antimicrobials 21 42 70 84 154 224 343 350 371 

Coliforms 
Aminopenicillins 

100 

(81.4-100) 

94.4 

(72.7-99.8) 

100 

(81.4-100) 

66.6 

(40.9-86.6) 

94.4 

(72-99.8) 

100 

(81.4-100) 

100 

(81.4-100) 

88.8 

(65.3-98.6) 

100 

(81.4-100) 

 
3rd generation 

cephalosporins 

100 

(81.4-100) 

88.9 

(65.3-98.6) 

77.8 

(52.3-93.5) 

83.3 

(58.6-96.4) 

61.1 

(35.7-82.7) 

44.4 

(21.5-69.2) 

83. 3 

(58.6-

96.4) 

61.1 

(35.7-82.7) 

77.7 

(52.5-93.6) 

 
Tetracyclines 

100 

(81.4-100) 

100 

(81.4-100) 

88.8 

(65.3-98.6) 

100 

(81.4-100) 

100 

(81.4-100) 

100 

(81.4-100) 

100 

(81.4-100) 

100 

(81.4-100) 

100 

(81.4-100) 

 

Macrolides 
77.8 

(52.4-93.6) 

77.7 

(52.36-93.5) 

61.1 

(35.7-82.7) 

44.4 

(21.5-69.2) 

44.4 

(21-69.2) 

83.3 

(58.5-96.4) 

72.2 

(46.5-

90.3) 

72.2 

(46.5-90.3) 

88 

(65-98) 

 

Aminoglycosides 
100 

(81.4-100) 

88.9 

(65.3-98.6) 

83.3 

(58.5-

96.42) 

88.8 

(65.3-98.6) 

72.2 

(46.5-90.3) 

94.4 

(72.7-99.8) 

100 

(81.4-100) 

94.4 

(72.7-99.8) 

38.9 

(17.3-64.3) 

 

Sulfonamides 
94.4 

(72.7-99.8) 

94.4 

(72.7-99.8) 

72.2 

(46.5-90.3) 

55.6 

(30.7-78.5) 

83.3 

(58.6-96.4) 

88.8 

(65-98.6) 

94.4 

(72.7-

99.8) 

83.3 

(58.6-96.4) 

88.8 

(65.3-98.6) 

 

Phenicols 
77.8 

(52.4-93.6) 

66.6 

(40.9-86.65) 

50 

(26-73.9) 

27.7 

(9.6-53.5) 
0 

16.6 

(3.5-41.4) 

38.8 

(17.2-

64.3) 

22 

(6.4-47.63) 

72.2 

(46.5-90.3) 

Enterococci 
Aminopenicillins 

38.8 

(17.3-64.3) 

22.2 

(6.4-47.6) 

33.3 

(13.3-59) 

33.3 

(13.4-59) 

33.3 

(13.3-59) 

33.3 

(13.3-59) 

27.7 

(9.7-53.5) 

16.6 

(3.5-41.4) 
0 

 

Quinolones 
94.4 

(72.7-99.9) 

83.3 

(58.6-96.4) 

94.4 

(72.7-99.8) 

61.1 

(35.7-82.7) 

61.1 

(35.5-82.7) 

77.7 

(52.3-93.5) 

88.8 

(65.3-

98.6) 

95 

(72.7-99.8) 

83.3 

(58.5-96.4) 

 
Tetracyclines 

94.4 

(72.7-99.8) 

100 

(81-100) 

88.8 

(65.3-98.6) 

61.1 

(35.7-82.7) 

83.3 

(58.6-96.5) 

94.4 

(72.7-99.8) 

100 

(81.5-100) 

100 

(81.5-100) 

94.4 

(72.7-99.8) 

 

Macrolides 
100 

(81-100) 

77 

(52.3-93.5) 

77 

(52.3-93.5) 

88.8 

(65.3-98.6) 

66.6 

(0.4-0.86) 

77.7 

(52.3-93.5) 

38.8 

(17.3-

64.2) 

33.3 

(13.3-59) 

50 

(26-73.9) 

 
Aminoglycosides 

100 

(81-100) 

88.8 

(65.3-98.6) 

83.3 

(58.6-96.4) 

88.8 

(65.3-98.6) 

72.2 

(46.5-90.3) 

100 

(81.5-100) 
77.7 

72.2 

(46.5-90) 

83 

(58.6-96) 
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(52.4-

93.6) 

 

Lincosamides 
100 

(81.5-100) 

66.6 

(40-86.7) 

55.6 

(30.7-78.6) 

83.3 

(58.58-96.4) 

72.2 

(46.5-90) 

88.8 

(65.3-98.6) 

61.1 

(35.7-

82.7) 

66.6 

(40-86.6) 

100 

(81.5-100) 

 
Nitrofurans 

33.3 

(13.3-59) 

50 

(26-73.9) 

50 

(26-73.9) 

38.8 

(17.3-64.3) 

22.2 

(6.5-47.63) 

27.7 

(9.6-53.5) 

27.7 

(9.6-53.5) 

33.3 

(13.3-59) 

50 

(26-73.9) 

*95% confidence interval (CI) is an exact confidence interval based on the binomial distribution 
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Figure 4.1. Schematic of the sampling design of the longitudinal studies of production pig and breeding sow cohorts. Fecal microbiome 

(bacteriome), mycobiome, and phenotypic AMR were evaluated at each age-point sampled. In the production pig cohort, 6 males and 6 

females n= 12 animals were sampled at each of 9 age-points, from 2 days old to harvest at 6 months. In breeder sows, two cohorts of 

pigs (6 pigs in 1st cohort and 12 pigs in 2nd cohort) were sampled at each of 9 age-points from day 21 of age to first farrowing and 

weaning. Microbiome and mycobiome analysis were performed on the fecal samples from all 9 age-points per pigs from production 

pigs (4 males and 4 females, n=8 pigs, and n=72 fecal samples) and breeding sows (4 pigs cohort 1 and 4 cohort 2, n=8 pigs and n=72 
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fecal samples). Phenotypic AMR on fecal bacteria (coliforms and enterococci) were performed from the cohort of production pigs 

(n=12) at 9 age-points (n=108 fecal samples), and cohorts of breeding sows (n=18) at 9 age-points (n=162 fecal samples), and fecal 

samples (n=18) from the cohort of production pigs (n=2) at 9 age-points per pig were subjected to shotgun metagenomic sequencing for 

evaluating age related dynamic of fecal resistome. 
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Figure 4.2. Alpha diversity described as richness (Chao1 index) of the fecal microbiome (a, c) and mycobiome (b, d) in production pigs 

(n=8) and breeding sows (n=8). The color bar above the X-axis represents the pig housing facility; for production pigs: pink—farrowing 

and weaning, light purple—nursery, and yellow—finisher; and for breeding sows: blue—1st growing facility, light green—2nd grower 
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facility, orange—breeding barn, and pink—farrowing and weaning barn. The red dotted line shows overlapping age-points between the 

cohorts of production pigs and breeding sows. 
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Figure 4.3. Alpha diversity described as diversity (Shannon index) of the fecal microbiome (a, c) and mycobiome (b, d) in production 

pigs (n=8) and breeding sows (n=8). The color bar above the X-axis represents the pig housing facility; for production pigs: pink—

farrowing and weaning, light purple—nursery, and yellow—finisher; and for breeding sows: blue—1st growing facility, light green—2nd 
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grower facility, orange—breeding barn, and pink—farrowing and weaning barn. The red dotted line shows overlapping age-points 

between the cohorts of production pigs and breeding sows. 
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Figure 4.4. Alpha diversity described as diversity (Fisher alpha index) of the fecal microbiome (a, c) and mycobiome (b, d) in production 

pigs (n=8) and breeding sows (n=8). The color bar above the X-axis represents the pig housing facility; for production pigs: pink—

farrowing and weaning, light purple—nursery, and yellow—finisher; and for breeding sows: blue—1st growing facility, light green—2nd 
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grower facility, orange—breeding barn, and pink—farrowing and weaning barn. The red dotted line shows overlapping age-points 

between the cohorts of production pigs and breeding sows. 
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Figure 4.5. Alpha diversity described as evenness (evenness index) of the fecal microbiome (a, c) and mycobiome (b, d) in production 

pigs (n=8) and breeding sows (n=8). The color bar above the X-axis represents the pig housing facility; for production pigs: pink—

farrowing and weaning, light purple—nursery, and yellow—finisher; and for breeding sows: blue—1st growing facility, light green—2nd 
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grower facility, orange—breeding barn, and pink—farrowing and weaning barn. The red dotted line shows overlapping age-points 

between the cohorts of production pigs and breeding sows. 
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Figure 4.6. Beta diversity of fecal microbiome composition in production pigs (n=8) and breeding sows (n=8) by age. Non-metric 

multidimensional scaling (NMDS) plots based on the Bray-Curtis distances (a-c), and boxplot of the distances to age specific centroid 

for each of the age-points in production pigs (d), breeding sows (day 21 through day 154 of age, overlapping age-points with production 

pigs) (e), and breeding sows (day 21 through day 371) ) (f). 
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Figure 4.7. Beta diversity of fecal mycobiome composition in production pigs (n=8) and breeding sows (n=8) by age. Non-metric 

multidimensional scaling (NMDS) plots based on the Bray-Curtis distances (a-c), and boxplot of the distances to age specific centroid 

for each of the age-points in production pigs (d), breeding sows (day 21 through day 154 of age, overlapping age-points with production 

pigs) (e), and breeding sows (day 21 through day 371) ) (f). 
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Figure 4.8. Taxonomic composition of the fecal microbiome (relative abundance of individual phyla) in production pigs (n=8) at nine 

age-points. 
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Figure 4.9. Taxonomic composition of the microbiome (relative abundance of individual phyla) in breeder sows (n=8) at nine age-

points. 
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Figure 4.10. Taxonomic composition (relative abundance) of the microbiome at the family level in production pigs (a) and breeding 

sows (b). The rectangular red box represents the overlapping age-points between cohorts of production pigs (n=8) and breeding sows 

(n=8). The arrows indicate dietary changes during the production stage. 
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Figure 4.11. Taxonomic composition (relative abundance) of the mycobiome at the family level in production pigs (a) and breeding 

sows (b). The rectangular red box represents the overlapping age-points between cohorts of production pigs (n=8) and breeding sows 

(n=8). The arrows indicate dietary changes during the production stage 
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Figure 4.12. Phenotypically antimicrobial-resistant fecal coliforms (mean, 95% CI of the log-transformed viable coliform counts 

growing in the presence of the “clinical break-point” concentration of an antimicrobial of that class) for aminopenicillins, 3rd generation 

cephalosporins, tetracycline, and macrolides, as a function of pig age in production pigs (a-d) and breeding sows (e-h). The color bar 

above the X-axis represents the pig housing facility; for production pigs: pink—farrowing and weaning, light purple—nursery, and 

yellow—finisher; and for breeding sows: blue—1st growing facility, light green—2nd grower facility, orange—breeding barn, and pink—

farrowing and weaning barn. The red dotted line shows overlapping age-points between the cohorts of production pigs and breeding 

sows. 
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Figure 4.13. Phenotypically antimicrobial-resistant fecal coliforms (mean, 95% CI of the log-transformed viable coliform counts 

growing in the presence of the “clinical break-point” concentration of an antimicrobial of that class for aminoglycosides, sulfonamides, 

phenicols) and total coliforms (no antimicrobial) as a function of pig age in production pigs (a-d) and breeding sows (e-h). The color 

bar above the X-axis represents the pig housing facility; for production pigs: pink—farrowing and weaning, light purple—nursery, and 

yellow—finisher; and for breeding sows: blue—1st growing facility, light green—2nd grower facility, orange—breeding barn, and pink—

farrowing and weaning barn. The red dotted line shows overlapping age-points between the cohorts of production pigs and breeding 

sows. 
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Figure 4.14. Phenotypically antimicrobial-resistant fecal enterococci (mean, 95% CI of the log-transformed viable enterococci counts 

growing in the presence of the “clinical break-point” concentration of an antimicrobial of that class for aminopenicillins, quinolones, 

tetracyclines, and macrolides) as a function of pig age in production pigs (a-d) and breeding sows (e-f). The color bar above the X-axis 

represents the pig housing facility; for production pigs: pink—farrowing and weaning, light purple—nursery, and yellow—finisher; and 

for breeding sows: blue—1st growing facility, light green—2nd grower facility, orange—breeding barn, and pink—farrowing and weaning 

barn. The red dotted line shows overlapping age-points between the cohorts of production pigs and breeding sows. 
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Figure 4.15. Phenotypically antimicrobial-resistant fecal enterococci (mean, 95% CI of the log-transformed viable enterococci counts 

growing in the presence of the “clinical break-point” concentration of an antimicrobial of that class for aminoglycosides, lincosamides, 

nitrofurans) and total enterococci (no antimicrobial) as a function of the age of production pigs (a-d) and breeding sows (e-f).  The color 

bar above the X-axis represents the pig housing facility; for production pigs: pink—farrowing and weaning, light purple—nursery, and 

yellow—finisher; and for breeding sows: blue—1st growing facility, light green—2nd grower facility, orange—breeding barn, and pink—

farrowing and weaning barn. The red dotted line shows overlapping age-points between the cohorts of production pigs and breeding 

sows. 
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Figure 4.16. The age-dependent dynamics of fecal resistome in production pigs (n=2). The color bar above the X-axis represents the 

pig housing facility: pink—farrowing and weaning, light purple—nursery, and yellow—finisher. 
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Figure 4.17. The richness (a-c) and diversity (d-f) of fecal resistome in production pigs (n=2) by age; genes encoding antimicrobial 

resistance (i.e., ARGs) (a, d), mechanisms of resistance encoded by the present genes (b, e) and classes of drugs genes of resistance to 

which are present (c, f). The color bar above the X-axis represents the pig housing facility: pink—farrowing and weaning, light purple—

nursery, and yellow—finisher. 
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Figure 4.18. The mechanism of resistance encoded by the present AMR genes of fecal resistome in production pigs (n=2) by age; The 

color bar above the X-axis represents the pig housing facility: pink—farrowing and weaning, light purple—nursery, and yellow —

finisher.
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Chapter 5 - A Longitudinal Investigation of Age-related Dynamics 

and the Effects of Diet and Antimicrobial Treatments on the Fecal 

Microbiome and Antimicrobial Resistance of Finisher Pigs 

 

 Abstract 

Age and diet are the main factors influencing the composition of the fecal microbiome. 

The use of antimicrobials can alter the taxonomic composition of bacterial communities. This 

study aimed to evaluate age-related dynamics, effects of the diet, and antimicrobial treatments on 

the fecal microbiome or antimicrobial resistance. Pigs at the finishing stage were randomly 

distributed to 36 pens, and the pens were randomly assigned to 1 of 3 dietary treatments with 

different levels and sources of fiber contents, a) control diet (corn-soybean based with 8.7% 

neutral detergent fiber (NDF), 2.2 % crude fiber), b) DDGS-distillers dried grains with solubles 

based diet (20% DDGS with 13.6% NDF and 3.1% crude fiber and primarily contains insoluble 

fiber), and c) sugar beet pulp-based diet (14.5% sugar beet pulp with 13.6% NDF and 5.1% 

crude fiber and primarily contains soluble fiber). Five finisher pigs from each treatment groups 

were selected randomly, and fecal samples were collected on day 98, 110, 144, and 179 (day of 

harvest). Also, fecal samples were collected from pigs that received injectable ceftiofur 

hydrochloride or penicillin G day 1 and day 3 after injection along with pen-mate untreated 

control. Fecal samples were subjected to 16s rRNA amplicon-based microbiome analysis and 

culture methods to quantify the abundance of total and antimicrobial-resistant coliforms and 

enterococci. The alpha diversity, such as species richness, significantly increased with pig age, 

and the overall bacterial composition changed with age (p <0.001) and diet (p < 0.001). A diet-
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specific shift in the microbial community was observed. Neither ceftiofur nor penicillin G 

changed the richness, diversity, and evenness of the taxa; however, the antibiotics contributed to 

an altered overall fecal bacterial taxonomic composition and specific taxa. Our data suggest that 

age and diet affect antimicrobial resistance (AMR) in fecal bacteria.  
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 Introduction 

The composition of the gut microbial community is strongly influenced by several 

factors, including the age of animals, host immune and genetics factors, antimicrobial use (Looft 

et al., 2012b; Relman, 2012), and dietary effects (Scott et al., 2013). The study found that diet, 

especially crude fiber, was a significant factor shaping the pig gut microbiome (Wang et al., 

2019). The microbial colonization of the pig intestine started at birth and developed during the 

neonatal period to weaning time with a sharp increase following the transition to solid food after 

weaning (De Rodas et al., 2018). However, the microbial ecosystem is dynamic and significantly 

altered after weaning, which can sometimes lead to enteric dysbiosis (Lalles et al., 2007; Mann et 

al., 2014).  

The relative abundance of commensal bacteria such as Lactobacillus is reduced after 

weaning; this, in turn, allows pathogenic bacteria to adhere and proliferate in the intestine (Heo 

et al., 2013). Thus, antibiotics and minerals are often used in diets to prevent disease (Verstegen 

and Williams, 2002). However,  use of antibiotics in a therapeutic setting can cause selective 

pressure that may drive the development of antimicrobial resistance (AMR) due to horizontal 

gene transfer or mutation (Martínez, 2008). Thus, due to the growing concerns over AMR, 

alternative approaches such as pre/probiotics and dietary interventions have been investigated. 

Therefore, studies investigating the role of dietary intervention in modulating the microbial 

population has received more attention. For instance, an increase in fiber in the diet has been 

shown to benefit gut microbial communities and improve the health and performance of pigs 

(Everts, 2010; Niu et al., 2019); these interventions could minimize AMR in animals. Lower 

fiber in the diet leads to a decrease in the microbiome diversity in humans (Flint et al., 2012). A 
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high fiber diet can significantly enrich Bacteroidetes and deplete Firmicutes (De Filippo et al., 

2010).  

Generally,  microbes in animals at a young age were mainly fast-growing, grain 

fermenting types, while those in adult animals were fiber-digesting types (Huhtanen and Gall, 

1953). In another study, De Rodas and colleagues (De Rodas et al., 2018) observed that the 

exposure to solid feed between days 21 and 33 had a more significant overall impact on 

microbial community structure than age and environment. Similarly, this study showed that the 

dietary interventions significantly reduced both the richness and diversity of the gut resistome in 

children (Wu et al., 2016). The study also showed that the moderate inclusion of dietary fiber in 

the diet—particularly protein levels of 20% crude protein (CP) supplemented with wheat bran 

and sugar beet pulp (2%)—increased production performance and gut maturation of the piglet 

with less incidence of diarrhea and need for antibiotic intervention (Hermes et al., 2009). 

Overall, these studies suggested that gut microbial colonization is influenced by diet and 

progresses with age. 

The antibiotics commonly used in swine can markedly alter the microbial community. 

Examples include in-feed antimicrobials carbadox or a combination of chlortetracycline, 

sulfamethazine, and penicillin (Looft et al., 2012b). The third-generation cephalosporin ceftiofur 

is commonly used in swine as common preventive strategy for various bacterial diseases 

(Callens et al., 2012). An earlier study showed that the fecal microbiome of pigs that received 

ceftiofur returned to the initial microbiome two weeks after treatment (Zeineldin et al., 2018). 

However, the impact of antimicrobial treatment administration on the bacterial composition of 

pigs has not yet been clearly demonstrated, especially within a combination of dietary 

treatments. Here, we investigated age-related dynamics and the effects of diet (varying the fiber 
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contents) as well as the impact of a ceftiofur and penicillin G treatment (three-day treatment 

regimens). We characterize the longitudinal changes in the swine fecal microbiome with an 

abundance of AMR in coliforms and enterococci during the finishing stage. 

 Materials and methods 

 Study design and animals 

The study was performed at the Kansas State University Swine Teaching and Research 

Center, Kansas State University Manhattan, Kansas. A total of 288 pigs (~36 kg starting body 

weight) from one finishing group were randomly distributed to 36 pens. Each pen was balanced 

by gender with 4 male and 4 female pigs. Pens were randomly assigned to 1 of 3 dietary 

treatments (different level and source of fiber): a) control diet (corn-soybean based with 8.7% 

neutral detergent fiber (NDF), 2.2 % crude fiber), b) distillers dried grains with solubles 

(DDGS)-based diet (20% DDGS with 13.6% NDF and 3.1% crude fiber and primarily contains 

insoluble fiber), and c) sugar beet pulp-based diet (14.5% sugar beet pulp with 13.6% NDF and 

5.1% crude fiber and primarily contains soluble fiber). The dietary compositions are shown in 

(Table 5.1).  

The diets were formulated and prepared at the Kansas State University O.H. Kruse Feed 

Technology Innovation Center (Manhattan, KS). All pigs of each experimental diet were 

followed throughout the finisher stage. When clinical signs of diarrhea, leg swelling, or other 

production-related diseases appeared, the pigs were treated with penicillin G or ceftiofur 

hydrochloride (Excenel®) by injection once a day for 1 to 3 days. The animal experiments were 

approved by the Institutional Animal Care and Use Committee (IACUC) of Kansas State 

University. 

 Longitudinal sampling of untreated pigs on the dietary treatments  
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Five pigs of each dietary treatment group (control, DDGS-based diet, and sugar beet 

pulp- based diet) were sampled longitudinally during the finishing phase. Fecal samples were 

collected per rectum from each of ~5 pigs at 4 age-points: at ~98 days (first week after moving 

into the finisher facility and associated diet change), 110 days (~ 2.5 weeks after moving into 

finisher facility), 144 days (~6 weeks after moving into finisher facility), and 177 days (day of 

harvest)  (Figure 5.1) (Table 5.2). The feces and fecal aliquots mixed with 50% glycerol were 

frozen and stored at -80°C. 

 Ceftiofur and penicillin G treated pigs on the dietary treatments  

The fecal samples were collected from ceftiofur hydrochloride- and penicillin G-treated 

pigs at two-time points of the 3-day treatment regimen. On days 1 and 3 of treatment, samples 

were collected approximately 6 hours (no later than 8 hours) after the intramuscular (IM) 

injection). A fecal sample was collected from one pen-mate untreated pig on day 1. However, 

some animals were only treated on days 1 and 2 when clinical improvement was seen; hence, 

only day 1 samples were collected.  

A total of 40 fecal samples were collected from the ceftiofur-treated (n=25) and untreated 

pen-mate control (n=15) pigs. Specifically, on the control diet, 3 pigs were sampled on day 1 

only and 3 pigs on both days 1 and 3 of the regimen along with 6 untreated pen-mate untreated 

pigs on day 1; on the DDGS based diet, 4 pigs were sampled on both day 1 and 3 of the regimen 

along with 4 untreated pen-mated pigs on day 1, and on the sugar beet pulp-based diet, 2  pigs 

were sampled on day 1 only and 3 pigs on both days 1 and 3 of the regimen along with 5 

untreated pen-mated control pigs on day 1 (Figure 5.1) (Table 5.2). 

Similarly, a total of 45 fecal samples were collected from the penicillin G treated (n=30 

and untreated pen-mate control (n=15) pigs. Specifically, 5 pigs on each diet (control, DDGS 
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based diet, and sugar beet pulp based diet) were sampled on both day 1 and day 3 of the regimen 

along with 5 untreated pen-mated control pigs on day 1 on each diet (Figure 5.1) (Table 5.2). 

Fecal samples were transported to the laboratory for further processing, and the feces and fecal 

aliquots were mixed with 50% glycerol and stored at -80°C until DNA extraction, microbiome 

analysis, and quantification AMR was performed. 

 16s rRNA based microbiome analysis 

 Fecal DNA extraction 

A total of 140 fecal samples (n=55 from pigs not treated with ceftiofur, n=40 from 

ceftiofur-treated pigs along with untreated pen-mate control, and n=45 from penicillin G treated 

pigs along with untreated pen-mate control) were collected. Fecal DNA was extracted using the 

protocol published by (Yu and Morrison, 2004) and  (Korte et al., 2020). Briefly, fecal samples 

were transferred into round-bottom tubes (2 mL) containing 800 µL of lysis buffer and a single 

steel bead (0.5 cm diameter). Samples were then heated at 70°C for 20 minutes with vortexing, 

then homogenized using a TissueLyser II (Qiagen, Venlo, the Netherlands) for 3 minutes at 30 

per second, and then centrifuged at 5000 × g for 5 minutes at room temperature. The supernatant 

then transferred into the new Eppendorf tube (1.5 mL), added with 200 µL of 10 mM ammonium 

acetate, incubated for 5 minutes on ice, and then centrifuged at 5000 × g for 5 minutes. The 

supernatant (up to 750 µL) was mixed with an equal volume of isopropanol, incubated for 30 

minutes on ice, and centrifuged at 16,000 × g at 4°C for 15 minutes. The recovered DNA pellet 

was washed and resuspended in 150 µL of Tris-EDTA. After the addition of proteinase-K (15 

µL) and Buffer AL (200 µL) (DNeasy Blood and Tissue kit, Qiagen, Germany), samples were 

incubated at 70°C for 10 minutes. In each tube, 200 µL of 100% ethanol added, vortexed, 

transferred to a spin column and processed according to the manufacturer’s instructions (Qiagen, 
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Germany). The DNA concentration were measured via fluorometry (Qubit 2.0, Life 

Technologies, Carlsbad, CA) using Quant-iT broad range (or high sensitivity) dsDNA reagent 

kits (Invitrogen, Carlsbad, CA). 

 16S rRNA gene sequencing and bioinformatic analysis 

Extracted pig feces DNA were processed at the University of Missouri Metagenomics 

Center. The 16s rDNA amplicons (V4 region of the 16S rRNA gene) were created with universal 

primers (U515F/806R) (Caporaso et al., 2011; Walters et al., 2011) against the V4 region 

(flanked by Illumina standard adapter sequences (Illumina Inc CA, USA). Oligonucleotide 

sequences are available at proBase (database of rRNA-targeted oligonucleotide probes and 

primers) (Loy et al., 2007). Dual-indexed forward and reverse primers were used in all reactions. 

Metagenomic DNA (100 ng) was used, and PCR was performed in 50 µL reactions with primers, 

dNTPs and DNA polymerase. PCR plate was transferred to the thermocycler for amplification 

(98°C (3 minutes) + [98°C (15 seconds) + 50°C (30 seconds) + 72°C (30 seconds)]× 25 cycles+ 

72°C (7 minutes). After amplification completion, amplicon pools (5 µL/reaction) were 

combined, mixed, and purified by adding of Axygen Axyprep MagPCR clean-up beads (50 µL 

beads were thoroughly mixed with 50 µL amplicons) and incubated for 15 minutes at room 

temperature. The plate was placed on the magnetic stand for 5 minutes until the supernatant was 

cleared and then washed with 80% ethanol. The pooled amplicon was evaluated by using the 

Advanced Analytical Fragment Analyzer and quantified using Quant-iT HS dsDNA kits, and 

diluted based on Illumina’s standard protocol for sequencing (MiSeq instrument). 

 Sequencing data processing and bioinformatic analysis 

The amplicon sequence variant (ASV) (also called exact sequence variants, ESVs) based 

analysis. were performed. The Cutadapt (Martin, 2011) algorithm was used to remove the 
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primers at 5’end of forward reads. Read pairs were rejected if one read or the other did not match 

a 5’primer, and an error rate of 0.1 was allowed. Quality filtering, pairing, denoising, de-

replication, and determination of the count of ASVs were performed with the Division Amplicon 

Denoising Algorithm (DADA2) plugin (Callahan et al., 2016) in the QIMME2 platform. For 

quality trimming, forward and reverse reads were truncated to 150 bases, and those with a read 

number of expected errors higher than 2 were discarded, and the bacterial 16s rRNA gene was 

subsetted to retain only those sequences that are between 249 and 275 nucleotides inclusive. 

Bacterial taxonomy was assigned to the sequences using the SILVA database v132 (Pruesse et 

al., 2007) of 16S rRNA sequences of bacterial species of different taxonomy using the classify-

sklearn procedure. The ASVs identified other than bacteria were removed from further analysis. 

For the rarification, if there were more than 10,000 counts in one or more samples, they were 

rarefied to the value of the smallest sample greater than 10,000 minus 1. The total count from 

each sample was normalized to 38,628 prior to estimating alpha and beta diversity measures. 

 Phenotypic AMR in fecal bacteria  

A total of 140 fecal samples (n=55 from pigs not treated with ceftiofur, n=40 from 

ceftiofur-treated pigs along with untreated pen-mate control, and n=45 from penicillin G treated 

pigs along with untreated pen-mate control) were subjected to culture method to quantify for 

coliforms and enterococci by spiral plating using an Eddy Jet 2 spiral plater (Neutech Group Inc., 

Farmingdale, NY, USA) as described previously (Chalmers et al., 2018). Fecal samples were 

diluted in phosphate-buffered saline (PBS) at a 1:10 ratio. The dilution was plated on 

MacConkey agar (MAC) to quantify coliforms, and MAC supplemented with an antimicrobial 

drug (the drug concentrations are listed in Table 5.3) to quantify antimicrobial-resistant 

coliforms. Similarly, the dilution was plated on m-Enterococcus agar (ENT), and ENT 
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supplemented with an antimicrobial drug (the drug concentrations are listed in Table 5.3) to 

quantify antimicrobial-resistant enterococci. The plates were incubated at 37° C for 18 hours for 

MAC and up to 48 hours for ENT. The coliform and enterococcus colonies were counted, and 

viable counts of the bacteria were estimated as colony-forming units per g (CFU/g) of feces, 

following the spiral-plater manufacturer's recommendations. 

 Statistical analysis 

 Microbiome data analysis 

The alpha diversity, as captured by richness (Chao1 index), diversity (Shannon diversity 

index, Fisher alpha index), and evenness of taxa, was estimated from rarefied samples using the 

PAleontological STatistics (PAST) software (Hammer-Muntz et al., 2001). The associations of 

the age, diet, and their interaction (age x diet) with several alpha diversity indices (outcome 

variables) were evaluated using the generalized linear mixed-effects models (“lmer” in R 

software) (R, 2019). The pig identity was entered as a random effect to account for the lack of 

independence between samples. 

Non-metric multidimensional scaling (NMDS) ordination plots were made using R 

package vegan (Jari Oksanen, 2019) on Hellinger transformed (Legendre and Gallagher, 2001) 

bacterial taxonomic counts data using the Bray-Curtis dissimilarity distances; they were 

visualized using ggplot2 package (Wickham, 2009). A two-dimension plot was used if stress was 

less than 0.2. The ASVs present in < 1% samples were discarded to avoid potential bias before 

analysis. The permutational multivariate analysis of variance (PERMANOVA) of the Bray-

Curtis distance was performed using the adonis function in the R vegan package, with one or 

more of the explanatory variables (pig age and/or dietary treatment). The random effect of the 

individual pig was included in the model. The distances in the microbiome across individuals 
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within and between age groups receiving 1 of 3 dietary treatments were calculated using the 

Bray-Curtis matrices, and differences in variation between age groups and dietary treatments on 

the microbiome composition were tested with the multivariate homogeneity of group dispersion 

test (Betadisper function in the vegan package in R) (Jari Oksanen, 2019) followed by Tukey's 

honest significance difference method.  

 Phenotypic AMR data analysis  

For the pigs sampled longitudinally and not treated with antimicrobial drugs throughout 

the finisher phase (n=5 sampled at 4 age-points), changes in the total AMR coliform and 

enterococcus populations (log10 CFU/g) by age were analyzed using the generalized linear 

mixed-effects model. For an individual antimicrobial drug, the data for all animals that had at 

least one positive sample (coliforms or enterococci growing on the agar supplemented with that 

drug) were used. The pig identity was used as a random effect to account for the lack of 

independence between the samples in the mixed-effects models. For the pigs treated by ceftiofur 

or penicillin G, analysis of variance was performed for the total and AMR coliform and 

enterococci populations to evaluate the effect of dietary treatment, antimicrobial exposure, and 

their interaction. 

 Results 

 The age-related dynamics and effect of dietary treatment on the taxonomic 

composition of fecal bacterial communities  

We first investigated the dynamic fecal microbiome of untreated pigs on the dietary 

treatments (control diet; 8.7% NDF, 2.2 % crude fiber), DDGS-based diet (13.6% NDF and 3.1% 

crude fiber and primarily contains insoluble fiber), and sugar beet pulp-based diet (13.6% NDF 

and 5.1% crude fiber and primarily contains soluble fiber) (Table 5.1) by characterizing 55 fecal 
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samples collected on days 98 (moving to finisher facility) through 177 (market). The richness, 

diversity, and evenness of the fecal microbial taxa changed with age (days 98, 110, 144, and 177) 

of the pigs receiving 1 of 3 dietary treatments (Figure 5.2). The bacterial richness (Choa1 index 

of species richness) significantly increased with age (p < 0.05). Likewise, diversity indices 

(Shannon index and Fisher alpha index) also significantly increased (p < 0.001) from days 98 to 

177 (market) of age. Similarly, the evenness of taxa also changed with age (p=0.004). However, 

there was no significant effect of diets (p >0.05) and interaction between age and dietary 

treatment (p >0.05) on the Chao1 richness, Shannon and Fisher alpha diversity indices, and 

evenness of taxa. 

The non-metric multi-dimension scaling (NMDS) of the Bray-Curtis distances showed 

that age could lead to a significant variation in the fecal microbiome of pigs on dietary treatments 

(Figure 5.3). A significant shift in the overall microbial community composition with age was 

observed based on the Bray-Curtis distance; day 98 samples were unique from those of the other 

age-points (days 110, 144, and 177) (Figure 5.3, b-d). We further analyzed the taxonomic 

composition of bacterial communities with age and diet as well as their interaction using 

PERMANOVA (based on the Bray-Curtis distances), and we found that there was a significant 

difference in the overall taxonomic composition with age (p <0.001) and diet (p <0.001). 

However, we did not find enough evidence of interaction between age and diet (p=0.55). The 

degree of variation in the microbiome among individual pig was similar across ages and diet 

(multivariate homogeneity test of group dispersion; p=0.18, p=0.79, respectively). 

The dynamic shift in the fecal microbiome taxonomic composition was further evaluated 

at the taxonomic level. Figure 5.4 shows the taxonomic composition of the fecal microbiome at 

the phylum level at four age points (days 98, 110, 144, and 177) on the dietary treatments. 
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Firmicutes followed by Bacteroides were the most dominant phyla across all age-points, but with 

slight variations between dietary treatments. On the control diet, the relative abundance of 

bacterial phyla such as Spirochaetes, Epsilonbacteraeota, and Tenericutes significantly increased 

(p < 0.05) with age. In contrast, the relative abundance of Actinobacteria and Firmicutes 

decreased with the age of pigs. However, dynamics were less distinct in those on the high fiber 

diets (sugar beet pulp based and DDGS based diets). Few phyla, such as Epsilonbacteraeota and 

Proteobacteria, significantly increased with age on the DDGS-based diet. However, there were 

no bacterial phyla associated with pig’s age on the sugar beet pulp-based diet.  

We further evaluated the relative abundance of bacterial taxa at the family level by fitting 

the DESeq2 algorithm (negative binomial with bias correction; false discovery rate based 

adjusted p-value at α=0.05). On the control diet, the relative abundance of 2534 18B, 

Bacteroidales RF16, F082, Barnesiellaceae, Bacteroidaceae, Spirochaetaceae, Rikenellaceae, 

Fibrobacteraceae, Tannerellaceae, and Clostridiales  taxonomy families significantly increased 

with the age of pigs;  Lactobacillaceae, Veillonellaceae, Coriobacteriaceae, 

Succinivibrionaceae, Eggerthellaceae, Lachnospiraceae, Atopobiaceae, and Bifidobacteriaceae 

significantly decreased (p <0.05) with age. Similarly, on the DDGS based diet, the relative 

abundance of Tannerellaceae, F082, p 2534 18B5, Bacteroidaceae, Bacteroidales RF16, and 

Campylobacteraceae increased with age. However, on the same dietary group, relative 

abundance of Veillonellaceae, Lactobacillaceae, Coriobacteriaceae, Streptococcaceae, 

Atopobiaceae, Eggerthellaceae, and Ruminococcaceae significantly decreased (p <0.05) with 

age. On the sugar beet pulp-based diet, the relative abundance of Bacteroidales RF16, p 

2534_18B5, and Elusimicrobiaceae increased with age. However, the relative abundance of 
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Streptococcaceae, Atopobiaceae, Enterobacteriaceae, and Veillonellaceae significantly 

decreased with age (Figure 5.5, a-c). 

 The effects of the dietary treatments and antimicrobial treatments on the richness, 

diversity, and taxonomic composition of bacterial communities  

Of the pigs treated with ceftiofur, the richness of taxa (Chao1 index), diversity (Shannon 

index, Fisher alpha index), and evenness of taxa did not differ with those received ceftiofur 

treatment versus untreated pen-mate control, day of treatment (day 1 and day 3) and dietary 

treatments (p >0.10) (Figure 5.6 and 5.7). However, Fisher’s alpha diversity was significantly 

higher (p < 0.05) on the sugar beet pulp-based diets compared to control diets. Similarly, there 

was no significant interaction between dietary treatments and ceftiofur treatment on richness, 

diversity, and taxa evenness. There was no significant effect of day of treatment (day 1 versus. 

day 3) or treatment effects (untreated versus ceftiofur treated). 

Next, we performed a non-metric multi-dimension scaling (NMDS) of the Bray-Curtis 

distances to assess the effects of diet and antibiotics (ceftiofur-treated or penicillin G-treated 

group) on the overall bacterial taxonomic composition. The PERMANOVA results (based on 

Bray-Curtis distances) showed that both diets (p <0.001) and ceftiofur treatment (p=0.001) 

affected the overall bacterial composition (beta diversity) (Figure 5.8, a-d). However, we did not 

find sufficient evidence of the interaction of diet and ceftiofur treatment on bacterial community 

composition. Further, the degree of variation in the taxonomic composition among individuals 

pigs was similar across diet (multivariate homogeneity test of group dispersion; p=0.2) and 

antimicrobial treatment group and day of treatment (multivariate homogeneity test of group 

dispersion; p=0.48).  



153 

The relative abundance of the bacterial taxonomic composition (at the phylum level) is 

shown in Figure 5.9. There was no significant difference in the relative abundance of bacterial 

phyla in the ceftiofur-treated pigs receiving either a control diet or DDGS-based diet. However, 

on the sugar beet pulp-based diet, the relative abundance of Kiritimatiellaeota significantly 

increased (p < 0.05) in ceftiofur-treated pigs (days 1 and day 3) compared to the untreated pen-

mate control (day 1). In the same sugar beet pulp dietary treatment, the relative abundance of 

Pirellulaceae, Spirochaetaceae, Methanobacteriaceae, and Christensenellaceae of bacterial 

families significantly increased (DESeq, adjusted p <0.05) in the treated pigs compared to the 

untreated pen-mate control pigs. The relative abundance of Bifidobacteriaceae, Prevotellaceae, 

and Chlamydiaceae decreased in the ceftiofur treated pigs compared to untreated pen-mate 

control (Figure 5.11, a-c). However, we did not find a significant change in the relative bacterial 

abundance (at the family level) in those fed other control and DDGS-based diets. 

In the penicillin G treated group, the richness of taxa (Chao1), diversity (Shannon, Fisher 

alpha), and evenness of taxa did not differ with penicillin G treated, day of treatment (day 1 vs. 

day 3) and dietary treatments (control, DDGS-based diet and sugar beet pulp-based diet). There 

was no interaction between dietary treatment and the effect of penicillin treatment on richness, 

diversity, and evenness of taxa (Figures 5.6 and 5.7). However, overall bacterial community 

composition (beta diversity) changed based on diet and day of penicillin G treatment (Figure 5.8, 

e-h). The PERMANOVA (based on Bray-Curtis distances) of taxonomic composition showed 

significant differences in the bacterial community composition based on diet (p=0.001) and 

penicillin G treatment (p=0.001). However, there was no significant interaction between dietary 

treatment and penicillin treatment effects on the taxonomic composition of bacterial 

communities. 
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The relative abundance of bacterial phyla did not vary with the penicillin G treatment 

group or across dietary treatments (Figure 5.10). However, the relative abundance of the 

bacterial family varied with dietary treatments (those received control diet). For instance, the 

relative abundance of Peptostreptococcaceae and Enterobacteriaceae significantly (p < 0.05) 

increased in pig treated with penicillin G while the relative abundance of Streptococcaceae, 

Veillonellaceae, and Prevotellaceae significantly decreased in the penicillin G treated pigs 

(Figure 5.11, d-f). 

 The abundance of phenotypically AMR fecal bacteria   

We found that 49% and 46% of all samples (n=55) from untreated pigs (5 pigs/diet, day 

98, 110, 144 and 177) on the dietary treatments (receiving 1 of 3 dietary treatments: control, 

DDGS-based diet or sugar beet pulp-based diet) carried coliforms and enterococci resistant to at 

least one antimicrobial drug, respectively (Table 5.3). The change in counts (log10 CFU/g) of the 

total and antimicrobial-resistant coliforms and enterococci in the pigs receiving different diets 

are shown in Figures 5.12 and 5.13. The total coliform counts did not change with age (day 98 

through day 177/market) and dietary treatments. However, total enterococci counts did vary with 

dietary treatment (p=0.1) with lower in the DDGS-based diet compared to the control diet. 

Similarly, there were interactions between pig age and dietary changes (p=0.01) in total 

enterococci counts. Coliform resistant to ceftriaxone (3rd generation cephalosporins), 

tetracyclines, macrolides, aminoglycosides, and sulfonamides did not vary with age or dietary 

treatments. Similarly, enterococci resistant to aminopenicillins, tetracyclines, macrolides, and 

lincosamides did not change with pig age or dietary treatment (and their interaction effects). 

However, nalidixic acid (quinolone)-resistant enterococci varied with dietary treatments (p = 

0.1).  
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Of the ceftiofur-treated (day 1 and day 3 along with untreated pen mate control), 59% and 

50% of all samples (n=40) carried coliforms and enterococci resistant to at least one of the tested 

antimicrobial drugs, respectively (Figures 5.14, 5.15 and 5.16).  

Of the ceftiofur treated pigs, the total coliform counts did not change with the dietary 

treatments (ANOVA, p >0.05), and there was no interaction between the ceftiofur treatment and 

dietary treatments (ANOVA, p >0.05). Similarly, coliform resistant to ceftriaxone (3rd generation 

cephalosporins), tetracyclines, macrolides, aminoglycosides, and sulfonamides did not change 

significantly with both dietary treatment and ceftiofur treatment (ANOVA, p >0.05). However, 

only aminopenicillin resistant coliforms were significantly different across the dietary treatments 

(p = 0.03) (sugar beet pulp-based diet to control diet and sugar beet pulp to DDGS based diet). In 

the same ceftiofur treated pigs, enterococci resistant to aminopenicillins, quinolones, 

tetracyclines, macrolides, aminoglycosides, and lincosamides also did not change with either 

dietary treatment or ceftiofur treatment or their interaction effects.  

Similarly, 62% and 48% of the penicillin G-treated (day 1 and day 3 along with untreated 

pen mate control), carried resistant coliforms and enterococci, respectively (to at least one 

antimicrobial drug tested (Table 5.3) (Figures 5.14, 5.15 and 5.16)). Total coliform counts did 

not change with the dietary treatments or antibiotic treatment (ANOVA, p >0.05). Coliform 

resistant to ceftriaxone (3rd generation cephalosporins), tetracyclines, macrolides, and 

sulfonamides also did not change significantly with either dietary treatment or penicillin 

treatment (ANOVA, p > 0.05). Enterococci resistant to aminopenicillins, tetracyclines, 

macrolides, aminoglycosides, and lincosamides also did vary with either dietary treatment or 

ceftiofur treatment or their interactions. However, quinolones resistant enterococci counts were 
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significantly varied with dietary treatments (sugar beet pulp-based diet versus control diet, 

adjusted p-value = 0.01). 

Overall, higher variability in the abundance (log10 CFU/g) of AMR coliforms or 

enterococci were observed based on dietary treatment and antimicrobial treatment (either 

injectable ceftiofur or penicillin G).  

 Discussion 

When designing this study, our research hypothesis was that there would be age-related 

dynamics and effects of the diet and antimicrobial treatments on the fecal microbiome or AMR. 

Thus, we modified dietary composition (with different levels and sources of fibers) to understand 

and measure the age-related change and effect of diet or antimicrobial use on the fecal 

microbiome and AMR. We targeted the treatment effect using ceftiofur and penicillin G, 

common antibiotics in swine production in the United States. 

 The alpha diversity and taxonomic composition changes significantly with age  

The richness and diversity of the fecal microbiome increased with pig age. The alpha 

diversity indices such as richness and diversity (Fisher alpha index) of the taxa gradually 

increased from day 98 (first week after moving finisher/starting dietary treatments) until day 177 

(market) on both control and sugar beet pulp-based diets. This increased trend with age was 

comparable to previous studies (Lu et al., 2018; Wang et al., 2019; Arfken et al., 2020).  

However, these dynamics dropped on day 177 (market) in pigs receiving DDGS-based diet 

indicating age and diet effects. Previous studies have shown that age, diet, and the use of 

antimicrobials can influence the swine gut microbial community (Ghanbari et al., 2019; Pollock 

et al., 2020).  
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The decreasing trend of microbiome diversity during the market age of production pigs 

was also reported in previous studies. For instance, Han and colleagues (2018a) studied 

microbiome diversity and composition of healthy pigs (n=32) at five age points (days 10, 21, 63, 

93, and 147). They found that the intestinal microbiome changed with swine growth and reduced 

the alpha diversity on day 63 when antimicrobials were supplemented in the diet (Han et al., 

2018). Similarly, De Rodas et al. (2018) reported that alpha diversity decreased in different 

locations of the GI tract in pigs from birth to day 84. This decreased trend was most noticeable in 

samples from the market age.  

In our study, we modified the diet composition with varying levels and sources of fiber 

(higher in sugar beet pulp-based diet followed by DDGS-based diet compared to the 

control/corn-soybean based diet). We found both age and diet effects on the overall bacterial 

community structure. Similar age-and-diet related clustering of the bacterial community was 

reported in several studies of pigs (Frese et al., 2015b; Wang et al., 2019; Arfken et al., 2020) 

and cattle (Liu et al., 2019; Hennessy et al., 2020). Diet was one of the important factors in 

shaping the pig gut microbiome; a study showed that neutral detergent fiber is particularly 

impactful in shaping the pig gut microbiome (Wang et al., 2019) because the plant cells cannot 

be digested by the pig and thus they are passed to the colon for fermentation by the gut 

microbiome.  

Similarly, Frese et al. (2015a) reported that the diversity of bacterial taxa increased with 

dietary changes from sows milk to a plant-based starter diet. The relative abundance of 

Lactobacillaceae, Rumimococcaae, Veillonellaceae, and Prevotellaceae increased in the weaned 

piglets. Recently, Zhang et al. (2016) reported that moderately increased fiber (both soluble and 

insoluble fiber) in the diet influenced the gut microbial composition in piglets fed with different 
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levels of fiber-containing diets compared to a control diet from postnatal days 7 to 22. In 

contrast, a study by Kraler et al. (2016) showed no difference in taxonomic composition related 

to diet modification (control diet and with low and high fiber diet). Other studies showed that 

dietary changes coupled with other management factors in the farms such as in-feed 

antimicrobials, prebiotics, and probiotics administration played an important role in shaping the 

gut microbial community in pigs (Bian et al., 2016; Guevarra et al., 2019). 

 Microbiome alpha diversity was not affected by antimicrobial exposure, but the 

community composition varied with diet and antimicrobial exposure 

An earlier study showed impacts to the swine gut microbiome composition from 

antimicrobial exposure (Looft et al., 2014; Zhao et al., 2018). However, our data showed the 

alpha diversity indices of fecal microbiome were not affected by antimicrobial exposure 

(injectable ceftiofur and penicillin G). Similar findings were reported by Pollock et al. (2020) 

where higher levels of chlortetracycline and tylosin in the feed did not affect the fecal 

microbiome diversity in young pigs. Similarly, no impact by subtherapeutic effects of 

chlortetracycline and tylosin on alpha diversity were reported by (Holman and Chenier (2013).  

In contrast, another study showed that the richness and diversity (Shannon index) of taxa 

differed in weaned pigs following oxytetracycline administration (Ghanbari et al., 2019). In our 

study, the taxa richness was less dispersed in ceftiofur-treated (both days 1 day 3) pigs across all 

diets compared to pen-mate untreated controls (day 1). Similarly, in the penicillin G-treated 

group, the fecal microbiome was more diverse (as measured by Shannon and Fisher alpha 

indices) in pigs receiving a sugar beet pulp-based diet followed by a DDGS-based diet compared 

to the control diet. These results indicated that despite penicillin G use, fecal bacterial richness 

and diversity increased based on the sugar beet-pulp and DDGS-based diet, suggesting that 



159 

penicillin G might have a minimal effect on gut microbial communities versus compared to that 

of ceftiofur. An earlier study also showed that the diversity of the microbiome taxa (measured by 

Shannon index) of untreated pigs was significantly lower compared to piglets treated with 

tulathromycin (Schokker et al., 2014). However, it is difficult to understand whether the short-

term changes in the dynamics of microbial richness and diversity from antimicrobial 

administration could have any significant long-term impacts. 

Similarly, the beta diversity of the fecal bacterial community structure revealed a shift in 

the composition of the bacterial community in both ceftiofur or penicillin G-treated pigs. 

Recently, Ruczizka et al. (2019) reported the effect of parenteral treatment of ceftiofur on the 

fecal microbiome in pigs from the suckling to growing stages (birth to day 97). They also found 

that ceftiofur administration disturbed the fecal microbiome composition as early as 12 hours 

postpartum. Ceftiofur is a common antibiotic in pigs and is administered intramuscularly. It is 

effective for at least 158 hours in plasma, but most of the drug is excreted as metabolites in the 

feces (Hornish and Kotarski, 2002; Ruczizka et al., 2019). This ceftiofur metabolite is then 

excreted via urine (~68%) and feces (~13%) in 10 days (Hornish and Kotarski, 2002) and may 

impact the gut microbial communities.  

Of ceftiofur-treated pigs, no visible differences were seen in the abundance of the 

bacterial families in pigs fed either control or DDGS-based diet. However, on the sugar beet 

pulp-based diet, the most notable change in bacterial abundance was an increase in the relative 

abundance of the Kiritimatiellaeota phylum. Similarly, at the family level, the relative 

abundance of Pirellulaceae, Spirochaetaceae, Methanobacteriaceae, and Christensenellacea 

increased in the treated pigs compared to their pen-mate untreated pigs. Similarly, in the same 

dietary group, the relative abundance of Bifidobacteriaceae, Prevotellaceae, and Chlamydiaceae 
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significantly decreased in the treated group. In line with previous studies, our findings also 

showed the parental administration of ceftiofur in pigs reduced Bifidobacteriaceae in fecal 

samples (Ruczizka et al., 2019).  

Of the penicillin treated pigs, there was no difference in the fecal microbiome at the 

phylum level across all dietary treatments following p-value correction. An earlier study also 

showed no significant difference in microbiome composition after day 55 of age between the 

treatment groups (those received tulathromycin at four days after birth and control) (Schokker et 

al., 2015). A similar finding was seen for the effect of antibiotic treatment on the fecal 

microbiome (Ruczizka et al., 2019). Furthermore, Kalmokoff et al. (2011) reported that the 

addition of either tylosin or virginiamycin to pig feed over 15 weeks did not affect the animal 

fecal microbiome (16S rRNA).  

 A great deal of variability was observed in the abundance of phenotypically AMR 

with age of pigs on the dietary treatment and antimicrobial exposure 

Our data suggested age- and diet-related changes in an abundance of phenotypic AMR in 

fecal coliforms and enterococci of finisher pigs (days 98 to 177). The total coliforms or 

enterococci remained stable throughout the study period and across the dietary treatments. There 

was a noticeable fluctuation in the abundance of AMR fecal coliforms and enterococci with the 

age of pigs fed with different levels and sources of fiber; however, most marked changes were 

generally associated with the age of the pigs. A previous study showed that housing and dietary 

changes might affect the prevalence of AMR by changing the total coliforms in the 

gastrointestinal tract (Overland et al., 2000) and calves (Hoyle et al., 2004a). Recently, the rumen 

resistome composition was shown to be significantly related to diet and abundance. The diversity 

of AMR genes was higher in concentrated fed animals than forage-fed (Auffret et al., 2017). An 
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earlier study also showed that the fecal resistome significantly changed over time in animals (Liu 

et al., 2019) and is associated with diet.  

Further, variability in the abundance of phenotypically AMR in coliforms or enterococci 

was not generally affected by antimicrobial exposure (injectable ceftiofur or penicillin G). An 

earlier study also showed that changes in the abundance of AMR genes were not associated with 

antimicrobial exposure (Pollock et al., 2020). This could be related to the relatively short 

sampling time (days 1 and 3 of the treatment regimen) or other factors affecting the entire farm, 

management, or environmental conditions (Mathew et al., 2003).  

 Conclusions 

There is growing concern over antimicrobial resistance, and alternative approaches such 

as pre/probiotics and dietary interventions have been investigated. The benefits associated with 

the presence of fiber in the diet have been identified, including positive changes in the gut 

microbial community composition to a reduction in both richness and diversity of the gut 

resistome. In addition to diet, several factors such as animal age, antimicrobial use, and the 

environment could influence microbial diversity and antimicrobial resistance in fecal bacteria. 

Our data revealed that both pig age and diet are associated with bacterial taxonomic diversity, 

community composition and phenotypically AMR in fecal bacteria. Even short-term 

administration of ceftiofur and penicillin G changed the bacterial taxonomic composition. Our 

data further suggest an effect of age, diet, and antimicrobial use on the AMR in fecal bacteria. 
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Table 5.1   Formulation and chemical composition of dietary treatments. 

Formulation and chemical composition of dietary treatments. 

Ingredients, % Diet (Phase 1) 
 

Diet (Phase 2) 
 

Diet (Phase 3) 

Control DDGS Sugar beet 

pulp 

 
Control DDGS Sugar beet 

pulp 

 
Control DDGS Sugar beet 

pulp 

Corn 75.45 62.55 58.65 
 

81.81 68.83 64.96 
 

85.19 70.55 68.47 

Soybean Meal, Dehull, 

Solvent Extracted 

21.78 14.53 21.42 
 

15.64 8.39 15.28 
 

12.37 6.73 12.00 

Sugar beet pulp - - 14.50 
 

- - 14.50 
 

- - 14.50 

Choice White Grease - 0.20 2.80 
 

- 0.25 2.85 
 

- 0.40 2.75 

Calcium carbonate 0.92 1.05 0.60 
 

0.92 1.07 0.62 
 

0.92 1.07 0.62 

Calcium phosphate 

(monocalcium) 

0.55 0.25 0.62 
 

0.40 0.10 0.45 
 

0.35 0.00 0.37 

Sodium chloride 0.50 0.50 0.50 
 

0.50 0.50 0.50 
 

0.50 0.50 0.50 

L- Lysine–HCl 0.30 0.45 0.30 
 

0.30 0.45 0.30 
 

0.30 0.40 0.30 

DL- Methionine 0.06 0.02 0.11 
 

0.03 - 0.08 
 

0.01 - 0.06 

L- Threonine 0.09 0.09 0.12 
 

0.10 0.09 0.12 
 

0.11 0.09 0.14 

L- Tryptophan  0.01 0.03 0.01 
 

0.01 0.03 0.02 
 

0.02 0.03 0.02 

L-Valine - - 0.04 
 

- - 0.03 
 

- - 0.03 

Trace mineral premix 0.15 0.15 0.15 
 

0.12 0.12 0.12 
 

0.10 0.10 0.10 

Vitamin premix without 

phytase 

0.15 0.15 0.15 
 

0.12 0.12 0.12 
 

0.10 0.10 0.10 

Ronozyme HiPhos 2700 0.01 0.01 0.01 
 

0.01 0.01 0.01 
 

0.01 0.01 0.01 

Corn DDGS, 7.5% Oil - 20.00 - 
 

- 20.00 - 
 

- 20.00 - 

Total 100.0 100.0 100.0 
 

100.0 100.0 100.0 
 

100.0 100.0 100.0 

Chemical composition 
           

Digestible Lysine, % 0.95 0.95 0.95 
 

0.80 0.80 0.80 
 

0.72 0.72 0.72 

Net energy, kcal/kg 2,487 2,487 2,487 
 

2,528 2,529 2,530 
 

2,549 2,549 2,547 

NDF, % 8.7 13.6 13.6 
 

8.7 13.7 13.7 
 

8.8 13.7 13.7 

Crude fiber, % 2.3 3.3 5.3 
 

2.2 3.1 5.1 
 

2.2 3.1 5.1 

Crude protein, % 17.0 18.2 16.9 
 

14.6 15.8 14.4 
 

13.3 15.1 13.2 
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Crude fat, % 3.0 4.1 5.2 
 

3.1 4.3 5.4 
 

3.2 4.4 5.4 

Calcium, % 0.59 0.59 0.59 
 

0.54 0.54 0.54 
 

0.51 0.51 0.51 

Phosphorus, % 0.47 0.47 0.45 
 

0.41 0.41 0.39 
 

0.38 0.38 0.36 

Digestible phosphorus, % 0.33 0.33 0.33 
 

0.28 0.28 0.28 
 

0.26 0.26 0.26 

Dietary fiber includes soluble dietary fiber and insoluble dietary fiber; DDGS — distillers dried grains with soluble (by-product when 

corn is fermented to make ethanol), mainly contains an insoluble fiber; sugar beet pulp- mainly contains soluble fiber. NDF—Neutral 

Detergent Fiber, the pigs, were ~93 days old when they entered to finisher facility and started on dietary treatments (phase 1- day 93 to 

103, phase 2- day 103 to 132, and phase 3- day 132 to 179). 
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Table 5.2   Numbers of pigs sampled on the dietary treatments. 

Numbers of pigs sampled on the dietary treatments. 

Study group Age, days 

(sampling time-

points) 

Dietary treatments 
Total fecal 

samples 
Control DDGS Sugar Beet 

Pulp 

Untreated pigs  98 3 4 3 10  
110 5 5 5 15  
144 5 5 5 15  
177 5 5 5 15 

Subtotal 
    

n=55 samples 

Ceftiofur treated pigs  
     

Ceftiofur treated day 1 and day 3 3 4 3 10 pigs x 2 time-

points=20 

samples 

day 1 only* 3 
 

2 5 

Untreated pen-mate control day 1 6 4 5 15 

Subtotal 
    

n=40 samples 

Penicillin G treated pigs 
     

Penicillin G treated day 1 and day 3 5 5 5 15 pigs x 2 time-

points= 30 

samples 

Untreated pen-mate control day 1 5 5 5 15 

Subtotal 
    

n=45 samples 

DDGS—distillers dried grains with soluble, *pigs were only treated 1-2 days when clinical 

improvement was seen; hence, only day 1 sample was collected. 
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Table 5.3   Antimicrobial drug concentrations used to supplement microbiological agars to evaluate the dynamics of the phenotypic AMR in finisher pigs. 

Antimicrobial drug concentrations used to supplement microbiological agars to evaluate the 

dynamics of the phenotypic AMR in finisher pigs. 

Bacteria/Media Antimicrobial drug class 
Antimicrobial drug 

supplemented (abbreviation) 

Drug 

concentration 

(µg/mL) 

supplementeda 

Coliforms    

MacConkey Agar 

(MAC) 

Aminoglycosides Gentamicin (GEN) 16 

 

 
Streptomycin (STR) 32 

 

3rd generation 

cephalosporins 

Ceftriaxone (AXO) 4 

 

Sulfonamides/folate path 

inhibitors 

Sulfamethoxazole (SMX) 512 

 
Macrolides Azithromycin (AZI) 32 

 
Penicillin Ampicillin (AMP) 32 

 
Phenicols Chloramphenicol (CHL) 32 

 
Fluoroquinolones Ciprofloxacin (CIP 1 (and 0.25) 

 
Quinolones Nalidixic acid (NAL) 32 

 
Tetracyclines Tetracycline (TET) 16 

 
Fluoroquinolones Enrofloxacin (ENR) 0.125* 

Enterococci spp.  

   

Enterococcus Agar 

(ENT) 

Aminoglycosides Gentamicin (GEN) 500 

 

 
Streptomycin (STR) 1024 

 
Lincosamides Lincomycin (LIN) 8 

 
Macrolides Erythromycin (ERY) 8 

 

 
Tylosin 32 

 
Nitrofurans Nitrofurantoin (NIT) 128 

 
Aminopenicillins Penicillin (PEN) 16 

 
Phenicols Chloramphenicol (CHL) 32 

 
Fluoroquinolones Ciprofloxacin (CIP) 4 

 

 
Enrofloxacin (ENR) 4 

 
Quinolones Nalidixic acid (NAL) 32ǂ 

  Tetracyclines Tetracycline (TET) 16 

a Breakpoints based on Clinical Laboratory Standards Institute guidelines (CLSI, 2008) and 

National Antimicrobial Resistance Monitoring System, * European Committee on Antimicrobial 

Susceptibility Testing (epidemiological cutoff value), ǂ adopted from E. coli break-point 

concentration



166 

 

Figure 5.1. Schematic of the study design the age-related dynamics and effects of diet and antimicrobial treatments on the fecal 

microbiome taxonomic composition and AMR in finisher pigs. Sub-study 1, where fecal samples were collected longitudinally from 

individual pigs (n=5 pigs per diet, the animals were not treated with antimicrobial drugs during the finisher phase) at ~98 days (first 

week after moving into the finisher barn/facility and associated diet change), 110 days (~ 2.5 weeks after moving into finisher 

barn/facility), 144 days (~6 weeks after moving into finisher barn/facility), and 177 days (day of harvest).  Sub-study 2, where fecal 

samples were collected from the individual ceftiofur-treated pigs (~ 4 pigs per diet, the animals were sampled on day 1 and day 3 of the 

treatment regimen; an untreated pen-mate control animal was sampled on day 1). Sub-study 3, where fecal samples were collected from 
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individual penicillin G treated pigs (~ 5 pigs per diet, the animals were sampled on day 1 and day 3 of the treatment; an untreated pen-

mate control animal was sampled on day 1). The dietary treatments varied in fiber content and its source: control diet (corn-soybean 

based with 8.7% neutral detergent fiber (NDF), 2.2 % crude fiber), DDGS—distillers dried grains with soluble (20% DDGS with 13.6% 

NDF and 3.1% crude fiber), and sugar beet pulp-based diet (14.5% sugar beet pulp with 13.6% NDF and 5.1% crude fiber). 
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Figure 5.2. Age-dependent changes in alpha diversity of the fecal microbiome taxa depending on the dietary treatment in finisher pigs. 

The richness of bacterial species (Chao1 index (a)), diversity of species (Shannon index (b) and Fisher alpha index (c)), and evenness 

of species (d), from day 98 to day 177 of age. The dietary treatments varied in fiber content and its source: control diet (corn-soybean 
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based with 8.7% neutral detergent fiber (NDF), 2.2 % crude fiber), DDGS—distillers dried grains with solubles (20% DDGS with 13.6% 

NDF and 3.1% crude fiber), and sugar beet pulp-based diet (14.5% sugar beet pulp with 13.6% NDF and 5.1% crude fiber). 
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Figure 5.3. Beta diversity of the fecal microbiome taxa depending on the age and dietary treatment in finisher pigs. Non-metric 

multidimensional scaling (NMDS) plots are based on the Bray-Curtis distances by age (a), by age and dietary treatment (b-d), and by 

dietary treatment (e). The dietary treatments varied in fiber content and its source: control diet (corn-soybean based with 8.7% neutral 
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detergent fiber (NDF), 2.2 % crude fiber), DDGS—distillers dried grains with solubles (20% DDGS with 13.6% NDF and 3.1% crude 

fiber), and sugar beet pulp-based diet (14.5% sugar beet pulp with 13.6% NDF and 5.1% crude fiber). 
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Figure 5.4. Pie chart depicting the relative abundance of individual phyla in the fecal microbiome by age of finisher pigs depending on 

the dietary treatment. The dietary treatments varied in fiber content and its source: control diet (corn-soybean based with 8.7% neutral 
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detergent fiber (NDF), 2.2 % crude fiber), DDGS—distillers dried grains with solubles (20% DDGS with 13.6% NDF and 3.1% crude 

fiber), and sugar beet pulp-based diet (14.5% sugar beet pulp with 13.6% NDF and 5.1% crude fiber). 
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Figure 5.5. Age-dependent changes in absolute abundance of individual bacterial families in the fecal bacterial community in finisher 

pigs between days 98, 110, 144, and 177 of age depending on the dietary treatment. The dietary treatments varied in fiber content and 

its source: control diet (corn-soybean based with 8.7% neutral detergent fiber (NDF), 2.2 % crude fiber), DDGS—distillers dried grains 

with solubles (20% DDGS with 13.6% NDF and 3.1% crude fiber), and sugar beet pulp-based diet (14.5% sugar beet pulp with 13.6% 

NDF and 5.1% crude fiber). False discovery (FDR) adjusted p-value is reported (a-c). A positive/negative log-fold change indicates an 

increase/decrease in the family abundance with age. The vertical dotted lines indicated the log-fold changes between -1 to 1. 
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Figure 5.6. Alpha diversity of the fecal microbiome taxonomic composition across the dietary treatments and antimicrobial treatments 

in finisher pigs. The richness (Chao1 index) and diversity (Shannon index) in pigs receiving 1 of 3 dietary treatments and either no 

antimicrobial treatment or treated by ceftiofur (a, c) or penicillin G (b, d). The dietary treatments varied in fiber content and its source: 
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control diet (corn-soybean based with 8.7% neutral detergent fiber (NDF), 2.2 % crude fiber), DDGS—distillers dried grains with 

solubles (20% DDGS with 13.6% NDF and 3.1% crude fiber), and sugar beet pulp-based diet (14.5% sugar beet pulp with 13.6% NDF 

and 5.1% crude fiber). 
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Figure 5.7. Alpha diversity of the fecal microbiome taxonomic composition across the dietary treatments and antimicrobial treatments 

in finisher pigs. The diversity (Fisher alpha index) and evenness (evenness index) in pigs receiving 1 of 3 dietary treatments and either 
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no antimicrobial treatment or treated by ceftiofur (a, c) or penicillin G (b, d). The dietary treatments varied in fiber content and its source: 

control diet (corn-soybean based with 8.7% neutral detergent fiber (NDF), 2.2 % crude fiber), DDGS—distillers dried grains with 

solubles (20% DDGS with 13.6% NDF and 3.1% crude fiber), and sugar beet pulp-based diet (14.5% sugar beet pulp with 13.6% NDF 

and 5.1% crude fiber). 
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Figure 5.8. Beta diversity of fecal microbiome composition of pig receiving 1 of 3 dietary treatments and antimicrobial drugs. Non-

metric multidimensional scaling (NMDS) plots based on Bray-Curtis distances by ceftiofur treatment group across the dietary treatment 

(a-c) by in penicillin G treated group across the dietary treatments (e-f). The dietary treatments varied in fiber content and its source: 

control diet (corn-soybean based with 8.7% neutral detergent fiber (NDF), 2.2 % crude fiber), DDGS—distillers dried grains with 



180 

solubles (20% DDGS with 13.6% NDF and 3.1% crude fiber), and sugar beet pulp-based diet (14.5% sugar beet pulp with 13.6% NDF 

and 5.1% crude fiber). 
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Figure 5.9. A pie chart depicting the relative abundance of the microbiome (phylum level) of pigs receiving 1 of 3 dietary treatment 

and receiving either no treatment or ceftiofur treatment on day 1 and day 3. The dietary treatments varied in fiber content and its source: 
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control diet (corn-soybean based with 8.7% neutral detergent fiber (NDF), 2.2 % crude fiber), DDGS—distillers dried grains with 

solubles (20% DDGS with 13.6% NDF and 3.1% crude fiber), and sugar beet pulp-based diet (14.5% sugar beet pulp with 13.6% NDF 

and 5.1% crude fiber). 
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Figure 5.10. A pie chart depicting the relative abundance of the microbiome (phylum level) of pigs receiving 1 of 3 dietary treatment 

and receiving either no treatment or penicillin G treatment on day 1 and day 3. The dietary treatments varied in fiber content and its 
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source: control diet (corn-soybean based with 8.7% neutral detergent fiber (NDF), 2.2 % crude fiber), DDGS—distillers dried grains 

with solubles (20% DDGS with 13.6% NDF and 3.1% crude fiber), and sugar beet pulp-based diet (14.5% sugar beet pulp with 13.6% 

NDF and 5.1% crude fiber). 
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Figure 5.11. Bacterial taxonomic composition (at the family level) are showing significantly different abundance (adjusted p-value 

based on false discover rate (FDR)) in the ceftiofur treated group (a-c), and penicillin G treated group (d-f) receiving 1 of 3 dietary 
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treatment. The dietary treatments varied in fiber content and its source: control diet (corn-soybean based with 8.7% neutral detergent 

fiber (NDF), 2.2 % crude fiber), DDGS—distillers dried grains with solubles (20% DDGS with 13.6% NDF and 3.1% crude fiber), and 

sugar beet pulp-based diet (14.5% sugar beet pulp with 13.6% NDF and 5.1% crude fiber). Positive log-fold changes indicate an increase 

in abundance and negative log-fold changes indicate a decrease in abundance in the antimicrobial treated pigs compared to the control 

group. The vertical dotted line represents a range of log-fold change (-1 to 1). 
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Figure 5.12. Boxplot of the abundance of fecal coliforms (a-d) or enterococci (log10 CFU/g) (e-h) growing in the presence of the clinical 

breakpoint concentration of a drug of that antimicrobial class, for aminopenicillins, 3rd generation cephalosporins, quinolones, 

tetracyclines, and macrolides. The data are for production pigs 98, 110, 144, and 177 days of age receiving 1 of 3 dietary treatments. 

The dietary treatments varied in fiber content and its source: control diet (corn-soybean based with 8.7% neutral detergent fiber (NDF), 

2.2 % crude fiber), DDGS—distillers dried grains with solubles (20% DDGS with 13.6% NDF and 3.1% crude fiber), and sugar beet 

pulp-based diet (14.5% sugar beet pulp with 13.6% NDF and 5.1% crude fiber). 
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Figure 5.13. Boxplot of the abundance of fecal coliforms (a-d) or enterococci (log10 CFU/g) (e-h) growing in the presence of the 

clinical breakpoint concentration of a drug of that antimicrobial class, for aminoglycosides, sulfonamides, phenicols, lincosamides, 

and nitrofurans and without antimicrobial (d and h). The data are for production pigs 98, 110, 144, and 177 days of age receiving 1 of 

3 dietary treatments. The dietary treatments varied in fiber content and its source: control diet (corn-soybean based with 8.7% neutral 

detergent fiber (NDF), 2.2 % crude fiber), DDGS—distillers dried grains with solubles (20% DDGS with 13.6% NDF and 3.1% crude 

fiber), and sugar beet pulp-based diet (14.5% sugar beet pulp with 13.6% NDF and 5.1% crude fiber). 
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Figure 5.14. Boxplot of the abundance of fecal coliforms (a-d) or enterococci (c-d) (log10 CFU/g) growing in the presence of the clinical 

breakpoint concentration of a drug of that antimicrobial class, for aminopenicillins, 3rd generation cephalosporin and quinolones. The 

data are for finisher pigs receiving 1 of 3 dietary treatments and receiving either no antimicrobial treatment or treated by ceftiofur (a, b, 

e and f) or penicillin G (c, d, g, and h), for the days 1 and 3 of the treatment regimen. The dietary treatments varied in fiber content and 

its source: control diet (corn-soybean based with 8.7% neutral detergent fiber (NDF), 2.2 % crude fiber), DDGS—distillers dried grains 
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with solubles (20% DDGS with 13.6% NDF and 3.1% crude fiber), and sugar beet pulp-based diet (14.5% sugar beet pulp with 13.6% 

NDF and 5.1% crude fiber). 
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Figure 5.15. Boxplot of the abundance of fecal coliforms (a-d) or enterococci (c-d) (log10 CFU/g) growing in the presence of the clinical 

breakpoint concentration of a drug of that antimicrobial class, for tetracyclines and macrolides. The data are for finisher pigs receiving 

1 of 3 dietary treatments and receiving either no antimicrobial treatment or treated by ceftiofur (a, b, e, and f) or penicillin G (c, d, g, 

and h), for the days 1 and 3 of the treatment regimen. The dietary treatments varied in fiber content and its source: control diet (corn-
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soybean based with 8.7% neutral detergent fiber (NDF), 2.2 % crude fiber), DDGS—distillers dried grains with solubles (20% DDGS 

with 13.6% NDF and 3.1% crude fiber), and sugar beet pulp-based diet (14.5% sugar beet pulp with 13.6% NDF and 5.1% crude fiber). 
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Figure 5.16. Boxplot of the abundance of fecal coliforms (a-d) or enterococci (c-d) (log10 CFU/g) growing in the presence of the clinical 

breakpoint concentration of a drug of that antimicrobial class, for aminoglycosides, sulfonamides, and lincosamides. The data are for 

finisher pigs receiving 1 of 3 dietary treatments and receiving either no antimicrobial treatment or treated by ceftiofur (a, b, e, and f) or 

penicillin G (c, d, g, and h), for the days 1 and 3 of the treatment regimen. The dietary treatments varied in fiber content and its source: 

control diet (corn-soybean based with 8.7% neutral detergent fiber (NDF), 2.2 % crude fiber), DDGS—distillers dried grains with 
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solubles (20% DDGS with 13.6% NDF and 3.1% crude fiber), and sugar beet pulp-based diet (14.5% sugar beet pulp with 13.6% NDF 

and 5.1% crude fiber). 
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Chapter 6 - Fecal Concentrations of Ceftiofur Equivalents in Pigs 

Administered with Injectable Ceftiofur: A Pilot Study  

 

 Abstract 

The objectives of the study were to determine the effects of dietary fiber on antimicrobial 

active ceftiofur metabolites concentration in feces after intramuscular administration of the 

cephalosporins ceftiofur drug to finisher pigs. The fecal samples (n=40) were collected from 

ceftiofur treated (n=15) and untreated pen-mate control (n=15) pigs receiving 1 of 3 dietary 

treatments: control diet (corn-soybean based with 8.7% neutral detergent fiber and 2.2% crude 

fiber), DDGS—distillers dried grains with solubles (20% DDGS with 13.6% neutral detergent 

fiber and 3.1% crude fiber and primarily contains insoluble fiber), and sugar beet pulp-based diet 

(14.5% sugar beet pulp with 13.6% neutral detergent fiber and 5.1% crude fiber and primarily 

contains soluble fiber) in their pens during finisher stage. The amounts of ceftiofur metabolites 

measured as ceftiofur metabolites, including desfuroylceftiofur were analyzed. Overall, the 

average concentration of ceftiofur metabolites did not differ significantly between the dietary 

treatments. In all dietary treatment groups, the average concentration of drug metabolites 

(µg/mL) was lower on day 3 compared to day 1 of the 3-day treatment regimen by 59% of that 

on day 1. The decreased in the average ceftiofur concentration on day 3 vs. day 1 of treatment 

approached marginal statistical significance (ANOVA p-value=0.10, n=14 treated pigs). This 

trend was consistent between gender and across three animal diets that varied in fiber content 

and source. The concentrations of ceftiofur and its active metabolites in the porcine feces can be 

expected to be affected by which β-lactamase producing bacterial strains are present, and the 

match and potency of the β-lactamases to the drug. 
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 Introduction 

Antimicrobials have been used in swine production mainly in weaned and finisher pigs, 

to treat production-related diseases as well as for growth promotion for more than 50 years 

(Looft et al., 2012a). However, excessive use of antibiotics in the therapeutic setting causes 

selective pressure that may drive the development of antibiotic resistance as the consequence of 

horizontal gene transfer or mutation (Martínez, 2008). Thus, with the growing concern over 

antimicrobial resistance, alternative approaches such as pre/probiotics and dietary interventions 

have been investigated. The benefits associated with the presence of fiber in the diet have been 

identified; this includes the change in the gut microbial community composition and promotion 

of enteric health.  Moreover, an earlier study has shown that dietary interventions significantly 

change both the richness and diversity of the gut resistome in children (Wu et al., 2016). 

Similarly, studies described the range of modifiable non-antimicrobial factors (including diet) or 

interventions to mitigate antimicrobial resistance in commensal enteric bacteria in cattle 

(Murphy et al., 2015). For instance, feeding pigs with fiber-containing diets has shown a change 

in the gut microbial community composition (Metzler and Mosenthin, 2008). Dietary fiber is 

comprised of indigestible carbohydrates and has a specific effect on the gut physiology in pigs 

based on the type and level of fiber in the diet (Yan et al., 2017).  

Ceftiofur is a semisynthetic, broad-spectrum third-generation cephalosporin antibiotic 

(NCBI, 2020). The mechanism of action of cephalosporins involves inhibition of bacterial cell 

wall synthesis. Ceftiofur belongs to the same class of antibiotics as ceftriaxone and is classified 

as a critically important antimicrobial by the World Health Organization. Ceftiofur (Excenel® , 

ceftiofur hydrochloride) has been approved by the U.S. Food and Drug Administration (FDA) 

for intramuscular injection to treat bacterial respiratory diseases in both beef and dairy cattle and 
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swine Food and Drug (1988); (FDA, 2006). Following intramuscular administration, ceftiofur is 

absorbed in its free-acid form and rapidly metabolized to desfuroylceftiofur (DFC) and furoic 

acid (Beconi-Barker et al., 1996). DFC quickly conjugates with both plasma and tissues or 

further metabolizes to disulfides, such as DFC- cysteine disulfide, DFC-dimer (Beconi-Barker et 

al., 1995; Beyer et al., 2015). Free forms of DFC contain an intact β-lactam ring and a major 

biologically active metabolite, similar in the antimicrobial activity to ceftiofur. Further, carry-

over of antimicrobials like ceftiofur and their active metabolites in the pen/farm could enhance 

the development and or dissemination of AMR due to ingestion by untreated animals. Although 

many studies has been performed about fiber sources and its importance, there are still lack of 

reports about role of dietary fiber on drug metabolites on feces from antimicrobial treated pigs. 

The study aimed to evaluate the effect of dietary fiber on the concentration of the ceftiofur 

metabolites in feces after intramuscular injection of the ceftiofur hydrochloride in finisher pigs. 

 Materials and methods 

 Animal experiment, dietary treatments, and sample collection 

The study was performed at the Swine Teaching and Research Center, Kansas State 

University Manhattan, Kansas. A total of 288 pigs (~36 kg starting body weight) from one 

finishing group were randomly distributed to 36 pens balanced by gender, and these pens were 

randomly assigned to 1 of 3 dietary treatments: control diet (corn-soybean based with 8.7% 

neutral detergent fiber (NDF), 2.2 % crude fiber), distillers dried grains with solubles (DDGS)-

based diet (20% DDGS with 13.6% NDF and 3.1% crude fiber and primarily contains insoluble 

fiber), and sugar beet pulp-based diet (14.5% sugar beet pulp with 13.6% NDF and 5.1% crude 

fiber and primarily contains soluble fiber). The diet was formulated and prepared at the Kansas 

State University O.H. Kruse Feed Technology Innovation Center (Manhattan, KS). All the pigs 
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were followed throughout the finisher stage. When clinical signs of diarrhea, swelling, or other 

production-related diseases prompted antimicrobial drug use, the animals were treated with 

either penicillin G or Excenel® (ceftiofur hydrochlorides) by intramuscular (IM) injection 3 

mg/kg body weight once per day for 1-3 days under an approved veterinarian-client-patient 

relationship (VCPR). On each day 1 and 3 of the regimen, per rectum fecal sample (~ 50 g into a 

Whirl-Pak bag, Nasco, Ft. Atkinson, WI) was collected from the treated animal in ~6 hours (no 

later than 8 hours) after the injection. However, some of the animals were only treated for 1-2 

days when clinical improvement was seen; hence, only day 1 samples were collected. 

Of the ceftiofur-treated animals on the control diet, 3 were sampled on day 1 only and 3 

animals on both days 1 and 3 of the regimen; on the distillers dried grains with solubles (DDGS) 

based diet, 4 animals were sampled on both day 1 and 3 of the regimen and on the sugar beet 

pulp-based diet, 2 were sampled on day 1 only and 3 animals on both day 1 and day 3 of the 

regimen. The fecal samples were transported on ice to a laboratory at the College of Veterinary 

Medicine, Kansas State University, Manhattan, KS. Upon arrival to the laboratory, the samples 

were transferred to Eppendorf® centrifuge tubes (¾ full of feces) and centrifuged for 15 minutes 

at 15,000 rpm. The supernatant was pipetted from each Eppendorf tube to a 2 mL-0.45 µm filter 

Spin-X® centrifuge cryotube and again centrifuged at 5,000 rpm for 5 minutes. Fecal 

supernatants were labeled appropriately and stored at -80°C for the measurement of antibiotic 

concentrations. The supernatant was not possible to obtain from the sample from one pig treated 

with ceftiofur and sampled on day 1 only, which was reared on the control diet. The supernatants 

were submitted to a pharmacological laboratory at the Department of Molecular Biomedical 

Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, for 

determination of the ceftiofur metabolite concentrations. 
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 Determination of ceftiofur metabolite concentrations 

The amounts of ceftiofur metabolites such as DFC and DFC in fecal samples were 

analyzed by the liquid chromatography (LC) as previously described (Jaglan et al., 1990). 

Briefly, fecal supernatants in 0.1 M pH 8.7 phosphate buffer containing dithioerythritol were 

incubated at 50 °C for 15 minutes. The samples were centrifuged, charged to a C18 cartridge, 

and then washed with 0.1M ammonium acetate. The desfuroylceftiofur residue in the cartridge 

was derivatized by adding 0.1M ammonium acetate with iodoacetamide and left in the dark for 

30 minutes. The cartridge was rinsed, and desfuroylceftiofur acetamide was eluted with methanol 

and allowed to evaporate until dry and dissolved in a sodium hydroxide (pH 10.6) and charged to 

a SAX cartridge. These derivates were eluted with 2% acetic acid and dissolved in the mobile 

phase for liquid chromatography (LC). To recover the metabolites, the gradient mobile phase (1 

mL/minute) was 0.01M ammonium acetate (pH 5) programmed to 29% methanol-water (60 + 

40) in 25 minutes for the recoveries. 

 Statistical analysis 

Descriptive statistics of the ceftiofur metabolite concentrations by the dietary treatment 

and animal age and gender were obtained. Statistical significance of the dietary treatment, age, 

and gender effects was tested using ANOVA in the R software (R, 2019). The level of 

significance was set at p < 0.05 and marginally significant at p=0.10. 

 Results  

Overall, the mean concentration of ceftiofur metabolites (µg/mL) in feces on day 3 of the 

treatment regimen (0.36±0.39 µg/mL) was 59% of that on day 1 (0.15±0.08 µg/mL) (n=14 

animals were sampled on day 1, and 10 of these also on day 3 of the treatment regimen). This 

decrease in the average ceftiofur concentration on day 3 vs. day 1 of the treatment approached 
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statistical significance (p=0.1, Figure 6.1, a). This trend was consistent between sex and across 

three animal diets. For example, the mean concentration of ceftiofur metabolites in the feces on 

day 3 was lower by 72%, 33%, and 59% from that of day 1 in feces of pigs fed control diet 

(corn-soybean based with 8.7% neutral detergent fiber, 2.2 % crude fiber), distillers dried grains 

with solubles (DDGS) (20% DDGS with 13.6% neutral detergent fiber and 3.1% crude fiber and 

primarily contains insoluble fiber), and sugar beet pulp-based diet (14.5% sugar beet pulp with 

13.6% neutral detergent fiber and 5.1% crude fiber and primarily contains soluble fiber). 

However, the mean concentration of drug metabolites did not differ significantly between the 

dietary treatments, and there was no significant interaction between the day of treatment and diet 

(Figure 6.1, b). The mean concentration of drug metabolites present in day 3 were 55% lower 

than day 1 in male (day 1: 0.44±0.45, day 3: 0.2±0.09) and female (day 1: 0.25±0.19, day 3: 

0.11±0.05) pigs. However, gender did not significantly affect the concentrations, and there was 

no significant interaction between the gender and dietary treatment effects on the metabolite 

concentration (Figure 6.1, c). At the individual animal level, of 14 ceftiofur-treated pigs, 10 pigs 

were treated and sampled on both day 1 and day 3, and 4 pigs were treated and sampled only on 

day 1. Among the 10 pigs, 70% had a lower ceftiofur metabolite concentration in feces on day 3 

compared to day 1 of the treatment. 

 Discussion 

We measured the active ceftiofur metabolite concentrations in feces of pigs that were 

treated with ceftiofur hydrochloride by intramuscular injection and fed one of three diets. The 

main finding of the study was that the average concentration of drug metabolites (µg/mL) was 

lower in feces of pigs on day 3 of the 3-day treatment compared to day 1 across all the dietary 

treatment groups and across animal genders. Furthermore, we observed that the concentration of 
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the drug metabolites was more predictable (tighter distribution) on day 3 compared to day 1 

across the dietary treatments. We have no obvious explanation for the decline in concentration 

on day 3, but we suspect that this might be due to the expansion of endogenous β-lactamases of 

microbial origin. Ceftiofur’s β-lactam ring is crucial for its antibacterial activity, but it is also 

vulnerable to degradation (Dołhań et al., 2014) by β-lactamases that are secreted by bacteria and 

hydrolyze the β-lactam ring. Earlier studies have demonstrated that ceftiofur metabolite 

degradation in animal feces is biotic (Gilbertson et al., 1990), and thus the intestinal microbial 

community may be contributing to the degradation in the intestine of biliary excreted β-lactams 

or their metabolites (Gilbertson et al., 1990; Hornish and Kotarski, 2002; Stentz et al., 2014; 

Beyer et al., 2015). The production of beta-lactamases by Bacteroides, a member of the gut 

microbiome, may be protecting other members from β-lactams (Stiefel et al., 2015).  

The concentrations of ceftiofur active metabolites in porcine feces can be expected to be 

directly affected by the β-lactamases produced by intestinal bacteria in response to the 

antimicrobial exposure, and the match and potency of the β-lactamases to the metabolites. 

Moreover, the β-lactamase production can be expected to be dose-dependent, accelerating in 

response to an increase in the β-lactamase concentration (Livermore, 1995). Thus, lower β-

lactam concentrations on day 3 of the treatment may be due to the expansion or better match and 

potency of β-lactamases produced by the intestinal microbiome by day 3 of the treatment 

compared to indigenous β-lactamases present on day 1. 

 Conclusion 

The concentration of ceftiofur active metabolites in porcine feces was lower on day 3 

compared to day 1 of the 3-day ceftiofur treatment, irrespective of the animal diet or gender.  
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Figure 6.1. Boxplots of concentration of ceftiofur metabolites (µg/mL) in feces of finisher pigs by 

(a) day of the 3-day ceftiofur treatment; b) animal diet; and c) in male and female pigs across the 

three diets. Ceftiofur was administered intramuscularly (in the dose 3 mg/kg body weight, by 

infection at a 24 h interval for a total of three consecutive days). Fecal samples were collected in 

6 hours post-injection on days 1 and 3. Some of the animals were only treated for 1-2 days when 

clinical improvement was seen; hence, only day 1 sample was collected. Fourteen animals were 

sampled on day 1, and 10 of these also on day 3 of the treatment. n, number of pigs. The dietary 

treatments varied in fiber content: control diet (corn-soybean based with 8.7% neutral detergent 

fiber, 2.2 % crude fiber), DDGS—distillers dried grains with solubles (20% DDGS with 13.6% 

neutral detergent fiber and 3.1% crude fiber), and sugar beet pulp-based diet (14.5% sugar beet 

pulp with 13.6% neutral detergent fiber and 5.1% crude fiber).
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Chapter 7 - Distribution of AMR Genes and Taxonomic 

Composition of Bacteria Associated with Gut Contents and Mucosal 

Epithelium in Piglets 

 

 Abstract 

Fecal samples are commonly used to describe the taxonomic composition and 

antimicrobial resistance (AMR) gene content of the host enteric bacteria. However, it remains 

unknown how the AMR-genes in the feces are related to the prevalence in different locations of 

the gastrointestinal (GI) tract. The objective was to describe the bacterial taxonomic composition 

and AMR genes throughout the GI tract of piglets. Six to seven weeks old, weaned piglets (n=3), 

clinically healthy and did not receive antimicrobial drugs for 2 weeks prior to being euthanized, 

were used. Paired luminal and mucosal epithelium samples were collected, within 30-40 minutes 

post-euthanasia, from the stomach, duodenum, ileum (at two locations), cecum, spiral colon, and 

rectum of each animal. The bacterial composition was determined using the 16S rRNA gene 

sequencing and individual AMR genes using the targeted amplicon sequencing methods. The 

richness, diversity, and evenness of taxa did not change significantly (Kruskal-Wallis ANOVA, 

p >0.05) across the GI locations nor with sample types (contents vs. mucosa). However, bacterial 

community composition changed across the GI location (p <0.05). The most abundant genera 

were Lactobacillus, Prevetoella, Campylobacter, Roseburia in the GI location. The relative 

abundance of Campylobacter was significantly (Wilcoxon-rank test, p <0.05) higher in mucosa 

samples compared to contents samples. A total of 102 AMR genes were detected across all pig 

samples. Genes encoding bacterial resistance or reduced susceptibility to tetracyclines, β-
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lactams, aminoglycosides, and glycopeptides were most abundant in the samples. The AMR-

gene content of the luminal contents and mucosa changed between the compartments of the GI 

tract of animals. The AMR-gene diversity in the contents was higher than in the mucosa in 

individual GI compartments.  
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 Introduction 

The pig gut microbiota has been shown to be linked to feed intake, body weight gain, 

feed efficiency, immune response, and overall health (Mann et al., 2014; Mach et al., 2015). It is 

suggested that the microbial colonization in pigs starts at birth (farrowing), and subsequent 

establishment occurs via contact with their mother’s skin, feces, or environment while they are 

nursing until weaning (Thompson et al., 2008). For instance, within a few days after birth, 

anaerobic microbes become dominant, and the neonatal microbial community then shifts later to 

become compositionally distinct after postweaning (Katouli et al., 1997; Thompson et al., 2008). 

There is little known about the microbiome community established in different locations of the 

GI tract of pigs and how they differ across mucosa and content samples in these locations.  

Several studies have examined fecal microbial community compositions and diversity 

over time in pigs, but few studies evaluated microbiome profiles in different segments of the 

gastrointestinal tract (Looft et al., 2014; Yang et al., 2016a; Kelly et al., 2017; De Rodas et al., 

2018). An earlier study exhibited that microbial communities vary both longitudinally (proximal 

to distal) and radially (mucosal to luminal) across the GI tract. Further, the small intestine was 

characterized as having increased aerobic conditions and increased transit times (Schwarz et al., 

2002), and was associated with having a source of antimicrobial peptides in the Paneth cells 

(specialized cells in the epithelium of the small intestine) (Bevins and Salzman, 2011). However, 

there is limited knowledge of the AMR gene composition across the GI tract of pigs. Earlier 

studies indicated that fecal samples do not necessarily represent the bacterial taxonomic 

composition and antimicrobial resistance (AMR) gene content of the host enteric bacterial 

community of the GI tract (Hill et al., 2010; Looft et al., 2014). Therefore, it remains unclear 

how the AMR-gene content of the feces is generated throughout the GI tract.  
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We investigated and analyzed the microbial communities for the presence of AMR genes 

and their compositions along the digestive tract of piglets. We evaluated the taxonomic 

similarities and differences and AMR gene contents of mucosal versus luminal contents (digesta) 

of healthy pigs fed a diet containing no antibiotics (at least 3 weeks prior to collection of the 

samples).  

 Materials and methods 

 Animals and sampling 

A total of three, 6-7 weeks old, weaned piglets were used. The piglets were clinically 

healthy and had no exposure to antimicrobial drugs for three weeks prior to euthanasia. The 

feeding and watering conditions were typical for the species and age. 

 Gastrointestinal (GI) contents and mucosa sample collection 

The contents and mucosa samples of the pig GI tract were collected from seven different 

locations of the GI tract (stomach, duodenum, two locations of ileum, the blind end of the cecum, 

spiral colon, and rectum) (Figure 7.1). Piglets were humanly euthanized, and the samples were 

collected aseptically within approximately 30 minutes after euthanasia. The content samples 

were obtained from each location by pipetting ~ 1 mL of the luminal contents and transferring 

into a tube containing 10 mL RNAlater® stabilization solution (Thermo Fisher Scientific, 

Carlsbad, CA, USA). The mucosal samples were collected by cutting the intestinal tube sections. 

These samples were then transferred to a tube containing 25 mL phosphate buffer saline (PBS) 

(Thermo Fisher Scientific) and stored at 4 °C for 2.5-4.5 hours. The mucosa samples of each gut 

section were collected by aseptically scraping with a sterile blade after rising off with PBS. The 

mucosal samples were placed into sterile plastic tubes containing 10 mL of RNAlater and mixed 

properly. From the ileum of each animal, two mucosa samples were taken in the region where 
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there no Payer’s patches. One mucosal sample was obtained from each of the other intestinal 

parts. Each of the contents and mucosal samples were examined, and if it appeared clumped, it 

was mixed using a sterile plastic bacteriological loop to maximize contact with the stabilizer. 

The contents and mucosal samples were left to soak in RNAlater for 1 day at 4o C, then frozen at 

-80oC. 

 Sample processing, sequencing, and statistical analysis 

From each sample, metagenomic DNA was extracted from 0.25 g of the sample using 

UltraClean 96-well Microbial DNA kit (Mo Bio Laboratories, Carlsbad, CA) according to the 

manufacturer instructions. The 16S rRNA gene sequences were performed for microbiome 

taxonomic composition, and AmpliSeq™, target amplicon sequencing protocol, was performed 

to determine the presence of AMR genes in the samples as previously described (Gardner et al., 

2015; Urbaniak et al., 2018). AmpliSeq™ libraries were constructed with the Ion AmpliSeq™ 

library protocol (2x primer mix, 6 µL of samples, and 16 PCR cycles consisting of a 99° C for 

15 seconds: 60° C for 4 minutes). The final libraries were checked using the Agilent 

BioAnalyzer™ (Agilent, CA, USA) and quantified using the Ion library quantification kit™ 

(Thermo Fisher Scientific). AmpliSeq™ custom panel was designed to match the presence of 

antimicrobial resistance determinant microarray (ARDM). Amplicon sequence read quality 

control and reference mapping were performed as previously described (Gardner et al., 2015; 

Urbaniak et al., 2018). Alpha diversity indices of the microbiome were captured by taxa richness 

(Chao1 index), diversity (Shannon index) indices, and the evenness index was analyzed. The 

difference in the relative abundance of bacterial genera between the contents and mucosal 

samples for each GI location were analyzed using non-parametric ANOVA. Similarly, non-

metric multidimensional scaling (NMDS) ordination plots were made using the vegan package in 
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R (Jari Oksanen, 2019) based on bacterial taxonomic counts using the Bray-Curtis dissimilarity 

distances; NMDS ordination plots were visualized using the ggplot2 package (Wickham, 2009). 

The difference in beta diversity for each GI location (and contents vs. mucosal samples) were 

evaluated by using the permutational analysis of variance (PERMANOVA) (based on Bray-

Curtis distances) using adonis in the vegan package. The permutational analysis of multivariate 

dispersion (PERMDISP) was then performed to compare the Bray-Curtis distance to group 

centroids among samples. Similarly, the richness and diversity of the ARGs (gene encoding 

AMR, by mechanisms of AMR present genes, and by drug classes) were also evaluated.  

 Results 

The taxonomic composition and AMR-gene repertoire in the content and mucosal 

samples changed throughout the GI tract in the piglets. Alpha diversity of the bacterial taxa was 

evaluated across the GI locations using the richness index (Chao1 index), the diversity index 

(Shannon index), and the evenness (evenness index) (Table 7.1). The (detectable) diversity, 

richness, and evenness show an S-shape pattern, being higher in the contents of the stomach and 

the large intestine, compared to the small intestine. The richness, diversity, and evenness of taxa 

did not differ with contents vs. mucosa samples (Kruskal-Wallis ANOVA, p > 0.05). Similarly, 

richness, diversity, and evenness of taxa did not change significantly (Kruskal–Wallis ANOVA, 

p >0.05) across the GI location (Figure 7.5). 

 Comparison of the microbial taxonomic composition across the GI tract 

The genus-level analyses were performed to compare bacterial community composition 

associated across GI location and sample type (contents vs. mucosa). Several bacteria genera 

were detected across the GI location of the pig with some degree of variability (Figures 7.2 and 

7.3).  The most abundant genera were Lactobacillus, Prevetoella, Campylobacter, and Roseburia 
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across GI sections. The relative abundance of Campylobacter was significantly (Wilcoxon-rank 

test, p-value adjusted for multiple testing by FDR at α=0.05, p <0.05) higher in mucosal samples 

compared to content samples (Figure 7.5). Similarly, across the GI location, the relative 

abundance of several bacterial genera was significantly changed, including Prevotella, 

Roseburia, Faecalibacterium, Succinivibrio, Oxalobacter, Lactobacillus, Mitsuokella, 

Brachyspira, Phascolarctobacterium, Clostridium (Table 7.2). 

The difference in bacterial taxonomic composition between those located within the 

mucosa with those in the contents and across the GI location using non-metric multidimensional 

scaling (NMDS) plot using Bray-Curtis distance were investigated (Figure 7.6, a). These plots 

demonstrated a shift in the bacterial community across the GI location (stomach, duodenum, two 

locations of ileum, cecum, colon, and rectum). The PERMANOVA (based on Bray-Curtis 

distances) results showed were significantly different among the microbial community of the GI 

tract (p=0.001). However, there is no distinct separation according to sample types (i.e., contents 

vs. mucosa) (Figure 7.6, b), and multivariate analysis further indicated that there were no 

significant differences among the microbial community compositions of the contents and 

mucosal samples across the GI tract (p=0.086).  

 Distribution of AMR genes between contents and mucosal samples across the GI 

locations 

The presence of AMR genes across the GI location (contents and mucosal samples) were 

determined. In total, 102 AMR genes (range 3-80) were detected across all pig samples. 

Similarly, a total of 28 AMR genes encoding specific resistant mechanisms (range 3-28) by drug 

class were detected across all samples. The several AMR genes by drug class were tetracycline, 

aminoglycosides, β-lactam, chloramphenicol, glycopeptides, lincosamides, macrolides, 
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nitroimidazole, quinolones, streptogramins, sulfonamides, trimethoprim (Figures 7.7, 7.8, and 

7.9) were detected in the samples. Among these drug classes, tetracycline, macrolides, 

aminoglycosides, and β-lactam resistance comprised the highest proportions in all samples.  

 The overall diversity of AMR genes, the gene encoding specific resistant mechanism, 

and by drug class were higher in contents samples compared to mucosal samples are shown in 

Figure 7.10. High variability in the diversity of AMR genes in the stomach and small intestinal 

locations compared to the large intestine was observed. However, AMR diversity did not differ 

across the GI location (Kruskal–Wallis ANOVA, p >0.05), but significantly higher in luminal 

samples compared to mucosal samples (p < 0.05). 

Further, we performed the nonparametric Spearman correlation test between the diversity 

of AMR genes and the diversity of bacterial genera. The results showed that there was a 

significant positive relationship between the diversity of AMR genes and the diversity of 

bacterial genera in luminal samples (ρ= 0.68, p=0.007) but weak correlation and non-significant 

correlation (ρ= 0.13 p=0.56) with mucosal samples across the GI section. 

 Discussion 

This study characterized the bacterial taxonomic composition and AMR genes throughout 

the GI tract of piglets. Our data suggest that the piglet GI comprises diverse bacterial genera of 

the piglet luminal and mucosa-associated are influenced by the GI location with a clear 

separation between proximal and distal GI parts, particularly between the lower small intestine 

and large intestine.  

The identified bacterial diversity, richness, and evenness were higher in the contents in 

the stomach and large intestinal locations, compared to the small intestine; however, these 

dynamics were similar between the luminal contents and mucosa. The finding suggests that the 
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bacterial communities of gastric, duodenum, ileum are more variable than large intestine (cecum, 

colon, and rectum), which is similar in other production animals (Danzeisen et al., 2013). The 

lower alpha diversity in the midgut (duodenum, jejunum) and higher alpha diversity of the large 

intestine (cecum, colon, and rectum) were also found in another study of the mucosal 

microbiomes of ~28 days-old piglets (Kelly et al., 2017). The higher variability in the stomach, 

duodenum, and ileum compared to the large intestine could be due to the lower abundance of a 

bacterial community; the abundance is less stable due to the continuous influx of new bacteria 

from the feed, and overall shorter transient time, and different aspects of the local environment 

(Donaldson et al., 2016). Further, this variability could be due to individual piglet genetic factors 

and the immune response of animals during sampling (Fagarasan et al., 2002). An earlier study 

also showed that the GI tract contains a dynamic bacterial population with distinct bacteria 

residing in different sections of the gut. The most diverse bacteria were found in the large 

intestine, most notably in that of the colon of a pig (Kim et al., 2012; Maradiaga et al., 2018). 

Meanwhile, De Rodas et al. (2018) found that several bacterial communities (beta diversity) 

were significantly different when comparing the content-mucosa in the cecum but not in the 

ileum. 

In our study, the Lactobacillus and Prevetolla genera were the most dominant throughout 

the studied GI locations in the piglets. Therefore, these genera could be the core microbiome of 

the GI tract in piglets. Moreover, an earlier study also found that Lactobacilli was dominant 

across all GI sites (duodenum/jejunum, Ileum, cecum, and colon) of piglets (De Rodas et al., 

2018). The relative abundance of the Campylobacter was higher in mucosal samples than that of 

the samples of the luminal contents. In the pig GI tract, Campylobacter is considered a 

commensal bacterium and is prevalent at various ages (Alter et al., 2005). Holman et al. (2017b) 
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performed a meta-analysis to define the core bacteriome of the pig gut. They found that the 

bacterial composition and structure varied significantly at each GI tract section of the pig. The 

bacterial genera included Clostridium, Blautia, Lactobacillus, Prevotella, Ruminococcus, 

Roseburia, and the RC9 group comprised 90% of all of the GI samples in their study. Similarly, 

in our study, we detected several bacterial genera distinct to different GI tract locations, 

including Prevotella, Roseburia, Brachyspira, Clostridium, Faecalibacterium, etc. We believe 

these genera could represent the core microbiome of the pigs in our study. 

Similarly, the study also reported distinct mucosa-associated bacterial communities at 

different GI locations. Among these, Helicobacter, Prevotella, Campylobacter, and E. coli were 

the most abundant (Mann et al., 2014). Looft et al. (2014) also examined the lumen (digesta) vs. 

mucosa-associated bacterial communities in both treated (in-feed antibiotics; chlortetracycline, 

sulfamethazine, and penicillin) and control (non-medicated) pigs. The authors found an overlap 

in some of the bacterial taxa. The main influencing factors on the bacterial community 

compositions were GI location rather than sample types (contents vs. mucosal). Similarly, an 

analysis of multiple colonic mucosal sites and feces from healthy humans indicated significant 

variability in microbial communities among individuals and between feces and mucosa (Eckburg 

et al., 2005). The study also showed that the microbial concentration increases along the GI tract, 

with the lowest concentration in the stomach and the highest in the colon.  Another study 

reported that Bacteroides and Firmicutes were the dominant mucosa-associated bacteria in the 

small intestine and colon (Sekirov et al., 2010). In the proximal gut, Lactobacillus, Veillonella, 

and Helicobacter were the most abundant taxa; Bacillus, Streptococcus, Actinomyces, and 

Corynebacterium were the most abundant in the duodenum, jejunum, and ileum; Firmicutes and 

Bacteroidetes were dominant in the colon. 
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The AMR-gene repertoire in the luminal contents and the mucosa changed throughout the 

GI tract of piglets. The AMR repertoire was more diverse in the luminal contents compared to 

mucosal samples. The most abundant AMR gene class encoding resistance were tetracyclines, 
β-lactams, aminoglycosides, macrolides, and glycopeptides. Several important AMR genes that 

are known to impose reduced susceptibility to multiple drug classes in nontyphoidal Salmonella 

enterica subsp. enterica, such as those of β-lactam resistance  (e.g., blaTEM, blaSHV, blaOXY), 

quinolone resistance (e.g. qnr), aminoglycoside resistance (e.g. strB, aph(6)Iia) and tetracycline 

resistance (e.g. tet(A), tet(B), tet(C)) were detected. 

These genes were more abundant in the large intestine than the small intestine for both 

the luminal contents and mucosal samples. To our knowledge, only a few metagenomic reports 

that evaluate AMR gene distribution in different gut locations in pigs. A study by Kim et al. 

(2012) showed bacterial population shifts in the distal gut in response to treatment with tylosin, 

an antimicrobial growth promoter. Looft et al. (2014) examined specific differences in the 

microbiome communities of treated and control pigs in regard to the lumen and mucosa-

associated samples in different sections of the GI tract (the ileum, the cecum, and mid-colon). 

They also evaluated discrepancies between the gut contents and freshly voided feces from piglets 

(~3 months). The study found that mucosa-associated ileal microbiota harbored greater bacterial 

diversity than the lumen; the ileal contents (control and medicated) showed reduced richness and 

abundance compared to other parts of the intestinal tract communities.  

Interestingly, in our study, the correlation between the AMR gene diversity and the 

microbial taxa diversity was positive and significant for the luminal samples. This suggests that 

AMR genes also varied according to the microbial community abundance and diversity. 

Therefore, the microbiome composition could influence the resistome composition. It is yet to be 
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determined which bacterial taxa or cluster is linked to the resistome in each GI location of the 

pig. However, the presence of AMR genes and their source is complex in food animal production 

(Noyes et al., 2016b) as it is continuously seeded from the external environment.  An earlier 

study also reported a positive and significant correlation between the total resistome and total 

microbiome in healthy pigs (Joyce et al., 2019). It has been suggested that antimicrobial 

mediated destruction of the gut microbial communities and consequent loss of colonization 

resistance are important factors leading to the persistence and spread of AMR bacteria. However, 

the microbial communities across GI locations that carry the AMR genes are still not apparent. 

Studies also show that change in the microbiome composition, mainly the elimination of a 

specific group of anaerobic bacteria, leads to vancomycin-resistant Enterococcus faecum (VRE) 

in the GI tract (Ubeda et al., 2013). Nevertheless, the microbiome of animal samples has been 

shown to be linked with the antimicrobial resistome. 

 Conclusions 

Several studies have examined the microbiome of fecal samples of pigs. This study 

provides an additional understanding of the pig microbiome and AMR gene contents across the 

seven different locations of the GI tract. Several bacterial genera were significantly associated 

with different locations of the GI tract, suggesting “core” microbial communities across the 

gastrointestinal tract of the studied animals. The overall diversity of AMR genes was higher in 

luminal samples compared to mucosal samples. Significant correlations between the diversity 

and number of AMR genes and microbial taxa were observed, which further suggests that the 

microbiome composition and diversity could influence the resistome composition. 
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Table 7.1  Alpha diversity indices of microbial taxa (mean ± sd) across the gastrointestinal (GI) location (contents and mucosa samples) (n=3 piglets). 

Alpha diversity indices of microbial taxa (mean ± sd) across the gastrointestinal (GI) location 

(contents and mucosa samples) (n=3 piglets). 

 

 

 

 

 

 

 

 

 

 

 

GI location 

The richness of taxa (Chao1 

index) 

Diversity of taxa 

(Shannon index) 

Evenness of taxa 

(Evenness index) 

contents mucosa contents mucosa contents mucosa 

Stomach 26.6±9.71 25.1±19.05 2.5±0.33 1.4±0.53 0.6±0.1 0.4±0.12 

Duodenum 18.6±16.51 21.4±15.89 0.2±0.24 1.5±1.3 0.09±0.09 0.4±0.31 

Ileum1 5.6±1.52 10 ±4.39 0.1±0.05 0.42±0.43 0.02±0.01 0.1±0.17 

Ileum 2 9.9±4.52 13.4±5.61 0.7±1.19 0.9±0.42 0.3±0.04 0.3±0.18 

Cecum 22±8.66 25.3±8.9 1.8±1.18 2.8±0.09 0.5±0.34 0.7±0.02 

Colon 29.7±15.55 34.8±5.36 2.6±0.22 2.8±0.08 0.7±0.06 0.7±0.03 

Rectum 27.3±15.14 20.4±6.95 2.7±0.57 1.8±1.22 0.8±0.06 0.5±0.37 
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Table 7.2  Taxa (genus level) differing in relative abundance across the GI location of piglets (n=3). 

Taxa (genus level) differing in relative abundance across the GI location of piglets (n=3). 

Genus 
p-value (rank 

test) 

Adjusted p-

value, 

FDR* 

Stomach  Duodenum Ileum1 Ileum2 Cecum Colon Rectum 

Prevotella 0.0011 0.022 3.73 1.54 0.18 1.39 5.09 6.19 5.01 

Roseburia 0.0016 0.022 2.13 0.87 0.05 0.39 2.67 3.23 2.02 

Faecalibacterium 0.0016 0.022 1.32 0.39 0 0.19 1.27 1.63 1.11 

Succinivibrio 0.0024 0.022 0.55 0.11 0 0.2 0.85 0.99 0.62 

Oxalobacter 0.0025 0.022 0 0 0 0 0 0.13 0.66 

Lactobacillus 0.0027 0.022 6.93 6.62 9.72 8.11 4.86 3.3 3.42 

Mitsuokella 0.0031 0.022 0.8 0.09 0 0 0.2 0.34 0.25 

Brachyspira 0.0046 0.029 0.85 0.07 0.01 0.5 1.95 0.76 0.52 

Phascolarctobacterium 0.0066 0.037 0.66 0.27 0 0.72 1.5 1.87 1.88 

Clostridium 0.0077 0.038 0.5 0.28 0.06 0.45 0.83 1.13 1.12 

Ruminococcus 0.013 0.054 0.54 0.19 0.02 0.03 0.73 1.05 0.57 

Gemmiger 0.013 0.054 0.49 0.15 0 0.05 0.51 0.66 0.34 

Megasphaera 0.015 0.058 0.89 0.44 0.02 0.01 1.12 1.23 1.19 

Anaerobiospirillum 0.021 0.075 0 0.03 0 0 0.07 0.51 0.04 

Dorea 0.027 0.081 0.31 0.16 0 0 0.24 0.42 0.47 

Acidaminococcus 0.027 0.081 0.34 0.04 0 0 0.15 0.29 0.33 

Bulleidia 0.028 0.081 0.25 0.06 0 0.018 0.3 0.36 0.29 

Collinsella 0.029 0.081 0.38 0.01 0 0 0.1 0.21 0.11 

Pseudomonas 0.04 0.1 0.7 0.35 0.1 0.09 0 0 0.04 

Blautia 0.045 0.1 0.28 0.12 0 0.06 0.21 0.43 0.25 

Anaerovibrio 0.047 0.1 0.19 0 0 0.71 0.72 0.72 0.12 

*FDR, False discovery rate (α=0.05) 
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Figure 7.1. The gastrointestinal (GI) tract of pigs from which a) paired (luminal contents and mucosal samples) were collected from 

each location, b) mucosa samples collected from the gastrointestinal tract of piglets. 
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Figure 7.2. Heatmaps of the relative abundance of microbial genera present in the pig mucosa sample across the gastrointestinal tract. 
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Figure 7.3 Heatmaps of the relative abundance of microbial genera present in the pig mucosa sample across the gastrointestinal tract. 
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Figure 7.4. Taxa (genus level) differing in the relative abundance (log10 odds ratio) between contents and mucosa samples of piglets 

(n=3). 
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Figure 7.5. The richness, diversity, and evenness of taxa in contents (a-c) and mucosa samples (d-f) across the GI location of piglets 

(n=3). 
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Figure 7.6. Two-dimensional non-metric multidimensional scaling (NMDS) plots of beta diversity on Bray-Curtis dissimilarities 

(stress=0.14) in the a) seven different GI location b) contents versus mucosal samples in the piglet across the GI section. Ellipses 

indicate one standard error from the centroid. 
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Figure 7.7. The number of AMR genes present between contents and mucosal samples across the GI tract. The different colors 

represent the AMR genes by drug class. 
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Figure 7.8. The AMR genes encoding specific resistant mechanisms by drug class across the GI location of piglets. The M-represent 

the mucosa samples matched with corresponding contents (-C) samples in each compartment of the GI location. 
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Figure 7.9. Presence of AMR genes between contents and mucosal samples across the GI tract of 

piglets (n=3). Black color represents the presence of AMR genes, while the white color represents 

the absence of AMR genes in the samples.
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Figure 7.10. The Shannon diversity of a) antimicrobial resistance (AMR) genes b) AMR genes encoding specific mechanism c) AMR 

genes by drug classes between contents and mucosal samples across the GI location. 
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Chapter 8 - Summary and Conclusions 

The studies reported in this dissertation describe the dynamics of microbial diversity and 

antimicrobial resistance (AMR) in gut and fecal microbial communities influenced by age and 

diet in swine. A scoping review of the age-dependent AMR in fecal bacteria of food animals 

summarized the literature published since the early 1970s on the association between host age 

and AMR in fecal bacteria in animals raised in different geographical locations. Two-thirds of 

the studies indicated a decline in the prevalence and abundance of AMR in fecal bacteria with 

age for production pigs, beef, and dairy cattle.  

Most research on AMR in food animals have focused on one or more bacterial species 

(e.g., E. coli,  Enterococcus spp.), but the results do not fully explain the AMR dynamics of 

diverse microbial communities carried by the host populations. Therefore, longitudinal studies to 

elucidate and compare the dynamics of fecal microbiome and mycobiome taxonomic 

compositions and AMR in cohorts of production pigs (from 2 days to 6 months old) and breeding 

sows (from 3 weeks old to first farrowing/weaning) were conducted. Culture-dependent and 

metagenomic methods were used to infer the relationships between phenotypic AMR and AMR 

gene occurrences in relation to age and diet of the pigs. The fecal microbiome and mycobiome 

taxonomic structure and AMR dynamics from the first weeks of life to a young age were similar 

between production pigs and breeding sow cohorts. On average, in each cohort, abundances of 

fecal coliforms or enterococci with AMR were the highest at the earliest age-points sampled, 

then decreased within the first weeks of life. Our data suggested age had a strong influence on 

the fecal microbiome and AMR dynamics compared to production practices. 

We found that the age of animals is one factor affecting fecal microbial community 

composition and phenotypic and genotypic AMR; however, other management factors such as 
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diet or use of antimicrobials may influence the overall findings. Therefore, age-related dynamics 

and the effects of diet (different levels and sources of fiber contents) and antimicrobial 

treatments (injectable ceftiofur hydrochloride or penicillin G) on the fecal microbiome and AMR 

were investigated. The data suggested a strong age-dependent, but diet-independent, effects on 

the fecal microbiome composition and AMR. The concentrations of ceftiofur active metabolites 

in pig feces were lower on day 3 than on day 1 of the 3-day ceftiofur treatment regimen, 

irrespective of the animal diet or gender. 

Because bacterial communities are not uniformly distributed throughout the 

gastrointestinal tract and fecal samples do not necessarily represent the complete bacterial 

taxonomic composition and AMR genes of the entire GI tract, a study examined differences in 

the bacterial community and AMR genes occurrence associated with luminal contents and 

mucosal epithelium in different location of the GI tract of piglets. The luminal contents and 

mucosa were collected from euthanized piglets from the stomach, duodenum, ileum (at two 

locations), cecum, spiral colon, and rectum. Our data showed that the bacterial taxonomic 

compositions and AMR gene repertoire change throughout the gastrointestinal tract of piglets. 

Several bacterial genera were significantly associated with different locations of the GI tract, 

suggesting that “core” microbial communities exist across the gastrointestinal tract of piglets. In 

summary, the results of this study indicated that age and diet, in addition to use of antimicrobials 

and location of the GI tract, contribute to the taxonomic composition of the gut microbial 

communities, which in turn influence the fecal AMR in pigs. 
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