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Abstract 

The grain yield of winter wheat (Triticum aestivum L.) increased over time through plant 

breeding, and preliminary research suggested that yield response to fertilizer differs in modern 

versus historical genotypes. However, this response is not universal. We hypothesize selection 

for yield may have unintentionally modified the dynamics of nutrient uptake and partitioning in 

the plant. Thus, our objectives were to identify the key shifts in crop phenotype, in above-ground 

biomass and in dynamics of nutrient uptake and partitioning during vegetative and reproductive 

phases in response to selection for yield and to in-furrow fertilizer. Field experiments were 

conducted in four Kansas environments in a factorial trial combining eight winter wheat varieties 

released between 1920 and 2016, and two fertilizer practices (control versus 112 kg ha-1 in-

furrow 12-40-0-10-1). Grain yield and grain N-removal increased non-linearly with year of 

release (YOR), with greater increases between 1966 and 2000. In-furrow fertilizer increased 

yield in ~300 kg ha-1 with no variety × fertility interactions. Grain protein concentration (GNC) 

related negatively to yield, and the residuals of this relationship were unaffected by YOR. Yield 

increase in semi-dwarf varieties were associated with shorter vegetative period and longer grain 

filling period, and more kernels m-2 derived from more kernels head-1. Historical varieties were 

taller, had thinner stems, and allocated more biomass to the stem than semi-dwarf varieties. At 

grain filling and maturity, shoot biomass was similar among varieties but semi-dwarf varieties 

allocated more dry matter to the kernels, suggesting that increases in yield derived from greater 

harvest index (HI) rather than greater biomass. Whole plant nutrient concentration negatively 

related to whole plant biomass and increased over decades for N, P, and S and decreased for K. 

In-furrow fertilizer increased the concentration of all nutrients. Grain-N, P, K, and S uptake 

increased from historical to semi-dwarf varieties; thus, nutrient HI increased with YOR, with 



  

greater increases between 1966 and 2000. Nutrient HI decreased with in-furrow fertilizer as the 

fertilizer increased biomass allocation to the vegetative tissues more than to the grain. Nutrient 

allocation rate to the head related positively to whole plant uptake rate, and YOR increased the 

head allocation rate for N, K, and S. There were positive and significant relationships between 

NHI and the HI of P, K, and S. Whole plant N uptake and P, K, and S uptake were also 

positively related, with ratios of 9.2, 1.1, and 15.4 for N:P, N:K, and N:S. Direct selection for 

grain yield modified the dynamics of nutrient uptake and partitioning over time, with semi-dwarf 

varieties allocating more N, P, K, and S to the grain. The ability of modern varieties to allocate 

more biomass and nutrients to the grain, coupled to an early maturity and longer grain filling 

period, increased grain yield and grain N-removal over time. However, increases in yield were 

greater than those in N-removal, reducing GNC. In-furrow fertilizer increased grain yield, 

biomass, and grain N, P, K, S uptake; nonetheless, the lack of variety × fertility interaction 

suggested variety response to fertility was similar. 

 



v 

Table of Contents 

 

List of Figures ............................................................................................................................... vii 

List of Tables ................................................................................................................................. xi 

Acknowledgements ...................................................................................................................... xiii 

Chapter 1 - Changes in Winter Wheat Phenotype in Response to Breeding for Yield and In-

Furrow Fertilizer.I. Biomass, Yield, and Grain Protein Concentration ................................... 1 

Introduction ................................................................................................................................. 1 

Materials and Methods ................................................................................................................ 3 

Sites, treatments structure, and experimental design .............................................................. 3 

Agronomic management ......................................................................................................... 4 

Vegetative development evaluations ...................................................................................... 5 

Data analysis ........................................................................................................................... 6 

Results ......................................................................................................................................... 8 

Weather conditions ................................................................................................................. 8 

Grain yield, grain-N removal, and grain protein concentration .............................................. 9 

Yield components ................................................................................................................. 10 

Plant height, stem diameter, and chronological changes ...................................................... 11 

Total biomass, crop growth rate, and biomass allocation to plant components.................... 11 

Association between grain yield, weather variables, and measured traits ............................ 12 

Discussion ................................................................................................................................. 13 

Grain yield, grain-N removal, and grain protein concentration ............................................ 13 

Morphological and physiological components of yield increase .......................................... 15 

Plant height, stem diameter, and chronological changes ...................................................... 16 

Total biomass, crop growth rate, and allocation to plant components .................................. 17 

Conclusions ............................................................................................................................... 18 

Figures ...................................................................................................................................... 20 

Tables ........................................................................................................................................ 26 

Chapter 2 - Changes in Winter Wheat Phenotype in Response to Breeding for Yield and In-

Furrow Fertilizer.II. Macronutrients ...................................................................................... 32 

Introduction ............................................................................................................................... 32 



vi 

Materials and Methods .............................................................................................................. 34 

Sites, treatment structure, and experimental design .............................................................. 34 

Nutrient uptake and partitioning ........................................................................................... 35 

Calculations ........................................................................................................................... 35 

Data analysis ......................................................................................................................... 36 

Results ....................................................................................................................................... 37 

Nitrogen uptake and partitioning .......................................................................................... 37 

Phosphorus uptake and partitioning ...................................................................................... 38 

Potassium uptake and partitioning ........................................................................................ 39 

Sulfur uptake and partitioning .............................................................................................. 40 

Whole plant nutrient concentration ....................................................................................... 40 

Nutrient harvest index ........................................................................................................... 41 

Nutrient partitioning from plant to head during grain filling ................................................ 41 

Grain nutrient uptake ............................................................................................................ 42 

Associations among nutrient harvest indices and whole plant uptake of nutrients .............. 42 

Discussion ................................................................................................................................. 43 

Nitrogen uptake ..................................................................................................................... 43 

Phosphorus uptake ................................................................................................................ 45 

Potassium and sulfur uptake ................................................................................................. 45 

Whole plant nutrient concentration ....................................................................................... 47 

Nutrient harvest index ........................................................................................................... 47 

Head nutrient allocation rate and nutrient uptake ................................................................. 48 

Association among harvest indices and among uptake of different nutrients ....................... 49 

Figures ...................................................................................................................................... 52 

References ..................................................................................................................................... 62 

Appendix A - Supporting Figure .................................................................................................. 77 

Appendix B - Table with significances ......................................................................................... 78 

  



vii 

List of Figures 

 

Figure 1.1 Relationship between year of release from wheat varieties released between 1920 and 

2016 and grain yield deviation. Comparison of the regression residuals for in-furrow 

fertilizer treatment and no fertilizer (bars show mean and standard error). Values correspond 

to the data of four site-years during two growing seasons (2016-17 and 2017-18) (A). 

Relationship between year of release from wheat varieties released between 1920 and 2016 

and nitrogen removal deviation. Comparison of the regression residuals for in-furrow 

fertilizer treatment and no fertilizer (bars show mean and standard error) (B). Mean for all 

varieties in each site and year. * Significant (P<0.05); ** significant (P<0.01); *** 

significant (P<0.001); ns non-significant (P>0.05)............................................................... 20 

Figure 1.2 Relationship between grain protein concentration deviation and grain yield deviation 

for varieties released between 1920 and 2016 (A). Regression residuals as affected by year 

of variety release. Comparison of the regression residuals for in-furrow fertilizer treatment 

and no fertilizer (bars show mean and standard error (B). Values correspond to the data of 

four site-years during two growing seasons (2016-17 and 2017-18). * Significant (P<0.05); 

** significant (P<0.01); *** significant (P<0.001); ns non-significant (P>0.05). ................. 21 

Figure 1.3 Relationship between year of release from wheat varieties released between 1920 and 

2016 and yield components deviation. Comparison of the regression residuals for in-furrow 

fertilizer treatment and no fertilizer (mean and 1 standard error). Values correspond to the 

data of four site-years during two growing seasons (2016-17 and 2017-18). Mean for all 

varieties in each site and year. * Significant (P<0.05); ** significant (P<0.01); *** 

significant (P<0.001); ns non-significant (P>0.05)............................................................... 22 

Figure 1.4 Relationship between year of release from wheat varieties released between 1920 and 

2016 and: plant height (A), stem diameter (B), and thermal time development (C, D, E, F). 

Values correspond to the data of four site-years during two growing seasons (2016-17 and 

2017-18). Mean for all varieties in each site and year. * Significant (P<0.05); ** significant 

(P<0.01); *** significant (P<0.001); ns non-significant (P>0.05). ....................................... 23 

Figure 1.5 Relationship between grain biomass deviation and whole plant biomass deviation 

between GS 85 and 92, for the two groups: semi-dwarf varieties and tall varieties (A). 

Comparison of the regression residuals for in-furrow fertilizer treatment and no fertilizer 



viii 

(bars show mean and standard error) for semi-dwarf varieties (B). Comparison of the 

regression residuals for in-furrow fertilizer treatment and no fertilizer (bars show mean and 

standard error) for tall varieties (C). Values correspond to the data of four site-years during 

two growing seasons (2016-17 and 2017-18). * Significant (P<0.05); ** significant 

(P<0.01); *** significant (P<0.001); ns non-significant (P>0.05). ....................................... 24 

Figure 1.6 Conditional inference tree for the entire dataset. Boxplots shows spans of first to the 

third quartile with central rectangles, inside solid line are the means which are also shown 

above each boxplot. The lower and upper lines show the minimum and maximum values, 

respectively. Inset table shows a list of 33 candidate variables at influencing wheat grain 

yield and the number of statistical models in which each variable was significantly 

associated with grain yield, out of a total of seven models. Year of variety release (year of 

release), plant height (PH), kernel number (KN), head number (HN), stem diameter (SD), 

kernel weight (KW), head size (HS), maximum (TMAX) and minimum temperature 

(TMIN), cumulative solar radiation (CSR), cumulative precipitation (CP), photo thermal 

quotient (PTQ), whole plant biomass (WB), cropt biomass rate (BR). Letters left to each 

variable represent the period, growing season (S), thirty days before anthesis (30), grain 

filling (GF). Values right to each variable represent the growth stage, GS 26, 31, 65, 85, and 

92 (26, 31, 65, 85, and 92). ................................................................................................... 25 

Figure 2.1 Relationship between whole plant nutrient concentration and whole plant 

aboveground biomass from tillering to physiological maturity (A, C, E, G). Residuals of 

these relationships were plotted against year of variety release (B, D, F, H), and comparison 

of the regression residuals for in-furrow fertilizer treatment and no fertilizer (mean and 1 

standard error) are shown as inset table. Black symbols, un-bold text and dashed line 

correspond to the 2016-17 growing season, and grey symbols, bold text and solid line 

correspond to the 2017-18 growing season. * Significant (P<0.05); ** significant (P<0.01); 

*** significant (P<0.001); ns non-significant (P>0.05). ........................................................ 52 

Figure 2.2 Relationship between nutrient harvest index and year of variety release (A, C, E, G). 

Residuals of these relationships were plotted against fertility treatment for each growing 

season (B, D, F, H). Black symbols, un-bold text and dashed line correspond to the 2016-17 

growing season, and grey symbols, bold text and solid line correspond to the 2017-18 



ix 

growing season. * Significant (P<0.05); ** significant (P<0.01); *** significant (P<0.001); 

ns non-significant (P>0.05). ................................................................................................... 53 

Figure 2.3 Nutrient allocation rate from the whole plant to the head during the grain filling 

period (Anthesis – Soft dough) (A, C, E, G). Residuals of these relationships were plotted 

against year of variety release (B, D, F, H), and comparison of the regression residuals for 

in-furrow fertilizer treatment and no fertilizer (mean and 1 standard error) are shown as 

inset table. Black symbols, un-bold text and dashed line correspond to the 2016-17 growing 

season, and grey symbols, bold text and solid line correspond to the 2017-18 growing 

season. * Significant (P<0.05); ** significant (P<0.01); *** significant (P<0.001); ns non-

significant (P>0.05). .............................................................................................................. 54 

Figure 2.4 Relationship between grain nutrient uptake and whole plant nutrient uptake from soft 

dough to physiological maturity, plotted by variety group (tall and semi-dwarf varieties), 

during the 2016-17 growing season (A, C, E, G), and 2017-18 growing season (B, D, F, H). 

Comparison of the regression residuals for in-furrow fertilizer treatment and no fertilizer 

(mean and 1 standard error) are shown as inset table. Grey symbols, un-bold text and dashed 

line correspond to tall varieties, and black symbols, bold text and solid line correspond to 

semi-dwarf varieties. * Significant (P<0.05); ** significant (P<0.01); *** significant 

(P<0.001); ns non-significant (P>0.05). ................................................................................. 55 

Figure 2.5 Relationship between N and P, K, and S harvest indices as related to the grain yield 

(A, C, E). Residuals of these relationships were plotted against year of variety release (B, D, 

F). Black symbols, un-bold text and dashed line correspond to the 2016-17 growing season, 

and grey symbols, bold text and solid line correspond to the 2017-18 growing season. * 

Significant (P<0.05); ** significant (P<0.01); *** significant (P<0.001); ns non-significant 

(P>0.05). ............................................................................................................................... 56 

Figure 2.6 Relationship between N and P, K, and S whole plant uptake (A, C, E). Residuals of 

these relationships were plotted against year of variety release (B, D, F), and comparison of 

the regression residuals for in-furrow fertilizer treatment and no fertilizer (mean and 1 

standard error) are shown as inset table. Black symbols, un-bold text and dashed line 

correspond to the 2016-17 growing season, and grey symbols, bold text and solid line 

correspond to the 2017-18 growing season. * Significant (P<0.05); ** significant (P<0.01); 

*** significant (P<0.001); ns non-significant (P>0.05). ........................................................ 57 



x 

Figure A - 1 N, P, K, and S harvest indices at soft dough stage relationship with N, P, K, and S 

harvest indices at maturity. Dashed lines correspond to linear regression from the 

relationship. Solid line corresponds to the 1:1 line. Values correspond to the data of four 

site-years during growing seasons (2016-17 and 2017-18). ................................................. 77 

  



xi 

List of Tables 

 

Table 1.1 Similarity matrix for eight winter wheat varieties using genotyping by sequencing 

(GBS) single nucleotide polymorphisms (SNPs). A total of 9946 SNPs were used for the 

analysis to determine the percent similarity. ......................................................................... 26 

Table 1.2 Initial soil pH, extractable P, K, Ca, Mg, Na, SO4-S, Zn, cation exchange capacity 

(CEC), organic matter (O.M.), and NO3-N for the 0-15 and 15-60 cm soil layers at Ashland 

Bottoms, Belleville and Hutchinson, KS. Amount of inorganic N applied in each location 

during each growing season is also shown. .......................................................................... 27 

Table 1.3 Cumulative precipitation (Precip.), average maximum (Tmax) and minimum 

temperatures (Tmin), cumulative solar radiation (Rs), and average photothermal quotient 

(PTQ) for each portion of growing season during 2016-17 and 2017-18 at Ashland Bottoms, 

Belleville and Hutchinson, KS. The 30-year mean of each variable for each location is also 

shown. ................................................................................................................................... 28 

Table 1.4 Grain yield, head number, head size, kernel number, kernel weight, harvest index (HI), 

plant height (PH), stem diameter, grain protein concentration (GPC) and grain volume 

weight of wheat varieties released between 1920 and 2016, fertilizer treatment, and their 

interaction during the growing seasons 2016-17 and 2017-18. Variety and fertilizer means 

were averaged across locations within growing season. ....................................................... 29 

Table 1.5 Shoot biomass and crop growth rate in whole plant at Zadoks 26, 31, 65, 85 and 92 of 

wheat varieties released between 1920 and 2016, fertilizer treatment, and their interaction 

during the growing seasons 2016-17 and 2017-18. Variety and fertilizer means were 

averaged across locations within growing season. ............................................................... 30 

Table 1.6 Shoot biomass in different plant components (leaves, stem, chaff, grain) at Zadoks 26, 

31, 65, 85 and 92 of wheat varieties released between 1920 and 2016, fertilizer treatment, 

and their interaction during the growing seasons 2016-17 and 2017-18. Variety and fertilizer 

means were averaged across locations within growing season. ........................................... 31 

Table 2.1 Nitrogen uptake in different plant components (leaves, stem, chaff, grain) at Zadoks 

26, 31, 65, 85 and 92 of wheat varieties released between 1920 and 2016, fertilizer 

treatment and their interaction during the growing seasons 2016-17 and 2017-18. Variety 

and fertilizer means were averaged across locations within growing season. ...................... 58 



xii 

Table 2.2 Phosphorus uptake in different plant components (leaves, stem, chaff, grain) at Zadoks 

26, 31, 65, 85 and 92 of wheat varieties released between 1920 and 2016, fertilizer 

treatment and their interaction during the growing seasons 2016-17 and 2017-18. Variety 

and fertilizer means were averaged across locations within growing season. ...................... 59 

Table 2.3 Potassium uptake in different plant components (leaves, stem, chaff, grain) at Zadoks 

26, 31, 65, 85 and 92 of wheat varieties released between 1920 and 2016, fertilizer 

treatment and their interaction during the growing seasons 2016-17 and 2017-18. Variety 

and fertilizer means were averaged across locations within growing season. ...................... 60 

Table 2.4 Sulfur uptake in different plant components (leaves, stem, chaff, grain) at Zadoks 26, 

31, 65, 85 and 92 of wheat varieties released between 1920 and 2016, fertilizer treatment 

and their interaction during the growing seasons 2016-17 and 2017-18. Variety and fertilizer 

means were averaged across locations within growing season. ........................................... 61 

Table B - 1 Significance of variety, fertility treatment, and variety x fertility interactions for 

grain yield, grain-N removal, grain protein concentration (GPC), head number (HN), head 

size (HS), kernel number (KN), kernel weigh (KW), harvest index (HI), plant height (PH), 

stem diameter (SD), volume weight, biomass and crop growth rate at GS 26, 31, 65, 85, and 

92, biomass by plant component at GS 26, 31, 65, 85, and 92 for leaves (L), stem (S), chaff 

(C), and grains (G). ............................................................................................................... 78 

 

  



xiii 

Acknowledgements 

First, I would like to thank God, to be by my side during all this journey that started in 

August 2015, to allow me to pursue my dreams and keep me going during the tough times.  

Second, I would like to express my sincere thanks to my major advisor, Dr. Romulo Pisa 

Lollato for giving me the opportunity to start on the program in August 2015 as assistant 

scientist, and after to be a master’s student in the K-State Winter Wheat Production Team. I am 

thankful to him for all the professional help, for always being available to answer research 

questions and for all the teaching during our field work. Moreover, I would like to thank him for 

pushing and encouraging me to be a better person and to be a friend that I could always rely on 

anything. Also, I would like to thank my committee members, Drs. Dorivar Ruiz-Diaz, Allan 

Fritz and Ignacio Ciampitti, for all the support and comments to improve my thesis and for being 

on my graduate committee. I would like to thank Mr. Timothy Todd for providing guidance on 

statistical analysis and Dr. Victor Sadras for providing guidance to improve the quality of the 

thesis. 

I would like to thank all the staff from Ashland Bottoms, Belleville and Hutchinson 

experiment stations. I would like to thank The Mosaic Company and Kansas Wheat Commission 

to sponsor my project and allow me to present the results in different events. I would like to 

thank fellow graduate students, Amanda de Oliveira Silva and Brent Jaenisch; visiting scholars, 

Larissa Bonassi, Cintia Sciarresi, Augusto Serafim, Jessica Lavorenti, Vitor Favoretto, 

Guilherme Bavia, Gustavo Bacco, Edwin Navia, Felipe Spolidorio, Jose Cesario, Leonardo 

Molssato; undergraduate students, Talha Shahryar, Kavan Mark and Rodrigo Arregala; and all 

the new teammates, for all the hard work collecting samples and processing in the lab, and for all 

the friendship. 



xiv 

I would like to express my gratefulness to my family and friends for all the support 

during this international experience. My parents, Roberto and Judite Maeoka for all the love and 

support needed to follow my dreams, and to believe with me to follow up my education. My 

sister, Roberta Maeoka for all the trips to visit me and all the support over the years. My 

grandparents and family for all the support. My girlfriend Larissa Bonassi, for all the work help, 

for being my support during the difficult times, for sharing many good moments and love. My 

American family to make me feel at home and memorable memories, Meagan, Corey, Kenzie 

and Maddie Cramer, and Barb and Tony Siebold. 

 

  



1 

Chapter 1 - Changes in Winter Wheat Phenotype in Response to 

Breeding for Yield and In-Furrow Fertilizer.I. Biomass, Yield, and 

Grain Protein Concentration 

 Introduction 

Global wheat production often surpasses 750 Mt harvested from about 220 Mha, with an 

average yield of 3.4 Mg ha-1 (FAOSTAT, 2018a). The development of semi-dwarf wheat 

varieties (Evenson, 2003) coupled with N fertilizer was responsible for large proportion of the 

yield advances over decades (Bell et al., 1995). The successful introduction of dwarfing genes 

carrying the alleles Rht1-B1b (Peng et al., 1999) allowed for  plants with reduced height, greater 

response to fertilizer, and higher yields (Evenson, 2003). For irrigated spring wheat in Mexico, 

genetic improvement accounted for 28% and increased use of N fertilizers for 48% of the yield 

improvement between 1968 and 1990 (Bell et al., 1995). For dryland winter wheat in Kansas 

(U.S.) between 1977 and 2006, these estimates are 79 and 21%, respectively (Nalley et al., 

2008). 

Comparison of wheat varieties released during different historical eras returned rates of 

genetic gains from 0.3 to 1.1% (Austin et al., 1989; Battenfield et al., 2013; Brancourt-Humel et 

al., 2003; Fischer et al., 2014; Sayre et al., 1997). However, some studies also showed that rates 

of yield gain can differ over time, and has typically decreased in recent years. For instance, 

genetic gain greater than 0.5% yr-1 during the 1960s to 2000s period was reported in the U.S., 

Australia, and Chile (Fufa et al., 2005; Sadras and Lawson, 2011; Del Pozo et al., 2014). 

Meanwhile, the genetic gain in modern wheat varieties decreased or were non-significant in 
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recent years in Spain, Brazil, and Argentina (Acreche et al., 2008; Beche et al., 2014; Lo Valvo 

et al., 2017). 

Wheat yield gain is often associated with improved harvest index , kernels m2, kernels 

per head, reduced plant height, shoot biomass and kernel weight (Brancourt-Humel et al., 2003; 

Zhou et al., 2007a; Fischer and Edmeades, 2010; Sadras and Lawson, 2011; Sanchez-Garcia et 

al., 2013; Beche et al., 2014; Wu et al., 2014; Aisawi et al., 2015; Lo Valvo et al., 2017). More 

recently, genetic gain in yield correlated with shoot biomass at maturity in some breeding 

programs (Beche et al., 2014; Donmez et al., 2001; Shearman et al., 2005; Wu et al., 2014; Xiao 

et al., 2012). However, previous research has not evaluated the dynamics of biomass 

accumulation and partitioning during the growing season of historical versus modern varieties. 

The rates of genetic gain are often greater in well-fertilized, well-watered crops than in 

the counterparts with water and nutrient deficiency (Austin et al., 1980; Barraclough et al., 2010; 

Brancourt-Humel et al., 2003; De Vita et al., 2007; Giunta et al., 2007; Gizzi and Gambin, 2016; 

Slafer and Andrade, 1989; Tian et al., 2011; Wang et al., 2017b). In-furrow fertilization with N, 

P, S, and Zn can improve early-season wheat tillering, biomass production, and yield (Lollato et 

al., 2013; Rodríguez et al., 1999, 1998; Valle et al., 2009). Nitrogen can increase grain yield 

(Grant et al., 2016; May et al., 2008) through kernels head-1 (Asif et al., 2012), heads m2, and 

kernels m2 (Marino et al., 2009). Phosphorus improves plant leaf area (Rodríguez et al., 1998) 

and tillering (Sato et al., 1996). Sulfur can increase grain yield and protein concentration (Tao et 

al., 2018), and Zn can increase pollen viability (Nautiyal et al., 2011). 

The combination of improved yield potential and management resulted in yield increases 

worldwide; however, limited information exists on the interaction between historical and modern 

wheat varieties and in-furrow fertilization. Thus, our objectives were to determine the rate of 
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genetic grain yield of wheat adapted to Kansas, USA, and its interaction with in-furrow fertilizer, 

as well as the underlying changes in phenology, morphological and physiological traits. 

 Materials and Methods 

 Sites, treatments structure, and experimental design 

Fields experiments were conducted in four environments resulting from the combination 

of two seasons and two locations in Kansas. In 2016-17, experiments were established on a 

Belvue silt loam (coarse-silty, mixed, superactive, nonacid, mesic Typic Udifluvents) in Ashland 

Bottoms, (39°08'37.8"N, 96°37'59.8"W, elevation 315 m) and on a Crete silt loam (fine, 

smectitic Pachic Udertic Argiustolls) in Belleville (39°48'54.1"N 97°40'16.7"W, elevation 469 

m). In 2017-18, experiments were conducted on an Ost loam (fine-loamy, mixed, superactive, 

mesic Udic Argiustolls) near Hutchinson (37°55'52.4"N 98°01'47.8"W, elevation 471 m) and 

again in Belleville. 

Eight hard red winter wheat varieties released between 1920 and 2016 (Table 1 - 1) were 

combined factorially with two fertilization treatments. The experimental design was a split-plot 

with four replications, with whole plots arranged as randomized complete block design and 

subplots completely randomized within whole plots. Varieties were assigned to plots and 

fertilizer treatment to subplots. 

Varieties were selected based on large adoption by growers in the period following their 

release. Kharkof and Scout 66 carry the alleles Rht1-B1a-Tall and will hereafter be referred to as 

‘tall varieties’; the remaining varieties carry the alleles Rht1-B1b-Short and will be referred to as 

‘semi-dwarf varieties’. Due to seed germination issues, we excluded the data from Jagger during 

the first year of the study. 
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Fertilizer treatments were i) control and ii) in-furrow 13 N, 45 P, 0 K, 11 S, and 1 kg Zn 

ha-1 fertilizer. The control treatment followed current soil fertility recommendations for P as per 

the nutrient “sufficiency” approach (Leikam et al., 2003), in which no P fertilizer was applied as 

the study locations had Mehlich-3 P above 25 mg kg-1 (Table 1 - 2). On the fertilization 

treatment, in-furrow fertilizer was applied at sowing through the drill with the seed. 

 Agronomic management 

Seeds were treated with insecticide and fungicide (15.24 ml 100 kg seed-1 of 

imidacloprid1 and with 0.74 ml 100 kg seed-1 of tebuconazole2) to control early-season insects 

and diseases. Wheat was sown 18 October 2016 at Ashland Bottoms, 3 October 2016 and 2 

October 2017 at Belleville, and 19 October 2017 at Hutchinson. All locations followed a 

previous wheat crop and were conducted under conventional tillage with surface residue cover 

below 10%. Plots were sown with a commercial drill (Great Plains 606-NT drill) at a seeding 

rate of 67.25 kg ha-1 (approximately 2.1 million seeds ha-1). Subplots were 9.1-m long by 2.66-m 

wide, consisting of fourteen 0.19-m spaced rows. Half of the subplot (9.1-m x 1.33-m) was used 

for destructive sampling of biomass. The other half was used for non-destructive measurements 

(i.e., stem diameter and plant height), and harvested for yield. 

Composite soil samples consisting of 15 individual soil cores were collected at two 

depths (0-15 cm and 15-60 cm) prior to  sowing and analyzed for nutrient concentration (Table 1 

- 2) The soil pH was analyzed through the procedure with water, P through Mehlich-3, K, Ca, 

Mg, Na through ammonium acetate extraction, S04-S through calcium phosphate extraction, Zn 

                                                 

1 Imidacloprid: 1-[(6-Chloro-3-pyridinyl) methyl]-N-nitro- 2-imidazolidinimine), 0.95 ml 100 kg seed-1 of metalaxyl: N-(2,6-dimethylphenyl)-N-

(methoxyacetyl) alanine methyl ester 

2 Tebuconazole: alpha-[2-(4-chlorophenyl) ethyl]-alpha- (1,1-dimethyl-ethyl)-1H-1,2,4-triazole-1- ethanol) 
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through DTPA extraction, cation exchange capacity (CEC) through summation, organic matter 

through loss of ignition, and NO3-N through N KCl extraction. Results were used to determine N 

fertilizer needs for a yield goal of 6 Mg ha-1 (Leikam et al., 2003), resulting in different total 

inorganic N amount in each site depending on the profile NO3-N content. Topdress N was 

applied as urea (46-0-0) early spring (GS 31) under favorable weather conditions to minimize N 

losses, and to ensure that N deficiency was not a limiting factor. Two foliar fungicide 

applications (i.e., 65.77 ml ha-1 of picoxystrobin3 at jointing (GS 31) and 89.15 ml ha-1 of 

picoxystrobin1 plus 35.63 ml ha-1 cyproconazole4 at anthesis (GS 65)) ensured that genetic 

resistance to fungal diseases was not a confounding factor. Herbicides were sprayed during the 

fall of both growing seasons to ensure weeds were not a limiting factor. There was no significant 

insect pressure so no insecticide was applied. 

Plots were machine-harvested for grain yield on 22 June 2017 at Ashland Bottoms, 28 

June 2017 and 24 June 2018 at Belleville, and 6 June 2018 at Hutchinson using a Hege 140 self-

propelled small-plot combine. Grain moisture was measured at harvest and grain yield was 

corrected for 13% moisture content. 

 Vegetative development evaluations 

Phenological stages using Zadoks scale (Zadoks et al., 1974) were determined when 

about 50% of the plants in the experimental unit achieved a particular stage. Shoot biomass was 

collected from the middle rows at tillering (GS 26), jointing (GS 31), anthesis (GS 65) soft 

dough stage of grain development (GS85); and physiological maturity (GS92) using an electric 

clipper (Gardena 8893-U, Gardena Co., Ulm, Germany). The sampled area was 0.76, 0.76, 0.38, 

                                                 

3 Picoxystrobin (Methyl (E)- -(methoxymethylene)-2-[[[6-(trifluoromethyl)-2 pyridinyl]oxy]methyl]benzeneacetate 

4 Cyproconazole -(4-chlorophenyl)- -(1-cyclopropylethyl)-1H-1,2,4-triazole-1-ethanol 
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0.19, and 0.19 m2, respectively, at an average stand of 185 plants m2. Varieties differed in 

maturity and thus sampling occurred on different calendar days. Dry mass was determined after 

drying the samples at 65⁰C until constant weight. Whole shoot weight was determined at GS 26; 

stem and leaf weights were determined at GS 31; stem, leaf, and chaff weights were determined 

at GS 65; and stem, leaf, grain, and chaff weights were determined at GS 85 and GS 92. Plant 

parts were separated manually, except for grain and chaff, which were separated with thresher 

(Wheat Head Thresher, PM Precision Machine Co. Inc., Lincoln, NE). 

Stem diameter was measured at GS 85 using OriginCal IP54 digital caliper (Igaging, San 

Clement, CA) approximately 2.5 cm aboveground on the main stem of ten randomly selected 

plants per subplot. Plant height was measured at GS 92 from the soil surface until the tip of the 

awns of three plants per subplot. Yield components (harvest index, heads m2, kernels head-1, 

kernels m2, and individual kernel weight) were measured in the sample collected at physiological 

maturity. Grain protein concentration (g kg-1) was measured in whole kernel samples collected at 

harvest using near-infrared reflectance spectroscopy with a Perten DA 7250 (Perten Instruments 

Inc., Springfield, Illinois) and was reported on a 130 g kg-1 water basis. Grain-N removal was 

calculated as the product between grain yield and grain nitrogen concentration (Lollato et al., 

2019). 

 Data analysis 

Two-way analyses of variance (ANOVA) were performed to determine significant 

difference among treatments using PROC GLIMMIX in SAS version 9.4 (SAS Institute, Cary, 

NC). To determine whether site-years could be combined, we performed an ANOVA on the 

residuals of the combined analysis considering year, location, variety, and fertility, and their 

interactions, as fixed effects. Year was a significant effect for both biomass (p < 0.05) and grain 
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yield (p = 0.08); thus, we performed all remaining analysis across locations within year. Variety, 

fertility, and variety × fertility were fixed effects; and replication, sites, replication nested within 

site, and variety × replications nested within site were random effects. We used the LINES 

statement for pairwise comparisons. 

To evaluate historical trends across the entire dataset, we calculated trait deviation from 

the mean of each environment (Sadras and Lawson, 2011) and fitted seven models to the 

deviation data as a function of year of release (i.e., logarithm, logistic, piecewise, linear, 

quadratic, sigmoidal, and cubic). Models were fitted with SigmaPlot version 13.0 (Systat 

Software, San Jose, CA). The best model was selected using two statistical criteria, the Akaike 

information criterion (AIC) and coefficient of determination (R2), and also considering the 

agronomic significance of alternative models. To determine when major differences occurred 

across varieties and variety × fertility interactions we performed an ANOVA on the deviation 

data across all site-years and used the LINES statement. If the interaction of variety and fertility 

was not significant, we analyzed the residuals of these relationships for the fertilizer effect 

(Sadras and Moran, 2012). Because grain protein concentration is dependent on yield (Bogard et 

al., 2010; Oury and Godin, 2007; Simmonds, 1995), we first fitted a linear regression between 

deviations of grain protein and yield. Then, we analyzed the residuals of this relationship against 

year of variety release and fertilizer practice (Ortez et al., 2018). 

Shoot biomass as affected by thermal time (growing degree days, GDD°C base 

temperature 0⁰C, Gallagher (1979)) was first evaluated using the ANOVA procedure described 

above at each growth stage for whole plant biomass, and afterwards, for each individual plant 

component at each growth stage. Crop growth rate was calculated as the difference in shoot 

biomass between two successive samplings, divided by the intervening thermal time. Non-linear 
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models and historical trends were fitted with SigmaPlot version 13.0 (Systat Software, San Jose, 

CA). 

We analyzed the entire dataset to identify the environmental influences on grain yield, as 

well as the relationships between yield and the measured traits. We tested seven statistical 

procedures (stepwise, forward, backward, least angle regression (LAR), least squared shrinkage 

operator (LASSO), elastic net, and conditional inference trees) using grain yield as a dependent 

variable and measured traits and environmental conditions as independent variables. The first six 

models were built in PROC GMSELECT in SAS version 9.4 (SAS Institute, Cary, NC). The 

conditional inference tree was built using the partykit package in R (R development Core team, 

2016). Intermediate node and terminal node included a minimum of 10% of total observations. A 

sensitivity analysis allowed less observations to form nodes, but the model fit was improved in 

less than 10% so the most parsimonious model was selected. Environmental conditions evaluated 

were average maximum and minimum temperatures, cumulative precipitation, cumulative solar 

radiation, and photothermal quotient for different developmental windows, including the entire 

cycle, the 30-d period prior to anthesis, and the grain filling period. 

 Results 

 Weather conditions 

Seasonal precipitation ranged between 281 and 472 mm. Seasonal differences were more 

apparent during the fall and winter, with spring precipitation ranging between 169 and 262 mm 

at both growing seasons (Table 1 - 3). These conditions led to lower biomass production in 2016-

17, precluding a combined analysis of the data. Despite lower seasonal total precipitation, 

favorable spring weather led to greater grain yield in 2017-18. 
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 Grain yield, grain-N removal, and grain protein concentration 

There were significant variety and fertility effects on wheat grain yield in both seasons, 

with no variety × fertility interaction (Table 1 - 4). Grain yield ranged from 1.7 to 4.9 Mg ha-1 for 

tall varieties and from 3.4 to 6.3 Mg ha-1 for semi-dwarf varieties. Within growing season, tall 

varieties yielded 2.1 to 5.9 Mg ha-1 less than semi-dwarf varieties. 

In-furrow fertilizer increased mean yield by 0.2 to 0.4 Mg ha-1 in relation to control. 

Grain yield increased non-linearly with year of release (Fig. 1 - 1A), with three distinct rates. A 

low yield-gain period between 1920 and 1966 (17 kg ha-1 yr-1), followed by a steep yield gain 

between 1966 and 2000 (62 kg ha-1 yr-1), and a slower yield gain phase after 2000 (8 kg ha-1 yr-

1). 

There were significant variety and fertility effects on grain-N removal (Table 1 - 4). 

Grain-N removal increased from tall to semi-dwarf varieties (c.a., 64 to 130 kg ha-1 in 2016-17 

and 127 to 155 kg ha-1 in 2017-18). In-furrow fertilizer increased grain-N removal by 6 to 9 kg 

ha-1. Similar to grain yield, grain-N removal deviation varied non-linearly with year of release, 

with linear rates of 0.44, 1.28, and 0.11 kg ha-1 yr-1 for the corresponding periods. 

In 2016-17, there was a significant interaction between variety and fertility on grain 

protein concentration (Table 1 - 4) as most varieties increased grain protein concentration in 

response to in-furrow fertilizer except by the semi-dwarf varieties Fuller and KanMark (data not 

shown). Typically, tall varieties had greater grain protein concentration than the semi-dwarf 

varieties. In 2017-18, grain protein concentration in tall varieties was 142 to 150 g kg-1 compared 

to 129 to 140 g kg-1 in semi-dwarf varieties. In-furrow fertilizer decreased grain protein 

concentration (Table 1 - 4). Grain protein deviation declined linearly with grain yield deviation 
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(Fig. 1 - 2A), and the residuals of this relationship were unrelated to year of release (p > 0.37, 

Fig. 1 - 2B). 

 Yield components 

There was a non-linear relationship between heads m2 and year of release, with modern 

varieties resulting in less heads m2 (greater differences between late 1980s until early 2000s, Fig. 

1 - 3A). Tall varieties had 872 and 767 heads m2 while semi-dwarf varieties had 741 and 680 

heads m2 during 2016-17 and 2017-18 (Table 1 - 4). As heads m2 decreased over time, kernels 

head-1 increased, with greater increases after 1980s from 12-18 kernels head-1 in tall varieties to 

21-27 kernels head-1 in semi-dwarf varieties (Fig. 1 - 3B and Table 1 - 4). Due to the contrasting 

trends in heads m2 and kernels head-1, the increase in kernels m2 was slower but also significant 

(Fig. 1 - 3C). The tall variety Kharkof had the lowest kernels m2 (i.e., 9383 and 12852 kernels 

m2) while the semi-dwarf variety KanMark had the highest (i.e., 17904 and 21041 kernels m2). 

Kernel weight showed a significant bi-linear relationship with year of release (Fig. 1 - 

3D), increasing at a higher rate until 1966 and remaining constant afterwards (Table 1 - 4). 

Harvest index increased non-linearly over time and ranged from 0.26 to 0.51 among locations 

(Fig. 1 - 3E). In 2016-17, harvest index increased from 0.15 in tall varieties to 0.33 in their semi-

dwarf counterparts; differences were smaller in 2017-18 (Table 1 - 4). Variety affected grain 

volume weight in both growing seasons, both with no consistent time trends (Table 1 - 4). 

In-furrow fertilizer increased heads m2 (Fig. 1 - 3A) from 733 to 825 in 2016-17, and 

from 667 to 737 heads m2 in 2017-18 (Table 1 - 4). However, it decreased kernels head-1 (Fig. 1 - 

3B) from 20 to 17 in 2016-17 and from 26 to 24 in 2017-18 (Table 1 - 4). Fertilizer had no effect 

on kernels m2 (Fig. 1 - 3C) and decreased kernel weight (Fig. 1 - 3D and Table 1 - 4) from 26.9 

to 26.1 mg kernel-1 in 2016-17 and from 26.3 to 25.4 mg kernel-1 in 2017-18. There were no 
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differences in harvest index between the fertilizer practices (Fig. 1 - 3E), and in-furrow fertilizer 

showed lower volume weight than control (Table 1 - 4). 

 Plant height, stem diameter, and chronological changes 

Plant height decreased over time with a steep change around ~1970s from 122 cm for tall 

varieties to 93-100 cm in semi-dwarf ones (Fig. 1 - 4A, Table 1 - 4). Stem diameter ranged from 

2.87 to 3.21 mm among locations and increased with year of release, particularly from 1960 to 

2000s (Fig. 1 - 4B). Semi-dwarf varieties reached anthesis and physiological maturity earlier 

than tall varieties (Fig. 1 - 4CD), and had a longer period from anthesis to physiological maturity 

(Fig 1 - 4F). However, varieties released in the last 30-yr showed minimal developmental 

changes (Fig. 1 - 4). 

 Total biomass, crop growth rate, and biomass allocation to plant components 

There was no clear pattern in the differences in biomass among varieties early in the 

season (i.e. at GS 26 and 31), but tall varieties had greater shoot biomass than semi-dwarf ones at 

anthesis (861-1087 g m2 versus 658-888 g m2). These differences were not apparent (2017-18) or 

were reversed (2016-17) at GS 85, when semi-dwarf varieties showed up to 30% greater biomass 

accumulation relative to tall varieties. Semi-dwarf varieties reached maximum dry weight at GS 

85. There were no differences in biomass accumulation among varieties at maturity. In-furrow 

fertilizer increased biomass irrespective of growth stage. 

Crop growth rate was low (c.a., 0.08 to 0.3 g m2 GDD °C-1) between tillering and 

jointing, and increased to about 1.3-1.5 g m2 GDD °C-1 between GS31 and GS65 (Table 1 - 5). 

There were no clear differences among varieties early in the season, although in-furrow fertilizer 

consistently increased growth rate. The growth rate in semi-dwarf varieties was as much as two 

times greater than in tall varieties from anthesis to soft dough in the first season (Table 1 - 5), 
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decreasing after soft dough. Negative values suggest dry matter accumulated at maturity was less 

than that at soft dough (Table 1 - 5). 

There were no clear patterns in the differences among varieties in their allocation of 

biomass towards leaves and stem early in the season (Table 1 - 6). However, 57 to 68% of the 

biomass in tall varieties was allocated to stem during anthesis, decreasing to 39 to 60% during 

soft dough. Meanwhile, stem biomass in semi-dwarf varieties accounted for c.a., 47 to 62% at 

anthesis and 36 to 47% at soft dough. Grain biomass at soft dough stage was greater in semi-

dwarf varieties in both growing seasons, and dry matter partitioning to leaves and stem ceased at 

this stage regardless of year of release. Grain biomass at maturity accounted for as much as 46% 

of total biomass in semi-dwarf varieties, and no more than 36% for tall varieties (Table 1 - 6). 

For every g m2 increase in whole plant biomass, semi-dwarf varieties allocated 0.35 g m2 to 

grains while tall varieties allocated only 0.28 g m2 (Fig. 1 - 5A). In-furrow fertilizer increased 

biomass accumulation relative to no fertilizer treatment irrespective of growth stage and plant 

component (Table 1 - 6); however, this biomass was more allocated to the vegetative tissues 

rather than to the grain (Fig. 1 - 5B – C). 

 Association between grain yield, weather variables, and measured traits 

In-furrow fertilizer, plant height, year of release, and kernels m2 were positively, and 

seasonal cumulative solar radiation was negatively associated with grain yield in at least 6 out of 

7 models (inset table on Fig. 1 - 6). Grain yield related positively with kernel weight, head size, 

stem diameter, biomass growth rate between GS65 and GS 85, and maximum temperature during 

grain filling at least half of the studied models. Head number, seasonal minimum and maximum 

temperature, photothermal quotient during grain filling, cumulative precipitation thirty days 

before anthesis, and biomass rate at GS 92, were negatively associated with yield. Figure 1 - 6 
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suggests that kernels head-1 was among the most important determinants of yield, interacting 

with biomass rate at GS 92 and plant height when < 22 kernels head-1. When > 22 kernels head-1, 

fertilizer increased yield depending on photothermal quotient. In the absence of fertilizer, more 

kernels m-2 was related to greater yield. 

 Discussion 

 Grain yield, grain-N removal, and grain protein concentration 

A sample of winter wheat varieties released between 1920 and 2016 in the U.S. southern 

Great Plains revealed different rates in yield gain in different time periods, with a small yield 

gains until ~1970s, accompanied by greater yield gain through ~2000s, and smaller gains 

afterwards. However, our power to infer is low on account of most of the varieties studied were 

developed by the Kansas state wheat breeding program leading to potential bias. Historical sets 

of wheat varieties have been assessed to estimate the progress of breeding efforts and quantify 

the impact of management practices (Acreche et al., 2008; Brancourt-Humel et al., 2003; Del 

Pozo et al., 2014; Flohr et al., 2018; Lo Valvo et al., 2017). In some cases, similar historical 

trends occurred in different regions (Cox et al., 1988; Austin et al., 1980; Slafer and Andrade, 

1989; Lo Valvo et al., 2017; Sanchez-Garcia et al., 2013; Beche et al., 2014; Flohr et al.; 2018). 

The greater yield improvement mid-century was a result of the introduction of the dwarfing 

genes, which allowed for less lodging and for the use of greater fertilizer rates (Evenson, 2003). 

The trend in yield gain found in this study, however, contrasted with other studies that 

reported no clear tendency of leveling-off in yield progress (Donmez et al., 2001; Sadras and 

Lawson, 2011). This divergence might result from the genotype × environment interaction 

(Sanchez-Garcia et al., 2013), or environmental yield potential might also affect these results, 

especially when evaluating responses to management (Brancourt-Humel et al., 2003). Finally, 
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the focus of the regional breeding programs may also affect the rate of yield gain (e.g., focusing 

solely in yield potential versus focusing in disease resistance and grain quality) (Fischer and 

Edmeades, 2010). 

Crops yielded more with in-furrow fertilizer relative to unfertilized controls. Varieties 

yielding more in high-input environments were also shown by Wang et al. (2017) and Leikam et 

al. (1982). While higher rates of P fertilizer resulted in greater yield relative to no fertilizer 

application in some studies (Leikam et al., 1982; Lollato et al., 2019) initial soil P concentration 

was above the minimum critical values for wheat yield at all studied site-years (Leikam et al., 

2003). This suggests that the yield increase in our research might have resulted from nutrients 

other than P (i.e., N, S, and Zn). Also, our results showed greater grain yield difference between 

tall and semi-dwarf varieties as compared to between fertilizer treatments, suggesting that 

genetic improvement might have contributed more to historical yield gains than agronomic 

management, corroborating with Nalley et al. (2008). 

Modern varieties had greater grain-N removal and lower grain protein concentration than 

historical ones, suggesting that the decrease in grain protein concentration over time was due to 

greater improvements in grain yield relative to grain-N removal. This is similar to the suggestion 

by Sadras et al. (2016). As expected and reported (Bogard et al., 2010; Kibite and Evans, 1984; 

Lollato and Edwards, 2015; Oury and Godin, 2007), grain protein concentration showed a 

significant linear negative relationship with grain yield. The decrease in grain protein 

concentration at higher yielding environments is a dilution effect as a result of the increment on 

the amount of carbohydrate assimilated in the grain (Kibite and Evans, 1984). Nonetheless, when 

normalized for yield, grain protein concentration did not change with year of release. 
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 Morphological and physiological components of yield increase  

Heads m2 decreased over time in our study, with similar findings reported by Tian et al. 

(2011) in China. Breeding programs directly selecting for yield in dry environments (e.g., 

Kansas or the North China Plain) might have indirectly selected for lower tillering and fewer 

heads per unit area as a soil water conservation strategy (van Herwaarden et al., 1998). In-furrow 

fertilizer increased heads m2 by 7-10%, likely due to greater early-season wheat biomass (Lollato 

et al., 2013) and tillers plant-1 (Sato et al., 1996), increasing heads m2 (Rodríguez et al., 1999). 

The effects of in-furrow fertilizer on yield components typically contrasted with the trends over 

time, perhaps explaining the inconsistent wheat yields response to in-furrow P in the region (e.g., 

Lollato et al., 2013; Lollato et al., 2019). 

The increase kernels head-1 over time corroborates findings for other regions (De Vita et 

al., 2007; Del Pozo et al., 2014; Siddique et al., 1989a, 1989b). Sanchez-Garcia et al. (2013) 

reported that the increase in kernels head-1 was explained by an increase in spikelets head-1 and 

kernels spikelet-1. The introduction of dwarfing genes can partially explain the increase in 

kernels head-1 (De Vita et al., 2007; Flintham et al., 1997), as these genes might be associated 

with enlargement of biomass partitioned into spikes (Abbate et al., 1998; Miralles et al., 1998), 

and changes into the heads (e.g., endurance of the floret primordia; Miralles et al., 1998). 

Interestingly, in-furrow fertilizer reduced kernels per head, perhaps because of the increased 

number of heads reducing average head size. 

Kernels m2 is considered a coarse-regulator of wheat yield (Slafer et al., 2014). Its 

progress over decades was reported to relate to improvements in kernels head-1 (De Vita et al., 

2007; Slafer and Andrade, 1989), head dry weight at anthesis (Acreche et al., 2008), the 
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capability of varieties to partition more photoassimilates into the developing heads (Slafer and 

Andrade, 1989), and growth rate (Sadras and Lawson, 2011). 

Kernel weight increased from 1920 until 1960s, with no major changes afterwards. This 

evaluation was performed under non-limiting photoassimilate conditions (slope and r2 = 0 for 

kernel weight vs. kernels m-2, data not shown), suggesting that selection for yield over time did 

not change kernel weight, maybe because kernel weight is a fine regulator of wheat yield (Slafer 

et al., 2014). Besides the variety effect, in-furrow fertilizer decreased average kernel weight, 

which agrees with Tian et al. (2011). This likely results from the more heads formed from later 

tillers due to in-furrow fertilization. 

Harvest index has been associated with genetic yield gain in wheat (Royo et al., 2007; 

Slafer and Andrade, 1989; Zhou et al., 2007a). However, Austin et al. (1980) proposed that 

theoretical biological limit for harvest index in well-watered crops was ~0.62, suggesting that 

might have room for further improvement in modern hard red winter wheat varieties in the study 

region (i.e., harvest index ~0.44 for semi-dwarf varieties), but not as much as 0.62, as the studied 

regions are characterized as dry environments. Tall and semi-dwarf varieties at maturity 

presented similar whole plant biomass, suggesting that improvements in grain yield over time 

resulted from a greater ability of semi-dwarf varieties to allocate assimilates to the grain (Tian et 

al., 2011). 

 Plant height, stem diameter, and chronological changes 

An optimum wheat plant height between 0.7-1.0 m was described by Richards (1992), 

which is shorter than the measurements in the current study. This indicates that there is still 

scope for shortening wheat varieties in U.S. southern Great Plains. Benefits of shorter varieties 

might include increases in harvest index (Acreche et al., 2008; Austin et al., 1980); standability; 
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less haying off (Van Hardewaarden et al., 1998); and perhaps improvements in grain yield 

(Brancourt-Humel et al., 2003; Donmez et al., 2001). Historical varieties with thinner stems were 

more prone to lodging (data not shown). Zuber et al. (1999) and Tripathi et al. (2003) found a 

strong negative relationship between stem diameter and lodging score. Lodging can decrease the 

stored photoassimilate reserves (Fischer and Stapper, 1987) and the N use efficiency (Brancourt-

Humel et al., 2003), resulting in grain yield losses of as much as 35% (Fischer and Stapper, 

1987). 

Large variation for flowering thermal time in the varieties included in this study occurred 

between 1920 and 1988, with no substantial changes afterwards. The shorter cycle observed in 

semi-dwarf varieties derived from earliness in flowering time but similar or longer duration of 

grain fill. Early anthesis has been associated with genetic progress in grain yield of wheat in the 

U.S. Great Plains (Donmez et al., 2001), in the U.K. (Austin et al., 1980), and Mediterranean 

environments (De Vita et al., 2007; Giunta et al., 2007; Siddique et al., 1989a). Perhaps the lack 

of change in flowering time since 1990s suggests that modern varieties flower at the optimal 

time for the region, balancing higher risks of spring freeze injury in earlier flowering and greater 

risks for high temperatures and drought stresses during grain fill with later flowering (Khalil et 

al., 1995). Semi-dwarf varieties also reached maturity earlier than tall varieties, maybe due to 

greater growth rates (Kirby et al., 1989; Siddique et al., 1989a). 

 Total biomass, crop growth rate, and allocation to plant components 

The majority of the studies comparing historical and modern wheat varieties report 

biomass at physiological maturity (Brancourt-Humel et al., 2003; Giunta et al., 2007; Sadras and 

Lawson, 2011; Wang et al., 2017b); fewer studies reported dynamics of shoot biomass (e.g., 
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Austin et al., 1980; Siddique et al., 1989a; Shearman et al., 2005; Acreche et al., 2008; Flohr et 

al., 2018). 

The similarity among wheat varieties in total biomass and initial growth rate suggests that 

the chronological changes in biomass accumulation responsible for greater grain yield occurred 

later in the season. At anthesis, tall varieties had greater total biomass, likely due to the longer 

period required to reach this growth stage as compared to shorter-cycled semi-dwarf varieties 

(Álvaro et al., 2008; Flohr et al., 2018). Despite a greater biomass, its partitioning into 

reproductive organs was less efficient in tall varieties. Reports by Slafer et al. (1990) and Álvaro 

et al. (2008) agreed with our findings and showed that biomass partitioning to the chaff in wheat 

varieties increased over time. The same levels of biomass with greater HI in semi-dwarf varieties 

suggests that yield increases in modern wheat varieties resulted from more efficient partitioning 

of assimilates to the grains rather than greater biomass. Previous studies have reported no 

substantial changes in biomass accumulation at maturity over the years, for instance (Acreche et 

al., 2008; Austin et al., 1980; D. F. Calderini et al., 1995; Kitonyo et al., 2017; Royo et al., 

2007). 

 Conclusions 

Kansas winter wheat varieties increased grain yield over time, but there was a decrease 

on the pace of progress after 1990s. The selection of lines to move forward in breeding programs 

based on grain yield indirectly changed the yield components over decades, leading to greater 

kernels per area and kernels per head in modern semi-dwarf cultivars. Semi-dwarf varieties also 

flowered earlier than tall varieties, but had a longer grain filling period. Greater yield in semi-

dwarf cultivars also resulted from a greater ability to allocate dry matter into the grain, as semi-

dwarf cultivars had the same shoot biomass levels than tall varieties. The decrease in grain 
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protein concentration over time was solely function of increases in grain yield, as there was no 

relationship between the residuals of grain protein concentration and grain yield versus year of 

release. While in-furrow fertilizer increased biomass and grain yield, the lack of interaction 

suggests that semi-dwarf varieties were not more responsive than tall varieties to in-furrow 

fertilizer. Future research could expand on the number of varieties studied on both tall and semi-

dwarf groups to cover a greater number of year of release. 
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 Figures 

 

Figure 1.1 Relationship between year of release from wheat varieties released between 1920 

and 2016 and grain yield deviation. Comparison of the regression residuals for in-furrow 

fertilizer treatment and no fertilizer (bars show mean and standard error). Values 

correspond to the data of four site-years during two growing seasons (2016-17 and 2017-18) 

(A). Relationship between year of release from wheat varieties released between 1920 and 

2016 and nitrogen removal deviation. Comparison of the regression residuals for in-furrow 

fertilizer treatment and no fertilizer (bars show mean and standard error) (B). Mean for all 

varieties in each site and year. * Significant (P<0.05); ** significant (P<0.01); *** 

significant (P<0.001); ns non-significant (P>0.05). 
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Figure 1.2 Relationship between grain protein concentration deviation and grain yield 

deviation for varieties released between 1920 and 2016 (A). Regression residuals as affected 

by year of variety release. Comparison of the regression residuals for in-furrow fertilizer 

treatment and no fertilizer (bars show mean and standard error (B). Values correspond to 

the data of four site-years during two growing seasons (2016-17 and 2017-18). * Significant 

(P<0.05); ** significant (P<0.01); *** significant (P<0.001); ns non-significant (P>0.05). 
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Figure 1.3 Relationship between year of release from wheat varieties released between 1920 and 2016 and yield components 

deviation. Comparison of the regression residuals for in-furrow fertilizer treatment and no fertilizer (mean and 1 standard 

error). Values correspond to the data of four site-years during two growing seasons (2016-17 and 2017-18). Mean for all 

varieties in each site and year. * Significant (P<0.05); ** significant (P<0.01); *** significant (P<0.001); ns non-significant 

(P>0.05).
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Figure 1.4 Relationship between year of release from wheat varieties released between 1920 

and 2016 and: plant height (A), stem diameter (B), and thermal time development (C, D, E, 

F). Values correspond to the data of four site-years during two growing seasons (2016-17 

and 2017-18). Mean for all varieties in each site and year. * Significant (P<0.05); ** 

significant (P<0.01); *** significant (P<0.001); ns non-significant (P>0.05). 
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Figure 1.5 Relationship between grain biomass deviation and whole plant biomass 

deviation between GS 85 and 92, for the two groups: semi-dwarf varieties and tall varieties 

(A). Comparison of the regression residuals for in-furrow fertilizer treatment and no 

fertilizer (bars show mean and standard error) for semi-dwarf varieties (B). Comparison of 

the regression residuals for in-furrow fertilizer treatment and no fertilizer (bars show 

mean and standard error) for tall varieties (C). Values correspond to the data of four site-

years during two growing seasons (2016-17 and 2017-18). * Significant (P<0.05); ** 

significant (P<0.01); *** significant (P<0.001); ns non-significant (P>0.05). 
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Figure 1.6 Conditional inference tree for the entire dataset. Boxplots shows spans of first to 

the third quartile with central rectangles, inside solid line are the means which are also 

shown above each boxplot. The lower and upper lines show the minimum and maximum 

values, respectively. Inset table shows a list of 33 candidate variables at influencing wheat 

grain yield and the number of statistical models in which each variable was significantly 

associated with grain yield, out of a total of seven models. Year of variety release (year of 

release), plant height (PH), kernel number (KN), head number (HN), stem diameter (SD), 

kernel weight (KW), head size (HS), maximum (TMAX) and minimum temperature 

(TMIN), cumulative solar radiation (CSR), cumulative precipitation (CP), photo thermal 

quotient (PTQ), whole plant biomass (WB), cropt biomass rate (BR). Letters left to each 

variable represent the period, growing season (S), thirty days before anthesis (30), grain 

filling (GF). Values right to each variable represent the growth stage, GS 26, 31, 65, 85, and 

92 (26, 31, 65, 85, and 92). 
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Variables Variables Variables Variables Variables

YOR 7 BR-92 4 GF-TMAX 3 BR-26 2 30-PTQ 0

PH 7 S-TMIN 3 BR-65 3 S-CP 2 GF-TMIN 0

Fertilizer 6 BR-85 3 30-CP 3 WB-31 2 GF-CSR 0

S-CSR 6 SD 3 HS 3 30-TMIN 1 BR-31 0

KN 6 KW 3 WB-92 2 30-SR 1 30-TMAX 0

HN 5 S-TMAX 3 GF-CP 2 WB-26 1

GF-PTQ 4 WB-85 3 S-PTQ 2 WB-65 0
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 Tables 

Table 1.1 Similarity matrix for eight winter wheat varieties using genotyping by sequencing 

(GBS) single nucleotide polymorphisms (SNPs). A total of 9946 SNPs were used for the 

analysis to determine the percent similarity. 

Varieties  

(Year of release) 

Kharkoff 

(1920) 

Scout66 

(1966) 

Karl92 

(1988) 

Jagger 

(1994) 

Jagalene 

(2001) 

Fuller 

(2006) 

KanMark 

(2014) 

Larry 

(2016) 

Kharkoff (1920)  0.86 0.58 0.41 0.52 0.49 0.54 0.54 

Scout66 (1966)    0.51 0.38 0.47 0.45 0.50 0.50 

Karl92 (1988)      0.34 0.45 0.52 0.61 0.63 

Jagger (1994)     0.78 0.75 0.37 0.51 

Jagalene (2001)         0.63 0.51 0.52 

Fuller (2006)           0.42 0.48 

KanMark (2014)             0.52 

Larry (2016)               
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Table 1.2 Initial soil pH, extractable P, K, Ca, Mg, Na, SO4-S, Zn, cation exchange capacity (CEC), organic matter (O.M.), and 

NO3-N for the 0-15 and 15-60 cm soil layers at Ashland Bottoms, Belleville and Hutchinson, KS. Amount of inorganic N 

applied in each location during each growing season is also shown. 

Year Location Depth 

(cm) pH 

P 

(mg 

kg-1) 

K 

(mg 

kg-1) 

Ca 

(mg 

kg-1) 

Mg 

(mg 

kg-1) 

Na 

(mg 

kg-1) 

SO4-S 

(mg 

kg-1) 

Zn 

(mg 

kg-1) 

CEC 

(Meq 100g-1) 

O.M. 

(g kg-1) 

NO3-N 

(mg kg-1) 

Applied N 

(kg ha-1) 

2016-17 Ashland Bottoms 0 – 15 6.0 41 190 975 105 13 1.7 0.3 10 13 3.6 105 

  15 – 60 6.9 11 90 1375 125 12 3.7 0.4 8 8 3.5  

 Belleville 0 – 15 5.9 42 474 1532 202 13 2.9 1.5 21 30 4.5 158 

  15 – 60 5.9 12 224 2005 245 18 2.5 1.9 24 26 2.0  

2017-18 Hutchinson 0 – 15 6.0 77 218 1886 238 11 3.4 2.3 20 24 6.2 63 

  15 – 60 6.8 55 214 2666 237 10 3.6 2.8 16 24 8.2  

 Belleville 0 – 15 5.6 42 400 1727 228 10 3.0 0.9 22 28 8.9 67 

  15 – 60 5.9 35 342 2452 326 37 2.3 0.8 24 27 7.7  
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Table 1.3 Cumulative precipitation (Precip.), average maximum (Tmax) and minimum temperatures (Tmin), cumulative solar 

radiation (Rs), and average photothermal quotient (PTQ) for each portion of growing season during 2016-17 and 2017-18 at 

Ashland Bottoms, Belleville and Hutchinson, KS. The 30-year mean of each variable for each location is also shown. 

 
 Precip. Tmin/ Tmax Rs PTQ 

Year Location 

Fall† 

(mm) 

Winter‡ 

(mm)  

Spring§ 

(mm) 

Fall† 

(⁰C) 

Winter‡ 

(⁰C)  

Spring§ 

(⁰C) 

Fall† 

(MJ 

m-2) 

Winter‡ 

(MJ  

m-2)  

Spring§ 

(MJ  

m-2) 

Fall† 

(MJ  

m-2 d-1 

⁰C-1) 

Winter‡ 

(MJ  

m-2 d-1 

⁰C-1) 

Spring§ 

(MJ  

m-2 d-1 

⁰C-1) 

2016-17 Ashland B. 99 146 227 2/16 -1/11 12/25 1027 1083 1909 0.79 0.77 1.82 

 
Belleville 91 74 262 -1/14 -3/10 10/24 876 996 1938 0.64 0.56 1.71 

2017-18 Hutchinson 52 60 169 0/14 -5/10 11/26 874 1063 1567 0.62 0.55 1.33 

 
Belleville 37 36 217 -3/12 -8/6 10/24 861 1030 1811 0.54 0.30 1.33 

30-year  

mean 
Ashland B. 119 87 318 1/13 -4/9 12/25 792 941 1745 0.59 0.47 1.41 

Belleville 85 71 256 -1/12 -6/8 10/24 826 1002 1839 0.57 0.42 1.56 

Hutchinson 125 102 264 2/15 -3/9 10/23 764 786 1396 0.57 0.41 1.16 
† Fall encompasses October, November, and December. 
‡ Winter encompasses January, February, and March. 

§ Spring encompasses the period between April 1st and harvest. 
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Table 1.4 Grain yield, head number, head size, kernel number, kernel weight, harvest index (HI), plant height (PH), stem 

diameter, grain protein concentration (GPC) and grain volume weight of wheat varieties released between 1920 and 2016, 

fertilizer treatment, and their interaction during the growing seasons 2016-17 and 2017-18. Variety and fertilizer means were 

averaged across locations within growing season. 

Year Variety (Year of release) Fertilizer 

Grain 

Yield 

(Mg ha-1) 

Nitrogen 

removal 

(kg ha-1) 

GPC 

(g kg-1) 

Head 

number 

(heads m2) 

Head size 

(kernels 

head-1) 

Kernel number 

(kernels m2) 

Kernel 

weight 

(mg 

kernel-1)  HI 

PH 

(cm) 

Stem 

Diameter 

(mm) 

Volume 

weight 

(kg m-3) 

2016-17 Kharkof (1920)‡   1.7e† 54d 135ab 813bc 11d 9383c 22.0b 0.13c 120a 2.88c 728e 

 Scout 66 (1966)   2.4d 74c 133ab 931a 12d 10863c 26.7a 0.16c 123a 2.90c 751c 

 Karl 92 (1988)   3.4c 103b 138a 854ab 14c 12221bc 26.8a 0.26b 93c 3.00b 744d 

 Jagalene (2001)   5.2a 142a 122c 755bcd 23ab 17075a 27.2a 0.34a 95bc 3.17a 770a 

 Fuller (2006)   4.5b 127a 131b 677d 23ab 15763a 27.9a 0.32ab 92c 3.16a 755bc 

 KanMark (2014)   5.2a 138a 119c 712cd 24a 17904a 26.4a 0.37a 87d 3.18a 776a 

 Larry (2016)   5.1ab 138a 121c 708cd 21b 15312ba 28.3a 0.36a 98b 3.18a 759b 

   In-furrow 4.0A† 114A 129 825A 17B 13946 26.1B 0.28 102 3.06 754B 

   Control 3.8B 108B 128 733B 20A 14203 26.9A 0.28 100 3.07 756A 

2017-18 Kharkof (1920)   3.9d 116d 150a 767a 17e 12852c 22.9c 0.39c 125a 3.00 723ab 

 Scout 66 (1966)   4.9c 137c 142b 766a 19de 14501bc 27.4a 0.44bc 119a 3.00 712bc 

 Karl 92 (1988)   5.5b 148bc 137bcd 731ab 21d 15322bc 27.3a 0.54a 100bc 3.04 731a 

 Jagger (1994)  5.9ab 155ab 139bcd 721ab 28bc 19982a 25.1b 0.50ab 104b 2.98 694de 

 Jagalene (2001)   6.3a 163a 134cde 660bc 28abc 18443a 27.3a 0.56a 103b 3.07 721ab 

 Fuller (2006)   5.5b 144bc 140bc 609c 26c 15657b 25.8b 0.52a 102b 3.02 681e 

 KanMark (2014)   6.2a 152ab 129e 698ab 30a 21041a 24.9b 0.52a 94c 3.08 718b 

 Larry (2016)   6.2a 166a 133de 666bc 29ab 19274a 26.2ab 0.55a 101bc 3.13 704cd 

   In-furrow 5.8A 152Aa 137B 737A 24B 17237 25.4B 0.51 106 3.03 708B 

   Control 5.4B 143Bb 139A 667B 26A 17031 26.3A 0.50 106 3.05 713A 

† Values followed by the same letter within growing season and treatment are not statistically different at α = 0.05. 
‡ Jagger was not included in the 2016-17 growing season analysis.
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Table 1.5 Shoot biomass and crop growth rate in whole plant at Zadoks 26, 31, 65, 85 and 92 of wheat varieties released 

between 1920 and 2016, fertilizer treatment, and their interaction during the growing seasons 2016-17 and 2017-18. Variety 

and fertilizer means were averaged across locations within growing season. 

Year Variety (Year of release) Fertilizer 

GS 26 

(g m2 / g m2 

GDD ⁰C-1) 

GS 31 

(g m2 / g m2 

GDD ⁰C-1) 

GS 65 

(g m2 / g m2 

GDD ⁰C-1) 

GS 85 

(g m2 / g m2  

GDD ⁰C-1) 

GS 92 

(g m2 / g m2  

GDD ⁰C-1) 

2016-17 Kharkof (1920)‡   61a / 0.095a† 247 / 0.267 1108a / 1.250 1372c / 0.536b 1421 / 0.384ab 

 Scout 66 (1966)   57a / 0.089a 285 / 0.328 1067ab / 1.388 1358c / 0.424b 1518 / 1.269a 

 Karl 92 (1988)   59a / 0.092a 267 / 0.299 816c / 1.443 1537bc / 1.131a 1348 / -0.674bc 

 Jagalene (2001)   54a / 0.085a 253 / 0.286 989b / 1.474 1889a / 1.419a 1530 / -1.814c 

 Fuller (2006)   43b / 0.069b 248 / 0.294 858c / 1.468 1747ab / 1.424a 1446 / -1.065bc 

 KanMark (2014)   43b / 0.069b 239 / 0.281 801c / 1.355 1604bc / 1.150 a 1447 / -0.668bc 

 Larry (2016)   58a / 0.091a 252 / 0.278 976b / 1.452 1749ab / 1.254a 1441 / -1.487c 

   In-furrow 64A / 0.099A† 290A / 0.326A 1005A / 1.451A 1722A / 1.128 1492 / -0.923 

   Control 43B / 0.069B 221B / 0.255B 885B / 1.358B 1494B / 0.968 1408 / -0.236 

2017-18 Kharkof (1920)   36 / 0.061 157 / 0.178 841a / 1.212 1103 / 0.592 1033 / -0.263 

 Scout 66 (1966)   30 / 0.052 199 / 0.249 880a / 1.371 1193 / 0.591 1133 / -0.358 

 Karl 92 (1988)   39 / 0.067 167 / 0.190 621b / 1.350 1091 / 0.759 1011 / -0.559 

 Jagger (1994)  35 / 0.61 170 / 0.200 651b / 1.319 1168 / 0.858 1174 / -0.367 

 Jagalene (2001)   36 / 0.062 165 / 0.190 679b / 1.292 1128 / 0.792 1116 / -0.098 

 Fuller (2006)   32 / 0.055 151 / 0.175 624b / 1.338 1086 / 0.777 1030 / -0.304 

 KanMark (2014)   34 / 0.059 169 / 0.200 716b / 1.493 1174 / 0.761 1179 / 0.024 

 Larry (2016)   34 / 0.058 138 / 0.153 657b / 1.428 1164 / 0.843 1136 / -0.181 

   In-furrow 42A / 0.071A 200A / 0.234A 773A / 1.422A 1233A / 0.806 1134A / -0.669B 

   Control 27B / 0.047B 129B / 0.150B 644B / 1.279B 1044B / 0.688 1069B / 0.142A 

† Values followed by the same letter within growing season and treatment are not statistically different at α = 0.05. 
‡ Jagger was not included in the 2016-17 growing season analysis.
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Table 1.6 Shoot biomass in different plant components (leaves, stem, chaff, grain) at Zadoks 26, 31, 65, 85 and 92 of wheat 

varieties released between 1920 and 2016, fertilizer treatment, and their interaction during the growing seasons 2016-17 and 

2017-18. Variety and fertilizer means were averaged across locations within growing season. 

 

Variety 

(Year of release) Fertilizer 

                            

 GS 26 GS 31   GS 65  GS 85  GS 92  

Year 

 Leaves 

(g m2) 

Leaves 

(g m2) 

Stem 

(g m2) 

Leaves 

(g m2)  

Stem 

(g m2) 

Chaff 

(g m2) 

Leaves 

(g m2)  

Stem 

(g m2)  

Chaff 

(g m2) 

Grain 

(g m2) 

Leaves 

(g m2)  

Stem 

(g m2)  

Chaff 

(g m2) 

Grain 

(g m2) 

2016-17 Kharkof (1920)‡   60.8a† 158.3 88.3c 243.1a 749.9a 103.2c 190.1 798.3a 148.0c 185.7c 159.5a 797.2a 154.7c 209.1c 

 Scout 66 (1966)   56.7a 156.3 128.9ab 224.0ab 707.2a 131.8b 171.4 757.1a 169.5c 227.3c 144.6ab 808.9a 196.2ab 285.5bc 

 Karl 92 (1988)   58.6a 131.8 134.9a 184.2b 493.0d 134.5b 151.3 730.8a 238.5ab 365.6b 103.2d 589.5b 227.5a 331.2b 

 Jagalene (2001)   54.0a 150.5 102.6bc 221.1ab 603.5b 154.6a 192.3 804.7a 247.7a 582.6a 132.7abcd 611.0b 210.5ab 464.6a 

 Fuller (2006)   43.1b 134.8 113.3abc 190.7b 525.5cd 133.4b 164.9 805.9a 238.7ab 492.6a 109.2cd 581.8b 202.5ab 439.3a 

 KanMark (2014)   43.4b 138.3 100.9c 185.1b 458.5d 143.5ab 168.9 600.9b 247.9a 538.8a 125.9bcd 512.8b 221.9ab 474.3a 

 Larry (2016)   57.9a 154.7 96.9c 221.4ab 585.6bc 144.9ab 212.8 759.5a 216.1b 514.8a 133.7abc 587.1b 189.8bc 425.6a 

   In-furrow 63.5A† 163.9A 126.5A 228.2A 626.5A 140.3A 198.8A 807.6A 227.0A 443.9 140.9A 674.4A 204.5 365.0 

   Control 43.4B 128.9B 92.3B 191.7B 551.6B 130.0B 158.9B 694.4B 203.4B 396.8 118.8B 607.9B 196.3 386.3 

2017-18 Kharkof (1920)   36.0 102.1 55.0bc 150.4 466.7a 201.1a 112.9 471.7a 181.3 308.2d 93.6 441.5a 184.3 292.3c 

 Scout 66 (1966)   30.0 118.6 80.5a 187.5 498.9a 196.5ab 103.1 451.2a 188.5 408.6c 91.1 417.2a 201.0 397.8b 

 Karl 92 (1988)   38.8 97.6 69.6ab 140.1 335.7b 149.3cd 84.9 327.7b 194.1 436.1bc 72.4 299.0bc 190.1 415.3b 

  Jagger (1994)  35.2 103.5 66.7ab 171.7 340.0b 142.3d 98.3 355.1b 188.6 478.6ab 94.9 351.4b 196.9 491.4a 

 Jagalene (2001)   36.4 104.8 60.2b 171.0 381.0b 162.3bcd 91.0 332.5b 172.9 488.9ab 84.3 312.3bc 187.4 495.2a 

 Fuller (2006)   31.9 89.4 61.5b 158.6 327.5b 144.5cd 98.3 333.3b 189.7 433.6bc 85.9 306.8bc 199.7 406.0b 

 KanMark (2014)   34.1 107.0 62.2b 192.8 330.4b 178.3abc 110.9 305.4b 209.0 511.8a 100.9 297.0c 210.5 519.9a 

 Larry (2016)   33.8 95.7 42.3c 199.0 349.9b 173.6abcd 99.0 343.0b 186.9 494.4ab 90.5 325.4bc 189.5 496.9a 

   In-furrow 41.5A 120.5A 79.3A 193.6A 416.9A 181.8A 112.8A 405.2A 203.3A 471.2A 97.5A 365.3A 201.2A 434.8 

   Control 27.4B 84.2B 45.2B 149.2B 340.6B 155.2B 86.8B 324.8B 174.5B 418.8B 80.9B 322.4B 188.7B 443.9 

† Values followed by the same letter within growing season and treatment are not statistically different at α = 0.05. 
‡ Jagger was not included in the 2016-17 growing season analysis.
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Chapter 2 - Changes in Winter Wheat Phenotype in Response to 

Breeding for Yield and In-Furrow Fertilizer.II. Macronutrients 

 Introduction 

Global wheat yield increased from 1.1 Mg ha-1 in 1960 to 3.4 Mg ha-1 in 2016 

(FAOSTAT, 2018b) partially due to increased crop yield potential and to better agronomic 

practices (Bell et al., 1995). The partial contribution of breeding or agronomy to wheat yield 

increments range from 28% in Mexico to 79% in the US central Great Plains, and yield gains 

from improved agronomics range from 21% in Kansas to 48% in Mexico (Bell et al., 1995; 

Nalley et al., 2008). From a physiological perspective, these yield gains are often associated with 

improvements in harvest index, kernels m2, kernels spike-1, reduced plant height, increased shoot 

biomass, and improved kernel weight (Brancourt-Humel et al., 2003; Zhou et al., 2007a; Fischer 

and Edmeades, 2010; Sadras and Lawson, 2011; Sanchez-Garcia et al., 2013; Beche et al., 2014; 

Wu et al., 2014; Aisawi et al., 2015; Lo Valvo et al., 2017). Although extensive literature is 

available on the physiological components partially responsible for the observed yield increase, 

limited research exists on nutrient uptake and partitioning among plant components as affected 

by changes in varieties over decades. 

Most of the available literature evaluating the interaction between genetic progress in 

wheat and fertilizer rates has focused on N (Brancourt-Humel et al., 2003; De Vita et al., 2007; 

Tian et al., 2011; Gizzi and Gambin, 2016; Wang et al., 2017), and results mostly suggest that 

modern varieties were higher yielding under greater N rates (Brancourt-Humel et al., 2003; Tian 

et al., 2011; Wang et al., 2017). Previous research with tall and semi-dwarf varieties suggests 

that about 83% of the total N uptake occurred prior to anthesis, from which 68% was 

remobilized to the grain, with only about 10% of the total N uptake occurring during grain fill 
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(Austin et al., 1977). The tall varieties showed higher N concentration in the dry matter of the 

whole plant during the fall, declining towards physiological maturity (Knowles and Watkin, 

1931; Miller, 1939). Nitrogen uptake in tall varieties ceased about three weeks before maturity 

(Knowles and Watkin, 1931). While some literature has evaluated the dynamics of N uptake and 

partitioning within the wheat plant, limited information is available about N uptake dynamics for 

modern wheat genotypes, and contrasting results exist in the current literature. In some cases, N 

uptake is positively correlated with year of variety release (Giunta et al., 2007; Sadras and 

Lawson, 2013) and negatively correlated in others (Daniel F Calderini et al., 1995; Gustavo A 

Slafer et al., 1990). 

Equally important to N, the dynamics of uptake and partitioning of other essential 

macronutrients such as P, K, S, have received limited attention in modern wheat genotypes. 

Karlen and Whitney (1980) reported that P and K concentration in dry matter of whole wheat 

plant reduced slightly during tillering and a greater reduction occurred in later growth stages. 

Clarke et al. (1990) reported that 64 to 100% of P at maturity was taken up prior to anthesis and 

around 81% was remobilized to the grain. Rengel and Damon (2008) suggested that modern 

wheat varieties were more efficient in K utilization and uptake. Similar to N and P, K was most 

absorbed by the plants prior to anthesis, however, only 17% of the total K was remobilized to the 

grain (Waldren and Flowerday, 1979). Regarding S, about 82% of its total uptake occurs prior to 

anthesis, and leaves remobilize more than stems to the grain (Hocking, 1994). Balanced nutrition 

improves wheat productivity, and understanding the dynamics of these different macronutrients 

within the wheat plant and identifying how these are affected by genetics, management, and their 

interaction, will benefit future advancements in grain yield from both an agronomic and a 

breeding perspective. 
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The primary objective of this study was to determine whether historical and modern 

winter wheat varieties differ in response to in-furrow fertilization in their dynamics of N, P, K, 

and S uptake and partitioning to plant components during the growing season. A second 

objective was to evaluate macronutrient balances and ratios on the entire shoot biomass, as well 

as at different plant components. 

 Materials and Methods 

Experimental design, treatment structure, and crop management practices are concisely 

described in this manuscript. For full details, please refer to chapter 1, which explored the effects 

of variety and fertilizer on wheat yield and yield components. 

 Sites, treatment structure, and experimental design 

Fields experiments were conducted in four Kansas environments. During 2016-17, 

experiments were established at the Kansas State University (KSU) Research Farm in Ashland 

Bottoms, KS and at the KSU North Central Experiment Field in Belleville, KS. In 2017-18, 

experiments were conducted at the South Central Kansas Experiment Field near Hutchinson, KS 

and in Belleville on the same location as in the previous year. A two-way factorial treatment 

structure was established in split-plot design with four replications. Plots were eight varieties 

released in different historical eras arranged as randomized complete block design, and subplots 

were two different fertilization treatments completely randomized within whole plots. The eight 

varieties evaluated in the main plots were released between 1920 and 2016: ‘Kharkof’, released 

in 1920; ‘Scout 66’ (1966); ‘Karl 92’ (1992); ‘Jagger’ (1994); ‘Jagalene’ (2001); ‘Fuller’ (2006); 

‘KanMark’ (2014); and ‘Larry’ (2016). The varieties Kharkof and Scout 66, are hereafter 

referred to as tall varieties. The varieties Karl 92, Jagger, Jagalene, Fuller, KanMark, and Larry, 

are hereafter referred to as semi-dwarf varieties. The subplots consisted of two fertilization 
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treatments, namely i) control and ii) 112 kg ha-1 in-furrow fertilizer (12-40-00-10-1). In-furrow 

fertilizer was applied at each individual subplot at sowing through the drill with the seed. 

Selected soil chemical and physical characteristics can be found in chapter 1. 

 Nutrient uptake and partitioning  

A complete description of aboveground biomass dynamics was presented in chapter 1. 

Briefly, aboveground biomass was collected five times in the growing season from Zadoks GS 

26 (tillering) to GS 92 (physiological maturity) (Zadoks et al., 1974). For each specific growth 

stage the plants were separated into leaves, stem, chaff, and grain. After partitioning, all plant 

material was placed in a forced-air oven at 65⁰C for at least 24 hours before grinding. Grain was 

ground by using the WonderMill Electric Grain Mill, and the other components were ground by 

laboratory mill Thomas-Wiley Mill (model 4) equipped with a 2.0 mm screen size. The total 

ground material was homogenized and around 20 g were sent to Kansas State Soil Testing 

Laboratory for tissue analysis. Nitrogen content was analyzed through the procedure of dry 

combustion (TruSpec CN, LECO Corporation, St. Joseph, MI, 2005) and the other nutrients were 

analyzed through the procedure of nitric perchloric digestion (Gieseking et al., 1935). Total N, P, 

K and S uptake (g m-2) in each plant component were calculated by multiplying the nutrient 

concentration by the biomass of each corresponding plant component. Nutrient content (g m-2) in 

this manuscript is presented on a dry basis. 

 Calculations 

Whole plant nutrient concentration for N, P, K, and S were calculated by growth stage as 

the sum of each plant component uptake divided by the whole plant biomass for the same period, 

and expressed in (g kg-1). 

Equation 2.1 
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Whole plant nutrient concentration (g kg-1) = (whole plant uptake (g m-2)/ whole plant 

biomass (g m-2)) * 10 

Nutrient harvest indices (NHI, PHI, KHI, and SHI) were calculated as the quotient from 

grain uptake and whole plant uptake at maturity, similar to previous literature (Wang et al., 

2017a). Although, at soft dough typically occurs the maximum nutrient uptake (i.e. at maturity 

would be overestimating), comparisons between both stage showed high slope (c.a. 0.88) and 

high coefficient of determination (c.a. 0.72) (Fig. A - 1) 

Whole plant uptake rate was calculated for the grain filling period as the difference 

between the whole plant uptake measured at soft dough and that measured at anthesis, divided by 

the difference from the accumulated GDD during the period, and expressed in (g m-2 GDD ⁰C). 

Equation 2.2 

Whole plant uptake rate (g m-2 GDD⁰C) = (whole plant uptake (g m-2) soft dough – whole 

plant uptake (g m-2) anthesis)/ thermal time for the period (GDD⁰C) 

Head allocation rate was calculated as the difference between grain plus chaff uptake 

measured in GS 85 and chaff uptake measured in GS 65, divided by the difference in 

accumulated GDD between both stages, and expressed in (g m-2 GDD ⁰C). 

Equation 2.3 

Head allocation rate (g m-2 GDD⁰C) = ((grain uptake (g m-2) soft dough + chaff uptake (g 

m-2) soft dough) – chaff uptake (g m-2) anthesis)/ thermal time for the period (GDD⁰C) 

 Data analysis 

As described in chapter 1, to evaluate whether site-years could be combined, we analyzed 

the residuals from a combined ANOVA that allowed us to combine sites within years. Thus, all 

analysis presented in this manuscript are across locations within year of the study. Analyses of 

variance (ANOVA) were performed using PROC GLIMMIX in SAS version 9.4 (SAS Institute, 
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Cary, NC) to determine significant difference in nutrient uptake among plant components as 

affected by wheat genotype, fertility, and their interaction in each growth stage. This analysis 

considered replication, sites, and replication nested within sites as random effects. We used the 

LINES statement for pairwise comparisons when the interaction variety × fertilization was not 

significant. 

Historical trends in N, P, K, and S total were performed by testing different regression 

models against year of release, as detailed in chapter 1 for grain yield and biomass. Investigation 

of allometric relationships between whole plant nutrient concentration and whole plant biomass 

was performed using an exponential decay regression model. Nutrient partitioning to head was 

investigated as the relationship between nutrient allocation rate to the head and whole plant 

uptake rate (Ciampitti et al., 2013). We evaluated the residuals of these relationships to 

determine the effects of fertilizer practice and year of variety release (Sadras and Moran, 2012). 

All regression analyses and graphics were built using SigmaPlot version 13.0 (Systat Software, 

San Jose, CA). Lastly, we performed a comprehensive analysis to identify the relationships 

among the HI of different nutrients, and the whole plant uptake of the different nutrients using 

PROC CORR in SAS version 9.4 (SAS Institute, Cary, NC). 

 Results 

 Nitrogen uptake and partitioning 

With very few exceptions, the analysis of variance for N uptake in the different plant 

components showed significant variety and fertility effects, but no significant interaction (Table 

2 - 1). Early in the season (i.e. tillering and jointing), N uptake dynamics showed no identifiable 

pattern among varieties and followed similar results to leaves and stem biomass (Chapter 1). 

From anthesis onwards, N stored in the stem was typically greater in tall varieties, accounting for 



38 

as much as 54% of the total N uptake. Meanwhile, N content in the stem of semi-dwarf varieties 

only accounted for 36 to 45%. Instead, N content in the grain was greater in semi-dwarf varieties 

(Table 2 - 1). Interestingly, approximately 100% of the total N uptake during the growing season 

occurred by anthesis in tall varieties, and 84% in semi-dwarf varieties; suggesting that post-

anthesis nutrient uptake increased over time. At GS 85, grain N content ranged from 50 to 70% 

for semi-dwarf varieties and only from 30 to 58% in tall varieties; consequently, total N uptake 

by semi-dwarf varieties was significantly greater (c.a. 13 versus 6 g m-2 in 2016-17, and 12.5 

versus 10 g m-2 in 2017-18). Grain N content increased slightly from soft dough to maturity and 

accounted for as much as 71% of total N uptake in semi-dwarf varieties, and less than 60% in tall 

varieties (Table 2 - 1). Maximum N content was observed at anthesis for leaf and stem (Table 2 - 

1). Irrespective of growth stage and plant component, in-furrow fertilizer showed greater N 

uptake than control treatment (Table 2 - 1). 

 Phosphorus uptake and partitioning 

The main effects variety and fertility were usually significant on P uptake on the different 

plant fractions, but there were no consistent significant interactions. During the vegetative 

measurements, P uptake was similar from tall to semi-dwarf varieties in the leaves and stem 

(Table 2 - 2). At GS 65, leaf P content was greater in semi-dwarf varieties in the 2017-18 

growing season, but no clear pattern was observed subsequently regardless of growing season 

(Table 2 - 2). Phosphorus uptake at anthesis on the stem ranged from 50 to 57% of the total in 

tall varieties and was around 47% in semi-dwarf varieties, showing a substantial decrease by soft 

dough. About 80% of the total P uptake during the growing season occurred by anthesis in semi-

dwarf varieties, and 99% in tall varieties. Phosphorus content on the grain at GS 85 was greater 

in semi-dwarf varieties relative to tall varieties in both growing seasons (c.a. 1.9 versus 0.9 g m-2 
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in 2016-17, and 1.5 versus 1.2 g m-2 in 2017-18, corresponding to 64 to 87% of the total plant P 

for semi-dwarf varieties and 41 to 79% for tall varieties) (Table 2 - 2). At maturity, P uptake was 

greater in semi-dwarf varieties relative to tall varieties in both growing seasons, with an 

estimated linear increase as high as 0.009 g m-2 yr-1 (data not shown). Irrespective of year of 

release, P allocation to the leaves and stem ceased at GS65, while chaff and grain showed 

different patterns depending on growing season (Table 2 - 2). In-furrow fertilizer treatment 

increased P uptake relative to no fertilizer. 

 Potassium uptake and partitioning 

Potassium uptake showed different patterns than N and P early in the season, as tall 

varieties stored more K than semi-dwarf varieties in the leaves and stem (Table 2 - 3). At 

anthesis, tall varieties allocated from 9.6 to 14.8 g K m-2 in the stem while semi-dwarf varieties 

allocated from 7 to 11.2 g m-2. There were no discernible patterns in K allocation afterwards. 

Semi-dwarf varieties had greater K accumulation at the chaff relative to tall varieties (Table 2 - 

3), although K allocation to the chaff only ranged from 5-14% of the total. Total K uptake during 

the growing season occurred by anthesis for both tall and semi-dwarf varieties. At soft dough and 

at maturity, semi-dwarf varieties showed greater amount of K stored in the grains than tall 

varieties (Table 2 - 3). For instance, tall varieties stored from 0.87 to 1.21 g K m-2 in the grain at 

GS 85 (c.a., 5 and 9% of whole plant K uptake). Meanwhile, semi-dwarf varieties accumulated 

c.a. 1.96 and 1.58 g K m-2 in the grain (c.a., 12 and 13% of total uptake) (Table 2 - 3). Regardless 

of year of release, the maximum amount of K in the leaves and chaff occurred at anthesis and 

decreased until maturity. In-furrow fertilizer increased K uptake relative to the control treatment 

irrespective of growth stage and plant component (Table 2 - 3). 
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 Sulfur uptake and partitioning 

Sulphur uptake showed similar uptake patterns to N and P early in the season, with 

slightly greater leaf uptake by tall varieties in GS 26, and lower stem uptake by tall varieties at 

GS31 (Table 2 - 4). From anthesis onwards, there were significant differences among varieties 

and different patterns across growing seasons. For instance, semi-dwarf varieties showed greater 

allocation of S to the leaves at anthesis relative to tall varieties during the 2017-18 season (43 

versus 32%) (Table 2 - 4). The S uptake by anthesis corresponded to about 100% for tall and 

85% of total S uptake for semi-dwarf varieties. At GS 85 and 92, tall varieties showed greater S 

uptake at the chaff (c.a. 14 versus 12%) and stem (45-76% versus 38-68% of the total S uptake) 

(Table 2 - 4). Grain S uptake was greater in semi-dwarf varieties relative to tall varieties during 

both growing seasons. At soft dough, grain S uptake ranged from 0.28 to 0.57 g m-2 for tall 

varieties and 0.59 to 0.73 g m-2 for semi-dwarf varieties, with similar levels measured at maturity 

(Table 2 - 4). Tall varieties allocated no more than 45% of the total S to the grain, while semi-

dwarf varieties allocated as much as 55% (Table 2 - 4). Besides variety effect, in-furrow 

fertilizer increased S uptake for all growth stages and plant components (Table 2 - 4). 

 Whole plant nutrient concentration 

Whole plant nutrient concentration was greater for N (c.a., 12 to 52 g kg-1), followed by 

K (c.a., 7 to 40 g kg-1), P (c.a., 1 to 6 g kg-1), and S (c.a., 0.5 to 4.5 g kg-1) (Fig. 2 - 1). 

Concentrations of all studied macronutrients decreased with increases in whole plant 

aboveground biomass both studied seasons, although growing season 2017-18 showed overall 

greater nutrient concentration than growing season 2016-17 (Fig. 2 - 1). The residuals of these 

relationships suggested that N, P and S concentration in the whole plant increased over decades, 
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while K concentration decreased. Irrespective of nutrient, in-furrow fertilizer showed 

significantly greater nutrient concentration than the control treatment. 

 Nutrient harvest index  

There were significant relationships between the HI of N, P, K and S and year of variety 

release (Fig. 2 - 2). The best-fit model differed depending the growing season within nutrient 

(non-linear or bi-linear), but despite small differences in the best model, the trends were 

consistent: The HI of all nutrients typically increased after 1960s, showing lower gains after 

2000s. The increase in nutrient HI from tall to modern varieties was as much as 1.6, 1.4, 1.7, and 

1.5 fold for N, P, K, and S. The 2017-18 growing season had greater HI relative to 2016-17 

regardless of nutrient, mostly due to differences in total biomass, as reported in chapter 1. The 

residuals of these regressions suggested that in-furrow fertilizer decreased the HI of N, P, K and 

S relative to no fertilizer, likely due to greater biomass allocation to the vegetative tissues. 

 Nutrient partitioning from plant to head during grain filling 

Overall, nutrient partitioning from plant to head during the grain filling period followed a 

positive non-linear relationship for N, P, K, and S (Fig. 2 - 3). Although the shapes of the non-

linear models were not precisely identical across growing seasons, there was a clear pattern of 

low nutrient allocation rate to the head at low plant uptake rates, with steep increases in 

allocation to the head at higher plant uptake rates. Nitrogen and P showed different thresholds of 

whole plant uptake rate necessary to start the allocation to the head depending on the growing 

season. There was typically no minimum requirement during 2016-17, while a positive whole 

plant uptake rate was needed for the onset of nutrient allocation to the head during 2017-18. For 

instance, the rate of N allocation to the head was constant (c.a. 0.15 g m-2 GDD⁰C-1) until whole 

plant uptake rate reached ~0.005 g m-2 GDD⁰C-1, showing a steep increase afterwards (Fig. 2 - 
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3A). Similar ratio was observed for P and S, while K showed less steep increases in allocation to 

the head. In-furrow fertilizer increased allocation rate to the head relative to the control treatment 

for P in both growing seasons, and N, K, and S during the 2017-18 growing season, with no 

variety x fertility interaction (Fig. 2 - 3). The allocation rate from whole plant to the head 

typically increased for N, K, and S over decades, but there was no apparent effect on P. 

 Grain nutrient uptake 

There was a significant positive linear relationship for both tall and semi-dwarf varieties 

for N, P, K, and S grain uptake and whole plant nutrient uptake during soft dough and maturity 

both growing seasons (Fig. 2 - 4). This analysis showed that: i) semi-dwarf varieties were able to 

partition more N, P, K, and S into the grain than tall varieties at identical whole plant uptake; ii) 

higher slopes in all nutrients for semi-dwarf varieties relative to tall varieties points to an 

increase in partitioning of N, P, K, and S to the grain over decades; iii) semi-dwarf varieties 

partitioned more than 0.5 g of N m-2 to the grain, up to 0.82 g of P m-2, around 0.1 g of K m-2, 

and from 0.36 to 0.5 g of S m-2 for every increase in 1 g m-2 of the respective nutrient in the 

whole plant; iv) in-furrow fertilizer decreased the grain N uptake and grain S uptake in semi-

dwarf varieties during 2016-17. 

 Associations among nutrient harvest indices and whole plant uptake of nutrients 

Interesting outcomes for the analysis of the association among nutrient harvest indices 

were: i) N harvest index was strongly and positively associated with P, K, and S harvest indices 

during both growing seasons, and a linear relationship was observed between the nutrients (Fig. 

2 - 5 A, C, E); ii) P and S harvest indices were more strongly correlated with N harvest index (r2 

= 0.9***) than K harvest index (r2 = 0.63 to 0.73); iii) the increase in P harvest index for each unit 

increase in N harvest index was the greatest (from 0.84 to 1.09), followed by S and K; iv) as 
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grain yield increased (larger bubbles on Fig. 2 - 5), nutrient harvest indices increased for all 

macronutrients; v) besides the association with N, the harvest indices of other nutrients were 

correlated (Pearson’s r = 0.75 between P and K; r = 0.85 between P and S, and r = 0.81 between 

K and S, data now shown); vi) the residuals of the relationship between N harvest index and P, 

K, and S harvest indices as affected by year of variety release showed that for the same N harvest 

index level, the HI of P and S decreased and of K increased over time (Fig. 2 - 5 B, D, F); vii) 

the residuals of the relationship between N harvest index and P, K, and S harvest index as 

affected by fertilizer treatment were not significant. 

Major findings for the association between whole plant N uptake and whole plant P, K, 

and S uptake were: i) whole plant N uptake was strongly and linear-positive associated with 

whole plant P, K, and S uptake during both growing seasons (i.e. r2 ranging from 0.79 to 0.95)  

(Fig. 2 - 6 A, C, E); ii) K showed the greatest increase per unit increase in N uptake (c.a. 0.72 to 

0.78 g of K m-2), followed by P (c.a., 0.09 to 0.1 g of P m-2) and S (c.a. 0.05 to 0.08 g of S m-2); 

iii) the relationships between total nutrient uptake among P, K, and S were also significant (r = 

0.82 between K and P, r = 0.81 between K and S, and r = 0.83 between P and S, data now 

shown); iv) the ratios for whole plant N:P, N:K, and N:S were 9.2, 1.1, and 15.4; v) for the same 

N uptake levels, year of variety release significantly increased whole plant S uptake and 

decreased whole plant K uptake (Fig. 2 - 6 B, D, F); vi) in-furrow fertilizer increased the whole 

plant uptake of P and S at the same levels of N uptake. 

 Discussion 

 Nitrogen uptake 

The primary objective of wheat breeders is to increase grain yield while meeting 

minimum standards for quality parameters for a given wheat class. We hypothesized that this 
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selection for yield per se may have caused, as a hidden consequence, a change in the dynamics 

of nutrient uptake and partitioning during the season. However, we found no significant variety × 

fertility interactions. Our results showed that N uptake and partitioning early in the season was 

similar for tall and semi-dwarf varieties, but during reproductive stages the shifts in N uptake and 

partitioning were more evident, with an increase over decades especially in the allocation of N to 

the grain. In agreement with our study, Giunta et al. (2007) showed that modern wheat varieties 

in Italy increased N uptake relative to historical wheat varieties, and allocated more N in the 

grains and less in the stem. Likewise, there were also positive correlations between N uptake at 

maturity and year of variety release in Australia (Sadras and Lawson, 2013) and China (Tian et 

al., 2016). 

Our results suggest that the changes in N allocation might result from the differences 

among varieties regarding biomass allocation to plant components (reported in chapter 1). This is 

consistent with Austin et al. (1977) in which a strong and positive correlation between N and 

biomass accumulation was found in a large set of 47 historic winter wheat varieties. Other 

studies reported no changes over decades in N uptake (Wang et al., 2017a), concomitant to no 

differences in biomass (Wang et al., 2017b). Besides wheat, other crops also presented a 

correlation between N uptake and biomass, such as maize (Ciampitti and Vyn, 2011) and 

soybean (Gaspar et al., 2017). The greater amount of N in the grain of semi-dwarf varieties can 

be explained by larger grains, longer grain filling period (Chapter 1), and greater post-anthesis N 

uptake. 

In-furrow fertilizer increased N uptake, but decreased nutrient harvest index, likely 

because in-furrow fertilizer increased vegetative biomass production more than reproductive 

biomass production (Chapter 1). Previous studies reported N uptake as affected by fertilizer 
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treatment solely at anthesis and/or at maturity, also suggesting that N uptake was greater under 

high yielding environments, which are supported by in-furrow fertilizer (Barraclough et al., 

2010; Gaju et al., 2011; Giunta et al., 2007; Sadras and Lawson, 2013). 

 Phosphorus uptake 

Our results suggest that winter wheat varieties improved their ability to uptake P rather 

than their capacity to remobilize P from vegetative tissues, as tall varieties usually showed 

greater P uptake in the stem. Different patterns of P partitioning were reported by Clarke et al. 

(1990) (i.e., no changes in P partitioning across varieties). The literature also suggests that these 

results would be dependent on region and perhaps breeding program. For instance, Calderini et 

al. (1995) and Wang et al. (2017a) found no relationship between whole plant P accumulation at 

maturity and year of variety release in Argentina and China. Meanwhile, Egle et al. (1999) 

described a positive relationship between P uptake and year of variety release in Mexico. 

Besides variety effect, we observed significant year and fertility effects. Less P uptake 

during 2017-18 as compared to 2016-17 irrespective of growth stage and plant component was 

likely a consequence of the reduced water available (Clarke et al., 1990), as described in chapter 

1. Meanwhile, in-furrow fertilizer increased P uptake relative to no fertilizer treatment, with 

greater increases in vegetative tissues compared to in the grain. Similar findings were reported 

for the maturity growth stage by Egle et al. (1999), who suggested that the main factor affecting 

P content was P uptake rate under fertilization. 

 Potassium and sulfur uptake 

There are limited literature allowing for comparison for K and S uptake and partitioning 

during the season into plant components. Potassium accumulation differed from the other 

nutrients as it was mostly partitioned to the stems. Although K was found in lower amounts in 
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the grain, semi-dwarf varieties accumulated a greater fraction of grain K than tall varieties (13% 

vs. 8% of total K) likely due to a greater K uptake. Interestingly, there was no K uptake from 

anthesis to maturity, suggesting grain K was mostly remobilized from vegetative tissues to the 

grain rather. Available literature agrees that less than 20% of total K at maturity is allocated in 

the grain (Hocking, 1994; Waldren and Flowerday, 1979), although we are not aware of other 

studies comparing varieties released in different eras. In-furrow fertilizer increased total K 

accumulation despite having zero K in its composition, suggesting that the increase in biomass 

led by the fertilizer was the main driver for K accumulation. In agreement, Baker and Tucker 

(1973) showed that P application increased K uptake and the lack of P decreased K uptake. 

Sulfur uptake was greater in the stem and chaff in tall varieties, and in the grain and 

leaves of semi-dwarf varieties, following a more similar pattern to N and P. Sulfur accumulation 

in the grain accounted for c.a. 38% in tall varieties and c.a. 51% in semi-dwarf varieties, in a 

similar range to the 42% reported by Hocking (1994). We observed that tall varieties had greater 

S uptake in the stem then semi-dwarf varieties at maturity, suggesting that modern wheat 

varieties remobilized more S from stem into the grain relative to historical ones. The greater 

amount of S in the grain in semi-dwarf varieties is important and interesting as S can contribute 

to modifications in grain protein composition and consequently enhance the baking quality 

(Steinfurth et al., 2012). The lack of studies in comparison of S uptake and partitioning as 

affected by year of variety release warrants further investigation. Besides variety effect, S uptake 

was greater under in-furrow fertilizer treatment, perhaps as a result of the S present in the 

fertilizer composition and the greater biomass induced by the fertilizer. Previous studies showed 

that S application increased S uptake relative to no S treatment (Cui and Wang, 2005; Rasmussen 
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et al., 2010); and also that the application of other nutrients such as N (Rasmussen et al., 2010) 

and Zn (Cui and Wang, 2005) in combination with S can also increase S uptake. 

 Whole plant nutrient concentration 

The decrease in N, P, K, and S concentration as affected by biomass has been previously 

shown for wheat and other crops (Ciampitti et al., 2013; Copeland and Crookston, 2010; Karlen 

and Whitney, 1980; Riedell, 2010). However, we showed that whole plant nutrient concentration 

increased over decades for N, P, and S, and decreased for K. The increase in N, P, and S were 

likely resulting from i) greater grain biomass in modern varieties as a large fraction of these 

nutrients at maturity were allocated in the grain, and ii) greater increases in nutrient uptake rate 

as opposed to biomass accumulation rate over decades. On chapter 1 we showed that biomass 

accumulation did not change among varieties, while partitioning to the grain increased. Other 

research showed that grain N concentration (Tian et al., 2016; Wang et al., 2017a) and grain P 

concentration (Wang et al., 2017a) at maturity decreased in modern wheat varieties, similar to 

our findings. The decrease in whole plant K concentration might actually result from greater 

percentage of stem in tall varieties, as the majority of the K was allocated in the stem. In-furrow 

fertilizer increased the concentration of all nutrients, as well as biomass of all components 

(Chapter 1). The increase in nutrient concentration despite increases in biomass suggests that 

increases in plant nutrient uptake were greater than increases in biomass. 

 Nutrient harvest index 

The harvest index for N, P, K and S increased non-linearly over decades, with substantial 

increases after 1960s. These changes coincided with the introduction of dwarfing genes, 

suggesting that selection for reduced plant height and increased grain yield improved nutrient 

partitioning to the grain of semi-dwarf varieties. Calderini et al. (1995) and Gaju et al. (2011) 
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also reported a positive relationship between N harvest index and year of variety release in 

Argentina, the United Kingdom, and France. Wang et al. (2017a), however, suggested that N 

harvest index did not increase over time in China despite significant increases in P harvest index. 

The divergence in results might be due to the different range of year of varieties studied, as the 

authors included varieties released from 1970 to 2005. In our study, the HI of N averaged 0.58, 

of P averaged 0.72, of K averaged 0.12, and of S averaged 0.48. Hocking (1994) reported harvest 

indices of 0.74, 0.76, 0.19, and 0.44 respectively. Similar to our results, Calderini et al. (1995) 

documented N harvest index ranging from 0.5 to 0.7 and P harvest index from 0.4 to 0.65. 

Recently, Chuan et al. (2013) reported values slightly greater (HI of 0.74 for N, 0.78 for P, and 

0.21 for K), probably because the authors evaluated solely modern wheat varieties. In-furrow 

fertilizer decreased the HI of N, P, K, and S, likely due to the greater nutrient accumulation in the 

vegetative tissues as opposed to the grain. 

 Head nutrient allocation rate and nutrient uptake 

Positive non-linear models adequately described the relationship between nutrient 

allocation rate to the head and whole plant nutrient uptake rate for all nutrients. Ciampitti and 

Vyn (2013) and Ciampitti et al. (2013) also reported positive relationships for macro and micro-

nutrients allocation rate to the head and plant nutrient uptake rate, although the shape of the 

relationship seems to differ between maize and wheat. For wheat, the allocation rate to the head 

was either low or steady at low whole plant uptake rates, required a minimum whole plant uptake 

rate to start, and increased substantially at higher or positive plant uptake rates. For maize, 

nutrient allocation rate to the ear had no minimum requirement, tended to increase at a faster rate 

at low whole plant uptake levels, and slowly decreased at higher whole plant nutrient uptake 

levels (Ciampitti et al., 2013). These differences might result from the discrepancy in sink 
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strength between wheat and maize, as wheat is typically sink-limited and maize, source-limited 

(Borrás et al., 2004). The requirement of a minimum whole plant uptake rate to increase head 

nutrient allocation rate suggests that sink was the main regulator of the relationship for wheat: at 

low whole plant uptake rate, the sink strength was weak; and as the whole plant uptake rate 

increased, the sink strength intensified. 

At the same level of whole plant uptake rate, N, K, and S allocation rate to the head 

increased over time while P allocation to the head was independent of year of release. Thus, 

increases in grain-N, K, and S are physiologically explained by i) a longer grain filling (Chapter 

1) and ii) a greater relative rate of allocation to the head. Meanwhile, increases in grain-P over 

time at maturity resulted solely from a longer grain filling period of semi-dwarf varieties. In-

furrow fertilizer increased N, P, K, and S allocation rate to the head despite decreasing nutrient 

HI. This likely occurred because the increment of these nutrients into the head was lower than 

the increase into the leaf and stem. 

The grain N, P, K, and S uptake and whole plant nutrient uptake showed a positive 

significant linear relationship for all nutrients, variety group (tall and semi-dwarf), and growing 

seasons. This suggests that: i) breeding programs selecting for grain yield indirectly changed the 

dynamics of N, P, K, and S uptake and partitioning at maturity over time; ii) there is scope for 

improvement in K grain uptake as its slope is well below that of other nutrients; and iii) in-

furrow fertilizer increased nutrient allocation to vegetative tissues more than to grains. 

 Association among harvest indices and among uptake of different nutrients 

We observed that N harvest index and P, K, and S harvest indices were all positively 

related during both growing seasons, and for the same level of N harvest index (i.e. residuals), P 

and S harvest index decreased, while K increased over decades. Likewise, greater grain yield 
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levels were related with higher nutrient harvest index, similar to that suggested for maize 

(Ciampitti and Vyn, 2013). Furthermore, our results showed significant positive linear 

relationship between whole plant N uptake and whole plant P, K, and S uptake for both growing 

seasons. The high correlation among nutrients harvest index and whole plant nutrient uptake 

shows the challenge for breeding programs to focus exclusively on the increase of one nutrient. 

For instance, programs aiming to increase S uptake and S harvest index focused on wheat baking 

quality might as consequence increase P uptake and P harvest index to levels on the grain that 

could have a negative effect on human and animal nutrition (Raboy, 2009; Wang et al., 2017a). 

The correlation among the aforementioned nutrients allowed us to calculate N:P, N:K, 

and N:S ratios and their changes over time. The ratio between N and other nutrients could be 

used as a tool to identify nutrient deficiency in natural conditions (Salvagiotti et al., 2012). 

Previous studies reported N:P ratio between 4 and 6 for maximum grain yield in cereals (Sadras, 

2006), and a value around 5.2 for 60 to 70% yield potential in wheat (Chuan et al., 2013). For 

rice, optimum N:P ratio was reported as 5.6 (Wit et al., 1999). In our study, the N:P ratio was 

greater and averaged 9.2, perhaps suggesting an excessive N consumption when both N and P 

are available in non-limiting conditions. Interestingly, the ratio decreased at higher N and P 

uptake levels, suggesting an asynchrony between uptake of N and P depending on uptake levels. 

For the N:K relationship, a ratio of 1.19 was suggested for 60 to 70% of the yield potential in 

wheat (Chuan et al., 2013), and a ratio of ~1 for rice (Wit et al., 1999). Our results showed that 

N:K ratio was around 1.1, suggesting room for more N uptake for every unit K uptake to 

theoretically increase grain yield. Optimum N:S ratio for maximum grain yield in wheat was 

suggested as 15-17 (Byers and Bolton, 1979; Randall et al., 1981), with greater values suggesting 



51 

S deficiency. The N:S ratio of c.a. 15 in our study suggests that the optimum N:S ratio was 

achieved. 
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 Figures 

 

Figure 2.1 Relationship between whole plant nutrient concentration and whole plant 

aboveground biomass from tillering to physiological maturity (A, C, E, G). Residuals of 

these relationships were plotted against year of variety release (B, D, F, H), and comparison 

of the regression residuals for in-furrow fertilizer treatment and no fertilizer (mean and 1 

standard error) are shown as inset table. Black symbols, un-bold text and dashed line 

correspond to the 2016-17 growing season, and grey symbols, bold text and solid line 

correspond to the 2017-18 growing season. * Significant (P<0.05); ** significant (P<0.01); 

*** significant (P<0.001); ns non-significant (P>0.05). 
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Figure 2.2 Relationship between nutrient harvest index and year of variety release (A, C, E, 

G). Residuals of these relationships were plotted against fertility treatment for each 

growing season (B, D, F, H). Black symbols, un-bold text and dashed line correspond to the 

2016-17 growing season, and grey symbols, bold text and solid line correspond to the 2017-

18 growing season. * Significant (P<0.05); ** significant (P<0.01); *** significant 

(P<0.001); ns non-significant (P>0.05). 
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Figure 2.3 Nutrient allocation rate from the whole plant to the head during the grain filling 

period (Anthesis – Soft dough) (A, C, E, G). Residuals of these relationships were plotted 

against year of variety release (B, D, F, H), and comparison of the regression residuals for 

in-furrow fertilizer treatment and no fertilizer (mean and 1 standard error) are shown as 

inset table. Black symbols, un-bold text and dashed line correspond to the 2016-17 growing 

season, and grey symbols, bold text and solid line correspond to the 2017-18 growing 

season. * Significant (P<0.05); ** significant (P<0.01); *** significant (P<0.001); ns non-

significant (P>0.05). 
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Figure 2.4 Relationship between grain nutrient uptake and whole plant nutrient uptake 

from soft dough to physiological maturity, plotted by variety group (tall and semi-dwarf 

varieties), during the 2016-17 growing season (A, C, E, G), and 2017-18 growing season (B, 

D, F, H). Comparison of the regression residuals for in-furrow fertilizer treatment and no 

fertilizer (mean and 1 standard error) are shown as inset table. Grey symbols, un-bold text 

and dashed line correspond to tall varieties, and black symbols, bold text and solid line 

correspond to semi-dwarf varieties. * Significant (P<0.05); ** significant (P<0.01); *** 

significant (P<0.001); ns non-significant (P>0.05). 
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Figure 2.5 Relationship between N and P, K, and S harvest indices as related to the grain 

yield (A, C, E). Residuals of these relationships were plotted against year of variety release 

(B, D, F). Black symbols, un-bold text and dashed line correspond to the 2016-17 growing 

season, and grey symbols, bold text and solid line correspond to the 2017-18 growing 

season. * Significant (P<0.05); ** significant (P<0.01); *** significant (P<0.001); ns non-

significant (P>0.05). 
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Figure 2.6 Relationship between N and P, K, and S whole plant uptake (A, C, E). Residuals 

of these relationships were plotted against year of variety release (B, D, F), and comparison 

of the regression residuals for in-furrow fertilizer treatment and no fertilizer (mean and 1 

standard error) are shown as inset table. Black symbols, un-bold text and dashed line 

correspond to the 2016-17 growing season, and grey symbols, bold text and solid line 

correspond to the 2017-18 growing season. * Significant (P<0.05); ** significant (P<0.01); 

*** significant (P<0.001); ns non-significant (P>0.05). 
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Table 2.1 Nitrogen uptake in different plant components (leaves, stem, chaff, grain) at Zadoks 26, 31, 65, 85 and 92 of wheat 

varieties released between 1920 and 2016, fertilizer treatment and their interaction during the growing seasons 2016-17 and 

2017-18. Variety and fertilizer means were averaged across locations within growing season. 

 Variety  Fertilizer                             

  (Year of release)   GS 26 GS 31   GS 65  GS 85  GS 92  

Year     

 Leaves 

(g m-2) 

Leaves 

(g m-2) 

Stem 

(g m-2) 

Leaves 

(g m-2)  

Stem 

(g m-2) 

Chaff 

(g m-2) 

Leaves 

(g m-2)  

Stem 

(g m-2)  

Chaff 

(g m-2) 

Grain 

(g m-2) 

Leaves 

(g m-2)  

Stem 

(g m-2)  

Chaff 

(g m-2) 

Grain 

(g m-2) 

2016-17 Kharkof (1920)‡   1.93a† 5.92 2.25 6.39 10.91a 2.36c 3.34 8.03 3.01 5.42c 2.71 8.12a 3.00 6.15d 

 Scout 66 (1966)   1.83ab 6.07 3.09 6.38 10.09ab 3.07b 3.04 7.40 3.32 6.56c 2.54 8.22a 3.48 8.51c 

 Karl 92 (1988)   1.97a 5.47 3.33 6.72 8.50cd 2.95b 2.77 6.92 3.01 9.88b 1.97 5.96b 3.13 9.65bc 

 Jagalene (2001)   1.80ab 6.22 2.60 8.13 9.92abc 3.71a 3.67 7.35 3.11 14.87a 2.64 5.55bc 3.01 12.63a 

 Fuller (2006)   1.49c 5.57 2.66 7.03 8.27de 2.89b 3.14 7.24 3.02 12.95a 1.97 5.02bc 2.77 12.38a 

 KanMark (2014)   1.55bc 5.51 2.27 6.75 6.96e 3.12b 2.77 4.71 2.91 13.77a 2.07 4.32c 2.75 12.78a 

 Larry (2016)   1.93a 6.06 2.48 7.84 8.83bcd 3.22b 4.01 6.13 2.37 13.05a 2.63 5.18bc 2.47 11.51ab 

   In-furrow 2.19A† 6.62A 3.09A 7.61A 9.89A 3.23A 3.62A 7.28A 3.10A 11.37 2.62A 6.50A 3.16A 10.17 

   Control 1.39B 5.04B 2.24B 6.45B 8.25B 2.86B 2.88B 6.37B 2.83B 10.49 2.10B 5.61B 2.73B 10.85 

2017-18 Kharkof (1920)   1.07 4.85 1.77bc 4.24d 6.75b 5.02a 1.39 3.72a 2.73a 9.03c 1.17ab 3.32a 2.35a 8.70d 

 Scout 66 (1966)   0.92 5.53 2.42a 6.61bc 8.08a 4.77ab 1.54 3.32a 1.83b 11.26b 1.42a 2.98a 1.97ab 11.06c 

 Karl 92 (1988)   1.06 4.71 2.13ab 5.33cd 6.11bc 3.56cd 1.05 2.20b 1.51bc 12.24ab 0.93b 2.06b 1.48c 11.62bc 

  Jagger (1994)  1.05 5.04 2.09ab 7.22ab 5.99bc 3.33d 1.26 2.52b 1.60bc 12.69ab 1.22a 2.46b 1.60bc 13.41a 

 Jagalene (2001)   1.05 5.09 1.90b 7.17ab 6.35bc 3.88cd 1.28 2.59b 1.53bc 12.93a 1.20ab 2.27b 1.50c 13.05ab 

 Fuller (2006)   0.94 4.30 1.81b 6.22bc 5.74bc 3.46cd 1.32 2.44b 1.73bc 11.41b 1.18ab 2.32b 1.75bc 10.85c 

 KanMark (2014)   0.96 5.13 1.87b 7.77ab 5.37c 3.94bcd 1.56 2.11b 1.69bc 12.72ab 1.43a 2.17b 1.64bc 13.09ab 

 Larry (2016)   0.97 4.62 1.30c 8.50a 6.10bc 4.30abc 1.38 2.59b 1.42c 13.12a 1.22a 2.47b 1.47c 13.32ab 

   In-furrow 1.24A 5.73A 2.36A 7.40A 6.93A 4.40A 1.55A 2.98A 1.90A 12.50A 1.38A 2.74A 1.85A 11.66 

   Control 0.77B 4.08B 1.46B 5.86B 5.69B 3.66B 1.15B 2.39B 1.61B 11.35B 1.06B 2.27B 1.59B 12.10 
† Values followed by the same letter within growing season and treatment are not statistically different at α = 0.05. 

‡ Jagger was not included in the 2016-17 growing season analysis.
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Table 2.2 Phosphorus uptake in different plant components (leaves, stem, chaff, grain) at Zadoks 26, 31, 65, 85 and 92 of 

wheat varieties released between 1920 and 2016, fertilizer treatment and their interaction during the growing seasons 2016-17 

and 2017-18. Variety and fertilizer means were averaged across locations within growing season. 

 Variety  Fertilizer                             

  (Year of release)   GS 26 GS 31   GS 65  GS 85  GS 92  

Year     

 Leaves 

(g m-2) 

Leaves 

(g m-2) 

Stem 

(g m-2) 

Leaves 

(g m-2)  

Stem 

(g m-2) 

Chaff 

(g m-2) 

Leaves 

(g m-2)  

Stem 

(g m-2)  

Chaff 

(g m-2) 

Grain 

(g m-2) 

Leaves 

(g m-2)  

Stem 

(g m-2)  

Chaff 

(g m-2) 

Grain 

(g m-2) 

2016-17 Kharkof (1920)‡   0.25a† 0.57 0.33 0.45 1.17a 0.34c 0.24 0.73 0.40ab 0.87d 0.18 0.65a 0.45 0.96d 

 Scout 66 (1966)   0.23ab 0.57 0.42 0.45 1.08ab 0.45b 0.22 0.59 0.49a 1.02d 0.17 0.60ab 0.51 1.22cd 

 Karl 92 (1988)   0.24a 0.53 0.45 0.49 0.81bc 0.44b 0.20 0.54 0.40ab 1.45c 0.15 0.45bc 0.53 1.32bc 

 Jagalene (2001)   0.20bc 0.59 0.38 0.55 0.97abc 0.56a 0.24 0.53 0.34b 2.19a 0.18 0.34c 0.40 1.75a 

 Fuller (2006)   0.17d 0.54 0.38 0.45 0.84bc 0.44b 0.19 0.55 0.32b 1.86b 0.12 0.35c 0.38 1.68a 

 KanMark (2014)   0.18cd 0.53 0.34 0.50 0.70c 0.48b 0.24 0.39 0.32b 2.10ab 0.19 0.37c 0.39 1.88a 

 Larry (2016)   0.23ab 0.57 0.34 0.55 0.88bc 0.50ab 0.31 0.44 0.29b 1.96ab 0.18 0.32c 0.36 1.61ab 

   In-furrow 0.28A† 0.67A 0.46A 0.55A 1.06A 0.48A 0.26A 0.58A 0.39A 1.70 0.18A 0.49A 0.47A 1.44 

   Control 0.15B 0.44B 0.30B 0.44B 0.79B 0.43B 0.21B 0.49B 0.34B 1.57 0.15B 0.39B 0.39B 1.53 

2017-18 Kharkof (1920)   0.08 0.34 0.19bc 0.20d 0.76 0.57 0.06ab 0.16a 0.18a 1.14 0.05ab 0.11a 0.18a 1.13d 

 Scout 66 (1966)   0.06 0.44 0.27a 0.29bcd 0.85 0.58 0.05ab 0.10b 0.11b 1.31 0.05ab 0.10ab 0.15ab 1.31bcd 

 Karl 92 (1988)   0.09 0.35 0.24ab 0.25cd 0.68 0.44 0.04c 0.07b 0.08b 1.51 0.03c 0.05c 0.09c 1.24cd 

  Jagger (1994)  0.08 0.41 0.24ab 0.39a 0.74 0.45 0.04bc 0.09b 0.10b 1.57 0.04bc 0.06c 0.09c 1.56ab 

 Jagalene (2001)   0.08 0.37 0.23ab 0.35ab 0.88 0.50 0.04bc 0.09b 0.08b 1.42 0.04bc 0.06c 0.10c 1.54ab 

 Fuller (2006)   0.06 0.32 0.21abc 0.29bc 0.69 0.45 0.04bc 0.08b 0.09b 1.30 0.04bc 0.07bc 0.13bc 1.26cd 

 KanMark (2014)   0.08 0.44 0.24ab 0.41a 0.73 0.52 0.06a 0.08b 0.09b 1.51 0.06a 0.07bc 0.10c 1.58a 

 Larry (2016)   0.07 0.33 0.15c 0.42a 0.78 0.55 0.05bc 0.08b 0.08b 1.42 0.04bc 0.06c 0.09c 1.45abc 

   In-furrow 0.10A 0.46A 0.29A 0.38A 0.87A 0.56A 0.06A 0.11A 0.12A 1.50A 0.05A 0.09A 0.13A 1.39 

   Control 0.05B 0.29B 0.15B 0.27B 0.66B 0.46B 0.03B 0.07B 0.08B 1.29B 0.03B 0.05B 0.09B 1.37 
† Values followed by the same letter within growing season and treatment are not statistically different at α = 0.05. 

‡ Jagger was not included in the 2016-17 growing season analysis.
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Table 2.3 Potassium uptake in different plant components (leaves, stem, chaff, grain) at Zadoks 26, 31, 65, 85 and 92 of wheat 

varieties released between 1920 and 2016, fertilizer treatment and their interaction during the growing seasons 2016-17 and 

2017-18. Variety and fertilizer means were averaged across locations within growing season. 

 Variety  Fertilizer                             

  (Year of release)   GS 26 GS 31   GS 65  GS 85  GS 92  

Year     

 Leaves 

(g m-2) 

Leaves 

(g m-2) 

Stem 

(g m-2) 

Leaves 

(g m-2)  

Stem 

(g m-2) 

Chaff 

(g m-2) 

Leaves 

(g m-2)  

Stem 

(g m-2)  

Chaff 

(g m-2) 

Grain 

(g m-2) 

Leaves 

(g m-2)  

Stem 

(g m-2)  

Chaff 

(g m-2) 

Grain 

(g m-2) 

2016-17 Kharkof (1920)‡   1.75a† 4.90 2.76 4.46 14.96a 1.28c 2.89 12.58 1.00b 0.86c 1.81 12.41 0.84 0.90c 

 Scout 66 (1966)   1.56ab 5.12 3.81 5.42 14.61ab 2.04ab 2.58 12.66 0.85b 0.88c 1.46 13.34 0.79 1.10bc 

 Karl 92 (1988)   1.63a 4.07 3.62 4.86 11.11c 1.72bc 2.76 10.46 1.03b 1.39b 1.39 9.93 0.76 1.18b 

 Jagalene (2001)   1.36bc 4.66 2.70 5.33 11.84bc 2.47a 3.11 12.65 1.14ab 2.26a 1.67 10.75 0.65 1.68a 

 Fuller (2006)   1.10d 4.19 2.79 4.25 11.00c 1.58bc 2.37 12.09 1.15ab 1.98a 1.39 10.28 0.70 1.54a 

 KanMark (2014)   1.22cd 3.94 2.56 4.28 9.74c 1.88b 2.91 8.67 1.39a 2.11a 1.96 8.57 0.89 1.80a 

 Larry (2016)   1.58ab 4.37 2.75 5.12 12.41abc 1.90b 3.11 11.10 0.91b 2.07a 1.81 10.04 0.61 1.59a 

   In-furrow 1.76A† 5.15A 3.50A 5.26A 13.40A 1.97A 3.07A 12.51A 1.11 1.72 1.77A 11.59A 0.76 1.36 

   Control 1.15B 3.78B 2.49B 4.37B 11.07B 1.71B 2.56B 10.41B 1.03 1.58 1.51B 9.93B 0.73 1.43 

2017-18 Kharkof (1920)   0.73 3.32ab 1.79bc 3.64 8.61b 2.08 1.44 9.07 1.66a 1.14c 0.40e 8.15 0.86e 0.96c 

 Scout 66 (1966)   0.56 3.87a 2.68a 4.84 10.66a 2.19 0.95 8.66 1.60abc 1.28bc 0.65de 7.89 1.42abc 1.28b 

 Karl 92 (1988)   0.72 3.07bc 2.17ab 3.93 7.04b 1.82 1.23 7.41 1.29bcd 1.31bc 0.77cd 6.55 1.07de 1.30b 

  Jagger (1994)  0.61 3.19bc 1.99b 4.35 7.13b 1.72 1.61 8.11 1.60abc 1.69a 1.19ab 8.34 1.56a 1.85a 

 Jagalene (2001)   0.62 3.15bc 1.78bc 4.34 7.12b 1.89 1.38 7.25 1.22d 1.62a 1.09bc 6.89 1.22bcd 1.76a 

 Fuller (2006)   0.56 2.59c 1.72bc 3.87 6.87b 1.86 1.49 6.57 1.59abc 1.54ab 1.08bc 6.69 1.38abcd 1.44b 

 KanMark (2014)   0.69 3.53ab 1.92bc 5.01 6.91b 2.15 1.84 6.84 1.64ab 1.71a 1.54a 6.99 1.56ab 1.85a 

 Larry (2016)   0.62 2.99bc 1.35c 5.23 7.08b 2.16 1.57 7.95 1.26cd 1.62a 1.13b 7.60 1.17cde 1.76a 

   In-furrow 0.79A 3.75A 2.45A 5.00A 8.46A 2.12a 1.55A 8.48A 1.60A 1.59A 1.01 7.83A 1.31 1.53 

   Control 0.48B 2.67B 1.40B 3.79B 6.89B 1.85B 1.33B 6.99B 1.36B 1.38B 0.94 6.95B 1.24 1.52 
† Values followed by the same letter within growing season and treatment are not statistically different at α = 0.05. 

‡ Jagger was not included in the 2016-17 growing season analysis.
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Table 2.4 Sulfur uptake in different plant components (leaves, stem, chaff, grain) at Zadoks 26, 31, 65, 85 and 92 of wheat 

varieties released between 1920 and 2016, fertilizer treatment and their interaction during the growing seasons 2016-17 and 

2017-18. Variety and fertilizer means were averaged across locations within growing season. 

 

Variety 

(Year of release) Fertilizer 

                            

 GS 26 GS 31   GS 65  GS 85  GS 92  

Year 

 Leaves 

(g m-2) 

Leaves 

(g m-2) 

Stem 

(g m-2) 

Leaves 

(g m-2)  

Stem 

(g m-2) 

Chaff 

(g m-2) 

Leaves 

(g m-2)  

Stem 

(g m-2)  

Chaff 

(g m-2) 

Grain 

(g m-2) 

Leaves 

(g m-2)  

Stem 

(g m-2)  

Chaff 

(g m-2) 

Grain 

(g m-2) 

2016-17 Kharkof (1920)‡   0.14ab† 0.34 0.14 0.26 0.56 0.14d 0.20 0.34 0.12 0.24c 0.16 0.37ab 0.13 0.29d 

 Scout 66 (1966)   0.13b 0.37 0.19 0.27 0.51 0.21b 0.20 0.35 0.16 0.31c 0.17 0.44a 0.17 0.40c 

 Karl 92 (1988)   0.14ab 0.34 0.21 0.26 0.43 0.18bcd 0.16 0.24 0.16 0.46b 0.12 0.28bc 0.17 0.44bc 

 Jagalene (2001)   0.12bc 0.38 0.16 0.37 0.48 0.26a 0.24 0.34 0.17 0.69a 0.18 0.30bc 0.15 0.60a 

 Fuller (2006)   0.11c 0.36 0.18 0.28 0.41 0.17cd 0.20 0.33 0.17 0.60a 0.15 0.30bc 0.14 0.58a 

 KanMark (2014)   0.13b 0.34 0.16 0.26 0.37 0.20bc 0.22 0.24 0.17 0.61a 0.15 0.25c 0.14 0.58a 

 Larry (2016)   0.16a 0.37 0.16 0.34 0.49 0.21bc 0.26 0.29 0.14 0.58ab 0.18 0.29bc 0.12 0.52ab 

   In-furrow 0.17A† 0.42A 0.21A 0.33A 0.52A 0.21A 0.24A 0.34A 0.17A 0.52 0.18A 0.34A 0.16A 0.47 

   Control 0.09B 0.29B 0.14B 0.26B 0.41B 0.18B 0.18B 0.27B 0.14B 0.48 0.14B 0.29B 0.13B 0.50 

2017-18 Kharkof (1920)   0.06 0.29 0.10bc 0.35c 0.57ab 0.31ab 0.16 0.39a 0.19a 0.50b 0.11c 0.39a 0.18a 0.48d 

 Scout 66 (1966)   0.06 0.38 0.15a 0.55ab 0.68a 0.34a 0.16 0.38ab 0.17abc 0.64ab 0.14abc 0.38a 0.17ab 0.63c 

 Karl 92 (1988)   0.08 0.32 0.13ab 0.42bc 0.46bc 0.23c 0.16 0.30bc 0.15bcd 0.77a 0.11c 0.27c 0.14c 0.67bc 

  Jagger (1994)  0.07 0.36 0.13ab 0.60a 0.48bc 0.22c 0.21 0.32abc 0.16abcd 0.74a 0.18ab 0.34ab 0.15abc 0.78ab 

 Jagalene (2001)   0.07 0.32 0.11abc 0.50abc 0.51bc 0.25bc 0.16 0.28c 0.13d 0.73a 0.14bc 0.28b 0.14c 0.76ab 

 Fuller (2006)   0.06 0.29 0.11abc 0.52abc 0.44c 0.22c 0.20 0.29c 0.16abcd 0.65a 0.15ab 0.29b 0.17abc 0.61c 

 KanMark (2014)   0.07 0.38 0.13ab 0.59a 0.45bc 0.26bc 0.21 0.27c 0.18ab 0.76a 0.18a 0.30b 0.18a 0.77ab 

 Larry (2016)   0.07 0.30 0.08c 0.61a 0.46bc 0.27abc 0.19 0.29c 0.15cd 0.74a 0.16ab 0.31ab 0.15bc 0.78a 

   In-furrow 0.09A 0.39A 0.15A 0.60A 0.57A 0.28A 0.21A 0.36A 0.17A 0.73A 0.16A 0.35A 0.17A 0.67 

   Control 0.05B 0.27B 0.09B 0.43B 0.44B 0.24B 0.15B 0.27B 0.14B 0.66B 0.13B 0.29B 0.15B 0.69 
† Values followed by the same letter within growing season and treatment are not statistically different at α = 0.05. 

‡ Jagger was not included in the 2016-17 growing season analysis. 
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Appendix A - Supporting Figure 

 

Figure A - 1 N, P, K, and S harvest indices at soft dough stage relationship with N, P, K, 

and S harvest indices at maturity. Dashed lines correspond to linear regression from the 

relationship. Solid line corresponds to the 1:1 line. Values correspond to the data of four 

site-years during growing seasons (2016-17 and 2017-18). 
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Appendix B - Table with significances 

Table B - 1 Significance of variety, fertility treatment, and variety x fertility interactions 

for grain yield, grain-N removal, grain protein concentration (GPC), head number (HN), 

head size (HS), kernel number (KN), kernel weigh (KW), harvest index (HI), plant height 

(PH), stem diameter (SD), volume weight, biomass and crop growth rate at GS 26, 31, 65, 

85, and 92, biomass by plant component at GS 26, 31, 65, 85, and 92 for leaves (L), stem (S), 

chaff (C), and grains (G). 

 2016-17 2017-18   

Variables Variety Fertility 

Variety x 

Fertility Variety Fertility 

Variety x 

Fertility  

Grain yield <.001 0.033 0.069 <.001 <.001 0.776 

Grain-N 

removal 

<.001 0.091 0.189 <.001 0.007 0.823 

GPC <.001 0.151 0.026 <.001 0.034 0.302 

HN 0.001 0.003 0.569 0.009 0.002 0.859 

HS <.001 0.002 0.938 <.001 0.001 0.845 

KN <.001 0.761 0.878 <.001 0.685 0.999 

KW <.001 0.023 0.521 <.001 0.001 0.117 

HI <.001 0.881 0.532 0.009 0.597 0.981 

PH <.001 0.069 0.511 <.001 0.859 0.761 

SD <.001 0.597 0.917 0.252 0.499 0.101 

Volume 

weight 

<.001 0.033 0.395 <.001 0.003 0.128 

GS 26 0.002 / 0.002 <.001 / <.001 0.607 / 0.495 0.502 / 0.434 <.001 / <.001 0.667 / 0.638 

GS 31 0.727 / 0.791 <.001 / <.001 0.697 / 0.679 0.106 / 0.074 <.001 / <.001 0.831 / 0.808 

GS 65 <.001 / 0.276  <.001 / 0.040 0.044 / 0.163 <.001 / 0.369 <.001 / 0.007 0.842 / 0.645 

GS 85 0.001 / <.001 0.001 / 0.067 0.431 / 0.778 0.846 / 0.347 <.001 / 0.059 0.372 / 0.479 

GS 92 0.731 / 0.002 0.169 / 0.071 0.818 / 0.799 0.180 / 0.978 0.039 / 0.005 0.988 / 0.925 

GS 26 - L 0.002 <.001 0.607 0.502 <.001 0.667 

GS 31 -L 0.398 <.001 0.725 0.306 <.001 0.987 

GS 31 - S 0.016 <.001 0.531 0.007 <.001 0.285 

GS 65 - L 0.049 <.001 0.481 0.055 <.001 0.723 

GS 65 - S <.001 <.001 0.02 <.001 <.001 0.418 

GS 65 - C 0.003 0.005 0.034 0.004 0.001 0.582 

GS 85 - L 0.105 <.001 0.069 0.182 <.001 0.359 

GS 85 - S 0.005 0.002 0.579 <.001 <.001 0.055 

GS 85 -C  <.001 0.001 0.225 0.32 <.001 0.577 

GS 85 - G <.001 0.068 0.463 <.001 0.009 0.815 

GS 92 -L 0.009 <.001 0.642 0.054 0.002 0.948 

GS 92 -S <.001 0.007 0.568 <.001 0.004 0.62 

GS 92 -C  0.009 0.344 0.854 0.582 0.048 0.908 

GS 92 - G <.001 0.334 0.926 <.001 0.459 0.998 
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