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Abstract

An overview on nonlocal Laplace operators acting on real-valued one-dimensional func-
tions is presented. We provide a definition for nonlocal Laplace operators and present some
basic examples. In addition, we show that, for vanishing nonlocality, the nonlocal Laplacian
of a sufficiently differentiable one-dimensional function approaches the second derivative of
the function. Moreover, we compute the Fourier multipliers of the nonlocal Laplacian and
show that these multipliers converge to the multipliers of the Laplacian in the limit of van-
ishing nonlocality. Furthermore, we consider a nonlocal diffusion equation and provide an
integral representation for its solution in terms of the Fourier multipliers of the nonlocal

Laplacian.
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Introduction
A nonlocal Laplacian is an integral operator of the form

Lu(x) = / A, y)(u(y) — ulz) dy, =€ R,

where 7 is a symmetric kernel v(x,y) = v(y,x)%. Such operators have been studied in the
context of nonlocal diffusion, digital image correlation, and nonlocal wave phenomena among
other applications, see for example®*479. Several mathematical and numerical studies have
focused on nonlocal Laplace operators including 158,

In this report, we focus on nonlocal Laplace operators acting on real-valued one-dimensional
functions. In Chapter 1, we define a nonlocal Laplacian with a compactly supported kernel
~ and present some basic examples. In addition, we show a connection between the nonlocal
Laplacian in one-dimension and the second derivative. In Chapter 2, we review some basic
properties of the Fourier transform and provide examples. In Chapter 3, we present the
Fourier multipliers for the nonlocal Laplacian and show that these multipliers converge to
the multipliers of the Laplacian in the limit of vanishing nonlocality. Moreover, we con-

sider a nonlocal version of the heat equation and present its solution in terms of the Fourier

multipliers and the Fourier transform.



Chapter 1

A Nonlocal Laplace Operator

Definition 1.1. Let 0 > 0 and B < 1. The nonlocal Laplacian is defined by

o+x
Lux:c/ ——— = dy, v € R, 1.1
’ ( ) ’ —0+x ‘y_x‘ﬂ Y ( )

where u : R — R. The constant c¢s is a scaling factor which is given by
3—p

Cs ‘= 535 . (12)

By a change of variables z = y — x, the nonlocal Laplacian in (1.1) can be written as,

Lsu(z) = cs /—5 uz+ |Z)]5_ u(x) dz. (1.3)

We note that for g < 1, the integral kernel

1
X[—6,0] (Z)W

is integrable. We also note that due to symmetry

/(S 9e) (1.4)
5 |2

for any odd function g.



1.1 Examples

In this section, we compute the nonlocal Laplacian of some basic functions.

1.1.1 Polynomial examples

Let u(x) = k, where k is a constant. Then it is straightforward to see that Lsu = 0.
Next, we consider u(z) be a cubic polynomial. Then Lsu(x) = u”(x). To see this, let

u(x) = azx® + asx® + a1z + ap. Using (1.3), we note that

dz,

* laz(x + 2)° + ag(z + 2)% + a1 (z + 2) + ag] — [azz® + axz® + a1 + ag)
Lsu(z) = ¢s 3
s ||
/‘S 3asxz? + 3a3x%2 + as2® + 20002 + ax2® + a2
-5 |2|#

s 2 2

3asrz a2
= d
5/( 2P +|z|ﬁ) -

where in the last equation we used (1.4). Therefore, and by using (1.2), we obtain

dz

5 52
Lsu(x) = 05/ (Baszx + ag)—ﬁ dz
-5 2]

5
= 2¢5 (3azr + a2)/ 227 dz
0
§3-h

3-p

= 6azx + 2a; = u”(z).

= 2c¢5 (3azx + ag)

Now we consider a quartic polynomial, py(z) = asz* + asz® + asx? + ayx + ap. Similar to

the calculation for the cubic polynomial above, we obtain

-3
L5p4(l‘) = 12a4$2 + 6@31’ + 2&2 + 2%6%4
B—3
= pZ(I) + 2mé2a4.

We observe that

. o
515& Lspsy = py.



Another example of polynomials, we consider ps(x) = asx® +asx* + az2® + asz® + a1z + ao.

Performing a calculation similar to that for the cubic polynomial above, we obtain,

-3 -3
Lsps(z) = 20a52> + 12a42% + 6asz + 2ay + 10%52(1533 + 2%52(14.

Again we observe that

lim Lsps = pr.

6—0t

1.1.2 A trigonometric function

Let g(z) = sin(z). Using (1.3) we obtain,

% si — sin(x
Lig(z) — 05/_ sin(z + z) ()dz

5 |27|’8

% sin(x) cos(z) + cos(z) sin(z) — sin(x)
“, EL -

= ¢ /_(S cos(z) ~ 1 dz sin(z) + ¢5 /6 sin(z) dz cos(x).

5 \Z|5 s 2P

Due to symmetry as shown in (1.4) we obtain

s /_ Teos(5) =1 ) £ e / Tsin(e) ) se) = / Teos(a) =1 ),

5 l2lf 5 |27 —s |AP

Using the series expansion of cosine

we observe that

) ) 2 ) 4 ) 6
cos(z) =1 , z z z
s / op = <“35 / et / P / Gt

(14 23-85p 23-Fu
_(1+4!5—65 S )

(1.5)



Using (1.5) and (1.6) we obtain

Lssin(x) = —sin(z) + (% %52 62 %54 + - ) sin(z)
L i)+ (% ] +) sin(a).
Again, we note that ,
5lir(r)1+ Lssin(x) = % sin(z).
1.1.3 A discontinuous function
Consider the Heaviside function
H(r) = 1, >0
0, z<0,

which has a jump discontinuity at = 0. Applying (1.3) we obtain

" H(z+z) — ()d

LsH(z) = ¢ FE z
(6+6°(-1)%271), —6<2<0
_3=p 1
B 3-8 1 — B458
TP LB (goar-n g, 0<s<s
0, otherwise

\

Figure 1.1 shows the graph of Lsu(z) for § =1 and f = 5



Monlocal second derivative for Heaviside function

Figure 1.1: Nonlocal second derivative for the Heaviside function

It is interesting to observe that as 6 — 0T LsH converges to the distributional second

derivative of the Heaviside function H”(z), for example see?.

1.2 Convergence of the nonlocal Laplacian

In this section, we show that the nonlocal Laplacian of a sufficiently differentiable function

converges to the Laplacian of the function in the limit of vanishing nonlocality.

Theorem 1.1. Let 8 < 1,u € C3(R), and x € R. Then

. o
515& Lsu(z) = u"(z).

Proof. Using Taylor’s theorem, we expand u about z = z,

u(x+z) = u(z) +u'(x)z + %7,/’(:(;)22 +r(z + 2),

where

1
r(x+z) = gu’”(x + 52)2°,

for some s € [0, 1]. Substituting (1.7) and (1.8) in (1.3), we obtain

é Py 1 Z2 1 5 23 1
L&’U,(Zﬂ) = 65/ ——dz u’(q;) + 05/5 W dz §UH<ZE) 4 65/5 W dz 5u///(qj).

5 |Z|5 _

6

(1.7)

(1.9)



Using (1.4), the first integral above vanishes and by applying (1.2), we see that

) 22
—dz=1. 1.10
s / e (1-10)

Therefore,
0 23 1 )
|Lu(x) —u"(z)| = |cs / —ﬂ—'u”’(a:) dz| < 05/ 12>~ dz H,,
5 |17 3! -5
where,
1
Hx = Ilil‘i)(s( 5 "LL/”(.CE —l— SZ)' .
s€[0,1]
Since
/5 5—5 54—B
z|"Pdz =2 ,
_5 12 4 -0
we obtain
|Lsu(x) — u" ()] < 28-5) ﬁ) (1.11)
=43
By taking the limit in (1.11) as § — 0T, the result follows. O



Chapter 2

Fourier Transform

In this chapter, we review some basic properties of the Fourier transform.

transform is given by
+00

flw) = fla)e ™ da,

and the inverse Fourier Transform is given by

1 [t

flz)=— F(w)e™® duw.

T o o

2.1 Properties of Fourier transform

(i) Linearity

Flaf +bg)w) = a f(w) +b j(w).

(ii) Shift in phase domain
F(f(e—a)(w) = e " f(w).

(iii) Shift in frequency domain

F(f(x) ) (w) = flw - a).

The Fourier



(iv) Phase Scaling
Flfan)@) = 7 ()

(v) Frequency derivative

Fla"f)(w) ="

(vi) Convolution property

F(f *9)(w) = f(w)gw).

(vii) Modulation property

F(J o)) = 5-( 5 9)()
Proof. (i)
) 00 .
FO@ =f) = [ f@e

Flaf +bg)(w) = / " af (@) + bg(a)] e da

+oo
= a (z)e™ ™" dx + b/ g(x)e ™ dx

—00

= af(w) +bg(w).

F(Hw) = flw) = /_Oof(x>eiwx dr

+o0
Ffa-a) = [ fa-aetds



Let 2’ = 2 — a — dx = d2’. Therefore,

+00
Flfx—a)] = f@)e ) dy!

+oo

— f( ) —iwz’ —uua d[L'

+oo

= e*“’-’a f(l' )e:zwx’ dr'
= e f(w).

(i)
. o0 |
FHw) =fw) = [ fla)e™ du

+0c0

A ) = [ pwesset
,j:ooo

— : f( ) —i(w—a)z dr

= f(w —a).

(iv) Consider
+00
Flfan) = [ flase .

Letx’:ax%x:%%d:c:%dx’. Then

—+00

Flf(az)] = fa')e z,)ﬁdaz’

+00
:\a|/ flaerse do
B |a|f<a>'

10



F(Hw) = flw) = / T i) e da

d e d —iwx
%f(w) = /_Oo [@e ] dx

d ; e ; —iWT
L@ = [ f@imes a
d

—flw) = —i /_+OO o f(z)e™ ™" dr

A +o0 .
i %f(w) = / xf(x)e™* dx

Since F(f)(w) = f(w) and F(zf)(w) = z—f( ), then F(z"f)(w) = i”%f(w).

(vi) Since the convolution of two functions f and g is

—+00

(fxg)(x) = f(p)g(z —p) dp,

then by applying the Fourier transform, we obtain

+o0o
e
- /M{ - f)g(z —p) dp| ™" dx

Switching the order of integration, we obtain

+oo +oo )
FI(f *9g)] / / T dz dp (2.1)

Let ¢ =x — p — dq = dr and x = p + ¢, thus (2.1) becomes

+oo  pFo0
Freow) = [ [ iwtae o dgdy

+o00o ) “+o0o )
= f(p)e ™" dp / g(q)e™™1 dq

= fw) ).

11



(vii) From

+o00
Flf gllw) = f(x)g(x)e ™" du,
and the inverse Fourier transform,
1 [T ,
fla) =5 | Fwe= do,

we obtain

Flf glw) = / - F / - f(A)erA] g(z)e ™ d

o 27T —0o0
1 +oo R “+oo )

= o fN) [ / g(z)e Wz dx} d.
™ —0o0 —00

From the definition of Fourier transform, we have

“+00
| sweteran = g,

o0

and thus

2.2 Examples of Fourier transform

In this section, we consider some basic examples of Fourier transform.

12



2.2.1 Rectangular function

The rectangular and sinc functions are defined as

1, -05<z<05 i
rect(z) = and sinc(z) = sin(rz)

. T
0, otherwise

The Fourier transform of the rectangular function is

F(rect(az))(w) = l%,sinc <i> :

Proof. (2.2) Let f(z) = rect(x). Then,

Flf()] =

13

(2.2)



2.2.2 Gaussian function

The Fourier transform of a Gaussian function is a Gaussian function as

Fle®(w) = \/g. e (2.3)

Proof. (2.3)
A +m .
flw) = / f(z)e ™ dx
400 ) )
_iooo
_ / 6—(o¢x2+iwx) dr
,iooo |
- / e~ @) 4y
+00
_+OO w\2 —w
= / e~ t28) oTa dr

Changing variables y = x + ;—“;, we obtain

~ —w2 +oo W \2
flw) = e4a/ e~ t33)” dy
—0o0
—w Foo 2
= €4a/ e_ay dy
—00

where in the last equation we used the fact that

+o0 5
/ e dy = \/j
oo o

3

14



Chapter 3

Fourier Multipliers and Nonlocal

Equations

In this chapter, we follow the work in? that presented the Fourier multipliers approach for

studying nonlocal equations.

3.1 Fourier multipliers

Definition 3.1. For a linear operator L, the Fourier multiplier is a function m such that
F(Lu) = mF(u),

for any function u in the domain of L.
For example, let L = %. Then m(§) = —|€J?, for any £ € R.

Lemma 3.1. The Fourier multipliers for the nonlocal Laplacian in (1.3) is given by

5
ms(§) = c(;/ cos(§z) = 1 dz, £e€R. (3.1)

-6 |Z|B

15



Proof. We compute the Fourier transform of Lju,
+o0 0 . ‘
F(Lsu)(&) = / 05/ u(x+|z)|ﬁ u(@) dz e ¢ dr,
—0 _5 z

+oo +o0 1 )
= / / Cs e X[-5,](%) <u(m +z) — u(x)) e dz dx.

Applying Fubini’s theorem, we obtain

+o0 1 +oo ] +oo )
F(Lsu) = / Cs P X[-5,](2) [/ u(z + 2)e” dx — / u(x)e dm} dz

—00 o0 —00

— / h Cs # X=60)(2) (€7 a(&) — a(€)) dz, (3.2)

where in the last equation we used the shift property of the Fourier transform. Thus (3.2)

becomes
1) ezfz -1

F(Lu)(©) = e [ S e,

-6

Therefore, the Fourier multiplier of Ls is given by

0 ifz 1
€
mg(ﬁ) = 65/ W dz

-6

6 5 .
= 05/ Mdsz z'q;/ sin(¢2) dz.

I 5 |21

Using (1.4), the second integral above vanishes, which implies that

ms(&) = ¢s /5 cos(é2) = 1 dz.

5 AP
[l

The multipliers of the nonlocal Laplacian converge to the multipliers of the Laplacian.

This is given in the following result.

16



Theorem 3.1. Let £ € R. Then

lim mj(¢) = —[¢]*.

§—0t

Proof. Using Taylor’s theorem, there exist o, ¢ with a, ¢ < |2£] such that

2 3
cos(z) —1=— (S;) + sin(a,.¢) (i;) . (3.3)
Substituting (3.3) in (3.1), we obtain
5
cos(éz) — 1
d 2 6 o 3
z sin(a ¢)z 3
= — dz |€]? ———d
o f o e 6P e [ S e
5 o 3
9 sin(a,¢)z 5
= —|"+¢ ———dz &7,
€ 5/_5 EE §
where in the last equation we applied (1.10). Therefore,
5 | 3 § 1,138
2 < [sin(az )| [2° s o / Ny
ms(e) + | < 5 | SRR a6 <o [ Erasge
Since
1 3-8
|| 23-p
5 dz=— —— 0,
/5 3l 34—
it follows that
13-5
‘ma(f) + ’§|2‘ < 31-5 £ 0. (3.4)
The result follows from taking the limit as 6 — 07 in (3.4). O

Theorem 3.2. The multipliers ms are non-positive and bounded; that is

(a) for any & € R, § >0,
m&(é-) S 07

17



(b) for fired 6 >0 and any & € R,

3—0 1
|m5(§)| < 4? 5—2

Proof. (a) Since ¢5 = 53{—_% > 0 and cos(z§) — 1 <0, for any z,£ € R, it follows that

§
ms(§) 205/ Mdzg 0.

I 1

(b) We observe

% | cos(z€) — 1 ° 1 3—p5 1
< ————dz <2 —dz=4 —— —.
ma©) <o [ g <2 [ pde=aiE g

3.2 Nonlocal diffusion

In this section, we consider a nonlocal version of the heat equation.

3.2.1 The heat equation

First, we review the Fourier transform method for solving the heat equation in R. Consider

the heat equation
u (1) = L4(z,t),
ot Ox2 (35)
u(x,0) = uo(z),
for x € R and ¢t > 0. By applying the Fourier transform, we obtain
2

ot 07u 2 -
G0 =7 (53) 60 = -k ite.n.

Thus, u solves
%(f)t) - _|€‘2 a(gat)a
(€, 0) = ao(§),

(3.6)

18



for £ € R and t > 0. For fixed £ € R, the solution to (3.6) is given by

(€, t) = e 1 ay(e). (3.7)

Therefore, the solution to (3.5) is given by applying the inverse Fourier transform

u(z, t) = € /+OO eI 00 (€)e™E de.

2 J_ o

3.2.2 A nonlocal heat equation

Consider a nonlocal analogue to (3.5)

9us (1 1) = Lsug(x,t),
o (1) (1) (38)

us(z,0) = up(x),

for x € R and t > 0. Here the solution wus is parameterized by the nonlocality parameter

0 > 0. By applying the Fourier transform, we obtain

Ous

(1) = F(Lsus) (€, 1) = ms(€)as (&, 1),

where my is multiplier given by (3.1). Thus, 4 solves

%(f,t) = mg(ﬁ)ﬁé(&t),

(3.9)
a&(f, 0) = /&0(5)7
for £ € R and t > 0. For fixed &, the solution to (3.9) is given by
as(E,t) = ™ g (€). (3.10)

19



We observe that using Theorem (3.1)

lim as(¢,t) = lim e™©* g
5_1>I(1)fl+ Ua(fa ) 61}%1 € Uo(f)a
ot €_|£‘2tﬁ/0<§),
= a(&,t),

where 4 is the solution to (3.6). By using (3.10) and applying the inverse Fourier transform,

we obtain an integral representation for the solution of the nonlocal heat equation

1 oo .
wwt) = [ O an(e)e de

2 ) o

20
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