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Abstract 

Risky decisions are inherently characterized by the potential to receive gains and losses 

from these choices, and gains and losses have distinct effects on global risky choice behavior and 

the likelihoods of making risky choices depending on the outcome of the previous choice.  One 

translationally-relevant phenomenon of risky choice is loss-chasing, in which individuals make 

risky choices following losses.  However, the mechanisms of loss-chasing are poorly understood.  

The goal of two experiments was to illuminate the mechanisms governing individual differences 

in loss-chasing and risky choice behaviors.  In two experiments, rats chose between a certain 

outcome that always delivered reward and a risky outcome that probabilistically delivered 

reward.  In Experiment 1, loss processing and loss-chasing behavior were assessed in the context 

of losses-disguised-as-wins (LDWs), or loss outcomes presented along with gain-related stimuli.  

The rats presented with LDWs were riskier and less sensitive to differential losses.  In 

Experiment 2, these behaviors were assessed relative to the number of risky losses that could be 

experienced.  Here, the addition of reward omission or a small non-zero loss to the possible risky 

outcomes elicited substantial individual differences in risky choice, with some rats increasing, 

decreasing, or maintaining their previous risky choice preferences.  Several reinforcement 

learning (RL) models were fit to individual rats’ data to elucidate the possible psychological 

mechanisms that best accounted for individual differences in risky choice and loss-chasing 

behaviors.  The RL analyses indicated that the critical predictors of risky choice and loss-chasing 

behavior were the different rates that individuals updated value estimates with newly 

experienced gains and losses.  Thus, learning deficits may predict individual differences in 

maladaptive risky decision making.  Accordingly, targeted interventions to alleviate learning 

deficits may ultimately increase the likelihood of making more optimal and informed choices.  
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Chapter 1 - Introduction 

 Gains and Losses 

A decision-maker will often face the choice between a guaranteed safer outcome (e.g., 

saving one’s money) and a larger yet riskier payoff (e.g., gambling).  In daily life, commuters 

have the option of taking the same roads to work or perusing an alternative route that may result 

in either an early workplace arrival or a tardiness-inducing traffic jam.  Those given to addiction 

must weigh abstinence against the decision to risk their long-term health in order to achieve the 

temporary benefit of substance-induced euphoria.  Accordingly, risky decision making has 

become a critical research topic in psychological science, neuroeconomics, behavioral ecology, 

and judgment and decision making (Doya, 2008; Heilbronner & Hayden, 2013; Levin et al., 

2012; Madden, Ewan, & Lagorio, 2007; Mazur, 2004; Myerson, Green, Hanson, Holt, & Estle, 

2003; H. Peters, Hunt, & Harper, 2010; Platt & Huettel, 2008; Potenza, 2009; Rushworth & 

Behrens, 2008; Weatherly & Derenne, 2007; Weber, Shafir, & Blais, 2004; Winstanley, 2011).  

Traditional analyses of risky decision making have employed tasks that involve a tradeoff 

between reward certainty and reward magnitude (e.g., Rachlin, Raineri, & Cross, 1991).  A 

person may be offered a choice between a guaranteed $10 and a 50% chance of receiving $40, 

whereas a rat may be offered a choice between a guaranteed one food pellet and a 50% chance of 

receiving four food pellets.  Theoretically, individuals of all species should learn to optimize the 

tradeoff between reward magnitude and reward certainty, ultimately maximizing the amount of 

reward received.  However, individuals tend to behave suboptimally in many choice paradigms 

(e.g., Marshall & Kirkpatrick, 2015; Stagner & Zentall, 2010; Zentall & Stagner, 2010).  Indeed, 

individual differences in risky-choice behavior are related to gambling (Holt, Green, & Myerson, 

2003), cigarette smoking (Reynolds, Richards, Horn, & Karraker, 2004), and percent body fat 
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(Rasmussen, Lawyer, & Reilly, 2010).  As too much or too little risky-choice behavior can 

inhibit reward maximization, these individuals may exhibit relative deficits in the ability to 

weigh reward magnitude against reward certainty.  Accordingly, the prevalence of risky (and 

often maladaptive) behaviors (Compton, Thomas, Stinson, & Grant, 2007; Lorains, Cowlishaw, 

& Thomas, 2011; Shaffer, Hall, & Vander Bilt, 1999; Shaffer & Korn, 2002) has encouraged 

research aimed at identifying the psychological and neurobiological mechanisms of individual 

differences in risky choice (e.g., Potenza, 2009). 

An inherent component of decision making in risky environments is the potential to 

receive both gains and losses from the corresponding decisions.  Theoretically, outcomes are 

characterized as gains and losses relative to an internal expectancy criterion known as a reference 

point (Kahneman & Tversky, 1979; Wang & Johnson, 2012).  Losses refer to outcomes of a 

smaller magnitude relative to the amount that was expected (i.e., the reference point), thereby 

producing a negatively-signed deviation between the outcome that was expected and the one 

received (i.e., a prediction error).  Alternatively, gains reflect outcomes of a larger magnitude 

than the expected amount, producing a positively-signed prediction error.  Prediction error 

mechanisms, primarily localized to the brain’s midbrain dopamine system (e.g., Schultz, Dayan, 

& Montague, 1997), have been assumed to reflect a teaching signal for learning the value of a 

particular action (see Hollerman & Schultz, 1998), thereby resulting in adjustments in 

subsequent behavior to optimize the tradeoff between energy intake and energy expenditure (i.e., 

maximizing gains while minimizing losses).  Assuming that gains and losses are encoded relative 

to a subjective reference point, loss-induced negatively-signed prediction errors result in 

reductions in the subjective value attributed to the corresponding action (i.e., the choice).  This 

decrement in value relative to the values of alternative choices in the environment is assumed to 
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reduce the likelihood of repeating the previous behavior (i.e., lose-shift), while gain-induced 

positively-signed prediction errors, which increase the choice’s value, are assumed to increase 

the likelihood of repeating the same behavior (i.e., win-stay).  Indeed, previous risky losses tend 

to discourage subsequent risky-choice behavior while previous risky gains encourage subsequent 

risky choice in both humans and non-human animals (Evenden & Robbins, 1984; Larkin, Jenni, 

& Floresco, 2016; Marshall & Kirkpatrick, 2013, 2015; Stopper & Floresco, 2011; Thaler & 

Johnson, 1990; also see Brevers et al., 2015).  Accordingly, win-stay/lose-shift behavior has 

become well-encompassed within multiple theories of learning and valuation that incorporate 

prediction error mechanisms (e.g., Bush & Mosteller, 1951; Glimcher, 2011; Rescorla & 

Wagner, 1972; Sutton & Barto, 1998). 

While win-stay/lose-shift behavior may be assumed to be a theoretically optimal strategy 

in ecologically valid environments (see Wilke & Barrett, 2009), some individuals exhibit the 

potentially suboptimal tendency to chase losses with increasingly risky behaviors, possibly to 

compensate for a previous loss or accumulation of losses (i.e., lose-stay; see Linnet, Røjskjær, 

Nygaard, & Maher, 2006).  For example, after an individual loses a wager on a horse race, s/he 

may be more likely to bet larger amounts on subsequent races to make up for the previous loss 

(see McGlothlin, 1956).  Additionally, after losses, individuals tend to wager significantly more 

than they had originally planned, while actual versus planned wagering does not considerably 

differ after gains (Andrade & Iyer, 2009).  Indeed, “loss-chasing” behavior is a key characteristic 

of pathological gambling (e.g., Breen & Zuckerman, 1999; Lesieur, 1979).  As losses have been 

suggested to drive risky decisions more than gains do (see Anselme, 2013; Anselme & Robinson, 

2013) and as both human and non-human animals have been suggested to be more sensitive to 

losses than to gains (Kahneman & Tversky, 1979; Marshall & Kirkpatrick, 2015), one key factor 
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that may dictate individual differences in loss-chasing and risky choice behaviors is the 

subjective sensitivity to losses relative to gains.  Individuals who are relatively more sensitive to 

differential losses may exhibit less loss-chasing behavior compared to individuals who are less 

sensitive.  Indeed, more severe gamblers exhibit greater sensitivity to gains versus losses 

(Brevers, Koritzky, Bechara, & Noël, 2014).  Also, individuals with other behavioral addictions 

(i.e., internet addiction disorder) exhibit a reduced sensitivity to losses compared to control 

subjects (Dong, Hu, & Lin, 2013), and severe gamblers are not as sensitive to differential losses 

as less severe gamblers (see Kreussel et al., 2013).  Thus, as pathological gamblers (PGs), 

relative to normal subjects, engage in several maladaptive behaviors that produce a lower quality 

of life (Black, Shaw, McCormick, & Allen, 2013), further elucidation of loss-chasing 

mechanisms and the differential processing of gains versus losses will permit greater 

understanding of the mechanisms that drive some individuals to continue making risky choices 

despite the experience of repeated adverse consequences (see Rachlin, 1990). 

 All Gains and Losses are Not Created Equally 

Behavior in response to gains and losses provides critical insight into the mechanisms 

governing individual differences in risky choice and loss-chasing behaviors.  However, the 

dichotomization of outcomes into either gains or losses fails to capture the continuum of 

behavioral responses to differential gains and losses.  Several analyses in the gambling literature 

have investigated the impact of risky outcomes that, while objectively dichotomized as losses, 

may be more ambiguous in terms of their effects on behavior.  For example, a loss-disguised-as-

a-win (LDW) is an outcome that is less than the amount wagered but delivered with the same 

positive-feedback stimuli as a win (e.g., wagering five dollars and the subsequent three-dollar 

return is accompanied by sensory stimuli that also accompany the returns that exceed the amount 
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wagered, otherwise known as wins).  When exposed to wins, losses, and LDWs, individuals’ 

heart-rate changes were more similar after losses and LDWs while individuals’ skin-conductance 

responses were more similar after wins and LDWs (M. J. Dixon, Harrigan, Sandhu, Collins, & 

Fugelsang, 2010), reflecting a complex physiological response to LDWs (i.e., small losses).  

Thus, the analysis of LDWs is critical, as such outcomes make up a considerable proportion of 

the possible outcomes of a gamble (M. J. Dixon et al., 2010), and could be subjectively encoded 

as gains or losses depending on the individual’s reference point (see Linnet et al., 2006).  For 

example, one possible reference point is the individual’s wager (e.g., winning more than $5 from 

a $5 bet equates to a gain).  However, that same individual may be relatively insensitive to the 

wagered amount or have a poor memory for the wagered amount, such that this amount is 

essentially an ineffective reference point.  Furthermore, the ultimate receipt/outcome from the 

wager may be more salient than the wagered amount, thus discouraging the use of the wagered 

amount as the reference point.  Accordingly, such subjective deficits may elicit use of differential 

reference points (e.g., current holdings before versus after the wager), which may then alter 

subsequent decision making by changing how the wagered outcome is encoded (i.e., gain or 

loss). 

Collectively, these results suggest that individuals with heightened risk-taking tendencies 

may exhibit impairments in loss processing mechanisms (see Worhunsky, Malison, Rogers, & 

Potenza, 2014).  Indeed, given the prevalence of losses in gambling environments, greater risk-

taking in PGs may be driven by loss processing deficits.  Indeed, losses involve more than the 

actual loss of money (e.g., wagering five dollars and losing all of it), but also the total net deficit 

(e.g., wagering five dollars and receiving four dollars in return; LDWs).  Potential impairments 

in loss processing (i.e., deficits in processing loss magnitude) relative to gain processing may 
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explain individual differences in response to more ambiguous outcomes (e.g., LDWs).  While 

reward omission following a gamble may be viewed as aversive and punishing, these outcomes 

do not effectively inhibit gambling behavior (see Horsley, Osborne, Norman, & Wells, 2012), 

possibly due to the absence of tangible feedback in reward omission.  Accordingly, the analysis 

of behavior in response to losses of differential magnitudes, rather than only following reward 

omission (Rogers, Wong, McKinnon, & Winstanley, 2013; Tremblay et al., 2014), may provide 

the best insight into the core mechanisms dictating individual motivations to persist in making 

risky decisions despite the experience of negative consequences.  Furthermore, while research 

has analyzed various pharmacological effects on loss-chasing in non-human animals (Rogers et 

al., 2013), our understanding of the core psychological processes governing individual 

differences in differential loss-chasing in non-human animals remains in its infancy.  Further 

elucidation of loss-chasing mechanisms and the neurobiology of loss-chasing and reward 

processing would considerably solidify the future development of neurocognitive and/or 

pharmacological interventions aimed at alleviating subjective deficits in such behavior. 

 Mechanisms of Loss-Chasing 

 Previous reports have considered potential correlates of loss-chasing behavior.  Breen and 

Zuckerman (1999) reported that loss-chasers were significantly more impulsive, based on self-

reports of impulsivity.  Indeed, both impulsivity and risk-taking are associated with individual 

differences in reward processing mechanisms (e.g., Kirkpatrick, Marshall, & Smith, 2015).  

Campbell-Meiklejohn, Woolrich, Passingham, and Rogers (2008) showed that loss-chasing 

decisions were associated with elevated activity in the ventromedial prefrontal cortex, which has 

been implicated in processing reward value (e.g., J. Peters & Büchel, 2010).  It has also been 

suggested that deficits in the mesolimbic dopamine pathway may result in heightened loss-
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chasing behavior (Campbell-Meiklejohn et al., 2008).  Campbell-Meiklejohn et al. (2012) 

reported that while gambling behavior was reduced with increasing stakes of the gamble (i.e., the 

amount potentially won or lost), participants who were administered methylphenidate did not 

show the corresponding decrease in gambling with increasing stakes, suggesting that increasing 

dopamine levels via methylphenidate administration resulted in elevated risk-taking behavior.  

Indeed, administration of a dopamine D2 receptor antagonist reduced loss-chasing in rats (Rogers 

et al., 2013).  Given the well-established relationship between dopaminergic function and reward 

processing (e.g., Schultz, 2007; Schultz et al., 1997), the dopaminergic involvement in loss-

chasing behavior suggests that individual differences in loss-chasing and risky decision making 

may be primarily driven by individual differences in reward processing/valuation mechanisms. 

 The concepts related to and the definitions of “value” are complex and multifaceted 

(O'Doherty, 2014; J. Peters & Büchel, 2010), but reward value in the present context is regarded 

as the value attributed to a choice as determined by repeated experiences with the corresponding 

outcomes (i.e., prediction of future reward expectation; Sutton & Barto, 1998).  Accordingly, 

reward value is dynamic, subject to learning, environmental changes, and time since the 

corresponding outcomes were experienced (e.g., Bayer & Glimcher, 2005; Devenport, Hill, 

Wilson, & Ogden, 1997; Dunlap & Stephens, 2012; Sutton & Barto, 1998).  For example, to a 

naïve foraging animal, the absence of experience with a foraging patch may theoretically predict 

that the patch has no subjective value.  Subsequent exposures (and lack thereof) to food items in 

the patch cause adjustments in patch value.  Reward presentation that exceeds expectations 

elicits a positively-signed prediction error, theoretically increasing the subjective value of the 

patch, while smaller amounts of food contrary to expectation elicit negatively-signed prediction 

errors that decrease subjective patch value.  
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Given two different foraging animals with identical experiences with the same foraging 

patch, one assumption is that these animals will attribute identical values to this patch.  However, 

as prediction errors serve as teaching signals to update expectations (e.g., Hollerman & Schultz, 

1998), an addendum to this assumption is that these animals will only attribute identical values to 

this patch if they learn about this patch and update their expected patch values identically; value 

estimates will be the same if the animals learn about the patches in the same way.  This implies 

that individuals with discrepant rates of value-updating/learning will value the patch differently 

despite identical experiences with the same patch.  Accordingly, the choice between two patches 

(or the choice between a certain and a risky choice) would therefore depend on how often and 

how much the value of a patch/choice is updated as a function of experience.  Indeed, previous 

research has described how individual differences in risky choice behavior may be accounted for 

by those in learning rates (March, 1996; Marshall & Kirkpatrick, 2013).  Given the necessity of 

learning rate to valuation computations and choice behavior (e.g., Glimcher, 2011; Sutton & 

Barto, 1998), as well as the aforementioned hypothesis that loss-chasing may reflect subjective 

deficits in processing reward value, individual differences in loss-chasing behavior may in fact 

be driven by individual differences in value updating (i.e., learning the value of a choice). 

 The proposed mechanism by which a choice’s value is learned given repeated outcomes 

of the choice is dependent on the theory of learning/valuation.  Several theories employ a linear-

operator mechanism to update expectation (e.g., Bush & Mosteller, 1951), such that updated 

estimates of subjective value are a function of the previous value estimates and the prediction 

error between the previous estimate and the most recent outcome delivered for having made the 

choice corresponding to that estimate.  Prediction error is traditionally scaled by a learning-rate 

parameter (e.g., α), in which steeper learning (i.e., larger values of α up to 1) reflects more rapid 
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adjustments in value.  Assuming that α can be treated as a free parameter (e.g., Barraclough, 

Conroy, & Lee, 2004), an individual’s learning rate can be estimated by fitting the linear-

operator model to individual subject data.  Indeed, faster learning rates (i.e., larger α values) 

have been suggested to reflect less overall risk-taking (see March, 1996; Marshall & Kirkpatrick, 

2013), suggesting that individuals prone to loss-chasing may not update value given the previous 

outcome as readily as individuals who learn from the environment more quickly. 

A learning-rate hypothesis of loss-chasing behavior is intriguing, as the derivation of an 

individual’s learning rate could predict one’s corresponding propensity to engage in suboptimal 

and maladaptive behaviors (i.e., pathological gambling via heightened loss-chasing).  Individuals 

who fail to readily incorporate a negatively-signed prediction error (i.e., a loss) into their 

subjective computations of value may continue making risky choices as the corresponding 

estimation of value has not considerably decreased (see Clark, Liu, et al., 2013).  Consecutive 

risky losses may do little to discourage an individual in making further risky decisions (cf., 

Rachlin, 1990).  However, assuming a constant learning rate regardless of the sign of the 

prediction error, this would also suggest that large gains would not be readily incorporated into 

subjective estimations of value, so that the value of the choice would not increase to the extent 

that would reasonably produce subsequent risky choices (i.e., win-stay behavior).  In contrast to 

the latter, previous research has suggested that larger rewards exert a considerable influence over 

risky choice behavior (Hayden, Heilbronner, Nair, & Platt, 2008; Hayden & Platt, 2007; but see 

Marshall & Kirkpatrick, 2015).  If individual differences in learning can account for individual 

differences in loss-chasing, then this may not be achievable assuming identical gain- and loss-

based learning rates.   
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While the linear-operator mechanism described above has served as a critical component 

of various models of classical conditioning, machine learning, interval timing, and decision 

making (e.g., Bush & Mosteller, 1951; Glimcher, 2011; Guilhardi, Yi, & Church, 2007; 

Kirkpatrick, 2002; Rescorla & Wagner, 1972; Sutton & Barto, 1998), subsequent adjustments to 

the model have been employed to better understand the corresponding mechanisms of such 

phenomena.  For example, recent research has suggested that prediction error encoding of losses 

may be distinct from gains (see Barraclough et al., 2004; Bayer & Glimcher, 2005; Frank, 

Moustafa, Haughey, Curran, & Hutchison, 2007; Niv, Edlund, Dayan, & O'Doherty, 2012).  

Individuals who gamble despite gains and losses may exhibit asymmetric learning rates from 

these outcomes.  Loss-chasers may rapidly incorporate gains via positively-signed prediction 

errors into their expected values of gambling outcomes, producing substantial increases in 

expected value.  However, these same individuals may less readily incorporate losses via 

negatively-signed prediction errors, such that the corresponding expected values do not reliably 

decrease, leading to repeated choices with the same risky outcome despite previous losses (see 

Clark, Liu, et al., 2013).  Indeed, in accordance with prediction error encoding in midbrain 

dopamine neurons (Schultz et al., 1997), elevated or reduced dopaminergic activity induced by 

the administration or depletion of dopamine precursors (i.e., levodopa, tyrosine, and 

phenylalanine) may separately impact appetitive/gain- and aversive/loss-based learning rates, 

respectively (see Pessiglione, Seymour, Flandin, Dolan, & Frith, 2006; Robinson, Standing, 

DeVito, Cools, & Sahakian, 2010).  Bayer and Glimcher (2005) suggested that the proposed 

neurobiological correlates of prediction error (i.e., the midbrain dopamine system) may be more 

attuned to encoding positively- than negatively-signed prediction error.  Indeed, PGs show 

greater increases in dopaminergic activity following losses than control participants (Linnet, 
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Peterson, Doudet, Gjedde, & Møller, 2010).  Alternatively, relative to positively-signed 

prediction errors, negatively-signed prediction errors may be processed by distinct brain regions 

(see, e.g., Hong, Jhou, Smith, Saleem, & Hikosaka, 2011; Matsumoto & Hikosaka, 2007) or 

moderated by different neurotransmitters (see den Ouden et al., 2013).  Thus, one critical 

determinant of enhanced risk-taking via loss-chasing may involve asymmetric gain- and loss-

based learning rates, such that individuals who are more likely to chase losses are those that 

exhibit greater adjustments in subjective value following gains than following losses. 

Alternatively, loss-chasers may exhibit such behavior given differences in multiple other 

mechanisms.  For example, loss-chasers may indeed incorporate losses, or a series of losses, into 

valuation computations, but only after receipt of a gain.  This hypothesis is reminiscent of the 

string theory of gambling (Rachlin, 1990; Rachlin, Safin, Arfer, & Yen, 2015), such that 

gambling sequences are bounded by gains and that the value of the string is only computed after 

a gain is received.  This explanation would suggest that individuals treat gain-to-gain cycles as 

individual gambling episodes, and that previous losses are less readily integrated into estimates 

of value given the diminished recency of the loss.  Here, only the string (gain-to-gain cycle), not 

the individual gamble, has value.  Interestingly, loss-chasing is a direct prediction of string 

theory, as riskier choices with higher potential payoffs provide a greater likelihood of increasing 

the value of the string following consecutive losses (Rachlin, 1990; Rachlin et al., 2015).   

An additional hypothesis is that loss-chasers may be more attentive to gains relative to 

losses; indeed, severe gamblers exhibit greater sensitivity to gains than they do to losses (Brevers 

et al., 2014).  Furthermore, loss-chasers may exhibit differential memories for previous gains and 

losses; that is, loss-chasers may continue to make risky choices as their memories for gains 

surpasses those for losses.  Indeed, stronger memories for extreme gains is correlated with 
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greater likelihoods to make risky decisions (Madan, Ludvig, & Spetch, 2014).  Alternatively, 

loss-chasers may have a different reference point dichotomizing outcomes as gains and losses 

relative to non-loss-chasers (see Linnet et al., 2006).  Thus, loss-chasing may be explained by 

individual differences in a multitude of mechanisms.  Given the prevalence of maladaptive risk-

taking behaviors that inherently involve potential gains and losses (e.g., substance abuse, 

pathological gambling, risky sexual behaviors, etc.), greater understanding of the relationship 

between loss-chasing and the mechanisms by which individuals incorporate losses and gains into 

estimates of value has critical implications for understanding subjective tendencies to persist in 

making risky choices despite the experience of negative consequences. 

  



13 

Chapter 2 - Experiment 1 

 By necessity, reward omission counters previous expectation, as reward can only be 

omitted when reward is expected.  In these situations, reward omission is, by default, a loss.  In 

accordance with reinforcement learning (RL), it is expected that estimates of value continue to 

decrease with more instances of reward omission, so that the corresponding action (i.e., choice) 

is less regularly exhibited in the future.  However, while reward omission may eventually reduce 

risk-taking behaviors, repeated occurrences of reward omission may not effectively and 

efficiently do so (see Horsley et al., 2012).  For example, probabilistic (i.e., partial) 

reinforcement discourages the cessation of the corresponding behavior when reward is no longer 

delivered (Domjan, 2010), ultimately producing problematic and maladaptive risky decision-

making behaviors (e.g., slot-machine gambling, which operates via random-ratio schedules of 

reinforcement; see Crossman, 1983; Madden et al., 2007). 

 One possible explanation for the ineffectiveness of reward omission relates to both the 

nature of the corresponding feedback given the behavior that resulted in reward omission, as well 

as the structure of the environment.  When a risky choice probabilistically results in 0 or 11 

pellets, the delivery of either outcome provides information regarding both reward rate and the 

frequencies of each outcome.  For example, if one of ten risky choices results in 11 pellets, then 

p(0) = .90 and p(11) = .10.  Accordingly, p(0) and p(11) are anti-correlated; new information 

suggesting that p(0) has increased may automatically imply that p(11) has decreased, even 

though the trial-by-trial outcomes are typically independent.  Win-stay/lose-shift behavior would 

be predicted by an individual’s sensitivity to such an environment; reward omission would 

theoretically discourage staying behavior given the possibility that reward rate has decreased 
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while reward presentation would promote staying behavior given the possibility that reward rate 

has increased.   

While win-stay/lose-shift behavior is mostly observed in risky choice paradigms in which 

the probabilities of reward omission and a larger reward are anti-correlated, many experiments 

have shown that individuals will continue to make risky choices following reward omission, such 

that a loss does not completely “shift” behavior but only decreases the rate of “stay” behavior 

(e.g., Larkin et al., 2016; Marshall & Kirkpatrick, 2013, 2015; St. Onge, Stopper, Zahm, & 

Floresco, 2012; Stopper & Floresco, 2011; Stopper, Khayambashi, & Floresco, 2013).  That is, a 

loss is also followed by subsequent responding for the operandum that resulted in reward 

omission.  Interestingly, in a non-choice context, Kello (1972) showed that reward omission 

coupled with other stimuli typically presented with reward (e.g., houselight offset) systematically 

reduced the post-omission elevations in behavior with each added stimulus (also see Mellon, 

Leak, Fairhurst, & Gibbon, 1995).  Ultimately, in experimental contexts with anti-correlated 

probabilities of a larger reward and reward omission, the effects of reward omission on 

subsequent behavior may partially depend on the reception of explicit feedback from the 

corresponding decision.   

 This effect of anti-correlated reward probabilities may not hold when the probabilities of 

reward omission and a larger reward are correlated.  Marshall and Kirkpatrick (2015) presented 

rats with the choice between a relatively more certain outcome (2 or 4 pellets) and a relatively 

more risky outcome (0, 1, or 11 pellets).  In one condition, p(1) = p(11) and the probability of 

reward omission was manipulated, such that p(0) and p(11) were anti-correlated (i.e., the P[0] 

condition).  In a second condition, p(0) = p(11), and the probability of the one-pellet reward was 

manipulated, such that p(0) and p(11) were correlated (i.e., the P[1] condition).  Across 
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conditions, both the 0- and 1-pellet rewards were losses.  In the P[0] condition, the rats 

demonstrated typical win-stay/lose-shift behavior, exhibiting a greater likelihood of making a 

risky choice following the 1- and 11-pellet outcomes than following the 0-pellet outcome.  

However, in the P[1] condition, the rats were more likely to make a risky choice following the 0-

pellet outcome than following the 1-pellet outcome, in contrast to typical win-stay/lose-shift 

behavior.  This latter pattern of behavior may reflect subjective responses to probabilistic 

feedback.  In the P[1] condition, exposure to reward omission may result in the subjective 

prediction that p(11) has increased, while exposure to the 1-pellet outcome would result in the 

opposite prediction, thereby decreasing subsequent risky choice behavior.  Alternatively, rather 

than reward omission providing loss- and probability-based information of the frequency of 11-

pellet reward delivery, reward omission may simply reflect the absence of information, such that 

the relatively high lose-shift behavior following reward omission is in fact a continuation of 

previous behavior given the absence of feedback to promote alternative actions.  Thus, in 

addition to the effectiveness of the 1-pellet outcome as a loss in reducing staying behavior, the 

decrease in staying behavior following 1-pellet outcomes in the P[1] condition compared to that 

following 0-pellet outcomes may be explained in terms of the anti-correlation between p(1) and 

p(11) and/or the reception of explicit feedback given the loss.  These possibilities have 

implications for how individuals encode and respond to the ambiguous differential losses (i.e., 

LDWs).  LDWs may not just be a special case of loss (i.e., numerically greater than reward 

omission), but a unique psychological event driven by the differential integration of loss- and 

gain-based feedback, which may potentially distinguish these outcomes from the traditional 

continuum of differentially-sized gains and losses. 
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Accordingly, the goal of the present experiment was to determine how loss-chasing 

behavior is affected by the exposure to explicit feedback following differential losses.  While it 

may be argued that reward omission and corresponding lever retraction in traditional risky 

choice paradigms serve as adequate feedback, the absence of explicit feedback from the 

corresponding choice may be psychologically distinct from the mechanisms of loss presentation 

in experiments of human risky decision making, such as the explicit removal of a resource (e.g., 

depleted monetary funds) or a small presentation of a resource that fails to meet expectations 

(i.e., LDWs).  Accordingly, the goal of the present experiment was to determine whether rats’ 

loss-chasing behavior was altered depending on whether the 0- and 1-pellet losses are 

accompanied by the explicit feedback that is typically only presented when 11-pellet outcomes 

are presented, similar to the presentation of win-related stimuli that accompany LDWs. 

 Method 

 Animals 

Twenty-four experimentally-naive male Sprague-Dawley rats (Charles River; Kingston, 

NY) were used in the experiment.  They arrived at the facility (Kansas State University; 

Manhattan, KS) at approximately 21 days of age.  The rats were pair-housed in a red-illuminated 

colony room that is set to a reverse 12:12 hr light:dark schedule (lights off at approximately 7:30 

am).  The rats were tested during the dark phase.  There was ad libitum access to water in the 

home cages and in the experimental chambers.  The rats were maintained at approximately 85% 

of their projected ad libitum weight during the experiment, based on growth-curve charts 

obtained from the supplier.  When supplementary feeding was required following an 

experimental session, the rats were fed in their home cages approximately 1 hr after being 

returned to the colony room (see Bacotti, 1976; Smethells, Fox, Andrews, & Reilly, 2012). 
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 Apparatus 

The experiment was conducted in 24 operant chambers (Med-Associates; St. Albans, VT) 

each housed within sound-attenuating, ventilated boxes (74 × 38 × 60 cm).  Each operant 

chamber (25 × 30 × 30 cm) was equipped with a stainless steel grid floor, two stainless steel 

walls (front and back), and a transparent polycarbonate side wall, ceiling, and door.  Two pellet 

dispensers (ENV-203), mounted on the outside of the operant chamber, were equipped to deliver 

45-mg food pellets (Bio-Serv; Flemington, NJ) to a food cup (ENV-200R7) that was centered on 

the lower section of the front wall.  For the rats in Group Extra-Feedback (see below), the tubing 

connecting one of the pellet dispensers to the food cup was disconnected and the corresponding 

pellet deliveries were rerouted to a receptacle outside of the operant chamber (Figure 2.1; see 

Freestone, MacInnis, & Church, 2013).  Head entries into the food magazine were transduced by 

an infrared photobeam (ENV-254).  Two retractable levers (ENV-112CM) were located on 

opposite sides of the food cup.  The chamber was also equipped with a house light (ENV-215) 

that was centered at the top of the front wall, as well as two nosepoke keys (ENV-119M-1) that 

were located above the levers.  Water was always available from a sipper tube that protruded 

through the back wall of the chamber.  Experimental events were controlled and recorded with 2-

ms resolution by the software program MED-PC IV (Tatham & Zurn, 1989). 

Procedure 

Magazine and lever-press training. The rats experienced a random-time 60-s schedule 

of food deliveries for magazine training, earning approximately 120 pellets in one 2-hr session.  

The rats then experienced lever-press training with a fixed ratio (FR) 1 schedule of reinforcement 

followed by a random ratio (RR) 3 schedule and then an RR 5; each of these schedules lasted 

until the rats earned 20 pellets on each lever.  For 22 of the 24 rats, lever-press training lasted for 
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two sessions.  For the other two rats, a third session of lever-press training was administered, 

which involved only the RR 3 and RR 5 schedules of reinforcement. 

Risky choice task. Each pair of rats was randomly partitioned into one of two groups: 

Group Extra-Feedback and Group Normal-Feedback.  Typically, food deliveries are separated by 

0.2 s and accompanied by the sound and vibration of the pellet dispenser; thus, reward omission 

is not accompanied by external stimuli.  The rats in Group Normal-Feedback experienced such 

an environment, in which the amount of exposure to external stimuli (i.e., sound and vibration of 

the pellet dispenser) was directly related to the amount of food delivered following each choice.  

Additionally, for Group Normal-Feedback, each operation of the pellet dispenser was 

accompanied by a 0.1-s illumination of the nosepoke key light above the corresponding lever, 

such that these rats experienced synchronized auditory, tactile, and visual stimuli veridically 

related to the number of pellets received.  For Group Extra-Feedback, every risky outcome was 

also accompanied by multiple operations of the alternative pellet dispenser without the rats’ 

receiving the pellets from this dispenser (i.e., food deliveries into an external receptacle; Figure 

2.1) and flashing illuminations of the nosepoke key light above the risky outcome lever, such 

that all risky outcomes included explicit multimodal feedback (i.e., light, sound and vibration of 

the pellet dispenser).  As in Group Normal-Feedback, every 0.1-s flash of the nosepoke key light 

presented to Group Extra-Feedback was time-locked to the operation of the pellet dispenser(s).   

Both groups experienced the same risky choice task.  Certain choices always resulted in 

either 2 or 4 pellets (ps = .50; certain-two, C-2, and certain-four, C-4), and risky choices resulted 

in either no food being delivered (risky-zero, R-0), 1 food pellet (R-1), or 11 food pellets (R-11).  

Both choices involved an element of risk (i.e., outcome variability), as outcome variability 

provides greater ecological validity (see Searcy & Pietras, 2011), and is thus an essential 
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component of risky choice tasks (see Marshall & Kirkpatrick, 2013).  Moreover, rats’ 

preferences for riskiness/uncertainty over certainty may override true preference for an outcome 

(cf., Battalio, Kagel, & MacDonald, 1985).  Thus, the certain outcome referred to choices in 

which food was always delivered, while the risky outcome referred to choices in which food was 

probabilistically delivered. 

Each session began with 8 forced-choice trials followed by a maximum of 100 free-

choice trials (Marshall & Kirkpatrick, 2013, 2015).  On forced-choice trials, one lever was 

inserted into the chamber.  Each lever corresponded to one of two choices (i.e., certain and 

risky), and lever assignments were counterbalanced within pairs of rats.  When the lever was 

pressed on forced-choice trials, a fixed interval 20-s schedule began; the first lever press after 20 

s resulted in lever retraction and food delivery.  If the lever corresponded to the certain outcome, 

then the C-2 or C-4 outcome was delivered (ps = .50).  If the lever corresponded to the risky 

outcome, then the R-11 outcome was delivered (p = .50) or either the R-0 or R-1 outcome was 

delivered (p = .50), the latter of which depending on the condition, as specified below.  Each of 

these magnitudes for the certain and risky choices was presented twice in the forced-choice trials 

in a random order.  A 10-s inter-trial interval (ITI) intervened between successive trials.   

For Group Extra-Feedback, all risky outcome food deliveries were accompanied by 11 

operations of the alternative pellet dispenser and 11 0.1-s flashes of the nosepoke key light, 

produced in synchrony with the alternative pellet dispenser.  The ITI began following the 

eleventh operation of the alternative pellet dispenser and eleventh flash of the nosepoke key 

light.  Accordingly, for Group Extra-Feedback, the R-0 and R-1 outcomes were designed to 

resemble exposure to LDWs.  Free-choice trials were identical to forced-choice trials with the 

following exceptions: (1) both levers were inserted into the chamber; (2) a choice on one of the 
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levers caused the other lever to retract; and, (3) all risky outcomes (R-0, R-1, and R-11) were 

possible outcomes of risky choices. 

The task was divided into two conditions (P[0] and P[1]), in which either p(R-0) or p(R-

1) was manipulated, respectively.  Half of each group experienced the P[0] condition first, while 

the other half experienced the P[1] condition first (Table 2.1).  In Phase 1 of the P[0] condition, 

p(R-0) was .10 (i.e., p(R-1) = p(R-11) = .45).  In Phases 2-4, p(R-0) was equal to .90, .50, and 

.10, respectively, such that p(R-1) and p(R-11) were equal to .05, .25, and .45, respectively.  For 

the P[1] condition, p(R-1) was equal to .10, .90, .50, and .10 in Phases 1-4, respectively, such 

that p(R-0) and p(R-11) were equal to .45, .05, .25, and .45 in Phases 1-4, respectively.  

Following exposure to either the P[0] or P[1] conditions, the rats then experienced the P[1] and 

P[0] conditions, respectively.  Here, the P[0] and P[1] conditions mirrored Phases 2-4 of the prior 

condition, such that secondary exposure to P[0] involved p(R-0) equal to .90, .50, and .10 in 

Phases 1-3, respectively; secondary exposure to P[1] involved p(R-1) equal to .90, .50, and .10 in 

Phases 1-3 respectively (see Table 2.1).  In the P[0] condition, risky forced-choice trials involved 

the R-1 and R-11 outcomes; in the P[1] condition, risky forced-choice trials involved the R-0 and 

R-11 outcomes.  Each of the differential feedback conditions lasted for 10 sessions.  Each 

session lasted until all free-choice trials were completed or for approximately 2 hr. 

Data analysis 

With the following exceptions, all rats’ data from all sessions were used in analyses 

(unless otherwise specified below).  Due to equipment error, 10 sessions across multiple 

individual rats were removed from all data analyses (i.e., three sessions for one rat, two sessions 

for a second rat, one session for a third rat, and four sessions for a fourth rat).  Cursory analyses 
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of mean choice behavior across rats before and after each of these sessions suggested that these 

equipment errors did not considerably impact subsequent choice behavior. 

Choice behavior   

Molar analysis. All summary measures were obtained from the raw data using MATLAB 

(The MathWorks; Natick, MA).  Analyses were conducted at the molar and molecular levels.  

The dependent measure of the molar analyses was choice for the risky or certain outcome.  

Generalized linear mixed-effects models (Wright & London, 2009) employing binomial logistic 

regression with a logit link function were conducted with choice as the criterion (certain = 0, 

risky = 1).  Generalized linear mixed-effects models are comparable to repeated-measures 

logistic regression analyses, but allow for parameter estimation as a function of manipulation 

condition (e.g., LL magnitude) and the individual subject (Young, Webb, Rung, & Jacobs, 

2013).  Thus, such models permit inclusion of both fixed and random effects, respectively.  For 

the molar analyses, potential fixed effects included feedback group (Extra-Feedback/Normal-

Feedback), probability condition (P[0]/P[1]), probability of the manipulated outcome (i.e., 

P[0]/P[1] = .10, .50, .90), session, and their interactions.  The factors that were potential random 

effects included the aforementioned fixed effects except for the main effect of and interactions 

that included feedback group.   

Model fitting occurred in two stages.  Analyses first determined the model with the best 

fitting random-effects structure, and then the model with the best fitting fixed-effects structure 

that incorporated the best fitting random-effects structure.  Given the current design, all potential 

random effects were also potential fixed effects, so the factor(s) within the best-fitting random 

effects structure were automatically included as fixed-effects (Young et al., 2013).  Factors that 

did not vary as a function of subject (i.e., between-subjects factors) could be entered into the 
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model in this second stage.  Model selection involved determining the model that minimized the 

Akaike information criterion (AIC; Akaike, 1973), in which the doubled negative log likelihood 

of the regression model is penalized by twice the number of estimated parameters.  The AIC 

involves determining the best approximating model of the data, such that the model with the 

minimum AIC reflects the best fit but with a penalty for the expected improvement in fit due to 

added parameters (see Burnham & Anderson, 1998).  Continuous predictors were mean-centered 

to reduce multicollinearity, and categorical predictors were effect-coded (i.e., codes summed to 

0). 

Molecular analysis. The first molecular analysis was identical to the molar analysis 

except that the identity of the previous outcome was included in the analysis as a potential fixed 

and/or random effect.  Given the previously-reported non-monotonic relationship between 

previous outcome and subsequent risky choice (Marshall & Kirkpatrick, 2015), the factor 

corresponding to previous outcomes was set as a categorical predictor in this molecular analysis.  

Because this analysis relied on the effect of the previous outcome, the first trial of each session 

was excluded from analysis.  Lastly, as the purpose of this analysis concerned the effects of the 

feedback, probability, and phase manipulations on trial-by-trial risky choice behavior, the 

predictor of session was not included in these analyses. 

The second molecular analysis was similar to the modelling approach employed by Lau 

and Glimcher (2005), in which choice on trial N was modelled as a function of outcome and 

choice history.  The model initially took the following form (see Lau & Glimcher, 2005): 
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in which γ was the model’s intercept, N was the current trial, i was trial lag, αi was the 

coefficient estimating the extent to which the ith previous outcome influenced choice on trial N, 
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βi was the coefficient estimating the extent to which the ith previous choice influenced choice on 

trial N, ORisky,N-i was the reward received on trial N-i for making a risky choice, OCertain,N-i was the 

reward received on trial N-i for making a certain choice, CRisky,N-i was a binary predictor 

indicating that a risky choice was made on trial N-i, and CCertain,N-i was a binary predictor 

indicating that a certain choice was made on trial N-i.  The outcomes and choices of the previous 

ten trials were analyzed.  For practical purposes, the model’s predictors were a vector of previous 

outcomes and choices rather than a difference score (Eq. 1).  Accordingly, the certain outcomes 

(C-2, C-4) were coded as -2 and -4, respectively, and certain choices were coded as -1.   

Due to highly significant correlations between the ith previous outcomes and ith previous 

choices of similar lags, rs > .76, ps < .001 (e.g., the most recent outcome and most recent 

choice), the previous outcome and previous choice terms in Equation 1 were separated into two 

sets of models.  Accordingly, rather than a single intercept (γ) for the combined equation, each of 

the two models incorporated an independent intercept.  For both analyses, the most recent 

outcome (or choice) was entered into the random effects first, followed by the second most 

recent outcome (or choice), and so on.  The predictors in the best-fitting random effects model 

were automatically included as fixed effects.  As the purpose of this analysis was to determine 

the influence of outcome and choice histories on subsequent choice in the absence of other 

predictors, analyses only included the previous outcomes or choices.  Model selection involved 

determining the model that minimized the AIC.  As the AIC is dependent on sample size, the 

same data were used for all models.  Thus, the first ten trials of every session were excluded 

from analysis so that there were equivalent numbers of all lagged outcomes and choices. 

The second stage of this molecular analysis involved determining the functional form of 

the change in regression weights as a function of outcome and choice history.  Each rat’s 
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individual regression weights were computed from the results of the previous analysis (i.e., fixed 

effect coefficients + random effect deviations for each rat).  These regression weights were 

subjected to a nonlinear mixed-effects model in R (Pinheiro, Bates, DebRoy, & Sarkar, 2016) to 

determine the extent to which previous outcomes and choices affected subsequent choice across 

groups, and to determine whether the decaying effect of previous choices and outcomes was 

better accounted for by a model that assumed exponential decay (e.g., Glimcher, 2011) or 

hyperbolic decay (e.g., Devenport et al., 1997).  The following models were fit within the 

nonlinear mixed effects analyses for the exponential (Eq. 2) and hyperbolic functions (Eq. 3): 

1)1(* −− EkA , (2) 

)1(*1 −+ Ek
A , (3) 

in which A is the function’s intercept, k is the decay rate of the influence of previous outcomes 

(or choices), and E is the lagged event (outcome or choice).  Due to model convergence issues 

for the choice history analysis when both free parameters, A and k, were included, the regression 

coefficients in the choice history analysis were normalized for each rat relative to that rat’s 

maximum regression coefficient in the choice history analysis.  Thus, for the choice history 

analysis, the fitted exponential (Eq. 4) and hyperbolic (Eq. 5) models were as follows:  

1)1(*1 −− Ek , (4) 

)1(*1
1

−+ Ek
, (5) 

This normalization technique was not necessary in the outcome history analysis, and so was not 

employed to avoid loss of information when different rats’ data were set to similar scales. 

Goal-tracking behavior. Goal-tracking behavior was measured to determine whether the 

rats in Group Extra-Feedback elicited greater goal-tracking behavior given risky losses, given 
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that risky losses were cued as if R-11 outcomes were delivered.  Goal-tracking behavior was 

operationally defined as the number of head entries into the food magazine.  While rats typically 

exhibit head entries into the food cup at any given moment during the session, the primary time 

window of interest was that encompassing risky outcome delivery.  For both groups, the R-11 

outcome took approximately 2.5 s to deliver.  For Group Extra-Feedback, the R-0 and R-1 

outcomes involved the same-duration presentation of stimuli (i.e., feeder operation, flashing 

nosepoke key light).  Accordingly, the reception of R-0 and R-1 outcomes for Group Extra-

Feedback may have elicited an increase in head-entry response rate past the 2.5-s outcome 

delivery; moreover, it was expected that the rats in both groups continued to consume the reward 

corresponding to the R-11 outcome past the duration of the 2.5-s outcome delivery.  Thus, this 

analysis involved the 5-s temporal window following the onset of risky outcome delivery.  The 

number of head entries during this interval was compared across groups as a function of risky 

outcome magnitude and phase (P[0], P[1]).  This analysis was identical to the mixed-effects 

analysis of choice behavior except that the current analysis assumed a Poisson response 

distribution given the count-type nature of the data. 

Reinforcement learning (RL) models. A modular approach was employed in terms of 

fitting the RL models.  Each model incorporated one of four valuation rules (Simple RL, 

Asymmetric RL, Valence-Attentive RL, Weighted-Reference-Point RL) and a single common 

softmax decision rule (Daw, O'Doherty, Dayan, Seymour, & Dolan, 2006).  

Simple RL. A Simple RL algorithm implies that both gains and losses of similar 

magnitudes have equivalent effects on computations of estimated value: 

1,,, −−= TNTNTN QRδ , (6) 

TNTNTN QQ ,1,, αδ+= − , (7) 
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in which the updated value (QN,T) on trial T for choice N is a function of both the previous 

estimate of value for that choice (QN,T-1) as well as the prediction error (δN,T) between the 

previous estimate of value (QN,T-1) and the outcome that was received on trial T for making 

choice N (RN,T).  When RN,T exceeds QN,T-1, RN,T generates a positively-signed prediction error 

(i.e., gains).  When RN,T is less than QN,T-1, RN,T generates a negatively-signed prediction error 

(i.e., losses).  If RN,T equals QN,T-1, then RN,T does not generate a prediction error (i.e., RN,T 

matches the expectation of QN,T-1; δN,T = 0).  The prediction error, δN,T, is scaled by a learning-

rate parameter, α ∈ [0,1].  Larger α values reflect faster learning and more rapid adjustments in 

value.  The larger the value of α, the more closely QN,T approximates RN,T, such that QN,T is less 

influenced by past outcomes and more influenced by recent outcomes. 

Asymmetric RL. The Asymmetric RL algorithm, also referred to as risk-sensitive RL 

(Niv et al., 2012), involves differential value-updating rates following gains and losses (see 

Frank et al., 2007):  
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TNTNTN QQ ,1,, αδ+= − , (9) 

in which αG is the value-updating rate parameter for gains, and αL is the value-updating rate 

parameter for losses.  Here, α equals αG and αL when gains and losses are experienced, 

respectively.  Assuming individual discrepancies in the value-updating parameters, the same 

prediction error following a gain or loss would elicit differentially-scaled updates in value.  

Asymmetric RL (Eq. 9) reduces to Simple RL (Eq. 7) when αG = αL. 
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 Valence-Attentive RL. The Valence-Attentive RL algorithm implies differences in 

relative attention to gains versus losses (i.e., expectancy valence model; see Busemeyer & Stout, 

2002; also see Bishara et al., 2009): 


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in which G is a logical operator for whether the previous outcome was greater than the previous 

value estimate for choice N, and ω ∈ [0,2] is the attention given to gains relative to losses, such 

that greater values of ω reflect more attention to gains versus losses.  Accordingly, setting ω = 1 

and G = 1 reduces the model to Simple RL (Eq. 7).  Here, the value-updating rate (α) is identical 

for gains and losses.  In contrast to Asymmetric RL, which involves differential weighting of 

positively- versus negatively-signed prediction errors, Valence-Attentive RL involves 

differential weighting of individual outcomes.  In contrast to the RL models above, in which δN,T 

= 0 when RN,T = QN,T-1, Valence-Attentive RL weights the individual outcomes, such that 

identical values for R N,T and QN,T-1 will only result in δN,T = 0 if ω = 1. 

 Weighted-Reference-Point RL. While traditional RL models assume that the reference 

point is the expected value of the choice that was made (e.g., Sutton & Barto, 1998), previous 

research has suggested that gains and losses are encoded relative to the expected value of the 

alternative outcome (Marshall & Kirkpatrick, 2015).  Indeed, individuals may use multiple 

reference points when making decisions (Wang & Johnson, 2012).  Weighted-Reference-Point 

RL implies that gains and losses may be encoded relative to zero (zero-based reference point), 

the expected value of the choice that was made (current-choice-based reference point), and/or the 
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expected value of the alternative choice (alternative-choice reference point; see Marshall & 

Kirkpatrick, 2015), and that individuals may update value at different rates depending on the 

elicited prediction error from each of these reference points: 

0,, −= TNTZ Rδ , (13) 

1,,, −−= TNTNTN QRδ  (14) 

1,,, −¬¬ −= TNTNTN QRδ  (15) 

TNNTNNTZZTNTN QQ ,,,1,, ¬¬− +++= δαδαδα , (16) 

in which Q¬N,T-1 is the value of the alternative choice (i.e., not choice N), δZ,T is the prediction 

error relative to a zero-based reference point, δN,T is the prediction error relative to a current-

choice-based reference point (i.e., the same prediction error in the previous models), δ¬N,T is the 

prediction error relative to an alternative-choice reference point, and αZ, αN, and α¬N are the 

value-updating parameters corresponding to each of these prediction errors.  Weighted-

Reference-Point RL reduces to Simple RL (Eq. 7) when αZ and α¬N are set to 0. 

 Decision rule. While each RL model had different valuation rules, all models involved 

the same softmax decision rule (Cohen, McClure, & Yu, 2007; Daw, 2011; Daw et al., 2006; 

Luce, 1959): 
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in which P(NT =Risky | QCertain,T, QRisky,T) is the probability of a risky choice given the derived 

value of the certain choice (QCertain,T) and risky choice (QRisky,T), and β is the inverse-temperature 

parameter of RL models that captures the stochasticity of choice behavior (i.e., larger values of β 

reflect greater exploitation of the higher-valued choice). 
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Model fitting and selection.  The fminsearch optimization algorithm in MATLAB was 

used to fit each RL model to the trial-by-trial choice data for individual rats via maximum 

likelihood estimation (Daw, 2011).  The parameters of each model were bounded within the 

following limits: α ∈ (0,1), ω ∈ (0,2), β ∈ (0,10).  Model fitting involved the random generation 

of 300 sets of uniformly-distributed initial parameters (i.e., 300 runs) across the boundary 

conditions for each parameter.  Individual iterations that returned parameters outside the 

aforementioned parameter boundaries were excluded from analyses.  The model’s choices in 

terms of probability [P(NT =Risky | QCertain,T, QRisky,T)] was compared to each rat’s actual choice 

on each trial (certain = 0, risky = 1), as the same reinforcement history experienced by the rat 

was provided to the model.  These probabilities were then transformed given the rat’s choice: For 

a risky choice, P = P(NT =Risky | QCertain,T, QRisky,T); for a certain choice, P = 1 – P(NT =Risky | 

QCertain,T, QRisky,T).  Model fit was evaluated in terms of log likelihood, which was calculated as 

the sum of the log-transformed probabilities.  The best-fitting model was the one with the 

minimum AIC.  The selected model was subjected to secondary evaluation of goodness-of-fit via 

a pseudo-R2 measure (i.e., omega-squared, ω2) to aid interpretation of the adequacy of model fit.  

Here, individual rats’ data were smoothed over a moving nine-trial window (observed data), and 

compared to simulated data that were generated using the selected model’s fitted parameters.  

A parameter recovery technique was performed to confirm that the RL models were 

detecting the data generative processes and parameters.  For each condition order (Table 2.1), 

1000 simulations for each of the four valuation rules were conducted.  The simulations 

incorporated the same task structure that the rats experienced (see Table 2.1).  For each 

simulation, model parameters were randomly sampled from uniform distributions [i.e., α ∈ (0,1), 

ω ∈ (0,2), β ∈ (0,10)] and these sampled parameters were used in the valuation and decision 
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rules that determined the simulated choices.  The simulated data were then fit with the RL 

models described above to determine whether the fitted parameter matched the corresponding 

simulated parameter.  For parameter recovery, each simulation was fit over 50 iterations. 

 Results and Discussion 

 Choice behavior 

Molar analysis 

Overall effects. The molar analysis of risky choice was conducted to examine the effects 

of the phase and probability manipulations in both feedback groups.  Here, analysis involved 

158,024 observations from the risky choice task, and included the overall intercept, a categorical 

predictor of feedback group (Normal-Feedback, Extra-Feedback), and continuous predictors of 

phase (P[0], P[1]), probability (.10, .50, .90), and session.  Feedback group was effect coded with 

Normal-Feedback/Extra-Feedback as -1/+1. 

For this molar analysis, the probability predictor was recoded as sub-phase.  Specifically, 

in terms of probability, the experimental design can be viewed as an ACBA|CBA design (i.e., 

.10, .90, .50, .10, .90, .50, .10; Table 2.1), with the pipe indicating the phase separation.  Thus, 

there was more exposure to the .10 (A) probability sub-phase in the first phase (P[0] or P[1]) 

than in the second phase (P[1] or P[0]).  Also, in the first .10 (A) probability sub-phase, the rats 

were beginning to learn the dynamics of the task.  Because the current molar analysis involved 

analyzing learning as a function of session within each phase/sub-phase, the .10 probability sub-

phase data were separated, as the first .10 probability sub-phase may be viewed as qualitatively 

unique relative to the other .10 (A) probability sub-phases.  Thus, to discourage averaging effects 

between the two .10 probability sub-phases in the first phase, the probability data were recoded 

such that the .90 probability sub-phases were set to “1”, the .50 probability sub-phases to “2”, the 
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terminal .10 probability sub-phases to “3”, and the initial .10 probability sub-phase in Phase 1 to 

“4”.  The decision to code the terminal .10 sub-phases as “3” and the initial .10 sub-phase as “4” 

was data-driven, as the rats made more risky choices in the initial .10 sub-phase of Phase 1 than 

in the terminal .10 sub-phases (Figure 2.2).  Accordingly, for these molar analyses, the predictor 

of probability was referred to as sub-phase.  Due to this recoding, only half of the rats had data in 

the initial .10 sub-phase for each of the P[0] and P[1] phases.  However, sub-phase was treated as 

a continuous predictor, such that the current regression analyses attenuated potential problems of 

missing data that would be detrimental to an analysis-of-variance approach to analysis. 

For this and subsequent results sections, the in-text reporting of results focused on the 

theoretically-relevant results to the corresponding analyses, but statistical tables are provided 

throughout the manuscript that include the full model analyses.   

Table 2.2 shows the full model output from the mixed-effects analysis.  The fixed-effects 

structure included the full factorial model of Feedback Group × Phase × Sub-Phase × Session.  

Intercept, phase, sub-phase, session, and Phase × Sub-Phase served as random effects.  While 

there was no main effect of feedback group on overall risky, there was a Feedback Group × 

Phase × Sub-Phase × Session interaction, t(158008) = 10.87, p < .001. 

Figure 2.2 shows the proportion of choices for the risky outcome as a function of session 

for Groups Extra-Feedback and Normal-Feedback, separated by phase (P[0], P[1]) and sub-phase 

(i.e., the probability of the manipulated outcome; R-0 in P[0], R-1 in P[1]).  The far left panel of 

Figure 2.2 shows risky choice behavior as a function of session across groups and phases in the 

first sub-phase of Phase 1.  Here, in the first sub-phase of the entire task, both groups increased 

their risky choice behavior as a function of session.  Group Normal-Feedback exhibited a steeper 

slope than Group Extra-Feedback in the P[0] phase (Group Normal-Feedback: slope = 0.22; 
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Group Extra-Feedback: slope = 0.17), but Group Extra-Feedback exhibited a much steeper slope 

than Group Normal-Feedback in the P[1] phase (Group Normal-Feedback: slope = 0.08; Group 

Extra-Feedback: slope = 0.33).  In the .10 probability condition of the P[1] phase, the frequency 

of non-zero risky reward was at its largest.  Accordingly, it would be expected that both groups 

would exhibit comparably high levels of risky choice behavior during this condition, but this did 

not occur.  The increased riskiness in Group Extra-Feedback in this condition may be explained 

by the elevated frequency with which the extra multimodal stimuli accompanied the actual 

delivery of the R-11 outcome (i.e., greater contingency of the multimodal stimuli with R-11 

delivery).  The multimodal stimuli would serve as a strong conditioned reinforcer in this 

condition.  The more positive contingency between the multimodal feedback and outcome 

magnitude experienced by Group Extra-Feedback may have promoted increased risky choice, 

given the greater value of the conditioned reinforcer (Zentall & Stagner, 2010; also see Seo & 

Lee, 2009; but see Barrus & Winstanley, 2016). 

Following the .10 probability sub-phase(s), the probability of the manipulated outcome 

(i.e., 0 pellets in P[0]; 1 pellet in P[1]) increased to .90.  Unsurprisingly, all groups showed large 

decreases in risky choice behavior with continued progression in this sub-phase (Figure 2.2, 

second panel from the left).  Here, while both groups showed relatively comparable decreases in 

the P[0] phase (Group Normal-Feedback: slope = -0.24; Group Extra-Feedback: slope = -0.23), 

Group Extra-Feedback exhibited a steeper decline than Group Normal-Feedback in the P[1] 

phase (Group Normal-Feedback: slope = -0.27; Group Extra-Feedback: slope = -0.35), likely due 

to their exhibiting greater risky choice at the onset of this sub-phase. 

When the probability of the manipulated outcome was .50, Group Extra-Feedback 

exhibited slightly greater mean risky choice behavior than Group Normal-Feedback, despite the 
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similarities between the groups at the end of the .90 probability sub-phase.  Additionally, both 

groups exhibited minimal change or slight increases in risky choice as a function of session 

(Figure 2.2, second panel from the right).  However, computations of simple slopes from the 

statistical output equated to small decreases in risky choice as a function of session (Group 

Normal-Feedback, P[0]: slope = -0.08; Group Extra-Feedback, P[0]: slope = -0.10; Group 

Normal-Feedback, P[1]: slope = -0.15; Group Extra-Feedback, P[1]: slope = -0.12).  These 

discrepancies between the mean data and fitted slopes were likely due to the unweighted effects 

coding of the mixed effects analysis and the differential weighting of group means (i.e., by the 

different number of choices across phases, sub-phases, and sessions for each rat within both 

groups).  Alternatively, such discrepancies may have been caused by the even linear spacing of 

the recoded probability predictor as sub-phase, such that the slopes at probability = .50 would 

result in values between the slopes at probabilities = .90 and .10, rather than an actual decrease in 

mean risky choice as a function of session. 

In the final sub-phase of each phase, the probability of the manipulated outcome 

decreased to .10, and, given the increase in expected value of the risky choice, there was a 

general increase in risky choice as a function of session in this sub-phase (Figure 2.2, far right 

panel).  Group differences diverged, as Group Extra-Feedback also exhibited greater mean risky 

choice behavior than Group Normal-Feedback in this sub-phase.  Simple slopes computations 

revealed that both groups exhibited an increase in risky choice as a function of session in the 

P[0] phase (Group Normal-Feedback: slope = 0.07; Group Extra-Feedback: slope = 0.03).  

Group Extra-Feedback showed a similar increase in risky choice behavior in the P[1] phase 

(slope = 0.10).  While the simple slopes calculations indicated that Group Normal-Feedback 

exhibited a decrease in risky choice as a function of session in the P[0] phase (slope = -0.04), the 
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mean data suggest that there was a slight increase in risky choice as a function of session in the 

terminal .10 sub-phase of the P[1] phase.   

Overall, Figure 2.2 indicates that both groups exhibited a strong decrease in risky choice 

as a function of session when the R-11 outcome was relatively unlikely (P[0] | P[1] = .90) and 

relative increases in risky choice as a function of session when the R-11 outcome was more 

likely (P[0] | P[1] = .10), corroborating research that has reported sensitivity to changing risk and 

probability in rats (Cardinal & Howes, 2005; Larkin et al., 2016; Marshall & Kirkpatrick, 2013, 

2015; Mazur, 1988; Mobini et al., 2002; Mobini, Chiang, Ho, Bradshaw, & Szabadi, 2000; 

Stopper & Floresco, 2011, 2014; Stopper, Tse, Montes, Wiedman, & Floresco, 2014). 

Individual differences. As described above, the model’s random effects included 

intercept, phase, sub-phase, session, and Phase × Sub-Phase.  There were considerable individual 

differences in risky choice as a function of these factors (Figures 2.3 and 2.4).  Figure 2.3 shows 

the individual rat data during the P[0] phase.  For the six rats in each group that experienced P[0] 

as the first phase (Rats N.1-N.6, E.1-E.6), risky choice behavior tended to increase as a function 

of session in the initial P[0] = .10 sub-phase.  When the probability of R-0 increased to .90 (P[0] 

= .90), the rats decreased their risky choice behavior as a function of session (but see, e.g., Rat 

N.9, in which choice behavior was relatively constant as a function of session, and Rat N.10, in 

which there was a slight increase in risky choice as a function of session).  The probability of R-

0 then decreased to .50 (P[0] = .50).  While the model fits tended to produce slightly negative 

slopes, which matched some rats’ data (e.g., Rat E.2), other rats showed constant risky choice 

(e.g., Rat N.7) or increased risky choice as a function of session in this sub-phase (e.g., Rat E.7).  

Moreover, when the probability of R-0 decreased again to .10 (P[0] = .10) in the terminal sub-

phase of the P[0] phase, rats showed a general increase in risky choice as a function of session 
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(but see Rats E.8, E.9, and E.11, in which risky choice behavior was relatively constant and 

approximated zero). 

For the six rats in each group that experienced the P[1] phase first (Rats N.7-N.12, E.7-

E.12), risky choice behavior tended to increase as a function of session in the initial P[1] = .10 

sub-phase.  The probability of the R-1 outcome then increased to .90, and the rats tended to 

exhibit decreases in risky choice behavior as a function of session in this sub-phase (e.g., Rats 

N.8 and E.10) unless their risky choice behavior was relatively constant with very few risky 

choices made (e.g., Rat N.5).  When the probability of the R-1 outcome decreased to .50, many 

rats showed only minimal change in risky choice as a function of session (e.g., Rats N.9 and 

E.6), while other rats showed small increases in risky choice (e.g., Rat E.2).  Finally, after the 

probability of the R-1 outcome had decreased again to .10, some rats showed an increase in risky 

choice with session (e.g., Rats E.2 and E.4), while other rats were seemingly unaffected by the 

change in R-11 probability (e.g., Rats N.5 and E.1). 

As seen across Figures 2.3 and 2.4, the model fits approximated the corresponding 

patterns in some rats’ behavior (e.g., Rats E.7 and E.10 in Figure 2.4).  However, for other rats, 

the model fits poorly approximated the rats’ data (e.g., Rat N.11 in Figure 2.4).  Many of these 

poorer fits occurred in rats that exhibited considerable differences in behavior between the initial 

and terminal .10 probability sub-phases of the first phase experienced, in that many of these rats 

showed increased risky choice behavior in the initial than in the terminal .10 probability sub-

phases (e.g. Rat N.2 in Figure 2.3).  These large differences in individual risky choice behavior 

paralleled the differences in group means in Figure 2.2, as there were large decreases in risky 

choice behavior from the initial .10 probability sub-phase in Phase 1 to the subsequent sub-

phases.  Accordingly, these data suggest that the rats’ behaviors in the two .10 probability sub-
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phases was dependent on the rats’ procedural history, as exposure to high rates of risky loss in 

the .90 and .50 probability sub-phases seemingly drove some rats to general risk aversion even 

when the probability of the R-11 outcome increased to .45 in the terminal .10 probability sub-

phases.  Moreover, as the expected value of the risky choice was greater than 5 pellets in the .10 

probability sub-phases, the rats who were risk averse in the terminal .10 probability sub-phase 

were behaving suboptimally in terms of reward rate, as the expected value of the certain choice 

was 3 pellets across all conditions.  Thus, despite the potential to earn considerably more long-

term reward given exclusive risky choice behavior, these data suggest that the history and 

frequency of risky losses had stronger effects on choice behavior than choices’ expected values. 

Molecular analysis  

Effect of the previous outcome 

Overall effects. A molecular analysis was conducted to determine how differential 

feedback, phase, and probability manipulations affected the likelihood that rats made risky 

choices as a function of the outcome of the previous choice.  Analysis involved 156,354 

observations, and included the overall intercept, a categorical predictor of feedback group and 

previous outcome (C-2, C-4, R-0, R-1, R-11), and continuous predictors of phase and the 

probability of the manipulated outcome in each phase.  Probability was not recoded as sub-phase.  

Feedback group was effect coded with Normal-Feedback/Extra-Feedback as -1/+1.  The 

reference level of previous outcome was the C-2 outcome.  The fixed-effects structure included 

all main effects and interactions within the full factorial model of Feedback Group × Previous 

Outcome × Phase × Probability except for the four-way interaction.  Intercept, phase, and 

previous outcome served as random effects. 
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Table 2.3 shows the full model output from the mixed-effects analyses.  A critical 

question of the current experiment was whether differential feedback influenced rats’ choice 

behavior following differential outcomes.  Overall, Group Extra-Feedback exhibited a 

significantly greater likelihood of making risky choices compared to Group Normal-Feedback, 

t(156318) = 2.18, p = .030 (see Figure 2.5).  While the molar analysis did not reveal a significant 

difference in risky choice between the feedback groups, the mean data in Figure 2.2 indicated a 

trend in this direction.  With the added factor of previous outcome, this molecular analysis 

suggested that the addition of multimodal gain-related (R-11) feedback to the delivery of risky 

losses (R-0, R-1) resulted in increased risky choice in Group Extra-Feedback.  Assuming that 

such a combination of gain-related feedback with the delivery of losses serves to transform the 

R-0 and R-1 losses into LDWs, then the current results are potentially consistent with research 

indicating that LDWs drive humans to overestimate the frequency of “winning” (M. J. Dixon, 

Collins, Harrigan, Graydon, & Fugelsang, 2015; Jensen et al., 2012), which would theoretically 

lead to elevated risky choice following these perceived but nonexistent “wins”. 

The molecular analysis also revealed a Feedback Group × Phase × Previous Outcome 

interaction.  The left panel of Figure 2.5 shows the proportion of choices for the risky outcome as 

a function of phase (P[0], P[1]) and outcome of the previous choice for both groups.  Following 

C-2 and C-4 outcomes in the P[0] and P[1] phases, Groups Extra-Feedback and Normal-

Feedback behaved comparably, exhibiting a high mean tendency to make certain choices after 

certain outcomes.  In contrast, the groups diverged in their risky choice behavior following risky 

outcomes.  Specifically, in both the P[0] and P[1] phases, Group Extra-Feedback made more 

risky choices than Group Normal-Feedback following risky outcomes, and this difference 

increased with risky outcome magnitude.  Thus, the extra multimodal feedback produced a 
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general increase in risky choice in Group Extra-Feedback following the reception of risky 

outcomes, and any group differences were considerably smaller following certain outcomes.  In 

other words, the added feedback presented to Group Extra-Feedback following risky choices 

(and not certain choices) resulted in greater riskiness after risky outcomes (and not certain 

outcomes).  Additionally, as seen in Figure 2.5 (left panel), there was a distinct pattern of results 

following R-0 and R-1 outcomes that depended on phase.  Specifically, in the P[0] phase, rats 

made more risky choices after R-1 than after R-0 outcomes, and the opposite pattern was 

exhibited in the P[1] phase (Marshall & Kirkpatrick, 2015).  As described below, these 

differences may indicate that the rats were tracking the probability of the R-11 outcome and how 

often the R-11 outcome occurred relative to one of the risky losses.   

Molecular analysis also revealed a Feedback Group × Probability × Previous Outcome 

interaction (Figure 2.5, right panel).  As in the Feedback Group × Phase × Previous Outcome 

interaction, there were relatively small differences between feedback groups in risky choice 

following C-2 outcomes and C-4 outcomes, but considerably larger differences between 

feedback groups following risky outcomes.  Interestingly, these mean group differences were 

smaller following all risky outcomes when the probability of the manipulated outcome was .10 

than when it was .50 or .90.  This suggests that the added multimodal feedback stimuli had the 

largest mean effects when the probability of risky losses was at its greatest (i.e., when the 

probability of the R-11 outcome was smallest).  Thus, assuming that the added multimodal 

feedback transformed the R-0 and R-1 outcomes into LDWs, then these data indicate that the 

more often the rats experienced LDWs, the more often they made risky choices after risky 

outcomes.  Indeed, Jensen et al. (2012) showed that humans are more likely to estimate how 

often they “won” when they are exposed to more LDWs.  Accordingly, these data provide 
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support for the LDW model in risky choice in rats and how responses to such ambiguous losses 

are moderated by the probability of their occurrence.   

Overall, these molecular analyses suggest that Group Extra-Feedback made more risky 

choices than Group Normal-Feedback, and that these differences were primarily observed 

following risky outcomes.  These results are reasonable in the sense that certain outcomes were 

presented in the same fashion to both groups.  Furthermore, the Feedback Group × Probability × 

Previous Outcome indicated that win-stay/lose-shift behavior is not absolute, but moderated by 

outcome probability (Marshall & Kirkpatrick, 2013).  While previous experiments have analyzed 

win-stay/lose-shift behavior in rats in risky environments, some of these studies have collapsed 

across risky-outcome probabilities (see, e.g., Larkin et al., 2016; Stopper & Floresco, 2011), thus 

masking the effect of outcome probability on subsequent risky choice.  However, the analysis of 

probability moderation on local risky choice behavior may be crucial to future research. 

Individual differences. The random effects included intercept, phase, and previous 

outcome.  Figure 2.6 portrays the individual differences in risky choice as random effects.  For 

many rats, the model fits did well to approximate the individual rats’ mean choice behavior 

following differential outcomes.  Cases in which the model had a poorer fit may have been 

driven by the discrepancy in overall risky choice behavior between phases.  For example, Rat E.6 

made 578 risky choices in the P[0] phase, but only 46 risky choices in the P[1] phase.  

Accordingly, the increased risk aversion in the P[1] phase seemingly drove the model fit below 

the actual rat data given the discrepancy in number of risky choices that were made between 

phases (and, thus, the number of choices that could follow the corresponding risky outcomes). 

Regardless of the individual rat biases, all rats were more likely to make a risky choice 

after a risky outcome than after a certain outcome, consistent with previously-reported 
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perseverative/stay biases in risky choice paradigms (see Worthy, Pang, & Byrne, 2013).  Some 

rats exhibited greater risky choice after risky outcomes in the P[0] phase than in the P[1] phase 

(e.g., Rats N.1 and E.1), while some rats exhibited the opposite pattern (e.g., Rats N.12 and E.8).  

Thus, the effect of manipulating differential losses is seemingly dependent on the individual rat, 

indicating individual differences in loss sensitivity (Marshall & Kirkpatrick, 2015). 

In the P[0] phase, the majority of the rats exhibited greater risky choice following larger 

risky outcome magnitudes (but see, e.g., Rats N.5 and E.11), which is consistent with general 

win-stay/lose-shift behavior in rats (Larkin et al., 2016; Marshall & Kirkpatrick, 2013; Stopper & 

Floresco, 2011).  For the rats that showed a contrasting pattern (e.g., Rats N.5 and E.11), the 

elevated risky choice following risky losses is indicative of elevated loss-chasing, potentially 

reflecting frustration-induced choice perseverance to compensate for the previous losses (see 

Breen & Zuckerman, 1999; Rogers et al., 2013; Tremblay et al., 2014).  Furthermore, many of 

the rats in both groups exhibited the averaged pattern shown in Figure 2.5, in which more risky 

choices were made after R-0 than after R-1 outcomes in the P[1] phase (but see, e.g., Rats N.3 

and E.3).  As this latter result has been demonstrated previously (Marshall & Kirkpatrick, 2015), 

these results indicated that trial-by-trial risky choice behavior was strongly impacted by the 

relationship between the frequency of large risky gains (R-11) and that of differential losses.  

Specifically, in the P[0] condition, the probabilities of the R-0 and R-11 outcome were anti-

correlated, such that increases in p(R-0) were associated with decreases in p(R-11).  In contrast, 

the probabilities of R-0 and R-11 were correlated in the P[1] phase.  The greater risky choice 

following R-0 outcomes than R-1 outcomes in the P[1] phase may have potentially reflected the 

rats’ tracking p(R-11); the more that they receive R-0 outcomes, the more likely they were to 

receive subsequent R-11 outcomes.  Accordingly, the differential effects of phase on risky choice 
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following R-0 and R-1 outcomes may indicate that the rats were using a learned model of their 

environment to make sequential decisions (Huh, Jo, Kim, Sul, & Jung, 2009; also see Daw, 

Gershman, Seymour, Dayan, & Dolan, 2011; Doll, Simon, & Daw, 2012). 

Outcome and choice history. The first molecular analysis evaluated the effect of the most 

recent outcome on subsequent choice.  Previous research has indicated that the influence of a 

given previous outcome on subsequent choice decays with each subsequent outcome (e.g., 

Devenport et al., 1997; Glimcher, 2011).  This decay has been proposed to be exponential (Bayer 

& Glimcher, 2005; Daw & Tobler, 2013; Glimcher, 2011), while other reports have suggested a 

hyperbolic decay of past events (Devenport et al., 1997; also see Vasconcelos, Monteiro, Aw, & 

Kacelnik, 2010).  To our knowledge, while there have been several previous analyses of outcome 

and/or choice decay (Kennerley, Walton, Behrens, Buckley, & Rushworth, 2006; Kim, Lee, & 

Jung, 2013; Kim, Sul, Huh, Lee, & Jung, 2009; Kwak et al., 2014; Kumaran, Warren, & Tranel, 

2015; Lau & Glimcher, 2005; Lee, Conroy, McGreevy, & Barraclough, 2004; McCoy & Platt, 

2005; Sul, Kim, Huh, Lee, & Jung, 2010; Walton, Behrens, Buckley, Rudebeck, & Rushworth, 

2010), none of them have reported the functional form of such decay.  Moreover, Rutledge et al. 

(2009) only fit an exponential function to their decay data (also see Beeler, Daw, Frazier, & 

Zhuang, 2010).  Thus, a second molecular analysis was conducted to determine whether 

differential risky-outcome feedback affected the decaying influence of past events on subsequent 

choice, as well as to determine the function that best characterized the nature of decay.  As 

described above, separate analyses were conducted for outcome history and choice history. 

 The first component of this analysis involved determining the regression coefficients of 

previous outcomes and choices as a function of outcome lag and choice lag, respectively.  

Analyses involved 141,324 observations, and included the overall intercept, a random intercept, 
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and fixed and random effects of the previous 9 outcomes in the outcome history analysis (i.e., the 

random-model including 10 previous outcomes did not converge on a solution) and previous 10 

choices in the choice history analysis.  Tables 2.4 and 2.5 include the mixed-effects output for 

the outcome history and choice history analyses, respectively.  Intuitively, this analysis is a win-

stay/lose-shift analysis, in which more positive slopes reflect a greater likelihood of making risky 

choices after risky choices (or greater risky outcome magnitudes) and of making certain choices 

after certain choices (or greater certain outcome magnitudes).  For both histories, there was a 

decay in regression coefficients as a function of previous outcome and choice:  More recent 

outcomes and choices had greater influences over subsequent choices than more temporally 

distant outcomes and choices.  All regression coefficients for outcomes and choices were 

significantly greater than 0, ts ≥ 3.85, ps < .001, suggesting that the past series of outcomes and 

choices had partial influence over subsequent choice behavior (see Landon, Davison, & Elliffe, 

2002). 

The random coefficients were analyzed via nonlinear mixed-effects models to determine 

if the decays of the outcome and choice coefficients were better characterized by exponential or 

hyperbolic functions (Eq. 2-5).  Figures 2.7 and 2.8 show the individual rat hyperbolic and 

exponential model fits for outcome history and choice history, respectively.  The decay rate 

parameter, k, was set as a fixed and random effect in the outcome and choice history analyses.  

The intercept parameter, A, was set as a fixed and random effect in the outcome history analysis. 

All rats showed a general decrease in regression coefficients in the outcome history 

analysis (Figure 2.7).  The hyperbolic model analysis of outcome history revealed a significant 

difference between feedback groups in decay rate (k), t(189) = 4.32, p < .001.  Group Extra-

Feedback (k = 1.10) showed a significantly greater decay in the influence of previous outcomes 



43 

compared to Group Normal-Feedback (k = 0.61).  However, there were no statistically 

significant differences in intercept (A) in the hyperbolic analysis, t(189) = 1.82, p = .070 (Group 

Extra-Feedback: A = 0.25; Group Normal-Feedback: A = 0.19).  The exponential outcome 

history analysis also revealed a significantly greater decay rate in Group Extra-Feedback (k = 

0.36) than in Group Normal-Feedback (k = 0.23), t(189) = 4.53, p < .001.  Moreover, Group 

Extra-Feedback showed a significantly higher intercept (A = 0.23) than Group Normal-Feedback 

(A = 0.17) in the exponential analysis, t(189) = 2.01, p = .045.  The hyperbolic model accounted 

for a better fit of the data than the exponential model (hyperbolic AIC = -974.25, exponential 

AIC = -834.97).  

The choice history analysis revealed comparable results as the outcome history analysis.  

All rats showed a general decrease in normalized regression coefficients in the choice history 

analysis (Figure 2.8).  Specifically, there was a significantly greater decay rate in Group Extra-

Feedback (k = 2.67) than in Group Normal-Feedback (k = 1.77), t(215) = 2.34, p = .020.  The 

exponential analysis also indicated that Group Extra-Feedback exhibited a significantly greater 

decay rate (k = 0.68) than Group Normal-Feedback (k = 0.55), t(215) = 2.52, p = .012.  As in the 

analysis of outcome history, the hyperbolic model accounted for a better fit of the data in the 

choice history analysis (hyperbolic AIC = -541.79, exponential AIC = -330.89). 

The current analysis revealed two key results: (1) Group Extra-Feedback exhibited a 

steeper decay rate of outcome and choice histories, and (2) the hyperbolic model accounted for 

the outcome and choice decay rate coefficients better than the exponential model did.  Steeper 

decay rates have been suggested to be analogous to greater learning rates (see Glimcher, 2011).  

Interestingly, previous research has suggested that steeper learning rates are related to greater 

risk aversion in the presence of gains (March, 1996).  Accordingly, as Group Extra-Feedback 
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exhibited greater risk proneness and steeper decay rate coefficients than Group Normal-

Feedback, these results may suggest that the idiosyncratic rates of decaying coefficients of 

outcome and choice history are not necessarily indicators of individual differences in learning, 

but perhaps those in the decision to perseverate on and/or exploit the previously made choice.  

Similarly, as risky foraging decisions have been suggested to be made in bouts (Krebs, Kacelnik, 

& Taylor, 1978), individual differences in outcome and choice history decay rates may reflect 

individual differences in sampling behavior and bout length. 

As revealed by the analysis, the decays of outcome and choice coefficients were better 

described by a hyperbolic than an exponential function.  Exponential decay is assumed within 

traditional reinforcement learning algorithms (Sutton & Barto, 1998), in which the influence of 

past events and the value of future events decays in an exponential fashion (see Bayer & 

Glimcher, 2005; Daw & Tobler, 2013; Glimcher, 2011).  However, given the considerable 

support for hyperbolic discounting of future rewards (e.g., Myerson & Green, 1995), recent 

efforts have been made to implement a hyperbolic version of classic reinforcement learning 

principles (Alexander & Brown, 2010).  Accordingly, trial-by-trial models of decision making 

may be improved by employing a hyperbolic decay of previous events, especially if future 

research corroborates the current results (see Maia, 2009). 

 Goal-tracking behavior 

Overall effects. Goal-tracking behavior was analyzed to determine whether the 

differential feedback conditions affected the rats’ head-entry behavior into the food trough 

following reinforcer delivery.  Specifically, as Group Extra-Feedback received the same 

feedback across risky outcomes, it was hypothesized that these rats would continue to exhibit 

head entries to retrieve food even when food was not delivered (i.e., R-0 outcomes).  This 
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analysis involved observations from trials in which rats made a risky choice, totaling 30,116 

observations, and included the overall intercept, a categorical predictor of feedback group 

(Normal-Feedback, Extra-Feedback), and continuous predictors of phase (P[0], P[1]) and risky 

outcome magnitude (R-0, R-1, R-11).  Here, risky outcome magnitude was treated as continuous 

because the behavior following only one choice’s outcomes was analyzed, such that the different 

choice’s outcomes did not have to be placed along the same continuum; furthermore, there was 

no theoretical backing to assume a non-monotonic relationship between goal-tracking behavior 

and risky outcome magnitude in the current paradigm, as was done for the molecular analysis 

above (Marshall & Kirkpatrick, 2015).  Feedback group was effect coded with Normal-

Feedback/Extra-Feedback as -1/+1.  The fixed-effects structure included the full factorial model 

of Feedback Group × Risky Outcome Magnitude + Phase × Risky Outcome Magnitude.  

Intercept, phase, risky outcome magnitude, and Phase × Risky Outcome Magnitude were random 

effects. 

Table 2.6 includes the full model output from the mixed-effects analyses, and Figure 2.9 

shows the arithmetic mean number of head entries during the 5-s temporal window following the 

onset of risky outcome delivery as a function of risky outcome magnitude and feedback group.  

The arithmetic mean of these count data were shown due to the frequency of zeros in the data, 

and as the link function of the generalized linear mixed effects model acts on the arithmetic mean 

rather than the geometric mean of the data.  Group Extra-Feedback exhibited a significantly 

greater number of head entries compared to Group Normal-Feedback, t(30110) = 3.68, p < .001.  

The number of head entries significantly increased as a function of risky outcome magnitude, 

t(30110) = 19.12, p < .001.  Moreover there was a significant Feedback Group × Risky Outcome 

Magnitude interaction, t(30110) = -3.31, p = .001.  Specifically, Group Extra-Feedback exhibited 
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a shallower slope as a function of risky outcome magnitude (slope = 0.05) compared to Group 

Normal-Feedback (slope = 0.07). 

Overall, these goal-tracking results provide potential face validity to the current 

paradigm.  Group Extra-Feedback received the same added multimodal stimuli following all 

risky choices, such that the additional tactile, auditory, and visual stimulation were always 

presented regardless of risky outcome magnitude.  If Group Extra-Feedback was only attentive to 

the food outcome that was delivered, then the rats in this group would be expected to exhibit 

similar goal-tracking behavior as Group Normal-Feedback.  However, not only did Group Extra-

Feedback exhibit more head entries, but a shallower relationship between risky outcome 

magnitude and head-entry behavior.  Accordingly, Group Extra-Feedback’s goal-tracking 

behavior was seemingly governed by both the actual risky outcome magnitude, as well as the 

additional feedback that unreliably predicted the delivered risky outcome. 

These goal-tracking results suggest that Group Extra-Feedback exhibited a reduced 

sensitivity to risky outcome magnitude.  This reduced sensitivity may potentially be driven by 

the reduced salience of individual risky outcome magnitudes due to their presentations being 

more similar than they were for Group Normal-Feedback.  Furthermore, this reduced sensitivity 

and reduced salience of differential risky outcomes may have contributed to the steeper outcome 

and choice history decay rates in Group Extra-Feedback; that is, the similarities in risky outcome 

presentation may have disrupted Group Extra-Feedback’s memory for past outcomes, thereby 

resulting in the rats in Group Extra-Feedback not using the past history of outcomes and choices 

as determinants of future behavior to the same extent that the rats in Group Normal-Feedback 

did.  Accordingly, a reduced sensitivity to differential risky outcomes, reduced salience of 

differential risky outcomes (especially risky losses), and the steeper outcome and choice history 
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decay rates may collectively predict the heightened risky choice behavior in Group Extra-

Feedback following risky outcomes.  If so, then the presentation of LDWs may result in 

increased risk taking due to reward hyposensitivity during gambling (see Lole, Gonsalvez, & 

Barry, 2015; but also see Lole, Gonsalvez, Barry, & Blaszczynski, 2014).  Therefore, in 

conjunction with those from the molar and molecular choice analyses, these results suggest that 

the differential feedback had substantial influence over Group Extra-Feedback’s behavior. 

Individual differences. The random effects model of goal-tracking behavior included 

intercept, phase, risky outcome magnitude, and Phase × Risky Outcome Magnitude.  Indeed, 

there were substantial individual differences in head-entry/goal-tracking behavior as a function 

of these random effects (Figure 2.10).  In both the P[0] and P[1] phases, the majority of rats 

showed increased head-entry behavior as a function of risky outcome magnitude (but see, e.g., 

Rats E.8 and N.12).  Additionally, while many rats behaved relatively similarly across phases as 

a function of risky outcome magnitude (e.g., Rats E.1 and N.3), other rats exhibited differential 

head-entry behavior across risky outcome magnitudes in the different phases (e.g. Rats E.3 and 

N.9).  As seen in Figure 2.10, Rat N.5 exhibited zero head entries across risky outcome 

magnitudes in the P[1] phase, which is likely due to an undiagnosed equipment issue.  

Accordingly, the mixed-effects model described above (Table 2.6) was also run without Rat N.5 

to determine if the patterns in Figure 2.9 were driven by this rat’s performance.  However, the 

significant effects and interactions identified in Table 2.6 were maintained. 

 RL models 

In addition to the formal statistical analyses described above, the data were modelled with 

different RL algorithms.  Interestingly, the results from the outcome and choice history analyses 

suggested that the decay rates were better characterized by a hyperbolic than exponential 
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function.  Even though exponential decay is assumed with traditional RL models (e.g., Glimcher, 

2011), such that the current data may be better characterized by modifications of RL algorithms, 

there has been widespread application of RL models to risky decision making data (e.g., Daw et 

al., 2011; Niv et al., 2012).  Moreover, modifications to simple RL models (as described above) 

and the support for such modifications present the opportunity to test competing hypotheses as to 

the mechanisms that best account for individual differences in risky choice and loss-chasing 

behaviors.  Accordingly, the RL modelling approach described above was employed. 

The first step of RL modelling was parameter recovery, in which data were simulated 

with uniformly-distributed parameters and then fit with the RL models to gauge how well the 

models identified the data generative mechanisms and parameters.  The second step of the model 

fitting was fitting the RL models to the observed rat data. 

Parameter recovery. Figure 2.11 shows the parameter recovery results of the Simple, 

Asymmetric, Valence-Attentive, and Weighted-Reference-Point RL models.  In each panel, the 

thick line represents the unit diagonal and each data point represents the parameter that was used 

in its simulation, and the corresponding fitted parameter.  Each panel of Figure 2.11 includes all 

simulations except those in which the fitted parameters exceeded the boundaries of the 

distribution from which the simulated parameters were sampled.  This occurred in 4.3% of the 

simulations of Simple RL, 7.8% of the simulations of Asymmetric RL, 5.2% of the simulations 

of Valence-Attentive RL, and 27.8% of the simulations of Weighted-Reference-Point RL.  The 

Simple, Asymmetric, and Valence-Attentive RL models did well to recover the parameters from 

the simulated data.  However, the Weighted-Reference-Point RL model did poorly to recover the 

simulated parameters, even when one of the learning-rate parameters (αZ) was removed (Figure 

2.11).  This was likely due to over-parameterization and instability of the Weighted-Reference-
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Point RL model (e.g., both learning-rate parameters acted simultaneously on the different 

prediction errors that were relative to the same reward outcome).  For example, given similarly 

sized prediction errors relative to different reference points, concurrent increases and decreases 

in the two corresponding learning rates would produce similar adjustments in value, such that 

these parameters would become unidentifiable.  Thus, the Simple, Asymmetric, and Valence-

Attentive RL models were fit to the data. 

Model selection. Figure 2.12 shows the AICs for the best-fitting Simple, Asymmetric, 

and Valence-Attentive RL models for each rat’s data.  The thick line in Figure 2.12 represents 

the unit diagonal, such that data points corresponding to the Simple or Valence-Attentive RL 

models below the diagonal reflect support for the Simple or Valence-Attentive RL models, 

respectively, and data points above the diagonal represent support for the Asymmetric RL model.  

Even through 300 iterations, the Simple RL model did not converge on a viable solution for 14 

rats.  In contrast, the Valence-Attentive and Asymmetric RL models converged on a viable 

solution for all 24 rats.  The mean (median) AIC of the viable Asymmetric RL fits was 4409.5 

(4171.1), while those of the Valence-Attentive RL and viable Simple RL fits were 7783.8 

(7763.9) and 5972.2 (6438.4), respectively.  For two rats, the Valence-Attentive RL model 

provided a better account of the data than the Asymmetric RL model (max ΔAIC = 36.7); 

however, for the remaining rats, the mean ΔAIC in support of the Asymmetric RL model was 

3682.8.  Thus, Asymmetric RL provided the best account of the risky choice data. 

Model fit (Asymmetric RL). Figure 2.13 shows the simulations of the fitted Asymmetric 

RL model parameters to individual trial data of five different rats.  The alternating gray and 

white boxes in Figure 2.13 indicate the different phases and sub-phases (see Table 2.1).  The 

observed data in Figure 2.13 were smoothed over a moving nine-trial window (see Lau & 
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Glimcher, 2005).  The panels represent the data and model fit corresponding to the minimum, 

25th percentile, median, 75th percentile, and maximum of the ω2 values (i.e., the top panel 

includes the model with the lowest ω2 value; the bottom panel, the largest ω2 value).  Even for 

the data that were most poorly fit by the model in terms of ω2 (Figure 2.13, top panel), the model 

approximated the rat’s behavior. 

Table 2.7 shows the summary statistics of the best-fitting parameter estimates of the 

Asymmetric RL model, as well as the corresponding fit indices.  The gain-based learning rates / 

value-updating rate (αG) were significantly smaller than those of losses (αL), z = 4.29, p < .001 

(Wilcoxon signed-ranks test).  As the rats learned more readily from losses than they did gains, 

these data suggest that the rats were seemingly loss averse (Bhatti, Jang, Kralik, & Jeong, 2014), 

and more sensitive to losses than they were to gains (Marshall & Kirkpatrick, 2015).  In contrast, 

there were no differences between Groups Extra-Feedback and Normal-Feedback in αG, z = 0.72, 

p = .470, αL, z = -0.14, p = .885, and β, z = -0.84, p = .403 (Wilcoxon rank-sum tests), suggesting 

that the group differences in choice behavior cannot be fully explained in terms of significantly 

different gain-based learning rates, loss-based learning rates, and choice stochasticity. 

To determine whether individual differences in local risky choice (see Figure 2.6) could 

be elucidated by individual differences in model parameters and whether the model parameters 

differentiated behavioral differences across feedback groups, simple and multiple linear 

regression models were performed.  In the first series of models, mean risky choice across all 

phases and probabilities was regressed on αG, αL, and β.  The data and the model parameters 

were log-transformed to correct for positive skewness.  Figure 2.14 (left panel) shows the 

significant positive relationship between αG and mean risky choice, b = 0.44, t(22) = 5.26, p < 

.001, model R2 = .56.  In contrast, there was no relationship between mean risky choice and αL 
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(Figure 2.14, middle panel), b = -0.18, t(22) = -1.17, p = .254, model R2 = .06.  Lastly, there was 

a significant negative correlation between β and mean risky choice (Figure 2.14, right panel), b 

= -0.51, t(22) = -2.39, p = .026, model R2 = .21. 

A second series of regression models involved two derived measures of molecular choice 

behavior (Figure 2.15).  First, the regression criterion was a measure of win-stay/lose-shift 

behavior following risky choice outcomes.  In all conditions, the R-0 outcome was always an 

objective loss and the R-11 outcome was always an objective gain.  Accordingly, a Win-Stay 

Index was derived as dividing the proportion of risky choices following R-11 outcomes by that 

following R-0 outcomes.  Larger values indicated a greater proportion of risky choice following 

gains than losses.  Accordingly, the inverse of the Win-Stay Index can be interpreted as an index 

of loss-chasing behavior, such that smaller values of the Win-Stay Index were indicative of 

relatively more risky choices following risky losses than gains. 

The second criterion was a measure of sensitivity to loss magnitude.  A Loss Sensitivity 

Index was derived as dividing the proportion of risky choices following R-1 outcomes by that 

following R-0 outcomes (i.e., R-1 / R-0).  Here, larger values indicated greater sensitivity to loss 

magnitude.  Accordingly, larger values were also indicative of increasingly different rates of 

loss-chasing behavior following differential losses.  In these models, the indices were separately 

regressed on αG, αL, and the αL:αG ratio to determine how win-stay behavior and loss sensitivity 

were related to gain- and loss-based learning rates, as well as to the relative rate of learning from 

gains versus losses.  For each index, the models involved one of the three aforementioned model 

parameter measures, feedback group, and the corresponding interaction to determine whether 

feedback group moderated the relationship between the modelled parameters and behavioral 

indices of local risky choice behavior.  The main effects and interaction were entered 
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simultaneously into the model.  Feedback group was effect coded with Normal-Feedback/Extra-

Feedback as -1/+1, and the model parameters were mean-centered. 

The top-left panel of Figure 2.15 shows the relationship between αG and win-stay 

behavior.  There was no main effect of feedback group, b = 0.03, t(20) = 0.64, p = .529, no main 

effect of αG, b = 0.06, t(20) = 0.89, p = .382, and no Feedback Group × αG interaction, b = -0.13, 

t(20) = -1.92, p = .069.  The top-middle panel of Figure 2.15 shows the relationship between αL 

and win-stay behavior.  Win-stay behavior significantly increased with αL, b = 0.18, t(20) = 2.26, 

p = .035, but there was no main effect of Group, b = 0.03, t(20) = 0.66, p = .516, and no Group × 

αL interaction, b = -0.08, t(20) -1.01, p = .326.  The significant effect of αL indicates that the 

more the rats learned from losses, the more likely they were to make risky choices after R-11 

outcomes than to make risky choices after R-0 outcomes.  Accordingly, the less that the rats 

learned from losses, the smaller the ratio of risky choice behavior after R-11 gains to risky 

choice behavior after R-0 losses.  This latter statement implies that the lower loss-based learning 

rates were associated with a lower likelihood of following R-11 gains than R-0 losses with risky 

choices; the lower the likelihood, the more that the rats chased R-0 losses relative to how often 

they stayed on the risky choice after receiving R-11 gains.  Lastly, the top-right panel of Figure 

2.15 shows the relationship between αL:αG and win-stay behavior.  There was no main effect of 

feedback group, b = 0.03, t(20) = 0.71, p = .483, no main effect of αL:αG, b = 0.03, t(20) = 0.53, 

p = .605, and no Feedback Group × αL:αG interaction, b = 0.03, t(20) = 0.51, p = .617. 

The bottom-left panel of Figure 2.15 shows the relationship between αG and loss 

sensitivity.  There was no main effect of feedback group, b = 0.01, t(20) = 0.20, p = .844, no 

main effect of αG, b = -0.003, t(20) = -0.06, p = .952, and no Feedback Group × αG interaction, b 

= -0.04, t(20) = -0.83, p = .418.  The bottom-middle panel of Figure 2.15 shows the relationship 
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between αL and loss sensitivity.  There was no main effect of feedback group, b = 0.002, t(20) = 

0.09, p = .926, but loss sensitivity significantly increased with αL, b = 0.22, t(20) = 6.67, p < 

.001, and there was a significant Feedback Group × αL interaction, b = -0.10, t(20) = -3.03, p = 

.007, with Group Extra-Feedback exhibiting a shallower slope (slope = 0.12) than Group 

Normal-Feedback (slope = 0.32).  This result suggests that loss-based learning rates significantly 

predicted loss sensitivity, and that the strength of this relationship was lower in Group Extra-

Feedback, who may have exhibited loss-processing or loss-based-learning deficits due to the 

more similar presentations of all risky outcomes compared to Group Normal-Feedback.  Indeed, 

this reduced sensitivity to losses is paralleled by the shallower relationship between risky 

outcome magnitude and goal-tracking described above (Figures 2.9 and 2.10).  The bottom-right 

panel of Figure 2.15 shows the relationship between αL:αG and loss sensitivity.  Loss sensitivity 

significantly increased with αL:αG, b = 0.09, t(20) = 2.72, p = .013, but there was no main effect 

of feedback group, b = 0.01, t(20) = 0.35, p = .733, and no Feedback Group × αL:αG interaction, 

b = -0.04, t(20) = -1.15, p = .262. 

The Asymmetric RL results provide key insight into the mechanisms governing 

individual differences in risky choice and loss-chasing behavior.  Specifically, individual 

differences in gain- and loss-based learning rates seem to primarily predict those in risky choice 

and loss-chasing behavior.  As revealed in Figure 2.14 (left panel), individuals who made more 

risky choices were also those that learned more readily from outcome gains, αG; theoretically, for 

the individuals with greater gain-based learning rates, the expected value of the risky choice 

would thus increase at a greater rate following R-11 outcomes, therefore increasing the 

likelihood of future risky choices.  Furthermore, comparisons of the fitted RL parameters with 

local risky choice behavior indicated that individual differences in αL were related to relative 
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staying behaviors following gains versus losses (Figure 2.15, top-middle panel).  Specifically, 

rats that were more likely to follow R-0 than R-11 outcomes with risky choices were those rats 

that less readily learned from losses, suggesting that deficits in loss-based learning may 

contribute to elevated loss-chasing behaviors in pathological gamblers (Clark, Liu, et al., 2013).  

Similarly, rats that more readily learned from losses also showed greater discrimination in 

behavior following differential risky losses (Figure 2.15, bottom-middle panel).  Notably, the 

Feedback Group × αL interaction on the Loss-Sensitivity Index complemented the results from 

the choice and goal-tracking analyses.  Specifically, Group Extra-Feedback exhibited a shallower 

relationship between αL and the Loss-Sensitivity Index, suggesting that the differential feedback 

may have impaired rats’ abilities to adapt their risky behaviors following differential losses.  In 

other words, the augmented feedback experienced by Group Extra-Feedback may have partially 

prohibited the rats’ abilities to translate their learning from losses to corresponding subsequent 

behaviors.  Thus, the differentiability of R-0 and R-1 losses by Group Extra-Feedback was 

seemingly limited by the extra multimodal feedback that was experienced with risky losses. 

 Interim summary 

The present experiment investigated the effect of differential risky outcome feedback on 

molar choice, molecular choice, the influence of past outcomes and choices on subsequent 

choice, and goal-tracking behavior.  Overall, the addition of extra multimodal stimuli to risky 

losses in Group Extra-Feedback increased risky choice behavior, especially following previous 

risky outcomes, suggesting that the accompanying multimodal stimuli with risky outcomes 

specifically affected choice behavior following these outcomes (Figure 2.5).  Moreover, choice 

behavior in Group Extra-Feedback, compared to Group Normal-Feedback, was more strongly 

affected by more recent outcomes/choices than by more temporally distant outcomes/choices, 
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suggesting that the extra multimodal stimuli decreased the extent to which past gains and losses 

affected future risky choice (Figures 2.7 and 2.8).  Indeed, the increased goal-tracking behavior 

in Group Extra-Feedback (Figure 2.9) may be explained by this shortened temporal window of 

previous outcome/choice influence.  The steeper decay rate of outcome and choice histories in 

Group Extra-Feedback may imply that the stimuli associated with these choice and outcome 

events did little to affect future behavior after only a few more trials.  Similarly, the reduced 

salience of losses given the consistent multimodal feedback across risky outcomes may have 

produced both the greater decay in outcome/choice influence, as well as the shallower sensitivity 

of goal-tracking behavior to risky outcome magnitude.  Thus, the extra multimodal stimuli may 

have increased risky choice and goal-tracking behaviors by constraining the effects of past losses 

on future choice behavior, such that the individual rats in Group Extra-Feedback were more 

sensitive to the frequency of gain-related stimuli than risky outcome magnitude relative to Group 

Normal-Feedback. 

The empirical results were paralleled by the fitting of multiple RL algorithms to the rats’ 

individual trial data to evaluate the psychological mechanisms governing individual differences 

in risky choice behavior across the two feedback groups.  The Asymmetric RL algorithm 

emerged as the best model, suggesting that individual differences in risky choice in the current 

task were most effectively captured by assuming differential gain- and loss-based learning rates.  

The rats exhibited greater loss-based than gain-based learning rates, but there were no overall 

group differences in the fitted Asymmetric RL parameters.  However, in conjunction with the 

proposed reduced effect of past risky losses on risky choice and goal-tracking behavior in Group 

Extra-Feedback, there was a significant interaction between feedback group and loss-based 

learning rates on loss sensitivity.  Specifically, Group Extra-Feedback exhibited a shallower 
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relationship between loss-based learning and loss sensitivity, suggesting that the consistent 

multimodal stimuli across all risky outcomes produced a deficit in processing risky losses.  The 

employment of such complex multimodal stimuli by casinos may encourage risky decision 

making by impairing individuals’ ability to incorporate aversive loss-type outcomes into their 

estimated value of differential actions/behaviors in their environments.  Indeed, individuals tend 

to overestimate how often they “won” when LDWs are present in the environment (M. J. Dixon 

et al., 2015), and problem gamblers have been shown to overestimate “win” frequency relative to 

non-problem gamblers (M. J. Dixon et al., 2014).  Individuals who become pathological 

gamblers may be more susceptible to continue gambling when LDWs are present, thereby 

leading to overestimates of “winning” and consequent continuations of gambling behavior.  
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Table 2.1 Probabilities of the risky-zero (R-0), R-1, and R-11 outcomes in the P[0] and P[1] 
conditions in each phase of Experiment 1 for Groups Extra-Feedback and Normal-
Feedback. Half of each group experienced one of two probability conditions across the two 
phases of Experiment 1.  Across all phases, the certain-two (C-2) and C-4 outcomes were 
delivered following certain choices with probabilities of .50.   

Group Order Phase 1 Phase 2 

Extra-Feedback 
(n=12) 

1 (n=6) 

P[0] 
R-0 = .10, .90, .50, .10 
R-1 = .45, .05, .25, .45 
R-11 = .45, .05, .25, .45 

P[1] 
R-0 = .05, .25, .45 
R-1 = .90, .50, .10 
R-11 = .05, .25, .45 

2 (n=6) 

P[1] 
R-0 = .45, .05, .25, .45 
R-1 = .10, .90, .50, .10 
R-11 = .45, .05, .25, .45 

P[0] 
R-0 = .90, .50, .10 
R-1 = .05, .25, .45 
R-11 = .05, .25, .45 

Normal-Feedback 
(n=12) 

1 (n=6) 

P[0] 
R-0 = .10, .90, .50, .10 
R-1 = .45, .05, .25, .45 
R-11 = .45, .05, .25, .45 

P[1] 
R-0 = .05, .25, .45 
R-1 = .90, .50, .10 
R-11 = .05, .25, .45 

2 (n=6) 

P[1] 
R-0 = .45, .05, .25, .45 
R-1 = .10, .90, .50, .10 
R-11 = .45, .05, .25, .45 

P[0] 
R-0 = .90, .50, .10 
R-1 = .05, .25, .45 
R-11 = .05, .25, .45 
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Table 2.2 Mixed-effects model output for the molar analyses of Experiment 1. Note: 
continuous variables were mean-centered, and categorical variables were effect coded with 
Group Normal-Feedback/Extra-Feedback (Feedback Group) as -1/+1. 

Factor Estimate T (158008) P 95% CI 

Intercept -2.18 -11.95 < .001 [-2.54, -1.83] 

Feedback Group 0.28 1.55 .122 [-0.08, 0.64] 

Phase -0.12 -0.43 .671 [-0.67, 0.43] 

Sub-Phase 0.67 8.61 < .001 [0.51, 0.82] 

Session -0.07 -4.94 < .001 [-0.10, -0.04] 

Feedback Group × Phase 0.25 0.86 .376 [-0.30, 0.79] 

Feedback Group × Sub-Phase 0.04 0.52 .604 [-0.11, 0.19] 

Phase × Sub-Phase -0.33 -1.52 .130 [-0.75, 0.10] 

Feedback Group × Session 0.01 0.64 .524 [-0.02, 0.04] 

Phase × Session -0.04 -5.92 < .001 [-0.05, -0.03] 

Sub-Phase × Session 0.16 55.85 < .001 [0.15, 0.16] 

Feedback Group × Phase × Sub-Phase 0.19 0.88 .378 [-0.23, 0.61] 

Feedback Group × Phase × Session 0.04 6.18 < .001 [0.03, 0.05] 

Feedback Group × Sub-Phase × Session 0.02 8.00 < .001 [0.02, 0.03] 

Phase × Sub-Phase × Session 0.03 4.60 < .001 [0.02, 0.04] 
Feedback Group × Phase × Sub-Phase × 

Session 0.06 10.87 < .001 [0.05, 0.08] 

 

 

  



59 

Table 2.3 Mixed-effects model output for the molecular analyses of Experiment 1 
evaluating the effect of the previous outcome on subsequent choice behavior. Note: 
continuous variables were mean-centered, and categorical variables were effect coded with 
Group Normal-Feedback/Extra-Feedback (Feedback Group) as -1/+1. The reference level 
of previous outcome was the certain-two (C-2) outcome. C-4 = certain choice – 4-pellet 
outcome; R-0 = risky choice – 0-pellet outcome; R-1 = risky choice – 1-pellet outcome; R-11 
= risky choice – 11-pellet outcome 

Factor Estimate T (156318) P 95% CI 

Intercept -0.89 -8.90 < .001 [-1.09, -0.69] 

Feedback Group 0.22 2.18 .030 [0.02, 0.41] 

Phase -0.05 -0.25 .806 [-0.47, 0.36] 

Probability -1.05 -22.95 < .001 [-1.14, -0.96] 

C-4 -2.22 -15.41 < .001 [-2.50, -1.94] 

R-0 1.29 13.43 < .001 [1.10, 1.48] 

R-1 1.30 12.77 < .001 [1.10, 1.50] 

R-11 1.66 12.48 < .001 [1.40, 1.92] 

Feedback Group × Phase 0.18 0.83 .407 [-0.24, 0.59] 

Feedback Group × Probability 0.10 2.42 .016 [0.02, 0.19] 

Phase × Probability 0.30 3.29 .001 [0.12, 0.48] 

Feedback Group × C-4 -0.06 -0.44 .657 [-0.35, 0.22] 

Feedback Group × R-0 -0.03 -0.28 .779 [-0.21, 0.16] 

Feedback Group × R-1 0.05 0.49 .627 [-0.15, 0.24] 

Feedback Group × R-11 0.23 1.74 .083 [-0.03, 0.49] 

Phase × C-4 -0.04 -0.92 .356 [-0.13, 0.05] 

Phase × R-0 0.06 0.89 .374 [-0.07, 0.19] 

Phase × R-1 0.10 1.47 .143 [-0.03, 0.23] 

Phase × R-11 -0.25 -2.98 .003 [-0.41, -0.08] 

Probability × C-4 -0.05 -0.74 .461 [-0.17, 0.08] 

Probability × R-0 -0.26 -2.75 .006 [-0.45, -0.08] 

Probability × R-1 -0.22 -2.27 .023 [-0.41, -0.03] 

Probability × R-11 0.33 2.74 .006 [0.09, 0.57] 

Feedback Group × Phase × Probability -0.23 -3.32 .001 [-0.36, -0.09] 
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Factor Estimate T (156318) P 95% CI 

Feedback Group × Phase × C-4 -0.01 -0.32 .749 [-0.09, 0.07] 

Feedback Group × Phase × R-0 -0.13 -2.15 .031 [-0.25, -0.01] 

Feedback Group × Phase × R-1 -0.14 -2.24 .025 [-0.25, -0.02] 

Feedback Group × Phase × R-11 0.22 3.75 < .001 [0.11, 0.34] 

Feedback Group × Probability × C-4 -0.09 -1.46 .144 [-0.21, 0.03] 

Feedback Group × Probability × R-0 -0.03 -0.33 .745 [-0.20, 0.14] 

Feedback Group × Probability × R-1 0.18 2.06 .039 [0.01, 0.34] 

Feedback Group × Probability × R-11 0.18 1.49 .137 [-0.06, 0.41] 

Phase × Probability × C-4 -0.21 -1.64 .102 [-0.46, 0.04] 

Phase × Probability × R-0 -0.75 -3.89 < .001 [-1.13, -0.37] 

Phase × Probability × R-1 0.84 4.27 < .001 [0.45, 1.22] 

Phase × Probability × R-11 0.18 0.72 .469 [-0.30, 0.66] 
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Table 2.4 Mixed-effects model output for the molecular analyses of Experiment 1 
evaluating the effect of the previous 9 outcomes on subsequent risky choice behavior. 

Factor Estimate T (141314) P 95% CI 

Intercept -0.89 -12.51 < .001 [-1.03, -0.75] 

Outcome – Lag 1 0.23 12.37 < .001 [0.19, 0.26] 

Outcome – Lag 2 0.11 15.27 < .001 [0.10, 0.13] 

Outcome – Lag 3 0.07 11.88 < .001 [0.06, 0.08] 

Outcome – Lag 4 0.06 10.89 < .001 [0.05, 0.07] 

Outcome – Lag 5 0.04 9.29 < .001 [0.03, 0.05] 

Outcome – Lag 6 0.04 8.53 < .001 [0.03, 0.05] 

Outcome – Lag 7 0.04 7.37 < .001 [0.03, 0.05] 

Outcome – Lag 8 0.04 8.04 < .001 [0.03, 0.04] 

Outcome – Lag 9 0.05 9.47 < .001 [0.04, 0.06] 
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Table 2.5 Mixed-effects model output for the molecular analyses of Experiment 1 
evaluating the effect of the previous 10 choices on subsequent risky choice behavior. 

Factor Estimate T (141313) P 95% CI 

Intercept -0.48 -13.62 < .001 [-0.54, -0.41] 

Choice – Lag 1 1.28 20.24 < .001 [1.16, 1.41] 

Choice – Lag 2 0.37 11.81 < .001 [0.30, 0.43] 

Choice – Lag 3 0.17 8.02 < .001 [0.13, 0.21] 

Choice – Lag 4 0.17 6.76 < .001 [0.12, 0.22] 

Choice – Lag 5 0.11 4.67 < .001 [0.06, 0.15] 

Choice – Lag 6 0.15 7.00 < .001 [0.11, 0.19] 

Choice – Lag 7 0.14 5.16 < .001 [0.09, 0.20] 

Choice – Lag 8 0.09 3.85 < .001 [0.05, 0.14] 

Choice – Lag 9 0.17 7.57 < .001 [0.13, 0.22] 

Choice – Lag 10 0.17 10.02 < .001 [0.14, 0.21] 
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Table 2.6 Mixed-effects model output for the goal-tracking analysis of Experiment 1 
evaluating the effect of phase, feedback group, and risky outcome magnitude on goal-
tracking behavior following the onset of risky outcome delivery. Note: continuous variables 
were mean-centered, and categorical variables were effect coded with Group Normal-
Feedback/Extra-Feedback (Feedback Group) as -1/+1. 

Factor Estimate T (30110) P 95% CI 

Intercept 0.37 8.11 < .001 [0.28, 0.46] 

Feedback Group 0.12 3.68 < .001 [0.06, 0.19] 

Phase -0.03 -0.54 .591 [-0.16, 0.09] 

Risky Outcome Magnitude 0.06 19.12 < .001 [0.05, 0.06] 

Feedback Group × Risky Outcome Magnitude -0.01 -3.31 .001 [-0.02, -0.004] 

Phase × Risky Outcome Magnitude 0.01 2.25 .025 [0.001, 0.02] 
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Table 2.7 Summary statistics of the best-fitting parameter estimates and goodness-of-fit 
indices of the Asymmetric Reinforcement Learning (RL) model. AIC = Akaike Information 
Criterion; ω2 = omega-squared. 

 αG αL β AIC Pseudo R2 (ω2) 

Minimum .0003 .0076 0.9636 2491.1 .07 

25th Percentile .0010 .0099 1.6041 3351.3 .32 

Median .0017 .0142 2.1505 4171.1 .49 

75th Percentile .0027 .0255 2.6080 5465.4 .70 

Maximum .0073 .0795 4.4161 7157.4 .87 

Mean .0022 .0209 2.2833 4409.5 .50 

Standard Deviation .0017 .0169 0.9489 1336.4 .24 
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Figure 2.1 External receptacle for receiving food pellets delivered from the alternative 
feeder for Group Extra-Feedback. 
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Figure 2.2 Proportion of choices for the risky outcome for Groups Extra-Feedback and 
Normal-Feedback as a function of session, phase (P[0], P[1]), and the probability of the R-0 
and R-1 outcomes in the P[0] and P[1] phases (i.e., sub-phase), respectively.  The P[0] | P[1] 
= .10 data are shown separately for Phase 1 and Phase 4. 
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Figure 2.3 Proportion of choices for the risky outcome as a function of session and sub-
phase (i.e., probability of manipulated outcome) for individual rats in the P[0] phase.  The 
first six rats of Groups Normal-Feedback and Extra-Feedback experienced the P[0] phase 
prior to the P[1] phase, while the remaining rats experienced the P[1] phase prior to the 
P[0] phase.  The dot-dash (P[0] = .10 (Data: P1)), dashed (P[0] = .90 (Data: P2)), dotted 
(P[0] = .50 (Data: P3)), and solid lines (P[0] = .10 (Data: P4)) represent the individual 
subject-fits from the best-fitting generalized linear mixed effects model. The rats in Group 
Normal-Feedback are labeled as “N.” and the rats in Group Extra-Feedback are labeled as 
“E.”. 
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Figure 2.4 Proportion of choices for the risky outcome as a function of session and sub-
phase (i.e., probability of manipulated outcome) for individual rats in the P[1] phase.  The 
first six rats of Groups Normal-Feedback and Extra-Feedback experienced the P[0] phase 
prior to the P[1] phase, while the remaining rats experienced the P[1] phase prior to the 
P[0] phase.  The dot-dash (P[1] = .10 (Data: P1)), dashed (P[1] = .90 (Data: P2)), dotted 
(P[1] = .50 (Data: P3)), and solid lines (P[1] = .10 (Data: P4)) represent the individual 
subject-fits from the best-fitting generalized linear mixed effects model. The rats in Group 
Normal-Feedback are labeled as “N.” and the rats in Group Extra-Feedback are labeled as 
“E.”. 

  
 

  



69 

Figure 2.5 Left: Proportion of choices for the risky outcome for Groups Extra-Feedback 
and Normal-Feedback as a function of phase (P[0], P[1]) and the outcome of the previous 
choice. Right: Proportion of choices for the risky outcome for Groups Extra-Feedback and 
Normal-Feedback as a function of probability of the manipulated outcome and the outcome 
of the previous choice. The dotted lines connecting the data points are intended to 
demonstrate the relationship between risky choice behavior following differential outcomes 
rather than to imply a continuous relationship.  C-2 = certain choice – 2 pellets; C-4 = 
certain choice – 4 pellets; R-0 = risky choice – 0 pellets; R-1 = risky choice – 1 pellet; R-11 = 
risky choice – 11 pellets. 
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Figure 2.6 Proportion of choices for the risky outcome as a function of the outcome of the 
previous choice and phase for individual rats.  The dashed (P[0]) and dotted lines (P[1]) 
represent the individual subject-fits from the best-fitting generalized linear mixed effects 
model. The rats in Group Normal-Feedback are labeled as “N.” and the rats in Group 
Extra-Feedback are labeled as “E.”. 
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Figure 2.7 Regression coefficients from the mixed-effects analysis evaluating the effect of 
the previous 9 outcomes on subsequent risky choice. N = Group Normal-Feedback; E = 
Group Extra-Feedback; Hyp. = hyperbolic model fit; Exp. = exponential model fit. 
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Figure 2.8 Normalized regression coefficients from the mixed-effects analysis evaluating 
the effect of the previous 10 choices on subsequent risky choice. N = Group Normal-
Feedback; E = Group Extra-Feedback; Hyp. = hyperbolic model fit; Exp. = exponential 
model fit. 
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Figure 2.9 Mean number of head entries into the food magazine during the 5-s temporal 
window following the onset of outcome delivery as a function of risky outcome magnitude 
and group. 
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Figure 2.10 Mean number of head entries into the food magazine during the 5-s temporal 
window following the onset of outcome delivery as a function of risky outcome magnitude 
and phase for individual rats.  The dashed (P[0]) and dotted lines (P[1]) represent the 
individual subject-fits from the best-fitting generalized linear mixed effects model. The rats 
in Group Normal-Feedback are labeled as “N.” and the rats in Group Extra-Feedback are 
labeled as “E.”. 
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Figure 2.11 Parameter recovery for the Simple, Asymmetric, Valence-Attentive, and 
Weighted-Reference-Point models in Experiment 1.  The thick dark lines are the unit 
diagonals. 
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Figure 2.12 Akaike Information Criterion (AIC) for the Asymmetric Reinforcement 
Learning (RL) model plotted against the AICs of the Simple and Valence-Attentive RL 
models.  Each data point represents the fit to an individual rat’s data. Model fits that did 
not converge were omitted.  
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Figure 2.13 Choice data (Data) and the predicted choice data from the Asymmetric RL 
model (Model) for each rat, ordered from top to bottom by how well the model fit the data 
in terms of omega-squared (ω2).  “Min” and “Max” refer to the data with the lowest and 
highest ω2, respectively.  “25%ile”, “Mdn”, and “75%ile” refer to the 25th, 50th, and 75th 
percentile of ω2, respectively.  The alternating gray and white boxes within each panel 
represent different phases and sub-phases (see Table 2.1).  The differential alignments of 
these phase markers reflect individual differences in trials completed within each phase. 
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Figure 2.14 Log-transformed mean risky choice plotted against the log-transformed αG 
(left), αL (center), and β parameters (right) as derived from the fitting of the Asymmetric 
RL model.  Each data point represents an individual rat.  The goodness-of-fit index of the 
best fitting regression line for the overall model is shown (R2). 
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Figure 2.15 Win-Stay (top panels) and Loss Sensitivity indices (bottom panels) plotted 
against the log-transformed αG (left panels), αL (middle panels), and αL to αG ratio (right 
panels) as derived from the fitting of the Asymmetric RL model.  Each data point 
represents an individual rat.  The rats in Group Normal-Feedback and Group Extra-
Feedback are distinguished. 
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Chapter 3 - Experiment 2 

The results of Experiment 1 revealed that manipulation of feedback and information in 

terms of miscued risky gains produced elevated rates of risky choice.  Ultimately, the general 

risky choice paradigm in Experiment 1 is parametrically unique relative to traditional analyses of 

risky choice in rats.  In Experiment 1, risky choices probabilistically resulted in two risky losses 

and one risky gain.  However, a more common approach in the literature has been to provide 

animals (and humans) with the choice between a smaller certain outcome (e.g., 1 pellet) and a 

single probabilistic larger outcome (e.g., 4 pellets; e.g., Cardinal & Howes, 2005; Floresco, St. 

Onge, Ghods-Sharifi, & Winstanley, 2008; Stopper & Floresco, 2011), in contrast to the variable 

non-zero reward magnitudes for both certain and risky choices described above (also see 

Kirkpatrick, Marshall, Smith, Koci, & Park, 2014; Marshall & Kirkpatrick, 2013, 2015).  

Alternatively, instead of probabilistic reward omission following a risky choice, other 

experimental procedures have included risky choice outcomes of variable reward magnitudes 

without the possibility of reward omission (e.g., Bateson & Kacelnik, 1995; Reboreda & 

Kacelnik, 1991).  Thus, risky choice procedures typically incorporate risk in terms of potential 

reward omission (Risk-Omission) or non-zero reward variability (Risk-Variability), but not both 

(but see Kirkpatrick et al., 2014; Marshall & Kirkpatrick, 2013, 2015).  Yet, as seen in 

Experiment 1, the manipulation of the risky loss probability (R-0, R-1) can differentially impact 

risky decision making on both molar and molecular levels depending on the magnitude of the 

risky loss that is manipulated. 

 Despite the similarities between the Risk-Omission and Risk-Variability procedures (i.e., 

a certain outcome versus a probabilistic larger outcome), the patterns of win-stay/lose-shift 

behavior are inconsistent across these procedures.  In Risk-Omission procedures, animals exhibit 
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traditional win-stay/lose-shift behavior, exhibiting greater risk-taking behavior following risky 

wins (or gains) and a relatively reduced likelihood of risk-taking behavior following losses (e.g., 

Stopper & Floresco, 2011).  However, in Risk-Variability procedures, McCoy and Platt (2005) 

and Hayden and Platt (2009) reported that macaques and humans, respectively, exhibited greater 

risk-taking behavior following risky outcomes as the previous risky outcome deviated more from 

the expected value of the risky choice (also see O'Neill & Schultz, 2010); in other words, greater 

risky losses and greater risky gains were followed by an increased likelihood of subsequent risky 

choices.  Thus, loss-chasing behavior may depend on not just the previous outcome, but also on 

the parametric structure of the environment (i.e., reward omission, reward variability).  Despite 

repeated experiences, behavior within a Risk-Omission or Risk-Variability paradigm could be 

fundamentally altered by the addition of a non-zero variable-reward amount or reward omission, 

respectively.  For example, if a Risk-Variability paradigm with risky outcomes of 1 and 11 

pellets were modified to include reward omission, the 1-pellet outcome would now be bounded 

by outcomes of differential feedback (i.e., the absence of feedback in reward omission and the 

presence of feedback with the 11-pellet outcome).  The experience of reward omission may 

affect the encoding of the 1-pellet outcome, as the feedback of a 1-pellet outcome is now a 

mixture of loss- and gain-based information from the 0- and 11-pellet outcomes, respectively.  

The simple inclusion of reward omission may transform the 1-pellet outcome into an LDW as it 

is a loss relative to expectation, but also accompanied by gain-related stimuli that do not co-

occur with reward omission.  Such dynamic risk-taking environments may be likened to ticketing 

and point/demerit systems in regards to driving.  For example, the issuance of a warning instead 

of a citation (i.e., relative win) by a police offer for a moving violation may be encoded 
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differently depending on whether such warnings in fact appear on the individual’s driving record 

(i.e., potential loss). 

Accordingly, there were two goals of the present experiment.  The first goal was to 

determine potential differences in loss-chasing behavior in both Risk-Omission and Risk-

Variability procedures.  After exposure to each of these environments, the Risk-Variability 

procedure was modified to include reward omission, and the Risk-Omission procedure was 

modified to include a smaller non-zero 1-pellet reward.  The addition of a second loss (i.e., 1-

pellet outcome) to the Risk-Omission procedure introduced a potential LDW to the experimental 

environment.  As described above, the addition of a second loss (i.e., reward omission) to the 

Risk-Variability procedure may also transform the 1-pellet outcome into an LDW.  Accordingly, 

a 1-pellet outcome in the Risk-Variability procedure may be encoded considerably differently 

upon the introduction of probabilistic reward omission.  Indeed, the mechanisms by which 

individuals process the combination of loss-based stimuli (e.g., the magnitude of the 1-pellet 

reward) and gain-based stimuli (e.g., reward delivery being accompanied by feeder operation) 

has implications for how LDWs are processed in human participants.  If the prospect of potential 

reward omission is in fact necessary for the 1-pellet outcome to be treated as an LDW, then this 

experiment may differentiate the possible impact of LDWs on loss-chasing behavior when the 1-

pellet outcome had already been experienced (i.e., Risk-Variability) or is newly introduced 

within the environment (i.e., Risk-Omission).  Thus, the present experiment manipulated the 

feedback and information provided by risky losses in terms of the addition of alternative risky 

outcomes, as Experiment 1 did with the added presentation of multimodal feedback.   

As in Experiment 1, multiple reinforcement-learning (RL) models were fit to the data.  

The parameters of these models were correlated with the rats’ behaviors to determine the overall 
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involvement of the corresponding psychological mechanisms in loss-chasing behavior, providing 

insight into the explanatory factors related to individual susceptibilities to exhibit loss-chasing 

and risk-taking behaviors.  Translationally, the results are applicable to the development of 

subject-specific therapies to treat various maladaptive behaviors given the characteristics of the 

corresponding outcome history of such risky choices. 

 Method 

 Animals 

Twenty-four experimentally-naive male Sprague-Dawley rats, approximately 21 days of 

age on arrival, served as subjects.  The housing and husbandry conditions were identical to those 

described in Experiment 1, with the exception that the reverse 12:12 hr light:dark schedule was 

set such that the lights turned off at approximately 7:00 am. 

 Apparatus 

The experimental apparatus was identical to that described in Experiment 1, except that 

the external receptacle (Figure 2.1) was not used in this experiment. 

Procedure 

Magazine and lever-press training. Magazine and lever-press training procedures were 

identical to those described in Experiment 1.  There was one session of magazine training and 

two sessions of lever-press training. 

Risky choice task. The risky choice task was identical to that experienced by Group 

Normal-Feedback in Experiment 1 with the following exceptions.  Table 3.1 depicts the design 

of this experiment.  Each pair of rats was randomly partitioned into one of two groups (Equal-

Risk and Unequal-Risk), and the task was divided into two phases of different risk paradigms 

(Risk-Omission, Risk-Variability), each composed of two sub-phases of different loss conditions 
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(One-Loss, Two-Loss).  Here, One-Loss and Two-Loss refer to the number of risky outcome 

magnitudes regarded as losses relative to the expected value of both the risky and certain 

choices. 

The One-Loss sub-phase of each risk paradigm occurred before the corresponding Two-

Loss sub-phase.  In the Risk-Omission/One-Loss sub-phase, risky choices resulted in the 

probabilistic delivery of 0 (R-0) or 11 food pellets (R-11).  In the Risk-Variability/One-Loss sub-

phase, risky choices resulted in the probabilistic delivery or 1 (R-1) or 11 food pellets (R-11).  

For Group Equal-Risk, the probability of each of these outcomes following a risky choice was 

.50.  For Group Unequal-Risk, the probability of the smaller outcome (0 pellets in Risk-

Omission, 1 pellet in Risk-Variability) was equal to .67, such that p(R-11) = .33.  The four risky 

forced-choice trials twice resulted in each of the corresponding risky outcome magnitudes.  In 

the Risk-Omission and Risk-Variability/Two-Loss sub-phases for Groups Equal-Risk and 

Unequal-Risk, risky choices probabilistically resulted in the delivery of R-0, R-1, and R-11 

outcomes (ps = 0.33).  For the Two-Loss sub-phases, the four risky forced-choice trials twice 

resulted in each of the non-zero risky outcome magnitudes (R-1, R-11).  Thus, while the initial 

probability conditions were different for Groups Equal-Risk and Unequal-Risk in the One-Loss 

sub-phases, they were equated in the Two-Loss sub-phases.  Half of the rats in each group 

experienced the Risk-Omission phases (One-Loss  Two-Loss) followed by the Risk-

Variability phases (One-Loss  Two-Loss), and vice versa for the other half of the rats.  Each 

sub-phase lasted for 10 sessions.  Each session lasted until all free-choice trials were completed 

or for approximately 2 hr. 
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 Data analysis 

Choice behavior. The choice behavior analyses were identical to those described in 

Experiment 1 with the following exceptions.  One session for two different rats was removed 

from data analysis due to equipment error; cursory analyses of mean choice behavior across rats 

before and after each of these sessions suggested that the equipment errors did not considerably 

impact subsequent choice behavior.  Regarding the mixed-effects models, potential fixed effects 

for the molar analyses included group (Equal-Risk/Unequal-Risk), risk paradigm (Risk-

Omission/Risk-Variability), loss condition (One-Loss/Two-Loss), session, and their interactions.  

Potential random effects included the aforementioned fixed effects except for group.  Previous 

outcome was also a potential fixed and random effect in the molecular analyses.  As in 

Experiment 1, because the purpose of this analysis concerned the effects of the group, risk-

paradigm, and loss-condition manipulations on molecular risky choice behavior, the predictor of 

session was not included in these analyses. 

In regards to the analysis of outcome and choice histories, there was a significant 

correlation between previous outcome and previous choice coding as in Experiment 1, rs > .70, 

ps < .001.  Accordingly, the individual rats’ outcome and choice histories were analyzed 

separately.  Equations 2 and 3, which included free parameters for the intercept (A) and decay 

rate (k), were employed for the outcome history analysis.  As in Experiment 1, the individual 

rats’ regression coefficients in the choice history analysis were normalized by each rat’s 

maximum regression coefficient, and the hyperbolic and exponential equations with only the 

decay rate parameter were fit to these data (Eq. 4 and 5).  Lastly, in contrast to the 9 previous 

outcomes that were used in the outcome history analysis in Experiment 1, the outcome history 

analysis in the current experiment included the 10 previous outcomes. 
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Reinforcement learning (RL) models. RL model analyses were identical to those 

described in Experiment 1. 

 Results and Discussion 

 Choice behavior 

Molar analysis.  

Overall effects. The molar analysis of risky choice was conducted to examine the effects 

of the loss-condition and risk-paradigm manipulations across groups.  Analysis involved 89,923 

observations, and included the overall intercept, categorical predictors of group (Unequal-Risk, 

Equal-Risk) and risk paradigm (Risk-Variability, Risk-Omission), and continuous predictors of 

loss condition (One-Loss, Two-Loss), and session.  The categorical predictors were effect coded 

with Unequal-Risk/Equal-Risk as -1/+1 and Risk-Variability/Risk-Omission -1/+1.  The fixed-

effects structure included the full factorial model of Group × Risk Paradigm × Loss Condition × 

Session.  Intercept, risk paradigm, loss condition, session, and Risk Paradigm × Loss Condition 

were random effects.   

Table 3.2 shows the full model output from the mixed-effects analysis.  Group Equal-

Risk was significantly more likely to make risky choices relative to Group Unequal-Risk, 

t(89907) = 3.38, p = .001.  This main effect was expected, as p(R-11) was greater for Group 

Equal-Risk than for Group Unequal-Risk across conditions.  Accordingly, this effect confirms 

that the mean group differences were sensitive to the between-groups manipulation. 

Analysis also revealed a Risk Paradigm × Loss Condition interaction, t(89907) = -2.16, p 

= .031.  In the Risk-Omission phases, there was a decrease in risky choice from the One-Loss to 

Two-Loss conditions (slope = -0.21); thus, the addition of a 1-pellet loss increased risk aversion.  

In contrast, there was an increase in risky choice from the One-Loss to Two-Loss conditions in 
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the Risk-Variability condition (slope = 0.32), in that the addition of a 0-pellet loss reduced risk 

aversion.  These results are counterintuitive, as they imply that risk aversion is decreased when 

greater losses are added as potential risky outcomes.  However, as described below, these results 

are ably explained in terms of how risky choice behavior changed as a function of session across 

the One- and Two-Loss sub-phases. 

The analysis also indicated that there was a significant Group × Risk Paradigm × Loss 

Condition interaction (Figure 3.1), t(89907) = 3.15, p = .002 (Table 3.2).  Here, there were group 

differences in how risky choice behavior was affected in the Two-Loss sub-phases depending on 

whether the rats were in the Risk-Omission or Risk-Variability phases.  With the exception of 

Group Unequal-Risk in the Risk-Omission phases, there were increases in risky choice when the 

second risky loss was added in the Two-Loss phase.  Simple slopes computations revealed 

positive slopes for Group Equal-Risk in the Risk-Omission (slope = 0.59) and Risk-Variability 

phases (slope = 0.34), and Group Unequal-Risk in the Risk-Variability phase (slope = 0.30).  

However, simple slopes computations revealed a decrease in risky choice from the One- to Two-

Loss conditions in the Risk-Omission phase (slope = -1.00).  As the parametric structure of the 

environment was identical across groups and risk paradigms in the Two-Loss sub-phases, these 

results suggest that the comparable risky choice parameters in the Two-Loss sub-phases were not 

the only determinant of risky choice in those sub-phases. 

Figure 3.2 shows the Group × Risk Paradigm × Loss Condition × Session interaction.  

This interaction was not statistically significant, t(89907) = -1.89, p = .058, but the patterns in 

Figure 3.2 do well to illustrate the rats’ behavior across groups, risk paradigms, and loss 

conditions.  A mixed-effects model without the Group × Risk Paradigm × Loss Condition × 

Session interaction had a larger AIC (ΔAIC = 1.57), but produced similar estimates and effect 
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sizes as to those produced by the current model.  While the similarities in estimates, effect sizes, 

and AIC supported the simpler model, the current patterns in the data warranted inclusion of the 

full factorial model to facilitate understanding of the lower-order interactions. 

Specifically, in the One-Loss condition, Group Equal-Risk exhibited a greater increase in 

risky choice as a function of session in the Risk-Variability phase (slope = 0.21) than in the Risk-

Omission phase (slope = 0.07).  This result can be explained in terms of the expected value of the 

risky choice, as the risky choice in the Risk-Variability sub-phase had a greater expected value 

than that in the Risk-Omission sub-phase (see Table 3.1).  Similarly, Group Unequal-Risk 

showed an increase in risky choice with session in the Risk-Variability sub-phase (slope = 0.06), 

and a decrease in risky choice as a function of session in the Risk-Omission sub-phase (slope 

= -0.16).  This result is not surprising because the expected value of the risky choice for Group 

Unequal-Risk in the Risk-Omission phase was less than that of the risky choice in the Risk-

Variability phase (see Table 3.1).  Indeed, the terminal group risky choice behavior was ordered 

with respect to the expected value of the risky choice, indicating that expected value at least 

partially contributed to risky choice behavior in the One-Loss sub-phase. 

In contrast to the relatively large changes in risky choice as a function of session across 

groups and risk paradigms in the One-Loss sub-phases, mean risky choice changed relatively 

little as a function of session in the Two-Loss sub-phases.  In the Risk-Variability phase, Group 

Equal-Risk showed a small increase in risky choice as a function of session (slope = 0.01).  

However, Group Equal-Risk showed relatively little change in risky choice as a function of 

session in the Risk-Omission sub-phase (slope = -0.0001).  Group Unequal-Risk also showed 

small decreases in the Risk-Omission (slope = -0.09) and Risk-Variability conditions (slope 

= -0.05).   
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These results indicate that while the groups were sensitive to the parameters of the risky 

choice in the One-Loss sub-phases, the group differences in the Two-Loss sub-phases were 

primarily driven by terminal behavior in the preceding One-Loss sub-phase.  Accordingly, the 

significant lower-order interactions were seemingly driven by between-groups behavioral 

differences in the One-Loss sub-phases.  Interestingly, as described above, risky choice behavior 

increased in the Risk-Variability/Two-Loss sub-phase across sessions for Group Equal-Risk, 

even though this set of conditions accounted for the largest decrease in expected value of the 

risky choice between the One- and Two-Loss sub-phases.  The only set of conditions in which an 

increase in risky choice with session may have been expected was for Group Unequal-Risk in the 

Risk-Omission paradigm; here, there was an increase in expected value of the risky choice from 

the One- to Two-Loss sub-phases.  However, this set of conditions accounted for the largest 

decrease in risky choice as a function of session (Figure 3.2).  Thus, while the expected value of 

the risky choice seemed to predict risky choice behavior in the One-Loss sub-phases, the 

inclusion of a second risky loss in the Two-Loss sub-phases potentially discouraged the use of 

expected value to dictate overall risky choice (Marshall & Kirkpatrick, 2015).  Therefore, rats’ 

behavior in the Two-Loss sub-phases was likely driven by the risky choice parameters (i.e., 

outcome magnitudes and probabilities) prior to the paradigmatic shift, seemingly indicative of 

sensitivity to past environmental conditions (also see McNamara, Green, & Olsson, 2006; 

Stewart, Chater, Stott, & Reimers, 2003).  Accordingly, as the expected value of the risky choice 

was identical in the Two-Loss sub-phases across all conditions, these results may suggest that 

changes in behavior within and across the One- and Two-Loss conditions were not strictly 

governed by the corresponding changes in expected value of the risky choice.  Alternatively, 

these data may suggest that the rats were potentially more sensitive to the specific outcomes of 
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the choices (and their probabilities of occurrence) rather than to the expected value of the choices 

(Marshall & Kirkpatrick, 2015). 

Individual differences. As described above, the mixed-effects model’s random-effects 

structure included intercept, risk paradigm, loss condition, session, and Risk Paradigm × Loss 

Condition.  Figures 3.3 and 3.4 depict the substantial individual differences in risky choice as a 

function of risk paradigm, loss condition, and session.  The Risk-Omission data are shown in 

Figure 3.3.  During the One-Loss sub-phase, in which risky choices probabilistically resulted in 

R-0 and R-11 outcomes, some rats showed an increase in risky choice as a function of session 

(e.g., Rats E.2 and E.4), while other rats showed a decrease in risky choice as a function of 

session (e.g., Rats U.4 and U.11).  Indeed, only three rats in Group Equal-Risk [i.e., p(R-0) = 

p(R-11)] showed a decrease in risky choice in this phase as a function of session, while all but 

one rat in Group Unequal-Risk [i.e., p(R-0) > p(R-11)] showed a decrease in risky choice as a 

function of session.  In the Two-Loss phase, in which the probabilities of delivery of R-0, R-1, 

and R-11 outcomes were equal, the majority of rats in Group Equal-Risk maintained relatively 

high rates of risky choice behavior, while the majority of rats in Group Unequal-Risk maintained 

relatively low rates.  Two rats in Group Equal-Risk (i.e., Rats E.1 and E.6) decreased their risky 

choice as a function of session in the Two-Loss phase.  Accordingly, when the probability of 

risky losses increased in the Two-Loss phase, some rats decreased their risky choice behavior, 

suggesting that they were sensitive to the increase in risky loss frequency.  In contrast, the other 

rats in Group Equal-Risk may have been less attentive to the increase in frequency of risky 

losses, in that they may have primarily attended to the consistent yet less frequent delivery of R-

11 gains.  Similarly, two rats in Group Unequal-Risk (i.e., Rats U.4 and U.6) showed decreases 

in risky choice across sessions in the Two-Loss phase.  Here, the decrease in risky choice as a 
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function of session may have reflected an aversion to R-1 outcomes (see Marshall & Kirkpatrick, 

2015).  Generally, the rats exhibited greater changes in behavior during the One-Loss than during 

the Two-Loss sub-phases, similar to that seen in the group data (Figure 3.2), suggesting that 

some rats’ behaviors were less sensitive to the addition of the R-1 outcome in the Two-Loss sub-

phase.  As other rats behaved differently between the One- and Two-Loss sub-phases, these data 

strongly suggest considerably heterogeneity in loss processing and loss sensitivity across rats. 

There was a generally distinct pattern of individual differences in the Risk-Variability 

phases across groups (Figure 3.4).  In the One-Loss sub-phase, all rats in Group Equal-Risk 

showed an increase in risky choice as a function of session.  There was less consensus in Group 

Unequal-Risk, in which some rats showed relatively little change in behavior with session (e.g., 

Rats U.4 and U.12), and some rats showed an increase in risky choice (e.g., Rats U.2 and U.3), 

suggesting greater individual variability in treatment of R-1 and R-11 outcomes when the 

outcomes were unequally presented (Group Unequal-Risk) than when they were equally 

presented (Group Equal-Risk).  Subsequently, when risky choices probabilistically resulted in R-

0, R-1, and R-11 outcomes in the Two-Loss sub-phase, many of the rats in Group Equal-Risk 

and Unequal-Risk exhibited relatively little sensitivity to the probabilistic addition of R-0 

outcomes (see, e.g., Rats E.4 and U.11).  Indeed, of the rats that were apparently sensitive to the 

change in task conditions, some rats showed an increase in risky choice (e.g., Rats E.10 and 

U.3), and other rats showed a respective decrease (e.g., Rats E.1 and U.10).  Accordingly, there 

was substantial individual variability in treatment of added R-0 losses in the Risk-Variability 

phases, with some rats becoming more risk prone and others becoming more risk averse.  

Therefore, as in the Risk-Omission phases (Figure 3.3), different rats were differentially affected 

by the change in risky outcome parameters in the Risk-Variability phases, but there seemed to be 
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greater individual variability in the Risk-Variability phases than in the Risk-Omission phases.  In 

other words, there appeared to be more substantial individual differences in the Two-Loss sub-

phases given the addition of R-0 outcomes in the Risk-Variability phases than given the addition 

of R-1 outcomes in the Risk-Omission phases.  Accordingly, the extension of the range of risky 

outcomes in adding the R-0 outcome (Risk-Variability) may have elicited greater individual 

differences in risky choice in terms of risk and loss sensitivity compared to the addition of the R-

1 outcome to a consistent outcome range (Risk-Omission). 

Molecular analysis 

Effect of the previous outcome 

Overall effects. A molecular analysis of risky choice was conducted to determine how the 

outcome of the previous choice and the loss-condition and risk-paradigm manipulations 

impacted subsequent risky choice in both groups.  Analysis involved 88,965 observations, and 

included the overall intercept, categorical predictors of group (Unequal-Risk, Equal-Risk), risk 

paradigm (Risk-Variability, Risk-Omission), and previous outcome (C-2, C-4, R-0, R-1, R-11), 

and a continuous predictor of loss condition (One-Loss, Two-Loss).  The categorical predictors 

were effect coded with Unequal-Risk/Equal-Risk as -1/+1 and Risk-Variability/Risk-

Omission -1/+1.  The reference level of previous outcome was the C-2 outcome.  The fixed-

effects structure included the full factorial model of Group × Loss Condition × Previous 

Outcome + Group × Risk Paradigm × Loss Condition + Risk Paradigm × Previous Outcome.  

Intercept, risk paradigm, loss condition, previous outcome, and Risk Paradigm × Loss Condition 

were random effects. 

The full model output from the mixed-effects analyses is included in Table 3.3.  Figure 

3.5 shows the proportion of choices for the risky outcome as a function of the outcome of the 
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previous choice separated by group and loss condition.  There was a general tendency for certain 

choices to be made after certain outcomes and risky choices to be made after risky outcomes.  In 

addition, Group Equal-Risk made more risky choices than Group Unequal-Risk, regardless of the 

previous outcome.  Interestingly, the shift from the One- to Two-Loss condition seemed to have 

induced greater mean staying behavior.  That is, in the Two-Loss condition, there was a greater 

tendency to make certain choices after certain outcomes and risky choices after risky outcomes.  

Alternatively, the behavior in the Two-Loss condition may partially be an effect of training, such 

that the behavior that was continuing to develop in the One-Loss condition was further solidified 

in the Two-Loss condition. 

Accordingly, analysis revealed a significant Group × Loss Condition × Previous 

Outcome interaction.  Prior to discussion of this interaction, it should be noted that this 

significant interaction collapsed across risk paradigms (Risk-Omission, Risk-Variability).  Due 

to the treatment of previous outcome and risk paradigm as categorical predictors, there was an 

incomplete design matrix (i.e., empty cells); that is, there were no R-0 outcomes in the Risk-

Variability/One-Loss sub-phase and no R-1 outcomes in the Risk-Omission/One-Loss sub-phase, 

so that an analysis that included a Loss Condition × Risk Paradigm × Previous Outcome 

interaction was not permitted.  Thus, an interpretation of how risky choice following R-0 and R-

1 outcomes was affected following addition of a second risky loss to the Risk-Omission and 

Risk-Variability paradigms in the corresponding Two-Loss sub-phases should be interpreted 

with caution.  However, Figure 3.6 was included to portray the risky choice data split by group, 

risk paradigm, loss condition, and previous outcome to better inform the reader. 

As described above, after shifting from the One- to Two-Loss sub-phases, Group Equal-

Risk showed a decrease in risky choice following C-2 (slope = -0.002) and C-4 outcomes (slope 
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= -0.01), as seen in Figure 3.5.  This behavior is indicative of greater staying behavior after 

certain outcomes in the Two-Loss sub-phase (i.e., reduced risky choice behavior after certain 

choices).  Group Equal-Risk also showed an increase in risky choice following R-0 (slope = 

0.82), R-1 (slope = 0.55), and R-11 outcomes (slope = 0.96), again reflecting greater staying 

behavior after risky outcomes in the Two-Loss sub-phase (Figure 3.5).  In the Two-Loss sub-

phase relative to the One-Loss sub-phase, Group Equal-Risk had the potential to receive more 

loss outcomes following risky choices; also, the probabilities of the R-11 and risky loss 

outcomes decreased, but there were no changes in certain choice parameters.  Accordingly, while 

the certain and risky choices for Group Equal-Risk resulted in outcomes greater or less than the 

expected value of that choice 50% of the time in the One-Loss sub-phases, there was an 

asymmetric shift in gain/loss probabilities between choices in the Two-Loss sub-phases.  These 

results may suggest that the increase in the variability of outcome magnitudes and the decrease in 

probability of receiving each of the previous outcomes from the One-Loss sub-phase induced a 

greater overall likelihood of exploiting the previously-made choice. 

In contrast to the increased likelihood of staying behavior in Group Equal-Risk, Group 

Unequal-Risk showed a general decline in risky choice from the One- to Two-Loss sub-phases.  

The largest decreases were in regards to risky choice following C-2 (slope = -0.21) and C-4 

outcomes (slope = -0.58).  Additionally, there was a relatively smaller decrease in risky choice 

from the One- to Two-Loss sub-phases following R-0 (slope = -0.16), R-1 (slope = -0.02) and R-

11 outcomes (slope = -0.06).  The discrepancies between the differences in group means in 

Figure 3.5 and the simple slopes are likely driven by the unweighted effects coding of the mixed 

effects analysis and the differential weighting of group means (i.e., by the different number of 

choices following each previous outcome across groups and rats within groups).  Accordingly, 
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for Group Unequal-Risk, following the shift to the Two-Loss sub-phase (i.e., in which half of the 

One-Loss risky losses were replaced with an additional risky loss; see Table 3.1), there was a 

general reduction in likelihood to make risky choices following each of the previous outcomes, 

and this decrease was more accentuated following certain outcomes.  This suggests that the 

relative consistency of risky loss frequencies did not considerably impact mean risky choice 

behavior following risky outcomes (see Yechiam & Telpaz, 2013).  Moreover, as the probability 

of risky losses did not change from the One- to Two-Loss sub-phases, the general decrease in 

risky choice may have been driven by the increase in the number of outcomes that were 

equivalent to risky losses (i.e., R-0 and R-1). 

In comparing groups across One- and Two-Loss sub-phases, Group Equal-Risk exhibited 

greater changes in behavior following risky outcomes and Group Unequal-Risk exhibited greater 

changes in behavior following certain outcomes.  Interestingly, these changes occurred despite 

the fact that (1) the parameters of the certain choice were consistent, and (2) both groups 

experienced the same paradigm in the Two-Loss sub-phases.  As Group Equal-Risk made more 

risky choices than Group Unequal-Risk, these results may be a function of simple exposure; 

more choices for the risky outcome in Group Equal-Risk would permit faster detection of 

changes in the risky choice parameters.  Moreover, the relatively minimal change in behavior 

following risky outcomes in Group Unequal-Risk, in contrast to the larger increases in risky 

choice following the risky outcomes in Group Equal-Risk, may have been a function of the 

smaller changes in risky choice parameters experienced by Group Unequal-Risk than Group 

Equal-Risk.  Indeed, Payne (2005) reported that humans are particularly sensitive to task 

parameters that increase and decrease the probabilities of gains and losses, respectively, and 

Horstmann, Villringer, and Neumann (2012) suggested that individuals may be more sensitive to 
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frequencies of gains and losses than to expected values in the Iowa Gambling Task (Bechara, 

Damasio, Tranel, & Damasio, 1997).  The greater parametric changes in the Two-Loss sub-

phases experienced by Group Equal-Risk may have promoted the greater change in risky choice 

behavior. 

Overall, these results suggest that loss-chasing behavior following risky outcomes was 

differentially affected by group, as well as the parameters of the risky losses.  For Group 

Unequal-Risk, risky loss probability consistently exceeded that of risky gain probability, 

suggesting that the addition of another risky loss magnitude without changing loss probability 

produced a small decline in risky choice.  Accordingly, these results corroborate previous 

research which has suggested that the exposure to differential losses may have a greater impact 

over risky decision making than simply the expected value of the choices (Marshall & 

Kirkpatrick, 2015; also see Nygren, Isen, Taylor, & Dulin, 1996).  Indeed, as seen in Figure 3.2, 

the group’s mean choice behavior was relatively constant across sessions in the Two-Loss sub-

phases.  Thus, as the rats in Group Unequal-Risk were trained to essentially expect the delivery 

of more losses than gains, the increase in number of outcomes regarded as losses may have 

induced greater risk aversion. 

In contrast, when the probability of gains was identical to the probabilities of each loss in 

the environment (i.e., Group Equal-Risk), the addition of a second risky loss in the Two-Loss 

phase seemed to have increased risky choice following risky outcomes.  One potential 

explanation for these results regards averaging artifacts.  As seen in Figure 3.2, mean risky 

choice behavior was relatively constant across sessions in the Two-Loss sub-phases, despite its 

being relatively dynamic in the One-Loss sub-phases.  Accordingly, the behavioral differences 

between the One- and Two-Loss sub-phases in terms of loss-chasing behavior may reflect the 
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rats’ developing their risk-taking preferences during the One-Loss sub-phase, which were then 

maintained in the Two-Loss sub-phase.  For example, a gradual increase in risky choice 

following risky outcomes in the One-Loss sub-phases followed by relative maintenance of such 

behavior in the Two-Loss sub-phases would have produced greater post-risky-choice risk-taking 

in the Two-Loss than in the One-Loss sub-phases simply by the mechanism of averaging rats’ 

behavior across sessions within the sub-phases.  However, the considerable individual 

differences in risky choice behavior (Figures 3.3 and 3.4) warrant further investigation into the 

subjective preferences and psychological mechanisms governing risky decision making in 

dynamic environments. 

Indeed, a second potential explanation for these behavioral patterns in Group Equal-Risk 

may be in terms of LDWs.  In the Two-Loss sub-phase, one third of the R-11 outcomes were 

replaced by losses and one third of the initial risky loss outcomes (R-0 or R-1) were replaced by 

the new risky loss magnitude (R-1 or R-0), such that risky gains and losses were partially 

replaced with a second loss outcome.  This second risky loss may have assumed gain- and loss-

related characteristics via integration of gain- and loss-related information, as the second risky 

loss was essentially introduced by decreasing the probability of both risky gains (R-11) and 

losses (R-0 or R-1).  If these probability manipulations ultimately produced some form of LDWs, 

then the increase in risky choice following risky outcomes in Group Equal-Risk in the Two-Loss 

condition may be explained by the introduction of these LDWs and the generalized association 

between LDW outcomes and the other risky outcomes in the environment.  Accordingly, these 

potential LDWs may have conditionally promoted greater risky choice following risky outcomes 

(see Experiment 1).  Moreover, this increase in risky choice may reflect the rats’ tracking the 

probability of each risky outcome.  Specifically, deliveries of the added risky loss were 
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ultimately predictive of fewer deliveries of the initial risky loss that was experienced in the One-

Loss condition, which may have transformed the new risky loss into an indirect gain.  However, 

the receipt of the new risky loss in the Two-Loss condition was also predictive of fewer larger R-

11 gains (i.e., an indirect loss).  Indeed, these specific changes in probability relationships did not 

occur for Group Unequal-Risk, such that the same behavioral differences would not be expected.  

Accordingly, the probabilistic receptions of a second risky loss may have indeed served to 

produce LDW-type events, thereby producing increased risky choice behavior following risky 

outcomes in Group Equal-Risk. 

 Individual differences. The random effects of the aforementioned molecular analysis 

were intercept, risk condition, loss condition, session, previous outcome, and Risk Condition × 

Loss Condition.  There were considerable individual differences in risky choice at the molecular 

level (Figure 3.7 and 3.8).  Primarily, the rats exhibited post-outcome staying behavior, in that 

they were relatively more likely to make the same choice that was made in the previous trial.  In 

the Risk-Omission condition (Figure 3.7), when shifting from the One-Loss to Two-Loss phases, 

some rats relatively maintained the same rate of risky choices following each of the previous 

outcomes even though the R-1 outcome was then available to be delivered (e.g., Rats E.9 and 

U.3).  Other rats exhibited greater changes in behavior, and some of these changes occurred only 

after certain or risky outcomes.  For example, Rat E.12 made fewer risky choices after certain 

outcomes in the Two-Loss phase, while Rat U.4 made fewer risky choices following R-0 and R-

11 outcomes in the Two-Loss phase than in the One-Loss phase.  Moreover, in the Two-Loss 

sub-phase, following all previous outcomes, Rat U.11 exhibited near-exclusive preference for the 

certain choice, while Rat E.7 exhibited near-exclusive preference for the risky choice. 
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In the Risk-Variability condition (Figure 3.8), one relatively common pattern was an 

increase in risky choice following all previous outcomes when shifting from the One-Loss to 

Two-Loss sub-phases (e.g., Rats E.3 and U.6).  Other rats showed greater post-outcome staying 

behavior after this shift (i.e., Rats E.10, and U.10).  Accordingly, there were substantial 

individual differences in the likelihood of risky choice following each previous outcome, as well 

as the sensitivity to the changes in reinforcement contingencies in the Two-Loss phases of each 

risk condition.  These individual differences may be indicative of distinct strategies that different 

rats are using to decipher possible changes in the choice environment, as well as differential 

sensitivities and motivations to risky choices and outcomes. 

Outcome and choice history. As in Experiment 1, analyses were conducted to determine 

whether the differential frequencies of losses and gains between groups modified the decaying 

influence of past outcomes on choice, and to determine the functional form of this decay.  

Separate analyses were conducted for outcome history and choice history. 

The first component of analysis involved 80,343 observations, and included the overall 

intercept, a random intercept, and the fixed and random effects of either the previous 10 

outcomes or choices in the corresponding analyses.  Tables 3.4 and 3.5 include the mixed-effects 

model output for the outcome history and choice history analyses, respectively.  Regression 

coefficients decayed as a function of previous outcome and choice.  All regression coefficients 

for the previous outcomes and choices were significantly greater than 0, ts ≥ 3.52, ps < .001, 

suggesting that, as in Experiment 1, the rats’ history of outcomes and choices had partial 

influence over subsequent choice behavior (see Landon et al., 2002). 

Figure 3.9 shows the individual rat hyperbolic and exponential model fits for the outcome 

history analysis.  For all rats, there was a general decrease in regression coefficients.  In the 
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outcome history analysis, there were no differences between groups in the intercept (A) of the 

hyperbolic model, t(213) = 1.41, p = .161 (Group Equal-Risk, A = 0.13; Group Unequal-Risk, A 

= 0.18), or the decay rate (k) of the hyperbolic model, t(213) = -0.27, p = .791 (Group Equal-

Risk, k = 0.80; Group Unequal-Risk, k = 0.74).  Similarly, the exponential analysis of outcome 

history indicated that there were no group differences in intercept, t(213) = 1.41, p = .160 (Group 

Equal-Risk, A = 0.12; Group Unequal-Risk, A = 0.16), or decay rate, t(213) = -0.33, p = .742 

(Group Equal-Risk, k = 0.28; Group Unequal-Risk, k = 0.25).  The hyperbolic model accounted 

for the data better than the exponential model did (hyperbolic AIC = -1237.10, exponential AIC 

= -1148.70). 

Figure 3.10 shows the individual rat hyperbolic and exponential model fits for the choice 

history analysis.  For all rats, there was a general decrease in normalized regression coefficients 

(but see Rat E.7).  The hyperbolic choice history analysis indicated that there were no significant 

group differences in decay rate (k), t(215) = 1.22, p = .223 (Group Equal-Risk, k = 1.79; Group 

Unequal-Risk, k = 2.37).  The exponential analysis also indicated no group differences in decay 

rate (k), t(215) = 1.36, p = .175 (Group Equal-Risk, k = 0.52; Group Unequal-Risk, k = 0.64).  

The hyperbolic model accounted for a better fit of the data than the exponential model in the 

choice history analysis (hyperbolic AIC = -421.37, exponential AIC = -256.46).  Thus, in 

conjunction with the results in Experiment 1, the superiority of the hyperbolic model in 

accounting for the decaying influences (weights) of past outcomes and choices on subsequent 

choice suggests that traditional assumptions of exponential decay of these events require 

modification and reconceptualization (also see Alexander & Brown, 2010; Maia, 2009). 
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RL models  

As in Experiment 1, multiple RL models were fit to both simulated and observed rat data 

to gain insight into the psychological processes and mechanisms that govern individual 

differences in risky choice in rats. 

Parameter recovery. Figure 3.11 show the parameter recovery results of the Simple, 

Asymmetric, Valence-Attentive, and Weighted-Reference-Point RL models.  In each panel, the 

dark line represents the unit diagonal and each data point represents the parameter that was used 

in its simulation, and the corresponding fitted parameter.  Figure 3.11 does not include 

simulations in which the fitted parameters exceeded the boundaries of the distribution from 

which the simulated parameters were sampled.  This occurred in 5.4% of the simulations of 

Simple RL, 15.9% of the simulations of Asymmetric RL, 6.8% of the simulations of Valence-

Attentive RL, and 30.6% of the simulations of Weighted-Reference-Point RL.  As seen in Figure 

3.11, the Simple, Asymmetric, and Valence-Attentive RL models did well to recover the 

parameters from the simulated data.  In contrast, the Weighted-Reference-Point RL model did 

poorly to recover the simulated parameters.  Therefore, the Simple, Asymmetric, and Valence-

Attentive RL models were fit to the data. 

Model selection. Figure 3.12 shows the AICs for the best-fitting Simple, Asymmetric, 

and Valence-Attentive RL models.  The dark line represents the unit diagonal, such that data 

points below the diagonal reflect support for the Simple or Valence-Attentive RL models and 

data points above the diagonal represent support for the Asymmetric RL model.  Even through 

300 iterations, the Simple RL model did not converge on a viable solution for six rats.  In 

contrast, the Valence-Attentive and Asymmetric RL models converged on a viable solution for 

all 24 rats.  Whereas the majority of data points in Figure 3.12 were proximal to the unit 
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diagonal, there were multiple AICs for the Valence-Attentive RL model that exceeded those of 

the Simple and Asymmetric RL models, indicative of a poorer fit by the Valence-Attentive RL 

model.  The mean (median) AIC of the Asymmetric RL fits was 3141.9 (3284.3), while mean 

AICs of the Valence-Attentive RL and viable Simple RL fits were 3478.9 (3659.1) and 3039.7 

(2914.6), respectively.  In regards to individual rats, the Simple RL model was the best model of 

the data for 3 rats, the Valence-Attentive RL model was the best model for 9 rats, and the 

Asymmetric RL model provided the best account of the data for 12 rats.  For the rats in which 

the Valence-Attentive RL model had a lower AIC than the Asymmetric RL model, the mean 

ΔAIC was 51.5; for the rats in which the Asymmetric RL model had the lower AIC, the mean 

ΔAIC was 787.8.  While there were instances in which the Simple or Valence-Attentive RL 

models were superior to the Asymmetric RL and while the Simple RL model had a lower mean 

AIC, the Simple RL model did not converge for all rats.  Thus, these data suggest that the 

Asymmetric RL model provided the best account of the risky choice data set as a whole.  

However, it is noteworthy that the Simple and Valence-Attentive RL models were more 

comparable in AIC to that of the Asymmetric RL models in the current experiment than in 

Experiment 2.  Given the substantial individual differences in both molar and molecular risky 

choice behavior (Figures 3.3, 3.4, 3.7, and 3.8), these similarities in model performance may 

reflect the aforementioned possibility that different rats are using different strategies to interact 

with the changing environments.  For example, instances in which the Valence-Attentive RL 

model outperformed the Asymmetric RL model may indicate that these rats’ behaviors were 

driven by differences in attention given to gains versus losses rather than differences in gain- and 

loss-based learning.  Given the general support for the Asymmetric RL model over the other RL 

models, the model fits of Asymmetric RL were further evaluated. 
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Model fit (Asymmetric RL). Figure 3.13 shows the fits of the Asymmetric RL model to 

individual trial data of five different rats.  The alternating gray and white boxes in Figure 3.13 

indicate the different phases and sub-phases (see Table 3.1).  As in Experiment 1, the observed 

data were smoothed over a moving nine-trial window (see Lau & Glimcher, 2005).  The panels 

represent the data and model fit corresponding to the minimum, 25th percentile, median, 75th 

percentile, and maximum of the ω2 values (i.e., the top panel includes the model with the lowest 

ω2 value; the bottom panel, the largest ω2 value).  Table 3.6 shows the summary statistics of the 

best-fitting parameter estimates of the Asymmetric RL model, as well as the corresponding fit 

indices.  The lowest ω2 value was negative, which was primarily due to the rat exhibiting little 

change in choice behavior, such that the mean of the data provided a better account of the data 

than the model (Figure 3.13, top panel).  Despite the noisiness of the rats’ data, the model 

approximated the rats’ average local choice preferences. 

In regards to the fitting parameters, there was no significant overall difference between 

αL and αG across rats, z = 1.00, p = .317 (Wilcoxon signed-ranks test).  Indeed, the instances in 

which the Simple RL model provided a better account of the data would likewise suggest similar 

gain- and loss-based learning rates.  Interestingly, analysis revealed significantly greater gain-

based learning / value-updating rates (αG) in Group Equal-Risk relative to Group Unequal-Risk, 

z = 2.22, p = .026, as well as significantly smaller β values in Group Equal-Risk, z = -2.57, p = 

.010; there were no group differences in αL, z = -0.78, p = .436 (Wilcoxon rank-sum tests).  The 

group differences in αG may be due to the increased exposure to R-11 gains in Group Equal-Risk 

relative to Group Unequal-Risk, or the necessity for Group Equal-Risk to track changing R-11 

probabilities, which Group Unequal-Risk did not experience.  Furthermore, the smaller β values 
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in Group Equal-Risk reflect greater exploration (i.e., less exploitation of the choice with the 

larger subjective value). 

Simple and multiple linear regression models were performed to determine how 

individual differences in model parameters corresponded to individual differences in the rats’ 

behavior (Figure 3.14).  In the first series of models, mean risky choice data across all conditions 

were regressed on αG, αL, and β.  The model parameters were log-transformed to correct for 

positive skewness.  The data did not require transformation. 

There was a significant positive relationship between mean risky choice and αG, t(22) = 

2.58, p = .017, in that greater risky choice behavior was related to greater gain-based learning 

(Figure 3.14, left panel).  Also, there was a significant negative relationship between mean risky 

choice and αL, t(22) = -4.52, p < .001, such that greater loss-based learning was associated with 

less overall risky choice (Figure 3.14, middle panel).  Lastly, there was a significant negative 

relationship between mean risky choice and β, t(22) = -3.75, p = .001, such that the more risk 

averse rats were those that were more likely to exploit the higher-valued choice (Figure 3.14, 

right panel).  Here, the expected value of the risky choice exceeded that of the certain choice (see 

Table 3.1), suggesting that greater exploitation of the higher-valued choice in risk-averse rats 

was due to the subjective value of the risky choice being less than that of the certain choice.  This 

discrepancy was likely driven by subjective asymmetry in αG versus αL.  As the majority of risky 

outcomes were losses for Groups Equal-Risk and Unequal-Risk, the prevalence of losses in 

conjunction with greater loss-based learning rates would therefore reduce the value of the risky 

choice below that of the certain choice.  The rats who were more likely to exploit the higher-

valued option were indeed those that made more certain choices.  Similarly, Addicott, Pearson, 

Kaiser, Platt, and McClernon (2015) reported greater exploration in more regular gamblers. 
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A second series of models involved regressing two measures of molecular choice 

behavior on the model parameters.  Due to the paradigmatic differences between Experiments 1 

and 2, the indices of molecular choice were computed differently from those of Experiment 1, 

but approximated the computations in Experiment 1 to permit comparable interpretations.  

Similar to Experiment 1, the two behavioral indices were the Win-Stay and Loss Sensitivity 

indices, but, as stated, their computations differed slightly. 

In Experiment 1, the Win-Stay Index evaluated risky choice behavior following R-11 

outcomes versus that following R-0 outcomes.  Here, because R-0 outcomes were not presented 

in the Risk-Variability/One-Loss phase, the amount of exposure to R-0 outcomes was less than 

that of R-11 outcomes.  Accordingly, a global difference in risky choice behavior following these 

outcomes may potentially be confounded by the frequency of exposure to these outcomes.  Thus, 

the Win-Stay Index was computed separately for the Two-Loss sub-phase within each risk 

paradigm, as all risky outcomes were possible in the Two-Loss sub-phase and the opportunity for 

exposure to the outcomes was equivalent.  Here, the Win-Stay Index was the proportion of risky 

choices following R-11 outcomes minus the proportion of risky choices following the risky loss 

that was consistently presented throughout both loss conditions of that risk type (i.e., R-0 in the 

Risk-Omission phases; R-1 in the Risk-Variability phases).  For example, the proportion of risky 

choices following R-0 outcomes in the Risk-Omission/Two-Loss sub-phase was subtracted from 

the proportion of risky choices following R-11 outcomes in the Risk-Omission/Two-Loss sub-

phase.  This ensured that the derived index of win-stay behavior was not affected by the 

probabilistic addition of the new risky loss magnitude that was presented in the Two-Loss sub-

phases of each risk paradigm (i.e., R-1 in the Risk-Omission/Two-Loss sub-phase; R-0 in the 

Risk-Variability/Two-Loss sub-phase).  The Win-Stay Index was averaged across risk paradigms 
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to produce a general measure of staying behavior following R-11 outcomes.  Accordingly, the 

larger the value of the Win-Stay Index, the more likely the rats were to make risky choices after 

R-11 gains than after risky (R-0 or R-1) losses.  Relatedly, the smaller the value of the Win-Stay 

Index, the more likely the rats were to chase risky losses than they were to follow R-11 gains 

with risky choices. 

As in Experiment 1, the Win-Stay Index was separately regressed on αG, αL, and the 

αL:αG ratio.  Each of the analyses involved one of the three aforementioned model parameter 

measures, group, and the corresponding interaction to determine whether group moderated the 

relationship between the modelled parameters and local risky choice indices.  The main effects 

and interaction were entered simultaneously into the model.  To correct for negative skewness, 

the Win-Stay Index was exponentially transformed.  Group was effect coded with Unequal-

Risk/Equal-Risk as -1/+1, and the model parameters were mean-centered. 

The left panel of Figure 3.15 shows the relationship between αG and the Win-Stay Index.  

Here, there was no main effect of group, b = 0.01, t(20) = 0.43, p = .675, but win-stay behavior 

following risky outcomes significantly increased with αG, b = 0.03, t(20) = 2.63, p = .016, and 

there was a significant Group × αG interaction, b = -0.03, t(20) = -2.18, p= .042.  Here, Group 

Equal-Risk exhibited a shallower relationship between αG and win-stay behavior (slope = 0.01) 

than Group Unequal-Risk (slope = 0.06).  For the relationship between αL and the Win-Stay 

Index (Figure 3.15, middle panel), there was no effect of group, b = 0.04, t(20) = 1.72, p = .101, 

no effect of αL, b = -0.002, t(20) = -0.25, p = .806, and no Group × αL interaction, b = 0.01, t(20) 

= 0.66, p = .517.  Similarly, there was no effect of group, b = 0.03, t(20) = 1.23, p= .232, no 

effect of αL:αG, b = -0.01, t(20) = -0.99, p = .332, and no Group × αL:αG interaction, b = 0.01, 

t(20) = 1.00, p = .330, on win-stay behavior following risky outcomes (Figure 3.15, right panel).  
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These results indicate that win-stay behavior in the current experiment was primarily driven by 

gain-based learning.  The significant Group × αG interaction suggests that win-stay behavior was 

more strongly related to gain-based learning in Group Unequal-Risk than in Group Equal-Risk.  

This result may reflect general biases in Group Equal-Risk regardless of learning rate, or the 

greater homogeneity of gain-based learning rates in Group Equal-Risk (Figure 3.15, left panel).  

Alternatively, this interaction may be driven by the parametric structure of the environment; 

specifically, for Group Unequal-Risk, the probability of the R-11 outcome was constant at .33 

across all phases, but changed every 10 sessions for Group Equal-Risk.  Therefore, the between-

groups differences in the stability of such probability information may have weakened the 

strength of this relationship in Group Equal-Risk (e.g., win-stay propensities may have been 

driven by gain-based learning and learning the changes in reinforcement contingencies, among 

other task dynamics). 

The Loss Sensitivity Index of Experiment 1 accounted for the difference in risky choice 

behavior following R-1 and R-0 outcomes.  Here, the R-1 and R-0 outcomes were only presented 

together in the Two-Loss sub-phases, such that a metric of an overall difference in risky choice 

behavior following these outcomes may be confounded by their deliveries with and without the 

probabilistic delivery of the other risky loss.  Accordingly, in conjunction with the goals of the 

present experiment, the Loss Sensitivity Index in this experiment measured how risky choice 

following risky losses changed between the One- and Two-Loss sub-phases.  Specifically, for 

each risk type, the proportion of risky choices following the risky loss in the One-Loss sub-phase 

(i.e., R-0 in the Risk-Omission/One-Loss sub-phase; R-1 in the Risk-Variability/One-Loss sub-

phase) was subtracted from the mean proportion of risky choices following both risky losses in 

the Two-Loss sub-phase.  The Loss Sensitivity Index for each risk type was analyzed separately, 
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and, as done for the analyses of win-stay behavior, the Loss Sensitivity Index was separately 

regressed on αG, αL, and αL:αG.  The Loss Sensitivity Index was exponentially transformed to 

correct for negative skewness.  Here, larger values of the Loss Sensitivity Index can be 

interpreted as greater increases (or smaller decreases) in risky choice behavior following risky 

losses when there were two potential risky losses in the environment (R-0 and R-1) than when 

there was one potential risky loss in the environment (R-0 or R-1). 

Figure 3.16 shows the relationships between the model parameters from the Asymmetric 

RL fits and the Loss Sensitivity Index for each group within the Risk-Omission phases.  The left 

panel of Figure 3.16 shows this relationship between the Loss Sensitivity Index and αG.  There 

was a main effect of group, b = 0.07, t(20) = 2.23, p= .037, but no effect of αG, b = 0.04, t(20) = 

2.05, p = .053, and no Group × αG interaction, b = -0.02, t(20) = -1.28, p= .214.  The middle 

panel of Figure 3.16 shows the relationship between the Loss Sensitivity Index and αL.  Here, 

there was a main effect of group, b = 0.09, t(20) = 3.45, p = .003, and a main effect of αL, b 

= -0.03, t(20) = -2.54, p= .019, such that greater learning from losses (αL) was associated with 

smaller increases (or larger decreases) in risky choice behavior following risky losses when the 

number of potential risky losses doubled in the Risk-Omission/Two-Loss sub-phase.  In contrast, 

there was no Group × αL interaction, b = 0.01, t(20) = 1.04, p = .310.  The right panel of Figure 

3.16 shows the relationship between the Loss Sensitivity Index and αL:αG.  There was a main 

effect of group, b = 0.07, t(20) = 2.44, p = .024, a main effect of αL:αG, b = -0.03, t(20) = -3.17, 

p = .005, and no Group × αL:αG interaction, b = 0.003, t(20) = 0.34, p = .737.  Similar to the 

main effect of αL, the main effect of αL:αG indicates that greater learning from losses relative to 

gains was also associated with smaller increases (or larger decreases) in risky choice behavior 

following risky losses from the Risk-Omission/One-Loss to Risk-Omission/Two-Loss sub-phase.  
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This pattern of results indicates that greater loss-based learning rates predicted the extent to 

which rats decreased their risky choice behavior following risky losses when the quantity of 

risky loss outcomes increased.  Accordingly, when the R-1 outcome was included as a potential 

risky outcome in the Two-Loss sub-phase, the rats who were less likely to chase risky losses 

(relative to their own behavior when the only risky loss was the R-0 outcome) were those that 

exhibited greater loss-based learning rates relative to gain-based learning rates.  Thus, subjective 

deficits in risky decision making may reflect a reduced ability to learn from experienced losses 

(see Clark, Liu, et al., 2013). 

Figure 3.17 shows the relationships between the best-fitting Asymmetric RL parameters 

and the Loss Sensitivity Index in the Risk-Variability phase.  Regarding the relationship between 

αG and the Loss Sensitivity Index (Figure 3.17, left panel), there was no main effect of group, b 

= -0.001, t(20) = -0.05, p = .964, no effect of αG, b = -0.01, t(20) = -0.62, p = .541, and no Group 

× αG interaction, b = 0.01, t(20) = 0.75, p= .464.  The middle panel of Figure 3.17 shows the 

relationship between the Loss Sensitivity Index and αL.  Here, there was no main effect of group, 

b = -0.01, t(20) = -0.34, p= .736, or αL, b = 0.01, t(20) = 0.60, p = .553, but there was a Group × 

αL interaction, b = -0.02, t(20) = -2.22, p = .038.  Here, Group Equal-Risk exhibited a negative 

relationship between αL and the Loss Sensitivity Index (slope = -0.02), while Group Unequal-

Risk exhibited a positive relationship between these two variables (slope = 0.03).  The right 

panel of Figure 3.17 shows the relationship between the Loss Sensitivity Index and αL:αG, in 

which there was no main effect of group, b = -0.01, t(20) = -0.38, p = .706, or αL:αG, b = 0.001, 

t(20) = 0.09, p = .930, and no Group × αL:αG interaction, b = -0.02, t(20) = 2.05, p = .054.  

Therefore, the rats in Group Equal-Risk who exhibited greater loss-based learning rates showed 

smaller increases (or larger decreases) in loss-chasing behavior when there was a probabilistic 
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addition of R-0 losses in the Two-Loss sub-phase of the Risk-Variability condition, which 

parallels the patterns in the Risk-Omission condition (see Figure 3.16, middle panel).  However, 

the rats in Group Unequal-Risk who exhibited greater loss-based learning rates showed larger 

increases (or smaller decreases) in loss-chasing when R-0 became a potential risky outcome in 

the Risk-Variability/Two-Loss sub-phase, suggesting that substituting half of the R-1 outcomes 

with R-0 outcomes increased loss-chasing behavior.  Accordingly, individual differences in risky 

choice following losses seemingly depends on the frequency and magnitude of risky losses 

experienced in past conditions. 

One explanation for this pattern of results is that loss-based learning is independent of 

post-loss decision making, but the results from the Risk-Omission phases do not support this 

hypothesis (Figure 3.16).  Alternatively, these results may in fact be driven by structure of the 

environment.  Group Equal-Risk exhibited negative relationships between αL and the Loss 

Sensitivity Index in both the Risk-Omission and Risk-Variability conditions (see Figures 3.16 

and 3.17).  For Group Equal-Risk, the probabilities of both risky gains and losses changed from 

the One- to Two-Loss sub-phases in both risk paradigm conditions, suggesting that the 

relationship between αL and the Loss Sensitivity Index may be related to the overall increase in 

number of losses experienced; the rats that exhibited greater loss-based learning rates were those 

that were less likely to chase losses in the Two-Loss sub-phase, possibly because they more 

readily learned from the increased frequency of losses.  Alternatively, the environmental changes 

may have been more salient and, thus, learned more quickly by the rats that exhibited greater 

loss-based learning rates (see Behrens, Woolrich, Walton, & Rushworth, 2007).  In contrast, the 

rats in Group Unequal-Risk with comparable loss-based learning rates as rats in Group Equal-

Risk exhibited greater decreases in loss-chasing when the R-1 outcome was added as a potential 
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risky choice outcome in the Risk-Omission/Two-Loss sub-phase, but greater increases in loss-

chasing when the R-0 outcome was added as a potential risky choice outcome in the Risk-

Variability/Two-Loss sub-phase.  Thus, the treatment of R-0 and R-1 losses seemingly depended 

on the probabilities of each of these outcomes relative to the probabilities of other risky choice 

outcomes.  Moreover, the differential relationships between αL and loss sensitivity in Group 

Unequal-Risk suggest that the partial substitution of some risky losses with other risky losses is 

influenced by the loss magnitude; the addition of R-1 outcomes (Risk-Omission/Two-Loss) 

decreased relative loss-chasing while the addition of R-0 outcomes (Risk-Variability/Two-Loss) 

increased it.  Thus, these results suggest that rats exhibited distinct sensitivities to differential 

losses, such that the R-1 outcome may in fact be viewed as generally more aversive than the R-0 

outcome under particular conditions (see Marshall & Kirkpatrick, 2015).  
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Table 3.1 Probability of the risky-zero (R-0), R-1, and R-11 outcomes and the expected 
value of the risky choice in One-Loss and Two-Loss sub-phases of the Risk-Omission and 
Risk-Variability phases of the risky choice task of Experiment 2 for Groups Equal-Risk 
and Unequal-Risk. 

Group Risk     
Paradigm 

Risky Choice Task Sub-Phase 

One-Loss Two-Loss 
Outcome 

(Probability) 
Expected 

Value 
Outcome 

(Probability) 
Expected 

Value 

Equal-Risk 
(n=12) 

Risk-Omission R-0 (.50) 
R-11 (.50) 5.5 

R-0 (.33) 
R-1 (.33) 
R-11 (.33) 

4 
Risk-Variability R-1 (.50) 

R-11 (.50) 6 

Unequal-Risk 
(n=12) 

Risk-Omission R-0 (.67) 
R-11 (.33) 3.67 

Risk-Variability R-1 (.67) 
R-11 (.33) 4.33 
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Table 3.2 Mixed-effects model output for the molar analyses of Experiment 2. Note: 
continuous variables were mean-centered, and categorical variables were effect coded with 
Group Unequal-Risk/Equal-Risk (Group) as -1/+1 and Risk-Variability/Risk-Omission 
(Risk Paradigm) as -1/+1. 

Factor Estimate T (89907) P 95% CI 

Intercept 0.11 0.31 .757 [-0.57, 0.79] 

Group 1.17 3.38 .001 [0.49, 1.85] 

Risk Paradigm -0.12 -0.66 .510 [-0.46, 0.23] 

Loss Condition 0.06 0.34 .732 [-0.27, 0.38] 

Session 0.01 0.28 .773 [-0.03, 0.04] 

Group × Risk Paradigm 0.24 1.36 .175 [-0.11, 0.59] 

Group × Loss Condition 0.41 2.47 .014 [0.08, 0.73] 

Risk Paradigm × Loss Condition -0.27 -2.16 .031 [-0.51, -0.02] 

Group × Session 0.06 3.44 .001 [0.03, 0.10] 

Risk Paradigm × Session -0.05 -14.30 < .001 [-0.06, -0.04] 

Loss Condition × Session -0.08 -11.55 < .001 [-0.09, -0.06] 
Group × Risk Paradigm × Loss 

Condition 0.39 3.15 .002 [0.15, 0.63] 

Group × Risk Paradigm × Session 0.01 3.98 < .001 [0.01, 0.02] 

Group × Loss Condition × Session -0.06 -8.57 < .001 [-0.07, -0.04] 
Risk Paradigm × Loss Condition × 

Session 0.08 11.51 < .001 [0.06, 0.09] 

Group × Risk Paradigm × Loss 
Condition × Session -0.01 -1.89 .058 [-0.03, 0.0004] 
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Table 3.3 Mixed-effects model output for the molecular analyses of Experiment 2 
evaluating the effect of the previous outcome on subsequent choice behavior. Note: 
continuous variables were mean-centered, and categorical variables were effect coded with 
Group Unequal-Risk/Equal-Risk (Group) as -1/+1 and Risk-Variability/Risk-Omission 
(Risk Paradigm) as -1/+1. The reference level of previous outcome was the certain-two (C-
2) outcome. C-4 = certain choice – 4-pellet outcome; R-0 = risky choice – 0-pellet outcome; 
R-1 = risky choice – 1-pellet outcome; R-11 = risky choice – 11-pellet outcome 

Factor Estimate T (88937) P 95% CI 

Intercept 0.38 1.63 .104 [-0.08, 0.84] 

Group 0.79 3.40 .001 [0.34, 1.25] 

Risk Paradigm 0.01 0.10 .918 [-0.23, 0.26] 

Loss Condition 0.13 1.07 .284 [-0.11, 0.37] 

C-4 -1.68 -14.37 < .001 [-1.91, -1.45] 

R-0 0.98 7.43 < .001 [0.72, 1.24] 

R-1 1.33 13.13 < .001 [1.13, 1.53] 

R-11 1.04 8.64 < .001 [0.80, 1.28] 

Group × Risk Paradigm 0.17 1.35 .177 [-0.08, 0.42] 

Group × Loss Condition 0.33 2.78 .005 [0.10, 0.57] 

Risk Paradigm × Loss Condition -0.27 -3.10 .002 [-0.44, -0.10] 

Group × C-4 0.22 1.90 .057 [-0.01, 0.45] 

Group × R-0 -0.23 -1.74 .082 [-0.48, 0.03] 

Group × R-1 -0.14 -1.43 .153 [-0.33, 0.05] 

Group × R-11 0.15 1.23 .219 [-0.09, 0.38] 

Risk Paradigm × C-4 -0.04 -1.53 .127 [-0.09, 0.01] 

Risk Paradigm × R-0 0.19 5.00 < .001 [0.11, 0.26] 

Risk Paradigm × R-1 0.05 1.24 .214 [-0.03, 0.13] 

Risk Paradigm × R-11 -0.07 -2.45 .014 [-0.12, -0.01] 

Loss Condition × C-4 -0.42 -8.91 < .001 [-0.52, -0.33] 

Loss Condition × R-0 0.20 2.79 .005 [0.06, 0.34] 

Loss Condition × R-1 0.14 2.07 .038 [0.01, 0.26] 

Loss Condition × R-11 0.32 6.38 < .001 [0.22, 0.42] 
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Factor Estimate T (88937) P 95% CI 
Group × Risk Paradigm × Loss 

Condition 0.26 3.04 .002 [0.09, 0.43] 

Group × Loss Condition × C-4 -0.05 -1.13 .258 [-0.14, 0.04] 

Group × Loss Condition × R-0 0.16 2.98 .003 [0.05, 0.26] 

Group × Loss Condition × R-1 -0.05 -0.87 .386 [-0.15, 0.06] 

Group × Loss Condition × R-11 0.17 3.57 < .001 [0.08, 0.27] 
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Table 3.4 Mixed-effects model output for the molecular analyses of Experiment 2 
evaluating the effect of the previous 10 outcomes on subsequent risky choice behavior. 

Factor Estimate T (80332) P 95% CI 

(Intercept) -0.07 -0.33 .739 [-0.46, 0.33] 

Outcome – Lag 1 0.16 9.03 < .001 [0.12, 0.19] 

Outcome – Lag 2 0.08 13.29 < .001 [0.07, 0.10] 

Outcome – Lag 3 0.06 12.28 < .001 [0.05, 0.07] 

Outcome – Lag 4 0.05 9.34 < .001 [0.04, 0.06] 

Outcome – Lag 5 0.03 7.25 < .001 [0.02, 0.04] 

Outcome – Lag 6 0.03 6.93 < .001 [0.02, 0.04] 

Outcome – Lag 7 0.03 7.19 < .001 [0.02, 0.04] 

Outcome – Lag 8 0.03 6.76 < .001 [0.02, 0.03] 

Outcome – Lag 9 0.03 8.60 < .001 [0.02, 0.04] 

Outcome – Lag 10 0.03 6.38 < .001 [0.02, 0.04] 
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Table 3.5 Mixed-effects model output for the molecular analyses of Experiment 2 
evaluating the effect of the previous 10 choices on subsequent risky choice behavior. 

Factor Estimate T (80332) P 95% CI 

(Intercept) -0.04 -0.42 .677 [-0.24, 0.16] 

Choice – Lag 1 1.12 14.05 < .001 [0.96, 1.27] 

Choice – Lag 2 0.29 14.32 < .001 [0.25, 0.33] 

Choice – Lag 3 0.18 9.61 < .001 [0.15, 0.22] 

Choice – Lag 4 0.15 6.39 < .001 [0.11, 0.20] 

Choice – Lag 5 0.12 5.23 < .001 [0.08, 0.17] 

Choice – Lag 6 0.09 4.49 < .001 [0.05, 0.14] 

Choice – Lag 7 0.13 5.08 < .001 [0.08, 0.18] 

Choice – Lag 8 0.08 3.52 < .001 [0.04, 0.13] 

Choice – Lag 9 0.15 6.04 < .001 [0.10, 0.21] 

Choice – Lag 10 0.19 7.01 < .001 [0.14, 0.24] 
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Table 3.6 Summary statistics of the best-fitting parameter estimates and goodness-of-fit 
indices of the Asymmetric Reinforcement Learning (RL) model. AIC = Akaike Information 
Criterion; ω2 = omega-squared. 

 αG αL β AIC Pseudo R2 (ω2) 

Minimum .00006 .00005 0.0913 908.8 -0.24 

25th Percentile .0007 .0015 0.3620 2322.1 0.10 

Median .0012 .0050 0.9835 3284.3 0.20 

75th Percentile .0065 .0546 2.5389 3998.5 0.47 

Maximum .5888 .7372 6.1410 5367.5 0.76 

Mean .0443 .0630 1.6833 3141.9 0.28 

Standard Deviation .1386 .1583 1.5827 1208.1 0.25 
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Figure 3.1 Proportion of choices for the risky outcome for each group (Equal-Risk, 
Unequal-Risk) across risk paradigms (Risk-Omission, Risk-Variability) as a function of 
loss condition (One-Loss, Two-Loss). 
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Figure 3.2 Proportion of choices for the risky outcome for each group (Equal-Risk, 
Unequal-Risk) across risk paradigms (Risk-Omission, Risk-Variability) as a function of the 
session in the One-Loss and Two-Loss conditions.  The dotted line designates the data 
corresponding to the One-Loss (left) and Two-Loss conditions (right).  In the figure, the 
abscissa is labeled as beginning at “1” and ending at “20” for the purpose of 
interpretability, but sessions were nested within each phase and sub-phase for analyses. 
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Figure 3.3 Proportion of choices for the risky outcome as a function of session and loss 
condition for individual rats within the Risk-Omission phases.  The solid (Omission: One-
Loss) and dashed lines (Omission: Two-Loss) represent the individual subject-fits from the 
best-fitting generalized linear mixed effects model. The rats in Group Equal-Risk are 
labeled as “E.” and the rats in Group Unequal-Risk are labeled as “U.”. 
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Figure 3.4 Proportion of choices for the risky outcome as a function of session and loss 
condition for individual rats within the Risk-Variability phases.  The solid (Variability: 
One-Loss) and dashed lines (Variability: Two-Loss) represent the individual subject-fits 
from the best-fitting generalized linear mixed effects model. The rats in Group Equal-Risk 
are labeled as “E.” and the rats in Group Unequal-Risk are labeled as “U.”. 
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Figure 3.5 Proportion of choices for the risky outcome for Groups Equal-Risk and 
Unequal-Risk as a function of loss condition (One-Loss, Two-Loss) and the outcome of the 
previous choice. The dotted lines connecting the data points are intended to demonstrate 
the relationship between risky choice behavior following differential outcomes rather than 
to imply a continuous relationship.  C-2 = certain choice – 2 pellets; C-4 = certain choice – 4 
pellets; R-0 = risky choice – 0 pellets; R-1 = risky choice – 1 pellet; R-11 = risky choice – 11 
pellets. 
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Figure 3.6 Proportion of choices for the risky outcome for Groups Equal-Risk and 
Unequal-Risk as a function of loss condition (One-Loss, Two-Loss) and the outcome of the 
previous choice in the Risk-Omission (left) and Risk-Variability phases (right).  The dotted 
lines connecting the data points are intended to demonstrate the relationship between risky 
choice behavior following differential outcomes rather than to imply a continuous 
relationship.  C-2 = certain choice – 2 pellets; C-4 = certain choice – 4 pellets; R-0 = risky 
choice – 0 pellets; R-1 = risky choice – 1 pellet; R-11 = risky choice – 11 pellets. 
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Figure 3.7 Proportion of choices for the risky outcome as a function of the outcome of the 
previous choice and loss condition for individual rats in the Risk-Omission phases.  The 
dotted (Omission: One-Loss) and dashed lines (Omission: Two-Loss) represent the 
individual subject-fits from the best-fitting generalized linear mixed effects model.  The 
rats in Group Equal-Risk are labeled as “E.” and the rats in Group Unequal-Risk are 
labeled as “U.”. 
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Figure 3.8 Proportion of choices for the risky outcome as a function of the outcome of the 
previous choice and loss condition for individual rats in the Risk-Variability phases.  The 
dotted (Variability: One-Loss) and dashed lines (Variability: Two-Loss) represent the 
individual subject-fits from the best-fitting generalized linear mixed effects model.  The 
rats in Group Equal-Risk are labeled as “E.” and the rats in Group Unequal-Risk are 
labeled as “U.”. 
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Figure 3.9 Regression coefficients from the mixed-effects analysis evaluating the effect of 
the previous 10 outcomes on subsequent risky choice. E = Group Equal-Risk; U = Group 
Unequal-Risk; Hyp. = hyperbolic model fit; Exp. = exponential model fit. 

 

  



128 

Figure 3.10 Normalized regression coefficients from the mixed-effects analysis evaluating 
the effect of the previous 10 choices on subsequent risky choice. E = Group Equal-Risk; U 
= Group Unequal-Risk; Hyp. = hyperbolic model fit; Exp. = exponential model fit. 
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Figure 3.11 Parameter recovery for the Simple, Asymmetric, Valence-Attentive, and 
Weighted-Reference-Point models in Experiment 2.  The thick dark lines are the unit 
diagonals. 
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Figure 3.12 Akaike Information Criterion (AIC) for the Asymmetric Reinforcement 
Learning (RL) model plotted against the AICs of the Simple and Valence-Attentive RL 
models.  Each data point represents the fit to an individual rat’s data. Model fits that did 
not converge were omitted. 
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Figure 3.13 Choice data (Data) and the predicted choice data from the Asymmetric 
Reinforcement Learning (RL) model (Model) for each rat, ordered from top to bottom by 
how well the model fit the data in terms of omega-squared (ω2).  “Min” and “Max” refer to 
the data with the lowest and highest ω2, respectively.  “25%ile”, “Mdn”, and “75%ile” 
refer to the 25th, 50th, and 75th percentile of ω2, respectively. The alternating gray and white 
boxes within each panel represent different phases and sub-phases (see Table 3.1).  The 
differential alignments of these phase markers reflect individual differences in trials 
completed within each phase. 
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Figure 3.14 Mean risky choice plotted against the log-transformed αG (left), αL (center), 
and β parameters (right) as derived from the fitting of the Asymmetric Reinforcement 
Learning (RL) model.  Each data point represents an individual rat.  The goodness-of-fit 
index of the best fitting regression line for the overall model is shown (R2). 
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Figure 3.15 Win-Stay Index plotted against the log-transformed αG (left panels), αL (middle 
panels), and αL to αG ratio (right panels) as derived from the fitting of the Asymmetric 
Reinforcement Learning (RL) model.  Each data point represents an individual rat.  The 
rats in Group Unequal-Risk and Group Equal-Risk are distinguished. 
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Figure 3.16 Loss Sensitivity Index from the Risk-Omission phases plotted against the log-
transformed αG (left panels), αL (middle panels), and αL to αG ratio (right panels) as 
derived from the fitting of the Asymmetric Reinforcement Learning (RL) model.  Each 
data point represents an individual rat.  The rats in Group Unequal-Risk and Group 
Equal-Risk are distinguished. 
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Figure 3.17 Loss Sensitivity Index from the Risk-Variability phases plotted against the log-
transformed αG (left panels), αL (middle panels), and αL to αG ratio (right panels) as 
derived from the fitting of the Asymmetric Reinforcement Learning (RL) model.  Each 
data point represents an individual rat.  The rats in Group Unequal-Risk and Group 
Equal-Risk are distinguished. 
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Chapter 4 - General Discussion 

Even though risky decision making has been proposed to be more affected by losses than 

gains (Anselme & Robinson, 2013), the psychological and neurobiological mechanisms of loss-

processing have yet to become fully understood (Seymour, Maruyama, & De Martino, 2015).  

Moreover, there has been considerable difficulty in evaluating loss processing in animal models 

of risky decision making (see Clark, Averbeck, et al., 2013; Cocker & Winstanley, 2015).  

Specifically, the operationalization of losses is limited with animal models, as food reward is the 

primary outcome type in the corresponding paradigms.  As the consumption of reward cannot be 

readily undone in the same fashion that monetary rewards can be gained and then lost in human 

experiments, it has become necessary for animal research to establish a manipulation of “loss” 

that will have implications for choice behavior in humans.  Accordingly, the primary goal across 

the present experiments was to investigate the mechanisms of loss processing and the 

corresponding behaviors in the context of a risky choice environment.  These mechanisms were 

explored through determination of the effects of manipulating the feedback and information 

presented to rats within these environments. 

Experiment 1 was designed to explicitly model LDWs in rats in terms of differential 

feedback from risky choices.  LDWs have been shown to impact human behavior within risky 

choice contexts (M. J. Dixon et al., 2015; Jensen et al., 2012).  As rats are strong models of 

human risky decision making, the modelling of such phenomena in rats provides future and 

unique opportunities to investigate loss-chasing behavior in rats and develop various behavioral 

and/or pharmacological therapies to reduce risky behaviors in individuals prone to make such 

decisions.  Moreover, while there has been previous research investigating the potential neural 

correlates of gain- and loss-processing (den Ouden et al., 2013; Gehring & Willoughby, 2002; 
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Levin et al., 2012; Tom, Fox, Trepel, & Poldrack, 2007; van Holst, van den Brink, Veltman, & 

Goudriaan, 2010; Xue, Lu, Levin, & Bechara, 2011; Yacubian et al., 2006; Zhong et al., 2009), 

as well as those of more ambiguous losses (Clark, Lawrence, Astley-Jones, & Gray, 2009; 

Dymond et al., 2014; Habib & Dixon, 2010; Qi, Ding, Song, & Yang, 2011; van Holst, Chase, & 

Clark, 2014; Worhunsky et al., 2014), the implementation of LDWs in neurobiological analyses 

of risky choice behavior would considerably advance our understanding of loss-processing and 

value computation.  Recently, Barrus and Winstanley (2016) reported that the accompaniment of 

stimulus cues with risky gains (cued task) resulted in more suboptimal choice behavior relative 

to behavior within a condition in which there were no such stimulus cues (uncued task); 

interestingly, in the cued task, but not in the uncued task, choice behavior was modulated by 

agonism and antagonism of D3 receptors, which have been linked to both risk-taking behavior 

and addiction (Kreek, Nielsen, Butelman, & LaForge, 2005).  Accordingly, the pairing of gain-

related stimuli with not only gains (Barrus & Winstanley, 2016), but with losses (LDWs) may 

provide the most crucial insight into the mechanisms of behavioral addiction (e.g., pathological 

gambling).  However, to our knowledge, there has yet to be a published report investigating the 

effects of explicit LDWs in rats.  In Experiment 1 of the current report, LDWs were modelled by 

presenting gain-related stimuli to Group Extra-Feedback following all risky losses.  Thus, these 

risky losses were assumed to be LDWs. 

In Experiment 1, Group Extra-Feedback made more risky choices than Group Normal-

Feedback, such that the provision of extra feedback following risky losses (R-0, R-1) encouraged 

greater risk taking at the molar and molecular levels (Figures 2.2-2.6).  These results were 

paralleled by the increased goal-tracking behavior following risky outcome delivery in Group 

Extra-Feedback, which suggested that the rats in Group Extra-Feedback expected more food to 
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be delivered than the amount that actually was delivered.  Furthermore, as revealed in the 

outcome and choice history analyses, Group Extra-Feedback’s trial-by-trial choice behavior was 

relatively less affected by past reinforcement relative to more recent reinforcement in 

comparison to Group Normal-Feedback.  Thus, differential risky outcome feedback, such as that 

presented by gambling machines in casinos, may encourage greater risk taking by discouraging 

the influence of past gambles (and losses) on future behavior (e.g., poorer memories for past 

outcomes).  Interestingly, previous research has also suggested that better memories for past 

gains is predictive of greater likelihoods to make risky choices (Madan et al., 2014).  Therefore, 

risky choice may be partially driven by an interaction between the memories for gains and losses, 

as well as the separate influences of gains and losses on subsequent risky choice.  Accordingly, 

future research should continue exploring the cognitive and neurobiological mechanisms driving 

risky decision making behaviors in the absence and presence of environmental stimuli that have 

been suggested to increase risk taking (i.e., LDWs).  Moreover, many previous risky choice 

experiments have not disambiguated differential risky losses, in that different risky outcomes are 

presented following trial termination without differential external cues.  These experimental 

paradigms may be closer approximations to the environment experienced by Group Extra-

Feedback rather than that experienced by Group Normal-Feedback.  Accordingly, given the 

differences reported here between Groups Extra-Feedback and Normal-Feedback, future research 

may need to reconsider the paradigmatic conventions, as win-stay/lose-shift results in these 

previous reports may have been affected by the inconsistencies between risky outcome 

magnitude and the external cues that accompany the delivery of these outcomes. 

In contrast to Experiment 1, Experiment 2 sought to determine how behavior within two 

traditional risky choice paradigms, Risk-Omission and Risk-Variability, was influenced by the 
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probabilistic addition of a second risky loss in the context of equivalent or differential 

probabilities of risky gains and losses.  Here, risky choice was primarily affected by the 

conditions in the One-Loss sub-phases (i.e., when a risky choice probabilistically delivered a 

large R-11 gain or a smaller risky loss), which were well accounted for by the expected value of 

the risky choice.  In the Two-Loss sub-phases (i.e., when the R-0, R-1, and R-11 outcomes were 

probabilistically delivered following risky choices), there was relatively little change in mean 

risky choice as a function of session, suggesting that the addition of a second loss did little to 

affect overall risky choice (Figure 3.2).  However, there were substantial individual differences 

in behavior across the One- to Two-Loss sub-phases (see Figures 3.3 and 3.4), which may 

suggest that the minimal changes in mean behavior in the Two-Loss sub-phases were artifacts of 

averaging across individual rats that exhibited noticeably different patterns in behavior.  

Accordingly, individual differences analyses of risky choice may provide greater insight into the 

mechanisms of risky decision making behaviors, as averaged individual differences may hide the 

true psychological processes governing such behavior (see Young, 2016). 

While group-level overall risky choice was unchanged as a function of session in the 

Two-Loss phases, there were systematic differences in molecular risky choice behavior as a 

function of the previous outcome between the One- and Two-Loss sub-phases.  Group Equal-

Risk exhibited greater staying behavior in the Two-Loss than in the One-Loss sub-phases 

following both certain and risky choices.  In contrast, Group Unequal-Risk showed general 

decreases in risky choice behavior, and these decreases were accentuated following certain 

choices.  As described above, such behavioral differences may be attributed to the experience of 

LDW-type outcomes.  That is, while Experiment 1 involved potential LDWs in terms of the 

pairing of gain-related auditory, visual, and tactile stimulation with risky losses, Experiment 2 
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included potential LDWs in terms of the integration of loss- and gain-related outcome 

information and the association of this information with the probability of receiving the large R-

11 gain.  Therefore, while both experiments have different applications, they mutually imply that 

differential manipulation of outcome feedback and the information associated with these 

outcomes can have considerable impact on risky choice.  Whether the presentation of losses is 

accompanied by win-related stimuli or probabilistically substituted for risky gains or other risky 

losses, the current experiments have demonstrated that gains and losses may not be strictly coded 

as objective gains and losses, but that the encoding and response to such outcomes is dependent 

on individual differences in gain and loss processing (Barraclough et al., 2004; Cox et al., 2015; 

Marshall & Kirkpatrick, 2015; Van den Berg, Franken, & Muris, 2011), as well as environmental 

manipulations that alter the perception and treatment of these gain and loss outcomes (see M. J. 

Dixon et al., 2015; Engelmann & Hein, 2013; Jensen et al., 2012).  Therefore, the present 

experiments provide key insight into the behavioral mechanisms governing individual 

differences in risky choice and loss-chasing behavior in rats. 

A key research question of the present report involved determining which of several 

established RL models best accounted for rats’ behaviors within different risky choice contexts, 

as well as how the parameters of the best fitting RL models related to individual rats’ behaviors.  

The RL models served to complement the mixed-effects models, providing a theory-driven 

process model (RL) in addition to classical statistical theory-free approaches (mixed-effects).  

Accordingly, there are strengths to both approaches: RL can account for individuals’ real-time 

experiences (i.e., choice and outcome history) without discretizing experimental manipulations 

(e.g., probability of food, phase), while the mixed-effects models permit analysis of group-level 

and individual-level effects of various manipulations on risky choice.  Accordingly, the use of 
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only one of these approaches in dynamic environments may ultimately fail to capture the critical 

pieces of information obtained by employing the other approach.  The integration of both 

approaches to analyze behavior in dynamic environments may serve as the most direct way to 

unveil the critical mechanism-manipulation interactions that govern individual differences in 

risky decision making.  Here, several RL models were fit to the rats’ trial-by-trial data.  Of these 

models, the Asymmetric RL algorithm emerged as the superior model, particularly in 

Experiment 1, consistent with empirical support for this algorithm in other paradigms (Donahue 

& Lee, 2015; Frank et al., 2007; Niv et al., 2012; but see den Ouden et al., 2013).  Across both 

experiments, there were strong relationships between the fitted parameters of the Asymmetric 

RL model and the rats’ mean risky choice behavior.  Individual differences in the patterns of 

gain-based learning, loss-based learning, and exploration-exploitation tendencies strongly 

predicted individual differences in risky decision making in rats.  Future research should 

continue to investigate the neurobiological mechanisms of such psychological phenomena, as 

doing so will strengthen our understanding of the determinants driving risky decision making. 

In Experiment 1, there were greater loss-based than gain-based learning rates, suggesting 

that rats are prone to be loss averse (Bhatti et al., 2014; Marshall & Kirkpatrick, 2015), similar to 

humans (e.g., Kahneman & Tversky, 1979).  While Donahue and Lee (2015) reported greater 

gain-based than loss-based learning rates in primates, suggestive of possible species differences, 

loss-based learning in their experiment was restricted to reward omission (also see Costa, Tran, 

Turchi, & Averbeck, 2015).  Interestingly, loss aversion has been suggested to be a product of 

the distribution of gains and losses (Walasek & Stewart, 2015).  Accordingly, as in Experiment 

1, the presence of non-zero-valued losses, the greater likelihood of receiving losses, and/or the 

explicit manipulation of loss-related information may have promoted greater loss-based learning.  
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Furthermore, individual differences in loss-based learning rates predicted both win-stay 

behaviors as well as rats’ sensitivities to losses of different magnitudes (i.e., in terms of risky 

choice behavior following differential losses).  As gain-based learning rates did not significantly 

predict either of these molecular risky choice behaviors, the results from Experiment 1 suggest 

that individual differences in risky choice in the presence of differential external feedback from 

risky losses are primarily governed by how well these individuals learn from experienced losses; 

the less effectively that the rats learned from losses, the less sensitive they were to differential 

losses and the more likely they were to chase risky losses (relative to how often they followed 

risky gains with risky choices).  Furthermore, the inverse of the Win-Stay Index in Experiment 1 

is a metric of loss-chasing behavior, and the Loss Sensitivity Index in Experiment 1 is indicative 

of rats’ differential loss-chasing behaviors given differentially sized losses.  Accordingly, the rats 

that did not learn as readily from losses were more likely to chase losses with risky choices and 

were less sensitive to differences in risky loss magnitudes.  Therefore, extreme risk-taking 

behaviors in the context of drug addiction or gambling may be explained in terms of learning 

deficits (see Clark, Liu, et al., 2013); individuals who do not learn as readily from losses may be 

less sensitive to loss and, therefore, more likely to follow risky outcomes with additional risky 

choices (also see Rachlin, 1990). 

As in Experiment 1, the Asymmetric RL model provided the best account of the rats’ data 

in Experiment 2, relative to the other models tested, but there were considerable individual 

differences in the model fitting.  Here, the metric of win-stay behavior was better predicted by 

individual differences in gain-based learning rates, again suggesting that subjective 

learning/value-updating rates are critical determinants of risky choice behavior in rats.  The 

difference between experiments in terms of the model parameter that best predicted win-stay 
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rates is likely due to procedural differences, as the parameters of risky losses in Experiment 1 

were seemingly more varied across conditions than they were in Experiment 2.  Thus, loss-based 

learning rates may emerge as a better predictor of choice behavior following risky gains versus 

losses when the contingencies surrounding the delivery of risky losses are more dynamic.  

However, as in Experiment 1, the loss-sensitivity metric of loss-chasing behavior in Experiment 

2 was similarly predicted by individual differences in loss-based learning rates.  Therefore, the 

results from the RL analyses in both experiments collectively suggest that individual differences 

in differential gain- and loss-based learning rates can predict individual differences in molar and 

molecular measures of risky choice in rats.  Theoretically, elevated risky decision making in 

pathological gamblers in the context of LDWs may be driven by a reduced sensitivity to 

differential losses and deficits in loss-based learning.  Thus, future modelling approaches would 

do well to consider Asymmetric RL-type models to most effectively capture individual 

differences in risky choice behavior across various conditions and contexts. 

While the current results supported the existence of separate gain- and loss-based 

learning rates, there were instances in which the Simple and Valence-Attentive RL models 

provided better accounts of individual rat’s data; this was more common in Experiment 2 than in 

Experiment 1.  Furthermore, the Asymmetric RL model fit the data in Experiment 2 less 

convincingly than it did in Experiment 1.  Accordingly, while the Asymmetric RL model was the 

dominant model of those tested, it is likely that the currently tested RL models will need to be 

expanded to more effectively account for the trial-by-trial risky choice patterns across rats.  

Indeed, as seen in Figures 2.13 and 3.13, there was considerable noise in the rats’ trial-by-trial 

choice behavior that was not captured by the model.  Whether such noise is in fact noise or 

systematic patterns that can be precisely modelled with further modifications of RL models is 



144 

left to be determined.  Alternatively, the poorer performances of the other models, as well as the 

inability for these models to converge on viable solutions, may reflect the fact that the starting 

values for the model fits were sampled from a uniform distribution.  Indeed, Gershman (2016) 

argued that empirically-determined non-uniform distributions of such starting values (i.e., priors) 

can improve the fitting of RL models to data, such that the inabilities to converge on viable 

solutions can be avoided.  Thus, the distribution of fitted parameters from the present experiment 

provides a key starting point for the determination of the distribution of such empirical priors. 

In addition to the elucidation of risky choice mechanisms by the RL analyses, the 

outcome and choice history analyses provided critical awareness into the effects of past 

experiences on subsequent behavior.  Previous reports have employed comparable analyses to 

investigate how certain experimental manipulations (e.g., brain lesions) impact the number of 

past choices and/or outcomes that influence subsequent choice behavior (e.g., Kennerley et al., 

2006).  As described above, there have been several other previous analyses of outcome and 

choice history, but, to our knowledge, there have been no reports describing the functional 

relationship of these regression coefficients.  Here, the functional decays of the regression 

coefficients were better characterized by hyperbolic than exponential functions (Figures 2.7, 2.8, 

3.9, and 3.10).  Lau and Glimcher (2005) analyzed the decaying regression coefficients from two 

primates and noted that such decays could take a hyperbolic or exponential form; however, they 

noted that the use of only two subjects prevented their ability to statistically determine whether 

the hyperbolic or exponential form provided better fits to the data.  Accordingly, with added 

power in the current analyses, these results suggest that the weights of previous outcomes and 

choices decay hyperbolically as these events recede into the past.  Interestingly, support for the 

hyperbolic model stands in contrast to traditional assumptions of RL algorithms, which assume 
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exponentially decaying weights of past outcomes on current estimates of value of the 

corresponding choice.  As noted above, there has been recent consideration of hyperbolic RL 

models (Alexander & Brown, 2010; Maia, 2009).  The use of the traditional exponential RL 

models in the current paradigm advanced our understanding of the mechanisms of risky choice, 

but future implementation of simple hyperbolic RL models, as well as modified hyperbolic RL 

models that account for differential psychological phenomena (e.g., attention), may provide the 

best account of the patterns in trial-by-trial risky decision making across different individuals. 

In conclusion, the results of the present experiments has provided novel insight into the 

mechanisms of loss processing in individual rats in risky choice environments.  The differential 

feedback manipulation of Experiment 1 represents a novel approach to understanding the 

processing of LDWs in non-human animals, an approach that can be further studied to 

understand the psychopharmacological effects and neurobiological underpinnings of loss 

processing, loss-chasing, LDWs, and risky choice.  Such further experimentation may permit the 

development of subject-specific pharmacological and/or neurocognitive therapies to alleviate 

maladaptive risky decision making tendencies (also see M. R. Dixon, Wilson, & Habib, 2014).  

Similarly, the differential risk treatments in Experiment 2 provided critical insight into the effects 

of additional risky losses in standard risky choice paradigms.  While Experiment 1 may have 

more translational potential, Experiment 2 may serve to more greatly advance our understanding 

of the cognitive processes of risky choice behavior (e.g., how differential losses are processed 

relative to other losses).  However, both experiments have served to strengthen our 

understanding of the mechanisms of loss-based phenomena.  Specifically, these results have 

suggested that individual differences in such behaviors are primarily governed by individual 

differences in gain- and loss-based learning.  Indeed, previous research has suggested potentially 
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distinct neurobiological correlates of gain- and loss-based learning and valuation (den Ouden et 

al., 2013; Doya, 2008; Levin et al., 2012; Yacubian et al., 2006; Zhong et al., 2009).  Therefore, 

future pharmacological and neurobiological manipulations of risky choice behavior must 

consider the possibly orthogonal effects of such manipulations on gain- and loss-based changes 

in behavior (see Kubanek, Snyder, & Abrams, 2015).  Otherwise, current understanding of the 

psychological, neurological, and neurocomputational mechanisms of choice behavior will remain 

stagnant.  Proper treatment and consideration of such learning differences in future experiments 

and analyses should ultimately unveil the neural circuits that promote informed and adaptive 

decision making in various contexts. 
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