
„*

/Heat Transfer and Modelling Studies for the

Analysis of Waste Storage Facilities/

by

Subbaratnam Ramachandran

B. Tech, Indian Institute of Technology, Madras, 1968

A MASTER'S THESIS

submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE
Department of Nuclear Engineering

Kansas State University
Manhattan, Kansas

1985

Approved by:

Major Professor
Dr. N. Dean Eckhoff



LP

,Tt

ins

c. '-'

A11505 bMShSI

Dedication

To the fond memory of my beloved father.



Table of Contents

Page

1. INTRODUCTION 1

2. SOLIDIFICATION OF HIGH-LEVEL LIQUID WASTES 22

3. MATHEMATICAL MODEL FOR ANNULAR GEOMETRY 57

4. RESULTS AND DISCUSSIONS 74

5. REFERENCES 100

6. ACKNOWLEDGEMENTS 102

APPENDIX 1 103

COMPUTER PROGRAM 107



List of Tables

Table p age

1.1 Current Inventories of HLW in Storage by Site

as of December 31, 1981 5

1.2 Average Chemical Composition of Fresh High-Level

Waste 9

1.3 Average Radionuclide Composition of Fresh

High-Level Waste 10

2.1 Properties of Calcines in Storage at INEL 33

2.2 Storage Experience with Calcine Solids at INEL .... 33

4.1 Steady State Temperature Profile at Different

Depths in Calcine Bins for Solid Cylinder

Configuration 77

4.2 Effect of Waste Thermal Conductivity on Calculated

Steady State Temperature Distribution in and Around

Calcine Bins for Solid Cylinder Configuration 79

4.3 Effect of Heat Generation Rate on Calculated
Steady State Temperature Distribution in and

Around Calcine Bins for Solid Bin Configuration. ... 81

4.4 Effect of Bin Radius on Calculated Steady

State Temperature Distribution in and around

Calcine Bin 84

4.5 Effect of the Burial Depth of the Bins

Below Grade on the Maximum Temperature 86

4.6 Steady State Temperature Profile at Nodal Points

in Calcine Bins for Annular Configuration 89

4.7 Effect of Waste Thermal Conductivity on the

Maximum Temperature for Annular Bin Configuration. . . 91

4.8 Effect of Heat Generation Rate on Calculated
Steady State Temperature Distribution in

Calcine Bins for Annular Bin Configuration 93

4.9 Comparison of Maximum Temperatures for Solid
Bin Versus Annular Bins for Same Heat Input 95

4.10 Effect of Back Fill Soil in the Central Air
Column for the Annular Bin Configuration 97



List of Figures

Figure Page

1.1 Typical Control and Safety Features for Boiling

HLWs 6

1.2 Tankfara Accessories and Associated Equipment

for HLWs 8

1.3 Typical Details of Decay of Major Nuclides 12

1.4 Schematic Diagram of the Vapor Space Model 16

1.5 Heat Dissipation from Buried radioactive Waste

Storage Tank - Effect of Cake Thickness 17

1.6 Maximum Temperature in Buried Storage Tanks -

Effect of Volumetric Heat Generation Rate 18

1.7 Maximum Temperature in Buried Waste Storage

Tanks - Effect of Soil Cover Depths 18

1.8 Maximum Temperature at the Bottom of a Waste

Storage Tank - Effect of Tank Height 20

2.1 Schematic Flow Sheet of Waste Calcining
Facility, INEL 25

2.2 Schematic of the In-Bed Calciner Vessel 27

2.3 First Set of Calcine Storage Bins - Plan
View of Bins 28

2.4 Cut-a-way Views of the High-level Solids
Storage Facilities 29

2.5 Cooling Air Closed Loop System for Solids Cooling . . 31

2.6 Temperature Profile in the First Set of Calcine
Bins - Calculated Distribution for Forced
Circulation Cooling 36

2.7 Temperature Profile in the First Set of Calcine
Bins - Calculated Distribution for Natural
Circulation Cooling 37

2.8 Heat Generation Rate of Calcined Solids in Tank
#180, 182, 183 and 185 39

2.9 Heat Generation Rate of Calcine Solids -

Theoretical MTR Type of Wastes 40

iii



Figure Page

2.10 Center Line Temperature of Solids in the

Middle Chamber of WC-115-2 42

2.11 Typical Representation of the Directly Buried
Waste Storage Bin for the Model Studies 49

2.12 Vertical Section Through the Waste Storage
Bin Showing the Nodes 50

2.13 Convergence of Steady State Temperature in the
Storage Bin as a Function of the Parameter 'N'. ... 54

3.1 Schematic Diagram for Annular Geometry of the Bin . . 58

4.1 Temperature Profile at Vertical Sections in
Bin - Solid Cylinder Configuration 76

4.2 Effect of Waste Thermal Conductivity on Maximum
Temperature - Solid Cylinder Configuration 78

4.3 Effect of Heat Generation Rate on Maximum
Temperature - Solid Cylinder Configuration 80

4.4 Effect of Bin Radius on Maximum Temperature -

Solid Cylinder Configuration 83

4.5 Effect of Burial Depth on the Maximum
Temperature - Solid Cylinder Configuration 85

4.6 Temperature Profile at Vertical Sections in the
Bin - Annular Cylinder Configuration 88

4.7 Effect of Waste Thermal Conductivity on Maximum
Temperature - Annular Cylinder Configuration 90

4.8 Effect of Heat Generation Rate on Maximum
Temperature - Annular Cylinder Configuration 92

4.9 Comparison of Maximum Temperatures for Solid
Bin Versus Annular Bin for Same Heat Input 94



CHAPTER 1

INTRODUCTION

Reprocessing of spent nuclear fuel to reclaim depleted uranium and

plutonium through chemical separation leads to generation of high-level

radioactive wastes which are thermally hot, besides being highly

radioactive. Elevated temperature is one of the major problems

encountered in the storage of these wastes. More than 80 million

gallons of high-level radioactive wastes have been accumulated in the

U.S., part of which have been converted to solids by calcination,

pending final conversion to stable and nonleachable waste forms. These

thermally hot high-level liquid wastes and converted calcines are

typically stored in an interim manner (usually less than five years) to

reduce the heat generation in order to make them amenable for the final

conversion to stable waste forms. These wastes are currently stored in

relatively complex and therefore expensive facilities and as the nuclear

industry grows, the volume and hence the total cost of waste management

sharply increases. So a search for safe and less expensive methods of

waste storage is essential.

At present, the cooling of these wastes - necessary because of the

heat generated by the decay of radioactive fission products in the

wastes - is accomplished by forced circulation in secondary

heat-exchangers cooled externally (for liquid wastes) and by convective

air cooling (for the solid calcines) . Present storage facilities

consist of a central container or containers surrounded completely by an

outer vault, which is buried in soil at varying depths. A significant

reduction in cost of future storage facilities would be achieved if the



internal cooling systems and the outer containment vault could be

omitted. For such a simplified waste storage facility, all of the heat

generated would be removed by conduction through the soil surrounding

the single waste container or cluster of individually buried waste

storage containers. Because of the fission product volatility and the

limits of the container material, most nuclear wastes are not permitted

to exceed a specific maximum in-storage temperature. For the liquid

wastes, the maximum temperature limit is imposed by the container

structural stability and the boiling limit of the alkaline supernatents

in tank, so as not to uncover the salt layer lying underneath which has

a much higher heat generation rate. This could result in temperature

build-up and thereby threaten the liner integrity. As for the calcines,

the temperature limits are dictated by the allowable calcine sintering

temperature and collapse of the calcine bed during such abnormal

increases in bin temperatures.

The objective of this research is to develop heat transfer models

for simplified geometries and evolve solutions for the temperatures in

the storage containers. Previous studies by Dickey et al. had assumed

a solid cylinder configuration for such underground storage and had

evaluated temperature profiles in the storage units as well as the

surrounding soil using finite transforms. The geometry of their model

had been a circular solid cylinder having finite depth. The scope of

this research work is an extension of their model with annular

configuration, to see what effect the configuration has on the resulting

temperature profile, introducing air in the annulus. Also pursued are

the dependence of other physical parameters, such as thermal

conductivities (of the waste, soil surrounding the storages), heat
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generation rates of the waste, and the proportioning of the waste

storage bins on the resulting temperature profile. The model predicts

the temperature distribution in the tank and the adjoining soil assuming

steady state conditions and idealized material having thermal properties

independent of position or temperature. Thus, the result must not be

regarded as a definitive description of the true thermal characteristics

of any operational system and the results must only be regarded as a

reference system to compare analysis of real cases.

Interim Storage of High-Level Wastes :

Problems involved in interim storage of high-level wastes are due

to the decay heat evolved by the wastes, solids present in the waste,

the corrosiveness of the waste (particularly if stored in acidic form),

radiolysis effects due to high radioactivity and, to a much lesser

extent, to the potential for volatilization of the constituents.

Concentrated and stored high-level wastes will boil because of the

radioactive decay heat generated in them, causing several problems that

must be accounted for in the design and operation of such storage

systems.

In the early years of operation of the reprocessing plants,

particularly at the Hanford Reservation, the concrete tanks built to

store these solutions had single walled carbon steel liners, which were

susceptible to acid attack. The hot acidic solutions were therefore

neutralized with alkali, which increased their volumes and formed a

precipitate, the so called 'sludge' containing the bulk of the

radioactive materials. The thermally hot, alkaline, highly radioactive

mixture of liquid-plus-sludge increased stress corrosion cracking of

steel and over the years several of these liners have developed leaks.
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To minimize leaks and to reduce volume of the wastes further, a program

of evaporating the liquid to salt cake was undertaken. Preliminary

separation of most of the radioactive strontium and cesium from hot

solutions was necessary to prevent over heating of salt cakes. Thus,

the high-level wastes at present consist of liquid, sludge, and salt

cake capsules of radioactive strontium and cesium salts and the hot

terminal liquor.

Most of the high-level waste in the U.S. is the result of DOE

(Department of Energy) activities in the area of national defense and is

stored at the Savannah River Plant (SRP) , South Carolina, Idaho National

Engineering Laboratory (INEL), Idaho Falls, and the Hanford Reservation

(HANF) . At the Savannah River Plant and the Hanford Reservation, the

acidic wastes are neutralized, dehydrated and then stored as damp

crystalline salts, sludge and the supernatent liquid. Radioactive

cesium and strontium have been separated from the high heat producing

wastes at the Hanford Reservation and are encapsulated and stored in a

water cooled basin. The volume, radioactivity and heat generation of

high-level wastes accumulated through the year 1981 in the U.S.

including the current inventories of high-level waste in storage at the

end of 1981 are shown in Table 1.1.

Liquid Wastes :

Typically, these high-level wastes, which are thermally hot, are

stored in underground tanks which are 76 ft in diameter, 36 ft high,

double walled in construction, and stress relieved. Figure 1.1 shows

typical construction details of these storage tanks which are housed in

concrete vaults. A number of such tanks are laid out in what are known
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as 'tankfarms' where individual tanks are spaced 120 feet apart

center-to-center, primarily because of heat transfer and safety

considerations. The typical tankfarm accessories and associated cooling

equipment are shown in Fig. 1.2.

Thermal Histories and Operational Experiences of Tankfarms :

The experience in the operation of these tanks has shown that a

few of them (especially at the Hanford Reservation) had leaked soon

after being placed into service. The ones that had failed at Hanford

were carbon steel construction and single walled in design. Subsequent

tanks that were constructed at Hanford, SRP, and INEL are of improved

design, double walled and stress relieved. Nevertheless, the

operational experience gained at Hanford had initiated efforts in

detailed modelling studies to study the heat transfer aspects,

evaluation of the thermal histories of the tanks that had failed in

service and also the radiolytic effects of the aging waste over the

extended periods of storage.

All of the high-level liquid wastes in storage in the U.S. are in

the form of liquid, sludges, salt cakes and crystals in a variety of

underground tanks, (with the exception of INEL where a granular calcine

is stored in stainless steel bins in underground concrete vaults).

After cooling for six months, a composite waste would have the average

chemical composition shown in Table 1.2 and average radionuclide

composition as shown in Table 1.3. Both the chemical and radionuclide

2
composition changes as the waste ages. The major changes that take

place during such interim storage are:

i) Radiolytic decomposition of the waste - The major effect of

the radiolytic decomposition is the slow reduction in the
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Table 1.2. Average Chemical Composition
of Fresh High-Level Waste.

Concentration,
Constituent Molar

NaN0
3

3.3

NaN0
2

<0.2

NaAl(OH) 0.5

NaOH 1

Na
2
C0

3
0.1

Na
2
S0

4
0.3

Fe(0H)
3

0.07

Mn0
2

0.02

Hg(0H)
2

0.002

Other solids 0.13
a

Assuming an average molecular weight of

60.

Figures typical for SRP tank wastes,
Ref. 2, Table 1.
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Table 1.3. Average Radionuclide Composition of

Fresh High-Level Waste.

Activity, Activity,
Radionuclide Ci/gal. Radionuclide Ci 'gal.

144
Ce-

144
Pr 68 Am 1 X lO"

3

95
Zr 60 "ic 5 X ID"

4

91
y 47

239
Pu 3 X lO"

4

89
Sr 36

154
Eu 1 X lO"

4

95
Nb 15

92
Zr 1 X lO"

4

141
Ce 12

240
Pu 6 X lO"

5

147
Pm 12

135
Cs 4 X lO"

5

103
Ru 10

126
Sn-

126
Sb 1 X lO"

5

106
Ru-

106
Rh 4

79
Se 1 X lO"

5

90
Sr 3

233
2 X lO"

6

137
Cs 3

129-
1 X lO"

6

129
Te 2

238
U 6 X lO"

7

127
Te 2

107
Pd 5 X lO"

7

134
Ce 1

237
Np 4 X lO"

7

151
sm 8 x 10" 2 152uEu 2 X lO"

7

238
Pu 1 x 10" 2 242

Pu 6 X lO"
8

241
Pu 2 x 10~ 3 158

Tb 6 X lO"
8

244
cm 1 x 10~ 3 235

3 X lO"
8

Note: After reprocessing fuel that has been cooled six
months after discharge from reactor.

Figures typical for SRP high-level wastes, Ref. 2,
Table 2.
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NaNO, composition with an equivalent increase in NaNO^

concentration. After 5 to 10 years, the NaNO concentration

approaches the residual NaNO, concentration,

ii) A slow reduction in NaOH concentration due to reactions with

CO, absorbed from air, forming Na.CO,. Then NaOH is

periodically added to the wastes, to maintain its

concentration,

iii) Decay of radionuclides - Fig. 1.3 shows the decay of major

nuclides

.

iv) Natural partitioning of the wastes into sludge and soluble

fractions - The sludge scavenges most of the radionuclides

from the solution as it settles to the bottom of the tank.

The sludge is composed primarily of oxides and hydroxides of

manganese, iron and to a lesser extent aluminum. The sludge

contains essentially all of the fission products, originally

in the irradiated fuel, except cesium and essentially all the

actinides. The sludge also contains a significant quantity

of mercury from the catalyzed nitric acid dissolution of the

heavy metal fuel. The primary radioactive component of the

dissolved salt solution after aging is cesium.

The salt solution is transferred to a continuous evaporator for

de-watering and the concentrates from the evaporator are then

transferred to a cooled water tank where suspended salt settles.

Cooling causes additional salts to crystallize. The supernate from the

cooled water tank is then returned to the evaporator for further

concentration. The process is repeated until the portion of waste has

been converted to a damp salt cake. The salt produced by evaporation of
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Storage Time, years

Decay of radionuclides.

SOURCE: Ref.2, Fig.l.

Fig. 1.3. Typical Decay of Major Nuclides.
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the aged supernate consists primarily of NaNO , NaOH, Na
2
CO and

NaAl(OH) . The radionuclide concentration in the salt is approximately

three times that in the original salt solution.

Model Studies for Heat-Transfer in the Liquid Waste Tanks :

The model studies undertaken for liquid waste storages were

necessitated by the leakages that took place at the Hanford Reservation,

where the original storage tanks were of carbon steel material. These

models calculate various aspects of the heat transfer problem including

the thermal histories involved in the start-up tanks containing boiling

3
solutions. As the need at that time was for production of plutonium,

sufficient cooling time was not available for these initial batches of

spent fuel reprocessed at Hanford and hence resulted in the hottest

waste solutions. Subsequent models evaluated combined thermal and load

stresses so as to determine the amount of solution that can be held in

4
the tank safely. Finally, temperatures have been calculated in tanks

that had lost their liquid cover, and contours of temperature profiles

around tank leaks to assess the impact of such leaks in the soil and in

the immediate tank vicinity. Their investigations had been detailed

and elaborate which is outside our scope. Only important conclusions of

their studies are reported here.

1) The heat transfer calculations were made for a 76 ft diameter

tank in a tank system with 120 ft center-to-center spacing.

For this system heat is lost to the atmosphere and to the water

table, through a conduction layer of soil in between.

2) The normal contents inside the tank consist of a boiling

supernatent that is reflexed by a condenser which held the tank
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temperature essentially constant, close to the boiling point of

the alkaline supernates.

3) The bottom of the tank contains a layer of sludge and salt cake

of different heat generation rates, the sludge layer having

generation rates usually higher than that of the salt layer and

much greater than the supernates. The typical values of the

heat-transfer parameters used in the calculations are given

below:

Cake thickness, (ft): 4 to 24

Soil thickness (above the tank top) (ft): 7-11
Heat Generation Rate (Btu/hr ft 3

): 0.07 - 2.83
Soil thermal conductivity (Btu/hr ft °F) : 0.15 - 0.65

Vapor thermal conductivity (Btu/hr ft °F) : 200

Film coefficients (Btu/hr ft 2 °F) : 0.001 to 6.00

4) In all the cases, most of the conducted heat flows from the top

of the tank and to the atmosphere. With the tank temperature

held constant by the boiling supernate, (refluxed by a

condenser) more heat is dissipated into the surrounding soil

that is wet, than is dissipated into the dry soil. The

temperature distribution throughout the soil tank system is

nearly independent of the moisture content of the soil - as if

all the soil in the system has the same thermal conductivity.

The high salt content and alkalinity results in a sludge layer

which contains most of the heat generating fission products

such as strontium, cerium, zirconium-niobium, and ruthenium.

Cesium and a small fraction of ruthenium remain in the

supernate. The heat generated in alkaline waste tanks may vary

over a wide range depending upon the volume reduction achieved

through self concentration.
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5) For this system (Fig. 1.4), about 85% of the generated heat

flows to the atmosphere and the remaining to the water table at

a depth of 200 ft. About 53% of the heat flowing to the

atmosphere passes through the soil layer directly above the

tank.

6) If the total heat generation rate from the fission products is

assumed constant, variation in the cake thickness has only a

small effect on the temperature in the system. Because most of

the resistance to heat flow is in the soil, the thermal

conductivity of the soil above the tank strongly affects the

maximum temperature.

7) The cake thermal conductivity is of secondary importance, and

the convective heat transfer coefficients and the tank height

almost have no effect on the temperatures. Stratification of

the heat generating fission products has little effect on the

maximum cake temperature.

8) Figure 1.5 shows the maximum cake temperature shown as a

function of volumetric heat generation with cake thickness as a

parameter. The temperature increases linearly with volumetric

heat generation rate and increases with cake thickness because

of the total heat content of sludge inventory in the tank.

Using the 320 °F at the tank surface as the cut-off limit, the

quantity of the heat generating material that can be stored

safely, drops very rapidly as the cake thickness increases.

Figure 1.6 shows the same information as Figure 1.5, but the

total heat generation is used as the parameter, which is more

meaningful in such a comparison. The effect of the cake
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thickness on maximum temperature is shown to be small when the

total heat generation rate (i.e., the quantity of fission

products in the tank) is held constant.

9) The effect of soil cover depth is shown in Figure 1.7. The

temperature is decreased only by 14.94% by removing 4 ft of

the total 11 ft of dry soil cover on the roof, (using K

0.15, k = 0.33 (Btu/hr ft °F) and a volumetric heat
c

generation rate =0.4 (Btu/hr ft 3
)). However, this might be

just adequate to keep the tank in service, without exceeding

temperature limits. In other words, this specifies the upper

limit on the maximum volumetric heat generation rates of the

tank contents that can be held safely. One factor which must

be taken into account before removing the soil cover is the

loss of the radiation shielding which may make the

configuration unsafe for operations. It may be necessary to

leave a minimum depth of soil from the shielding point of view.

10) Within limits, the height-to-diameter ratio of the tanks has

no effect on the maximum temperature. This effect is shown in

Fig. 1.8. The higher the tank, the more is the heat that is

lost through the sides in the vapor space, but this is

compensated by higher flux paths to the surface.

Methods for Maintaining Low Tank Temperatures :

Several steps were suggested for lowering the high temperatures

that were experienced in the first set liquid waste storage tanks at

Hanford. They also serve as guidelines for the safety and future design

of similar storage tanks.
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SOURCE: Ref.4, Fig. in.

Fig, 1.8. Maximum Temperature at the Bottom of Waste Storage Tank-
Effect of Tank Might.
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The remedial suggestions for lowering the in-service maximum

temperatures are the following:

* Removal of soil from above the tank.

* Spraying dry sludge with fresh water.

* Passing cooling air through the vapor space.

* Wetting the soil above and beside the tank.

Removing soil from above the tank would reduce the temperature

drastically, since temperature is directly proportional to the

overlaying soil thickness. The amount of soil which could be at best

removed is limited again by the loss of shielding considerations.

Spraying the dry sludge with fresh water and maintaining a liquid layer

would bring the surface of the cake to the boiling point of water and in

practice the water would simply flash into steam. If the water did not

penetrate the cake, the temperature at the bottom of the cake would be a

function of the cake thermal conductivity and cake thickness. Passing

cooling air through the vapor space at the practical flow rates would

not be very effective when compared with spraying the vapor space with

water, as above. Wetting the soil above the tank would reduce the

temperature as long as the water remained in the soil. The thermal

conductivity of the wet soil is about 4 or 5 times that of the dry soil

and the storage temperature is inversely proportional to the soil

thermal conductivity. Vaporization of the water in soil would remove

heat.
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CHAPTER 2

SOLIDIFICATION OF HIGH-LEVEL LIQUID WASTES

Solid forms of waste are preferred over liquid forms from a

long-term waste management point of view. The end products from the

in-tank solidification (ITS) discussed earlier do not qualify strictly

as a 'solid waste' as defined by the 'Federal Register'. United States

policy is to convert high-level liquid radioactive wastes to 'dry-solid'

which is 'chemically, thermally and radiolytically stable to the extent

that the equilibrium pressure in the container will not exceed the safe

operating pressure of the container (canister) during the period from

canning through a minimum of 90 days after receipt (transfer of physical

custody) at the Federal repository. The primary function of the in-tank

solidification is volume reduction and production of a partially mobile

salt cake, which requires a further solidification step in order for the

product to meet the definition. Whereas, calcination is recognized as a

solidification step and the end products from such a step could qualify

as a waste form for permanent disposal. Calcined solids are more stable

than the liquids, and the volume is reduced by a factor of 10

(approximately) . By solidifying the liquid waste an additional barrier

against leakage and hence loss of radioactivity is gained. Solidified

wastes ensure continued confinement for long periods of time (usually of

the order of 100 years) when compared with similar liquid waste

storage. Solidification is generally accepted as a necessary step in

the disposal of high-level wastes and is required by federal

regulation. Fluidized-bed calcination is but one of the several
o

processes that could be used to solidify wastes; however, it is the

only calcination process in production operation today in the U.S.
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The first engineering-scale operational facility for the

solidification of liquid radioactive wastes was the waste calcination

facility (WCF) which began calcining wastes from the Idaho Chemical

Processing Plant in 1963. The WCF product is a granular free-flowing

powder which is stored on-site, in vented stainless steel bins. A batch

calcine process, called the POTCAL process was developed at Oak Ridge

National Laboratory (ORNL) specifically for the commercial HLWs and

demonstrated at PNL (Pacific Northwest Laboratory) on a fully

radioactive basis in the WSEP (Waste Solidification Engineering

Prototypes). Other calcines, (such as spray calcination, rotary-kiln

calcination, etc.) can also stop at a calcine, although that is not the

purpose for which these were developed (i.e., for vitrification). The

calcines produced by all these processes have many properties in common,

differing mainly in particle size and bulk density. Some common

properties of calcines which affect the process and other considerations

include, thermal conductivity, volatiles content, and leachability .
The

first two properties are of great importance from heat-transfer and

storage points of view. The thermal conductivity of the calcine is

generally two to three times lower than that of consolidated products.

Thus, because of high-heat generation of the high-level wastes, the

storage of calcines require small diameter bins or other special heat

9
removal features especially for fresh wastes.

Description of the INEL Calcining Facility :

High-level liquid wastes are solidified by f luidized-bed

calcination process at Idaho National Engineering Laboratory (INEL).

Originally developed for acidic aluminium nitrate waste solutions, the

process has been used also to solidify zirconium fluoride and stainless
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steel sulfate waste solutions. High-level wastes at INEL result from

complete dissolution rather than leaching of the fuel. The wastes are

acidic solutions, resulting from reprocessing aluminium, zirconium, and

stainless steel clad fuels. This is primarily meant to reduce

precipitate formation in the tank and prevents high sodium

concentrations from neutralizing the waste with NaOH. Wastes of high

sodium content can not be calcined without further treatment.

Calcination Process Detail:

The process flow-sheet of a typical calcination process is shown in

Fig. 2.1. Wastes are atomized into a f luidized-bed heated by in-bed

combustion, and operating at a bed temperature in the range of

500-600°C. A recycle stream of gas scrubbing solution representing

20-30% of the total feed rate is added to the calciner feed stream.

Inlet fluidizing velocities, based only on the fluidizing air flow

through the empty cross-sectional area of the calciner vessel, at 0.18

to 0.36 m/sec are generally used and a freeboard of about 2.3 m,

supplemented by a louvered baffle, is provided for de-entrainment of

solids from off-gases within the calciner vessel. The bed height is

maintained at a constant level above the feed spray nozzle by

continuously withdrawing the bed material. Evaporation occurs on the

surface of the particles and the result is a product consisting of

granular bed materials and powdered calcine, both of which are removed

from the calciner. The in-bed combustion system provides sufficient

heat to calcine up to 400 liters/hr of high-level wastes, in a

f luidized-bed maintained at a constant bed temperature of 500°C. A

schematic diagram of the calciner vessel showing in-bed combustion is
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given in Fig. 2.2. During operation, kerosine is sprayed through

external atomizing nozzles into a hot fluidized bed where the fuel

burns, releasing heat and producing CO and water vapor and a small

quantity of CO. The product is a mixture of granular bed materials and

powdery solids from the off-gas system in primary cycle; the product is

removed from the bed pneumatically.

INEL Calcine Storages :

Early defense waste calcined in WCF consisted essentially of a

mixture of aluminium nitrate and fission products. The first set of

bins was designed to maintain the temperature of the calcined solids

below 400°C (752"F) , the sintering temperature, to prevent possible

evolution of volatile fission products. A plan of the first set of

bins at INEL, Idaho is shown in Fig. 2.3. An isometric drawing of the

first and second set of annular bins is shown in Fig. 2.4. The first

set of bins were designed rather conservatively, taking into account the

fresh nature of the wastes, assuming a volumetric heat generation rate

of 1200 W/m3 (142.75 Btu/hr ft 3
). Calcined solids were transferred

pneumatically from the calciner to a cyclone located over the top of the

bins; calcine falls by gravity to each of the concentric bins. The bins

are located inside an underground concrete vault. Total capacity of the

first bin set, which was filled in 1964, was approximately 200 m3 (7400

ft 3
) . The second and third calcined solids storage facility consisted

of 3.7 meter diameter cylindrical bins, also enclosed in reinforced

concrete vaults. The second and third sets of calcined storage differ

primarily in the height of the bins, capacity being 900 m 3
. The fourth

set of bins is similar to the second or third set but the capacity is

only 500 m 3
. But beginning with the fifth set, and future sets of bins
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SOURCE: Refill, Fifc.l.

Fig. 2.2 Schematic of the In-Eed Calciner Vessel.
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SOURCE: Ref.U, Fig. VI-14.

Fig. 2.3. First Set of Calcine Storage Bins- Plan View.
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will be similar in design to the first set, i.e., annular configuration

with natural circulation/forced circulation cooling because of projected

increase in heat-generation rates.

Geometry of the Calcine Storages :

The calcines storage facility at INEL consists of vertical

stainless steel bins within an underground concrete vault. Connections

are available to permit ultimate disposal or further treatment if that

is desired. Three solids storage facilities were placed in operation

prior to 1976 and the fourth was designed and constructed in 1976. The

first set consisted of four bins, each set containing a central bin

0.915 m in diameter by 7.3 m high, and two progressively larger

concentric bins, each 0.61 m thick by 6.1 m high with an annular space

12
between bins for convective cooling. These four sets of bins have a

total capacity of 220 m3 (770 ft 3
) and are surrounded by a rectangular

reinforced concrete vault. The bins are cooled by ambient air, which

flows through the pre-filters down an inlet duct, to the bottom of the

vault. Air then flows upward through the vault by natural convection

and out of the vault through a 15 m (50 ft) tall cooling stack (Fig.

2.5). A forced circulation system was installed in the first storage

facility but has not been needed. The cooling air can be shut off and

high efficiency particulate filters can be installed should

radioactivity be detected. The second set of bins consists of seven

3.66 m (12 ft) cylindrical bins, 12.8 m high (with a central bin and six

on the periphery), again housed in a reinforced concrete outer vault.

The capacity of the second set amounted to 900 m 3 (31800 ft 3
) of solids.

The bins are cooled by natural convection and designed for a maximum

surface temperature of 290°C (554"F)

.
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Fig. 2.5. Cooling Air Closed Loop System for Solids Cooling.
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Calcine Cooling :

The first set of bins was designed for cooling by forced air

circulation however, the decay heat was removed using only natural

convection by circulation of cooling air in the annular spaces between

the bins. Additional heat was removed by thermal radiative transfer

between the bin wall and concrete vault. The first set was designed on

the basis of a calcine volumetric heat generation rate of 1200 W/m 3

(142.75 Btu/hr ft 3
). Calcine placed in bin set-1 had an average heat

generation rate of only 300 W/m 3 (35.68 Btu/hr ft 3
). The highest

measured calcine center line temperature in bin set-1 was 185°C. Bin

set-2 contains both alumina and zirconia calcine with an average heat

generation rate of 250 W/m3 (29.74 Btu/hr ft 3
). Cooling air was shut

off for a period of twelve months beginning in 1969. Heat removal was

then primarily by convection to the vault air and bin walls to vault

walls. Heat was eventually dissipated by conduction to the surrounding

soil and to the water table. The maximum measured calcine temperature

during this test in 1969 was 695°C (1283°F).
13

The bin set-3 contains calcine with an average heat generation rate

of 50 W/m 3 (5.95 Btu/hr ft 3
) and the maximum calcine temperature

measured has been only 300°C (572°F) . The expected heat generation rate

of the calcines in the fourth and fifth set were to be 400-500 W/m 3
.

Maximum calcine temperature in these sets were to be limited to 650°C to

prevent sintering of calcines from sodium-zirconium feed. The

properties of the calcines significant to storage consideration are

given in Table 2.1 and the measured bin/wall temperatures are given in

Table 2.2.
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Table 2.1. Properties of Calcines in Storage at INEL.

Thermal conductivity (W/m-°C) 0.19 - 0.35

Storage bulk density (g/cc) Zr 1.55 - 1.7

Sintering Temperatures (°C)

:

zirconium fluoride 700

alumina calcine 1200

Zr-sodium calcine 650

Table 2.2. Storage Experience with Calcine Solids at INEL

Calcine Solids Bin Set
1 2 3

Calcine Heat Generation (W/m 3
)

Measured Maximum Temperature (°C)

Minimum Measured Temperature (°C)

Note :

1) Core sample from 2 bins in set-2 taken in 1978 revealed
no sintering.

2) Cooling air in bin set-2 was shut off for 12 months
beginning in 1969. Maximum measured calcine temperature
was 695°C and bin wall temperature was 290°C.

300 250 50

185 695 300

- 85 55
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Design of the Existing Solids Storage Bins :

The existing bins, especially the first set of bins at 1NEL, have

been designed taking into account the high rates of heat generation of

the first cycle wastes reprocessed and the lack of initial aging of

these wastes. Hence, the design was conservative. The design was also

due to conservative data on fission product volatility of the calcines

stored at high temperatures and also the sintering temperature ranges of

the varieties of calcines involved. The following were the design basis

assumptions with which the first set of bins were originally

U
constructed.

i) The bins were designed to maintain all of the stored material

below the calcination temperature, i.e., 400°C (750°F) and to

prevent, if possible, the evolution of radioactive fission

products. At temperatures above 400°C unconverted aluminum

nitrate and mercuric oxide in the product would decompose,

with the evolution of oxides of nitrogen, oxygen, and

mercury. These gases might entrain active dust in passing

through the stored solids. At still higher temperatures,

radioactive fission products may volatilize,

ii) Storage of the WCF (Waste Calcining Facility) solid products

is complicated by the poor heat transfer characteristics of

the granular calcine formed by the f luidized-bed calcination

process,

iii) Attenuation of the gamma and beta radiation from decay of the

contained fission products generates heat within the stored

particles of alumina.
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iv) In the narrow bin type of storage developed, excessive solids

temperature are avoided by limiting the distance between

cooling surfaces to 24 inches with the exception of the

central cylinder which has a diameter of 3 ft.

v) The maximum temperature will occur in the center of the bin

and depends upon the heat generation rate, the thermal

conductivity of alumina, the bin thickness, and the heat

removal rate from the bin walls. Each of the four WCF bins

consists of 36 inch diameter standpipe nested in two

concentric 24 inch wide bins. Heat is removed from the bin

surface by air flowing in the cooling air channels between

the bins. Either natural circulation or forced circulation

can be used to move the cooling air. A 9000 scfm blower is

installed to provide the forced circulation. It was

anticipated that the forced circulation may be necessary only

to hold the center line temperature below 400°C in the case

of wastes less than three years out of the reactor. Natural

circulation will provide sufficient cooling for older wastes.

Calculated temperature profiles with forced circulation are shown

in Fig. 2.6 for both two year cooled solids (MTR Type fuel) and solids

from WM-185 tank (aged defense wastes). Figure 2.7 shows similar

temperature profiles for natural convective cooling for both the wastes.

Activity and Heat Generation by Fission Products :

Except for ruthenium, which is volatile in the calciner, the

fission products will appear in the calcine products at the same ratio

of aluminium to the fission products that existed in the initial wastes
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SOURCE: Ref.11, Fig. V-l.

Fig. 2.6. Temperature Profile in the First Set of Calcine Bins- Calculated
Distribution for Forced Circulation CoolinR.



37

JTWUOf

5«

' 5
RN flAO'US f r ET

SOURCE: Ref.14, Pig. V-4 .

Fig. 2.7. T«P««ur« Profile I n «,. First Set of Calcine Bins- Calculate,.Distribution for Natural Circulation Cooling.



38

processed. Using this basis and an estimated aluminium content in the

solids to be 91% allows the fission product activities of the tank-185

wastes and the theoretical fresh wastes to be converted to curies per lb

of solids. It was assumed that 100% of ruthenium would appear in the

product. The actual activities of the solids would be lower than the

calculated activities, the extent depending upon the degree of ruthenium

volatilization.

The rate of heat generation by decay of fission products in the

solids is an important factor determining the design of the solid

storage bins. The heat generation rates for the solids have been

calculated using fission product decay energies taken from the

literature and assuming that all the radiation is dissipated within the

solids. However, heat generation rates calculated on this basis will be

somewhat higher than the actual. The error decreases as the bulk of the

solids increases. The assumption that 100% of ruthenium appears in the

solids would also contribute to the difference between calculated rates

and actual rates. The heat generation rates from the first cycle waste

solutions are shown in Fig. 2.8. The same data applied to the

theoretical MTR type of wastes are shown in Fig. 2.9. The procedure

involved in estimation of the heat generation rates is the conversion of

the waste activity to an activity per lb of solids and conversion of the

same to heat generation per lb of solids using decay energies available

from the literature. The heat generation rates then can be converted to

volumetric heat generation rates using the average bulk density (59.3

lb/ft 3
) of the formed calcines.



39

2 3 4 5 G 7 8

TEARS AFTER DISCHARGE (COOLING TIME)

LEGEND- T ANK a h a 1 80 D D B 1 82 183 o o o ] 85

"lR. 2..1 Heat feneration Rate of Calcined Solids in Tank lfin,lB2,183 I. 1R5.



40

1000.0-
j\

1

-

V
V V

s L

1

0. 1-
•*

2 3 4 5 6 7!
YEARS AFTER DISCHARGE (COOLING TIME)

\
Fig. 2.0 Heat feneration Rate of Calcined Solids- Theoratical HTR Haste



41

Performance Evaluation of the Bin Set-1 :

The first processing campaign of converting the defense waste

solutions into solid calcines at INEL was carried through during 1963-64

and calcines were actually placed in the first set of bins beginning in

1964. The field test and the actual temperature profiles measured

during this storage at the end of the first processing campaign gave the

feedback data and performance testing of the first set of bins (bin

designated WC-115-2). The outcome of the field test and the temperature

data indicated overdesign and conservative estimates with regard to

maximum temperatures. The following were the gist of the field test

results.

i) The heat generation rates of the wastes calcined during the

run ranged from 0.28 to 0.85 Btu/hr per pound of solids in

storage (16.8 to 51.0 Btu/hr ft 3
). At the end of the

campaign the total heat generation rate was 222,800 Btu/hr,

of which 65% was due to calcined solids from WM-187 feed

solution. The temperature at the center line of various

chambers (vertical mid points of bins) were dependent upon

the heat generation rates of solids in the specific chamber

and were also the highest,

ii) Temperature profiles at various elevations in the middle

chamber (central bin, 0.91 m dia) of bin WC-115-2 are shown

in Fig. 2.10. The profiles are typical of all the chambers,

except for the magnitudes of temperatures and the physical

time periods at which respective elevations were filled-up.

The bottom half of the chamber contained solids from WM-185

(five year aged wastes) operations and the top half from

WM-187 (three year aged wastes) operations.
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SOURCE: Ref.14, Fig. 10.

Fi£. 2.10. Center Line Temperature of Solids in the Middle
Chamber of WC-115-2, INEL.
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iii) The temperature during Nov., 1964 (about 225°C, at 15.5 ft

elevation) was the highest observed during and following the

campaign.

Removal of Heat from the Bins and Interpretation of Results :

The solid storage bins were designed to accommodate solids with a

heat liberation rate of 2.5 Btu/hr. lb (equivalent to a volumetric heat

generation rate of 142.75 Btu/hr ft 3
). Forced convection by means of a

cooling air blower was considered necessary to prevent the solids

temperature from exceeding 400°C, which was in turn considered as the

design maximum upper limit from volatility and sintering considerations.

Because the actual heat generated by the calcines averaged only 0.52

Btu/hr. lb (29.692 Btu/hr ft 3
) the operation of the blower (forced

circulation) was considered unnecessary. The bin, in effect, was cooled

by natural convection of fresh air, as the air rose past the bin

surfaces, with the bin vented through a 50 ft stack. Even with this

mode of cooling the actual temperatures measured in various chambers of

the bins were about 185°C (365°F). By September, 1964, it became

apparent that a maximum temperature had been reached and the declining

temperatures were following the decrease in ambient temperature

resulting from the seasonal changes.

In mid-September, 1964, air flow rates and temperature differentials

through the cooling air system were measured for estimating the extent

of convective heat transfer taking place with the natural circulation

mode. From those data, conservative estimates indicated that only 34%

of the heat generated was being removed by the cooling air stream and

the rest of the heat was apparently being rejected by radiant and

conductive means to the soil. A second field test was undertaken by
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shutting off the cooling air valves to obtain equilibrium temperatures

with no inflow of cooling air. The maximum temperature approached 225°C

after two months (which was also the maximum temperature measured during

these tests) and started to decline with the natural decay of

radionuclides. After an additional 3 months (March, 1965), the cooling

air inlet valves were reopened and temperatures reached a new steady

state at 145 - 150°C (300°F) . Outside concrete wall temperatures at the

soil - concrete interface midway up the wall surface reached a

pseudoequilibrium value of 45°C (113°F). Though a rigorous mathematical

analysis was not undertaken, it was apparent from the field test that

considerable heat was being transferred (perhaps by a combination of

radiative, and convective means) and eventually by conduction to the

soil surrounding the vaults.

Mathematical Modelling Studies for Simplified Geometries :

Following the field test a mathematical modelling study was

undertaken by D. E. Black and B. R. Dickey, Idaho Nuclear Corporation,

to analyze the heat transfer, particularly heat conduction through the

soil, and to pursue the inherent mode of heat rejection through

conduction. The merits of this system over the existing arrangement

are:

i) Takes advantage of the inherent mode of cooling through heat

conduction which is direct and failure proof,

ii) Avoidance of equipment for air circulation and the related

air cleaning accessories.

iii) The ruthenium volatilities in the exhaust was a serious problem

with fluidized bed calcination process. Should a bin leak

and spill radioactive solids into the cooling air stream, the
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activity release would be dangerous and is , in fact , one of

the design basis accidents that is considered in the safety

14
analysis. In the existing arrangement, though the calcine

feeder pipes and the distributor cyclone are isolated from the

primary system from the calciner vessel and the bins provided

with its own ventilation stack, in an accident scenario the

bins are required to be connected to the plant ventilation,

while shutting off the bin cooling. But accidental rupture

of feeder pipes and/or failure of the bins, especially due to

attrition are all possible occurrences. The problem gets

amplified in a bin configuration which is not only large in

size but geometrically complex. By totally burying the

calcine bins as individual units and by making the integrity

of such simpler geometries tight, an additional protection

against leakage can be obtained without the need for any

external cooling.

However, the question of efficient heat removal and the ability of

such simplified waste storage in maintaining allowable maximum

temperature over long periods of storage remain to be satisfactorily

answered. This requires analytical solutions and mathematical modelling

studies. The model study undertaken by D. E. Black and B. R. Dickey

was probably the first. To develop a model which would exactly suit the

existing geometrically complex bin arrangement was rather difficult.

The complexity was that there was a large number of bins enclosed within

a concrete vault surrounded by a convective layer of air surrounded by

soil outside. The model must be able to arrive at analytical solutions

to validate the temperature profiles measured in the field. However, the
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qualitative assessment of about 65% of heat conducted through the bin

walls to the soil does point out the validity of the assumptions in the

model, i.e., a viable mathematical modelling can be developed to devise

a new system of buried solid cylinders directly in the soil at varying

depths and to simulate the field conditions reasonably closely.

Cesium Migration :

The design of the first set of bins at INEL had been based upon the

maximum temperature limits imposed by the fission product volatility,

particularly cesium, which accounts for an appreciable amount of

generated heat in the stored calcines. Migration of the same at the

storage temperatures was one of the reasons for the lower design limit

on the allowable bin center line temperatures. But subsequent studies

undertaken did reveal that higher temperatures can be tolerated, up to

800°C (1472°F), without any migration of these fission products in such

storage configuration. The results of these studies indicate that

cesium-137 in a storage bin containing radioactive granular solids will

migrate only at temperatures above 700°C (1292°F). As the temperature

rises above 700°C cesium will move towards the outer and cooler parts of

the bin, staying mainly in the 625-750°C temperature band. Movement of

cesium in this manner will result in an actual center line temperature

lower than that calculated for a uniformly distributed source. In the

experiments undertaken for the study of cesium migration using gamma ray

spectrometry, migration began slowly below 900°C (1652°F), but was rapid

at 1200°C.

Stability of Alumina Calcine During High Temperature Storage :

Another important reason for limiting the maximum temperature was

the product was sintered at high temperatures and doubts about the
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stability of the calcines at such temperatures. But experimental

studies undertaken subsequently indicated that zirconia calcine can be

maintained in the free flowing granular form for temperatures up to

18
700°C. In this form it can be removed readily for transport or

additional treatment, if that is required. Conversely, it can be

converted to a sintered mass without additional chemicals, simply by

heating the calcines to 800°C or higher. This may be a more desirable

form, if the solids are to be transported to another location. The time

required to form the sintered mass decreases, as the temperature

increases but volatility of the fluorides becomes significant at

temperatures above 1000°C. Cesium volatility also becomes a significant

factor above 800°C. The primary advantage of turning calcines from the

granular to sintered mass may be its greater physical integrity, but for

the calcines in the interim bin type of storages, it may be actually a

problem for its eventual retrieval for vitrification. From those

angles, safe practice would be to retain its free flowing form and an

upper limit of 700°C seems appropriate from sintering considerations.

Modelling Studies at Idaho Nuclear Corporation :

The current trend in nuclear burial facilities is toward design of

simplified storage facilities which can be approximately described as

solid cylinders buried at varying depths below the surface of soil. The

necessity for an outer containment has been progressively omitted in

disposal of nuclear wastes except for such interim storages in an

aqueous form. With these wastes the doubts about leakages of wastes to

environment override other considerations. The current design concept

for storage of spent fuel elements (RSSF) follows the simplified design,
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in spite of the fact that an appreciable amount of heat output is one of

the major problems with the dry-type of storage being considered for

burial in national facilities.

The model developed by D. E. Black and B. R. Dickey for the

calcine storages can be approximately described as cylinders buried at

varying depths below the surface of the soil. A schematic

representation of these storage facilities is shown in Figs. 2.11 and

2.12. The ends of the heat sources were assumed to be perfectly

insulated in this study and the heat losses from the ends were neglected

without affecting significantly the accuracy of the calculated

temperatures. Normally these losses are negligible for small diameter

containers. Since there is a discontinuity in the medium at the ends of

larger diameter heat sources, boundary conditions should be specified.

However, the complexity of mathematics is reduced if a continuous medium

is used and accuracy is not significantly affected. The thermal

conductivity of the source and the surrounding media significantly

affect the maximum temperature in the waste and the temperature

distribution in the soil surrounding the container. A homogeneous soil

with constant physical properties (with the exception of thermal

conductivity dependence on temperature) was assumed in the model.

Mathematical Formulations:

Although the interior of the present containment structure is

geometrically complex, a homogeneous heat source was assumed for the

model. Since the thermal conductivities in the region < r < R,, where

R, is the radius of the bin, are independent of the variable 'Z
1

, the

specification of boundary conditions at the top and bottom of the bin
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where a discontinuity normally exists is eliminated. In a steady state

mode of heat transfer, and with the assumption that soil surrounding the

container is a semi- infinite medium, the boundary value problem for the

temperature distribution in the bin and the surrounding medium is given

by the Fourier conduction equation:

In the region bounded by the heat source (i.e., in the bin)

3 T 3T 3 T

r-T" + -T"^ + x-r + q ",' (r ' z) = 0, for (0 < r < rv and d < z < D) . (2.1)
Sr'' r 3r dz* k - - b

In the region in the soil surrounding the bin,

3
2T 3T 3

2T

lr^-
+ 7^ + ^- =0

'
for (r>r

b
andany z)

.

(2.2)

The boundary conditions for the model are,

Tj (r.O) = T
2

(r.O) = 0, (2.3)

lim Ij (r,z) = T, (r,z) = 0, (2.4)

lim T
2

(r,z) = 0, (2.5)
f-»-oo

T, (r, ,z) = T, (r, ,z), for d < z < D, (2.6)lb z b — —

3T 3T

k t— (r ,z) = k -r— (r, ,z), for d < z < D, (2.7)
c 3r b s dr b — —

T (0,z) = Finite. (2.8)

Continuity of the temperature and heat flux between the regions are

given by Eqs. (2.6 and 2.7).
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A finite temperature at r = is expressed by Eq. (2.8). The

remaining boundary conditions state the specific temperatures at the

physical boundaries i.e., Eqs. (2.3, 2.4 and 2.5).

The steady state solutions for the temperature distribution in the

waste storage bin and the surrounding soil, using Fourier

transformation, solving the resultant formulation, evaluation of the

arbitrary constants, including the inversion of the transform solutions,

(for details of the analytical solution, see Appendix E of Ref. 1)

results in the following final solution for the temperatures T
1

(the

temperatures inside the heat source, i.e., the calcine bin) and T. (the

temperatures in the soil)

:

mrd nuD

= 2LV" - [cos — - cos — ] U(X
B
,X,k

c
,k

s
) sin (—

)

(2.9)

,,2 n .i. „ [cos
-f

cos -=—][I.(JOK (XJ] sin (-=-)

T.(r,z)=.^-3 I =£ 1 L 3 ° 1 il—
, (2.10)

,3 n=i n
3
rk

c
K
o<vVV WVVVJ

where

k ,k = The thermal conductivities of the solid waste
and soil respectively, (Btu/hr ft °F)

,

I (X),I (X) = Modified Bessel functions of the first kind, of

zero and first order respectively, evaluated for

the argument (X)

,
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B
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X
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L = Finite depth of the system, (ft).

The partial differential equation and the boundary conditions

commonly termed a BVP (boundary value problem) were solved by transform

methods. The boundary conditions of the problem dictate the particular
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type of transformation which should be employed. Use of an infinite

Fourier sine and cosine transform (implying a semi infinite medium in

the Z-direction) to eliminate the independent variable 'Z
f requires

numerical evaluation of a complicated inversion integral containing

modified Bessel and trigonometric functions. If the range of the

independent variable, 'Z' is limited to < Z < L, where L is a finite

length, evaluation of a complicated inversion integral is not required.

Since the temperature at the boundaries in the Z direction are defined,

21
the finite Fourier sine transform is used in the model. The finite

length 'L' is the distance at which a further increase in L results in

negligible change in the calculated temperatures. The final value of L

is normally much greater than the burial depth of the source.

The calculational procedure for deriving the solutions to the

equations require that the initial value of L be incremented until the

changes in calculated temperature is less than a specified quantity. An

arbitrarily large initial value of L can not be used since the number of

'n' required (Bessel routes in the solutions for Tl and T2) increase

with increasing L. The final value of L used in a calculation is

primarily dependent on the strength of the heat source, the thermal

conductivity of the surrounding medium, and specified accuracy of the

temperature. The convergence of temperature as a function of the

transform parameter ' n 1

, is analogous to that of a typical Fourier

series expansion as shown in Fig. 2.13. For a proper value of L (large

enough that the temperature is no longer dependent on L) , the

temperature oscillations are small, and the required value of n (= 100

for the case shown in Fig. 2.13) is dependent only upon the desired

accuracy of the calculated temperature. For values of L which are too

small, the oscillations are much more pronounced.
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T'cmfr.m Pu.om«i

SOURCE: Ref.l, Fig. 6.

Fig. 2.13. Convergence of Steady State Temperature in the Storage Bin asa Function of the Parameter 'n\
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Modification of the Solid Cylinder Geometry by Annular Configuration :

The mathematical model for the temperature profiles in the previous

study has been for very simple geometry, namely, a solid cylinder

configuration, and determination of the near field effects of the heat

source buried in soil. Also, it was the closest geometry suitable for

field verification of the model calculations, which were subsequently

validated using electrical heating elements buried at various soil

depths at INEL site. Though the concept of using annular and finned

configurations for these high-heat output wastes is not a new subject,

all the analyses done in this direction pertain to interim storage and

transport considerations for the high-level waste canisters. The

analysis was performed for the reference canisters (which are typically

12 inches or less in diameter and 8 ft - long) at Pacific Northwest

20
Laboratories. Practically no modelling studies were undertaken in the

analysis of large waste storage bins such as the ones at INEL for

annular configuration. But, the heat transfer is basic and the general

principles underlying apply equally well for the annular configuration

proposed in this study. An annular waste storage container with an

increased outer diameter can hold higher allowable internal heat

generation of stored material because of increased surface area for heat

dissipation. The annular configuration can store larger volumes of

waste per unit height than solid cylinders without exceeding the maximum

temperature and therefore could result in a smaller number of such

storage facilities required.

But in the comparative analysis of heat-transfer from radioactive

containers, there are two additive temperatures to consider. The first

is the temperature rise from the surrounding medium to the surface of

the container. This is highly dependent on the environment in which the
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container is stored and is often sufficient if the surface temperature

is the controlling design factor. If the design limitation is at the

container center line, the internal temperature rise from the surface to

the center line must be added to the external rise to define the design

condition. For direct burial in soil the internal rise is secondary;

for storage in a water basin it is controlling. This is an important

factor in considering the annular geometry that is pursued in this

study, because a problem with the annular configuration is that, the

inner annular wall results in the maximum calcine temperature with a

free standing column of air, that is considered in this model. This of

course will not be a problem with the waste directly buried in soil; but

will be a problem from transport considerations (such as the calcine

transport canister) which may require convective cooling with a liquid

medium.
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CHAPTER 3

MATHEMATICAL MODEL FOR THE ANNULAR GEOMETRY

The waste storage configuration pursued in this research work is an

improvement over the previous configuration for the simpler geometries

of buried heat sources, which assumes a solid geometry surrounded by

soil medium. In the current configuration an annular geometry was

assumed in which the innermost cylinder holds a column of air. The

column of air is surrounded by an annulus which contains the heat source

(calcined waste) . In turn the heat source annulus is surrounded by

soil. A schematic of the annular bin model is shown in Fig. 3.1. The

mathematical formulations are derived for such an annular configuration

for the three regions, using the Fourier heat conduction equation and

using boundary conditions for the regions. The analytical solution

gives the temperatures in the three regions, namely, air in the

innermost cylinder, calcined waste in the annulus, and soil outside.

The results for solid geometry are also calculated by collapsing the

innermost radius (region bounded by air) to a very small radius (0.001

inch) which thus reduces approximately to that of a solid geometry. The

analytical results arrived at in the earlier study (1) compare favorably

(within 50°F, for a maximum temperature of 1694°F) to those obtained for

the "collapsed" annular geometry.

Model Assumptions :

The assumptions used in this model for the mathematical

formulations of the conduction equations and the boundary conditions are

identical to those of the previous study. The principal difference is

in the geometry, the bin configuration, and the equation development and

the approach to the analytical solutions. The finite Fourier
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Ground Level

UFinite
Depth)

.^t Calcine(Source)

Air

Fig. 3.1. Schematic Diagram for the Annular Geometry of the Bin.
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transform, as was used in the previous study was not used in this model

in arriving at the analytical solutions. The formulations are arrived

at for the three conduction regions by the use of superposition for the

inhomogeneous source term involved in the region bounded by the heat

source. The partial differential equations are solved using the

separable variable technique. The assumptions that are made in

development of the formulation and in arriving at the analytical

solutions are described below:

1) The temperature calculations are for the steady state mode of

heat conduction. No transient solutions are considered in

this study.

2) The heat source is a cylindrical annulus with a volumetric

heat generation rate of q' ,? (Btu/hr ft 3
) and of length L in

the Z direction (depth of the container) . This eliminates the

need for specification of the boundary conditions at the top

and bottom of the bin where a discontinuity normally exists.

3) The rate of heat generation within the homogeneous source is

independent of time and the soil surrounding the container is

considered as a semi-infinite medium. The heat transfer is

ideally represented by the Fourier heat conduction equation

and is solved using a procedure common to solution of boundary

value problems.

4) For the purpose of this model, the thermal conductivity was

assumed independent of temperature. However, for the air in

the inner region appropriate values of k . were used in the

calculations (i.e., k . at 293 °K 0.014 (Btu/hr ft°F) and
air

k . at 1400 °K = 0.0414 (Btu/hr ft °F)).
air
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5) The internal complex geometries and the layout of bins in the

existing arrangements were reduced to a simplified geometry

for the purpose of the model, as was done in the previous

study. The bins are assumed to be individual heat sources

buried in soil at varying depths.

6) The problem is two dimensional, i.e., in the radial and

axial (r and z) directions. The variations in the azimuthal

direction was not considered.

7) The effective increase in the source radius due to gamma ray

heating outside the physical dimension of the storage

container was neglected. The inaccuracy introduced by this

assumption in the estimates of temperatures is negligible,

especially for large diameter containers. For a container one

relaxation length in diameter, or 4 inches for common wastes,

approximately 10 percent of the total gamma radiation escapes

to the surrounding medium. For a container ten relaxation

lengths in diameter (or 40 inches) , less than 2 percent of

gamma radiation escapes. Since gamma radiation accounts for

less than one-half of total heat generation, only one percent

of heat dissipation escapes to soil.

8) Heat loss from the ends of the heat source were neglected.

Such losses from containers with large length-to-diameter

ratios are negligible; as length-to-diameter ratio decreases,

i.e., for a large diameter container, heat losses become

significant. Thus, the heat flow is one dimensional, i.e., in

the radial direction.



61

The mathematical formulations are made for the three regions and

details of the developed equations and the analytical solutions are

described in the following section.

For the central region, i.e., < r < r , the following model was

used. The temperature in this region was designated T . The Fourier

heat conduction equation for this region with no heat source is

3 2T 3T 3
2T

TT + -T^ + T~r- °- (3-D3r r 3r 3z

The boundary conditions used, which are the same as those used by

Black and Dickey (1) are

T^r.O) = 0, (3.2)

TjCr.L) = 0, (3.3)

TjCO.z) is finite, (3.4)

Vv z) =W Z) ' (3 - 5)

3T (r,z) 3T (r.z)

k —

^

= k —

^

. (3.6)
a 3r c 3r

The first two boundary conditions describe a perfect insulation

condition generated by the soil covering at both top and bottom of the

waste. This is somewhat of an unrealistic condition but matches the

conditions of Black and Dickey (1).

A separation of variables technique is applied to Eq. (3.1) by

assuming a solution of the form

T^r.z) = R(r)Z(z).
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Substitution for T (r,z) in Eq. (3.1), followed by division by R(r)Z(z)

and a slight rearrangement yields

J, d 2R
+ J_ dR = _ J_ d z Z

R dr 2 Rr dr Z dz 2"'

Since both sides of this equation are functions of only a single

variable, both sides must be equal to a constant (A 2 ). Thus, two

equations result. The first one is,

^4 + r Q- - A
2r 2R = 0.

dr"* dr

This is a modified Bessel's equation which has a general solution

of,

R(r) = CI (Ar) + DK (Ar)

,

(3.7)

where I (Ar) , K (Ar) are modified Bessel functions of the first and
second kind and zero order, respectively.

Since T (0,z) is finite, D must be zero because K (Ar) goes to

infinity at r = 0.

The second equation from the separable variable technique is

Pi + A 2 Z = 0.
dz

The general solution for Z(z) is

Z(z) = A sin (Az) + B cos (Az) . (3.8)

Since T.(r,0) = 0, B (since cos (0) is unity). Also since

Ijdr.L) - 0,
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A sin (XL) = 0,

and if A j< 0, sin (XL) = at XL = nil, n = 1,2,... . Thus,

XL = nn,

or

, _ nir
A " I" •

Finally, the overall solution is

TjOr.z) = I Vo (Xr) sln 5T«I • (3.9)
n=l *

where A = AC for each value of X.
n

For the region in the soil, i.e., r > r. the following model formulation

was used. The temperature in this region was designated T,. The

Fourier heat conduction equation for this region with no heat source is

3
2T 3T 3

2T

The boundary conditions used are:

T
3

(r,0) = 0, (3.11)

T
3

(r,L) = 0, (3.12)

T
3

(»,z) = finite or 0, (3.13)

3T 3T

T
3

(r 1>z ) = T
2

(r llZ ). (3.15)
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The last of the two boundary conditions express continuity of flux and

temperature between the two adjacent regions, i.e., the heat source and

soil (the temperature inside the heat source region is designated as T

and k and k represent the thermal conductivities of the calcine and

soil respectively)

.

Substitution of separated variables in equation (3.10) results in

the following ordinary differential equation:

I d R + i_ M. = _ I d z

R dr 2 Rr dr Z dz 2

As before, since both sides of the equations are functions of only a

single variable, both sides must be equal to a constant (X
2
). Thus, the

first of two resultant equations are

2 d 2R dR , 2 2„
r
2 -=—j- + r j X 2r2R = 0.
dr dr

This is a modified Bessel equation which has a general solution of

R(r) = CI (Xr) + DK (Xr)

.

(3.16)

Since T (°°,Z) = or finite, C must be zero.

The second equation from separation of variable yields

£| + X
2Z = 0.

dz

The general solution for Z(z) is

Z(z) = A sin (Xz) + B cos (Xz)

.
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Since T,(r,0) = 0, B = (because cos (0) is unity).

Also since T.(r,L) = 0,

and if A 4 0, sin (XL) = at XL = nir, n = 1,2,

Therefore, XL = nit.

, niT
or X = -—, and

Z = A sin p
Finally the overall solution for T, is

T. (r,z) = I B K (Xr) sin W- z , (3.18)
3 .no (LI

n=l k >

where B = AC for each value of X.
n

For the annular region containing the heat source, i.e., r £ r < r.

,

the following model formulation was used. Let the volumetric heat

generation rate of the heat source be designated q' 1
' and the

temperature in the region T . The Fourier heat conduction equation

which contains a source term is

3
2T 3T 3

ZT

c

As the above equation is inhomogeneous due to the presence of the heat

source term, the analytical solution requires superposition.

Let T
2
(r,z) = T

4
(r,z) + *(z).

Using separation of variables and substitution in Eq. (3.19) yields

the ordinary differential equation:

d 2T dT d 2T

dr^ +
7dr-

+ di^ + *" (z) +V =0 - ( 3 - 20 >
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The above equation is split into two parts and solved separately using

separation of variables. The first part of the Eq. (3.20) is

dr r dr dz

The boundary conditions are

T
4

(r,0) = 0,

T
4

(r,L) = 0.

Substitution for T,(r,z) in Eq. (3.20) followed by division by R(r)Z(z)

yields

j_ d 2R J_ dR _ 1 d 2 Z

R dr 2" Rr dr Z dz2" '

which is as before a modified Bessel equation having a general solution

of

R(r) = CI (Xr) + DK (Xr).
o o

The second equation from the separation of variables is

H + X*Z - 0.
dz*

The general solution for Z(z) as before is

Z(z) = A sin (Xz) + B cos (Xz)

.

Since T
4
(r,0) = and T

4
(r,L) = 0, the particular solution is

Z(z) = A sin (p

Therefore, the overall solution for T, is
4

T
4
(r,z) = Z [C

n
I
o
(Xr) +D

n
K
Q
(Xr)] sin gl z
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The second part of Eq. (3.20) is

"(z) *\ 0.

The boundary conditions are

0(0) = 0,

*(L) = 0.

Integrating the differential equation twice,

* (z) - F1 r + c
i
z + c 2-

Since i(i(0) = , the arbitrary constant C 0.

'
C
l

=
l

;

k~" U

Therefore, the solution for <l>(z) is

k_ J [2 I | k I 12I^H £](*>. (3.22)

The final solution for T is

T,(r,z) I [CI (Xr) + D K (Vr)] sin f- z
2 _, n o no (L

OT ^H- (3.23)

The solutions for the temperatures T , T and T are

T (r,z) - I A I (Xr) sin \^-z\,
1

n-1
n °

(3.9)
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T„(r,z) = Z [C I (Xr) + D K (Xr) ] sin |rL z
2 .no no L

n=l v

ItI (*> (3.23)

T 3 (r,z) = Z BK (Xr) sin y! z . (3.18)
i

n ° t
L

Jn=l l J

The remaining boundary conditions required in the evaluation of the

arbitrary constants (A , B , C , and D,n = l,2, ...,<*>) are the' n n n n

continuity equations for flux and temperature. They are

3T g<r

9T 3T

k
a TT < rn'

z >
= k

, TT < rn' z >> (3.25)
a <3r o c dr o

T
3
(r 1>Z ) = X

2
(r

1
,»), (3.26)

T^.z) = T
2
(r

Q
,z). (3.27)

Using Eq. (3.27) and substituting the expressions for T. and T yields

Z A I (Xr ) sin fc2- z] = Z [C I (Xr ) + D K (Xr ) sin fei
, n o o L / , n o o n o o L

n=l * > n=l v

OfMaffl-

Using the orthogonality condition and expanding the series expressions,

together with the definite integrals yields
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A I (Xr ) \ = [C I (Xr ) + D K (Xr )] \n o o 2 no o no o 2

k 2

I /(-l)
n
[2-n 2

TT
2 ]-2 Llf-L'(-l)

n

k 2 nir

A I (Xr ) - C I (Xr ) D K (Xr ) - |f1 f^Hl!!]^!!
n o o noo noo \ k I ¥ 3 I n

or A I (Xr ) = C I (Xr ) + D K (Xr )noo noo noo k k 3 n

L 2 |2(-1)"-2|

Let the expression |^ Ft r'a
~ 2

\
= Ti

Therefore the arbitrary constant A is

D K (Xr )no o Term
A
n

C
n

+
I (Xr )

' I (Xr )
- (3.28)

Using the boundary condition in Eq. (3.26) and substituting the

expressions for the temperatures T and T yields

B K (Xr.) = C I (Xr,) + D K (Xr.) + Term.no 1 no 1 no 1

Therefore,
C I (Xr,)

B = " ° X + D
Term

n K (Xr,) n K (Xr,)ol ol (3.29)

The boundary condition in Eq. (3.24) is

3T
2

3T

kc1r- (r ' z) =ks3T (r
l'

z) "

The left hand side of the above equation on substitution is

3T °°

kc1^" k
e

l f Cn
XI

l
(Xr) + D

n
A(-l)K

1
(Xr)] sin fel

n=l I
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Similarly the right hand side of the equation is

3T «
f

k — - k Z - B Xk, (Xr) sin r2- z
s 3r s , n 1 L

n=l l

Now using the boundary condition in Eq. (3.25), the left hand side

reduces to

3T - ,

k -i-i = k I A XI. (Xr) sin £2-
a 3r a , n 1 L

n=l "•

But,

3T
2 I

3T
1 I

k
c TT \

= k
a JT

\

'r=r 'r=r

k [C XI. (Xr ) - D K,(Xr )X] ^ = k A XI. (Xr ) ^c n 1 o n 1 o 2 a n 1 o 2

Therefore,

k k (Xr )

A -r~tC -D T ,.
° ] . (3.30)n k n n I, (Xr )

a i o

Similarly,

3T
2 I

3T
3|

c 3r s 3r
'

r=r
l

r=r
l

k
c
tVI^Xr^ - D

n
Xkl (Xr

o
)] |= k^-B^XK^Xr^ \

Therefore,

k
r CI, (Xr,)-,

From Eqs. (3.28) and (3.30) and equating the expressions for A yields

D K. (Xr )•> D K (Xr )

C _ n 1 o _ t no o . Term
k [ n I (Xr ) I n I (Xr ) I (Xr )a v

1 o J O o o
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C[-^-l|=D |c °.° °. Term
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n k I n k I,(Xr ) I (Xr ) I (Xr )'a ' v a 1 o oo oo

Let the expression :— -=

—

tt r- + =—tt r- = Term 3 .F
[k I.(Xr ) I (Xr )
* a 1 o o o '

Therefore,
Term

D (Term 3) +
I (Xr )

c ° °

r-1

From Eqs. (3.29) and (3.31) equating the expressions for the arbitrary

constant B ,

k
(

C I.(Xr,)i C I (Xr,) T=_
k I n K.(Xr.) j K (Xr.) n K (Xr,) '

1 i ' o 1 o 1

r
k

i f
I (Xr.) k I.(Xr.)

D U-lUc' Term
n Ik I n k (Xr,) k K, (Xr.) K (Xr,)

^ s J ^ 1 sll 01

D fc*
Term

n |k - lj - K (Xr )

C
n

=
I
o
(Xr") k

£
I^Xrp •

(3 - 32)

K
o
(Xri )

+
k
s Kl (Xri )

rl.ttr^ k
c

I,(Xr
1
)'.

Let the expression U-y + ^0x0 = Te™ 2 -

v 1 SI I
J

Therefore,

_
& -i] _ _£"=_] fc _ A . Term 2

L Tem 3 +
!

I K (Xr,) / ik I In I (Xr )

I

»»(fe-#
l£rHrr * rfir (M)00 o 1 ^ a '

'



72

Therefore,

Term • Term 2 . Term
I (Xr ) K (Xr.)

D = ° °

' s t- l
l

IT" 1

(3.33)

Term 2 • Term 3

Thus, the expression for A , Eq. (3.28), can be formulated without

the arbitrary constants C and D by using Eq. (3.33) in Eq. (3.32) and

substituting the result along with the expression for D , Eq. (3.33),

into Eq. (3.28). Similarly, we can eliminate C and D from the
n n

expression for B , Eq. (3.29). These results can then be used in Eqs.

(3.9), (3.23), and (3.18) to find T (r,z) , T (r,z) , and T (r,z),

respectively.

In the development of this model the z-dependence was included.

However, the temperatures of interest were only those which are maximum,

i.e., at the midpoint in the z direction where sin -— z is unity. This

eliminates the need to define precisely the temperature in the region

below and above the calcined waste and the inner air (or soil-filled)

regions. In fact this model does not define the temperatures well in

these regions. To do this properly would require another system of

equations for each of these regions and boundary conditions which match

temperatures and heat flux at the interfaces. This is a fairly complex

development, but is not needed because the maximum temperature occurs at

the midpoint in the z-direction and none of the boundary conditions in

the z-direction will impact the calculation of the maximum temperature.

Finally an explanation of the boundary condition below Eq. (3.8),

i.e., T (r,0) = T (r,L) = 0, is needed. Zero was used as a convenience.
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This means all temperatures calculated using this model should be

temperatures above ambient conditions (at the top, z = 0) and earth

equilibrium temperatures (at the bottom, z = L)

.
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CHAPTER 4

RESULTS AND DISCUSSION

A source program written in FORTRAN for numerical evaluation of the

analytical solutions for the temperatures in the regions is included as

Appendix 1. The source program includes two subroutines needed in the

calculation of the Bessel routes for the modified Bessel functions and

for evaluation of the various constants in the analytical solutions.

Parameters influencing the maximum temperature within the vessel

containing the solid waste strongly affect the design of the storage

facility. The following parameters are pertinent to the results:

i) Physical properties of the solid waste and soil.

ii) Physical dimension of the heat source, namely the air column

radius, the annular source surrounding the air column, the

near field dimension in the soil and the burial depth of the

containers,

iii) Magnitude of the heat generation rate.

iv) Boundary conditions imposed upon the model.

All the above physical parameters which affect the calculated

temperature profiles were studied in the parametric calculations, using

the source program. For validating the results for the solid

configuration of the bin, the air column radius was taken as a very

small value (0.001 inch) and the calculations were performed using the

same source program as that of the annular cylinder. The various

interpretations of these parametric studies/calculations are as follows:

a) Solid Bin Configuration :

1) The temperature profiles for (the solid geometry) of a 3 ft

radius storage bin were calculated with a heat generation rate
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of 50 (Btu/hr ft 3
). Figure 4.1 and Table 4.1 show the

temperature profiles at different vertical cross sections in

the storage bin. The temperatures are the highest at the

vertical mid-section in the radial direction (1694. 97°F) at

center vertical mid-section, declining to a value of 408°F at a

radius of 16 ft in the near field in the soil) . The numerical

values are very close to those calculated in the previous study

in their model (i.e., leOO'F).
1

2) The thermal conductivity of the solid waste has a definite

influence on the calculated maximum temperatures. This is one

of the important design aspects in deciding on a specific waste

form, as the calcines resulting from the various feed solutions

(as zirconia calcine, alumina calcine, etc.) have varying

thermal conductivities. The maximum bin temperatures are

influenced by the thermal conductivities of the product. The

lower the thermal conductivity of the calcine, the higher is

the maximum temperature. This effect is shown in Fig. 4.2 and

Table 4.2. The plots are for thermal conductivity as a

parameter and the effects of three values (i.e., 0.15, 0.2 and

0.3 Btu/hr ft °F) are shown. However, thermal conductivity has

no effect on the soil temperatures and influences the

temperature profiles within the bin only.

3) An increase in heat generation rate, results in an increase in

the maximum temperature profile. This effect is shown in Fig.

4.3 and Table 4.3. For a heat generation rate of 50 (Btu/hr

ft 3
) , the maximum temperature that is experienced in the bin is

as high as 1694. 95°F.
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Heat Generation Rate
Configuration : Solid Cylinder

50 (Btu/hr ft
J

)

Radius of the Bin - 3 (ft) Length = 40 (ft)

"solid
= °- 2

'
Ksoil * 0-5 (Btu/hr ft "?)

I 2 3 a 5 6 7 8 9 10 II 12 IJ ,.115 16

RADIAL DISTANCE FROM CENTER 'FT)

LEGEND' DEPTH » i. 10" 6 > a 20 W | . i 40 n , , n 55 FT

Ptfi. 4.1 Termer* ture Profile at Vertical Sections in the Bin- SoltdCylinder Configuration.



Table 4.1. Steady State Temperature Profile at Different
Depths in Calcine Bins for the Solid Cylinder
Configuration.

Radial
Distance Temperatures (°F)

(ft) Depth=10 ft Depth=20 ft Depth=40 ft Depth=55 ft

0.0001 1363.15 1580.00 1694.97 1634.34
0.0002 1363.15 1580.00 1694.97 1634.34
0.0004 1363.15 1580.00 1694.97 1634.34
0.0005 1363.15 1580.00 1694.97 1634.34
0.0010 1363.15 1580.00 1694.97 1634.34
0.5000 1348.50 1564.25 1679.18 1617.62
1.0000 1302.37 1517.93 1632.43 1570.93
1.2500 1268.18 1482.93 1597.31 1536.31
2.0000 1118.62 1331.68 1445.87 1384.68
3.0000 811.43 1020.68 1134.06 1073.12
4.0000 683.77 890.28 1004.03 944.47
6.0000 514.12 712.88 823.57 764.53
8.0000 403.93 589.77 696.37 640.30
12.0000 269.75 425.05 523.86 470.66
16.0000 191.30 318.43 407.99 358.86

77

Length of the calcine bin = 40 ft.

Bin radius = 3 ft.

Thermal conductivity of soil =0.5 (Btu/hr ft °F)
Thermal conductivity of calcine =0.2 (Btu/hr ft °F)
Heat generation rate = 50 (Btu/hr ft 3

)
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Configuration : Solid Cylinder
Heat Generation Rate 20 (Btu/hr ft 3

) .

Radius of the Bin = 3 (ft) Length >= An (ft).
Ksoil

= °-5 (Btu/hr ft *F) .

750-'

fig. 4.

1.2 3 • 5 6

R*m*i n:irANrF from rFurfrnm
lFCFMD> rOMOUrTIVITT *-+-* 0.15 e-e-o o.i . „

i o.j

Effect of Waste Thermal Conductivity on 'iaxinum Temnerature-
Solid Cylinder Configuration.



Table 4.2. Effect of Waste Thermal
Conductivity on Calculated
Steady State Temperature
Distribution in and Around
Calcine Bins for Solid
Cylinder Configuration.

79

Radial
Distance

(ft)

Temperature (°F)

solid waste
0.15 0.2

(Btu/hr ft °F)

0.3

0.0001 753.31 678.13 601.99
0.0002 753.31 678.13 601.99
0.0004 753.31 678.13 601.99
0.0005 753.31 678.13 601.99
0.0010 753.31 678.13 601.99
0.5000 745.44 672.25 597.73
1.0000 720.69 653.44 585.29
1.2500 702.00 639.56 575.98
2.0000 621.38 579.06 535.48
3.0000 455.06 454.63 452.43
4.0000 401.98 401.61 400.87
6.0000 329.75 329.42 328.77

Bin radius « 3 ft, length = 40 ft

Length of bin = 40 ft

Thermal conductivity of soil =0.5 (Btu/hr ft °F)

Heat generation rate = 20 (Btu/hr ft 3
)
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Configuration : Solid Cylinder
Radius of the Bin = 3 (ft) Length - 40 (ft).
K
soil " °- 3

>
K
solid'

= °- 2 (Btu/ hr ft *F).

2 3 ' ! 6 7 H 9 10 I I i i 1 J

RAOHl DiSTANCF FROM CFNTFR Ifn

LFGFNOi HFATCFNRATB 6 a a 15 o o 30 «-

"**' 4 ' 3

wS^r*!! """-"O" »« on Maxim™ Tenner, t ,:-e-WLyllnder Configuration.
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Table 4.3. Effect of Heat Generation Rate
on Calculated Steady State
Temperature Distribution in
and around Calcine Bins for
Solid Bin Configuration.

Radial Temp erature (°F)

Distance
(ft) Heat Generat ion Rate (Btu/hr ft 3

)

50.0 30.0 15.0

0.0001 1694.97 1017.09 508.53
0.0002 1694.97 1017.09 508.53
0.0004 1694.97 1017.09 508.53
0.0005 1694.97 1017.09 508.53
0.001 1694.97 1017.09 508.53
0.500 1679.19 1008.13 503.56
1.000 1632.44 980.19 489.55
2.00 1445.88 868.31 433.45
4.00 1004.03 602.42 301.20
6.00 823.58 494.14 247.07
8.00 696.37 417.82 208.91
12.00 523.87 314.32 157.16
16.00 408.00 244.80 122.40

Bin radius = 3 (ft)

Length of bin = 40 (ft)

Thermal conductivity of soil =

Thermal conductivity of solid
0.5 (Btu/hr ft °F)

0.2 (Btu/hr ft °F)
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4) Increase in bin diameter increases the peak temperature

appreciably (as shown in Fig. 4.4 and Table 4.4). This is in

direct proportion to the total inventory of the solids in the

bin and therefore of the total heat input. This relationship

is an important consideration in design of the maximum diameter

of the storage bin (directly buried bins) while not exceeding

the allowable temperature limits. For a heat generation rate

of 20 (Btu/hr ft 3
), and with a thermal conductivity of 0.3

(Btu/hr ft °F) a bin radius of only 4 ft results in peak

temperature as high as 1993°F (for a solid configuration of the

bin).

5) The effect of burial depth of the bins below the ground level

is shown in Fig. 4.5 and Table 4.5. The burial depth below

grade has marginal effects on the peak temperatures. In all

the above cases the peak temperatures are evaluated at

respective vertical mid-section of the bins depending upon the

burial depths. This follows from the boundary conditions that

the bin system is assumed to be a continuous heat source

extending the system length 'L
1

.

The following are a similar set of calculations for the annular

configuration of bin geometry, developed in this study. The parametric

values of variables used in the computation of temperatures (such as the

heat generation rates, thermal conductivities, the bin configuration,

etc.) are similar for easy comparison with solid bin configuration on

common basis. In the parametric studies, the temperature profiles at

the vertical section as a function of the radial distances were computed

for different variables.
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2000-

Configuration.1 Solid Cylinder
Heat Generation Rate = 20 (Btu/ hr ft^ )

Solid
= "- 1 (Btu/ lir f t •''").soil 0.3

RAOUl DISTANCF FROM CFNTFR (FT)

LFOFNO'- BINRADIUS s-B-e 2 FT I a » 3>T 4 n

FiR. 4.4 Effect of Bin Radius on Maximum Temperature- Solid Cylinder
Configuration.
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Table 4.4. Effect of Bin Radius on
Calculated Steady State
Temperature Distribution
in and around Calcine Bin.

Radial Temp erature (°F)

Distance
(ft) Bin Radius (ft)

2.0 3.0 4.0

0.0001 588.54 1204.88 1993.52
0.0002 588.54 1204.88 1993.52
0.0004 588.54 1204.88 1993.52
0.0005 588.54 1204.88 1993.52
0.0010 588.54 1204.88 1993.52
0.5 577.25 1193.5 1981.81
2.0 390.37 1006.62 1795.13
3.0 334.80 757.37 1546.56
4.0 296.65 669.76 1197.56
6.0 243.28 549.41 981.29
8.0 205.67 464.57 829.93
16.0 120.40 272.23 486.88

Heat generation rate = 20 (Btu/hr ft 3
)

Thermal conductivity of soil =0.5 (Btu/hr ft °F)
Thermal conductivity of solid waste =0.1 (Btu/hr ft °F)
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Configuration
: Solid Cylinder

Heat Generation Rate = 50 (btu/ hr ft 3
)Radius of the Bin = 3(ft), Length = 40 (ft)!

2 3 * 5 6 7 8 9 10 11 12 13

.RADIAL DISTANCE FROM CENTER (FT)

lFGENO; BUMALDBPTH i, i, . 1 FT *-*-» 20 FT «-

r iR. 4.5 Effect of Burial Depth on Maximum Temperature- Solid Cylinder
Conf ipurntion.
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Fig. 4.5. Effect of the Burial Depth of the Bins
Below Grade on the Maximum Temperature.

Radial Temperature (°F)
Distance

(ft) Burial Depth (ft)

10 20 30

0.0001 1718.21 1694.97 1642.54
0.0002 1718.21 1694.97 1642.54
0.0004 1718.21 1694.97 1642.54
0.0005 1718.21 1694.97 1642.54
0.0010 1718.21 1694.97 1642.54
0.500 1699.18 1679.18 1629.27
1.00 1652.43 1632.27 1582.43
1.25 1617.31 1597.24 1547.81
2.00 1465.87 1445.82 1395.91
3.00 1154.06 1131.91 1084.36
4.00 1021.03 1004.03 952.27
6.00 842.57 823.57 772.37
8.00 716.37 696.37 641.35
12.00 541.82 523.86 473.21
16.00 425.10 407.99 354.91

Length of the calcine bin = 40 (ft)
Bin radius = 3 (ft)

Thermal conductivity of soil =0.5 (Btu/hr ft °F)
Thermal conductivity of calcine =0.2 (Btu/hr ft °F)
Heat generation rate = 50 (Btu/hr ft 3

)
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b) Annular Configuration :

6) Introduction of an air column at the center reduces the peak

temperatures, for the same set of conditions of that of the

solid bin configuration. Figure 4.6 and Table 4.6 show the

temperature profile at the vertical mid-section for the annular

configuration. As can be seen the annular configuration is

advantageous because of the reduction in the peak temperature

by 300°F (approximately, 1694°F vs 1416°F for the annular

configuration). Also seen from the relationships, the air

column temperature remains constant and is also the maximum

temperature in the bin system. However, the soil temperatures

in the near field are not affected and are the same for both of

the configurations. The temperature profile at different cross

sections within the annular bin configuration are

correspondingly lower when compared with that of the solid

configuration.

7) Figure 4.7 and Table 4.7 show the effect of the variation of

the thermal conductivities of the waste products for annular

bin configurations. As can be seen the values are only

slightly lower when compared with those of the values for the

solid bin configurations.

8) The rate of heat generation for the annular configuration

similarly affects the maximum temperatures as in the previous

case, but the maximum temperatures are lower when compared with

solid configuration (Fig. 4.8 and Table 4.8).

9) For the same heat generation rate and the total heat input,

increasing the air column radii reduces the peak temperature

(i.e., 1630 to 1416°F for air column radii 0.5, 1.0 and 1.5 ft



Configuration i Annular Cylinder
Heat Ceneratlon Rate i 50 (3tu/hr ft3)

Radii i Inside - 1.5(ft), Outside - 3.35(ft), L - ^O(ft)
Ksolid-0.2, Ksoil-0.5, Kair-O.0<»0'* (Btu/hr ft °F)

2 3 * 5 6 7 8 9 10 I I 1213
RADIM. DISTANCF FROM CFNTER fFD

LECFND-. DEPTH ^-^-.ioFT *-*-* 20 FT «-»-* 40n

vi".. 4.6 Tenroerature Profiles ac Vertical Sections in the Pin- Annular
Cylinder Configuration.
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Table 4.6. Steady State Temperature Profile at Nodal Points
in Calcine Bins for Annul;ir Configuration.

Radial Temperature (°F)

Distance
(ft) Depth (ft)

10.0 10.0 40.0 55.0

0.10 1094.71 1303.72 1416.21 1356.34
0.40 1094.86 1303.76 1416.23 1356.36
1.00 1095.69 1304.04 1416.35 1356.51
1.25 1096.24 1304.24 1416.41 1356.62
1.50 1096.90 1304.52 1416.47 1356.78
2.00 1070.69 1277.56 1389.25 1328.50
2.25 1038.19 1244.44 1356.19 1295.69
2.50 994.13 1199.94 1311.63 1250.94
2.75 939.81 1145.00 1256.69 1196.13
3.00 875.44 1080.00 1191.31 1130.81
4.00 689.61 891.21 1003.22 944.71
6.00 518.44 713.97 823.11 764.83
8.00 407.10 590.79 696.07 640.73
12.00 271.43 425.86 523.85 741.10
16.00 192.20 319.03 408.13 359.25

Inside radius = 1 ft (air)
Outside radius = 3.35 ft (calcine)
Length of bin = 40 ft

Thermal conductivity of solid waste =0.2 (Btu/hr ft °F)
Heat generation rate = 50 (Btu/hr ft 3

)
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Configuration i Annular Cylinder
a„*<, T ,.

Hea
/
Cfsration flate i 20 (Btu/hr ftliHadii

,
Inside - 1 . 5 (ft), Outside - 3.35<ftj. L - W(ft)

JCsoll - 0.5(Btu/hr ft'P)

1.2 3 *

RHOUL OISTANCF FROM CFNTFR IFT)

LEGFNO- CONDUCT IlITt «_»_» 0.15 o o o 0.2

r ip.. 4.7 Effect of Waste Thermal Conductivity on Maximum Temperature-

Annular Bin Configuration.
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Table 4.7. Effect of Waste Thermal Conductivity on
the Maximum Temperature for Annular Bin
Configuration.

Radial Maximum Temperature (°F)

Distance
(ft) Thermal Conductivity of Calcine (Btu/hr ft °F)

0.15 0.2 0.3

0.1 611.76 566.71 521.95
0.5 611.78 566.72 521.97
1.0 611.82 566.76 522.01
1.25 611.85 566.78 522.03
1.5 611.86 566.80 522.06
1.75 609.13 565.06 519.37
2.0 597.88 556.63 513.81
2.25 580.13 543.31 504.95
2.75 527.25 503.63 478.45
3.35 434.88 434.50 432.43
4.00 401.64 401.29 400.58
6.00 329.55 329.24 328.62

Inside radius = 1.5 ft (air)
Outside radius = 3.35 ft (calcine)
Thermal conductivity of soil =0.5 (Btu/hr ft °F)

Heat generation rate = 20 (Btu/hr ft 3
)
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-.,. T ,
.

Configuration i Annular Cylinder
Hadli i Inside - l.j(ft), Outside - 3.15(ft), L - llO(ft)

Ksoil - 0.5, Ksolld - 0.2 (Btu/ hr ft *F )

I 2 3 ' 5 S 7 H 9 10 II 12 UM 15 16

RADIAL D1STANCF FROM CENTFR IFTI

IECFN0> HFATCFNRATE & t. a IS B-s-e JO «—i—. 50

Tip.. *..1 Effect of Teat feneration -Ute on Maximum Temperature- Annul.ir
Bin Configuration.
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Table 4.8. Effect of Heat Generation Rate on Calculated
Steady State Temperature Distribution in

Calcine Bins for Annular Bin Configuration.

Radial Temperatures (°F)

Distance
(ft) Heat Generati on Rate (Btu/hr ft 3

)

50.0 30.0 15.0

0.1 1416.21 850.04 425.05
0.4 1416.23 850.05 425.06
1.00 1416.35 850.12 425.09
1.25 1416.41 850.16 425.11
1.50 1416.47 850.20 425.13
2.00 1389.25 834.69 416.54
2.25 1356.19 814.69 406.57
2.50 1311.63 787.69 393.19
2.75 1256.69 754.88 376.73
3.00 1191.31 715.69 357.13
4.00 1003.22 601.93 300.96
6.00 823.11 493.86 246.93
8.00 696.07 417.64 208.82
12.00 523.85 314.31 157.16
16.00 408.13 244.88 122.44

Inside radius = 1.5 ft (air)
Outside radius = 3.35 ft (calcine)
Thermal conductivity of solid waste =0.2 (Btu/hr ft °F)
Thermal conductivity of soil =0.5 (Btu/hr ft °F)
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1700-

Configuration i Solid Versus Annular Cylinders
Heat Generation Rate - 50 (Btu/hr ft3)

Length of Bins - 40 (ft)
Kalr - 0.01*01*, Ksoil - 0.5(Btu/hr ft°F)

Air Column Radii: 0.5, 1.0, J. 5 (0D 3.04, 3.14 43. 35) (ft)
Solid Bin Radius - 3.0 (ft)

lFOFND. conficrn

5 6 7 8 9 10 II 12 1J , 4

RAOUl DISTANCE FROM CFNTFRIFT)

-*-»0.5(AIR) boo l(AIR) . 1 1 1.5(AIH)

7 i«. A. 9 Comparison of Maximum Temperatures for Solid Mn Versus
Annular Din for the Same Heat Innut.
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Table 4.9. Comparison of Maximum Temperatures for Solid
Bin Versus Annular Bins for Same Heat Input.

Radial Temperature (°F)

Distance
(ft) Solid Air Air Air

Cylinder 0.5 ft 1.0 ft 1.5 ft

0.1 1694.06 1630.77 1526.28 1416.21
0.2 1692.19 1630.77 1526.28 1416.22
0.3 1689.00 1630.76 1526.29 1416.22
0.4 1684.81 1630.76 1526.30 1416.23
0.5 1679.18 1630.75 1526.30 1416.25
1.0 1632.44 1606.31 1526.94 1416.35
1.25 1597.31 1578.38 1519.81 1416.41
1.50 1554.81 1541.06 1499.56 1416.47
2.00 1445.88 1440.94 1426.38 1389.25
4.00 1004.03 1003.36 1003.46 1003.22
6.00 823.58 823.05 823.20 823.11
8.00 696.37 695.93 696.09 696.07
12.00 523.87 523.57 523.76 523.85
16.00 408.0 407.78 407.98 408.13

Heat generation rate = 50 (Btu/hr ft 3
)

Length of the bins = 40 (ft)

Thermal conductivity of air (at HOCK) = 0.0404 (Btu/hr ft °F)
Thermal conductivity of solid waste = 0.2 (Btu/hr ft °F)
Thermal conductivity of soil =0.5 (Btu/hr ft °F)
Bin radii = 3 ft (nominal)
Air column radii = 0.5, 1.0 and 1.5 (ft)
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respectively) . By collapsing the air column to approximately

zero leads to the solid cylinder configuration with a peak

temperature of 1694°F. For the purpose of comparison and

validating the results, total heat input was assumed to be the

same in all three annular and solid configurations compared by

proportionately increasing the outer diameter.

10) Table 4.10 shows the temperatures in the annular bin with the

inner annulas filled with soil instead of air as in the

previous case. As can be seen, the resultant temperature

profiles at respective nodes are only marginally lower than

the annular bin configuration filled with air at the center

(Fig. 4.6 and Table 4.6 i.e., 1416.21 versus 1412. 59°F). So

it is apparent that the reduction of peak temperature by 300°F

over the solid configuration stems from the increased surface

area of the annular bin for heat dissipation. Thus the

central air column can be back filled with earth without

affecting the temperature profiles.

Conclusions and Recommendations :

Based on the temperature distribution calculated in the numerical

examples and the parametric studies, the direct burial of solidified

nuclear wastes in the soil without external cooling seems feasible.

However, the results and temperatures calculated based upon these models

should be considered only as a feasibility study and the conclusion that

such simplified underground storage can dissipate appreciable amount of

heat by way of conduction to soil is only qualitative. The mathematical

models are valid only for the set of physical conditions assumed in the
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Table 4.10. Effect of Back Fill Soil in the Central Air
Column for the Annular Bin Configuration.

Radial Distance
(ft)

Temperature in Vertical Mid-Section
of the Bin (°F)

Central Column
Air Soil Back-fill

0.1

0.5

1.00
25

50

75

00

25

75

35

00

6.00
8.00
12.00

16.00

1416.21
1416.25
1416.35
1416.41
1416.47
1410.31
1389.25
1356.19
1256.69
1083.75
1003.22
823.11
696.07
523.85
408.13

1412.59
1412.63
1412.74
1412.82
1412.91
1406.56
1385.94
1253.00
1253.75
1080.94
1000.75
820.89
694.09
522.14
406.64

Inside radius =1.5 (ft) Outside radius = 3 (ft)
Length of the bin = 40 (ft)

Heat generation rate = 50 (Btu/hr ft 3
)

Thermal conductivity of solid waste =0.2 (Btu/hr ft
Thermal conductivity of soil =0.5 (Btu/hr ft °F)
Thermal conductivity of air = 0.0404 (Btu/hr ft °F)

'F)
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model, together with the set of boundary conditions to simplify

mathematics. The radiological safety implications and the technical

aspects of construction of such simplified storage conforming to safety

regulations applicable to such burial facilities must be carefully

analyzed. In other words, the modelling studies pursued in this

research work pertain only to the heat dissipation aspect, which is but

one important consideration in the overall scope of design of such

simplified storage. Towards that objective the modelling studies are

useful and should be able to predict reasonably close temperature

estimates for practical systems.

In fact, such simplified (directly buried) storage facilities were

12
considered during the design of the second set of bins at INEL. The

main reason why they were discarded later on stem from limitations

imposed by maximum size of these bins (solid bins) without exceeding the

allowable maximum temperatures in the bin. However, as is validated in

the current model study, annular bin configuration could be a viable

alternative with a reduction of maximum bin temperatures as much as

300°F (with an air column radius of 1.5 ft) and perhaps more if the bin

could be increased in size. This, of course, should be weighed against

construction and cost aspects.

Calculated temperatures based on the steady state models for the

solid cylinder configuration were validated by the previous

investigators for small diameter heat sources (such as simulated fuel

elements of typical diameter 0.14 ft (3.5 inches 0.D), by burying heater

elements at the National Reactor Testing Station at power levels of 350

and 950 watts (equivalent to 329 and 880 (Btu/hr ft 3
) for the fuel

element) . The temperature profiles were measured at specific grid
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points (radial distances) . The general agreement between the calculated

and experimental temperature distribution measured in the field point

towards the validity of the model predictions. The models for the large

diameter heat sources, resembling waste storage bins could not be field

verified due to the problems of simulating them with practical sized

heaters of such proportions.

Future modelling studies that could be undertaken in this area are

the following:

1) More exact mathematical formulations could include the contact

resistances of the various heat conduction regions and the

influence of the convective air layer. Due to difficulty in

the mathematical formulations and arriving at analytical

solutions, they were not included in this study.

2) Another area for future work could be consideration of overall

temperature profile estimates for a set of bins buried in a

typical layout geometry such as the ones which would be

involved in practice. This would require a three dimensional

mathematical model (namely radial, depth and azimuthal) for

individual bins and the composite temperature profile for a

cluster of such bins (assuming a point source or a line source

in such calculations representing individual bins) . Such a

system can at best represent practical burial facilities.



100

REFERENCES

1) D.E. Black and B.R. Dickey, "Mathematical and experimental analysis
of heat dissipation from cylindrical sources buried in soil,"
IN-1032, Dec, 1966.

2) A.S. Jennings, "Plan for solidification of Savannah River plant's
high-level wastes," AIChE symposium series 191, volume 75, 1979, pp
105-111.

3) G. Jansen, Jr., W.E. Willingham and W.V. DeMier, "Buried
radioactive waste storage tank temperatures and soil temperatures
near leaks," BNWL-181, Feb., 1966.

4) W.E. Willingham and G. Jansen, Jr., "Heat transfer from solidified
underground storage tanks," BNWL-262, Oct., 1966.

5) S.C. Slate and P.J. Pelto, "Heat transfer analysis of an
underground storage tank containing solidified heat generating
wastes," BNWL-2043, Aug., 1976.

6) Federal Register, Vol. 35, No. 222, Saturday, Nov., 14, 1970 p.

17533.

7) M. Wilrich, "Radioactive waste management and regulation," Report
to the U.S. Atomic Energy Commission and Development
Administration, M.I.T. Energy Laboratory, Sept., 1976.

8) K.J. Schneider, "Solidification and disposal of high-level wastes
in the United States," Reactor Technology 13, N4(winter 1970-71)
387-415.

9) Alternatives for Managing Wastes from Reactor and Post Fission
Operations in the LWR Fuel Cycle, ERDA 76-43, Vol. 2, Alternatives
for Waste Treatment, pp. 6.16 - 6.26, 1976.

10) L.T. Lakey and B.R. Wheeler, "Solidification of high-level wastes
at Idaho Chemical processing plant," OECD Symposium on "The
management of radioactive wastes from fuel reprocessing," Paris,
Dec. 1972.

11) B.R. Dickey and G.W. Hogg, "Heat transfer in high-level waste
management," Nuclear Engineering and Design, 67 (1981), 473-487.

12) C.L. Bendixen and G.E. Lhose, "Storage facilities for radioactive
calcined solid wastes at Idaho Chemical Processing Plant," IN-1155,
July, 1968.

13) G.E. Lhose and M.P. Hale, "Second processing campaign in waste
calcining facility," USAEC report IN-1344 (1970).

14) L.T. Lakey and J.R. Bower, ICPP Waste Calcining Facility Safety
Analysis Report, USAEC, Report IDO-14620 (1963).



101

15) R.E. Commander, G.E. Lhose, D.E. Black, and E.D. Cooper, "Operation
of the waste calcining facility with highly radioactive aqueous
waste," USAEC Report IDO-14602 (1966), report of the first
processing campaign.

16) D.W, Rhodes, W.A. Freeby and J.D. Christian, "Ruthenium containment
during fluidized bed calcination of commercial high-level wastes,"
AIChE Symposium, 191, Vol. 75, 1979.

17) L.T. Lakey, M.W. Wilding and B.R. Dickey, "A study of the migration
of cesium-137 in granular calcined radioactive wastes," IN-1365,
March, 1965.

18) M.W. Wilding and D.W. Rhodes, "Characteristics of radioactive
zirconia calcine after heating to high temperatures," IN-1486,
June, 1971.

19) M.W. Wilding and D.W. Rhodes, "Stability of highly radioactive
alumina calcine during storage at high temperatures," IDO- 14670,
Jan., 1966.

20) G. Jansen, Jr., "Heat transfer analysis of waste storage canisters
in the storage of high-level wastes," Pacific Northwest Lab.,
BNWL-SA-2049.

21) I.N. Sneddon, "Fourier transforms," New York, McGraw Hill Book
Company, Inc., 1951.

22) Final Environmental Statement. Hanford Waste Management
Operations - ERDA - 1538 - Vol. 1 of 2, 1975.

23) Spent Fuel and Radioactive Waste Inventories, Projections, and
Characteristics - DOE Report No. DOE/NE-0017-2, 1981.



102

VI. Acknowledgements

The writer extends his sincere appreciation and thanks to Dr. N.

Dean Eckhoff for his valuable help and guidance in the selection of the

problem and his constructive criticism. Thanks are also due to Dr. R.

E. Faw, Dr. Gale Simons and Dr. George Milliken for their review of the

thesis material. Sincere thanks are offered to Mr. Robert W. Klapthor

and Ms. Susan Wurtz for their help in providing the reference materials

from the Farrell Library, Kansas State University.

Special thanks are due to Mrs. Connie Schmidt for her relentless

effort and the excellent typing work and Mrs. Merna Brisbin for her kind

help and assistance.



103

APPENDIX 1

COMPUTER PROGRAM

The numerical technique for evaluation of the analytical solutions

(equations developed in Chapter 3) was programmed on an IBM-370

computer. The main steps involved in the machine solutions consisted

of:

i) An arbitrary number (100) summation of the Bessel routines

were first evaluated for the arguments R and R . The

arbitrary constants, i.e., ANN, BNN, CNN and DNN in the

analytical solutions are evaluated using the summation

process. In practice, a summation of the first 100 terms of

the series is sufficient and converges to a steady value for

the numerical constants,

ii) Summation of the trigonometric terms (required in the

computation of the temperatures at specific nodes) are

evaluated for the argument R.(k), representing the radial

distances from the center. The number of summation terms are

identical to that in the first step,

iii) The temperatures at specific nodes are evaluated as a two

dimensional array, U(k,j), representing both the radial and

depth directions (r,z), by using the analytical solutions

developed for the temperatures T , T and T,. The analytical

solutions for T , T and T are computed separately and are

valid only in respective regions for which they were

developed. However, at the boundaries between two adjacent

regions, the solutions are valid because of the boundary

conditions assumed for the sake of continuity.
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iv) The nodes are divided into 5 discrete locations in the radial

direction in each of the three individual regions, i.e., air,

heat-source and soil. This amounts to a total of 15 radial

nodes where the temperatures are evaluated and in turn for

different depths. As designated in the program, (1-5)

represent the region bounded by the air in the innermost

radius, (6-10) the region bounded by the solid waste (heat

source) and (11-15) the region in the soil,

v) The outputs are printed out in a tabular format representing

the depths (i.e., 10 ft, 20 ft, 40 ft and 55 ft), where 40 ft

represents the vertical mid-section of the container, at

which the temperatures are the maximum. Depths 20 ft and 60

ft represent the top and bottom of the container from the

ground level respectively. The total depth of the system is

assumed to be 80 ft including portions of soil above and

below the physical dimension of the container. This

procedure is analogous to the one used by the previous

investigators and results in a steady state solution for the

temperature evaluated,

vi) A similar procedure is repeated in the case of the solid

cylinder configuration, by assuming the inner radius to be a

very small value (typically 0.001 inch) and using the same

program. This reduces the inner air region to zero

(approximately) and thus simulates the solid geometry,

vii) The computed values for the temperatures for different depths

are plotted using standard plotter program.
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Nomenclature for the Source Program Two-Cyl Watfiv

ANN, BNN, CNN, DNN = The constants of the analytical solutions for

Con

Conl

Con2

Denom

IORO.IORI.IIRO,
and I1R1

I,J,K,S

k

Kizero,Kione

KORO,KOR1,K1RO,
and K1R1

L

Lambda

Term, Term2
& Term3

Numr

Q

Qterm

R
o

R,

evaluation of temperatures T , T , T .

-(Q/k
c
)(L 2

/it
2
).

-(Q/k
c
)(L 2

/7[
2 )(z 2

/2).

(z/2)(Q/7i)(L 2 /k
c
).

Denominator in the expression for DNN

Modified Bessel Functions of the first kind of the
zero and first order respectively.

Counting integers

Thermal conductivity of air at respective temperature
(Btu/hr ft °F).

Thermal conductivity of the solid waste (Btu/hr ft°F)

Thermal conductivity of the soil (Btu/hr ft°F).

Library subroutines required in the evaluation of the
various constants in the analytical solution.

Modified Bessel functions of the second king of zero
and first order respectively.

Finite depth of the system (ft)

[nirz(j)/L], the argument for the trignometric
function needed in the evaluation of temperatures at
different depth.

Number of terms used in the summation for the
temperatures.

The abbreviations for the various terms used in the
development of the analytic solutions.

Numerator in the expression for DNN

Volumetric heat generation rate of the heat source
(btu/hr ft 3

).

Conl + Con2.

Inside radius of the air column (ft).

Outside radius to heat source (ft)

.
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R (K) = Radial distances where the temperatures are calculated
1

(ft).

T. = Calculated temperature at the air In the Inner radius
(°F).

T = Calculated temperatures in the solid waste in the

storage container (°F).

T = Calculated temperatures in the soil surrounding
storage container (°F).

U(k,j) - Calculated temperatures at specific points in and
around the waste container (°F)

.

XI - The value of the Bessel functions K0(X) or Kl (X)

.

XK = The value of the Bessel functions I0(x) or II (x).

X1,X1,X3 = Arguments for the evaluation of the Bessel routes
required in the calculations (ft)

.

Z = The depth below the ground surface at which points the

temperatures are evaluated (ft)

.

II. Data Input Formats for the Computer Program :

The arrangement for the input data cards and the cards order are

given below:

First Card - Title card - Contains the case number and the parameter
being studied.

Second Card - Contains thermal conductivity values for the air, solid
waste and soil respectively.

Third Card - Contains the inner radius R., (Air column) and outer radius
R. , (of the source)

.

Fourth Card - Contains the heat generation rates (Q) and depth of the
system (L)

.

Fifth Card - Contains the radial distances R,(k) from the center nodes
at which the temperatures are evaluated - (1-5) for the air
column, (6-10) for the source and (11-15) for the soil.

Sixth Card - Contains the depths at which temperatures are evaluated.

The source program listing is as follows:
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3JOB RAM,TIME= (,20) ,PAGES=30
C PROGRAM FOR CALCULATING THE STEADY STATE TEMPERATURE IS THE CALCINE
C DINS FOR THE CASE OF ANNULAR GEOMETRY.
C PROGRAM COMPILED BY S. RA MACIIAN DIIAN ON SEP 2,19UU.
C THE FOLLOWING PROGRAM IS FOR CALCULATING THE STOP Y-S TATE
C TEMPERATURES III THE SOLID WASTE STORED IN UNDERGROUND DINS
C TYPICALLY LIKE THE CALCINE STORAGE DINS AT IliEL, IDAHO

.

C THE ANALYTICAL SOLUTIONS TO THE FOURIER HEAT CONDUCTION EQUATIONS
C ARE PROGRAMMED THUOUGU THE MACHINE SOLUTIONS TAKING INTO ACCOUNT THE
C RESPECTIVE REGIONS. TYPICALLY THE INNER REGION (RADIUS R0) IS BOUND
C BY AIR IN THE INNERMOST RADIUS, SURROUNDED DY THE HEAT SOURCE
C VIZ. THE WASTE CALCINES IN THE NEXT REGION (gl). THE
C OUTER REGION IS BOUNDED BY INFINITE SOIL MEDIUM (R2).
C **************************************************,*****„***,***,*,
C
C
C *»»»*****»DECLARATIOHS AND DIMENSION ST ATEMEI.'TS**»*«*»*»« »»«».*»«» «

DIMENSION 10 R 0(20 0) , KOR 0(200) ,I0R1 (200) ,K0E1 (200) , I li'OpOO)
,

1K1 BO (200), I IB 1(2 00) , KIR 1 (2 00), 10 R2 (200,2 00) ,B2( 15) ,

2K0R2 (2 00, 200) ,Z( 10) ,U (50,50) ,DNN (200) , CNN (200),
3 ANN (200) , BNN (200) , TITLE (20)

REAL R0,R t,Q,L,KA,KC,KS,LAMDA,ZETA,NTKRM,NUf"),
1 IORO.KORO, I0R1,K0R1,I1R0,
2 K1R0,I1R1,K1RI,R2,K 1 , K2, KOR 2, 1 0R2 , BNN , ANN,

. 3 Z,U,DNN,CNN

INTEGER H,I,J,K
C

C »«**».**»* ************************************ *************** *******
C READING THE INPUT DATA CARES •

c ***»»»*»*•****»«*•«******«******»**«*»*»»**»*»»«,«»,,,«,,,,,«,»,,,,
206 READ(5, 705, EMD=9999) TITLE

READ,KA,KC, KS
READ, HO, R1

READ,Q,L
READ, (R2 (K) , K=1, 15)
READ,(Z(J) ,J»1,»)

C ************************************************** *,*,***********,*
C
c ********************************************»***,**,,***,,*****,,,*
C FORMAT STATEMENTS. ,
C ***********************************************,**,*,, »««»««**»*««,
705 FORMAT (20A1)

WRITE(t,705) TITLE
WRITE (6, 1200) KA

1200 FORMAT (2X,' THERMAL CONDUCTIVITY - AI R (BTU/HR-FT-F) = F5. 2)
WRITE (6, 120 1) KC

1201 FORMAT (2X, 'THERMAL CONDUCTIVITY - SOLID-WASTE (BTU/HB-i'T-F) *' F5 21
WRITE(6, 1202) KS

1202 FORMAT (2X, 'THERMAL CONDUCTIVITY - SOIL (BTU/HR-FT-F) = ' F5 >)

WRITE (6, 1101) RO, R1
1101 FORMAT (2X, 'INSIDE RA D, RO (FT) =' , F5. 2 , 2X , ' OUTSI DE RAD,R1(FT) = ' F5 ^1

WniTE(6, 1103) Q,L
1 103 FORMAT(2X,'HEATGEN.RATE(BTU/HR-FT3 = ) ' , F5 . 2 , 2X , L EHGTil= • ,F5. 2)
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PI = 3. II I 59
;i=ioo
PI2=PI«PI
ri3 = pi«i>i«Pi
con=-o,»l«*2/kc/pi3
K1=KC/KS
K2 = KC/KA
DO 10 1 1= 1 , 11

X1=I»R0*PI/L
X2=I»R 1*PI/L

COMPUTATION OF Tilt! DESSEL ROUTINE.'; i'Of! CAI.CIILATI
ARBITRARY CONSTANTS IN THE EXPRESSIONS FOR TiiMPE
the hessel routines foii the nnr.iiiir.iiTo a k i: evai.ua
TUO SUDROIITINES INCLUDED III TUE PROGRAM

(t>3ctttl«Ltt3

RAT lift i

Till) Til

******************************************** *: *****»<
CALL KTIERO (X 1, XK, XI)
KORJ (I) = XK
IORO (I) = XI
CALL K1ZER0 (X2,XK, XI)
KOn 1 (I) = XK
I0R1 (I) =XI
CALL KIONE (XI, XX, XI)
K1R0 (I) =XK
I1R0(I)=XI
CALL KI0NP.(X2,XK,XI)
K IR 1 (I) =XK
II lit (I)=XI

EVALUATION OF THE ARBITRARY CONSTANTS RKQUJ
EXPRESSIONS FOR TME ANALYTICAL SOLUTIONS 10
and, nun, cm! and mm ark the abiuthary cobst
THE ANALYTICAL SOLUTIONS FOR THE TKHPEBATUR
THE SUMMATION OF FIRST 100 TERMS IS FOUND S

CONVEkCEU VALUE FOR THE ARIUTRARY CONSTANT
*«*«»»**#* * ft************************.*******

^tttttKtt)
1'EI r II THE
li ' HE TsaPEr ATl'i.

AMI s RKQIIlllr 1) I!'

ES T1 ,T2 t T 1.

:iF! ICIEMT TO i;iv

»4*« <<-;. a, a ,* a * > f t c

TERB«{(L**2/PI3) *(-Q/KC)*{2* (-1) **I-2) )/M**.1
TERM 2= (K 1*1 IR 1 (I) /K I ill (I) ) »(I0R1 (I) /KOI, I (I) )

TZRM3= (KOBO (I) /I OR (I) ) * (K2*K1R0 (I) /I 1110 (I) )

DENOM= (K 1-1) » (K 2-1)- (TERM.? "TERM 3)

Nil .'IR^f TERM* TEEM 2 /TO 110 (I) ) » [TERM* (K?.- I) /KOF.I (I)

)

DNII (I) •lllinlt/DENOD
CNN (I) « (Dllll (I) *TEHH3»TliRi1/I0R0 (I) ) /[K2-I)
ON 11 (I) =K1*(D1IH (I)- (CS1I (I) »II Rl (I)/K 111 1 (I) ) )

ANN [I) =K2« (CNN (I)- (UN II (I) *K1 RO (I) /I. 1R0 (I) ) )

CONTINUE
DO 210 1=1, N

DO 209 K= 1, IS

K0B2 (K,I) =0.

10 B 2 (K,I)=0.
CONTINUE
DO 2US 1= 1, II

S=I
DO 2115 K=l,5
X3=S*PI*H2 (K)/L
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CALL KI7.EPO (X3,XK,XI)
10U2(K,I) =XI

2145 CONTINUE
C t****************************************************
C REGION K(1,5) REPRESENT THE ISINERI10ST RADIUS CO II II DEO
C !IY AIII COLIIHII A tl R THE NODAL TE.1PEPATU11E3 AT uifrr.BEiiT
C DEPTHS ARE EVALUATED,
c ••**#*»*•*•****•»*****»*#*»****#******#****•#**»»*«*

DO 2003 .1=1,1
DO 2003 K=l ,5
II (K,J) =0
DO 201 1= I, N

S=I
ZETA=PI«Z (J) /I.

II (K, J) «ll (K, J) ANN (I) *I0R2(K,I) *SIN (S«ZETA)
201 CONTINUE
2003 CONTINUE

DO 250 1=1, N

S = I

DO 250 K=6, 10
X3=S*PI«R2(K)/L
CALL KIZERO (X3,XK,XI)
K0H2 (K,I)=XK
I0R2(K,I)=XI

2 50 CONTINUE
C *********************** + ******************<:*********
C TilE REUIOH K(t,IO) REPRESENTS THE REGION nollNPEf) BY T
C HEAT .SOURCE - THE TEMPERATURES AT DIFFERENT NODES A

C UEPTIIS ARE EVALUATED.
C a****************************************************

DO 2000 J=1,1
DO 2000 K = fc, 10

U(K, J) =0.
DO 20 1 1=1, N

3=1
ZETA=PI«Z (.1) /L
CON1=- (Q/BC) * (!.**2/PI2) •(. 5«7,ETA**2)
CON2= (ZETA/2) *Q* I,* *2/KC/PI
QTSRM'COB HCON3
II (K, J) =11 (K, J) (CUB (I) "I0R2 (K,I) DUN (I) »K0I2 (K,I) ) *STN

20 1 CONTINUE
U (K, J) =U (K, J) IJTEIIII

2C00 CONTINUE
DO 25 1 1=1,11
S=I
DO 251 K=11 , 15
X3=3*PI«R2(K) /L
CALL KIZERO (X3,XK, XI)
K0R2 (K, I) =XK

25 1 CONTINUE
C ********+***********************************3********
C TilE REGION POUNDED UY THE INFINITE SOIL IIEPTUI! IS RET
C UY K(ll,15) AND THE NODAL TEMPERATURES ARE EVALUATED
C DIFFERENT DEPTHS.
C *****#*•*****#****•*##**## **##***#*t#*********#**#i

DO 20 02 .1= I , N

DO 2002 K=l 1, 15

*»*<.-*******

****** a **«*

*****<****«
ir

T V AT. roll:;

***£*****«*

***** a

E3EST

J

OH
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U(K,J) =0
DO 203 1=1, 100
S=I
ZETA=PI*Z (J) /L
U(K,J) =0 (K, J) BNH(I) *K0R2 (K,I) *SIK (S*ZETA)

203 CONTINUE
2002 CONTINUE

WRITE(6, 1 105)
1 105 FORilAT (• ******************* ************************** **********i)

WRITE(t,701)
701 FORMAT( 2X, 'THE STEADY TEMPERATURE in the calcine DIN )

WRITE (6, 999)
999 FORMAT (' RADII(FT) DEPTH=10 DEPTH=20 DEPTil=10 DFPTil

1=55')
URITE (6, 706) (R2 (K) , (II (X,J) , J= 1 , 1) , K= 1 , 15)

FORMAT (5 (F12. 2) )

VRITE(6, 1106)
FORMAT (' ******************************************************* i)

GO TO 20 6

STOP
END
******************************************************************

7C6

1 106

9999

C

c
c

c
c
c
c

c

c

c

c

END OF THE MAIN PROGRAM.
*************************** :*+************************************

***************************** *********e*************«******v*******
BESSEL FUNCTION SUBROUTINE FOR CALCULATING THE ROUTES OF THE *

MODIFIED BESSEL FUNTIONS REQUIRED IN THE EVALUATION' Or THS *

ARBITRARY CONSTANTS. *

******************************************************************
THIS SUBROUTINE IS REQUIRED TO COMPUTE 1(0) AND K(0) *

********+*******************************************************
SUBROUTINE KIZERO (X.XK.XI)

1 IF (X-3.75) 2,2, 10

2 A= (X/3.75) **2
3 0X1 = ( ( ( ((0.001 58 13* A 0.03 60 76 8) *A»0 . 265973 2) «J» 1.2 06 7119 2) *A»3.0S9
191421) * A* 3. 5 15622 9) *A* 1.0

1 IF (X-2.0) 5, 5,10
5 A= (X/2.0)**2
6 0XK = (( | ( (7. 10E-6*A»1.0 750E-1) *A<-0. 0026 26 98) *A*0. 031 118 59 0) *A *0. 22 00G
197 56)* A* 0.1 2 2701 20) *A- 0. 57 72 156 6-XI* A LOG [0. 5*X)

7 RETURN
10 A=3.75/X
1I0XI = (((((( (.392 37 67E-2*A-. 1617632E-0 1 ) * A* . 2635537E-0 1) * A-. 2057

170E-01) *A + . 9 1 62S 08 E- 02) *A- . 1 57619E-0 2) *A *. 2 253 1 07 E-02) *A». 13 285
29E-01)*A* . 3989122E<-00

12 D=-0.5
13 IF (X-87.3) 11,13, 13
11 XI = XI*X»«B*EXP(X)
10 A= 2.0/X
1 I0XK= (( ( ( ( (5. 3208E-1*A-2.51510F.-3)*A*0. 00 58 7072) * A-0 . 106 2116 ) 'Jt

10.02 18 9568) * A-0. 07 03 2 3 580) *A + 1 . 2533 1 1 1 1) *EX P (-X) /X* *0. 5

12 RETURN
13 XI *XI*X**B/EXP (-X)
11 GO TO 10

END
****************************** ***************************************
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C THIS SUBROUTINE IS REQUIRED TO COtlPUTE 1(1) AND K(1)»
C a***************** ************ ********»**+**********»*»*#************

SUBROUTINE KIONE (X,XK,XI)
1 IF [X-3. 75)2, 2,8
2 »= (X/3.75)»*2
3 0X1 = ( ((( ( [3.211 1E-1*AO.O 1532E-3) * A»2. 6 50733 E-2) «At0. 1508 U03«) *

1 A* 0.51 19 8869) *At 0. 87 890591) * A+0.5) »X
1 IF (1-2.0)5,5,10
5 A= (X/2.0) **2
60XK= (J ((( (-1. 6 86E-5*A-1. 1010E-3) »A- 1. ') 19102F-2 ) *A -0. 1 8 1 5G0 97) «

A

1-0.672 7857.9) *A*0 . 1 5113 1 11) *A 1 . 0) /X + ALOG (0. 5»X) «XI
7 RETURN
8 A=3.75/X
9 0X1= ((((((( (-1. 20 05 87E-3*A» 1.7 076 53E-2) *A- 2. 09 5 3 I 2 E-2) * A* 3. 282
196 E-2) *A-1. 03155 5E-2) »*M. 63 00 11E-3) «A-3.t 20183E-3) *A-3. 98 00 21
2E-2) *At. 39891 22 E*0 0) /(X»*0.5«EXP (-X) )

10 A=2.0/X
110XK = (( (( ((-6.8215E-1«A*3. 2 56 1 IE- 3) »A-7.8 03 53E-3) * At 0. 1 50126) *A-.

1 36 5562 E- 01) »A*0. 23 1986 1 ) *A + 1 .2533 1 1 1) * EXP (-X) /X *»0. 5
RETURN
END

SFNTRY
1 CASE-1 ANNULAR CONFIGURATION (T EM PER ATURE AT DIFFERENT VERTICAL SECTION)
0.5,0.2,0.5
0.5,3.01
50.0,80.0
. 1, . 2, . 3, .1,. 5, I., 1.5, 2. ,2. 5, 3. 01,1. ,6. ,8. ,12. ,16.
10.0,20.0 ,10.0,55.0
I CASE-2 ANNULAR CONFIGURATION (TEH PERATtIRE AT DIFFERENT VERTICAL SECTION)
0.5,0.2,0.5
1.5,3.35
50.0,80.0
. 1,.2,.3,.1, .5,1. , 1.5,2. ,2. 5, 3. 01,1., 6. ,8., 12. ,16.
10.0,20.0 ,10.0,55.0
1 CASE-3 ANNULAR CONFIGURATION (TEH PERATURE AT DIFFERENT VERTICAL SECTION)
0.5,0.2,0.5
1.0,3. 11

50.0, 80.0
.1,.2,.3,.1,.5,1.,1.5, 2. ,2. 5, 3. 01,1. ,6. ,8. ,12. ,16.
10.0,20.0 ,10.0,55.0
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Abstract

Dissipation of heat from first cycle wastes resulting from

reprocessing of spent nuclear fuel is a problem when considering the

extended storage times involved. The storage tanks for the high-level

liquid wastes (aqueous raffinates from the first solvent extraction

cycle) at the Hanford Reservations and the Savannah River Plant have

experienced leaks, presumably due to the large amount of heat evolved in

the wastes. Pursued in this research work is a brief account of the

thermal histories of the tanks that had leaked and the remedials for

safe storage of these wastes in future installations.

These aqueous wastes are converted into granular calcines at the

Idaho National Engineering Laboratory, Idaho Falls, and are stored in

the form of a 'dry calcine' in underground stainless steel bins to

provide an additional barrier against leakage. The current storage

facilities for these converted calcines, which are thermally hot,

consist of bins cooled externally using forced circulation. Pursued in

this study is the design of simplified storage facilities that are

directly buried in soil, which takes advantage of the inherent mode of

heat rejection through conduction. By doing so the need for external

cooling is totally avoided, making such storage cost effective and safe

from the leakage of radioactivity. An earlier model, undertaken for the

heat transfer analysis for such simplified storages, pertained to a

solid cylinder configuration and estimation of the resultant temperature

profile inside the bin and near field effects in the surrounding soil.

The model pursued in this research work assumes an annular geometry for

the bin configuration. Mathematical formulations for the heat



conduction are arrived at using the Fourier heat conduction equation and

the analytical solutions in the various regions evolved using separation

of variables. The numerical examples simulating field conditions for

the annular configuration show an overall reduction in the maximum

storage temperature in the bin by 300°F for a practical size container,

when compared with the solid configuration. Also pursued in the

modelling studies are various parametric studies such as the effect of

heat generation rate of the stored wastes, the bin's geometry and the

thermal conductivities of the solid wastes and the surrounding soil upon

the resultant temperature profiles.


