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INTRODUCTION

Two goals of second order servo design are reduction of time

delay and rise time without overshoot. In conventional design,

rise time of the linear servo is shortened by using high gain.

In this thesis, a certain non-linear characteristic will be used

on a second order servo with further performance improvement.

Strait (3) has shown that modulating the error signal with the

absolute magnitude of the output velocity results in a system

that has shorter rise time with less overshoot than is possible

with a linear servo. Consider the second order linear servo with

the control equation

y = (K/J) (x - y - dpy) (l)

p(p + a*)

a» R/J

p - d/dt

where y is the output and x is the input. The system is com-

pletely characterized by constants R, J, K, and d. If a* is too

small or if K is too large the system will overshoot. Conversely,

if a' is too large or if K is too small the system will be over-

damped and the rise time will be excessively long.

The error signal in the system represented by Eq. (l) is

E (x - y - dpy)

If this is multiplied by (1 + b|py| ), Eq. (1) becomes

y = (K/J) (x - y - dpy) (1 + blpyl

)

( 2 )

p(p + a')



If b>l, then the gain of the system is increased during the

transient period. Equation (2) is the control equation of the

ideal Strait servo. A slight variation of Eq. (2) is

y = (K/J) (x v) (1 + bl pvl ) - d T py

p(p a*)
(3)

Equation (3) is the control equation of the prototype Strait

servo. The absolute magnitude of py is obtained by differen-

tiating the output and feeding the result into a full-wave

rectifier. Increase in gain due to the (1 + blpyl ) term results

in a shorter rise time than the linear servo. Figure 1 compares

the Strait servo response to the linear servo response.

Purposes of this thesis are to obtain a digital computer

solution for Eq. (2) and Eq. (3) and to further investigate

characteristics of systems represented by these control equa-

tions. Also investigated are certain variations of Eq. (2) and

Eq. (3) using fractional derivatives. The response of each

system to the unit ramp input and to step inputs of different

amplitudes is evaluated using the analog computer and the digital

computer.
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NUMERICAL SOLUTION OF THE STRAIT SERVO

In order to compare the digital computer results with the

analog computer results, we let K/J = 1. The ideal Strait servo

can now be represented by the control equation

y = (x - y - dpy) (1 + b|py| )

y
p(p + a')

a 1 = R/J

(4)

where a 1
, b, d, R, and J are constants. This is the control

equation of the ideal Strait servo with K/J =1. If d = and

a = a* + d 1
, the control equation becomes

y = (x - y) (1 + b|py|) (5)

p(p + a)

This is the control equation of the physical prototype Strait

servo with K/J = 1. Therefore, only Eq. (4) need be programmed

on the computer.

Equation (4) can be rewritten as

y + bclyjyj + (a T + d)y + by|y| + y - bxjy| x (6)

This can be written as a vector differential equation of the form,

H\

Vvl

/o -l\

\i e/\y/l\r

o\

\«/

(7)

o = a* + d + by sgn(y) - bx sgn(y) + bdy sgn(y)



Here, we need the definition

sgn(y)

<

1

-1

y>o

y =

y<0

Equation (7) is of the form

7j +Aq-cr

<y)

'(-1

.

\yj

/o -1]
n-

I
1 c

l

c
/o

Taking the Laplace transform of Eq. (3) and dividing by s yields,

n + UH -JL (9)

Since the equation cannot be formally solved for 7^ , Z trans-

forms and trapezoidal convolution are used.

Using the trapezoidal convolution formula (Halijak (2))

*Z{fg) = T(ZT) (Zg) - 0.5T(Zfgo ) - 0.5T{Zifo ), and the

identity Z(l/s) 1/(1 - z), Eq. (9) can be evaluated. The Z

transform of Eq. (9) yields

Zfj + 0.5T 1-+-S ZpJl - o.5T^£ZL «

0.5T 1 + z

1 - z
ZCf - 0.5T J^

1 - z

'T is the sampling interval in seconds.



Multiplying all terms by 1 - z yields,

(1 - z)Z7]+ 0.5TU + z)Z/Z7J- 0.5?JULo Tlo

= 0.5T(1 + z)ZCf- 0.5TCT

- L (10)

For a step function of magnitude x

in = x(0, T, T, T)

For a unit ramp function, one obtains

ia = 0.5T(0, T, 3T, 5T, 7T, 9T, ...) and

Xn = (0, T, 2T, 3T, ...)

Taking the inverse Z transform of Eq. (10) yields

. Tin -7? n-l + °-^ n7J n + D.^^ n.i - 0. 5T/Z o 7/ = £ n

Letting the initial conditions

y(0) = y(0) = and solving for 7| n yields,

(I * 0.5TMn )7? n = in *7}n.l - °-5TAn-l7?n-l

~<5.

Substituting the appropriate matrix for 77 and jU. yields

/l o\ /o -1

+ 0.5T

L\°
x

/ 'n

»\ I6i
9
n\

\yn/ \

<52 ,n

(11)
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cn - a* + d + byn sgn(yn ) + bdyn sgn(yn ) - bxn sgn(yn ).

5i, n = vn-l + °-5Tyn.i
(12)

6 2 ,n = in +
yn-1 - 0.5*^.1 - O.^Tc^y^! (13)

cn-l • , + d + byn-1 sgn(yn-1 ) + bdyn-1 sgnty^)

•

- bxn-1 sgn(yn-1 ).

Equation (11) yields two simultaneous equations,

7n - 0.5Tyn = 61>n (14)

0.5Tyn + yn + 0.5Tcnyn = (5 2
,
n (15)

Substituting cn into Eq. (15) yields

0.5Tyn + yn + 0.5Tyn [a» + d + bynsgn(yn )

+ bdy
n
sgn(y

n
) - b^sgnfyj] - 6

2|Il

Solving for y„, where

yn = (5i,a
+ 0-5Tyn yields

°-5*«5 lfB
+ 0.5Tyn ) + yn + 0.5Tyn [a» + d + b(6

x « + ° • 5Tyn )

sgn(yn ) + bdynsgn(yn ) - b^sgnfyj] = (5 2>n

0.5Tb(d + 0.5T) ^gn^) + [l + 0.25T
2

+ 0.5T(a» + d) +

°- 5Tb(5 1>nsgn(yn ) - 0-5Tbxnsgn(yn )]yn + 0.5T5 l,n -6 2
,
D

= ""



a

Equation (16) is of the form

(X= 0.$Tb(d + 0.5T)sgn(yn )

J3
1 + 0.25T

2
+ 0.5T(a* + d) + 0.5Tb(5 1>nsgn(yn )

7-0.5T6 1>n -6 2 ,n

Solving for yn yields

y =
-/?t\/Q

2
. 4CX7 (17 )

where CX ^

For a given set of initial conditions, (5
]_ n

and (5 2 n »

there are four possible values for yn . Two values can be ob-

tained from Eq. (17) by assuming yn>0, and two more values can

be obtained by assuming yn<0» Only one of these four possible

values is correct. Since nothing can be predetermined about the

value of yn , certain assumptions must be made. First, assume

that the roots of Eq. (17) are well separated. Second, assume

that the closest value of yn to the initial condition yn-1 is the

correct solution if yn also satisfies the assumption of the sign

yn . For example: Let Yn-1 De the initial condition; let R^ and

R2 be the roots of Eq. (17) for yn >0; let R3 and R4 be the roots

of Eq. (17) for yn <0. If

7n-l -Rll - [7n-l - R2l <0 (1*)



then the closest root to y , is B,j if not, then the closest

root is R
2

. If the closest root is less than zero this root is

not valid. The same procedure applies for R3 and R^ where the

closest root to yn-l is selected and if the closest root is

greater than zero the root is invalid. Let the closest valid

root {R^. or R
2 ) to the initial condition yn-1 be AA. Let the

closest valid root (R3 or R4) to the initial condition yn«i be

BB. Then if

|yn-l * AA
I

"
I yn-l - BB|<0 (19)

the closest root is AA. If not, then the closest root is BB.

To avoid square root operations on the computer, Eq. (18)

can be rewritten as follows:

Since
| yn_i - HjJ and |yn_i - R2I are strictly positive,

then if

2 2

|ya-i - Ri - yn-i - R
2| < °

or if

yn-l
2

- 2*1-1*1 + R
l " yn-l

2 + 2yn-lR2 " R
2 <

and so if

R* - R2 + 2yn.1 (R2 - Ri) < 0,

then Ri is the closest root to the initial condition. Likewise

for R3, R^, and AA, BB.

R
f

- R
4

+ 2yn-i<R4 - V < °

AA2 - BB
2 + 2yn-1 (BB - AA) <
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It is possible that the root closest to the initial condition may

not be the correct root. It is for this -reason that analog com-

puter solutions should be used to verify numerical solutions of

the non-linear differential equation.

By using Equations (12), (13)» (14), <xnd (17) and the root

selection process described above, an iteration process can be

set up on a digital computer to solve the Strait servo for a ramp

or step input. Figures 2 and 3 show the program in block diagram

form.

The program was written in IBM FORTRAN language and tested

using IBM 1620 FORGO. The final execution of the program was

made using IBM 1410 FORTRAN. An IBM 1410 computer requires about

two minutes to cover ten seconds of solution time for one set of

parameters.

The computer program for ramp response differs only slightly

from the step response program. The input variable x of Eq. (5)

becomes the iteration

x = 0.0

*n = *h-l + T

n = 0(1)100

By using the iteration for Tn in the step response program, it

is obvious that

xn = ^n

Also the sequence

i n = 0.5T( 0, T, 3T, 5T, ...)
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Tn-1

^n-l

*n-l

n<100

i*

READ

s,b,d,x,T

n n-1

COMPUTE

COMPUTE ROOTS

SELECT CORRECT
ROOT (y )

ROOT SELECTION
ROUTINE

n=100

Pig. 2. Block diagram for the digital computer

program.



1MAG

ALL>0
rsTOP'K

IKAG

X
COMPUTE

SELECT CLOSEST
OP R

5
,R^ TO

->-

yn
= R

5
OR R4

REAL

ALIXO
-<-

CLOSEST ROOT

TO y , IS AA
n-1

COMPUTE

IMAG

SELECT CLOSEST
OP AA,R

5
,R^ TC

y.n-l

,. .tn = AA, R
5

, OR R^

Pig. 5. Block diagram of the root selection routine.

12
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must be generated. This is done in the following manner:

!-T

*n = *n-l + 2T

n = 0(1)100

£n = 0.5TZn

Notice that the value of £ n at n = cannot be obtained from

this iteration. Therefore, the first iteration in the solution

of the Strait servo ramp response must be done separately.

Figure 4 shows additional steps that must be added to the step

response program in order to obtain the ramp response.

Computer time required for a complete set of iterations

covering ten seconds of solution time is about the same as the

step response.

The completed FORTRAN program for the Strait servo step

response and rarap response is shown in the Appendix.
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-=>-

yn-l

Zn-1

READ

a,b,d,2

n n-1

ti n

_L

n n-1

£ n=*
5TZn

COMPUTE

(5ln'(52n

Fig. 4. Program modifications for the ramp

response.
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ANALOG COMPUTER SOLUTION OF THE STRAIT SERVO

The control equation

y = (K/J) (* - y - dPy) (1 + blpyP
y '

. p(p + a')

a' = R/J

is set up on the analog computer using the diagram shown in

Fig. 5. The plant transfer function

M(p) - HA
p(p + a)

is simulated using two amplifiers in order to avoid differ-

entiating to obtain p^y. Access to this term is necessary for

the next investigation which uses fractional integrators. The

gain to inertia ratio K/J is set equal to one in order to keep

the rise time within the limits of the x-y plotter.
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y OUTPUT -*•

10

-py

a/10

O

10

10

.1MEG

-4 x INPUT

10

10

10

Avi

w-

QUARTER
SQUARE

MULTIPLIER

Kh

1MEG
AAAAA-

- 8

Q

TO x FOR STEP INPUT

10

/10

A
+.01 UNIT

-.01
UNIT

TO x FOR RAMP INPUT

*-TIME EASE FOR x-v PLOTTER

Fig. 5. Analog computer circuit diagram.



17

THE PHYSICAL PROTOTYPE STRAIT SERVO

The practical servo, proposed by Strait, does not include

dpy in the error signal prior to multiplication. This servo

subtracts the py tern after multiplication. The control equation

of the physical prototype servo is

y (K/J) U - y)(l + blpyl ) - d'qy
(3)

p(p + a')

The d*py term, when multiplied by K/J, will add to a'py and in-

crease the system damping. In the analog and digital solution of

this equation K/J was set equal to one and the damping term was

a = d* + a'.

The step response of this servo was very good for optimum

values of a and b. The rise time was at least half that of the

linear second order servo. However, the servo was very sensitive

to changes in parameters. Both a and b had to be quite large to

achieve good results. If either a was too small or b was too

large, then overshoot would result. Conversely, if either a was

too large or b was too small, then considerable time was required

to reach zero error. These responses are shown in Figs. 6, 7, S.

Another shortcoming of this system is its non-linear response

to step inputs of different amplitudes. If the system is opti-

mized for a unit step input and a two-unit step input is applied,

the system will overshoot. If a half-unit step input is applied,

the rise time becomes very long. This means that the system

response is different for different step input amplitudes.
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Figure 9 shows the response of the prototype Strait servo to

three different input levels for a given set of parameters. The

reason for a different response for each input level is the

system is represented by a non-linear differential equation.

Further investigation showed that if the system is optimized for

a unit step input, the value of b must be reduced by one-half for

a two-unit step input and increased by a factor of two for a one-

half unit step input. This requires that

b» = b/ x Uo)

Figure 10 shows the effect of the application of Eq. (20) to the

Strait servo. This is further supported by the digital computer

results shotvn in Table 1. Unfortunately, Eq. (20) cannot be

easily realized because for very small values of x, b 1 would have

to be extre. y large.

Table 1. Relation between x and b. d = 0.0, T = 0.10, a = 4.0,

y/x for x = 1
t(sec) : and b 6.4

y/x for x = 2
and b = 3.2

y/x for x = 0.5
and b = 12.

8

0.5 0.17902793 0.17902798

1.0 0.67695884 0.6769588

1.5 0.94844969 0.9484496

2.0 1.C031946 1.0031946

2.5 1.0102353 1.0102353

0.17027982

0.67695884

0.94944968

1.00319466

1.01023538

The ramp response of this system ivas found to be oscilla-

tory. For optimum values of a and b with the step input, the
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ramp response was more like a smoothed staircase. Figure 11

shows the unit ramp response of the prototype Strait servo.

These oscillations indicated that the error signal was oscil-

lating and that a constant velocity error could never be reached.

This shows clearly in the digital computer solution where the

velocity is always changing in magnitude. The unit ramp response

on the analog computer was difficult to obtain because large

velocities overloaded operational amplifiers.

If the gain to inertia ratio K/J is greater than one, then

the rise time becomes shorter and effects of changing parameters

and input levels are minimized. Also, the large time constant of

the x-y recorder will enter in the solution to distort observa-

tions.
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THE IDEAL STRAIT SERVO

The original servo proposed by Strait included in the error

signal a dpy term. This entire error term was multiplied by

(1 + bjpy|). The resulting control equation is

y = (K/J) (x - y - dpy) (1 + bfpyj ) (2)

p(p + a')

For the purpose of analysis using slowly responding measuring

equipment such as the x-y plotter, let K/J =1. In this system

the gain and the damping are both increased during the transient

time. This results in a slightly longer rise time than if the

dpy term were removed from the multiplication operation.

With the dpy term inserted, the system is very stable. This

system is sensitive to changes in the parameter d only. Varia-

tions in parameters a and b do not effect the step response of

this system as much as in the prototype servo. Figure 12 shows

the effect of different values of b on the step response. This

system is also less sensitive to changes in step input voltages.

That is, the rise time for a unit step input and a half unit step

input are nearly the same. Figure 13 shows the response of the

servo to various input amplitudes. The relationship between the

input x and the parameter b is the same as that of the prototype

servo. This relationship is

b» = b/ x (20)

This is proven in Fig. 14 and Table 2.
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Table 2. Relation between x and b. d = 0.45, T 0.10, a = 2.0,

•

t(sec) 1
•

y/x for x = 1
and b - 7.5

y/x for x = 2

and b 3.75

0.5 0.22075316 0.22075316

1.0 0.65590762 0.6559067

1.5 0.37734S33 O.S7734S3

2.0 0.96149644 0.9614964

2.5 0.9911942S 0.9911942

The ramp response of the ideal Strait servo is nearly the

response of a zero velocity error system. The oscillatory be-

havior is noticeable only in the digital computer solution where

the magnitude of velocity oscillations is less than 10~* units.

The ramp response of this servo compared with the prototype servo

and the linear servo is shown in Fig. 11. If good ramp response

is required, then the ideal Strait servo will give better results

than the prototype servo. However, the theoretical servo is more

difficult to construct because the dpy term cannot be easily and

economically multiplied by (1 + b|py|).
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USE OF FRACTIONAL INTEGRATORS AND DIFFERENTIATORS
TO IMPROVE THE STRAIT SERVO RESPONSE

The -\[W operator appears in the solution of RC transmission

lines, heat flow, neutron diffusion in a nuclear reactor core,

and in other physical problems. The ~\fs and "yl/s operators can

be approximated on the analog computer by using the network

designed by Carlson (1). This network is a lattice of resistors

and capacitors whose values are such that RC is one computer unit

of time. Figure 15 shows the computer amplifier connected as a

fractional integrator. Carlson found that cascading five lattice

networka, shown in Fig. 15, gave a good approximation to yl/s.

Since differentiation is to be avoided on the analog computer,

only the ~\Jl/s operator will be used. Digital computer solutions

of differential equations involving -\fs\tere avoided because of

difficulty in obtaining the Z transform of ~\fl/Z. Therefore, the

following investigation relies entirely on analog computer

simulation.

^se of fractional integrations in the Strait servo yields

two new control equations:

y = (../J) (* - y - <*py) (1 + b|pl/2y |) (2l)
p(p + a 1

)

K/J =1 a* = R/J

y = (k/j) (* - y - dpy) (i + b!p3//2yl

)

(22)
p(p + a')

K/J =1 a' = R/J
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RC=lsec

Pig. 15. Fractional integrator v/l/s



33

If d = the form of Eq. (21) and Eq. (22) is similar to the

physical prototype servo. To obtain p ' y, amplifier 6 in Fig. 5

is replaced with a fractional integrator. To obtain p^' y, it is

necessary to first obtain p
2y and then this p

2y is fed into a

fractional integrator to obtain p-^/ 2y. Necessary modifications

to the analog computer circuit to obtain p3/2y are shown in

Fig. 16.

The step response of Eq. (21) with d = is shown in Figs.

17, Id, 19, and 20. The rise time of this servo is slightly

longer than the prototype servo as indicated by Fig. 21. The

servo constructed from control equation (21) had the same prob-

lems as the prototype servo. Changes in parameters greatly

effected the response of the servo using Eq. (21), and high

damping and large values of b were required to obtain good re-

sults. Also the effect of different input amplitudes on the rise

time was the same as for the prototype servo. Figure 22 shows

the effect of the step input amplitude on the rise time.

If a is reduced and d>0, then the response of this servo

is improved. Also the effects of changing parameters are reduced

as shown in Fig. 23. The rise time of the servo where d>0 is

much less effected by the step input voltage than if d = 0. This

characteristic is shown in Fig. 24.

The ramp response of Eq. (21) is shown in Fig. 25. The

response is nearly the same for all combinations of parameters.

Low values of b are used to prevent overloading the operational

amplifiers. Figure 25 also shoxvs that a very small velocity

error can be obtained using the fractional derivative.
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Pig. 16. Modifications to the analog coir-outer circuit
z/2

to obtain p^' y.



35

o o o



36

o "00 vO -3-
• . .o o o O

o



37

to

- cv <v

a

61

C
•H
CO

vO 3

o
>
Jh

CD

CO

P
•H

l/\ •X

FhP
CO

CO

T3 CD

C a
O >.
O p
CD o

-* CO p
o

C ^
•H ex

CD CD

. S j£
•ri -p
tr*

«m
«*N O

-cv

CD

CO

C
O

CO

CD

a,
a>

p
en

•H

o
H

-T
•

. * •

o o o
sq-XOA ui asuodsey

o
T3°
o



33

o o o



39

cv

ft

c
• o

^-1 LA r-i O
cv

^ II II II

- £> a
CD

o -<* o --^^-~-^_"
• • ^^**^^^*^^_ ^^""~*'*~"—-

^__

-* O o ~Z^-^~^_^
>7 ii II ii " ^^ra

*- X3 -a
CO

1 i i i

-n
c

c> CO

>»
a

fcj)

c
•H

vO 05

p

CO

o
>
$-,

<1)

CO

lt\ p
•H
CO

$h

-p
CO CO
-a
c «H
o
o

-4" CD o
CO CO

c
C o
•H ft

CO

<D o
s U
•H
E-« ft

c*\ CD

p
CO

in

o
o o o

T7

o

CD

p

O

G
O
05

•H
J-.

CO

e
oo

CV

•H



-CO

40

cv

o u^N o
• • •

«3- I> o
II II ii

CO XJ •o

—

o

sf\

c
•H
CO

o
>
u
o
CO

p
•H
03

P
GO

— c*\

CD

to a
C P
o o
O P
CD O

-*CQ U

O p
£
•H «H
£i O

CV

CD

CO"

a
o
a,
w
a
J-

a
o
-P
CO

CM
cv

•H

to o -.-

o o o
s^IOA ux ssuodssy



41

to

-* o^

II

II

-a

U"\
O oH

II II II

£> .Q ,£)

O
H

O
•

H
o

*

H
1! :; ii

;-: X X

•

CM

o
•

CM

o
•

CM

II II II

*-

CO CO

•-

CO

H CM 0^

cv

--JD

-i/\

CO

C

ft

C
•H
CO

o
>
u

w

CO

p
CO

o -a
o .H
CO

•H P
CD Ch
£ O
•H
E-< O

CO

O
G,
CO

0)

Si

a
0)

•p
CO

Ox

to
•rl

to

o
• *

o o
s^toa ui asuodsay



42

o
H

to
•

o o
s^xoa ut asuodssy

o



43

-co

cv

to
c
W

vO 3

o
>
Jh

o>

w

p
•H

UN CO

Jh

P
00

O
T5 <D

2 tt
o >»
o P
o O

-J- CO P
o

a fn
•H a.

0) <D

e A
•H p
Eh

CH
C^N o

(0

c
o
A
K>

(1)

k
C\2

a
s
m
a!

•

tf\

CV

so,xoa ut ssuodssy



44

Comparisons of the ramp responses of all servos investigated can

be made by referring to Fig. 26.

The step response of Eq. (22) shows a very short rise time

compared with the other servos. For a given value of a' and with

d the value of b needed to give good response is very criti-

cal. If b is too large, the system will overshoot. If b is too

small, a long time will be required to reach zero error. Fig-

ures 27, 23, 29, and 30 show the unit step response for d = and

for various combinations of a and b. If the system is optimized

for a unit step input and if a step input of less than one unit

amplitude is applied, then the response of the system will be

different and a longer rise time will be encountered. Figure 31

shows the effect of different input levels on the system response.

If d ^ the system response shows greater stability but the

rise time is degraded considerably. For this case no improvement

can be seen over the ideal servo. Figure 32 shows the response

of Eq. (22) for d>0. Because of the difficulty in obtaining

p3/2y
j
including dpy in the error signal prior to multiplying

by 1 + b
|

p^/^yj , and the poor results obtained, Eq. (22) is

not practical. In order to obtain good rise time with this system

a sacrifice is made in stability and range of linear response to

different input levels.

If good ramp response is required, Eq. (22) with d = will

not yield goo^ results because of the instability caused by using

p-v y # Figure 33 shows that the response is very unstable

even for low values of -b. If larger values of b are used, the

analog computer solution becomes difficult because of operational

amplifier overload.
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THE EFFECT OF GAIN ON SERVO RESPONSE

Until now the system gain K and inertia J has been such

that K/J = 1. A slight variation on Eq. (21) demonstrates the

effect of increasing the gain constant K and the effect of de-

creasing the gain during the transient period instead of in-

creasing the gain as is done in the Strait servo. The modified

Eq. (21) becomes

y = (K/J) (x - y - dpy) (Op » bfpVSy ± 0.5l) (23)

p(p + a')

a' = R/J

If the input is positive and p
1/2y>0 (i.e., no overshoot) and

if b
f

p^-/2y + 0.5 1 is used, the gain is increased during the

transient period. The steady state gain is

Ks = 0.5(K/J)(1 + b)

Since b>l and K/J = 1, then K
s is greater than one. This means

that Eq. (23) is the same as Eq. (21) with K/J = 0.5(1 + b).

Because K/J>1, a short rise time will be obtained and errors due

1 1/2 1

to the x-y recorder may enter into the solution. If |p ' y - 0.5|

is used or if p^/^y<0, the gain is decreased during the tran-

sient period. This results in poor response for the system for

both the step and ramp response. Figures 34 and 37 compare re-

sponses of the two variations of Eq. (23). Figure 35 shows the

effect of increasing the gain K on the system behavior. Gain

increase results in a desirable decrease of rise time. Also the
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effects of different input levels on rise time variation is

minimized. Figure 36 shows the step response of Eq. (23) for

different input levels*

The results of this investigation apply to all servos in-

vestigated so far. That is, it does not matter whether py,

p3/2y
j
or pl/2y is used to modulate the error signal.



59

CONCLUSION

Strait (3) has shown that multiplying the error signal of a

second order servo by 1 t b|py| improves the performance of the

system. There are two problems associated with this non-linear

servo. These are: an oscillatory ramp response where a constant

velocity error can never be reached, and a dependence of the rise

time on the input voltage. Further investigation showed that the

optimum value for b is inversely proportional to the magnitude of

the input x, and if this relation could be incorporated into the

Strait servo the rise time would be the same for all values of x.

Investigations using fractional integrators showed that

multiplying the error signal by 1 + blpV^y] results in a servo

with a smaller constant velocity error than the Strait servo. If

the error signal is multiplied by 1 + b|p3/2y| , a shorter step

response rise time is possible than with the Strait servo; how-

ever, the ramp response is more oscillatory than the Strait

servo.

In all non-linear servos investigated in this thesis, inclu-

sion of velocity feedback in the error signal prior to multipli-

cation resulted in a more stable system than if velocity feedback

were not included. Also by including velocity feedback in the

error signal the non-linear effect of the input magnitude on the

rise time was reduced.

Included in this thesis is a numerical solution of the Strait

servo which was executed on a digital computer. The method of

discretization used was trapezoidal convolution.
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APPENDIX

C STRAIT SERVO STEP RESPONSE
C U=STEP INPUT AMPLITUDE

DIMENSION Y< 1GO) *DY< 100) ,X{ 100)
S F0RMAT(4F4.2»F2.2)

7 9 FORMAT! 1HL t 15X tF5 . 2 » 5X.F5. 2 »5X.F5.2»5X .F5.2 »5X»F3.2

1

9 2 FORMAT < 1H'<,15X,4HTIMF,9X,8HP0SITI0N,12X,8HVEL0CITY)
8 9 FORMAT ( 1H/»15X»F5.2»5X»E15.8»5X»E15.8)
5 5 FORMAT ( 1H/»15X»6HT I LT 5)
66 F0RMAT(1H/*15X.7HTILT 81)
5 9 RE4D(1,8)A»B»D»U*T

IF(o)58,58,57
5 7 WRITE(3»79)At6t0tU»T

Q=..5*T*B* (D+. 5*T)
51 R=1.+.5*T*(A+D)+.25*T**2

Y( 1 )=0.0
DY{ 1 >=0.G
WRI TF(3,92 )

X( 1 )=0.0
5 2 DO 40 1=2,100

X(

I

)=Xi 1-1 )+T
D]=Y( 1-1 )+.5*T*DY< 1-1

)

IF(DY( 1-1) )54,53,53
5 3 DPOS=l.-.b*T*( A+D+B*Y( I -1 ) -ti*U + o*J*DY ( 1-1 ) )

D2=T*U-.5*T*Y ( I-l )+DPGS*DY ( 1-1

)

GO TO 56
54 DNE6=1«-,5*T*( A+D-B*Y( I-l ) +B*U-B*D*DY( I-l)

)

D2=T*U-.5*T*Y( I-l )+DNEG*DY ( I-l )

5 6 A 1=0
61=R+.5*T*P#D1-.5*T*8*U
Cl*.5*T*Dl-D2
A2=-Q
B2=R-»5*T*B*01+,5*T*B*U
C2 = C1
IF (B 1**2-4. *A1*C1 ) 3,2 ,2

2 SQ=SQRT ( B1**2-4,*A1*C1

)

Rl= (-B1+SQ)/ (2«*A1)
R2=(-Bl-SQ)/( 2.*A1

)

I F ( R 1 ) 9 1 , 1 , 1

°1 IF(R?)3»1»]
1 IF(R1**2-R2**2+2.*Y( I-l )*( R2-R1 ) ) 22 » 33 » 33

22 AA=R]
GC TO 7

3 3 AA=R?
GO TO 7

3 IF(B2**2-4.*A2*C2)5»4»4
4 SR=SGRT ( B2**2-4.*A2*C2

)

R3= (-o2+SR )/( 2.*A2

)

R4= (-B2-SR ) / ( 2.*A2

)

IF(R3)34,34,35
35 IF(R4)34,34,81
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34
6

9

36

7

10

69
41
12

R3
I )

TC
I )

)
=

TE
TC
B?
SQ
(-

(-

R3
R4
R3
R3
TC
R4
AA
I )

GC TC

IF(

DY(
GC
DY(
Y( I

W R I

GC
IF<
SP =

R3 =

R4 =

IF(
IF(

IF(

bB =

GC
13 BB =

75 IF(

14 DYI

**2-R4**2+2.*Y ( 1-1 )*( R4-R3 ) ) 6 >9»9
= R3
36

= R4
D1+»5*T*DY( I

)

(3,89)X( I ) ,Y( I ) ,DY( I

)

it

**2-4.*A2*C2 ) 16 »1 n »K'
RT ( B2**2-4.*A?*C2 )

,

B2+SR)/(2.*A2

)

B2-SR)/( 2.*A2)
)41 ,41 ,69
)41,41,16
**2-R4**2+2.*Y( 1-1 )*(R4-R3) ) 12,13,13

75

**2-BB**2+2«*Y< I-l)*{ BB-AA ) ) 14»15» 15
= AA

77
15 DY( I )=BB
77 Y( I )=D1+.5*T*DY( I

)

WRITE(3»89)X< I ) , Y ( I ) , DY ( I )

GC TC 40
16 DY(

I

)=AA
Y( I }=D1+.5*T*DY( I

)

WRI TE(3,89)X{ I ) ,Y( I ) ,DY( I

)

GC TC 40
5 WRITE (3*55)

GC TC 4C

81 WRITE (3, 66)
40 CONTINUE

GC TC 59
58 STCP

END
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STRAIT .SERVO RAMP RFSPCNSF
DIMENSION Y( 100 J »DY ( 100 J »ZTA ( 100 ) »X( 100

)

8 F0RMAT(3F4.2»F2.2)
7 9 FCRMAT(1HL»15X»F5.2»5X,F5.2»5X»F5.2»5X»F3.2)
9 2 FORMAT ( 1HK ,15X»4HT IME»9X»8HPCSI TI0N»12X»8HVELCCITY

J

8 9 FORMAT ( lH/,15X,F5.2,5X,E15.o,5X,E15.8)
5 5 FORMAT( 1H/»15X*6HTILT 5)
66 FORMAT ( 1H/,15X»7HTILT 81)
59 READ(1»8)A»B,D*T

IF(ii)56,58,57
5 7 WRITE(3»79)A*B»D»T

Q=.5*T*B*(D+.5*T)
51 R=1«+.5*T*(A+D)+.25*T**2

Y( 1 )=0.0
DY( 1 )=0.0
WRITF(3»92 )

A0=0
B0=R-«5*B*T**2
C0=-.5*T**2
DY(2 ) = {-BO+SQRT(BG**2-4-«*A0*O0 ) ) / ( 2.*AG)
Y(2 >=.5*T*DY(2

)

WRITE (3,89) T.Y(2) »DY(2)
X( 1 )=0.0
X(2 )=T
ZTA(

1

)=C,0
ZTA(2)=T
DC 40 1=3,100
X( I )=X( 1-1 )+T
ZTA( I )=ZTA{ 1-1 )+2.*T
Z=.5*l*ZTAl I

)

D1=Y( 1-1 )+.5*T*DY< 1-1

)

IF(DY(!-1))54,5 3»53
5 3 DP0S=1.-.5*T*(A+D+B*Y( I-1)-B*X{ I )+ti*D*DY< !•

D2=Z-.5*T*Y{ 1-1 )+[)PCS*DY( 1-1

)

GO PC 5 6

•1 )

)

54 ONE
D2 =

56 AT =

(31 =

Cl =

A? =

b2 =

C2 =

IF(
2 SQ =

Rl =

P2 =

IF(
01 IF(

1 IF(

22 AA =

G = ] .-.5*T*(A+D-B*Y( 1-1 )+B*X( I >-B*D*DY( 1-1 )

)

Z-.5*T*Y{ 1-1 )+DNEG*DY( I-I

)

R+.5*T*B*D1-«5*T*B*X ( I

)

•5*T*D1-D2
-Q

R-.5*T*B*D1+.5*T*B*X ( I

)

CI
B1**2-4.*A1*C1 ) 3,2 ,2
SORT ( dl**2-4,*Al*Cl

)

(-Bl+SQ)/( 2.*A1

)

(-r-I-SO)/( 2.*A1)
Rl ) 91 , 1 ,1

R?)3,l,l
R 1**2-R 2**2+2 «*Y{ I-1)*(R?-Ri)) 22,33,33
Rl
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33

3

4

35
34
6

9

36

7-

10

69
41
1?

13
75
14

15
77

GO TO 7

AA = R?
60 TC 7

I F{ 62**2-4. *A2*C2 ) 5,4,4
SR=SQRT(B2**2~4.*A2*C2 )

R3=(-B2+SR )/(2.*A2

)

R4=<-B2-SR)/ (2.*A2

)

IF(R3 134,34,35
IF( R4) 34 ,34,81
IF(R3**2-R4**2+2.*Y( 1-1 )*{R4-R3) )6,9,9
DY( I )=R3
GO TC 36
DY( I )=R4
Y( I )=D1+.5*T*DY( I

)

WRITE(3,89)X( I ) ,Y( I ) ,DY( I

)

GO TC 40
IF(B2**2-4.*A2*C2) 16,1 CIO
SR=SQRT ( 62**2-4. *A2*C2

)

R3» (-B2+SR)/ (2.*A2)
R4 = (-32-SR)/( 2.*A2)
IF(R3)41,41,69
IF(R4)41,41 ,16
IF(R3**2-R4**2+2.*Y( 1-1 )*(R4-R3 )) 12,13,13
B8=R3
GC TC 75
BB = R4
IF<AA**2-BB**2+2.*Y( 1-1 )*( BB-AA ) ) 14,15,15
DY( I )=AA
GC TC 77
DY( I )=BB
Y( I )=D1+.5*T*DY( I

)

WRITE (3,89 )X( I ) ,Y( I ) ,DY( I

)

GC TC 40
16 DY(

I

)=AA
Y( I )=D1+.5*T*DY< I

)

WRITE(3,89)X( I ) ,Y( I ) ,DY( I

)

GC TC 40
5 WRITE (3, 55)

GC TC 40
81 WRITE (3, 66)
40 CONTINUE

GC TC 59
58 STOP

END
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The ideal Strait servo has a control equation

y = M(p)(x - y - dpy)(l + b|py]

)

Because of difficulties in physically realizing this servo, the

control equation is modified so that

y = M(p) (x - y)(l + b
| py | ) - dpy

Equation (2) is the prototype Strait servo. In either case a

servo with performance superior to that of the linear servo

results.

Investigation of the ramp and step responses of the Strait

servo shows that the ramp response is oscillatory and that the

rise time is non-linear with respect to input magnitude. It has

been shown that the value of b must be inversely proportional to

the input x in order to obtain the same rise time for all input

magnitudes. Further improvement on Strait servo performance is

obtained by using Ip-^yl instead of |py| . This results in an

almost zero velocity error servo with only a slightly longer

rise time than the Strait servo.

This investigation shows that if the Strait servo is to

operate only within a small range of step input voltages, then

the prototype Strait servo will yield good results. If a wide

range of step inputs is expected or if a ramp input is expected,

then it may be necessary to use the fractional derivative p ' y

or to use the ideal Strait servo or both.

The ideal and prototype Strait servos were simulated on

digital and analog computers. Servo inputs are step inputs of



various magnitudes and the unit ramp input. The effects of

varying parameters on the servo response for each input were

observed.


