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CHAPTER 1

INTRODUCTION

Full understanding of the collision mechanisms of ions and atoms has
not been accomplished, neither in atomic physics nor in the application of
related fields to atomic physics. The three body collision problem has
not been fully solved in atomic physics. TFurthermore, much of the research
currently conducted in atomic physics deals with collisions between atomic
many-particle systems which are inherently more complex than the three body
problem.

Atomic ionization, induced by ion-atom collisioms, is important in
many physical phenomena. For example, an fon-atom collision can result
in the ejection of an inner shell electron of a target atom. This results
in higher energy electrons of the target atom cascading down to f£ill the
vacancy and the subsequent release of energy in the form of x-rays. This
process has broad applications, viz., trace element analysisl, X=-ray
astronomyz, and laser technologyS. Also, ion-atom collisions will result
in some energy loss of the projectile by collisional energy loss or by
bremsstrahlunga. This process adversely affects some fusion reactions for
generating energy.

One central, basic gquestiom of atomic theory concerns the yet
unsolved problem of three charged particles. A systematic method of
addressing this problem has yet to be realized, due in part to the obscurity
of the features of the collision process in a full quantum treatment. This
is analogous to the gravitational three-~body problem, as yet unsolved
analytically but approximated numerically. Thus, many techniques
(perturbation theory, variation methods, asymptotic forms, effective
potential, close coupling equations, series expansions, etc.) are required

tobuild the physical picture.



The problem may be stated simply. An ion-atom collision consists of
a nonrelativistic ionic projectile that passes near a target atom. The force
considered here is the coulombic force of repulsion or attraction. Often,
the collisions have well defined projectile energies, charge states and
inpact parameters. The study of the results after collision reveals infor-
mation concerning the target structure and the forces of interaction between
the ion and the atom, as well as many body effects, such as multiple ilonization,
in many electron systems.

One quantity measured in ion-atom collisicns is the total cross
sectioaal area for ionizing an atomic target. This quantity is proportional
to the probability that a target electron in some initial state will obtain
enough energy from the collision to escape into the continuum. There is also
a total cross section for multiple ionization of the target, which is sometimes'
more difficult to detect and to calculate. The target and projectile may
be left in excited states after collision, emitting either photons or
electrons. These photon or electron emissions may be either directly or
indirectly caused by the collision. Observation of these phenomena adds to
the basis of what is currently known about the collision mechanisms.

Some theoretical methods for calculating single ionization cross
sections are available. These ineclude, in chronological order, (a) the
plane-wave Born approximation, PWBA, introduced5 by Henneberg in 1933, (b)
the semiclassical Coulomb approximation, SCA, by Bang and Hansteen6 in 1959,
and (c) the classical binary encounter approximation, BEA, by Gryzinski7 1965,
Perhaps, the SCA method is the ﬁost useful, since the physical picture is
clear and the unitarity constraint (namely that the probability may not
exceed unity) is easily tested. Unfortunately, few details of the application

of the SCA theory to direct Coulomb ionization are gvailable in the literature.



For many-electron targets, the independent electron approximationS-lo

is used in the calculations of single and multiple ionization cross sections.
The independent electron approximation occurs when the target electrons

are assumed to interact independently with the projectile, so during the
collision the interaction between the projectile and a given target electron
neither affects nor depends on the other target electrons. The SCA method

is an appropriate theory that may be applied within the independent electron
approximation. The time-dependent perturbation (SCA) theory for the Coulombic
interaction between the projectile and ionized electron is developed in
Chapter 2 for single, independent ionizations. Double ionization in the
independent electron approximation is treated in Chapter 3 where the multi-
electron transition probability for ilonization is simply a product of
independent binomial distributions of single ionization probabilities.

In Chapter 4, single K-shell ionization datall of 0 and F is compared
to the independent electron approximation using the SCA method. Double
K-shell ionization cross sections using both BEA and SCA for the independent
electron predictions are also compared. Ratios of double K—sheil iponization
to single K-shell ionization are compared to experimental data to determine
an overall fit.

Thus, this thesis will develop the theory of the independent electron
using the SCA theory. The details of SCA calculations for direct Coulomb
ionizations, not available in the current literature, are documented here.
Finally, SCA theory is used to predict wvarious inner shell ionization cross

gections, and these results are compared to experimental observations.



CHAPTER 2

THEORY FOR SINGLE ICNIZATION

Now, let us consider the ionization of a single atomic electron by
a charged, heavy particle. The semiclassical Coulomb approximation (SCA)
is an appropriate theory, when the target atom has a high nuclear charge
(Zze) and the projectile has a low nuclear charge (Zle). The Coulomb
interaction between the projectile and the atomic nucleus is treated as a
time-dependent perturbation of the target atom.

The projectile has an assumed velocity such that its path is
viritually undeflected, so the projectile's velocity remains viritually
constant. Such an assumption means that energy is not conserved. With the
projectile at constant velocity and the target atom fixed, the ionized
electron goes from a negative enmergy to a positive energy into the continuum.
In reality, the amount of energy lost by the projectile is normally so small
that its velocity is viritually the same, and the basic assumption is reasonably
valid.

The ionized electrons considered here are in the IS state and scattered
into final continuum states by the pure Coulomb potential. In spherical
coordinates, the particular sclutions to the hydrogenic radial equation12 are
the spherical Coulomb functionsl3, sometimes called the radial Coulomb
functionsl4, which form the total wave expansion of the hydrogenic eigen-
functions in the continuum. Only the first four spherical Coulomb functions
from S to F are considered significant in this paper for the calculation of
these probabilities used to evaluate total ionization cross sections.

The system will have the reference frame fixed on the atom's nucleus

at A, the projectile at P with velocity v and the electron at E. Let the



position vectors x and r be the positions where E and P are from A, and
R(t) the position vector of E from P. While assuming a straight line

trajectory for the projectile, the impact parameter becomes/a=£frlo

—-

P 5.0 ; ——

The energy Hamiltonian of the independent electron is Hel =H, + V(r,t)

. a2
where H = — T “t:;?z . Za2 & , the hydrogenic Hamiltonian.
Z e # ’ =
i

The Coulomb potential term is

From Schrodinger's equation,

4, Y. (F o) = b ZHEFEY.

Thus,
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At t — =< , the time-dependent interaction term will disappear so that the

Schrodinger equation reduces to the hydrogenic equation. As t —» o< , separation
of variables implies L]f;(f If) = g/f(f) ‘t":“';'i':t . Let §/¢’l e; & = —%n (F) .
The set g gsnffi{}' forms a complete orthonormal basis set of hydrogenic
eigenfunctions for the electron of nucleus A. Thus, one can choose 9ﬁ (thj -
zgclﬂk@ﬂ_aik(jf) , which sums over the discrete bound states and the
continuum. At t—- —oc, a =1anda = 0 for all m # n. Thus, the electron
is assumed to be in some unperturbed hydrogenic state before any interaction

is involved. Else, the initial condition is just a sum of unperturbed

hydrogenic states. (The 1S state will be assumed in the later development.)

It is interesting to note that

lim &, ]9 LD =

TP 0=

. <§?. /% Clnk i;> = r/i'j ‘f>T Clg (.{—/{n>

twoo

= /;:'" :%—« Cihk(t) 'g‘nﬁ = /J"”‘ Cznn}tt) = C:('”m (OC") ,

i-.,ao T > o

This is simply the contribution of the l@;ﬁ state to %{1(Fi Q) as T o2

To determine the transition to the m state from the n state as t -— o< , the
i i
en s i = / . i 5
probability Ei»réfi'?) — I(R"M(fczﬂ/ for glvenyfﬁ and v for the

projectile.
Using the Schrodinger equation and assuming weak interactioms, first-

order time-dependent perturbation theory obtains these equations (Cf. Appendix 1).
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where a'is an arbitrary momentum transfer vector of the transform.

Consider i # f as t—+ o0 |, then

_‘ -4 g a%"t S _;'ﬁ?’ -
a, = oz_.‘:'t’./(/t___f__ 7K fﬂ@cs U7

4

Define the last integral as the generalized form factorlS,L&a'ﬁ).
- - e ¥ -+ - i —=
q°'R(t) = q-( o+ vt) = qvt +q, - Q2 where q, is parallel to v and 4,
is perpendicular to ¥ but not necessarily to;. Consequently,

= a 2 . .
q = ——\{ck + ‘h . From Appendix 2, the coefficient a,, can be determined

. e
with a given impact parameter and momentum, k.

. . e )
ey = KTEE ST 22 }/(s o [T L

’f—'(f#—uz /j(&ﬁp(w = *ZL \41;«» I, ,9 '/i'

‘ 2
To obtain the probability for ionization, simply determine [I a‘-{, (/’, fd/ U/E,

Since we are using mutually orthogonal eigenfunctions, the cross terms reduce
the double summation to diagonal terms. The only problem left is to express
the generalized form factor, cé(i:],k), for each partial wave.

Originally, the K-shell electron is assumed to be in the hydrogenic

1S state,

fﬂﬂ(’a )/ff . The final wave states of the continuum
Frl -

hydrogeﬁic eigenfunctions are the spherical Coulomb waves, which form the

total radial wave expansion.
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With this, the generalized form factor can be expanded into a summation

(Appendix 2),

L(78) = [d g T dF

' ‘ ¢ =TRoe B r"l f/-»fl) !
refzEf &% £ Dy ety Lot

The individual ULL terms ( £ = O through 3) for the S, P, D and F spherical
Coulomb functions are derived in Appendices 3 through 6 respectively. Each

integral of uél(q,k) can be evaluated analytically in terms of Gaussian

hypergeometric functions.

Now, let us calculate the probability using the wvalue of r:((q;ﬁ)-

j —/ a (4] dE = j la (o0 k dkdn, =

167 2Y )‘—‘f'l‘, Zz\
= (7€ ¢ (T
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It is assumed that the series expansion can be truncated at £ = 3, making

the probability at a given Ve reduce to

a i

(i cmz2)t Za - (%f’p{w)’ 2 k
Sl de = (558 7B 2 2 SRS

F(m L)/zj Tolg?) (z s iu (i) /.) g A

This is the general expression for the ionization probability. This is the
basic expression for full SCA calculations widely used in the literature
Expressions for the generalized form factor gfi(q,k) are given in
Appendicies 3-6.

It is sometimes useful to consider the low energy limit when the
expression for this amplitude simplifies considerably. .Hence, let us
consider this limiting form for this ionization probability. In the low
energy limit the spherical S wave Coulomb function, which is the lowest
energy eigenfunction in the continuum, will overwhelm the other spherical

Coulomb functions in magnitude.

o — ,Z n
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In the low energy limits for protons on H at kc¢<q and nominally 1<<q, the

{ } term approaches '—Z{f (Appendix 7).
L
mitl — AL M- Al
s !, ~ %
j e (Llj)";_({fﬂ = 7 Z/g /% ( ng ) from Erdelyi et al.'®
g ¢ At b
Using this limit, [(ar) 277
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In Bang and Hansteen (1958), f/g—*
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are energy normalization constants, which are listed by Alder
and Wintherl? as

N, and Ng-k
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1 2 TR
- This corresponds % to the result given without detail in Bang and Hansteen,

19, 20

and used for applications at low energies.
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CHAPTER 3
THEORETICAL DEVELOPMENT OF

DOUBLE K-SHELL IONIZATION

To formulate the amplitude for ionization of independent K-shell
electrons, appropriate sections of the basic theory established by McGuire
and Weaverg are covered. The full Hamiltonian for the system being

considered becomes

. Z o Zz 2
Y=L L S nt o S BES
7/” ’\ ).,:; fﬁ'"i}’, j,r; zm 7 'R’;I/ .

Due to the presence of the interelectron interactions, fu//,rf' V;! , complete
commutativity is impossible between separate terms of the Hamiltonian. As

f —
an established practice, an effective potential V(l‘;) approximates the

interelectron term, E ,ez/]ﬁ:«;;'[ . Thus,

,:j (“'L-_%'_:j—ki ‘41—+ L+V(f)>
R =

=L+ S VRELE) s )

N

/O '\
= L 4+ ( R, s Z
ZM «f-_—r 7
7=
where /)_/___ and // now become sums of single-particle Hamiltonians.

To reduce }V in //?’_—-a f—,—ﬁ as a product wave function, three

assumptions are introduced. First, the initial asymptotic wave function

i+
is assumed as a product of wave functions. Second, /A is assumed to

2M

commute with the separate terms of the Hamiltonian. Third, the spin terms

12



are assumed to be negligiblew, which is not stated in the original paper.
In the first assumption, coorelations between the target's wave functions
are ignored due to the approximation of an effective potential. The second
assumption approximates how the ﬁrojectile moves classically. The last

assumption is quantatively correct when considering heavy proj ectlles

Initially, the asymptotic wave function y/( , -,J Fg) gfl(}\)?——(f / ()

—_—
where R’ gt ‘9 + A~ T for the initial wave packet g/ (R”’) and
where gj) f» j are bounded one-electron wavefunctions. The evolution

operator - in the Heisenber icture factors into a product of
P _Q (t., t}_) g p P

single-electron evolut ion operators.

Q@)= 17¢ct £ o

f‘ il B B -.:-‘jt‘f;/(r) 47
- Al ~y kh SL, ¢/
-/ e ﬁ' 2 E

2 21
= () (e,8) TT 0 (2.1)

_f'-—./ ’ L -
h is the time-orderi tor. Note that | 4/ /¢ , =P
where J is the time-ordering operator ote tha L}K ((‘)) %(Z‘)] &
only if ¥, = 7, . At any point in time,

_Q(—Mf)“//}: Dp(foczﬁ)gf‘{ﬁj 7‘7—_()1 (—cxaj %,(;)
= &

(42
The amplitude (i, ( ‘t) that the evolution operator developes }f into

a particular % state is calculated by %’«f (i’) = <%/ﬂ (_ D, c’f)/ y{> .

/7
If %," are orthonormal eigenfunctions of the asymptotic Hamiltonian, then

a,0= H@T 4,0 Ve=|e® ] 4,50

13



Since the evolution operator is a product of single-electron terms, then
ey () = <Te(F) |52, (=0) | 9 (R0
TT <. 2)0, 620 ., 00

= | / ok 4 (Y
where a,i J:, : (f) = <<jf (R?)/—()—p!di (@> and where C(’L.f};; (f‘)

is the single electron probability amplitude. A nonorthonormal basis of
eigenfunctions sL; can be chosen, which will still produce the same
result of a product of single-electron probability amplitudes. The
probability for the transition from an initial state gi: for given impact
parameter J}E* to a final state 9; is the square of the amplitude
/C{;; (fzr‘.-h-,_f)/i;_— /adf (2 U/ ) » where k is the momentum of the
ionized electron. The total cross section for a uniform beam is calculated
by integrating the probability over the impact parameter of the projectile,
J27 0 do fay "
The cross section for ionization of:a single electron in this

approximation is

'/J:i,.s = /2 77 %J /Ctdfjgj:%z—.—ld/ﬁtu,f(ﬂﬂ)/ P /Z 77/() Cé) /%},4/ .
AR

One-to-one correspondence between impact parameter and scattering angle of
. . . . . , 21 .

the projectile is assumed in this classical™ model. So, summing over

scattering angles is the same as summing differential cross sections over

impact parameters.

14



Assuming unitarity for each single electron, then LE~@:} CﬁJJ/ is the
probability that the j th electron is scattered into the continuum final
state J', and 1, / ( &U is sgcattered Iinto a final state other than iE:

The probability for ionizing an electron in the K-shell into the
continuum is L =/{;{{{' /a‘é?{;,g?)/n . The probability for not producing a
vacancy is 1 - PK' '

If single electron vacancies are identical in an atomic shell of N
electrons, there are (E) ways to produce n vacancies with a probability of
M p (-

To remove k electrons from the K-shell the effective total cross

werion oz = [270 4 ((E)(1-R]

In this work, P, ~ 5 [a (,n,k)] and the total cross sections
K T mer | TKF

for single and double ionizations are

a7 = z///f’ZF(l )

.andoﬂ_;;:z_ﬁ«j/,f; :,ﬂo

These expressions together with the SCA expressions for PK gp)
given in Chapter 2 are used to evaluate cross sections for single and double

ionization in the next chapter.

15



CHAPTER 4

RESULTS OF CALCULATIONS

As discussed earlier, single and double K-shell ionization data
of 0 and F are evaluated and compared separately to H+ and He+ projectiles.
BEA and SCA calculations for both single and double K-shell ionizations
are compared on each graph. BEA single and double K-shell ionizations were
provided22 by McGuire., Total SCA ionization cross sections were obtained
from Hansteen, Johnsen and KochbachZB- The total cross sections were

calculated by numerically integrating the integrals by the retangular rule
e '7 ( )
‘ = / R -
3-7 %f‘ji)/,/‘ /n I 61 t{ﬂ

where the probabilities are dependent on the impact parameter /L) and the
energy of the projectile.

- The first figure shows single K-shell ionization for both Ht and He+
projectiles on O, BEA overestimates slightly for the H+ while SCA under-
estimates slightly. With He+, both theories slightly underestimate but
BEA is a little closer. -

Single K-shell ionization for both H+ and He+ on F is plotted on
figure 2. For H+, BEA overestimates the cross section but has the right
shape while SCA is closer in the lower energy range and further away in the

upper range. With He+, SCA is nominally closer than BEA,

16



Figure 1. Cross sections for single K-shell ionization as a function of
projectile energy for 1" and He+ incident on 0. The theoretical curves,
BEA and S5CA, are represented by solid lines. The data points are due to

Richard, et al.
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Figure 2. Cross sections for single K-shell ionization as a function of
; + 5

projectile energy for H and He+ indicent on F. The theoretical curves,

BEA and SCA, are represented by solid lines. The data points are due to

Richard, et al.
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Figure 3. Cross sections for double K-shell ionization as a function of
: + + o :
projectile energy for H and He incident on 0. The theoretical curves,

BEA and SCA, are represented by solid lines., The data points are due to

Richard, et al.
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Figure 4. Cross sections for double K-shell ionization as a function of
projectile energy for H+ and He+ incident on F. The thecoretical curves,
BEA and SCA, are represented by solid lines. The data points are due to

Richard, et al.
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The double K-shell ionization for O is shown in figure 3. Again as
in the single ionization case using H+, BEA overestimates the data but has
the slightly better shaped curve for the O target while SCA crosses the
data curve. For the He+ projectile, again, SCA appears to fit closer to the
data.

For the double K-shell ionization using F as the target, figure 4 is
shown. Here, SCA seems to approximate the experimental data better than
BEA for both H+ and He.

As a check to see whether BEA or SCA matched better despite any bias,
the ratio {Fi. ek ///. Gingle K was taken for both projectiles. for
the 0 target (figure 5) and for the F target (figure 6). 1In all but one
case, SCA gave a closer fit than BEA to the experimental data.

Also note that comparis?ns between theory and experiments tend to be
somewhat different for double ionization than for single ionization. The
theory sometimes tends to be comparatively lower for double ionization, for
example, as compared to data. Thus, in practice, comparing multiple as
well as single ionization cross sections to experiment tends to give a more

complete picture of the relationship between theory and experiment.

25



Figure 5. Ratio of double to single K-shell ionization cross sections
as a function of projectile energy for H+, He+ on 0. Theory and data

correspond to figures 1 and 3.
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Figure 6. Ratio of double to single K-shell ionization cross sections

as a function of projectile energy for H+, He' on F. Theory and data

correspond to figures 2 and 4.
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CHAPTER 5
CONCLUSION

Ever since its inception the SCA approximation has been widely used
as an appropriate tool for studying and analyzing collisions of ions with
multiple electron systems. Unfortunately, this tool has not be thoroughly
éocumented in the literature.

Only when the approximations are clearly detailled can the nature of
“the invoked approximations, both physically and mathematically, be well
understood. For example, the SCA approximation simplifies at low projectile
velocities to a form that is both simple and convenient to use. But, the
constraints involved in this low energy limit are not entirely clear in
the present literature. In this thesis, the semiclassical approximation
for direct coulomb ionization has been developed explicitly. Derivation
of the useful low energy limit has been presented as well as a detailed
development of the full SCA probability amplitude.

Not only is the SCA approximation useful in single ionization studies,
but it is also applicable for multiple ionization studies within the
independent electron approximation. Theoretically, a more complete
physical picture of ion—atom collisions should be obtained from both

ﬁsingle and multiple ionization cross sections. This is true in principle
because single and multiple ionization emphasize different regions of
impact parameter space. In practice, this has been illustrated in this
thesis by applying SCA to single and double K-shell ionization. Further-
more the SCA approximation has been compared to the BEA model for both

single and double K-shell ionization to achieve a fuller picture of the

30



ionization process. In our opinion, SCA gives a better fit to the data
than BEA.

Now that SCA is defined more clearly, one may now concentrate more
confidently on the deviations of single ionization from SCA theory in
both total cross section and impact parameter studies. Furthermore, once
single ionization theory is well defined, then it may be possible to seek
corrections to the independent electron approximation and, thus, look
toward a more generalized solution of the many electron problem in the

theory of ion-atom collisions.
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APPENDIX 1: Derivation of the Potential Term and Probability Coefficient
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APPENDIX 2: Derivation of the Generalized Probability Coefficient
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APPENDIX 3: Derivation of ‘-(/c C? fw) Term
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APPENDIX 4: Derivation of L{:(c ) Term
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Using the Gaussian Hypergeometric properly34
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APPENDIX 5: Derivation of Léi(},ﬁd Term

Here consider

(22 .+ ik)r

cffl(f,-/f)r-fé* f(Gn 6,249 f. (50 © "dr

oy = fee — ol Singr  — 3 cos gr
as ‘//L(Z'J) = (‘B")] gr ; G PR 05 g
One has ;
: ccs i _(?E?.Tz‘”‘,/" ¢ : o
L (3.4) /[(EES -g7) s g = Tt fe )f",-F(fv»@éﬂ*‘ﬁ ar
] e ::rc*)'_ B ) de
;=

: : i + (2“'9
]E =l hy'ﬂf‘_( e * ‘3 e’ 2C ()Jr”
, e‘%‘“("’”)’ F(0)dr =2 )6 (‘**‘(’f’”r F(») dr
3 2?

j ’(‘—”G{ﬂ)f (, ) Jdr r—L—j (2”[}“3))' S AE ,)dr

—(2Z: . (kD) (22 rc("“i))’
- (A’EI’)ZIJE())) 2/]C’( r ”(j))a/f'

3 TGz ) 3 p.F (a2 24

243

+

ZL.Z'

&l 2" 2.4 7
, TO Fewte D) ) Gt
2 2“; 2;2, /2:
+ "'3[7(3) ;J 3 (_JZ 3( 2") 3/—'(3) /_(3 "”l 3 é .25/;
2? 2" 2? 21

44



where /L_ _,h,_?_ftff( z,) Xvﬁré(kfz) and 7 = —(f_'_i

Thus,

s 2
\:Lyl(f}k): 2__3_)_ ZE(B ", 21 —a F(B’zn, 2, &, )
LZ 2
s = g (3 en, ‘f)C} 2;_*

= ;\,
cy P ))

ol 2F(3-in,3.¢€, 2:,4) .F (3—uz 3¢, 24{
7 Y

45
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Approximation of L{f(z'k) for Low Energy
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ABSTRACT

The probability amplitude for direct Coulomb ionization in the
semiclassical Coulomb approximation 1s derived in full detail,
including the low energy limit. This SCA approximation is used with-
in the independent electron approximation to evaulate both single
and double K-Shell ionization cross sections for H+ and He+ incident
on 0 and F. Results are compared to both the binary encounter

approximation (BEA) and recent observations.



