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Chapter 1: Introduction

2.1 Background

A database is a collection of elements (data items) and relationships between these

elements which model some application environment. At any given point in time,

the database will represent a state of the application environment. An update to

the database represents a transition action taking the database from one state to

another. A database model (or schema) provides a mechanism for representing the

elements of a database along with their relationships. The structure of a database

system should parallel the structure of the real world system it represents. This

will allow for better user understanding of the database being designed, and allow

the use of simple user front-ends, which adheres to the users understanding of the

system.

The semantic integrity of a database is defined as how well the database adheres to

the rules of the application environment. Hammer and McLeod [3] observe the

following:

"Every ... application environment has a set of rules which define its
legitimate configurations. Any correct version of a data base must
satisfy these rules .... The semantic integrity of a data base is violated
when it ceases to represent a valid state of its application domain,
because it fails to adhere to some of these rules."

Conventional database models (e.g., Network, Hierarchical, CODASYL, and

Relational) have provided different methods of representing data and relationships

in a database. Each of these database models, however, have been deficient in the

semantic integrity of the data and relationships each represent. Conventional



database models have not adequately captured the meaning of data In a real world

system. Hammer and McLeod state the following:

"Conventional data models are not satisfactory for modeling data base
application systems. The features that they provide are too low level
and representational to allow the semantics of a data base to be directly
expressed in the schema."

Some work has been done, however, to extend the relational database model

[3][4][10] to capture more data meaning.

Semantic data models have been introduced to allow a database model to better

describe the meaning of the data it represents. Semantic data models typically

model the database application using some type of Data Definition Language

(DDL). The DDL provided by a semantic data model allows the use of additional

constructs to specify data meaning explicitly. McLeod and King [5] give four

advantages of a semantic data model over conventional database models:

1. it allows a user-oriented formal specification and documentation aid to be
established (in the form of a semantic schema),

2. it provides a basis for powerful, high-level user interface facilities,

3. it can serve as a conceptual database model in the database design and
evolution process, more directly capturing the meaning of data then
conventional database models, and

4. it can be used as the database model for a new kind of database management
system, with increased functional capability and improved user interface
characteristics (compared with conventional DBMSs).

Two such semantic data models are the Semantic Association Model (SAM)

Introduced by Su and Lo [7] and the Semantic Database Model (SDM) introduced

by Hammer and McLeod [l]. SAM and SDM are similar in nature. Each uses a

DDL to identify the entities in the database and list the attributes of each entity.

The major difference is the method used to define the relationships between the

entities in the database.



The Semantic Database Model (SDM) was Introduced by Hammer and McLeod [l]

as a higher-level database model which allows for greater semantic integrity in a

database schema. SDM utilizes a formal specification approach to database

modeling by providing a Data Definition Language (DDL). The SDM DDL,

however, does not enforce a strict syntax. The SDM was previously only used as a

documentation tool for database modeling and had no use for a strict grammar.

Chapter 2 gives a detailed description of the SDM.

2.2 High Level Project Description

It can be seen from the DDL provided by the SDM that, with a few additional

constraints, one could build a static data dictionary from the SDM specification.

To perform this function automatically, the SDM specification would have to take

on programming language qualities. The DDL provided by this specification must

enforce a strict syntax to allow the DDL specification to be parsed by a data

dictionary generation tool. Thus, the specification of a SDM Language (SDML) is

desired.

The project involves the generation of a static data dictionary from an SDM

specification. The database designer will be provided with a screen interface which

will query for the information required to build an SDM for the database. The

SDM specification will then be checked for syntactic and semantic correctness.

Finally, the SDM specification will be used to build a static data dictionary for the

database.

The primary use of this system will be in developing under-graduate skills in

database development. The users of this tool will have a general knowledge of the

SDM. The tool developed must be IBM PC compatible since the under-graduate
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students utilizing the tool will be using an IBM PC compatible system.

The project logically partitions itself into three components:

1. User Interface.

The user interface will provide the interactive interface into the system. The

user of the tool will be queried for each class definition for the SDM. The

user interface should be as user-friendly as possible while generating a SDM

specification which is as syntactically sound as possible. This component

should provide a listing of the SDM by class and a listing of the final SDM

specification.

2. SDM Syntax Specification and Parser.

The SDM described by Hammer and McLeod does not provide a strict syntax

for its DDL. Since the SDM specification will, in this project, be used as an

intermediate in the generation of a static data dictionary, a strict syntax is

required. The specification of a BNF for the SDM specification is therefore

required. Once this SDML is specified, a parser is required to verify the SDM

generated by the user interface. The parser will verify correct syntax of the

SDM generated as well as some semantic checks.

3. Data Dictionary Generation.

Once a syntactically correct SDM is generated, the data dictionary must be

generated. The data dictionary generation component will output a valid

data dictionary of the database ordered by class.

5-



2.3 Low Level Project Description

This paper will deal with the SDM syntax specification and parser. This will

involve the development of a grammar for the SDM and the specification of the

grammar in a Backus-Naur Form (BNF). This grammar will be referred to as the

SDM Language (SDML). The basic grammar rules will stem from the SDM

description as given in reference [1]. The grammar developed for SDML will be a

deterministic context-free grammar. A deterministic grammar is one in which,

given the next input token and the current state, only one rule application is

possible. Thus, a deterministic grammar will support the design of a parser which

requires a look ahead of only one input token. Chapter 4 will describe the design

of the grammar for SDML.

Some extensions to the SDM will be included in the grammar for SDML. These

extensions will be introduced and described in Chapter 3. These extensions will

both enhance the existing SDM specification as well as provide some additional

capabilities not provided by the SDM described by Hammer and McLeod. The

additional capabilities introduced in this paper are intended to add to the semantic

integrity of the SDM.

After the definition of SDML, the design of an SDML parser will be discussed in

Chapter 5. The parser designed will be LR(1). This means that the input token

stream will be processed left-to-right with a look ahead of one input token. This

is the simplist form of parser to develop.

-6-



Chapter 2: SDM Description

This chapter will describe, in detail, the SDM as presented by Hammer and

McLeod in reference [l]. Extensions to the SDM specification presented here will be

introduced in Chapter 3. The SDML grammar definition will be discussed in

Chapter 4.

An SDM specification is an organized grouping of entities which exist in an

application's database. The structure of the SDM specification Is as follows:

• Entities are logically grouped into classes. Each class in the SDM is, therefore,

a logical collection of entities describing the class.

• Classes are related by interclass connections.

• Entities and classes have attributes. The attributes of an entity or class are

what actually provide the semantic integrity for the SDM.

Consider the relational database model where the database is represented by a

number of tables. Each table consists of a number of rows (tuples) and columns.

The SDM class is synonymous with the relational database table. The entities in

the SDM class represent the rows (tuples) in the relational database table. The

attributes of the entities in the class represent the relational database table

columns. Appendix 1 contains an example of an SDM schema. This schema

represents car dealerships and cars in stock in each dealership. This schema will be

used to support the discussion of some of the features of the SDM schema

throughout the rest of this chapter.



3.1 Classes

A class Is a logical collection of entities. Each class in SDM can be either a base

class or a nonbase class. A base class is one which is defined independently of all

other classes in the database. That is, it is not related In any way to any other

class in the SDM schema. Therefore, base classes do not have interclass

connections. The class CARS in Appendix 1 is an example of a base class. The

class CARS cannot be described in terms of any other class in the SDM schema. A
nonbase class is one which is described in terms of one or more other classes in the

SDM schema. This relationship is defined with the interclass connection. For

example, the nonbase class BUICKS is denned as a subclass of the base class CARS.

The entities in any nonbase class, therefore, are dependent on the entities in the

classes in which they are based.

Classes in the SDM schema can represent any one of the following abstractions:

i. Concrete object such as CARS or DEALERS.

il. Events such as car preparations (PREPS).

ill. Categorizations or aggregations of entities.

iv. Names (syntactic identifiers).

The first three types of classes represent definitions of base and nonbase classes and

will be described in the following sections. The last type of class (name classes)

represent the data in the SDM schema which is communicated with the outside

world (i.e., the database user). The name class defines the domain of the data item

which will be used to enter data into and retrieve data from the database. The



first three types of classes will define the value class of their attributes as one of

the name classes defined elsewhere in the SDM schema. Name classes will be

defined in detail in section 2.4.

Each class in the SDM schema has the following features:

1. A class name, which uniquely identifies the class in the SDM schema.

Multiple synonymous class names are permitted. Class names in this paper

are represented by a string of upper-case letters and special characters (e.g.,

CARS and BUICKS).

2. A collection of members, which represent the entities in the class. The

concept of class members is implicit in the definition of the SDM schema.

That is, class members are not explicitly defined in the SDM schema.

3. An optional class description, which gives an English language description of

the class. The class description allows for better documentation of the SDM

schema.

4. A collections of attributes, which describe the members of the class or the

class as a whole. The two types of attributes are:

a. Member attributes describe a member of a class by logically associating

the class member to one or more entities in the same or another class.

b. Class attributes describe the given class as a whole. Attributes are

described in section 2.3.

5. A base class has a list of identifiers which uniquely identify a member of a

class. Thus, the identifiers serve as a "key" for uniquely identifying a specific

9-



member Cor entity) of a class. Use of identifiers implies that duplicate

members are not allowed (see item 6).

6. A base class is specified as either containing duplicates or not containing

duplicates. This defines whether the class can contain duplicate members or

not. The default is that duplicate members are allowed.

7. A nonbase class is defined to be related to one or more other classes by

specification of an interclass connection. The interclass connection is

described in the following section.

3.2 Interclass Connection

Any nonbase class has an interclass connection describing how the nonbase class

relates to other classes in the database. Interclass connections define the entities in

a nonbase class by specifying a predicate P which, when applied to the entities of

another class C, yield the desired nonbase subclass S. The two types of interclass

connections are the subclass connection and the grouping connection.

3.2.1 Subclass Connection. This type of interclass connection is used to define a

nonbase class S as a subclass of a parent class C. Thus, the members of the

nonbase class S form a subset of the members of the parent class C . The members

of the subclass 5 are determined by the definition of a predicate P which is applied

to the members of C . The subclass connection defines the nonbase subclass S as

consisting of all entities of the parent class C which satisfy a given predicate P.

The following sections describe the four types of subclasses which can be defined

via subclass connections.

10-



3.2.1.1 Attribute-Defined Subclass. This type of subclass connection defines the

subclass S to be all members of C such that the given attribute(s), A, of C satisfy

a given regular expression involving a value VA) , of the value class of A,. An

attribute predicate is used to define this type of subclass connection. The attribute

predicate can be either a simple predicate:

where <A t > = <VA >.

or a compound predicate:

where <A t> - <VAl > and <A 2> - <VAj >.

Any of the logical operators and scalar comparators can be used in the attribute

predicate where the attribute is single valued. The attribute predicate can also be a

set operation:

where <A X > contains <VA >,

where the attribute is multivalued.

An example of the use of this type of subclass connection is in the definition of the

class BUICKS which is a subclass of CARS. The interclass connection for the

BUICKS nonbase class would be

subclass of CASS where Make - 'buick'

.

Here, the BUICKS nonbase class is made up of all members of class CARS where

the "Make" attribute has a value of 'buick'.

3.2.1.2 User-Controllable Subclass. This type of subclass connection defines the

subclass S to be any members of the class C as specified by the database

administrator. The predicate

11-



where specified

Is used to define this type of subclass connection.

An example of the use of this type of subclass connection is in the definition of the

nonbase class PREPARED_CARS which is a subclass of CARS. The interclass

connection for the PREPARED_CARS nonbase class would be

subclass of CARS where specified.

Here, the members of the PREPARED_CARS class would be CARS which are

prepared for delivery (as specified by the database administrator).

3.2.1.3 Set-Operator-Defined Subclass. This type of subclass connection defines the

subclass S to be any members of C which adhere to some set operation on two

other database classes C, and C 2 . Possible set operations are intersection, union,

and difference. The classes C, and C 2 must be subclasses of class C for the set

operations to be valid. The predicates

is in <Ci>

and

is not in <Cx>

are used to define a set-operator-defined subclass.

An example of the use of this type of subclass connection is in the definition of the

nonbase class PREPARED_BUICKS, which is a subclass of CARS. The interclass

connection for the PREPARED_BUICKS nonbase class would be

subclass of CARS where is in PREPARED_CARS and is in BUICKS.

This interclass connection also describes the use of the intersection set-operator-

12-



defined subclass.

3.2.1.4 Existence Subclass. This type of subclass connection defines the subclass S

to be any members of C which are currently values of some attribute A of another

class C t . The predicate

where is a value of A of C x

is used to specify a nonbase class S as an existence subclass of C

.

An example of the use of this type of subclass connection is in the definition of the

nonbase class BUICK_DEALERS, which is a subclass of DEALERS. The interclass

connection for the BUICK_DEALERS nonbase class would be

subclass of DEALERS where is a value of

Dealership of BUICKS

.

3.2.2 Grouping Connection. The grouping connection defines a nonbase class which

has members which are classes. The nonbase grouping class G defines a class which

has members which are classes of the underlying class U . Thus, grouping classes

are of a higher order than subclasses. In the relational database model, they would

be representational of a table of tables. The following sections describe the three

types of grouping classes which can be denned via the grouping connection.

3.2.2.1 Expression-Defined Grouping Class. This type of grouping class allows

definition of a nonbase class G which is made up of all classes formed by collecting

the members of the underlying class U into classes based on a common value for

one or more member attributes of U . The predicate

on common value of < attribute >

is used to specify this type of grouping class.

- 13-



Note that each class in the grouping class is also an attribute-defined subclass of

the underlying class U. If this attribute-defined subclass is explicitly defined in

the SDM schema elsewhere, the qualifier

groups defined as classes are C t . C 2 C„

is used to state that this explicit nonbase class definition is already made. This

implies a duplicate class definition, one explicitly made in the SDM schema, and

one as a class member of a grouping class.

An example of the use of this grouping class is In the definition of the nonbase

class CAR_MODELS. This class defines a grouping of all of the different car

models. The predicate used to define CAR_MODELS is

grouping of CARS on common value of Make and Model

.

Since the attribute-defined subclass SOMERSETS is denned explicitly in the SDM

schema, the qualifier

groups defined as classes are SOMERSETS

is also stated.

3.2.2.2 Enumerated Grouping Class. This type of grouping class allows definition

of a nonbase class G which is made up of all the given classes. Thus, G is defined

as a grouping of classes ClC 2 C„ , where each of the classes, C,- , are subclasses of

the underlying class U. The predicate

consisting of classes Cu C2. .... C„

is used to define this type of grouping class.

14-



3.2.2.3 User-Controllable Grouping Class. This type of grouping class allows

definition of a nonbase class G which is made up of a user defined number of

classes, each with a user defined number of members. The predicate

where specified

is used to define this type of grouping class.

3.3 Attributes

Each class in the SDM schema has a collection of attributes (representing the

columns in the relational database model) describing the class. Attributes can

either describe the members of a class (member attributes) or the class itself (class

attributes). A member attribute has a value for each member (or each tuple) of

the class. A class attribute has only one value for the class as a whole

(independent of the number of members of the class).

Each attribute has the following features:

1. An attribute name which uniquely identifies the attribute within the class,

the underlying base class, and all eventual subclasses of the underlying base

class. As with class names, multiple synonymous names are permitted.

2. A value which is either an entity in the database or a collection of entities.

An attributes value class defines the class which the value comes from. An

attributes value can also be null.

3. An optional attribute description is an English language description of the

attribute. This serves as a documentation tool in the SDM schema.

15-



4. The attribute can be either single valued or multivalued. The default is single

valued. A single valued attribute defines the value of the attribute as a

single tuple of the value class. A multivalued attribute defines the value of

the attribute as a collection of tuples of the value class. Therefore, the

multivalued attribute is itself an SDM class.

A multivalued attribute can also have a constraint on the size of the class

(i.e., number of members) placed by specifying multivalued with size

between X and Y", where X and Y are integers.

5. An attribute value can be specified as mandatory, which means that it cannot

contain a null value. The term may not be null is used to specify a

mandatory attribute value.

6. An attribute can be specified as not changeable. Here, once a non-null value

is specified for an attribute, it cannot be changed.

7. An attribute can be specified to be exhaustive of its value class. Here, every

value of the value class must be the attribute value of some entity in the

class. The phrase exhausts value class is used to specify this feature.

8. A multivalued attribute can be specified as having nonoverlapping values.

This means that no two values of the attribute have any entities (tuples) in

common. The term no overlap in values is used to specify nonoverlapping

values.

9. An attribute can be related to other attributes In the SDM schema with

attribute relationships. These attribute relationships are described in the

following sections.

16-



3.3.1 Attribute Mappings. Attribute mappings provide a mechanism of directly

referencing an attribute within the value class of an attribute. An attribute

mapping is specified by listing each attribute in the sequence separated by periods.

An example of an attribute mapping is when referencing the name of a dealership

for cars. Here, the attribute mapping "Dealership.Name" references the "Name"

attribute for the DEALERS class, which is the value class for the "Dealerships"

attribute of the CARS class. Thus, "Dealership.Name" gives the dealership name

for the given car.

Formally, an attribute mapping is a sequence of attributes, N
t
denned within

classes C, respectively (iV^j. • • JVm ) where the value class of N, is C, +1 for all

i = l....jn— 1.

The following rules apply to attribute mappings:

i. An attribute mapping AM is multivalued if any one of the attributes N, is

multivalued.

ii. the value class of the attribute mapping AM is the value class of the last

attribute Nm in the mapping (i.e., class Cm ).

3.3.2 Attribute Inheritance. When defining a subclass S of a class C, the

attributes of class C are inherited by the subclass S according to the following

rules:

1. A class S denned as an attribute-defined subclass or a user-controllable

subclass of a parent class C inherits all of the member attributes of C

.

2. A class S denned as an intersection subclass of classes C^ and C 2 inherits all

17-



of the member attributes of both classes Ci and C 2 .

3. A class S denned as a union subclass of classes Ci and C 2 inherits all of the

member attributes common to C^ and C 2 .

4. A class S denned as a difference subclass of classes C and C i (i.e., members

of class C not in class C i) inherits all of the member attributes of class C

.

Member attributes inherited by a subclass are not explicitly defined, but are

assumed based on how the subclass is denned (by the above rules). One can,

however, place constraints on the value class of an inherited member attribute by

explicitly specifying the inherited member attribute in the subclass definition with

the new value class specification. An example of this is in the specification of the

subclass BUICKS of class CARS. Here, an additional constraint is put on the

inherited member attribute "Model" of the BUICK subclass. The constraint is that

the "Model" attribute of class BUICKS can only be from the value class

BUICK_MODELS (instead of the inherited value class CAR_MODELS).

3.3.3 Member Attribute Interrelationships. Member attribute interrelationships

allow member attributes of two or more classes to be related in the SDM schema.

The three types of member attribute interrelationships are the inverse, the match,

and the derivation. The inverse and matching interrelationships are described here.

The derivation is described in the next section. Formal definitions are also given

for the inverse and matching interrelationships, since they may be easier to

comprehend then the engllsh definition.

The first member attribute interrelationship is the inverse relationship. The

inverse relationship defines a symmetrical relationship between two attributes of

IS-



two classes. Consider classes C x and C 2 , with attributes A t and A 2 respectively.

Member attribute A, of C, is denned as the inverse of attribute A 2 of C 2 if the

value of .4, for a member M t of C t consists of those members of C 2 whose value

of A 2 is Mi. Since inversion establishes a symmetrical relationship, attribute A 2 of

C 2 is also denned as the inverse of attribute A i or C 2 in the SDM schema.

Formally, the value of A Y for member M, of class Cj is denned in terms of

attribute A 2 of class C 2 as follows:

A ! of M i members of C 2 such that Af t e A 2

The SDM schema segment in Figure 3-1 describes how the inverse relationship

would be described in an SDM schema. The value class restrictions are also

displayed.

C,
member attributes:

A x

value class: C 2

inverse: A 2

C 2

member attributes:

A 2

value class: C i

inverse: A i

Figure 3-1. SDM Inverse Attribute Relationship

Operationally, the inverse works as follows. When class Cj (or C 2 ) is changed in

some way (i.e., member record added, deleted, updated, etc.), the corresponding

appropriate will be made to members of class C 2 (or Cj. Thus, the inverse

relationship ensures that the two attributes remain consistently defined throughout

the life of the database.
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An example of the inverse relationship is that of the attribute "Dealership" of class

CARS and attribute "Cars_in_stock" of class DEALERS. Here, the value of the

"Dealership" attribute of a car is those DEALERS whose "Cars_in_stock" contain

the given car. Also, the value of the "Cars_in_stock" for a dealer contain those

members of CARS which have a "Dealership" attribute value of the given

dealership. The inverse relationship would ensure that the "Cars_in_stock"

attribute of DEALERS is updated automatically when members are added to class

CARS which specify the appropriate value of the "Dealership" attribute.

The second attribute interrelationship is the matching relationship. The value of

the match attribute A ! for the member M t of class Cx is determined as follows:

a. A member M 2 of some class C 2 is determined such that C 2 has M ^ as its

value of member attribute A 2 .

b. The value of member attribute A for M 2 is used as the value of A ! for itj.

The matching relationship is specified in the SDM schema as shown in Figure 3-2.

C
member attributes:

At
value class: C

!

match: A of C 2 on<4 2

2

member attributes:

A 2

value class: C
A

value class: Cj

Figure 3-2. SDM Attribute Matching Relationship

Formally, the value of the A! attribute for member Af t of class C x is determined
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from attributes A and A 2 , and member M2 of class C 2 as follows:

A i of Mi = A of M 2 mC 2 such that A*! e A 2 in Af2

The matching attribute, therefore, automatically derives the value of attribute A i

of class Ci from the given information. This implies that the attribute Ai can

never be given a value directly by the user.

An example of the use of the matching relationship is in the definition of the

"Owner" attribute of the CARS class. Here, the owner of a car is the same as the

owner of the dealership where the car is in stock. To specify this relationship, the

"Owner" attribute of a car is defined to be the "Owned_by" attribute value for the

member of DEALERS which has this car as a value of "Cars_in_stock". Notice

that the class of "Owners" of class CARS and "Owned_by" of class DEALERS must

be the same.

3.3.3.1 Member Attribute Derivations. The third and last type of member

attribute interrelationship is the derivation. The derivation is used to define an

attribute as being derived Cor calculated) from other attributes in the SDM schema.

A number of derivation primitives are supported by the SDM. Each derivation

primitive supplies a mechanism for computing a derived attribute. Combined use

of these derivation primitives can lead to the development of arbitrarily complex

derivations.

A description of all the derivation primitives supported by SDM follows. The

descriptions involve the definition of a derived attribute A t of class C t with

member Mi.

1. A i can be defined as an ordering attribute. Here, the value of attribute A j is
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the sequential position of M, within C l when the members of C t are ordered

by other specified attributes of C x . Members of Ci can be ordered by

increasing (default) or decreasing value. The phrase

order by A 2

is used to define an ordering derivation. Ordering of the members M, of

class Ci can also be specified in groups based on another attribute A 3 of C%.

Here, the value of A i is the sequential position of member M x within the

group of members of C t which have a common value of attribute A 3 . The

phrase

order by A 2 within A 3

is used to specify ordering withing groups.

2. A ! can be defined as an existence attribute. Here, A t contains the value "yes"

if member M i of Ci is a member of some other specified class C 2 , and "no"

otherwise. The phrase

if in C2

is used to define an existence attribute.

3. A ! can be defined by recursively tracing the values of some attribute A 2 .

The value class of A 2 must be the same as the value class of A t . The phrase

all levels of values of A 2

is used to define this type of attribute derivation. This attribute derivation

can also specify a limit to the number of recursions of tracing the values of

A 2 . The phrase
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up to n levels of values of A 2

is used to place a restriction of n levels on the recursive tracing of attribute

A 2 .

4. The derived multivalued member attribute Contents is automatically defined

when a grouping class is denned. This member attribute has a value

representing the contents of each class underlying the grouping class. That

is, each value of "Contents" represents all of the members of one of the

classes underlying the grouping class.

5. A ! can be denned to be directly derived from another attribute A 2 . Here,

whatever value is given to attribute A 2 is also given to attribute A t . The

description

same as A 2

is used to define this type of derivation.

6. Ai can be denned as a subvalue of some other attribute A 2 which satisfies

some predicate P. The predicate, P, can be any of the attribute predicates

denned in section 2.2.1. The description

subvalue of A 2 where P

is used to define a subvalue attribute. Predicate P may contain mappings

which are used to determine which values of A 2 are applicable. These

mappings, however, must be consistent with the value class of attribute A 2 .

7. A i can be defined as the intersection, union, or difference of two other

multivalued attributes. A union derivation would be specified as
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where is in A 2 or is in A 3 .

8. A i can be denned In terms of other attributes with an arithmetic expression.

All of the attributes involved in the arithmetic expression must have a value

class of the built in class NUMBERS. The set of possible arithmetic

operators are addition ("+"), subtraction ("-"), multiplication ("*"), division

("/"), and exponentiation ("!").

9. A ! can be denned to be the "minimum", "maximum", "average", or "sum" of

another multivalued attribute. The denning attribute must have a value

class of the built in class NUMBERS.

10. A ! can be denned to be the number of members in some other multivalued

attribute A 2 . The phrase

number of members in A 2

is used to specify this derivation. The user can also specify that A , be the

number of unique members of attribute A 2 . The number of unique members

differs from the number of members only when duplicates are present in the

attribute A 2 .

3.3.3.2 Member Attribute Definition Rules. Hammer and McLeod describe how the

use of derivation specifications must be used to avoid inconsistent attribute

specifications. Every attribute, A u satisfies one of the following cases:

a. A , has exactly one derivation. Here, the value of A , is completely specified

by the derivation. If an inverse of A t exists, it may not have a derivation or

a matching specification.
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b. A, has exactly one matching specification. Here, the value of A, is

completely specified by its relationships with an entity (or entities) to which

It is matched. If an inverse of A t exists, it may not have a derivation. The

inverse of A t can, however, have a matching specification, but must be

consistent with the matching specification of A t .

c. A j has neither a matching specification nor a derivation. Here, it may be the

case that the inverse of A i has a matching specification or a derivation. If

this is the case, one of the above two cases applies. Otherwise, A t and A

,

form a pair of primitive values that are denned in terms of one another, but

which are independent of all other information In the database.

The concept of defining an inverse and a matching relationship within the same

attribute definition warrants some discussion. Recall from the discussions of the

Inverse and matching attribute interrelationships, the operation of the two types of

relationships. Inverse supplies an automatic update mechanism for one attribute

when the other corresponding attribute is modified. Matching supplies an

automatic derivation of an attribute from other information in the database.

Consider an attribute A y defined in class C x with both an inverse and matching

attribute interrelationship denned as shown in Figure 3-3.
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c,
Ax

value class: C2

inverse: A 3

match: A oi C 3 oaA 2

C 2

A 3

value class: C

1

inverse: .A j

C 3

value class: C 2

value class: C

!

Figure 3-3. Combined Use of Match and Inverse Attribute Interrelationships

The inverse relationship between A^ and A 3 means that whenever one of the two

attributes is changed, the other one is changed appropriately. The match

relationship for A , means that A t cannot ever be directly assigned a value, but is

automatically derived from attributes A and A 2 in class C 3 . This implies an

indirect dependence of A 3 of class C 2 on attributes A and A 2 in class C 3 . If this

dependence were not recognized by the model, a change to attribute A 3 for class C 2

would initiate a corresponding change to attribute A x for class d- This could

invalidate the matching relationship between attribute 4, and the attributes in

class C 3 . Therefore, when a matching relationship is denned within an attribute

definition, and an inverse relationship also exists, a matching relationship is also

assumed for the Inverse attribute (here A 3\ Further, if the database designer

specifies a matching relationship for the inverse attribute, it had better be the

matching relationship which is assumed.
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The matching relationship which is assumed for A 3 is

match: A 2 ofC 3 onA

To see this (and In fact to conceptualize the inverse/match combined definition), an

example will be given. Referring to Figure 3-3, consider the following notation:

i. M, ' will represent member i of class C,

.

11. M, '(AtM^.-l means that the *a attribute of member Mf> contains the

members M.
,
etc.. from class C, . Note that this implies that the value class

of At is C,

.

Figure 3-4 shows a derivation for the attributes A , and A 3 based on the values of

A and A 2 in class C 2 . First, given the values for A and A 2 for members M?> and

Ma > of class C 3 , and using the formal definition for matching, we can attempt to

derive the A, values for all members of class C t. Given only the two specified

members of class C 3 , only the A , attribute for member Mp Is derivable since this

is the only member of C, which appears as a member of the A attribute of C 3 .

Using the formal definition of matching, the A t attribute for member iff" is the

two members M 2 > and A# of class C 2 (which is the value class of A J. Now
applying the inverse relationship between A , and 4„ we can attempt to derive the

4 3 attribute value for all members of class C 2 . Using the formal definition for

inverse, members Mc
2 ' and AfJ» both have M?> as their value (note that C, is the

value class of A 3 ,
which is consistent with the definition). Now, it can be seen that

using the assumed matching definition for attribute A 3 , the values derived for A,
using the inverse with A, are exactly the same as the matching relationship

between A 3 and attributes A and A 2 of class C 3 .
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Figure 3-4. Example of Match/Inverse Combined Derivation

This example is by no means a proof of the assumed matching relationship, but

only shows how the assumed matching relationship logically fits in with the

inverse and matching relationships explicitly denned.

3.3.4 Class Attribute Derivations. Attribute derivation primitives analogous to

those listed in items 5 through 10 in the previous section can be used to define

class attribute derivations. Instead of using other member attributes to derive the

member attribute, other class attributes are used to derive the class attribute. In

addition to items 5 through 10 of the previous section, two additional primitives

can be used to derive a class attribute:

1. The class attribute can be defined to be the number of members in the class

in which it resides. The phrase

number of members in this class

is used to define this type of class attribute derivation.

2. The class attribute can be denned to be the "minimum", "maximum",

"average", or "sum" of one of the member attributes in the class in which it
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resides. The phrase

sum of A over members of this class

is an example of this type of class attribute derivation.

3.4 Name Classes

Name classes define the domain of the data which is used to communicate -with the

outside world; that is, the data which can be entered by a user and which is

supplied to the user as a response to queries, etc. A name class in SDM is a

subclass of one of the built-in classes, formed by application of some predicate, P,

to to the built-in class. The predicates which can be used to define a name class are

as follows:

1. The name class can be defined as a subclass of a built-in class. Here, all legal

members of the built-in class can be entered.

2. The name class can be defined as a subclass of a built-in class, where

specified by the database administrator. Here, the members of the name

class are those members of the built-in class which are specified by the

database administrator.

3. The name class can be defined as a subclass of STRINGS which follows some

specified format. Here, the name class is defined as all members of STRINGS

which satisfy some data format directive which is specified in the SDM
schema. This name class represents a class of STRINGS which satisfy the

format directive; it will not actually have every member of STRING

satisfying the format directive. The next section details the use of the

format directive, F
, when used in this type of name class definition.
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3.4.1 Format Directives The format directive is defined in terms of the Domain

Definition Language (DDL) as detailed in reference [13]. DDL was created to allow

a relational database model to specify the semantics of the data which it

represented. In the SDM schema, DDL is used to specify the format directive, F,

used in the subclass interclass connection when denning a name class. The format

directive (as in the domain definition of reference [13]), establishes the domain of

the name class when it is denned in the SDM schema; that is, the domain of the

name classes are static (do not change).

McLeod defined a domain definition to consist of four parts: (1) domain name, (2)

domain description (establishing the domain), (3) ordering of the domain values,

and (4) a violation-action to be taken if the domain description is violated. In the

SDM schema, the domain name will be the class name of the name class. The

domain description will be for format directive in the name class. Also, as part of

the format directive, the ordering of the domain values defined in the domain

description will be supplied.

A domain description is specified by any one (or a combination of) the following:

a. decomposing the domain values into submits which restrict the domain

values for the name class by specifying a format for the data,

b. enumerating the domain values; that is, specifying that the domain consists

of a finite number of values (note that the enumeration of the domain values

is done at the subunit level in the format directive),

c. placing restrictions on the set of domain values by definition of a predicate,

p , which limits the set of domain values.
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The format directive can also be a number of alternative domain decompositions or

enumerations for the domain of the name class. Each subunit specification can be

prefixed with a label which allows reference to the value of the subunit within the

predicate p

.

The format directive can specify that the subuntts denned be ordered by some

criteria. The possible ordering alternatives are as follows:

1. list of subunits which define the ordering precedence for the domain value

when compared,

ii. no ordering ("none") which implies that only equality comparators are

possible,

hi. atomic ordering; that is, the when the domain value is compared, numeric

ordering is used for real numbers and lexicographic ordering is used for

character strings.

A domain violation action can be supplied to determine a course of action if data is

entered by the user which does not satisfy the given format directive. The DDL

presented in reference [13] provides three basic domain violation actions:

1. flag an error and supply an optional message,

2. substitute a known value for the value in error, or

3. call a user-defined procedure to handle the error.

The basic format of a format directive for an interclass connection of a name class

is shown in Figure 3-5.
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subclass of STRINGS where format is

[label ia : ] subunit la

[label^: ] subunit ^

[label lb : ] subunit ib

[labels : ] subunit^

'.]

[where p ]

[ordering: ordering-spec]

[violation action: violation-action-spec]

Figure 3-5. SDM Format Directive Specification

An example of the use of the format directive In the definition of name classes is In

the definition of the name class VIN_CODES In Appendix 1. The exact syntax of

the format directive will be detailed in Chapter 4.

3.5 Built-in Classes

For convenience, SDM provides some built-in class definitions. The built-in classes

provided by SDM are as follows:

YES/NO This class has the two members "yes" and "no". This provides the

boolean class definition.

REALS This class has members representing all real numbers.

INTEGERS This class has members representing all integers (positive and

negative).

NUMBERS This class has members representing all members of the REALS and

INTEGERS classes.
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STRINGS This class has members representing all possible strings of characters.

3.6 Summary

This chapter has detailed the SDM as Introduced by Hammer and McLeod in

reference [l]. Chapter 3 will introduce extensions to the SDM which will provide

greater capabilities as well as provide more semantic integrity into the SDM
described in this chapter. Chapter 4 will introduce the reader to formal language

theory and present the SDML grammar. Finally, Chapter 5 will discuss parsing of

the SDML grammar and include a discussion of the semantic checks which should

be made in the SDML parser which would not be caught in the SDML grammar

itself.
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Chapter 3: SDM Extensions

This chapter describes the extensions to the SDM model which are included in the

SDML grammar presented in Chapter 4. Since the SDM has been used In classroom

study for some time, the SDML grammar was designed to be as syntactically close

as possible to the SDM presented in Chapter 2. The two major changes to the SDM

are:

1. Description text in SDML is enclosed in curly-brackets. This is necessary to

be able to recognize the end of the description (since any character or

reserved words may appear in the description).

2. The equality predicate (item 9 in section 2.3.3.1) and the set-order-derived

predicate (item 10 in section 2.3.3.1) were combined to form an enhanced

equality predicate. The equality predicate allowed an arithmetic expression

involving attribute mappings but did not allow set operators on multivalued

attribute mappings. The set-order-derived predicate allowed a single set

operator to be applied to a multivalued attribute mapping. SDML will

allow an arithmetic expression involving attribute mappings and set

operators on multivalued attribute mappings. Note that a simple equality

predicate involving a single set operator on a multivalued attribute is

exactly the set-order-derived predicate. Thus the reason for the merging of

the equality predicate and the set-order-derived predicate.

Appendix 2 contains the structure of an SDML specification in a informal syntactic

format. This structure specification is provided to allow the reader to gain a

general understanding of the structure of an SDML specification without
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attempting to follow the BNF specification.

The DDL presented In reference [13] was also included into the SDML grammar

with some modifications. Reference [13] presented a BNF notation for the DDL.

The BNF listed, however, included some constructs which resulted in a non-LRU)

grammar. Therefore, some additional syntax was added to the DDL which made it

LRCl). Changes to the DDL will be noted in the next Chapter as the BNF for the

DDL within SDML is presented.

The following sections describe some extensions which, when added to the SDM
described In Chapter 2, will add some additional capabilities. Appendix 3 contains

the structure of the DDL included in SDML.

4.1 Assertions

Assertions will allow the SDM designer to include statements of fact about the

database being modeled. An assertion is a statement of fact which should always

remain true Independent of the state of the database. If the database enters a state

such that the assertion Is no longer true, the data In the database is in error. An
assertion failure action is supplied to indicate the action necessary when the

corresponding assertion falls. These assertions are considered run-time assertions

which will flag invalid database states during actual database use. Any number of

assertions can be defined in the SDM schema.

Three types of assertions are supplied to the SDM designer:

• Member Attribute Assertions,

• Class Attribute Assertions, and
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• Interclass Assertions.

With each of the three types of assertions comes a choice of three failure actions:

1. Flag the database state as an error state and optionally print a message

about the condition.

2. Warn the database administrator about the condition with a message.

3. Call a user-denned procedure which will take the appropriate action. This

alternative allows the database designer to build in notifications when

certain data values in the database obtain specified values. The optional

error message is not supplied on this option since the user-defined procedure

should supply any failure messages necessary.

A failure action of error is assumed if no failure action is given for the assertion.

A third failure action could also be supplied which would allow the database

designer to Indicate how the database should be automatically repaired when the

assertion falls. For example, a member attribute assertion failure action could be

supplied such that the member attribute value is substituted with a derived

MEMBER_ATTRIBUTE_DERIVATION (see Appendix 2). A class attribute

assertion failure action could Indicate that the class attribute value is substituted

with a derived CLASS_ATTRIBUTE_DERrVATION (see Appendix 2). Finally, an

interclass assertion failure action could be supplied such that the class is re-

populated using some other interclass connection. More sophisticated automatic

repair specifications could be employed to detect the source of the problem and

correct any other attributes which are found in error. Automatic database repair

specifications within an SDML specification will not be dealt with here since they
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lend themselves to much more study then could be supplied in this paper. They

are, however, a possible topic for further research.

The automatic repair of an invalid database state could also be thought of as a

function of the user-defined procedure. This way, the procedure specified would be

responsible for detecting the source of the error, correcting the error, and re-

verifying the state of the corrected database.

4.1.1 Member Attribute Assertions Member attribute assertions assert something

about the value of the given member attribute in terms of other member

attributes, class attributes for that class, or constants. The member attribute

assertion can either

1. specify an arithmetic expression which should always evaluate to "true"

independent of the current database state, or

2. specify a procedure to call to provide the necessary assertion checking.

The second type of assertion allows the database designer to indicate that the

attribute value must be checked in a non-trivial manner which can be described by

a procedure interface.

An example of the use of the first type of member attribute assertion is asserting

that the Date_of_preparation attribute of class SCHEDULED_PREPS is always =S

CURRENT.DATE. The CURRENT_DATE used here is another extension of the

SDM schema and is presented in section 4.3. This also demonstrates the use of the

attribute assertion to notify the database administrator when the value of an

attribute takes on some specified values or exceeds some specified range of values.

This example illustrates the use of the so called notification-assertion by notifying
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the database administrator when a car is past due for preparation. This database

state is not actually in error, but requires some further action on the record to

resolve the conflict (e.g., either to change the preparation date or to prepare the car

for delivery and move the record to PREPARED_CARS class). The

Date_of_preparation member attribute of class SCHEDULED_PREPS Here the

assertion

assertion: Preparation_date < CURRENT_DATE
failure action: call _notify_past_due

is given within the member attribute "Date_of_preparation" of class

SCHEDULED_PREPS.

An example of the second type of member attribute assertion occurs when

specifying an interior color for a car. Typically, only certain interior colors can be

used based on the exterior color of the car. Since the selection of interior colors

based on the exterior color is non-trivial, an assertion can be supplied to verify the

choice of interior colors based on the exterior color. Here the assertion

assertion: call _verify_interior_color
failure action: error 'invalid exterior/interior combination'

is given within the member attribute "Interior_color" of class CARS to show this

relationship between interior and exterior colors.

4.1.2 Class Attribute Assertions Class attribute assertions assert something about

the value of the given class attribute in terms of other class attributes, member

attributes within that class, or constants. As with member attribute assertions,

the assertion can either specify an arithmetic expression which should evaluate to

"true" independent of the current database state, or provide a procedure call which

verifies the current database state.
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An example of the use of the class attribute assertion is asserting that the

Number_of_cars_sold attribute of class CARS_SOLD is exactly equal to the

number of members in class SCHF.DULED_PRF.PS plus the number of members in

class PREPARED_CARS. Figure 4-1 shows how the class definition of

CARS_SOLD would be denned to show this assertion. The sizeof class operator is

another extension to the SDM schema and is presented in section 4.4.

4.1.3 Interclass Assertions Interclass assertions assert something about the

interclass connection for a nonbase class. This is used to ensure that other

interclass connections are also true for the nonbase class. Thus, the interclass

assertion specifies one or more other interclass connections which must also be true.

The interclass assertion would be most beneficial when dealing with classes which

are user-controllable classes; that is, the database administrator populates the

class. An example of the use of the interclass assertion to verify user-controllable

classes is shown in Figure 4-1.
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CARS_SOLD
description: ( All cars sold to customers. )

interclass connection: subclass of CARS where
specified

interclass assertion: subclass of CARS where
is in PREPARED_CARS or
is in SCHEDULED_PREPS

failure action: warning

'car not scheduled for preparation'
member attributes:

Sold_to

value class: PERSON_NAMES

Sold_by
value class: PERSONJMAMES
assertion: Sold_by contained in

Dealership.Employees
failure action:

error 'Salesman not employee of dealership'

class attributes:

Number_of_cars_sold
value class: INTEGERS
derivation: number of unique members in

this class

assertion: Number_of_cars_sold -
sizeof( SCHEDULED_PPJEPS ) +
sizeof( PREPARED_CARS )

failure action:

call _determine_cars_not_scheduled

Figure 4-1. Use of Member and Class Attribute and Interclass Assertions

Other known Interclass connections which can be used to define the same class can

also be stated within the interclass assertion. An example of the use of the

Interclass assertion Is shown in Figure 4-2.
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PREPARED_BUICKS
description: ( This class contains all prepared

Buick's for any dealership. }

interclass connection: subclass of CARS where
is in BUICKS and
is in PREPARED_CARS

interclass assertion: subclass of PREPARED_CARS where
Make - 'Buick'

Figure 4-2. Use of the Interclass Assertion as Multiple Interclass Connections

The failure action for the Interclass assertion in Figure 4-2 is assumed to be the

error action. If the Interclass assertion were to fall, the database administrator

would receive an error message indicating that an invalid database state has been

entered.

4.2 Grouping Name Classes

In the real world, the value of one attribute, A „ may determine the value class of

another attribute, A 2 . An example of this is the attributes "Make" and "Model" of

class CARS. Any combination of Make and Model of cars may not make sense. In

fact, the make of a car determines the possible models which can be denned. That

is, the value of name class CAR_TYPES determines the value class for the name

class CAR.MODELS. Thus, the name class CAR.MODELS is actually a grouping

of value classes, where each value class is made up of a list of possible car models.

Since the value of an attribute A , belonging to name class C, determines the value

class, VC,, of an attribute A 2 belonging to name class C 2 , the number of value

classes for class C2 is exactly the same as the number of members of name class C,.

This is because each value of name class C , determines one and only one value class

VC, belonging to name class C 2 .

How this extension would be represented in the SDM schema is shown in Figure
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4-3.

CAR_TYPES

determines: CAR_MODELS

CARJMODELS

interclass connection: grouping of STRINGS as specified

by CAR_TYPES

Figure 4-3. Example of Grouping Name Class Usage

In Figure 4-3, the term "determines" means that a value of the given name class

(e.g., CAR_TYPES) determines the value class of the other specified name class

(e.g., CAR_MODELS). Logically, the CAR_MODELS name class is thought of as

being a class which has members which are name classes (as in the grouping

subclass definition). The interclass connection for the CAR_MODELS name class

would then specify that a "grouping" of name classes exist and then specify the

predicate, p, which is used to formulate each name class In the group. Finally, the

grouping name class will indicate the name class (e.g., CAR_TYPES) which

determines which value class of the group will be selected. This defines a

symmetrical relationship between the name class "determining" the second and the

name class being "determined by" the first.

4.3 Constant Name Class Members

Constant name class members are a method of identifying a permanent member of

a given name class which can then be used throughout the rest of the SDM schema.

Constant name class members are most beneficial when used with the assertion

clause presented in section 3.1. An example of constant name class members might
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be CURRENT_DATE of name class DATES and CURRENT_YEAR of name class

YEARS. Typically, constant name class members would be values which would be

assigned by the database administrator or some other external source.

Constant members would be declared within the name class which it is denned as

follows:

C
definition: ...

interclass connection: ...

constant members: MiM2-—M„

where the value of M xM*....Mn would be automatically denned as the value class

of C.

4.4 Sizeof Class Operator

The sizeof class operator is supplied to add to the capabilities of denning member

and class attribute assertions. Simply, the sizeof operator defines the size of the

class C . That is,

sizeof( C ) = number of members in class C

.

Figure 4-1 demonstrates the use of the sizeof class operator.

4.5 Summary

This chapter discusses some entensions to the SDM which are included in the

SDML grammar as described in Chapter 4. Appendix 2 and 3 give the structure of

the SDML specification which will be the foundation for the development of the

SDML grammar in Chapter 4. All of the examples used in this chapter are

included in the SDML specification shown in Appendix 5 (which is an upgrade of

the example in Appendix 1).
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The following items are Identified as warranting further study:

• Automatic database recovery specifications in SDML,

• Procedure specifications in SDML,

• Further combining some of the derivation predicates to support a smaller

subset of possible predicates while retaining current capabilities.

• On a larger scale, the SDM schema should be re-worked to provide a more

cohesive set of capabilities instead of seamingly ad-hoc capabilities.

Chapter 4 will give a brief introduction to formal language theory and begin

describing the design of the SDML grammar.

-44-



Chapter 4: SDML Grammar Definitions

Before presenting the design of the SDML grammar, a short discussion on languages

and grammars is beneficial. Afterwards, the notation used in the rest of this

chapter is described. Finally, the grammar for SDML will be presented.

5.1 Languages and Grammars

A language is an ordering of symbols based on some pre-defined set of rules. The

symbols of a language constitute its alphabet. Symbols of an alphabet are referred

to as tokens in compiler design. The rules which govern how the symbols of the

alphabet may be arranged in the language is called the grammar for the language.

Thus, given an alphabet, I, the following holds for the language L

:

L C I*-

where Z" is defined as the set of all sentences formed by concatenation of the

tokens from £ (including the null sentence).

A terminal symbol is any member of Z. Therefore, a terminal symbol is

synonymous with a token. A nonterminal symbol represents a substring of a

sentence in L
. Nonterminal symbols are used in a grammar as a building block for

sentence construction. The set of terminal symbols, Z, and nonterminal symbols,

N , are disjoint; that is

i n n = *.

The production rules, i>, of a grammar, r, are a set of rules which define how the

terminal symbols (or tokens) are built to form the language, L . A production rule

has the following form:
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a - p.

where a.0 e QV [J I)'
. In other words, a production rule defines a derivation step

where a string of terminal and nonterminal symbols (a) derive another string of

terminal and nonterminal symbols (0). A grammar r is then defined to be the

four-tuple

r (z.n.p.s,).

where S, is the start symbol for the grammar r. The start symbol is a special

nonterminal symbol such that, through one or more iterations of production rules

from r
,
it will derive all sentences, s , in L . That is,

S, =>* s. for any s e £(I").

We can therefore define the language defined by grammar r to be as follows

LOT) m JSl' and S, >*

where S, => +
s means that s can be derived from the start symbol by

application of one or more production rules, P, from r.

Placing restrictions on the form of production rules in a grammar r produces

several well known classes of grammars. A grammar r is context-sensitive if

a. a contains at least one nonterminal symbol

b. [orj <
J*'

The above restrictions imply that a context-sensitive grammar is also e-free; that

is, no productions of the form a - e exist in the grammar, where e is called the

empty symbol. A grammar r is denned as a context-free grammar if the left hand

side CLHS) of every production rule contains one and only one nonterminal
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symbol. Then the form of each production In a context-free grammar is

X -* p,

where X « N and e (jv |J zT . Notice that the right hand side (RHS) of a

context-free grammar rule can be the empty string e. This implies that context-

free grammars need not be context-sensitive. A left-recursive grammar is a

context-free grammar which includes productions of the form

X -> Xv,

where X e N and v e (N \J E)*

.

The SDML grammar will be designed to be context-free, allowing empty symbols

on the RHS of rules. The SDML grammar will, therefore, not be context-sensitive.

The SDML grammar will be denned as a left-recursive grammar to implement list

structures. Reasons for left-recursion Cvs. right-recursion) will be discussed in

Chapter 5.

It is desirable a grammar to be unambiguous; that is, for each sentence, s eL, there

exists a unique parse tree for s denned by r. When a ambiguous grammar is

parsed, the parser must anticipate the intended meaning of the ambiguous sentence

and "guess" at a derivation for the sentence. It is possible that, If the parser guesses

incorrectly, the sentence cannot be fully reduced given the derivation chosen by the

parser. Since it has been proven that there exists no algorithm which can take an

arbitrary context-free grammar and prove that it is ambiguous or not [10][ll], a

general statement about the ambiguity of the SDML grammar presented cannot be

made here. Therefore, the question of SDML grammar ambiguity will be left to

Chapter 5 (where the SDML parser will be discussed). Note, however, that some

automatic parser generators (including the one chosen for the SDML grammar) do
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supply disambiguating rules for resolving ambiguities in the grammar.

The SDML grammar will be developed as an LRU) grammar. The primary reason

for choosing an LRU) grammar for SDML is to allow the use of already existing

parser generators for parsing an SDML specification. An LRU) grammar is one

which can be parsed Left-to-right producing a Rightmost derivation in reverse,

with one token look ahead. Barrett and Couch [10] give the following definition

for an LRU) grammar. Consider a grammar r with start symbol S, and a

rightmost derivation of a terminal string w as follows:

S, =>w 1 =>w 2 => => w .

Now consider a typical step in the derivation:

aAt = > a/3t

.

where A - is the production used to reduce aAt to apt, and aft is one of the

w,. Then r is LRU) if, for every such derivation step, the production A -> can

be inferred by scanning or/3 and the first token of v. In this definition, t e z'

,

AtN,aRda,pe(z\J NT . Developing an LR(l) grammar for SDML will allow

for the design of a shift-reduce parser for SDML with a one token look ahead.

Notice that an LRU) grammar provides an extremely powerful language

specification. That is, the amount of information used to infer a reduction can be

immense. That is, the entire stack of shifted symbols (i.e., o0) as well as the first

token of v, is used to infer the reduction by the production A - 0. How the

parser actually implements this is left to Chapter 5.
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5.2 Notation

In the SDML grammar specification described in the next section, the following

notation is used:

1. Nonterminal symbols are lower-case characters enclosed within the < and

> symbols (e.g., <class-attributes>).

2. Terminal symbols are denoted as upper-case strings,

3. If two productions (e.g., X - Y and X -> Z ) have the same LHS, they are

shown as

X ::- Y \

Z.

where the T symbol represents an alternative. A production of the above

form represents the Backus-Naur Form (BNF) for the grammar, r. The

SDML grammar will be presented in the BNF format.

4. When referring to a mapping, the terminology AM X will be used (read

Attribute Mapping sub 1). When referring to a mapping list, AMt will be

used.

5. Defining the attribute mapping AMx as a mapping of attributes N
t

(i.e.,

tf iJV 2 .
• • • JVm ), then attribute N

t
in the mapping sequence within AM i is

referenced as (AM^"'.

6. The value class for an attribute or mapping (say AM, ) will be denoted by

VCAMl (read "the value class of AM").
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7. The underlying base class for class C, is denoted as UCj (read "the underlying

base class of C,").

Class names, attribute names, procedure names, constant member names, and

labels are considered as terminal symbols in the discussion since they are passed

from the lexical analyzer as such.

5.3 SDML Grammar Specification

This section will discuss the development of the grammar for SDML. With each

production sequence, the semantic checks which will be performed by the SDML
parser are listed. All production rules are listed in Appendix 4 as they were given

to the Yacc program. The order of the discussion follows the order of the

productions given in Appendix 4.

The following checks will be made in reference to class and attribute name

definitions:

a. class name definitions must be unique for all classes denned in the SDML
specification.

b. attribute name definitions must be unique for the underlying base class, U,

and all eventual subclasses of U

.

c. constant member name definitions must be unique with respect to all

constant member names defined in the SDML specification.

As discussed in Chapter 2, the SDM schema is made up of one or more class

definitions. Thus, the SDML grammar start symbol will be <sdm-schema> and

will, therefore, be denned as a class definition list as follows:
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<sdm-schema> :> <class-definition-list>

A class definition list can be either a single class or multiple class definition lists.

In either case, a first (and last) class definition must be present. The <class-

definition-list> nonterminal could then consist of a single class definition or a last

class definition preceded by other class definitions (i.e., another class definition

list):

< class-definition-list > ::- < class-definition> I

< class-definition-list > < class-definition>

Base and nonbase class definitions can be mixed withing the SDML specification.

As discussed In Chapter 2, a class in the SDM schema is either defined as as base

class or a nonbase class. The distinction between base and nonbase classes is not

declared explicitly In the SDM schema with the class name, but is implicit in how

the class Is defined. A distinction can be made between base classes and nonbase

classes by the presense of an interclass connection. All nonbase classes have

interclass connections and no base classes have interclass connections. Therefore,

no conflict should arise in the grammar If the class definition produces either a base

class definition or a nonbase class definition as follows:

< class-definition> ::- <base-class-definition>
I

< nonbase-class-def>

Let us first concentrate on the base class definition. Every class, whether base or

nonbase, is identified with a unique class name possible followed by multiple

synonymous names. The class name list is then followed by the body of the base

class as follows:

< base-class-definition> ::- <class-name-list> <base_class_body>

The class name list is headed by the primary name for the class optionally
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followed by the list of synonymous names separated by comma's or and's:

< class-name-list> ::- CLASS_NAME I

< class-name-list> <comma-and-sep> CLASS_NAME

<comma-and-sep> ::- 7 I AND

Within the list of semantic checks for declarations within the body of this class,

the primary name of the class presently being denned will be C

.

Now for the definition of the body of a base class. A base class is made up of an

optional description, an optional base class features declaration, one or more

member attributes, zero or more class attributes, and a list of identifiers. Thus, the

body of a base class is as follows:

<base_class_body> :> <desc-clause> <bc-feat-decl>
<member-attr-decl> <class-attr-decl>

<ident-decl>

The description clause allows the designer to provide an Engligh language sentence

for documentation purposes. The description clause has the following format:

<desc-clause> :> e I

DESCRIPTION : DESCRIPTION_TEXT

Base class features allow the designer to specify whether or not duplicates are

allowed within this class. If not specified, the default is that duplicates are

allowed. The base class features declaration is then

<bc-feat-decl> ::- £ I

DUPLICATES NOT ALLOWED I

DUPLICATES ALLOWED

Every base class must have one or more member attributes defined for the class.

Thus the productions
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<member-attr-decl> ::- MEMBER ATTRIBUTES : <member-attr-list>

<member-attr-list> ::- <member-attribute>
I

<member-attr-list> < member-attribute

>

define the format of member attribute definitions within a class. Member

attributes are identified by an attribute name optionally followed by multiple

synonymous attribute names. Member attribute names must be unique within all

attributes (member and class) of this class and all eventual subclasses of this class.

The body of a member attribute contains the description clause (exactly as in the

class definition), the value class declaration for the attribute, an optional inverse

relationship, an optional match or derivation, a member order defining the order of

the attribute, and member attribute options. Added to the member attribute

definition is the member attribute assertion. Thus, the production defining a

member attribute definition is as follows:

<member-attribute> ::- <attr-name-list> <desc-clause>
< value-class-decl> < inverse-decl>
< match-or-derivation> < member-order>
<member-attx-opts> <attr-assertion-decl>

<attr-name-list> :> ATTRIBUTE_NAME
I

<attr-name-list> comma-and-sep ATTRIBUTE_NAME

The primary name for the attribute currently being built will be A Cwithin class

C).

The value class declaration defines the value class from which the attribute will

derive its value. The value class declaration is as follows:

<value-class-decl> ::- VALUE CLASS : CLASSJVAME

The value class definition for A will be denoted VCA .

The inverse declaration allows the designer to define an inverse attribute
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interrelationship between this attribute and another. An inverse relationship

logically defines an assertion between this attribute and the inverse attribute.

Therefore, any additional assertions will be redundant. Recall from Chapter 2 that

the inverse attribute must have a value class of the class presently being defined

and this attribute must have a value class of the inverse attributes underlying

class. These checks, however, will not be made here since the inverse attribute

may not have been defined yet. The inverse checks will be made at the end of the

first pass after all classes and attributes have been discovered and appropriate

symbol tables have been built. The inverse declaration is defined as follows:

<inverse-decl> ::- INVERSE : ATTRIBUTE_NAME

The semantic checks which will be performed on the <inverse-decl> production

are as follows:

Production:

<inverse-decl> —> inverse :A i

Checks:

i. A i is defined as a member attribute within VCA

il. A i has a value class of C

ill. A x has "Inverse : A " definition

As well as an inverse declaration, the member attribute can contain either a match

or derivation (but not both). Therefore, the production

<match-or-derivation> ::- <match-decl> I

< derivation-decl>

will provide the excluslve-or capability. Any member attribute definition rules

will be applied to the class definition after pass 1 when all required data is

available to perform the checks.
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The match attribute interrelationship is denned by the following production:

<match-decl> ::- MATCH : ATTRIBUTE_NAME OF CLASS_NAME
ON ATTRIBUTE_NAME

All checks on attribute value classes and underlying classes noted in Chapter 2

will be done after pass 1 of the parser when all required data is available. These

semantic checks are as follows:

Production:

< match-decl> —> match: A t of C i on A 2

Checks:

i. A i and A 2 must be defined as member attributes within C i

ii. A 1 has a value class of VCA

ill. A 2 has a value class of C

.

iv. if A has an inverse declaration (call it A 3 ), then

a. A 3 has no derivation declaration.

b. if A 3 has a match declaration then it must be:

match: A 2 of C i on A t .

The derivation attribute interrelationship is denned by the following production:

<derivation-decl> :> DERIVATION : <member-attr-deriv>

where the < member-attr-deriv> defines all legal attribute derivations for member

attributes. The following semantic checks will be make for the given production:

Production:

<dcrivation-decl> * derivation: <mcmber-attr-deriv>

Checks:

i. if A has an inverse declaration (call it A 3) then:

a. A 3 has no derivation declaration.

55-



b. A 3 has no match declaration.

Member attribute derivations will be discussed later in this chapter.

The member order for a member (or a class) attribute defines the member Cor

class) attribute to be either single valued or multivalued. Multivalued attributes

can also have a restriction on the number size of the attribute (i.e., array size). If

member order is not specified, then single valued is assumed. The production for

member order is as follows:

< member-order> ::=- e I

SINGLE VALUED I

MULTIVALUED I

MULTIVALUED WITH SIZE BETWEEN I

INTEGER_C AND INTEGER_C

Note that the bounds on the array size must be specified as being between two

integer constants.

Member options allow the designer to specify one of four possible attribute

options. The phrase "may not be null" may be specified which indicates that the

attribute cannot contain the special value null. The attribute can be declared as

"not changeable" which implies that once a non-null value is given to the attribute,

it cannot be changed. The "exhausts value class" phrase within the definition of

attribute A for class C indicates that for every value V in the value class for the

attribute A , there must exist at least one member AT, of the underlying class C

such that the attribute A value for that member M, is that value V. The "no

overlap in values" phrase indicates that if some member M, of class C has contains

a value V for attribute A , then there cannot exist another member M
t
such that

the attribute A value of member M, is contains V. The "no overlap in values"

option is only valid for multivalued member attributes since single valued
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attributes are nonoverlapping by definition. Any or none of the above mentioned

options can be specified for a member attribute. The BNF sequence for definition of

member attribute options is thus:

<member-attr-opts> ::- <member-options> I 6

< member-options> :> < member-opt-item

>

< member-options> <member-opt-item>

<member-opt-item> :> MAY NOT BE NULL I

NOT CHANGEABLE I

EXHAUSTS VALUE CLASS I

NO OVERLAP IN VALUES

The reason for designing the grammar to allow a list of the available options Is to

allow the options to be entered in any order. This does, however, allow a single

option to be entered more than once within the same member attribute definition.

The parser can detect this at the time of the parsing and simply reduce the

redundant definitions to a single definition. The following semantic checks are

made for the indicated member options:

Production;

<member-opt-item> > exhausts value class

<member-opt-item> no overlap in values

Checks:

I. A is denned as a multivalued attribute.

The member attribute assertion extension allows some statement of fact to be

made about this member attribute, other member attributes within this class, class

attributes within this class, or constants. Mappings can be used when referencing

member attributes within this class to reference lower level data values. A

member attribute assertion is made up of one or more assertion statements

followed by a failure action if any one of the assertions were to fail. Therefore,

the productions involving declaration of a member attribute assertion are as
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follows:

<attr-assertion-decl> ::- e I

< attr-assertion-1 ist> < fail-action-clause>

<attr-assertion-list> ::- <auribute-assenion> I

< attr-assertion-list> < attribute-assertion

>

< attribute-assertion> ::- ASSERTION : <assertion>

One of three possible assertions can be used in the member attribute assertion:

1. A call to a user-defined procedure which will provide the necessary data

checks to verify the current database state.

2. A comparison of two arithmetic expressions involving member attributes

and class attributes within this class and constants. With this type of

member attribute assertion, each of the arithmetic expressions must evaluate

to a number value (INTEGER_C or REAL_C). The comparison can be made

with any one of the relational operators.

3. A statement indicating a set relationship between this member attribute and

one of: (1) some other attribute or mapping within this class, (2) a class

attribute within this class, or (3) another class. The two set operators

which can ge used (defined later) are the "is contained in" and the "contains"

operators. When the "is contained in" operator Is used, the RHS of the

comparison must be a multivalued attribute or a class. When the "contains"

operator is used, the LHS of the comparison (representing the attribute being

denned) must be a multivalued attribute.

The productions which define the member attribute assertion is then as follows:
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<assertion> ::- CALL PROCEDURE_NAME
I

<mapping-expression> <relop> < mapping-expression> I

< setop-predicate>

With a member attribute assertion list, an optional failure action can be supplied

which indicates the action to take when the member attribute assertion fails. One

of three possible failure actions are possible:

1. Call a user-defined procedure which will handle the error recovery from the

invalid database state. Note that the user-defined procedure is then

responsible for re-checking the new database state if an attempt was made

to correct the error.

2. Flag the database state as an error state and report the error to the database

administrator. An optional action message can be supplied to supply

additional information to the database administrator. The action message is

denned later in the SDML grammar.

3. Warn the database administrator of the condition with a message. This

assertion may not actually represent an invalid database state, but might be

used to notify the database administrator when the member attribute takes

on some specified value(s).

The productions involved in specifying the failure action for a member attribute

assertion are then:

< fail-action-clause> ::- 6 I

FAILURE ACTION : < failure-action>

< failure-action> ::- CALL PROCEDURE_NAME I

ERROR <action-message> I

WARNING STRING_C
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The optional class attributes declaration section of a class definition can contain

one or more class attribute definitions. Thus the productions

<class-attr-decl> ::- e I

CLASS ATTRIBUTES : <class-attr-list>

<class-attr-list> ::- < class-attributes

>

<class-attr-list> <class-attributes>

begin the definition of the class attribute declaration section.

Any given class attribute is uniquely identified with the attribute name. Class

attributes can also be given multiple synonymous names. As with member

attribute names, the class names must be unique within the underlying base class

and all eventual subclasses of the base class. Class attributes contain an optional

description clause, a value class declaration, an optional class derivation

declaration, member order definition, class attribute options, and an optional class

attribute assertion. The definition of the class attribute is then

< class-attribute> ::- <attr-name-list> <desc-clause>
<value-class-decl> <class-deriv-decl>
<member-order> <class-attr-opts>
< attr-assertion-decl>

where the <attr-name-list>, <desc-clause>, < value-class-decl> , <member-

order>, and < attr-assertion-decl> are defined in exactly the same way as for the

member attribute definition. The class attribute options, however, are either "may

not be null" or "not changeable". The "exhausts value class" and the "no overlap in

values" options do not make sense here since there is only a single instance of the

class attribute independent of the number of members of the class. The

productions for the class attribute options are
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<class-attr-opts> ::- < class-options > I e

< class-options> ::- <class-opt-item> I

< class-options> <class-opt-item>

< class-opt-item> :> MAY NOT BE NULL I

NOT CHANGEABLE

The optional class derivation declaration is specified as follows:

<class-deriv-decl> ::- e I

DERIVATION: < class-attr-deriv>

where <class-attr-deriv> defines the valid derivation primitives which can be

used for class attributes.

Let us first begin the discussion of derivation primitives with the member attribute

derivation since It was Introduced first In the SDML grammar. A member

attribute derivation can be either an interattribute derivation or a member-specific

derivation. Interattribute derivations are those which can appear in either the

member attribute derivation or the class attribute derivation. Thus, the

productions for the member attribute derivation are

<member-attr-deriv> ::- <interattr-deriv>
I

<member-spec-deriv>

An Interattribute derivation used within a member attribute derivation requires

the following semantic check(s) be made:

Production:

<member-attr-deriv> > <interattr-deriv>

Checks:

1. (AMi )
> must be defined as a member attribute within class C

.

Member-specific derivations are derived using one of four predicates: (1) ordering

predicate, (2) existence predicate, (3) recursive trace predicate, or (4) contents
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predicate. The member-specific derivation is then defined as follows:

<member-spec-deriv> :> <ordering-predicate> I

< existence-predicate> I

< recursive-trace-pred>

The ordering predicate defines the member attribute to be the sequential position of

the member when ordered by some specified attribute(s). The ordering can be

either increasing or decreasing (default is increasing). The ordering predicate can

also define the attribute to be the sequential position of the member when ordered

by some specified attribute(s) grouped on a common value of some other specified

attributed) by using the within clause. Since the attribute has a value

representing the sequential position of the member within some list, the ordering-

predicate requires the value class of the attribute to be an integer constant (value

class INTEGERS). The productions which define an ordering predicate are

<ordering-predicate> ::- ORDER BY <direction>
<mapping-list> <within-clause>

<direction> ::- INCREASING I DECREASING I £

<within-clause> ::- WITHIN <mapping-list > I 6

<mapping-list> ::- <mapping> I

< mapping-list> <comma-and-sep> <mapping>

The productions from above with their checks are listed below:

Production:

<ordering-predicate> —> order by AMt <within-clause>

Checks:

i. VCA m INTEGERS

II. (AW,- ) ' must be defined in C for all i Ink.

Production:
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<within-clause> > within AMj

Checks:

1. {AMj
)"' must be denned in C for all /

.

The existence predicate defines an attribute to be either "true" or "false" based on

whether the member is a member of some specified class. The production

<existence-predicate> ::- IF IN CLASS_NAME

defines an existence predicate. Since the existence predicate defines a yes/no

alternative, the value class of the denning attribute must be the built-in class

YES/NO. The checks for the existence predicate are as follows:

Production:

< existence-predicate> > if in C t

Checks:

i. C t = YES/NO

a. uc = uCi

The recursive trace predicate defines the value of the attribute A to be all members

which are found by recursively tracing the values of some specified attribute A , of

the same class C. In order for the recursive trace predicate to make sense, both

attributes A and A i must have a value class of the underlying class C. A limit

can also be placed on the level of the recursive trace. The productions which define

the recursive trace predicate are

<recursive-trace-pred> ::- <level-clause> LEVELS OF VALUES
OF ATTRIBUTE_NAME

< level-clause> ::- UP TO INTEGER_C I ALL

The semantic checks for the recursive trace predicate are as follows
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Production:

<recursive-trace-pred> —> < level-clause> levels of values of A !

Checks:

1. VCA = C,

II. vcAi = c,

III. A ! is defined as a member attribute attribute within class C

.

Next, the class attribute derivation will be discussed. The class attribute

derivation can be either an interattribute derivation or a class-specific derivation.

The production for the class attribute derivation is then

<class-attr-deriv> ::- < interattr-deriv>
I

< class-spec-deriv>

An Interattribute derivation used within the class attribute derivation requires the

following semantic check:

Production:

<class-attr-deriv> > <interattr-deriv>

Checks:

1. {AM

t

) ' must be defined as a class attribute within class C

.

First, the class specific derivation will be discussed followed by the interattribute

derivation (which can be used by either the class attribute derivation or the

member attribute derivation). Two types of class-specific derivation predicates are

allowable: the class size predicate and the class member predicate:

<class-spec-deriv> ::- <class-size-pred> I

< class-member-pred>

The class size predicate defines the attribute to be the number of members in the

underlying class. The class member predicate defines the attribute to be the sum,

average, minimum, or maximum of some member attribute taken over all members
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of the underlying class. The following productions define the class-specific

derivation predicates:

<class-size-pred> ::- NUMBER OF <uniqueness> MEMBERS
IN THIS CLASS

< uniqueness> ::- UNIQUE I e

<class-member-pred> ::- < set-function > OF ATTRIBUTE_NAME
OVER MEMBERS OF THIS CLASS

< set-function> :> MINIMUM I MAXIMUM I AVERAGE I SUM

The following semantic checks must be made within the following productions

from above:

Production:

<class-size-pred> > number of <uniqueness> members in this class

Checks:

i. VCA m INTEGERS.

Production:

<class-member-pred> > <set-function> of A ! over members of this class

Checks:

i. A i must be denned as member attribute within class C

.

11. Given Ci is the value class of A , Uc = NUMBERS, REALS, or
INTEGERS.

ill. Given C 2 = value class of A„ UCl m NUMBERS, REALS, or
INTEGERS.

The interattrlbute derivation can be specified using one of four predicates: (1) set-

derived predicate, (2) equality predicate, (3) set-order predicate, or (4) subvalue

predicate:
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< interattr-deriv> ::- < derived-predicate> I

< set-derived-pred > I

< equality-predicate> I

< set-order-predicate> I

< subvalue-predicate>

The derived predicate specifies that the attribute A is directly derived from another

attribute mapping. The production

< derived-predicate> ::- SAME AS < mapping>

defines a derived predicate. The semantic checks required for the derived predicate

are as follows:

Production:

< derived-predicate> —> same as AMi

Checks:

i. (AM {f* is denned in C

ii- VCAMl (i.e., value class of (AMif") = VCA

The set-derived predicate defines the members of the attribute to be those members

which are either in the union of two attribute mappings, in the intersection of two

attribute mappings, or in the difference of two attribute mappings. The production

<set-derived-pred> ::- WHERE IS IN < mapping> AND IS IN < mapping> I

WHERE IS IN <mapping> OR IS IN <mapping> I

WHERE IS IN <mapping> AND IS NOT IN < mapping>

defines the set-derived predicates for the interattribute derivations. The following

semantic checks will be performed for the set-derived predicate:

Production:

< set-derived-pred> > where is in AM t and is in AM 2
< set-derived-pred> > where is in AM ! or is in AM 2
< set-derived-pred> > where is in AM t and is not in AM 2

Checks:
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i. both {AM 0" 1 and (m/ 1 must be denned appropriately within
class C

il. Given C x is the value class of AM ^ and C 2 is the value class ofAM2 , then UCl = VCA and UCj = VCA
-1

ill. AM i and AM 2 must be multivalued attribute mappings

The equality predicate defines the attribute to be directly derived from an

arithmetic expression involving the following:

• set functions on multivalued member attributes,

• other member attributes,

• number constants,

• constant member names,

• size of multivalued member attributes, or

• size of classes.

Thus the series of productions which define an equality predicate are as follows:
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< equality-predicate> ::- EQ < mapping-expression>

< mapping-expression> :> < mapping-term> I

< mapping-expression> <addition-operator> <mapping-term>

< mapping-term> :> < mapping-factor> I

< mapping-term> <multiply-operator> < mapping-factor

>

< mapping-factor> ::- < mapping-primary> I

< mapping-factor> < exponent-operator> < mapping-primary>

< mapping-primary> ::- ( <mapping-expression> ) I

< set-function> ( < mapping> ) I

< mapping> I

< number> I

CONST_MEMBER_NAME I

SIZEOF( < mapping> ) I

SIZEOF ( CLASS_NAME )

< addition-operator> ::- + I

-

<multiply-operator> S- *\l

< exponent-operator> ::= !

The following semantic checks will be made for the productions withing the

equality predicate:

Production:

< equality-predicate> > - < mapping-expression>

Checks:

1. for all mappings AM
t
in < mapping-expression>

, (Aitf;)" 1 must
be appropriately defined within C

11. Uvc^ = NUMBERS, REALS, or INTEGERS

Production:

< mapping-primary> < set-function>( AAf! )

Checks:

i. Given C, = VC^,, UCi m NUMBERS, REALS, or INTEGERS

il. AM ! must be a multivalued attribute or mapping
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Production:

< mapping-primary> > AM,
<mapping-primary> > sizeof ( AM , )

Checks:

i. AM , must be a multivalued attribute or mapping

Production:

< mapping-primary

>

> CONST_MEMBER_NAME

Checks:

i. CONST_MEMBER_NAME must be denned within a name class
C, such that Bb, = NUMBERS, REALS, or INTEGERS

The set-order predicate defines the value of the attribute to be the number of

members in some specified eventual attribute of a mapping. The production

< set-order-predicate> ::- NUMBER OF < uniqueness >
MEMBERS IN <mapping>

defines the set-order predicate. The semantic checks which will be performed for

the set-order predicate are as follows:

Production:

< set-order-predicate> > number of < uniqueness> members in AM ,

Checks:

I. (AM,) * is defined appropriately within class C

it AM i is a multivalued attribute or mapping

ul. VCA = INTEGERS

The subvalue predicate defines the attribute A to be a subvalue of another mapping

Aj which satisfies some condition. The conditions can be either CD values of A 1

which are members of some class d, or (2) values of A, which satisfy some

attribute predicate. The attribute predicate will be described later in this chapter.

All mappings, C„ and A, must be the value class of A (i.e., must be VCA X The
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productions which form the subvalue predicate are:

<subvalue-predicate> ::- SUBVALUE OF < mapping> WHERE
< subvalue-selection>

<subvalue-selection> :> IS IN CLASS_NAME I

< attribute-predicate>

The semantic checks which will be made for the above productions are as follows:

Production:

<subvalue-predicate> —
« subvalue of AM t where < subvalue-selection >

Checks:

1. (AMJ ' Is denned appropriately within class C

11. AM , is a multivalued attribute or mapping

ill. VCU^ = VCA

Production:

< subvalue-selection > > is in C i

Checks:

1. given that C 2 s VC^, then Uc
2
= f/C]

Production:

< subvalue-selection > —> < attribute-predicate>

Checks:

i. <attribute-predicate> must satisfy definition for class VCA

A mapping is a sequential reference of attributes based on the value class of each

attribute. Mappings are denned in the SDML grammar as follows:

< mapping> ::- ATTRIBUTE_NAME I

<mapping> . ATTRIBUTE_NAME

Consider a mapping NtJft.
• • • jvm where each N-

t
is defined within class C,. In

order for the mapping to make sense, the following must be true for any attribute
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i within the mapping:

1. VCy
t

3 C, +1 for all i = 1.2,....m-l

Finally, the last part of a base class definition is the base class identifiers. The base

class identifiers can be

i. no identifiers,

11. a single attribute identifier list separated by plus (+) signs, or

ill. multiple attribute Identifier lists separated by commas.

The productions denning the identifier declarations are then:

<ident-ded> ::- IDENTIFIERS: <ident-list> I

IDENTIFIERS : NONE

<ident-list> ::- < identifier> I

< idem-list> , < identifier>

< identified :> ATTRIBUTE_NAME
I

< identifier> + ATTRIBUTE_NAME

The following semantic checks will be made for the identifier declaration:

Production:

<ident-decl> > identifiers: <ident-list>

Checks:

i. class C cannot specify that duplicates are allowed (since a unique
member specification is given).

Production:

< identifier> —> A^
< identifier> > < identifier>+ .A j

Checks:
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i. A ! must be denned as a member attribute within class C

The next topic for discussion is the construction of a nonbase class dennition. As

in the dennition of the base class, nonbase classes are made up of a primary class

name and possible synonymous names, followed by a nonbase class body.

<nonbase-class-def> :> < class-name-list >
< nonbase-class-body>

The nonbase class body is made up of an optional description clause (like that of

the base class), a mandatory interclass connection, and the nonbase class

alternatives.

< nonbase-class-body> ::- <desc-clause>

< interclass-connection >
< nonbase-class-alts >

<nonbase-class-alts> ::- <nonbase-class-feat>
I

< name-class-feat>

The nonbase class alternatives will identify the nonbase class as a definite name

class (if the determines clause or the constant members clause is specified) or a

possible name class. A possible name class will be later identified as a name class

if the class is specified as a subclass of one of the built-in classes and either the

user-controllable subclass predicate or no subclass predicate is specified. A name

class grouping predicate also identifies the nonbase class as a name class.

Nonbase class features allow non-name classes to be given member attributes

and/or class attributes. Here (as opposed to base class definitions), nonbase class

member attribute definitions are optional.

-72-



interclass connection specifies how this subclass derivation is determined. The

interclass assertion is declared as follows:

<interclass-assertion> ::- INTERCLASS CONNECTION :

< connection > < ic-assertion-decl>

where the connection establishes the interclass connection.

With the interclass connection, zero of more interclass assertions can be provided.

The interclass assertion simply states additional interclass connections which must

be satisfied by the nonbase class member list. With the interclass assertion list, a

failure action can be specified. This failure action is the same as that of the

attribute assertion failure action. The interclass assertion declaration is as follows:

<ic-assertion-decl> :> 6 I

<ic-assertion-list> <failure-action-clause>

<ic-assertion-list> :> < ic-assertion > I

<ic-assertion-list> < ic-assertion

>

< ic-assertion > ::- INTERCLASS ASSERTION :< connection>

An interclass connection can be either a subclass connection (specifying a subclass

of the parent class) or a grouping connection (grouping the members of the parent

class In some way).

< connection> ::- <subclass-connection> I

<grouping-connection>

An important side effect of establishing a grouping connection is the automatic

definition of the derived multivalued member attribute Contents, whose value class

is the parent class. The "Contents" attribute has as its value for a given member of

the grouping class, all members of the parent class which belong to one of the

given groupings.
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The first type of interclass connection is the subclass connection. The nonbase class

is established as a subclass of the parent class by application of a subclass

predicate on members of the parent class.

<subclass-connection> :> SUBCLASS OF CLASS_NAME
< subclass-predicate>

Attributes and classes referenced in the <subclass-predlcate> must satisfy

semantic checks consistent with the definition of the parent class PC (see subclass

predicate discussion below).

The second type of Interclass connection is the grouping connection. A grouping

connection can be established using any one of four methods: (1) expression defined

grouping class, (2) enumerated grouping class, (3) user-controllable grouping class,

or (4) name class grouping class.

< grouping-connection> ::= <expression-defined-gc>
I

<enumerated-gc> I

< user-controllable-gc> I

< name-class-gc>

The subclass predicate of the subclass connection allows definition of several types

of subclasses: (1) attribute-defined subclass, (2) user-controllable subclass, (3)

set-operator defined subclass, (4) existence subclass, or (5) name class subclass.

< subclass-predicate> ::- WHERE < attribute-predicate> I

WHERE SPECIFIED I

WHERE <set-oper-deflned-sc>
I

WHERE <existence-sc>
I

< name-class-sc>

Attribute mappings referenced in the <attribute-predicate> of the attribute-

defined subclass must satisfy semantic checks consistent with the definition of the

parent class PC. The attribute-defined subclass and the user-controllable subclass

C will inherit all member attributes defined in the parent class PC.
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The set-operator defined subclass defines the class C to be all members of the

parent class PC which satisfies an intersection, union, or difference of two classes.

<set-oper-defined-sc> :> IS IN CLASS_NAME AND
IS IN CLASS_NAME I

IS IN CLASS_NAME OR
IS IN CLASS_NAME I

IS NOT IN CLASS_NAME

The semantic checks which will be performed for the set-operator defined subclass

are as follows:

Production:

<set-oper-defined-sc> > is in C[ and is in C 2
<set-oper-defined-sc> > is in Ci or is in C 2
<set-oper-defined-sc> > is not in Ci

Checks:

i. UCi = Ux

11. UCj = uK , if c 2 specified

The attribute inheritance rules for the set-operator defined subclass are as follows:

a. the intersection defined subclass C will inherit all member attributes

common to Ci and C 2

b. the union defined subclass C will inherit all member attributes of both C,

andc 2

c. the difference defined subclass C will Inherit all member attributes of the

parent class PC

The existence subclass specifies the class C to be all members of the parent class

PC which is currently a value of some member attribute A x of class Cx.
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<existence-sc> ::- IS A VALUE OF ATTRIBUTE_NAME
OF CLASS_NAME

The existence subclass C will inherit all member attributes of its parent class PC.

The semantic checks which will be performed for the existence subclass definition

are as follows:

Production:

< existence-sc> —> is a value of A ! of C

!

Checks:

i. A j is defined as a member attribute within class C^

il. VCAl =PC

A name class definition can either (a) not specify a subclass predicate, or (b)

specify a format directive on class STRINGS.

<name-class-sc> ::- 6 I

WHERE FORMAT IS <format-directive>

The parent class PC of a name class must be one of the built-in classes; therefore,

no member attribute inheritance is involved. The semantic checks which will be

performed on a name class specification are as follows:

Production:

<name-class-sc> —> e

Checks:

i. PC = STRINGS, NUMBERS, REALS, or INTEGERS

Production:

< name-class-sc > > where format is < format-d irective>

Checks:

i. PC m STRINGS
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The first type of grouping connection was the expression denned grouping

connection. This type of grouping connection defines the class C to be a grouping

of the parent class PC based on common values of one or more attributes of PC

.

<rapression-defined-gc> ::« GROUPING OF CLASS_NAME
ON COMMON VALUE OF
<attr-name-list>

< explicitly-def-grps>

<«plicitly-def-grps> ::= GROUPS DEFINED AS CLASSES
ARE <class-name-list>

Any groups of members of the parent class PC which are also explicitly defined as

attribute-defined subclasses are listed. These groupings represent redundant class

definitions, one within the grouping defined and the other explicitly defined as a

subclass of PC. The semantic checks which will be performed for the expression

denned grouping connection are as follows:

Production:

<expression-defined-gc> > grouping of PC on common value of Ak
< explicitly-def-grps>

Checks:

i. At must be defined as a member attribute of PC for all k

The next type of grouping connection is the enumerated grouping connection. The

enumerated grouping connection defines the class C as a grouping of classes Ck .

<enumerated-gc> ::- GROUPING OF CLASS_NAME CONSISTING
OF CLASSES <class-name-list>

The semantic checks which will be performed for the grouping connection are as

follows:

Production:

<enumerated-gc> > grouping of PC consisting of classes Ct
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<nonbase-class-feat> ::- <nbc-member-attr-decl>
< class-attr-decl>

<nbc-member-attr-decl> :> 6 I

< member-attr-decl>

As mentioned earlier, name class features Include the determines clause and the

constant member clause.

< name-class-feat> ::- < determines-clause> I

< const-members-clause> I

< determines-clause> < const-members-clause>

< determines-clause> ::- determines: CLASS_NAME

< const-members-clause> ::- constant members:
<const-members-list>

<const-members-list> ::- CONST_MEMBER_NAME I

< const-members- list> < comma-and-sep>
CONST_MEMBER_NAME

The determines clause allows the dependence of the value class of the specified

class name upon a value of the given name class. That is, a value of this name

class determines the value class of the specified name class. The semantic checks

which will be performed for the above productions follows:

Production:

< determines-clause> —> determines: C x

Checks:

i. the name class definition for d must be defined as a grouping
name class "where specified by C"

ii. C must contain the user-controllable interclass connection

The interclass connection is what distinguishes a base class from a nonbase class in

the SDM schema. The members of a nonbase class are eventually derived from the

members of the underlying base class. This derivation could be directly from a

base class or indirectly through a series of nonbase subclass definitions. The
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Checks:

i. UCt = UK for all *

The user-controllable grouping class allows the user to specify the grouping of the

parent class PC

.

<user-controllable-gc> ::- GROUPING OF CLASS_NAME
AS SPECIFIED

No semantic checks are required for the user-controllable grouping connection.

The name class grouping connection allows the database designer to specify the

name class as a grouping of value class definitions; the value class group being

determined by the value of another class C t . Both C x and C must be user-

controllable connections to keep the grouping connection at a finite (and user

controllable) level.

<name-class-gc> ::- GROUPING OF CLASS_NAME AS
SPECIFIED BY CLASS_NAME

The semantic checks which will be made for the name class grouping connection

are as follows:

Production:

< name-class-gc> —> grouping of PC as specified by C t

Checks:

i. Class definition for Cj must contain "determines: C" clause

11. C 2 = STRINGS, NUMBERS, REALS, or INTEGERS

The attribute predicate used within the attribute-defined subclass definition and

the subvalue derivation predicate will now be discussed. The attribute predicate is

a boolean expression which relates mappings denned within the defining class C

with (1) constant values, (2) other mappings within C, or (3) members of other
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classes. The production sequence for the attribute predicate is as follows:

< attribute-predicate> ::- <attr-pred-term> I

< attribute-predicate> OR <attr-pred-term>

<attr-pred-term> :> <attr-pred-factor> I

<attr-pred-term> AND <attr-pred-factor>

<attr-pred-factor> ::- <attr-pred-primary>
I

NOT <attr-pred-primary>

<attr-pred-primary> ::= ( < attribute-predicate> ) I

<simple-predicate>

< simple-predicate> :> <relop-predicate>
I

< setop-predicate>

<relop-predicate> ::- <mapping> <relop> <constant> I

< mapping> <relop> < mapping>

< setop-predicate> :> <mapping> <setop> <constant> I

< mapping> <setop> < mapping> I

<mapping> <setop> CLASS_NAME

<relop> ::- -
I -I < I <_| > | >»

<setop> ::- IS <properly> CONTAINED EM I

< properly> CONTAINS

< properly> :> PROPERLY I e

The boolean operator precedence (NOT then AND then OR) has been built into the

SDML grammar. The semantic checks which will be performed for the

productions which make up the attribute predicate are as follows:

Production:

<relop-predicate> > AM i <relop> <constant>

Checks:

1. CAM !> ' must be defined as a member attribute of C

11. Define C t as the value class of AM lt and type(< constant> ) as
the type of the nonterminal <constant> (STRING C REAL C
orINTEGER_C). Then: "' KEAL-<-
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a. If typeC< constant> ) =. STRING_C then Uc ,
= STRINGS

b. otherwise, Uc% = NUMBERS, INTEGERS, or REALS

Production:

<relop-predicate> > AMi <relop> AM 2

Checks:

i. (AM, ) ' must be defined as a member attribute of C for £ = 1,2

ii. Given that C, is the value class of AM, for £ = 1,2, then Uc =
STRINGS, NUMBERS, INTEGERS, or REALS

ill. UCl = UCl

Production:

<setop-predicate> —• AM t <setop> <constant>

Checks:

i. (AMi) ' must be defined as a member attribute of C

ii. Since <constant> denotes a single string or numeric constant
then <setop> must be the "[properly] contains" set operation.

ill. Letting C ! be the value class of AM lF then:

a. If type( < constant> ) - STRTNG_C then Uc = STRINGS

b. otherwise, UCl = NUMBERS, INTEGERS, or REALS

Production:

<setop-predicate> > AM\ <setop> AMi

Checks:

i. (AMt ) ' must be defined as a member attribute of C for t = 1.2

ii. Given that C, is the value class of AM, for £ = 1,2, then Ur = K.c
i

c 2

Production:

<setop-predicate> —> AM X <setop> d
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Checks:

i. (.AMJ ' must be denned as a member attribute of C

ii. Denning C 2 as the value class of AM,, then Ur m Ur

Production:

<setop> 1 is <properly> contained in

Checks:

1. If RHS of <setop> is an attribute mapping, then it must be a
multivalued attribute mapping

Production:

<setop> > <properly> contains

Checks:

i. LHS (AM must be a multivalued attribute mapping.

The format directive allows the database designer to provide a template for data to

be entered for a given name class. With the format directive, comes a variety of

constructs which can be used to specify the subunits of the domain and place

restrictions on these subunits. The format directive used in the SDML grammar is

a modified version of the Domain Definition Language (DDL) outlined in reference

[13].

The format directive for a name class definition contains three distinct parts: (1)

description clause, (2) ordering clause, and (3) violation action clause.

< format-directive> ::- <description-clause>
< ordering-clause>

< violation-actn-clause>

The description clause allows for several alternative domains for the format of the

name class. Thus, each possible domain is specified in an "or"-list.
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< description-clause> ::- <description-subclause>
I

< description-clause> OR <description-subclause>

The description subclause specifies one of the possible domains for the format of

the name class. The description subclause is made up of the description of the

domain followed by any restrictions placed on subunits of the domain. The

restrictions placed on the subunits of the domain is termed the global where

restriction.

<description-subclause> ::- <description> . I

< description> . <where-restriction> .

Here, additional syntax (comma's and period-s) was added to the DDL grammar

provided in reference [13] to resolve conflicts resulting from the DDL grammar

being non-LRCl). The conflict arises because the parser cannot distinguish the "or"

in the <where-restrlctlon> from the "or" separating the <descriptlon-subclause>

nonterminals in the < description-clause> production.

The description for a domain defines the subunlfs which constitute the domain.

The subunlfs which make up the domain are separated by comma's.

<description> :> <subunit> I

< description> . <subunit>

A subunlt is identified by an optional label. Use of the label allows this particular

subunit of the domain to be used in the restriction clause as part of the domain

definition. If the label is omitted, this subunlt cannot be referenced further. The

scope of a subunlt label is only within the current domain definition.

<subunit> ::- <subunit-item>
I

LABEL : <subunit-item>

The subunlt Item can be defined to be any one of the following:
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1. Subset of strings with an optional constraint on the strings allowed, subunit

where restriction.

2. Subset of numbers with an optional constraint on the numbers allowed.

3. An enumeration of string constants or types. The possible types of strings

are alphabetics, numerics, and specials.

4. An enumeration of number constants.

5. A string constant.

If only one enumeration is given, no parenthesis are required. If two or more

enumerations are given, they must be enclosed in parenthesis. The restrictions

placed on the subset of subunit values is termed the subunit where restriction. The

productions which define the subunit definition follows:

<subunit-item> ::- STRING <str-where-clause>
I

NUMBER <num-where-clause> I

ONEOF < string-list> I

ONEOF <number-list>
I

STRING_C

<str-where-clause> ::« e I

WHERE < string-boolean>

<num-where-clause> :> e I

WHERE < number-boo lean>

<string-list> ::- < string-component > I

( <string-list> . <string-component> )

< string-component > ::- STRING_C I

ALPHABETICS
I

NUMERICS I

SPECIALS

<number-list> ::- <number> I

( < number-list > . < number> )
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The boolean expression which restricts the subset of strings in the subunit where

restriction is described next. The predicates of the boolean expression are the

typical boolean operations "and", "or", and "not" as well as an "If-then-else"

construct. The conditions of the boolean expression are the following:

1. A lexicographic comparison of the subunit with a string constant.

2. A scalar comparison of the size of the subunit with an integer constant

("size" operator).

3. A boolean condition which evaluates to "true" if any one of a number of

given string components are found within the subunit ("has" operator).

4. A boolean user-defined function which supplies a value of "true" or "false".

The productions which make up the string subunit where restriction follows:

< string-boolean> ::- <string-bool-term>
I

< string-boolean> OR <string-bool-term>

<string-bool-term> ::- <string-bool-factor>
I

<string-bool-term> AND < string-bool-factor>

<string-bool-factor> ::- <string-bool-primary>
I

NOT <string-bool-primary>

<string-bool-primary> :> ( < string-boolean> ) I

< string-predicate>

< string-predicate> :> <string-condition>
I

IF < string-condition> THEN <string-predicate> FI I

IF < string-condition> THEN <string-predicate>
ELSE < string-predicate> FI

< string-condition> ::- <relop> STRING_C I

SIZE <relop> INTEGER_C I

HAS <string-list> I

CALL PROCEDUREJVAME

Notice that the precedence of the boolean operators is built in to the SDML
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grammar.

The boolean expression which restricts the subset of numbers in the subunit where

restriction is described next. The predicates of the boolean expression are the

typical boolean operations "and", "or", and "not", an integer and real restriction, and

an "if-then-else" construct, . The conditions of the boolean expression are the

following:

1. A scalar comparison of the subunit with a numeric constant.

2. A boolean user-defined function which supplies a value of "true" or "false".

The productions which make up the number subunit where restriction follows:

< number-boolean> :> < number-bool-term> I

< number-boolean> OR <number-bool-term>

<number-bool-term> ::- <number-bool-factor> I

<number-bool-term> AND <number-bool-factor

>

<number-bool-factor> :> < number-bool-primary> I

NOT <number-bool-primary>

<number-bool-primary> ::- ( < number-boolean> ) I

<number-predicate>

< number-predicate> ::- < number-condition> I

IF < number-condition> THEN <number-predicate> FI I

IF < number-condition> THEN <number-predicate>
ELSE < number-predicate> FI I

INTEGER I

REAL

< number-condition> :> <relop> < number> I

CALL PROCEDURE_NAME

Based on the SDML grammar definitions of the number and string subunit where

restrictions, it can be seen that no additional type checking is needed for these

constructs. All type checking here is forced in the SDML grammar itself.
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Now for the definition of the global where restriction. The global where

restriction, like the subunit where restriction, is a boolean expression which

restricts the domain definition as a whole. Any labels given to subunits within the

subunit definitions can be referenced within the global where restriction. The same

constructs apply to the global where restriction as in the string subunit where

restriction. The conditions which can be used within the global where restriction

are as follows:

1. A boolean expression representing a scalar or lexicographic comparison

between two subexpressions. The type of comparison depends upon the type

of primitives used within the subexpressions.

2. A boolean "present" operator which returns "true" if a second substring is

contained within the first.

3. A boolean user-defined function which supplies a value of "true" or "false".

The productions which begin the construction of the global where restriction are as

follows:
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<where-restriction> ::= WHERE <boolean>

<boolean> ::- < boolean-term> I

< boolean> OR < boolean-term>

< boolean-term> ::- <boolean-factor> I

< boolean-term> AND <boolean-factor>

<boolean-factor> ::- < boolean-primary> I

NOT < boolean-primary

>

< boolean-primary> ::- ( <boolean> ) I

< predicate>

< predicate> ::- < condition > I

IF <condition-expr> THEN < predicate> FI I

IF <condition-rapr> THEN < predicate>
ELSE < predicate> FI

< condition > ::- < expression > <relop> < expression > I

PRESENT ( <expression> . <expression> ) I

CALL PROCEDURE_NAME

Since the expressions referenced in the global where restriction can evaluate to

either strings or numerics, some type checking is required to verify the semantics.

As previously denned, the type of nonterminal "expression" will be denoted as

"type«expression> )". The following type checks will be performed to the above

production rules (where £, is expression number i ):

Production:

<condition> > <Ei> <relop> <E2 >

Checks:

i. typeC <£j> ) - type( <E3> )

Production:

<condition> > present ( <E t >. <E2> )

Checks:

i. type( <Ei> ) - "string"

ii. type( <E2> ) - "string"
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Some boolean operators were added to the condition of the if-then-else statements

for the global where restriction which were missing from the grammar presented in

reference [13]. The condition expression for the if-then-else can then be a boolean

expression involving the conditions of the global where restriction. The

productions for the condition expression are:

<condition-expr> :> <condition-term> I

<condition-expr> AND < condition-term>

< condition-term> ::- < condition-factor> I

< condition-term> OR <condition-factor>

< condition-factor> ::- ( < condition-expr ) I

< condition >

In case expressions involve numeric terms, a construct for building arithmetic

expressions has been provided.

< expression > :> < arithmetic-term> I

< expression > < addition-operator> < arithmetic-term>

< arithmetic-term> ::- < arithmetic-factor> I

< arithmetic-term> <multiply-operator> < arithmetic-factor>

< arithmetic-factor> ::- <arithmetic-primary> I

< arithmetic-factor> < exponent-operator> < arithmetic-primary>

< arithmetic-primary> :> ( <expression> ) I

< subexpression>

If an expression is a string constant, none of the production alternatives involving

the arithmetic operators should be allowed. Therefore, the following type checks

will be performed for the above productions:

Production:

<E> —' <E> <add-op> <T>

Checks:

1. type( <£>)- "numeric"
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11. type( <T> )- "numeric"

Production:

<T> <T> <mult-op> <F>

Checks:

i. type( <r> )- "numeric"

ii. type( <F> )- "numeric"

Production:

<F> —> <F> <eip-op> <P>

Checks:

1. typeC <F> )- "numeric"

ii. typeC <i>> )- "numeric"

The subexpression definition supplies the following functions which can be applied

to string or numeric terms:

1. Specification of an atomic expression, which represents an individual item.

The types of atomic expressions which can be specified are:

a. A subunit label which is defined within this domain description.

b. A string constant.

c. A (positive or negative) numeric constant.

d. The star (*) operator. A star represents the current value of the

domain being checked (i.e., the users input which is being checked for

validity).

2. The minimum, maximum, sum, or average of a list of expressions.

-90-



3. The result of appending two string expressions.

4. The substring of a string expression between two given points.

5. The left substring of a string expression.

6. The right substring of a string expression.

7. The location of one string within another.

8. The length of a string expression.

9. Repeated applications of a subunit range to the domain definition. This

alternative allows a subunit range to be repeated some number of times

when considering the domain of the name class.

The productions which specify the subexpression options are:

< subexpression> :> < atomic-expression> I

< set-function> ( < expression-list > ) I

APPEND ( < expression> , < expression> ) I

SUBSTRING ( < expression> . <char-pos> .

<char-pos> ) I

LEFT ( <expression> , <char-pos> ) I

RIGHT ( < expression> . <char-pos> ) I

LOCATION ( < expression> , < expression> ) I

LENGTH ( < expression> ) I

REPETITIONS LABEL THROUGH LABEL

< atomic-expression> ::- LABEL I

STRTNG_C I

< number> I

< addition-operator> < number> I

*

< expression-list> ::- <expression> I

< expression-list> . < expression>

The type checks which will be performed for the above productions are as follows:
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Production:

< subexpression > —> < set-function> ( <Et > )

Checks:

i. typeC <£, > ) - "numeric" for all i In *

Production:

<subexpression> > append ( <£!>, <E 2> )

Checks:

i. typeC <£!> )- "string"

11. type( <E 2> ) - "string"

Production:

< subexpression

>

• substring (<£>, <CP l >, <CP2> )

Checks:

1. typeC <E > ) - "string"

Production:

<subexpression> > left (<£>. <CP > )

Checks:

1. typeC <E > ) - "string"

Production:

< subexpression> —-• right (<£>, <CP > )

Checks:

i. type( <E> )- "string"

Production:

< subexpression> > location (<£,>. <E2> )

Checks:

i. type( <E t> ) - "string"
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U. type( <E2> ) = "string"

Production:

< subexpression » length ( <E> )

Checks:

i. typeC <£>) = "string"

The <char-pos> nonterminals (and the Ci>, 's) describe a character position within

a string. The character position could be: (1) the location of a substring within the

string, (2) the location of a substring offset by an integer constant within the

string, or (3) an integer constant defining a character position within the string.

<char-pos> ::- STRING_C I

STRTNG_C < addition-operator> INTEGER_C I

INTEGER_C

The second part of the format directive is the ordering clause. This is an optional

specification of how the elements of the domain will be ordered:

1. via a specified list of subunit labels,

2. no ordering will be done,

3. atomic ordering will be done; that is, lexicographic ordering will take place,

or

4. via a user-defined function.

The following productions define the ordering clause for the format directive:
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<ordering-clause> :> e I

ORDERING : <ordering>

<ordering> ::- <ordering-list> I

NONE I

ATOMIC I

CALL PROCEDURE_NAME

<ordering-list> :> LABEL I

<ordering-Hst> , LABEL

Finally, a violation action can be specified, which will determine the action taken

when data is entered which does not conform to the domain specification. Either

an error can be flagged Cand an optional message printed) or a user-defined function

can be called to determine the course of action. Thus, the productions which define

the violation action clause for the domain definition are as follows:

< violation-actn-clause> ::= e I

VIOLATION ACTION : <violation-action>

<violation-action> ::- ERROR < action-message> I

CALL PROCEDURE_NAME

< action-message> ::- STRING_C
I 6

The final productions in the SDML grammar define the number and constant

nonterminals used within the rest of the SDML grammar. A number is an integer

or real constant. A constant is a string constant or a number constant. A constant

also could be a CONST_MEMBER_NAME representing a string constant or a

number constant.

<number> ::- INTEGER_C I REAL_C

< constant> ::- STRING_C I

<number> I

CONST_MEMBER_NAME
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5.4 Summary

This chapter has presented the design of the SDML grammar for the SDM model

described in Chapter 2, with extensions added which were described in Chapter 3.

Also presented were the semantic checks necessary which would not be detected by

the simple syntax checking of the SDML parser. It was determined that some type

checking within expressions was also necessary.

Chapter 5 will discuss issues Involving the design of a parser for the SDML

grammar. Also discussed will be the data structures used by the SDML parser to

perform a complete semantic check of the SDML specification being parsed.
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Chapter 5: SDML Parser Implementation

This chapter will discuss the SDML parser for the grammar presented in Chapter

4. The structure of the tables used by the parser and the structure of the parser

output will also be discussed. Before getting into the design of the SDML parser,

however, an introduction to parser theory will first be given.

6.1 SDML Parser Theory

To allow for ease of implementation of the SDML parser, the Yacc (Yet Another

Compiler-Compiler) program will be used to automatically generate a parser with

the desired functionality. Yacc accepts a general class of LR(l) grammars which

may or may not contain ambiguities. Yacc will resolve these ambiguities with

disambiguating rules. Because of these disambiguating rules and the parsing

algorithm which Yacc uses, SDML grammar ambiguity Is not a concern once the

grammar is accepted by Yacc with no shift-reduce or reduce-reduce conflicts

reported.

Yacc generates a shift-reduce parser for the supplied grammar. The following

sections will describe shift-reduce parsing theory and error recovery used by the

Yacc program.

6.1.1 Shift-Reduce Parser Theory A shift-reduce parser Is a bottom-up LR parsing

technique which reduces an input token stream left-to-right producing a rightmost

derivation in reverse. A rightmost derivation is achieved by replacing the rightmost

nonterminal at every derivation step. A rightmost derivation is also referred to as

a canonical derivation.
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Using the rm subscript on the derivation symbol (->) to denote a rightmost

derivation, and given a rightmost derivation sequence

S» =>'rm <*.

then a is a right-sentential form for the grammar r.

The handle of a right-sentential form a/3w of r is a substring of a/3>v such that

Ss =>'rm <*Aw => aPw and A -» 0,

where a^w is the previous right-sentential form and we X". A rightmost

derivation in reverse (also called a canonical reduction sequence) is obtained by

handle pruning. Handle pruning is the act of building and reducing handles from

the input token stream. In a canonical reduction sequence, the leftmost handle is

located and reduced to form the previous right-sentential form. This single

reduction is called a canonical reduction and is performed as follows:

i. Define w as the input token stream which is to be parsed. Thus «/„ = w

represents the n'" right-sentential form of the desired canonical derivation.

The desired canonical derivation would be as follows:

S, = v = > rm Vl
m >m ... . >rm Vj> _ l =>m Vit

= w .

ii. Locate the handle 0„ in *„ and replace 0„ by the LHS of some production

A„ - 0„ to obtain the (it-1)" right-sentential form »,_t.

hi. Repeat step (Uj until (assuming a successful parse) the ff» right-sentential

form (i.e., »„ = 5, ) is found. When the last handle can be replaced with the

start symbol, a successful parse is accomplished.

Parsers which perform this type of bottom-up parsing by handle pruning are
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called shift-reduce parsers because tokens are shifted onto the token stack until a

handle is found, when the handle is reduced to a nonterminal symbol representing

the LHS of the production corresponding to the handle on the RHS.

The Yacc program performs such a shift-reduce parsing algorithm. Now that the

basic theory behind shift-reduce LR parser algorithms is understood, the conflict

and error recovery capabilities of Yacc will be discussed.

6.1.2 Yacc Grammar Conflicts and Error Recovery Based on the structure of the

grammar supplied to Yacc, two types of conflicts may arise: (1) shift-reduce

conflicts and (2) reduce-reduce conflicts.

Shift-reduce conflicts arise when the parser does not know whether to shift the

current input token onto the stack as part of a handle or to reduce the current

handle on the stack using one of the grammar rules. Shift-reduce conflicts

typically result when an ambiguous grammar is specified.

Reduce-reduce conflicts arise when the parser does not have enough information to

select one of two grammar rules when a handle can be reduced, even with the

current look-ahead token. Reduce-reduce conflicts result when a non-LR(l)

grammar is supplied to Yacc.

The SDML grammar listed in Appendix 4 contains no shift-reduce or reduce-reduce

conflicts.

Yacc provides an error recovery mechanism in case of an error in parsing the input

token stream. This mechanism uses the technique of discarding input tokens until

a safe-point is reached on the stack, and attempting to continue parsing from that

point. Yacc allows the grammar to include a special terminal symbol, error, which
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defines a safe-point for the grammar (or a point where errors will most likely

occur). When the Yacc parser detects an error in the input stream, it pops its stack

until a safe-point marker is reached and attempts to continue from that point.

Yacc will remain in an error state until three tokens have been successfully read

and shifted onto the rebuilt stack.

6.2 The SDML Parser

The SDML parser will be automatically generated by the Yacc [15] program.

Within the Yacc grammar specification, blocks of code called actions are supplied

with certain grammar rules to specify some action to take when the given handle is

found and reduced using that particular grammar rule.

The Lex [14] program will automatically generate the lexical analyzer which will

tokenize the input stream representing the SDML specification. Lex wiU pass the

next token from the input stream to Yacc, which will be parsing the tokens

received. Additional implementation required (besides supplying the tokens and

grammar to Lex and Yacc respectively) will be to supply the blocks of code within

the Lex and Yacc input files and the subroutines used by these blocks of code to

perform the actions necessary by the SDML parser.

The SDML parser will be a two-pass parser. Pass 1 of the parser will check syntax

(by performing an LR(1) parse of the input token stream) and load symbols and

constants into the symbol table. Only defined (as opposed to referenced) class

names, attribute names, label names, and constant member names will be loaded

into the symbol table during pass 1. The reason for this is two-fold:

1. attribute names must be entered in the symbol table with the underlying
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base class as part of the key. Therefore, If an attribute name is referenced

before it is defined, the reference will not know the class to which the

symbol belongs. An attributes class definition when referenced depends on

the context in which the attribute appears. This attribute definition check

will be done by the parser during pass 2 of the compiler as part on the

semantic checks for the reference.

2. undefined symbol references during pass 2 are recognized simply by their

non-existence in the symbol table.

To make the code consistent for all symbol type definitions, all symbols will be

handled in this fashion. Constant symbols, however, have no basis for definition

and have no uniqueness criteria and will, therefore, be loaded into the symbol

table when recognized on pass 1 of the SDML parser.

The following sections describe the various aspects of the SDML parser including

symbol table administration, semantic checks, and parser output.

6.3 Restrictions

The major restriction enforced by the SDML parser is when naming class,

attribute, label, procedure, and constant member names:

• Class names must begin with an upper-case character and can be followed by

zero or more upper-case characters, underscores, or digits.

• Attribute names must begin with an upper-case character and can be

followed by one or more lower-case characters, underscores, or digits.
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• Label names must begin with a lower-case character and can be followed by-

zero or more lower-case characters, underscores, or digits.

• Procedure names must begin with an underscore and can be followed by one

or more lower-case characters, underscores, or digits.

• Constant member names must begin with an underscore and can be followed

by one or more upper-case characters, underscores, or digits.

The other restriction enforced by the SDML parser is that all eventual parent

classes must be defined prior to definition of a member attribute for a nonbase

class. The reason for this restriction is so the uniqueness condition can be checked

for attribute definition. This implies that the underlying base class for the class

being denned is known so that it can be entered into the symbol table with the

attribute name.

6.3.1 The Symbol Table The symbol table for the SDML parser will hold all label

and constant symbols recognized by the lexical analyzer. Each type of symbol

which can be loaded into the symbol table must be unique with respect to some

defined scope. Figure 6-1 lists each symbol which can be loaded into the symbol

table and its scope of uniqueness Cw.r.t. means with respect to).
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Symbol Type Uniqueness

Class Name w.r.t. SDM schema
Attribute Name w.r.t. Underlying base class
Label Name w.r.t. Description subclause
Procedure Name w.r.t. SDM schema
Constant Member Name w.r.t. SDM schema

String Constant None
Integer Constant None
Real Constant None

Figure 6-1. SDML Symbol Types and Uniqueness

To implement the different symbol uniqueness scopes, the symbol table key will

consist of three elements: (1) symbol type, (2) supplementary key data (providing

uniqueness), and (3) symbol name. Figure 6-2 shows the layout of the symbol

table key with the size (in bytes) of the item in parenthesis.

I type (2) I sup_data (4) I symbol name (80)

Figure 6-2. Symbol Table Key Layout

The symbol table is indexed by a hash table which is kept within the hsearch

UNIX™ system library function. Hsearch provides a Knuth Algorithm D hashing

function from the key. An hsearch hash table entry consists of two pointers: (1) a

key pointer and (2) a supplementary data pointer. The key pointer simply gives

the location within the application program (here the SDML parser) where the key

resides for that entry and the supplementary data pointer gives the location within

the application program where any additional data is stored. The size of the hash

table is determined at the time that the first entry must be made. If the user did

not change the minimum size of the hash table (using the "%h" control), a default

minimum size is used.

The key and the additional data for a symbol table entry are allocated within the
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SDML parser. The key for the symbol table entry is named st_key and the

additional data structure for the symbol table entry is named st_data. The

additional data for the symbol table entry contain the following data:

name : pointer to name of symbol within the key

type : type of symbol (part of key)

sup_data : supplementary key data (part of key)

usage : symbol usage count

table_p
: pointer to table where symbol specific data is stored. This can be

either a class structure or an attribute structure.

The size of the symbol table is defined the same as the size of the hash table.

Attribute structure location is exactly the same as class structure location. The

only difference is the template used for the memory pointed to by the table_p

pointer.

Additional synonymous names for classes and attributes are also entered into the

symbol table but have a table_p which points to the primary class or attribute

structure. Thus, any references to synonymous names for classes or attributes will

ultimately result in the same class or attribute structure being referenced.

6.3.2 Class and Attribute Structures The class and attribute structures contain all

information pertinent to the class and attribute definitions. These structures

contain the data which defines how the class or attribute was defined by the user

in the SDM schema. The class structure contains the following information:
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• index of symbol table entry identifying class

• base vs. nonbase indication

• parent class symbol table index

• underlying base class symbol table index

• description text (if any)

• if base class, whether duplicates are allowed or not

• number of member attributes denned in class

• index of first member attribute defined in class

• number of class attributes denned in class

• index of first class attribute defined in class

• if base class, identifiers which uniquely identify a member of this class

• if nonbase class, interdass connection defining how this class is formed from
its parent class

• if name nonbase class, the class symbol table index of class which has a value
class determined by this class

• if name nonbase class, the number of constant members which are denned
within this class

• if name nonbase class, the first constant member symbol table index

The number of classes and attributes which can be defined is a user-controllable

value which can be changed with the "95c" and "%a" control respectively. The

attribute structure contains the following data:

• index of symbol table entry for class defining this attribute

• index of next attribute in list (or nil)

• member vs. class attribute

• description text (if any)

• index of symbol table entry for value class

• Index of symbol table entry for inverse attribute
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• indication of match relationship. If match exists then contains: (1) derived
attribute index, (2) matching class index, and (3) condition attribute index.

• Indication of derivation and actual derivation

• single valued vs. multivalued

• if multivalued, then size range

• may not be null

• not changeable

• exhausts value class

• no overlap in values

• attribute assertion (if any)

Based on the contents of the class and attribute structures given above, member

and class attributes are lined using a single link-list from the defining class with

the attribute link of the last class definition being nil. Each attribute has a index

pointer back to the defining class.

6.3.3 Semantic Checks The SDML grammar specification supplied to Yacc will

contain all necessary semantic checks identified in Chapter 4 as actions for the

appropriate grammar rule. All semantic checks will be performed in pass 2 of the

SDML parser after all symbol table entries are built. Any semantic errors detected

will not halt pass 2 of the compile but will simply issue warning messages with a

line number. This will allow all semantic verifications to be made at once; thus

allowing the user to correct semantic errors at one time.

6.3.4 SDML Parser Output The output of the SDML parser will be the structures

which are built during passes 1 and 2 of the compiler. These structures will

represent the class and attribute definitions which were specified in the SDML

specification supplied by the user. The hash table, however, will not be generated
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as output since it's purpose was realized during pass 2 of the parser for symbol

lookup. For this reason, all references to classes or attributes are via a direct index

into the symbol table. The structure dump is requested by specifying -d on the

command line (indicating that data dictionary generation is to be performed).

The generated SDM schema can be directed to an output file by specifying the -o

option on the command line. An output of the symbol table can be requested by

using the -s option on the command line Finally, a verbose statistics report can be

requested by requesting the -v option on the command line.

The manual page associated with the SDML parser is shown in Appendix 6.

6.4 Summary

This chapter has discussed the design of the SDML parser for the grammar

designed in Chapter 4. The design of the SDML parser is primarily that of

specifying a suitable grammar to the Yacc process and supplying actions to be

performed when certain reductions are performed. The SDML grammar was

designed to be easily expandable and maintainable. This ease of expansion and

maintainability is a benefit which Is inherent In the use of Yacc.
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Chapter 6: Conclusion

This paper has developed a grammar defining a Semantic Database Model (SDM)

language and discussed the design of a parser to parse the language. The Semantic

Database Model Language (SDML) is used as an intermediate in the generation of a

static data dictionary.

Some extensions to the SDM model which would both enhance capabilities

provided by the SDM model and enhance the semantic integrity provided by the

SDML specification over the SDM model which were introduced follows:

• assertions, which allow the database designer to include statements of fact

within the SDML specification, thus greatly improving the semantic integrity

of the SDML specification over the SDM model,

• grouping name classes, which allow the value of one attribute to determine

the value class of another attribute,

• constant name class members, which allow the use of a constant member of a

name class within expressions in the SDML specification, and

• sizeof class and attribute operator, which allows the reference to the number

of members in a class or multivalued attribute.

An SDML grammar which includes the extensions was created. Along with the

presentation of the production rules for the grammar, the semantic checks which

should be made are listed for each production. These semantic checks will provide

a mechanism for reporting misuse of SDM features. The semantic checks ensure
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that the value class of a member attribute Is consistent with the derivation for

that attribute and that the interclass connection for a nonbase class is consistent

with the underlying base class and all classes referenced in the connection. The

semantic checks also verify that the member derivation rules which protect against

inconsistent attribute derivations are enforced.

The design of the SDML parser for the grammar was developed. The Yacc program

was used to automatically generate a shift-reduce parser for the SDML grammar.

Symbol table administration and semantic check routines were added as actions to

SDML grammar rules to complete the SDML parser design.

7.1 Future Research Areas

Chapter 3 introduced the concept of assertions into the SDML specification. The

assertions provided are conceived as a minimal set of assertions. Therefore, any

additional assertions which could be identified would add even more to the

semantic integrity of the SDML specification.

Part of the failure action for an assertion and the violation action for format

directives is the ability for the database designer to specify user-defined procedures

within the SDML specification to generalize the failure action. The SDML
specification could be expanded to allow definition of these procedures (procedure

specifications) within the SDML specification.

Chapter 3 also talked about the possibility of specifying an additional failure

action which would indicate the manner in which the database should be corrected

in order to return to a valid database state. This idea is implicit in the SDML
specification presented here in that database repair is considered a function of a
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user-defined procedure. This concept, however, could be explicitly specified In the

SDML specification, thus providing more semantic information within the model.

Some of the constructs provided by the SDM model presented by Hammer and

McLeod can be difficult to understand. For this reason, the SDM model will

probably not be realized as a widely used database modeling mechanism. Some of

the constructs provided In the SDM model could be combined to form a more

uniform set of capabilities instead of seamingly ad-hoc capabilities. On a larger

scale, the development of a new SDM model, based on concepts from the old SDM,

may be desirable. The new SDM model should provide a cohesive set of

capabilities (probably not unlike the old SDM) which are easy to understand and

use.
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Appendix 1: Example SDM Schema

This Appendix contains an example of an SDM schema to aid in the understanding
of the concepts presented in Chapter 2 of this paper. This example represents the
SDM schema, as it was presented by Hammer and McLeod in reference [1].

CARS and AUTOMOBILES
description: All cars produced by a plant.

This is a base class definition,

duplicates not allowed
member attributes:

Make
value class: CAR_TYPES
may not be null
not changeable

Model
value class: CAR_MODELS
may not be null
not changeable

Year
value class: YEARS
may not be null
not changeable

Exterior_color
value class: COLORS

Interior_color

value class: COLORS

Base_price

value class: PRICES

Sticker_price

value class: PRICES
derivation: - Base_price + sumC Options.Price )

Options
description: Options on car
value class: OPTIONS
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Dealership

description: Dealership stocking this car.

This attribute shows the inverse
relationship. Here, Dealership is

the DEALER with this car in stock.
value class: DEALERS
inverse: Cars_in_stock

Vin
description: Vehicle Identification Number
value class: VIN_CODES
may not be null
not changeable

Owner
description: Ultimate owner of vehicle until

purchased by a consumer. This attribute
shows the matching relationship. Here,
Owner Is the owner of the Dealership
which has this car in stock.

value class: OWNERS
match: Owned_by of DEALERS on Cars_in_stock

identifiers:

Vin

DEALERS, DEALERSHIPS
description: Car dealerships which stock the cars built

by a plant. This is a base class definition,
member attributes:

Name
description: Dealership name
value class: DEALER_NAMES

Address
value class: ADDRESS

Dealer_code
description: Code uniquely identifying a dealership
value class: DEALER_CODES
may not be null

Makes
description: Makes of cars which this dealer carries
value class: CAR_TYPES
multivalued
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Cars_in_stock
description: Cars which this dealership has in stock.

This attribute closes the symmetrical
inverse relationship with the Dealership
attribute of class CARS.

value class: CARS
inverse: Dealership
multivalued

Owned_by
description: Owners of this dealership
value class: OWNERS
inverse: Dealers_owned

Employees
description: Employees working as sales persons for

this dealership.
value class: PERSON_NAMES
multivalued with size between 1 and 20

class attributes:

Number_dealer_cars
description: Number of cars in dealership.
value class: INTEGERS
derivation: number of members in Cars_in_stock

identifiers:

Dealer_code

OWNERS
description: This class contains all owners of car

dealerships. This is a base class definition,
member attributes:

Name
value class: PERSON_NAMES

Address
value class: ADDRESS

Dealers_owned
description: This attribute is the dealerships

which this person or persons own.
value class: DEALERS
inverse: Owned_by
multivalued

identifiers:

Name
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OPTIONS
description: This base class contains all available

car options,

member attributes:

Type
description: Type of option
value class: OPTION_TYPES

Price

description: Price of options
value class: PRICES

identifiers:

Type

CARS_SOLD
description: This class contains all cars sold to a

customer,
interclass connection: subclass of CARS where specified
member attributes:

Sold_to
description: Customer buying the car.

value class: PERSON_NAMES
may not be null

Sold_by
description: Salesman selling car to customer,
value class: PERSON_NAMES
may not be null

Customer_address
value class: ADDRESS

Date_sold
value class: DATES

Selling_price

description: Final selling price of car.

value class: PRICES

class attributes:

Number_of_cars_sold
value class: INTEGERS
derivation: number of unique members in this class
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SCHEDULED_PREPS
description: This class contains all scheduled car

preparations. This base class definition
is an example of an event class definition.

interclass connection: subclass of CARS where specified
member attributes:

Date_of_preparation
value class: DATES

class attributes:

Number_of_sched_preps
description: number of cars to be prepared
value class: INTEGERS
derivation: number of unique members in this class

BUICKS
description: This class contains all Buick cars. This

nonbase class shows the use of the
attribute-defined subclass connection utilizing
the simple attribute predicate.

interclass connection: subclass of CARS where Make - 'Buick'
member attributes:

Model
description: this shows the concept of restricting

the value class of an inherited member
attribute.

value class: BUICK_MODELS

SOMERSETS
description: This class contains all Buick Somerset model

cars. This nonbase class definition shows
the use of the attribute-defined subclass
connection utilizing the compound attribute
predicate. Note that the interclass connection
for this class could also have been "subclass
of BUICKS where Model - 'Somerset'",

interclass connection: subclass of CARS where
Make - 'Buick' and
Model - 'Somerset'

PREPARED_CARS
description: This class contains all prepared cars for

any dealership. This nonbase class definition
shows the use of the user-controllable
subclass connection.

interclass connection: subclass of CARS where specified
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PREPARED_BUICKS
description: This class contains all prepared Buick's for

any dealership. This nonbase class definition
shows the use of the intersection set-operator-defined
subclass connection. Note that the interclass

connection for this class could also have been
"subclass of PREPARED_CARS where Make - 'Buick"'.

interclass connection: subclass of CARS where is in BUICKS and
is in PREPARED_CARS

BUICK_DEALERS
description: This class contains all of the dealers which

sell Buick's. This nonbase class definition shows
the use of the existence subclass connection.
Note that the interclass connection for this
class could also have been "subclass of DEALERS
where Makes contains 'Buick'" (which is an
attribute-defined subclass connection).

Interclass connection: subclass of DEALERS where is a value of
Dealership of BUICKS

CAR_MODEL_GROUPS
description: This class groups cars into models. This

nonbase class definition shows the use of the
expression-defined grouping class. Each member
of this nonbase class is a class containing all
models for cars. Note that the class definition
also indicates that a SDM class was explicitly
defined for the Buick Somerset make and model.

interclass connection: grouping of BUICKS on common value of
Make and Model

groups defined as classes are SOMERSETS

DEALER_PREP_CARS
description: This class groups prepared cars for specific

dealerships. This nonbase class definition
also shows the use of the expression-defined
grouping class,

interclass connection: grouping of PREPARED_CARS on common value
of Dealership

CAR_TYPES
description: This is the list of all available car types,
interclass connection: subclass of STRINGS where specified

CAR_MODELS
description: This is the list of all available car models,
interclass connection: subclass of STRINGS where specified
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BUICK_MODELS
description: This is the list of all possible buick car models,
interclass connection: subclass of STRINGS where specified

YEARS
description: This is the format of a year.
interclass connection: subclass of STRINGS where format is

number where integer and > - 70 and <= 99

DATES
description: Calendar dates in the range "1/1/70" to "12/31/99".
interclass connection: subclass of STRINGS where format is

month: number where integer and
>-l and <-12

'/'

day: number where integer and
>-l and <-31

'/•

year: number where integer and
>-70 and <-99

where (if (month-4 or month-5 or
month-9 or month=l 1) then

day <-30) and
(if month-2 then day <-29)

ordering: year, month, day

COLORS
description: This is the available interior and exterior

car colors,

interclass connection: subclass of STRINGS where specified

PRICES
description: This is the possible car prices,
interclass connection: subclass of STRINGS where format is

number where > -
where lengthC right(*, '.'+1) ) - 2

or not present( *, '.'
)

ordering: value
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VIN_CODES
description: This is the format of the Vehicle Identification

Number Codes. For example: 1G4NK27U1GC612345.
interclass connection: subclass of STRINGS where format is

'1G'

number where integer and >=0 and <-9
string where has alphabetics and size - 2
string where has numerics and size - 2

engine_code: oneof 'U', 'G'

number where integer and >-0 and <=9
model_year: string where has alphabetics and size = 1

assy_plant: string where has alphabetics and size = 1

string where has numerics and size - 6
ordering: call _vin_ordering

DEALER_NAMES
description: Dealership names
interclass connection: subclass of STRINGS

ADDRESS
description: Street Address
interclass connection: subclass of STRINGS

DEALER_CODES
description: Dealership identifier codes
interclass connection: subclass of STRINGS where format is

number where integer

PERSON_NAMES
description: Personal Names
interclass connection: subclass of STRINGS

OPTION_TYPES
description: Option types
interclass connection: subclass of STRINGS where specified
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The structure specification used here and in Appendix 3 utilize the following
notational conveniences:

1. Productions are shown in the form LHS - RHS, which is read: LHS "is
made up or RHS.

2. The RHS of each production is indented once to enhance reading ability. All
further indentation is typically supplied (but not required) within the SDM
schema.

3. X+ means one or more occurrences of X, concatenated together.

4. <X> means that one or more occurrences of X with appropriate separators
Ce.g., comma's or and's) are allowed.

5. <<*>> means that one or more occurrences of X are listed vertically
with no separators.

6. { X I Y } means that exactly one ofXorr can be used.

7. [X] means that X is optional.

8. A meta-description will be enclosed in stars Ce.g., * this is a meta-description

9. Reducible constructs are shown in upper-case, whereas all non-reducible
constructs are shown in lower-case.

Those productions or lines marked with an asterik (*) are extensions to the SDM
schema presented in Chapter2.
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SCHEMA <-

< <CLASS> >

CLASS -
{ BASE_CLASS I NONBASE_CLASS I NAME_CLASS }

BASE_CLASS -
<CLASS_NAME>

[description: DESCRIPTION_TEXT]
[BASE_CLASS_FEATURES]
member attributes:

< <MEMBER_ATTRIBUTE> >
[class attributes:

< <CLASS_ATTRIBUTE> > ]

identifiers:

{ <IDENTIFIER> I none }

NONBASE_CLASS -
<CLASS_NAME>

[description: DESCRIPTION_TEXT]
interclass connection: INTERCLASS_CONNECTION
[member attributes:

< <MEMBER_ATTRIBUTE> > ]

[class attributes:

< <CLASS_ATTRIBUTE> > ]

NAME_CLASS -
<CLASS_NAME>

[description: DESCRIPTION_TEXT]
Interclass_connection: NAME_CLASS_IC

*
[determines: CLASS_NAME]
[constant members: CONSTANT_MEMBER_NAME]

BASE_CLASS_FEATURES -
{ duplicates allowed I duplicates not allowed }

MEMBER_ATTRIBUTE -
<ATTRIBUTE_NAME>

[description: DESCRIPTION_TEXT]
value class: CLASS_NAME
[inverse: ATTRIBUTE_NAME]
[{ match: ATTRIBUTE_NAME of CLASS_NAME on ATTRIBUTE NAME I

derivation: MEMBER_ATTRIBUTE_DERIVATION
}]

-
[{ single valued I

multivalued [with size between INTEGER and INTEGER] 1]

[may not be null]
[not changeable]
[exhausts value class]

[no overlap in values]
* [<ATTRIBUTE_ASSERTION>]
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CLASS_ATTRIBUTE -
<ATTRIBUTE_NAME>

[description: DESCRIPTION_TEXT]
value class: CLASS_NAME
[derivation: CLASS_ATTRIBUTE_DERIVATION]
[( single valued I

multivalued [with size between INTEGER and INTEGER] }]

[may not be null]

[not changeable]
* [<ATTRIBUTE_ASSERTION> ]

* ATTRIBUTE_ASSERTION -
assertion:

{ ASSERTION_EXPRESSION I call PROCEDURE NAME }

[failure action: FAILURE_ACTION]
-

» ASSERTION_EXPRESSION <-

MAPPING_EXPRESSION - MAPPING_EXPRESSION

* FATLURE_ACTION -
{ call PROCEDURE_NAME I

error [STRING] I

warning STRING }

IDENTIFIER <-

{ ATTRIBUTE_NAME I

IDENTIFIER + ATTRIBUTE_NAME }

MEMBER_ATTRIBUTE_DERIVATION -
{ INTERATTRIBUTE_DERIVATION I

MEMBER-SPECIFIC_DERIVATION(

CLASS ATTRIBUTE_DERIVATION <-

riNTERATTRIBUTE_DERIVATION
I

CLASS-SPECIFIC_DERIVATION}

INTERATTRIBUTE_DERIVATION <-

{ same as ATTRIBUTE_NAME I

subvalue of MAPPING where {is in CLASS_NAME I

ATTRIBUTE_PREDICATE ) I

where { is in MAPPING and is in MAPPING I

Is in MAPPING or is in MAPPING I

is in MAPPING and is not in MAPPING} I

- MAPPING_EXPRESSION
I

number of [unique] members in MAPPING }

MEMBER-SPECrFIC_DERIVATION -
( order by [{ increasing I decreasing )] <MAPPING>

[within <MAPPING>]I
if in CLASS_NAME I

( up to INTEGER I all } levels of values of
ATTRIBUTE NAME}

122-



Appendix 2 - SDM Structure Specification

CLASS-SPECIFIC_DERIVATION -
{ number of [unique] members in this class I

SET_FUNCTION of ATTRIBUTE_NAME over members of this class }

MAPP1NG_EXPRESSI0N -
{ MAPPING I

( MAPPING_EXPRESSION ) I

MAPPING_EXPRESSION NUMBER_OPERATOR MAPPING EXPRESSION I

SET_FUNCTION ( MAPPING ) I

~~

* sizeofC MAPPING ) I

* sizeof( CLASS_NAME ) }

MAPPING -
{ ATTRIBUTE_NAME I

MAPPING . ATTRIBUTE_NAME
}

NUMBER_OPERATOR «-

SET_FUNCTION -
{ minimum I maximum I average I sum }

INTERCLASS_CONNECTION -
{ SUBCLASS_CONNECTION I

GROUPING_CONNECTION
}

* [< DMTERCLASS_ASSERTION> ]

* INTERCLASS_ASSERTION -
interclass assertion: INTERCLASS CONNECTION
[FAILURE_ACTION]

NAME_CLASS_IC -
{ NAME_CLASS_SC I NAME_CLASS_GC (

NAME_CLASS_SC -
subclass of STRINGS [where NAME_CLASS_SCPRED]

NAME CLASS_SCPRED -
( specified I

format is FORMAT_DIRECTIVE /'seeAppendix 3« /}

* NAME_CLASS_GC -
grouping of STRINGS where specified by CLASS_NAME

SUBCLASS_CONNECnON -
subclass of CLASS_NAME where SUBCLASS_PREDICATE
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GROUPING_CONNECTION -
{ grouping of CLASS_NAME on common value of <ATTRIBUTE_NAME>

[groups denned as classes are <CLASS_NAME>] I

grouping of CLASS_NAME consisting of classes <CLASS_NAME> I

grouping of CLASS_NAME as specified (

SUBCLASS_PREDICATE -
I ATTRIBUTE_PREDICATE I

specified I

( is In CLASS_NAME and is in CLASS_NAME I

is not In CLASS_NAME I

is in CLASS_NAME or is in CLASS_NAME 1

1

Is a value of ATTRIBUTE_NAME of CLASS_NAME }

ATTRIBUTE_PREDICATE <-

{ SIMPLE_PREDICATE I

( ATTRIBUTE_PREDICATE ) I

not ATTRIBUTE_PREDICATE I

ATTRIBUTE_PREDICATE and ATTRIBUTE_PREDICATE I

ATTRIBUTE_PREDICATE or ATTRIBUTE_PREDICATE
)

SIMPLE_PREDICATE -
{ MAPPING RELOP ( CONSTANT I MAPPING 1

1

MAPPING SETOP { CONSTANT I MAPPING I CLASS_NAME } }

RELOP -
)_| _KI<_|> |>_(

SETOP -
{ Is [properly] contained in I

[properly] contains }

CLASS_NAME <-

UPPER_CASE NOT_LOWER_CASE+

ATTRIBUTE_NAME -
UPPER_CASE NOT_UPPER_CASE+

PROCEDURE_NAME <-

"_" NOTJJPPER_CASE +

CONSTANT_MEMBER_NAME -
"_" NOT_LOWER_CASE+

DESCRIPTION_TEXT -
"(" * any character string except ( character * "}"

INTEGER -
DIGIT*
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REAL -
INTEGER . INTEGER

NUMBER -
{ INTEGER I REAL I

CONSTANT <-

{ NUMBER I STRING (

UPPER_CASE *-

{ A I B I ... I Z }

LOWER_CASE <-

{ a I b I ... I z }

DIGIT -
{ I 1 I ... I 9 }

NOT_LOWER_CASE <-

{ UPPER_CASE I _ I DIGIT }

NOT_UPPER_CASE <-

{ LOWER_CASE I _ I DIGIT }

STRING -
"'" * any printable character except ' character * "'"
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See Appendix 2 for a description of the notation used in the following structure
specification.

FORMAT_DrRECTIVE <-

DESCRIPTION_CLAUSE
[ORDERTNG_CLAUSE]
[VIOLATION_ACTION_CLAUSE]

DESCRIPTION_CLAUSE <
( DESCRIPTION_SUBCLAUSE I

DESCRIPTION_CLAUSE or DESCRIPTION_SUBCLAUSE
|

DESCRIPTION_SUBCLAUSE -
DESCRIPTION
[, WHERE-RESTRICTION] .

DESCRIPTION «-

<SUBUNTT>

SUBUNIT *-

[LABEL :] SUBUNITJTEM

SUBUNITJTEM «-

{ string [where STRING_BOOLEAN] I

number [where NUMBER_BOOLEAN] I

oneof STRING_LIST I

oneof NUMBER_LIST I

STRING}

STRING_LIST -
{ STRTNG_COMPONENT I

( <STRING_COMPONENT> ) }

NUMBER_LIST -
{NUMBER I

( <NUMBER> ) }

STRING_COMPONENT -
{ STRING I alphabetics I numerics I specials }

STRING_BOOLEAN -
{ STRING_PREDICATE I

( STRTNG_BOOLEAN ) I

not STRING_BOOLEAN I

STRING_BOOLEAN and STRING_BOOLEAN I

STRING_BOOLEAN or STRING_BOOLEAN }
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STRING_PREDICATE -
{ if STRING_CONDITION then STRING_PREDICATE I

[else STRING_PREDICATE] fi I

STRTNG_CONDITION
}

STRING_CONDmON <-

{ RELOP STRING I

size RELOP INTEGER I

has STRING_LIST I

call PROCEDURE_NAME
}

NUMBER_BOOLEAN «-

( NUMBER_PREDICATE I

( NUMBER_BOOLEAN ) I

not NUMBER_BOOLEAN I

NUMBER_BOOLEAN and NUMBER_BOOLEAN I

NUMBER_BOOLEAN or NUMBER_BOOLEAN
j

NUMBER_PREDICATE -
{ if NUMBER_CONDITION then NUMBER_PREDICATE i

[else NUMBER_PREDICATE] fi I

Integer I

real I

NUMBER_CONDITION }

NUMBER_CONDITION <-

! RELOP NUMBER I

call PROCEDURE_NAME
}

WHERE-RESTRICnON -
where BOOLEAN

BOOLEAN -
{ PREDICATE I

( BOOLEAN ) I

not BOOLEAN I

BOOLEAN and BOOLEAN I

BOOLEAN or BOOLEAN }

PREDICATE -
{ if CONDITION then PREDICATE [else PREDICATE] fi I

CONDITION }

CONDITION -
{ EXPRESSION RELOP EXPRESSION I

present ( EXPRESSION , STRING_LIST ) I

call PROCEDURE NAME I
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EXPRESSION <-

( SUBEXPRESSION I

( EXPRESSION ) I

EXPRESSION RELOP EXPRESSION )

SUBEXPRESSION -
{ ATOMIC_EXPRESSION I

SET_FUNCTION ( <EXPRESSION> ) I

append ( EXPRESSION , EXPRESSION ) I

substring ( EXPRESSION , CHAR_POS , CHAR_POS ) I

left ( EXPRESSION , CHAR_POS ) I

right C EXPRESSION , CHAR_POS ) I

location ( EXPRESSION , EXPRESSION ) I

length ( EXPRESSION ) I

repetitions LABEL through LABEL }

ATOMIC_EXPRESSION -
(LABEL I

STRING I

[{ + I - }] NUMBER I

*}

CHAR_POS -
{STRING I

STRING { + I - } INTEGER I

INTEGER}

ORDERING_CLAUSE -
ordering : ORDERING

ORDERING -
f <LABEL> I

none I

atomic I

call PROCEDURE_NAME
}

VIOLATION ACTION_CLAUSE -
{ errortSTRING] I

call PROCEDURE_NAME
}
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This Appendix contains the SDML grammar specification as given to the Yacc
program.

sdm_schema : class_definition_list

class_definition_list : class_definition
I class_definition_list class_definition

class_definition : base_class_definition
I nonbase_class_def

base_class_definition : class_name_list base_class_body

class_name_list : CLASS_NAME
I class_name_list comma_and_sep CLASS_NAME

comma_and_sep :

I AND

base_class_body : desc_clause bc_feat_decl
member_attr_ded class_attr_ded ident_decl

desc_clause : /* empty */

I DESCRIPTION ':' DESCRIPTION_TEXT
I

bc_feat_decl

:

/* empty */

I DUPLICATES ALLOWED
I DUPLICATES NOT ALLOWED
f

member_attr_decl
: MEMBER_ATTRIBUTES ':' member_attr_list

member_attr_list : member_attribute
I member_attr_list member_attribute

member_attribute : attr_name_list desc_clause value_class_decl
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inverse_decl match_or_derivation
member_order member_attr_opts
attr_assertion_decl

attr_name_llst : ATTRIBUTE_NAME
I attr_name_list comma_and_sep ATTRIBUTE_NAME

value_class_decl : VALUE_CLASS ':' CLASS_NAME

lnverse_decl : /* empty V
I INVERSE ':' ATTRIBUTE_NAME

match_or_derivation : /* empty */

I match_decl
I derivation_decl

match_decl : MATCH V ATTRIBUTE_NAME OF CLASS_NAME ON ATTRIBUTES

derivation_decl : DERIVATION ':' member_attr_deriv

member_order : /* empty V
I STNGLE_VALUED
I MULTIVALUED
I MULTIVALUED WITH_SIZE_BETWEEN INTEGER_C AND INTEGE

member_attr_opts : /* empty V
I member_options

member_options : member_opt_item
I member_options member_opt_item

member_opt_item : MAY_NOT_BE_NULL
I NOT CHANGEABLE
I EXHAUSTS VALUE_CLASS
I NO_OVERLAP_IN_VALUES

attr_assertion_decl

:

/* empty V
I attr_assertion_list fail_action_clause
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attr_assertion_llst : attribute_assertion

attr_assertion_list attribute_assertionI

attribute_assertlon : ASSERTION ':' assertion

assertion CALL PROCEDURE_NAME
mapping_expression relop mapping_expression
setop_predicate

fail_action_clause :

I

/* empty */

FAILURE_ACT10N ':' failure action

failure_action : CALL PROCEDURE_NAME
I ERROR action_message
I WARNING STRING C

class_attr_decl

I

: /* empty */

CLASS_ATTRIBUTES ':' class_attr_llst

class_attr_llst

I

: class_attribute

class_attr_list class_attribute

class_attrlbute : attr_name_list desc_clause
value_class_decl class_deriv_decl
member_order class_attr_opts
attr_assertion decl

class_attr_opts

I

: /* empty */

class_options

class_options

:

I

class_opt_item
class_options class_opt_item

class_opt_item
I

: MAY_NOT_BE_NULL
NOT CHANGEABLE

class_deriv_decl

:

I

/* empty */

DERIVATION ':' class attr deriv
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member_attr_deriv

:

interattr_deriv

I member_spec_deriv

member_spec_deriv : ordering predicate

I existence_predicate
I recursive_trace_pred

ordering_predicate : ORDER BY direction mapping_list within_clause

direction : /* empty */

I INCREASING
I DECREASING

within_clause : /* empty V
I WITHIN mapping_list

mapping_list

:

mapping
I mapping_list comma_and_sep mapping

existence_predicate :IF IN CLASS_NAME

recursive_trace_pred : level_clause LEVELS_OF_VALUES OF ATTRIBUTE_NAME

level_clause : UP_TO INTEGER_C
I ALL
t

class_attr_deriv : interattr_deriv
I class_spec_deriv

class_spec_deriv : class_size_pred

I class_member_pred

class_size_pred : NUMBER OF uniqueness MEMBERS IN THIS_CLASS

uniqueness : /* empty */

I UNIQUE

class_member_pred : set_function OF ATTRIBUTE_NAME OVER MEMBERS OF TIE
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set_functlon : MINIMUM
I MAXIMUM
I AVERAGE
I SUM

lnterattr_deriv : derived_predicate
I subvalue_predicate
I set_derived_pred
I equality_predicate
I set_order_predicate

derived_predicate : SAME_AS mapping

set_derived_pred : WHERE IS IN mapping AND IS IN mapping
I WHERE IS IN mapping OR IS IN mapping
I WHERE IS IN mapping AND IS NOT IN mapping

equallty_predicate : EQ mapping_expression

mapping_expression

:

mapping_term
I mapping_expression addition_operator mapping_term

mapping_tenn : mapping_factor
I mapping_term multiply_operator mapptng_factor

mapptng_factor : mapping_primary
I mapping_factor exponent_operator mapping_primary

mapping_primary :
'(' mapping_expression ')'

I set_function '(' mapping ')'

I mapping
I number
I CONST_MEMBER_NAME
I SIZEOF '(' mapping ')'

I SIZEOF '(' CLASS_NAME ')'

additlon_operator :
'+'

i - vj

:

i

- 133



Appendix 4 - YACC SDML Grammar Specification

multiply_operator :

'*'

f - '«•;

}

i - 7';

}

exponent_operator
:

'!'

set_order_predicate : NUMBER OF uniqueness MEMBERS IN mapping

subvalue_predicate :SUBVALUE OF mapping WHERE subvalue_selection

subvalue_selection : IS IN CLASS_NAME
I attribute__predicate

mapping : ATTRIBUTE_NAME
I mapping '.' ATTRIBUTE_NAME

ident_ded : IDENTIFIERS ':' ident_list
I IDENTIFIERS ':' NONE

ident_Ust : identifier

I ident_list ',' identifier

identifier : ATTRIBUTE_NAME
I identifier '+' ATTRIBUTE_NAME

nonbase_class_def : class_name_list nonbase_class_body

nonbase_class_body : desc_clause interclass_connection
nonbase class alts

nonbase_class_alts :nonbase_class_feat
I name class feat

nonbase_class_feat

:

nbc_member_attr_decl class_attr_decl
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nbc_member_attr_decl : /* empty V
I member_attr_decl

name_class_feat : determines_clause
I const_members_clause
I determines_clause const_members_clause

determines_clause : DETERMINES ':' CLASS_NAME

const_members_clause : CONSTANT_MEMBERS ':' const_members_list

const_members_Ust

:

CONST_MEMBER_NAME
I const_members_list comma_and_sep CONST_MEMBER_NAME

interclass_connectlon : INTERCLASS_CONNECTION ':' connection
ic assertion decl

ic_assertion_decl : /* empty V
I ic_assertion_list fail action clause

ic_assertion_list : ic_assertion

I ic_assertion_list ic_assertlon

ic_assertion : INTERCLASS_ASSERTION *:' connection

connection : subclass_connection
I grouping_connection

subclass_connection : SUBCLASS OF CLASS_NAME subclass_predicate

grouplng_connectlon

:

expression_defined_gc
I enumerated_gc
I user_controllable_gc
I name_class_gc

subclass_predicate : WHERE attribute_predicate
I WHERE SPECIFIED
I WHERE set_oper_defined_sc
I WHERE existence_sc
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I name class sc

set_oper_defined_sc : IS IN CLASS_NAME AND IS IN CLASS_NAME
I IS IN CLASS_NAME OR IS IN CLASS_NAME
I IS NOT IN CLASS NAME

existence_sc : IS A_VALUE OF ATTRIBUTE_NAME OF CLASS_NAME

name_class_sc : /* empty */

I WHERE FORMAT IS format_directive

expression_defined_gc : GROUPING OF CLASS_NAME ON_COMMON_VALUE OF
attr_name_list explicitly_def_grps

explicitly_def_grps : /* empty V
I GROUPS_DEFINED_AS_CLASSES_ARE class_name_list

enumerated_gc : GROUPING OF CLASS_NAME CONSISTING_OF_CLASSES
class_name_list

user_controllable_gc : GROUPING OF CLASS_NAME AS_SPECIFIED

name_class_gc : GROUPING OF CLASS_NAME AS_SPECIFIED
BY CLASS_NAME

attrlbute_predlcate :attr_pred_term
I attribute_predicate OR attr_pred_term

attr_pred_term : attr_pred_factor
I attr_pred_term AND attr_pred_factor

attr_pred_factor : attr_pred_primary
I NOT attr_pred_primary

attr_pred_prlmary :
'(' attribute_predicate ')'

I simple_predicate

simple_predicate : relop_predicate

-136-



Appendix 4 - YACC SDML Grammar Specification

setop_predicate

relop_predicate : mapping relop constant
I mapping relop mapping

setop_predicate : mapping setop constant
mapping setop mapping

I mapping setop CLASS_NAME

relop : EQ
I NE
i LT
I LE
I GT
I GE

setop : IS properly CONTAINED IN
I properly CONTAINS

properly : /* empty */

I PROPERLY

format_directive : description_clause ordering_clause
vlolation_actn_clause

description_clause : description_subclause
I description_clause OR description_subclause

description_subclause : description '.'

I description ',' where_restriction '.'

description : subunit
I description ',' subunit

»

subunit : subunit_item
I LABEL ':' subunit_item

subunlt_item: STRING str_where_clause
I NUMBER num_where_clause
I ONEOF string_list

-137-



Appendix 4 - YACC SDML Grammar Specification

I ONEOF number_list
I STRING C

str_where_clause : /* empty */

I WHERE string_boolean

num_where_clause : /* empty */

I WHERE number boolean

string_llst : string_component
I

'(' string_list ',' string_component ')'

strlng_component : STRING_C
I ALPHABETICS
I NUMERICS
I SPECIALS

numberjist : number
I

'(' number_list ',' number ')'

strtng_boolean : string_bool_term
I strlng_boolean OR string_bool_term

strlng_boo!_term : string_bool_factor
I strlng_bool_term AND strlng_bool_factor

string_bool_factor :string_bool_primary
I NOT strlng_bool_primary

string_bool_primary : '(' string_boolean ')'

I string_predicate

string_predicate : IF string_condition THEN string_predicate FI
I IF string_condition THEN strlng_predlcate

ELSE string_predicate FI
I string_condition

strlng_conditlon : relop STRING_C
I SIZE relop INTEGER_C
I HAS string_list
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CALL PROCEDURE_NAME

number_boolean : number_bool_term
I number_boolean OR number_bool_term

number_bool_term

:

number_bool_factor
I number_bool_term AND number_bool_factor

number_bool_factor

:

number_bool_primary
I NOT number_bool_primary

number_bool_primary : '(' number_boolean ')'

I mimber_predicate

number_predicate : IF number_condition THEN number_predicate FI
I IF number_condition THEN number_predicate

ELSE number_predicate FI
I INTEGER
I REAL
I number condition

number_condition : relop number
I CALL PROCEDURE_NAME

where_restrlction : WHERE boolean

boolean : boolean_term
I boolean OR boolean term

boolean_term : boolean_factor
I boolean_term AND boolean_factor

boolean_factor : boolean_primary
I NOT boolean_primary

boolean_primary :
'(' boolean ')'

I predicate

predicate : IF condition_expr THEN predicate FI
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IF condition_expr THEN predicate ELSE predicate FI
condition

condition : expression relop expression

I PRESENT '(' expression ',' expression ')'

I CALL PROCEDURE_NAME

condition_expr : condition_term
I condition_expr AND condition_term

condition_term : condition_factor
I condition_term OR condition_factor

condition_factor :
'(' condition_expr ')'

I condition

expression : arithmetic_term

I expression addition_operator arithmetic_term

arithmetic_tenn : arithmetic_factor
I arithmetic_term multiply_operator arithmetic_factor

arithmetic_factor : arithmetic_primary
I arithmetic_factor exponent_operator arithmetic_primary

arithmetic_primary :
'(' expression ')'

I subexpression

subexpression: atomic_expression
I set_function '(' expression_list ')'

I APPEND '(' expression ',' expression ')'

I SUBSTRING '(' expression ',' char_pos ','

char_pos ')'

I LEFT '(' expression ',' char_pos ')'

I RIGHT '(' expression ',' char_pos ')'

I LOCATION '(' expression ',' expression ')'

I LENGTH '(' expression ')'

I REPETITIONS LABEL THROUGH LABEL

atomic_expression : LABEL
I STRING C
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number
addition_operator number

expression_list

I

: expression

expression_list ',' expression

char_pos :

1

1

STRING C
STRING C addition operator INTEGER C
INTEGER_C

ordertng_clause

1

: /* empty V
ORDERING ':' ordering

ordering :

1

1

1

ordering_list

NONE
ATOMIC
CALL PROCEDURE_NAME

ordering_list :

1

LABEL
ordering_list ',' LABEL

violatlon_actn_clause : /* empty */

I VIOLATION_ACTION ':' violation_action

violatlon_actlon : ERROR action_message
I CALL PROCEDURE NAME

action_message

I

: /* empty */

STRING C

number : INTEGER_C
REAL C

constant STRING_C
number
CONST MEMBER NAME
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This Appendix contains the SDML specification for the SDM schema example in
Appendix 1. The SDM schema in Appendix 1 was changed to adhere to the syntax
of the SDML specification and was enhanced using some of the extensions provided
in Chapter 3 of this paper.

CARS and AUTOMOBILES
description: ( All cars produced by a plant.

This is a base class definition. )

duplicates not allowed
member attributes:

Make
value class: CAR_TYPES
may not be null

not changeable

Model
value class: CAR_MODELS
may not be null

not changeable

Year
value class: YEARS
may not be null

not changeable

Exterior_color

value class: COLORS

Interior_color

value class: COLORS
assertion: call _verify_interior_color
failure action: error

'invalid exterior/interior combination'

Base_price

value class: PRICES

Sticker_price

value class: PRICES
derivation: - Base_price + sum( Options.Price )

Options
description: { Options on car }

value class: OPTIONS

142-



Appendix 5 - Example SDML Specification

Dealership

description: { Dealership stocking this car.

This attribute shows the inverse

relationship. Here, Dealership is

the DEALER with this car in stock. }

value class: DEALERS
inverse: Cars_in_stock

Vin
description: { Vehicle Identification Number )

value class: VIN_CODES
may not be null

not changeable

Owner
description: { Ultimate owner of vehicle until purchased

by a consumer. This attribute shows
the matching relationship. Here,
Owner is the owner of the Dealership
which has this car in stock. }

value class: OWNERS
match: Owned_by of DEALERS on Cars_in_stock

identifiers:

Vin

DEALERS, DEALERSHIPS
description: ( Car dealerships which stock the cars built by

a plant. This is a base class definition. }

member attributes:

Name
description: | Dealership name }

value class: DEALER_NAMES

Address
value class: ADDRESS

Dealer_code
description: ( Code uniquely identifying a dealership }

value class: DEALER_CODES
may not be null

Makes
description: { Makes of cars this dealer carries }

value class: CAR_TYPES
multivalued
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Cars_ln_stock
description: { Cars which this dealership has in stock.

This attribute closes the symmetrical
Inverse relationship with the Dealership
attribute of class CARS. }

value class: CARS
inverse: Dealership

multivalued
assertion: Cars_in_stock.Make is contained in Makes

Owned_by
description: ( Owners of this dealership

}

value class: OWNERS
inverse: Dealers_owned

Employees
description: { Employees working as sales persons for

this dealership. }

value class: PERSON_NAMES
multivalued with size between 1 and 20

class attributes:

Number_dealer_cars
description: { Number of cars in dealership. }

value class: INTEGERS
derivation: number of members in Cars_in_stock

identifiers:

Dealer_code

OWNERS
description: { This class contains all owners of car

dealerships. This is a base class definition. )

member attributes:

Name
value class: PERSON_NAMES

Address
value class: ADDRESS

Dealers_owned
description: { This attribute is the dealerships

which this person or persons own. (

value class: DEALERS
Inverse: Owned_by
multivalued

identifiers:

Name
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OPTIONS
description: { This base class contains all available

car options. }

member attributes:

Type
description: { Type of option }

value class: OPTION_TYPES

Price

description: { Price of options )

value class: PRICES

identifiers:

Type

CARS_SOLD
description: ( This class contains all cars sold to a

customer. }

interclass connection: subclass of CARS where specified

interclass assertion: subclass of CARS where
is in PREPARED_CARS or
is in SCHEDULED_PREPS

failure action: warning 'car not scheduled for preparation'
member attributes:

Sold_to
description: { Customer buying the car. (

value class: PERSON_NAMES
may not be null

Sold_by
description: { Salesman selling car to customer. }

value class: PERSON_NAMES
may not be null

assertion: Sold_by is contained in Dealership.Employees
failure action:

error 'Salesman not employed by Dealership'

Customer_address
value class: ADDRESS

Date_sold
value class: DATES

Selling_price

description: { Final selling price of car. (

value class: PRICES

145-



Appendix 5 - Example SDML Specification

class attributes:

Number_of_cars_sold
value class: INTEGERS
derivation: number of unique members in this class
assertion: Number_of_cars_sold =

sizeofC SCHEDULED_PREPS ) +
sizeoft PREPARED_CARS )

failure action: call _determine_cars_not_scheduled

SCHEDULED_PREPS
description: { This class contains all scheduled car

preparations. This base class definition
is an example of an event class definition. }

interclass connection: subclass of CARS where specified
member attributes:

Date_of_preparation
value class: DATES
assertion: Date_of_preparation <- _CURRENT_DATE
failure action: call _notify_past_due

class attributes:

Number_of_sched_preps
description: { Number of cars to be prepared }

value class: INTEGERS
derivation: number of unique members in this class

BUICKS
description: { This class contains all Buick cars. This

nonbase class shows the use of the
attribute-defined subclass connection utilizing
the simple attribute predicate. }

interclass connection: subclass of CARS where Make - 'Buick'
member attributes:

Model
description: { This shows the concept of restricting

the value class of an inherited member
attribute. }

value class: BUICK_MODELS
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SOMERSETS
description: { This class contains all Buick Somerset model

cars. This nonbase class definition shows
the use of the attribute-defined subclass
connection utilizing the compound attribute
predicate. (

interclass connection: subclass of CARS where
Make - 'Buick' and
Model - 'Somerset'

interclass assertion: subclass of BUICKS where
Model - 'Somerset'

PREPARED_CARS
description: { This class contains all prepared cars for

any dealership. This nonbase class definition
shows the use of the user-controllable
subclass connection. }

interclass connection: subclass of CARS where specified

PREPARED_BUICKS
description: { This class contains all prepared Buick's for

any dealership. This nonbase class definition
shows the use of the intersection

set-operator-defined subclass connection. (

interclass connection: subclass of CARS where
is in BUICKS and
is in PREPARED_CARS

Interclass assertion: subclass of PREPARED_CARS where
Make - 'Buick'

BUICK_DEALERS
description: { This class contains all dealers which sell

Buick's. This nonbase class definition shows
the use of the existence subclass connection. }

interclass connection: subclass of DEALERS where is a value of
Dealership of BUICKS

interclass assertion: subclass of DEALERS where
Make contains 'Buick'

CAR_MODEL_GROUPS
description: { This class groups cars into models. This

nonbase class definition shows the use of the
expression-defined grouping class. Each member
of this nonbase class is a class containing all
models for cars. Note that the class definition
also Indicates that a SDM class was explicitly
defined for the Buick Somerset make and model. }

interclass connection: grouping of BUICKS on common value of
Make and Model

groups defined as classes are SOMERSETS

-147-



Appendix 5 - Example SDML Specification

DEALER_PREP_CARS
description: { This class groups prepared cars for specific

dealerships. This nonbase class definition
also shows the use of the expression-defined
grouping class. }

lnterclass connection: grouping of PREPARED_CARS on common value
of Dealership

CAR_TYPES
description: { This is the list of all available car types. (

lnterclass connection: subclass of STRINGS where specified
determines: CAR_MODELS

CAR_MODELS
description: ( This Is the list of all available car models. }

lnterclass connection: grouping of STRINGS where specified
by CAR_TYPES

BUICK_MODELS
description: { This is the list of all possible

bulck car models. }

lnterclass connection: subclass of STRINGS where specified

YEARS
description: { This is the format of a year. (

lnterclass connection: subclass of STRINGS where format is

number where integer and > - 70 and <- 99.
constant members: _CURRENT_YEAR

DATES
description: { Calendar dates in the range

"1/1/70" to "12/31/99".
}

lnterclass connection: subclass of STRINGS where format is

month: number where integer and
>-land<-12,

day: number where integer and
>-l and <-31,

year: number where integer and
> -70 and <=99,

where if (month-4 or month-5 or
month-9 or month-11) then

day <-30fiand
if month-2 then day <-29 fi.

ordering: year, month, day
constant members: _CURRENT_DATE

COLORS
description: { This is the available interior and exterior

car colors. }
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interclass connection: subclass of STRINGS where specified

PRICES
description: ( This is the possible car prices. }

interclass connection: subclass of STRINGS where format is

number where > - 0,

where lengthC right(*, '.'+1) ) - 2
or not present( *, '.'

).

ordering: value

VIN_CODES
description: { This is the format of the Vehicle Identification

Number Codes. For example: 1G4NK27U1GC6 12345. }

interclass connection: subclass of STRINGS where format is

'1G',

number where integer and >-0 and <=9,
string where has alphabetic and size - 2,
string where has numerics and size = 2,

engine_code:oneofC 'U', 'G' ),

number where integer and >=0 and <-9,
model_year: string where has alphabetics and size - 1

,

assy_plant: string where has alphabetics and size - 1,

string where has numerics and size = 6.

ordering: call _vin_ordering

DEALER_NAMES
description: { Dealership names }

interclass connection: subclass of STRINGS

ADDRESS
description: { Street Address }

interclass connection: subclass of STRINGS

DEALER_CODES
description: ( Dealership identifier codes }

Interclass connection: subclass of STRINGS where format is

number where integer.

PERSON_NAMES
description: { Personal Names }

interclass connection: subclass of STRINGS

OPTION_TYPES
description: { Option types )

interclass connection: subclass of STRINGS where specified
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NAME
sdml - Semantic Database Model (SDM) language compiler

SYNOPSIS
sdml [ -dvsl ] [ -o ofile ] [ file ]

DESCRIPTION
Sdml compiles the SDM specification from the given file (standard input
default). The compilation involves two passes. Pass 1 will verify syntax of
the SDM specification and pass 2 will verify semantics of the SDM
specification. Types of errors reported are class or attribute names used but
not defined, multiple class or attribute name definitions, and inconsistent
usage of various SDM capabilities. An output specification may be generated
from the SDML compiler by specifying the -o option and a ofile to write the
file to.

The available options are as follows:

-d generate a file named sdm.ddl which will contain the structures built
during pass 2 of the sdml compiler. This file is used by the data
dictionary generation program to build a static data dictionary from
the SDM specification given. Note that this option does not make
sense with the -1 option.

-v verbose mode. This option will result in a summary being directed to
standard output with statistics on various label definitions and usage.

-s dumps the symbol table generated by pass 1 (and 2) of the sdml
compiler to standard output. The symbol table will contain
information about symbol definition and usage on a per symbol basis.

-o generates the compiled SDM specification and puts it into the file

named ofile.

-1 run pass 1 only. This option may be useful when attempting to
resolve syntax errors in a SDM specification without going through
pass 2 (verifying semantics) if error recovery is attempted by the
SDML compiler.

The SDML compiler pre-defines the maximum number of unique symbols,
maximum number of class definitions, and maximum number of attribute
definitions. The maximum number of unique symbol definitions (including
constant symbols) can be increased from the default of 254 symbols (2s- 1)
by using tie
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%h hval

control statement at the beginning of the SDM specification. This statement
will increase the number of hash table entries possible from the default limit
to the next highest power of 2 from hval . That is, the new limit L will be
selected such that 2" "'-1 < hval < 2"-l=£.

The maximum number of class definitions can be increased from the default
of 50 by using the

%c cval

control statement, where cval is the new maximum number of class
definitions. The maximum number of attribute definitions can be increased
from the default of 100 by using the

%a aval

control statement, where aval is the new maximum number of attribute
definitions.

SEE ALSO
R. V. Lane, Semantic Database Model Language (SDML): Grammar
Specification and Parser
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ABSTRACT

This paper describes the Semantic Database Model Language CSDML). SDML is a

high-level language based on the Semantic Database Model (SDM). SDM will

allow a database designer to model a database application while retaining

application data meaning. Some extensions to the SDM are introduced and are

incorporated into the SDML grammar. SDML is used as an intermediate in the

automatic generation of a static data dictionary for the application environment.

This paper discusses the design of a context-free grammar for SDML and the design

of an LRCl) parser for SDML. The SDML parser will check syntactic and semantic

correctness of an SDML specification.


