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Abstract 

Judgments of difficulty (JODs) can be used to inform effort allocation strategies and 

subsequent performance. This dissertation integrates several models to advance specific 

hypotheses regarding the role that feedback, a performance-based peripheral cue, plays in these 

processes. These predictions are tested in two experiments that manipulate when and how 

feedback information is made available. In Experiment 1, people alternated between observing 

and performing a visual search task; performance-based peripheral cues informed JODs to a 

lesser degree until people had a chance to perform the task themselves, suggesting that receiving 

feedback on one’s performance informs self-efficacy beliefs. In Experiment 2, people learned 

about the incentive structure of the environment at different times. Incentives changes peoples’ 

effort allocation strategies, but the way in which it did so depended on when this information 

was made available. People who learned of the incentives in advance used this information to 

engage in preventative effort allocation strategies, while those who learned of the incentives 

through feedback alone engaged in compensatory effort allocation strategies. Together, these 

results disambiguate when and how people use performance-based peripheral cues to make 

JODs, and provide information about how the environment can be structured to facilitate 

learning and behavioral change. 
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Chapter 1 - Introduction 

One hundred years ago, the earliest psychology researchers noted that peoples’ 

perceptions of difficulty seemed to be unique (James, 1890; Titchener, 1908); people emphasized 

different aspects of a task when judging its difficulty. For this reason, peoples’ efforts did not 

always align with a task’s demands. Some people underestimated difficulty and performed 

poorly, while others overestimated difficulty and allocated more time and effort than was 

necessary to perform well. Recent research has confirmed this general relationship across 

different domains including procrastination (Hensley, 2014; Mitchell, 2017), safety compliance 

(Sigurdsson, Taylor, & Wirth, 2013), tool use (Liu & Wickens, 1994; Vallières, Hodgetts, 

Vachon, & Tremblay, 2016), and task performance (Cohen, Purdie-Vaughns, & Garcia, 2016; 

Ortner, Weißkopf, & Gerstenberg, 2013). However, this recent work focuses narrowly on the 

relationship between peoples’ judgments of task difficulty (JODs) and their subsequent 

performance, rather than on the intervening variables and processes that might bias judgment and 

lead to pronounced changes in behavior (Cain, 2007; Gopher & Donchin, 1986; Hart & 

Staveland, 1988). Consequently, the degree to which intervening variables and processes 

influence JODs and task performance remains unclear. 

This dissertation identifies these relationships by measuring the sources of information 

that are used to make JODs during task completion. This approach has been used successfully in 

the past (Vangsness & Young, 2018); when combined with mixed-effects modeling it can 

capture the cognitive and perceptual limitations that lead to poorly-calibrated judgements 

(Dixon, 2008; Higham, Zawadzka, & Hanczakowski, 2016; Maniscalco & Lau, 2014). To ensure 

that the findings of this dissertation are broadly generalizable, the experiments will employ a 

simple visual search task. Performance in visual search is reflective of basic cognitive and 
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perceptual processes (Chan & Hayward, 2013; Wolfe, 1994, 2007) and is frequently used to 

study difficult tasks such as cancer detection (Evered, 2005) and security search (Wolfe, 

Horowitz, & Kenner, 2005). However, the theoretical concepts and relationships described in 

this dissertation use a variety of examples to illustrate the many situations in which JODs are 

relevant. 

To this end, I will first review current approaches to the study of task difficulty and use a 

non-linear model to illustrate how traditional approaches confound task difficulty with an 

individual’s skills and abilities, which are affected by intervening variables such as 

metacognitive skill and perceptual sensitivity. Next, I will discuss the challenges in 

operationalizing task difficulty and draw clear delineations between associated constructs such as 

difficulty, effort, and workload. Finally, I will advance a cohesive framework for testing the 

relationships between these constructs and outline three experiments that selectively tested 

different relationships within this framework. 

 Current Approaches to the Study of Task Difficulty 

 Assessing Task Difficulty, Effort, and Performance 

Traditionally, task difficulty is assessed through performance (Boksem, Meijman, & 

Lorist, 2005; Cain, 2007; Libedinsky et al., 2013; Schouppe, Demanet, Boehler, Ridderinkhof, & 

Notebaert, 2014) or by asking participants to provide a subjective workload assessment (Borg, 

1998; Cain, 2007; Hart & Staveland, 1988; Reid & Nygren, 1988; Tsang & Velazquez, 1996). In 

these experiments, researchers compare participants’ performance or retrospective ratings of 

perceived effort across versions of a task that produce changes in performance. This approach 

requires researchers to make four implicit assumptions. First, researchers must assume that 

changes in performance are only driven by the difficulty of the task. In doing so, the researchers 
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also assume that task difficulty cannot be objectively defined. Finally, researchers assume that 

task difficulty shares a consistent, linear relationship with performance and ratings of perceived 

effort. Yet, these assumptions contradict well-established theories regarding the relationship 

between task difficulty and performance. 

At a basic level, task performance is 

determined by effort allocation (Gopher & Donchin, 

1986; Wickens, Hollands, Banbury, & Parasuraman, 

2016). A person who puts forth more effort will 

achieve a higher level of performance than will a 

person who does not. The decision to allocate effort 

involves a person’s task-related skills, their goals, 

and the difficulty level of the task (see Figure 1). This can be illustrated by a simple example: a 

student studying for an upcoming exam. First, the student must determine how well they know 

the material that will appear on the exam, a judgment of skills and abilities that is known as self-

efficacy (Bandura, 1977). Next, they must make a JOD about the exam. Finally, the student must 

estimate how much effort to put forth in order to achieve their goal successfully (R. Ackerman, 

2014; Ariel, Dunlosky, & Bailey, 2009; Metcalfe & Kornell, 2005). 

Ideally, effort allocation decisions involve comparisons between accurate judgments of 

skills, abilities, and task difficulty. When they do, the relationship between effort allocation and 

performance can be modeled using a logistic function: 

 f(x) = 
!

"#	%&(()(*) 
(1) 

 

Figure 1. Two metacognitive judgments 
(self-efficacy, difficulty) inform effort 
allocation strategies and subsequent task 
performance. 
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Here, L represents a person’s ceiling performance, restricted by the task’s objective 

difficulty. The k parameter represents the efficiency (i.e., slope) of their effort allocation strategy. 

Finally, x0 represents the average level of 

performance that can be achieved, given a 

person’s skills and abilities. Figure 2 

illustrates the performance curves of three 

students. A well-practiced student (dot-

dashed purple) does not need to invest 

much effort to score 100% on an 

assignment. This is due to both skill and 

resource efficiency. Because this student 

is highly skilled, their performance curve is shifted relative to other students’ – they can achieve 

strong performance with less effort. In addition, their experience allows small investments of 

effort to produce greater performance gains, as evidenced by a steeper slope. This pattern can be 

contrasted with that of a less-practiced student (solid purple) who must invest more effort to 

achieve a similar score and whose effort returns gains at a lesser rate. Finally, consider a 

situation in which the less-skilled student is faced with a different assignment, one that is 

objectively more challenging and, perhaps, impossible to successfully complete (dashed dark 

blue). In this case, task difficulty lowers ceiling performance and the curve asymptotes at a lower 

value. This change affects the relationship between the students’ skills and the task’s difficulty 

(i.e., median performance), but leaves resource efficiency (i.e., the slope) intact.  

The effort/reward trade-off. While ceiling performance is possible, it is not necessarily 

desirable because it involves a trade-off between effort and reward (Boksem & Tops, 2008; Kool 

Figure 2. The relationship between effort and performance 
can be modeled by a logistic regression. The figure depicts 
the performance curves of three individuals described in the 
body text. 
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& Botvinick, 2014; Kurzban, 2016; Kurzban, Duckworth, Kable, & Myers, 2013). That is, effort 

requires resources that are limited in some way (e.g., attention, time; (Bruya & Tang, 2018; 

Kahneman, 1973); limited resources cannot be reallocated without affecting performance on the 

primary task (Wickens, 2002). For example, driving and checking a text message both require 

visual attention. Young drivers who allow themselves to become temporarily distracted by a text 

message take their attention off the road and exhibit poorer performance (Caird, Johnston, 

Willness, Asbridge, & Steel, 2014). This performance decrement does not represent a change in 

the difficulty of the driving task; rather, it is indicative of a shift in cognitive resources that was 

driven by the relative value or utility of concurrent tasks. 

The degree to which the effort/reward trade-off affects performance is a function of both 

skill and ability (Kiesel et al., 2010; Monsell, 2003; Pashler, 2000). Figure 3 depicts the 

hypothetical performance curves of three individuals before and after they chose to invest their 

cognitive and perceptual resources in checking a text message. The driving performance of the 

less-skilled driver (Figure 3A) is worse than that of a driver of average ability (Figure 3B) both 

when the cell phone is present and when it is not. These negative consequences can be mitigated 

by improving either drivers’ overall skill (i.e., median performance) or by increasing their 

resource efficiency (i.e., slope) through additional practice. For example, task-switching is less 

detrimental for a person with greater resource efficiency (Figure 3C) because their increased 

processing capacity (i.e., the steepness of the performance curve) mitigates the negative effects 

of task-switching, albeit to a lesser degree than would an improvement of skill. Even if these 

drivers were involved in a situation that presented identical levels of difficulty, their performance 
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will still impaired to different 

degrees. In other words, their 

performance is partially due to the 

difficulty level of the task, but is also 

affected by their resource allocation, 

skills, and the incentive structure of 

the environment. 

The moderating effects of 

perceived effort and reward are 

obvious in task-switching situations 

(Wickens, Gutzwiller, et al., 2016; 

Wickens, Gutzwiller, & Santamaria, 

2015); however, the effort/reward 

trade-off can also affect peoples’ 

engagement in a single task (Ariel et 

al., 2009; Floresco, Tse, & Ghods-

Sharifi, 2008; Hull, 1943; 

Minamimoto, Hori, & Richmond, 

2012; Mitchell, 2017; Nishiyama, 

2014; Prévost, Pessiglione, 

Météreau, Cléry-Melin, & Dreher, 

2010; Schouppe et al., 2014; Walton, Kennerley, Bannerman, Phillips, & Rushworth, 2006). 

Consider a student who must participant in seven research experiments to pass General 

Figure 3. Hypothetical performance curves for drivers operating a 
vehicle with and without the distraction of a cell phone. The degree to 
which task-switching affects performance is affected by an individual’s 
skills and resource efficiency: highly-skilled (panel B) and highly-
efficient (panel C) individuals experience fewer performance 
decrements than less-skilled, less-efficient counterparts (panel A). 
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Psychology. This student can choose to 

schedule research appointments at any 

time during the semester; however, their 

decision about when to participate is 

influenced by incentive magnitude and 

ease of access. Studies that can be 

completed from home (i.e., online 

studies) are, on average, scheduled 15 

days earlier in the semester than are those 

that require an in-person appointment, which is more effortful to attend. Students also tend to 

complete alternative experiments, summary research papers, around 50 days later in the semester 

than online studies (see Figure 4). Students also tend to prioritize studies that are worth more 

points (see Figure 5), although this effect is smaller due to restriction of range (most research 

studies are between 0.5 and 1 credits; Vangsness, unpublished data).  

Research findings cast in the 

traditional framework attribute these 

changes in performance and task 

engagement to difficulty alone. 

These preliminary findings illustrate 

that while difficulty is a strong 

driver of behavior, performance is 

also affected by the incentive 

structure of the environment. Performance decrements due to task difficulty and those due to 

Figure 5. The size of a research credit reward affects when 
students participate in a research study. Students tend to prioritize 
studies that provide larger credit rewards, although this effect is 
attenuated by a restriction of range problem. 

Figure 4. The nature of a research study affects when students 
complete their research credits. Students complete online 
studies sooner than they do in-person studies or alternative 
assignments (research papers). The prescreen can only be 
completed during the first month of the semester. 
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incentive structure demand different interventions. To return to the driving example, reducing the 

difficulty of a driving task will not reduce the likelihood that someone will check their cell 

phone. Likewise, removing unwanted distractions will not improve the performance of an 

unskilled driver. Differentiating sources of variance such as these will indicate how targeted 

interventions (e.g., skill improvement, reducing distractions) affect performance and enhance the 

broader understanding of task difficulty. 

Misestimations of Skill, Efficiency, and Task Difficulty. Although the relationships 

described in Figures 2 and 3 appear straightforward, this is likely the exception rather than the 

rule. These figures assume an ideal situation in which accurate judgments of skill, efficiency, and 

task difficulty inform effort allocation decisions. More likely, these judgments and the decisions 

that they elicit are prone to biases and misestimations (Gigerenzer, Todd, & The ABC Research 

Group, 1999; Simon, 1955).  

Empirical examples of biases abound, especially in the field of education. Novice 

students are biased towards overestimating their skills, while more expert students tend to 

underestimate them (Dunning, 2011; Dunning, Johnson, Ehrlinger, & Kruger, 2003; Ehrlinger, 

Johnson, Banner, Dunning, & Kruger, 2008). Students also rely upon poor sources of 

information, such as fluency (Karpicke, Butler, & Roediger, 2009) and familiarity 

(Oppenheimer, 2008) when making effort allocation decisions. Although reading over a textbook 

many times increases fluency and familiarity, making content seem easier-to-learn, research has 

shown that the opposite is true: these invalid cues lead students to overestimate their resource 

efficiency and underestimate the difficulty of study materials (Karpicke et al., 2009). Errors such 

as these can be modeled using a logistic regression. 
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Consider the hypothetical (solid black line) and estimated (dashed teal line) performance 

of a B-average student who is capable of obtaining an 85% on an exam. Poor metacognitive 

ability might lead this student to overestimate their skills (Figure 6A) or their resource efficiency 

(Figure 6B), leading to worse performance than expected. Similar outcomes would arise if the 

student underestimates the difficulty of the exam (Figure 6C). In each case, the student believes 

their investment of effort will produce a higher score than they obtained. These errors arise from 

different mechanisms and must be addressed in different ways: the first two examples require 

improved metacognitive skills, while the latter requires an improved ability to judge exam 

difficulty. 

Underestimation is also problematic. When a student underestimates their skills 

(Figure 7A) or resource efficiency (Figure 7B), they invest more effort than is required to 

achieve the desired level of performance. While these errors are less likely to lead to poor 

performance on the exam, they may negatively impact performance on competing tasks – every 

hour the student spends studying is one fewer hour they can spend doing something else. Finally, 

it is unclear how overestimation of task difficulty affects performance (Figure 7C). If a student 

overestimates the difficulty of the exam, they may believe it is impossible to achieve their 

desired score. While it is possible that the student will overinvest resources to reflect anticipated 

task difficulty, they are just as likely to disengage from the task and stop studying (E. L. Bjork & 

Bjork, 2014; Harris, 1986).  
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Figure 6. Graphs of actual (solid black lines) and estimated (dotted teal line) performance curves for a student capable of obtaining an 85% on an exam. 
Misestimations involving skill (panel A) have more serious impacts on performance than do misestimations of efficiency (panel B). Similarly, 
underestimations of difficulty (panel C) can strongly impact performance. 

 

Figure 7. Graphs of actual (solid black lines) and estimated (dotted teal line) performance curves for a student capable of obtaining an 85% on an exam. 
Underestimations of skill (panel A) and resource efficiency (panel B) have less serious consequences than do overestimations (see Figure 5). The 
consequences of overestimation of task difficulty (panel C) are unknown. 
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These examples illustrate the first challenge in operationalizing task difficulty: 

performance-based measures are confounded with incentive magnitude, metacognitive ability, 

and perceptual sensitivity. That is, poor performance may occur because an individual:  

1. does not value the outcome associated with strong performance;  

2. is unaware of the effort than is required to succeed; and/or 

3. misestimates the difficulty level of the task. 

Although these moderators are related to task difficulty, they involve cognitive and 

perceptual processes that must be separated from the objective difficulty of the task. Assessing 

the influence of cognitive and perceptual processes on performance will enhance the theoretical 

understanding of task difficulty and outline ways in which environments can be restructured to 

facilitate learning. 

 Defining Difficulty, Effort, and Associated Constructs 

People define task difficulty and effort in many ways (Bruya & Tang, 2018; Cain, 2007). 

As Hart and Staveland (1988) note, “people are unaware of the fuzziness of their own definitions 

[of difficulty and effort] or the possibility that theirs might be different than someone else’s.” 

This also appears to be true of scientists who are interested in understanding how changes in task 

difficulty affect subjective workload, effort allocation, performance, and downstream decisions. 

Just as laypeople tend to confuse difficulty, effort, and workload (Fisher & Oyserman, 2017), so 

too do researchers (Bruya & Tang, 2018; Cain, 2007). Furthermore, empirical definitions of 

difficulty tend to employ circular logic: people perform poorly when tasks are hard, therefore 

hard tasks will always produce poorer performance. Likewise, people rate challenging tasks as 

hard, therefore challenging tasks will always give rise to higher subjective ratings of difficulty. 

However, research on motivation (Covington, 2000) and fatigue (Åhsberg, 2000) suggest that 
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many factors contribute to peoples’ performance and subjective ratings of difficulty. For these 

reasons, definitions of task difficulty should not be grounded in peoples’ performance or 

subjective ratings. 

Moving forward, verbal theories must separate task difficulty from effort allocation and 

operator workload. Additionally, researchers must acknowledge the diverse factors that affect 

performance (e.g., reward magnitude, operator skill), isolate them from task difficulty, and 

identify and measure their influence on JODs and subsequent performance. To this end, I will 

first contrast difficulty with the related concepts of effort and workload. I will next discuss 

common approaches to measuring these constructs and describe the challenges that limit these 

approaches. Finally, I will conclude by describing methods for minimizing confounds and 

nuisance variance that can affect measures of task difficulty. This discussion will inform both the 

methodology of the dissertation and the proposed relationships between task difficulty and 

performance. 

Contrasting difficulty, effort, and workload. Commonly, difficulty is defined as an 

interaction between an operator and the task 

(i.e., the allocation of available physical 

and cognitive resources (Curry, Jex, 

Levison, & Stassen, 1979; Eggemeier, 

1991; Gopher & Donchin, 1986) and is 

operationalized using measures of subjective workload (i.e., metacognitive judgments) or 

performance. Defined in this way, objective task difficulty is confounded with individual 

sensitivity to reward and effort allocation. Alternatively, task difficulty can be defined as an 

objective construct that is based on and quantified by measurable task characteristics. Consider 

Difficulty. An objective construct based on and quantified 
by measurable task characteristics. 
Effort.  A measure of the amount of cognitive or physical 
resources allocated towards a task relative to a person’s 
current workload. 
Workload. A point estimate of the demands that have 
been placed on a person’s cognitive or physical resources. 

Box 1. Difficulty, effort, and workload can be defined as 
separate and distinct constructs. 
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the word pairs that are frequently used in metacognition research involving judgments of 

difficulty and ease-of-learning (EOLs). Low-frequency words in the English language may be 

objectively more difficult to learn relative to high-frequency words, as evidenced by their lower 

probability of recall (Hulme et al., 1997) and ease of learning ratings (Jönsson & Lindström, 

2010). It is possible to calculate word frequency - large-scale databases exist for many languages 

and dialects (e.g., the Corpus of Contemporary American English; COCA) - and use this value as 

an index of task difficulty. For example, the word “big” appears in written and spoken word 250 

times more often than “calamity” (COCA frequencies of 258911 and 1033, respectively). If word 

frequency is a dimension of difficulty that affects performance, people should be more likely to 

remember “big” than they are to remember “calamity.” Furthermore, it should be possible to 

determine the functional nature of this relationship by measuring recall performance for many 

words of varied frequency. 

Difficulty should be contrasted with effort (see Box 1), which refers to the proportion of 

available resources an individual allocates towards a task. While harder tasks should warrant the 

allocation of more resources, this is not always the case nor is doing so always optimal (R. A. 

Bjork, 1999). Instead, it is important to note that effort may be over- or under-allocated 

depending on individual goals and task rewards. For example, people allocate more study time to 

word pairs and logic tasks that are incentivized with higher rewards, even when they are not any 

more challenging than lower-reward items (Koriat, Ma’ayan, & Nussinson, 2006). However, 

differential incentives are only effective in encouraging additional effort when an individual 

perceives success as being attainable or desires the rewards associated with task completion 

(Hensley, 2014). It is likely that individuals weigh estimates of difficulty and reward before 



4 

 

 

 

engaging in a task (Kurzban et al., 2013), and that performance is a product of many factors 

beyond task difficulty. 

Difficulty can also be contrasted with workload (see Box 1), which refers to the current 

demands that are placed on a person’s cognitive and physical resources (Cain, 2007; Gopher & 

Donchin, 1986). Thus, workload is a function of a person’s effort allocation as well as the level 

of difficulty presented by the task. The more resources that are allocated towards a task, the more 

significant a person’s workload. Likewise, task difficulty is frequently correlated with workload 

because difficult tasks require more resources to complete successfully. To illustrate these 

principles, consider the situations faced by a payload operator, who must determine and adjust 

the weight and fuel specifications of aircraft. It is more difficult to perform this task with many 

aircraft than with few. Consequently, an operator who successfully manages five aircraft is under 

greater workload than one who manages only two. Both operators can choose to allocate 

additional effort towards managing their aircraft; however, the resources they can invest to do so 

are limited by the existing workload. Although workload is chiefly measured through subjective 

assessments (e.g., NASA-TLX, SWAT, WP; (Hart & Staveland, 1988; Reid & Nygren, 1988; 

Tsang & Velazquez, 1996), there is evidence to suggest that the aggregation involved in 

calculating these workload indices does not effectively capture individual differences in resource 

efficiency (McKendrick & Cherry, 2018) that protect against changes in performance under 

conditions of increasing workload. This metric is best captured by performance and the 

performance-effort slope, which represents the degree of resource efficiency (see Figures 6B and 

7B). 

Measuring difficulty, effort, and workload. Despite the ease with which difficulty can 

be objectively defined along continuous dimensions, researchers frequently assess difficulty as a 
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function of an operator’s performance or subjective ratings, and dichotomize this metric 

following ad hoc procedures. Consider the trials of a flanker task1: it might be easier to indicate 

the direction of an on-screen arrow if you’ve received a brief clue (e.g., four additional arrows 

pointed in the same direction) about which way it will be pointing, just as it may be harder to 

indicate the direction of this arrow when the clue is misleading (i.e., the flanking arrows are 

pointed in the opposite direction; (Schouppe et al., 2014). Comparing the proportion of errors 

that participants make on these “easy” and “hard” trials provides a coarse estimate of how 

resources were allocated under each circumstance. That is, it is possible to attribute relative 

changes in performance to difficulty – here, the direction of the central arrow – because the other 

task and sample characteristics that might affect performance have been averaged away. 

However, it is incorrect to suggest that the variability in performance is solely due to the 

difficulty of the task itself or to state that task difficulty alone was responsible for participants’ 

performance in the task. Additional sources of variance hide in the error term and cannot be 

disambiguated from one another. Specifically, aggregated measures of task performance include 

changes due to task difficulty, a person’s effort allocation strategy, and a person’s workload. 

Although it is impossible to disambiguate these sources of variance directly, they can be 

modeled by observing the effects of different variables on performance. For example, changing 

the negative consequences of an incorrect identification (e.g., randomly selected values between 

-5 and -50 points) may affect a person’s resource allocation strategy but will not affect the 

objective difficulty of the flanker task or that person’s current workload. Similarly, requiring a 

                                                
1 Participants in a flanker task are instructed to indicate the direction of an arrow that appears in the middle of a 
computer screen. This arrow is flanked by four additional arrows, two on each side. Sometimes, all of the arrows 
point in the same direction (congruent trials); other times, the flanking arrows point in the opposite direction 
(incongruent trials). 
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person to concurrently perform a demanding n-back task should affect their current workload, 

but would not necessarily affect their effort allocation strategy or the difficulty of the flanker 

task, which is independent of the n-back task. Thus, changes to incentive magnitude and 

workload should affect performance independently of changes in task difficulty. 

Minimizing confounds and nuisance variance. The current practice of dichotomizing 

difficulty into “easy” and “hard” conditions masks the sources of variance in performance. 

Unless a dimension of difficulty is truly dichotomous (e.g., writing a sentence with one’s non-

dominant hand), its continuous nature should be maintained in the form of objective task 

difficulty. Maintaining the continuous nature of each dimension allows mathematical models to 

capture the functional relationship between unique facets of task difficulty and performance, as 

well as the interactions that occur between difficulty and other variables, such as incentive 

magnitude or time. 

Consider the congruent (easy) and incongruent (hard) trials in a flanker task. Comparing 

participants’ performance on these two trial types provides a coarse estimate of the effects of this 

dimension of difficulty (see Figure 8, left panel); however, it limits how effectively the 

Figure 8. Error rates (i.e., percent incorrect responses) across congruent and incongruent flanker trials (left panel; 
Schouppe et al., 2014). Measures of confidence and variability were not originally reported. The graph on the right 
illustrates various underlying relationships that could produce this pattern of performance. 

 



7 

 

 

 

relationship between this dimension of difficulty and relevant outcomes can be modeled (Young, 

2016). 

An alternative way to assess the relationship between flanker congruence and task 

performance is to model how a person’s error rate changes as a function of the number of 

consecutive presentations of incongruent trials (see Figure 8, right panel). The error rate could 

increase linearly (solid red line), exponentially (dashed green line), or logarithmically (dotted 

blue line); alternatively, performance could deteriorate but then improve as incongruent arrows 

become a clue in themselves – a quadratic relationship (dashed purple line). These meaningful 

distinctions can only be made when task difficulty is defined objectively along continuous 

dimensions. 

Disaggregating task difficulty along continuous dimensions improves the quality of 

model predictions, but also creates challenges in the form of stimulus selection. Specifically, 

participants must experience similar rates of change in task difficulty. Consider two participants 

tasked with answering timed multiplication problems. Both participants have 15 s to complete 

their first math problem. However, they differ in how long they have to complete the second: one 

participant is given 5 s, while the other participant receives 14 s. The change in task difficulty 

that has occurred will be more noticeable to the first participant than to the second because the 

degree of change is larger. Thus, the first participants’ JODs will be more accurate than those of 

the second (Jemstedt, Kubik, & Jönsson, 2017).  

One explanation for this effect is that metacognitive accuracy is improved by stimulus 

variability (Jemstedt et al., 2017). However, it is equally likely that these improvements are due 

to physiology or to a statistical artifact. Increasing stimulus variability decreases the perceptual 

similarity between any two items or tasks, which may improve inter-item discrimination 
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(Stevens, 1957). Similarly, maximizing stimulus variability also expands the scale of a particular 

dimension; standardizing with conditions or dimensions that do not exhibit the same degree of 

variability will artificially enhance the slope of some conditions while reducing that of others. 

For illustration of this latter point, consider 

Figure 9, which illustrates changes in performance 

across levels of task difficulty in a videogame. Here, 

task difficulty was standardized across conditions so 

that 0 represented the easiest level and 1 represented 

the hardest level that a person encountered. In this 

analysis, individual differences in skill, effort 

allocation, and learning were accounted for by the 

random effect structure of a multi-level model; the 

remaining variance in performance was due to the 

difficulty level of the task. Although the performance 

slopes for three conditions (Damage, Line-of-Sight, 

and Strength) are roughly equivalent across levels of 

difficulty, two conditions (Population, Speed) differ drastically in this regard. These two 

conditions contained a wider range of difficulty levels that, when standardized, appear to 

represent a meaningful effect (Vangsness & Young, 2018). 

In summary, research on task difficulty must address the limitations of past research in 

three respects: 

1. provide clear definitions of difficulty that are grounded in the characteristic(s) 

responsible for making a task more difficult;  

Figure 9. Participants’ performance (log-
transformed Damage Rate) was affected by 
task difficulty, which was standardized so 
that 0 represented the easiest and 1 
represented the hardest level that participants 
would encounter. Individual differences in 
skill, effort allocation, and learning were 
captured in the random effect structure of this 
model; the remaining variance in 
performance is due to the difficulty level of 
the task, nuisance error, and the confounding 
variable of condition difficulty. 
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2. disaggregate task difficulty along its original, continuous dimension(s); and 

3. minimize confounds and nuisance variance through rigorous pilot testing and the use 

of covariates. 

Addressing these challenges will make it possible to determine the effects of task difficulty on 

performance and JODs. 

 A Cohesive Framework for Testing Relationships 

Systematically addressing the relationships between task difficulty, effort, and 

performance requires a cohesive framework that includes both task-related and operator 

characteristics. That is, research efforts must acknowledge that effort allocation and, in turn, 

performance are affected both by task characteristics as well as by how well a person perceives 

and responds to those characteristics (Gopher & Donchin, 1986; Meshkati, Hancock, Rahimi, & 

Dawes, 1995). For example, people may over- or underestimate their abilities relative to task 

demands (Ehrlinger et al., 2008; Kruger & Dunning, 1999), or may differ in the degree to which 

they notice changes in characteristics that are valid indicators of task difficulty (Stevens, 1957). 

Furthermore, the degree to which these characteristics influence JODs may depend upon 

previous experiences (Löffler, von der Linden, & Schneider, 2016). Finally, people may be more 

or less sensitive to performance-based feedback; individual tolerance for poor performance may 

differ from person to person, and larger violations of performance expectations may be required 

to trigger an updated representation of one’s abilities. 

These stages and the intervening variables that affect them are outlined in Figure 10 and 

can be illustrated by a simple example: attempting to parallel park a vehicle. Before parking, a 

driver must judge the difficulty of the parking task. An initial estimate can be made using self-

efficacy beliefs and does not require any information about the parking situation itself: a person 



10 

 

 

 

who is learning to drive and is aware of their lack of experience is likely to provide higher 

estimates of task difficulty than a seasoned driver or a novice with unrealistic expectations of 

their skill. This initial estimate can then be modified by central cues to difficulty, task 

characteristics that provide information about difficulty. Even an experienced driver will indicate 

that it is more difficult to park in a narrow spot on a busy street than it is to park along an empty 

curb. Once a JOD is made, the driver must decide how to allocate resources to the task by 

considering the incentive structure of the environment and the costs of resource allocation. In the 

case of parallel parking, a driver may contrast the costs and benefits of seeking an alternative 

spot with those of successfully parking in the given location. If success is unlikely or an 

individual is poorly calibrated to task difficulty, fewer resources may be allocated than are 

necessary to maximize the probability of success. Information about the incentive structure of the 

environment may be used to make JODs (e.g., some people believe that difficult tasks are highly 

rewarded; (Jönsson & Lindström, 2010), or inform the allocation of resources after a JOD has 

been made. If the task is attempted, the driver will learn whether their resource allocation was 

appropriate, given their skills and the objective difficulty of the task. That is, performance-based 

(e.g., inability to perform the task; a fender bender) and proxy peripheral cues (e.g., time-on-

task) will become available. This feedback can facilitate learning and be used to update self-

efficacy beliefs. 

The model presented in Figure 10 provides a cohesive framework for elements and 

concepts that have been discussed separately in the context of metacognition (R. Ackerman, 

2014; Nelson & Narens, 1990) and workload allocation (Anderson, 1996; Kahneman, 1973; 

Wickens, Gutzwiller, et al., 2016). In addition, it provides an iterative mechanism by which past 

experiences can be used to inform current judgments and decisions related to task engagement. 
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This framework will serve as a basis for the current section, where I will review theoretical and 

empirical evidence relating to each stage of task assessment and resource allocation.  

 Skills and Competency Beliefs Inform JODs 

 Even when task-specific information is absent or ambiguous, a person can use their skills 

and abilities to make a JODs (see Figure 11). For example, a person might use their overall 

fitness to predict the difficulty of going for a run. In this context, a self-proclaimed couch potato 

might predict that the run would be more difficult than would someone who bikes to work every 

day. Although these JODs could be improved by knowing the distance of the run, the kind of 

terrain on the route, or the amount of fatigue one would experience, this information is not 

Self-efficacy 
beliefsSkills/abilities JODs

Figure 11. Self-efficacy beliefs can inform JODs in the absence of task-specific information. 

Self-efficacy 
beliefsSkills/abilities JODs

Resource 
allocationPerformance

Central cues

Incentive 
structure

Performance-based 
peripheral cues

(i.e., feedback)

Proxy 
peripheral cues

(e.g., time-on-task)

Figure 10. A cohesive framework illustrating the proposed relationships between JODs, resource allocation, and 
performance. 
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required to make a judgment; JODs can be made independently of or be enhanced by task 

engagement (Bandura, 1977). 

When task-specific information is absent or ambiguous, self-efficacy beliefs are 

predictive of effort allocation and task completion (Bandura, 1986, 1989). For example, job 

seekers who believe they are highly skilled apply for more jobs and are more likely to complete 

applications than those who do not feel as confident in their abilities (Ellis & Taylor, 1983). 

Similarly, research scientists’ self-efficacy beliefs are predictive of the number of papers they 

publish and the number of times they are cited by other researchers (Taylor, Locke, Lee, & Gist, 

1984). Neither employers nor journal editors provide much information about how difficult it 

will be to apply and may offer little to no feedback when an applicant is rejected. In situations 

such as these, self-efficacy is the strongest predictor of task performance (Stajkovic & Luthans, 

1998). 

Although self-efficacy can be a strong predictor of task performance, it may not always 

produce accurate JODs. Two kinds of errors can occur: a person can misjudge their skills and 

abilities relative to the task (i.e., 

misestimate the upper asymptote) or fail 

to recognize how differences in task-

specific characteristics affect the difficulty 

of the task (i.e., misestimate the slope). 

The couch potato in the previous example 

(purple solid line) may recognize that a 

run will be more challenging for them 

than for their fit friend (teal solid line), 

Figure 12. A person’s JODs (purple solid line) can be 
accurate relative to a reference group (teal solid line) while 
still exhibiting inaccuracy. Although this figure assumes a 
linear relationship, it is possible that a nonlinear (e.g., 
exponential) function better describes the relationship. 
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regardless of distance. That is, their average JOD is accurate as compared to a reference group, 

as represented by the open points in Figure 12. However, the couch potato may still misestimate 

the difficulty of the run relative to their skills and abilities: they may perceive themselves as fitter 

than they actually are (i.e., misestimating the intercept; pink dotted line) or may lack an 

understanding of how distance can affect the difficulty of a run (i.e., the slope; pink dashed line). 

Thus, self-efficacy beliefs and task characteristics both contribute to the accuracy of JODs.  

Accuracy in estimating overall skills and abilities. It is well-established that poor 

performers overestimate their performance relative to peers, while high performers exhibit slight 

underestimation (Dunning, 2011; Dunning et al., 2003; Ehrlinger et al., 2008; Larrick, Burson, & 

Soll, 2007). One explanation for this reversal is regression to the mean. That is, a ceiling effect 

artificially constrains the error in top performers’ estimates while poor performers’ estimates 

exhibit a greater degree of error. This hypothesis offers a simple explanation for the results of 

many experiments (P. L. Ackerman, Beier, & Bowen, 2002; Kruger & Dunning, 1999), and can 

help explain why many drivers think they are above average. 

On the other hand, it is possible that poor performers are “unskilled and unaware.” That 

is, poor performers’ estimates may be undermined by their inexperience: they do not know what 

information can be used to determine whether a task will be difficult or easy for them to 

complete, nor can they accurately assess their performance in the absence of overt feedback. 

High performers, on the other hand, may fall prey to a false consensus effect and incorrectly 

assume that others are similarly talented (Kruger & Dunning, 1999). This problem may be 

exacerbated when individuals’ reference group changes. A transition of this sort affects the skill 

level of the reference group (Krajč & Ortmann, 2008) as well as the predictive power and 

availability of different task characteristics (Ryvkin, Krajč, & Ortmann, 2012). 
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Consider a student who graduates from high school and attends a university. Most 

universities have some performance threshold for acceptance, which inflates the skill level of the 

reference pool - most of the students who are accepted to a university are likely to be in the top 

half of their graduating class. Thus, a once above-average student could now be part of the lower 

quartile of the incoming class. Until the student recognizes the situation has changed, they will 

likely overestimate their average academic skill and/or resource efficiency relative to their peers. 

This misestimation may be exacerbated because the information that could be used to correct this 

judgment is provided infrequently (e.g., official grades, informal assessments). Instead, the 

student may rely upon readily available but less-accurate surface information from lectures and 

textbooks, such as the ease with which they can read the materials (i.e., processing fluency; 

(Oppenheimer, 2008). Under these conditions, inaccurate self-efficacy beliefs may be caused by 

changes in the reference group, in the quality of task characteristics, and in the frequency of 

feedback. 

Although longitudinal research suggests that the accuracy of peoples’ self-efficacy beliefs 

improves with experience (Ryvkin et al., 2012), it is unclear whether this improvement is due to 

increased familiarity with the reference group, with the task, or with performance-based 

feedback. The mechanism underlying this improvement is important because poorly-calibrated 

self-efficacy beliefs have immediate and long-lasting effects on learning and downstream 

performance. When people overestimate their abilities relative to task demands, they fail to 

engage in strategies that compensate for their weaknesses (Azevedo, Moos, Greene, Winters, & 

Cromley, 2008) and engage in tasks even when success is unlikely (Corbalan, Kester, & van 

Merriënboer, 2008; Kostons, van Gog, & Paas, 2012; Ross, Morrison, & O’Dell, 1989). 

Conversely, those who underestimate their skills are unlikely to select tasks that challenge and 
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improve their abilities, which is particularly detrimental in self-paced learning situations 

(Azevedo et al., 2008; Deci, Ryan, & Williams, 1996; Goforth, 1994; Lawless & Brown, 1997; 

Niemiec, Sikorski, & Walberg, 1996). Understanding the relationship between self-efficacy 

beliefs, task characteristics, and performance-based feedback will eliminate competing 

hypotheses and improve learner interventions. 

 The Moderating Effect of Cues to Difficulty 

  Cues to difficulty can be used to determine which skills will be required to 

complete a task. When many cues are available, a person must identify which are valid 

predictors that provide information about the skills that will be required to successfully complete 

the task. Tasks with many cues require multi-attribute judgments (Bandura, 1977), which are 

prone to higher degrees of error than single-attribute judgments (Nickerson, 1967). Errors are 

introduced when people incorporate invalid cues or inappropriately weight valid cues to 

difficulty. 

Consider a marathoner tasked with completing a short run. In the absence of task-specific 

information, the runner may rate their athletic skills as being fairly high. However, once 

additional information becomes available, their skill assessment may change: a 5-mile trail run is 

shorter but more technically challenging than a road race. While marathoners are highly skilled 

Figure 13. Task characteristics (i.e., cues to difficulty) can moderate the relationship between self-efficacy beliefs 
and JODs. 

Self-efficacy 
beliefsSkills/abilities JODs

Central cues
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at running long distances, they are less skilled at maintaining balance and control in 

unpredictable environments. Over- or under-weighting these pieces of information can weaken 

the relationship between self-efficacy and performance (see Figure 13). 

Cues used to evaluate difficulty. I have proposed that effort allocation occurs at task 

onset in response to judgments of difficulty, reward, and the probability of successful task 

completion. That is, an individual must assess task difficulty relative to their ability and allocate 

resources in such a way that they achieve their goal and are rewarded for their investment. The 

process of effort allocation must be repeated in response to external (e.g., task characteristics) 

and internal (e.g., fatigue) changes that occur during the process of task completion (Koriat, 

1997; Sweller, 1994; Sweller, Ayres, & Kalyuga, 2011). For example, a tactical coordinator 

charged with evaluating the threat level of nearby aircraft must allocate more cognitive resources 

during high-traffic occasions and fewer when there are no aircraft approaching. Regardless of the 

circumstances, the coordinator may increase resource allocation in response to an order from 

superiors or may decrease it in anticipation of a much harder task. When monitored properly, 

external and internal changes allow the coordinator to balance resource allocation with 

successful task completion while mitigating the effects of fatigue. 

An individual’s ability to monitor changes to external and internal characteristics depends 

on perceptual sensitivity and cognitive processing limitations (Simon, 1955; Stevens, 1957). For 

example, a tactical coordinator is unlikely to notice the difference between a training scenario 

that contains 54 airplanes and one that contains 55 (Kaufman, Lord, Reese, & Volkmann, 1949). 

But even obvious changes in task difficulty may be overlooked by a coordinator who must 

complete multiple tasks at the same time or is distracted by cues that are not indicative of task 

difficulty, such as the presence of a decision aid (Vallières et al., 2016). In this way, subjective 
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perceptions of workload, effort allocation, and performance are constrained by the factors that 

affect judgment and decision-making processes. 

Additionally, the cues that signal external and internal changes during task completion 

occur at different times. Some cues are available to all people and exist independently of skill or 

resource allocation, while others are affected by individual experience with the task. I refer to 

these as central and peripheral cues, respectively (see Table 1). Generally, central cues are 

available at the onset of the task or become known very early in task completion: a tactical 

coordinator can estimate the number of approaching aircraft (information complexity) and would 

know that failure to identify an enemy could be catastrophic (reward magnitude). During the 

process of task completion, peripheral cues become available: the coordinator may receive 

automated feedback (a performance-based cue) or may note the amount of time it takes to 

identify the aircraft (a proxy cue). Thus, central cues can be used to make initial and ongoing 

judgments of task difficulty and resource allocation, while peripheral cues serve to monitor one’s 

progress in addressing the challenges presented by the task (Vangsness & Young, 2018). 

Although central cues are likely the most valid predictors of difficulty, they are task-

specific and may be hard to identify. Consequently, people may find it easier to track peripheral 

cues that are valid under many circumstances and serve as a proxy for task difficulty (Potts, 

Pastel, & Rosenbaum, 2018). For example, while rescue pilots are familiar with inhospitable 

flight conditions, they are unlikely to have experience landing at the exact site of a future 

mission. When confronted with a novel situation, they may use feelings of fatigue to inform their 

ongoing assessment of task difficulty. Because fatigue frequently correlates with task difficulty, 

it often serves as a valid cue; however, it may be misleading under certain circumstances (e.g., a 

person suffering from insomnia). 
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Table 1. 
Central and peripheral cues differ in their availability and consistency during a task. The early availability and 
consistency of central cues lend themselves to prediction, while peripheral cues can be used to monitor performance 
during a task. 

Central Cues Peripheral Cues 
• Available at task onset • Available after task interaction 
• Independent of skill and resource 

allocation 
• Vary with skill and resource allocation 

Task-based Performance-based Proxy 
e.g., stimulus complexity; target speed; 
time deadline 

e.g., accuracy; reward; 
score 

e.g., completion time; 
feelings of fatigue 

 

Central and peripheral cues can also be contaminated by the context surrounding the task. 

For example, women perform more poorly on difficult math tests when they complete them in a 

mixed-gender group; this effect disappears when women receive instructions that dispel myths 

about gender differences in math ability (Cohen et al., 2016; Spencer, Steele, & Quinn, 1999). In 

this example, central cues to difficulty are identical across exam contexts; however, the gender 

composition of the classroom increases anxiety (a proxy cue) for some test takers, which in turn 

impairs performance. Now, some students’ performance-based cues are reflective of task 

difficulty as well as their physiological responses to an invalid cue. If invalid proxy cues inform 

their judgments of difficulty, these students may poorly allocate resources and further impair 

their performance (Nelson & Narens, 1990). 

Sources of bias in self-efficacy beliefs. Stereotype threats are one example of a situation 

in which cues to difficulty moderate self-efficacy beliefs to produce inaccurate JODs and poor 

performance; however, many such tasks exist. Broadly speaking, when cues to difficulty suggest 

that a task will be easy, people tend to overestimate their skills relative to those of others (Alicke, 

1985; Marottoli & Richardson, 1998; Zenger, 1992). However, people tend to underestimate 

their skills when cues suggest that a task will be difficult (Hoelzl & Rustichini, 2005; Kruger & 

Dunning, 1999; Kruger, Windschitl, Burrus, Fessel, & Chambers, 2008). This is true even when 
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cues to difficulty are invalid predictors of performance: participants presented with seemingly 

easy and hard trivia questions develop this pattern of behavior when questions are equated for 

difficulty across groups (Arkes, Wortmann, Saville, & Harkness, 1981). 

The degree to which a person’s self-efficacy beliefs are susceptible to these biases 

depends on their actual abilities and performance. Poor performers strongly overestimate their 

performance relative to peers when tasks are perceived as easy, while high performers exhibit 

slight underestimation. The magnitude of these errors reverse when tasks appear difficult: top 

performers underestimate their performance to a greater degree while poor performers become 

more accurate in their assessments (Burson, Larrick, & Klayman, 2006). 

The importance of a unified cue framework. Although cues to difficulty and self-

efficacy beliefs share a close relationship, individual differences are often minimized by 

averaging across levels of difficulty or skill. This averaging allows researchers to determine how 

people evaluate task difficulty in general but masks the unique effects that self-efficacy beliefs 

and cues to difficulty have on JODs. If an insensitivity to cues (i.e., the “unskilled and unaware” 

problem) drives the above average effect, JODs should be informed by cues to difficulty, 

especially among those who are experienced. That is, the intercept should be affected but the 

slope should not. Similarly, gaining familiarity with appropriate task-specific characteristics 

should affect sensitivity without affecting average judgments relative to a reference group (see 

Figure 14B). Additionally, observing others’ performance should improve peoples’ 

understanding of the reference class and affect the average accuracy of metacognitive judgments 

without affecting sensitivity to task-specific characteristics (see Figure 14A). Finally, receiving 

extensive performance-based feedback should reduce the variability of individuals’ estimates 

above and beyond what is warranted by either an improved understanding of the reference class 
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or cues to difficulty (see Figure 14C). If the above average effect is simply due to ceiling and 

floor effects (i.e., regression to the mean), changes in JODs will occur as participants learn or 

gain experience with a task, but will be insensitive to other changes in parameters.  
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Figure 14. If metacognitive biases are caused by task-specific experience, pre- (solid pink line) and post-task (dotted pink line) should share a 
systematic relationship with actual performance (purple line). Specifically, improving one’s knowledge of the reference class should affect the intercept 
but not the slope (panel A); improving sensitivity to cues to difficulty should affect the slope but not the intercept (panel B); and receiving performance-
based feedback should significantly affect the variability of people’s JODs (panel C). 
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 Judgments of Difficulty and Effort Allocation 

Once a person has made a JOD, they can decide how much effort to invest in completing 

that task. Although systematic research on the relationship between JODs and effort allocation is 

lacking (Jemstedt et al., 2017), insights can be leveraged from metacognitive research on 

Judgments of Learning (JOLs), Ease of Learning (EOLs), and study time. This research supports 

a direct relationship between JODs and effort allocation; however, the nature of this relationship 

remains unclear. In general, it seems that although students invest more effort in studying 

challenging topics (Nelson & Leonesio, 1988; Son & 

Metcalfe, 2000) this relationship occasionally inverts 

(Koriat & Ackerman, 2010). Competing hypotheses have 

arisen to explain the inconsistent relationship between 

JOLs, EOLs, and study time; several of these models 

suggest that the incentive structure of the environment has 

both a direct and moderating role in effort allocation. That 

is, the incentive structure can provide information 

regarding how difficulty a task will be – a 10-point essay is 

often harder than a 2-point multiple true/false question 

((Jönsson & Lindström, 2010); see Figure 13). The 

incentive structure may also moderate the relationship between peoples’ JODs and their effort 

allocation strategies (see Figure 15): both incentives (e.g., bonus points) and disincentives (e.g., a 

late penalty) can change behavior. Although the incentive structure can involve both positive and 

negative outcomes, I refer to these as the “incentives” of the environment for conciseness.  

Figure 15. Incentive value, a central 
cue to difficulty, may moderate the 
relationship between JODs and effort 
allocation. 

JODs

Resource 
allocation

Incentive 
structure
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Competing hypotheses have arisen to explain the inconsistent relationship between JOLs 

and study time; however existing research designs do not allow researchers to determine when 

the incentive structure plays a moderating role. In the section that follows, I will briefly review 

these competing hypotheses and their predictions regarding the relationship between JODs, 

central cues, and effort allocation. 

Diminishing Criterion Model. The Diminishing Criterion Model (DCM; (R. Ackerman, 

2014) suggests that effort is allocated after a person compares their current state to their goal 

state. In the context of study time, a student might estimate their current level of content 

knowledge and compare it to what would be required to reach their desired level (e.g., a desired 

course grade). Thus, the less well-known the content, the more time the student will spend 

studying it now (Son & Metcalfe, 2000) and in the future (Nelson & Leonesio, 1988; Thiede, 

Wiley, & Griffin, 2011). Similar behavior should emerge within the context of a dynamic task, 

such as running a race. A runner might use their current pace to estimate their finishing time. The 

further the current pace from the goal pace, the more effort the runner will invest to run faster 

and reach their goal. 

The DCM’s assertion that effort allocation strategies are developed by comparing desired 

states to current states, restricts the moderating role of the incentive structure. Specifically, 

peoples’ JODs should be sensitive to changes in task incentives; however, incentives should not 

explain any of the variance in task performance above and beyond JODs. Furthermore, this 

relationship should be positive in nature: tasks that are perceived as being more challenging 

should warrant the allocation of additional effort, regardless of the reward associated with their 

completion. 
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Proximal Zone of Learning Theory. The DCM can be contrasted with the Proximal 

Zone of Learning Theory, which predicts that people will allocate more effort towards tasks that 

lie within the level of their skills and abilities (Dunlosky, Kubat-Silman, & Hertzog, 2003; 

Metcalfe, 2009) because they are likely to be most successful in completing them. In other 

words, the Proximal Zone of Learning Theory predicts that people will maximize their payouts: 

students should spend the most time studying content that they are likely to master, given the 

amount of time they have before the exam. This perspective is consistent with effort allocation 

theories that emphasize resource conservation (Boksem & Tops, 2008; Kool & Botvinick, 2014; 

Kurzban et al., 2013) in that students’ success rate for the most difficult items will almost always 

be lower than their success rate for easier items. When items are worth the same number of 

points, an easy-item investment strategy is optimal. 

The Proximal Zone of Learning Theory predicts that a person’s effort allocation strategy 

will be determined by their current level of skills and abilities, relative to the challenges 

presented by the task. In this sense, Proximal Zone of Learning Theory is similar to the DCM: 

peoples’ JODs should be sensitive to changes in the incentive structure, but incentives should not 

explain variance in task performance. However, this relationship should be negative in nature: 

tasks that are perceived as being easier should warrant the allocation of additional effort, 

regardless of the reward associated with their completion. 

Moderation models of effort allocation. Unlike the DCM and Proximal Zone of 

Learning Theory, moderation models suggest that peoples’ effort allocation strategies are 

affected by the incentives associated with task completion (Koriat et al., 2006; Metcalfe & 

Kornell, 2005; Son & Metcalfe, 2000; Undorf & Ackerman, 2017). Specifically, people will 

invest more effort in tasks that are associated with greater rewards or lesser consequences. For 
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example, students might spend extra time studying topics that will be worth more points on an 

exam, regardless of how difficult those topics are. This effect is lessened when people are 

distracted (Sobel, Gerrie, Poole, & Kane, 2007) or when working-memory load is high (Barrett, 

Tugade, & Engle, 2004), suggesting that attending to and remembering the incentive structure 

contributes to workload itself. 

Although the relationship between incentives and effort is well-established (Hull, 1943; 

Mitchell, 2017), moderation models of effort allocation such as Agenda-Based Regulation (Ariel 

et al., 2009) and the Strategic Task Overload Model (Wickens, Gutzwiller, et al., 2016) offer 

specific predictions regarding JODs. These models suggest that people will allocate greater effort 

towards tasks that seem easier to complete, but that this preference will be affected by task 

incentives: harder tasks that are strongly incentivized will encourage greater efforts, as well. 

Framed another way, JODs will affect the average amount of effort allocated towards a task, but 

this will change as a function of the incentive’s magnitude (i.e., an interaction effect will be 

present).  

 Evaluating Task Performance 

 When a person allocates resources towards a specific task, they engage in the 

process of performance. A runner does not need to complete a 5K, but if they choose to do so 

they must engage their physical resources and begin to take steps towards the finish line. As 

these resources are recruited in pursuit of the task, performance – running or perhaps walking – 

occurs. These cumulative efforts inform the runner’s skills and abilities. The more frequently the 

runner practices, the better they will become. In this way, current efforts affect future 

performance (see solid arrows, Figure 16). 
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Task performance also gives rise to peripheral cues that can be used to make JODs. Some  

of these peripheral cues are directly related to performance itself. For example, an athlete may 

begin to feel the physical effects of running. 

The harder they work, the more they will 

experience these effects. This performance-

based peripheral cue is a product of the 

factors that contribute to effort allocation 

(self-efficacy beliefs, objective task difficulty, 

incentive value, and effort allocation), and 

can be used to inform subsequent resource 

allocation. Task performance also gives rise 

to proxy cues, which frequently (but not 

always) correlate with task difficulty. For 

example, difficult running routes frequently 

take longer to complete; however, time-on-task can also be affected by situations unassociated 

with task difficulty, such as pausing on the trail for an unexpected conversation with a friend. 

These proxy cues may inform peoples’ JODs or effort allocation strategies; however, these 

relationships are beyond the scope of this dissertation and do not appear in the model. 

Establishing the relationship between peripheral cues and task completion would help 

explain anecdotal examples of human behavior. Consider the relationship between student 

performance and motivation. Perhaps students become discouraged and disengage from tasks 

because heightened levels of fatigue lead them to doubt their self-efficacy. Conversely, students 

may withdraw because peripheral cues lead them to believe a task is more challenging than it is. 

Figure 16. Resources can be allocated towards task 
performance, which in turn affects skills and abilities 
through learning. Task performance also gives rise to 
peripheral cues – performance-based and proxy cues – that 
can be used to make JODs. 

Skills/abilities

Resource 
allocationPerformance

Performance-based 
peripheral cues

(i.e., feedback)

Proxy 
peripheral cues

(e.g., time-on-task)
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However, it is also possible that students disengage because performance-based feedback alters 

the incentive structure of the environment by providing a positive punishment. Although it is 

clear that peripheral cues to difficulty play an important role in learning (Butler & Winne, 1995; 

Gaeth & Shanteau, 1984; Gonzalez, 2005; Kluger & DeNisi, 1996; Shanteau, 1992) and student 

engagement (R. A. Bjork, 1999), it is unclear when these cues become integrated during the 

process of task evaluation and completion (see Figure 17). 

 The Dissertation 

This dissertation narrowly focuses on the relationship of peripheral cues to difficulty and 

JODs, being mindful of the fact that this relationship exists within the larger framework of task 

completion. Specifically, this dissertation will: 

1. Assess the degree to which metacognitive judgments negatively affect task 

completion (Pilot Study); 

2. Determine whether performance-based peripheral cues must be experienced to inform 

JODs (Experiment 1); 

Peripheral cues

Proxy cues
(e.g., time-on-task)

Self-efficacy 
beliefsSkills/abilities JODs

Resource 
allocationPerformance

Performance-
based

Figure 17. Peripheral-cues may influence effort allocation in a variety of ways: they 
may negatively impact self-efficacy beliefs, inform JODs, or change in the incentive 
structure of the environment. 
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3. Evaluate the relationship between performance-based peripheral cues and the 

incentive structure of a task (Experiment 2). 

These aims will be addressed within the context of visual search, a task in which 

participants must find a target item that is hidden among a set of similar distractor items. The 

amount of time participants have to identify the target is limited; at the end of each search trial, 

participants receive performance-based feedback that indicates whether their search strategy was 

successful or not. Because this task is relatively straightforward, it provides a controlled context 

in which peripheral cues can be studied independently of other factors that may influence task 

completion. 
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Chapter 2 - Pilot Study 

The primary goal of the pilot study was to calibrate the task. Specifically, the pilot was 

conducted to ensure that the difficulty levels presented within each condition had similar effects 

on participants’ performance. This step ensured that any JOD or performance differences that 

emerged across difficulty conditions was due to an inherent property of those dimensions of 

difficulty rather than the level of difficulty they presented. 

The secondary goal of the pilot study was to determine the effects of frequent JOD 

assessment on participants’ task performance. Many experiments require participants to alternate 

between completing a task and making metacognitive judgments (Brewer & Sampaio, 2006; El 

Saadawi et al., 2010; Hanczakowski, Pasek, Zawadzka, & Mazzoni, 2013; Hanczakowski, 

Zawadzka, & Cockcroft-McKay, 2014; Koriat, 2008; Maclaverty & Hertzog, 2009; Souchay, 

Isingrini, Clarys, & Taconnat, 2004) For example, a person taking a test may be asked to rate 

their confidence in each answer before proceeding to the next question (Koriat, 2008). The 

rationale for this procedure is simple: a person must perform a task before they can report the 

cognitions they had while completing it. It is difficult to rate your confidence in an answer before 

one has been provided or to estimate the degree to which you “know” something if you haven’t 

tried to recall it. Research confirms that participants’ metacognitive judgments are more accurate 

after performing a task (Siedlecka et al., 2018); however, this traditional experimental design 

implicitly assumes that alternation has little effect on participants’ task performance or 

metacognitive accuracy.  

Although there is little research on whether alternation affects task performance or 

metacognitive accuracy, evidence from task-switching experiments suggests that alternating 

metacognitive judgments with task completion may represent a form of task interruption that 
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interferes with the performance of both tasks (Kiesel et al., 2010; Monsell, 2003; Pashler, 2000; 

Wickens, Gutzwiller, et al., 2016; Wickens et al., 2015). That is, participants must disengage 

from the primary task (e.g., completing an exam; recalling word pairs) to make a metacognitive 

judgment and vice versa. This procedure is similar to the fixed sequences found in some task-

switching paradigms, during which participants must alternate between performing two tasks. 

Alternating tasks leads participants to perform worse in both (Allport, Styles, & Hsieh, 1994; 

Spector & Biederman, 1976), even when the switches are predictable and both tasks are 

relatively simple (Rogers & Monsell, 1995). If metacognitive judgments represent a form of task 

switching, task performance and metacognitive accuracy should deteriorate the more frequently 

the switch is performed during an experiment. 

On the other hand, making repeated metacognitive judgments may improve participants’ 

metacognitive skill and task performance (Jemstedt et al., 2017; Schwartz, Boduroglu, & 

Tekcan, 2016) by providing them with more accurate scale anchors (Colle & Reid, 1998). For 

example, participants who only provide feelings-of-knowing (FOKs) for items that they can’t 

answer may not know what a strong FOK is like. When participants provide metacognitive 

judgments for all answers, they are better able to gauge their FOKs and can provide more 

accurate judgments on subsequent items. Furthermore, frequent metacognitive evaluations may 

allow participants to engage in self-paced study or training that improves their task performance 

(R. Ackerman, 2014; Koriat et al., 2006; Tullis & Benjamin, 2011). Thus, it is equally possible 

that task performance and metacognitive accuracy will improve with more frequent assessments. 

In summary, three competing hypotheses arise from the literature: 

H1 (traditional paradigm): the frequency of metacognitive assessment has no 

effect on task performance or metacognitive accuracy. 
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H2 (self-regulated study): as the frequency of metacognitive assessments increase, 

participants’ metacognitive accuracy improves (i.e., stronger slope effect) and 

their task performance improves (i.e., higher median performance). 

H3 (task switching): as the frequency of metacognitive assessments increase, 

participants’ metacognitive accuracy deteriorates (i.e., shallower slope effect) and 

their task performance is capped by increased workload (i.e., lower performance 

asymptote). 

The pilot experiment addressed these hypotheses by manipulating the frequency of 

metacognitive judgments (here, JODs) between-subjects. Specifically, some participants made a 

JOD following each trial while other participants made a JOD after every five trials. Importantly, 

the level of difficulty that participants experienced remained the same for five trials, regardless 

of condition. This allowed the comparisons made across conditions to reflect the relative effects 

of frequency on performance and metacognitive accuracy. 

 Method 

 Participants 

This research complied with the American Psychological Association Code of Ethics and 

was approved by the Institutional Review Board at Kansas State University. The experimental 

task was completed by 59 participants (44 female) who received 1 hr of research credit as 

compensation. 

 The Conjunctive Visual Search Task 

Participants completed 320 trials of a conjunctive visual search task that was 

programmed with the Unity (Unity Technologies, 2019) game engine (see Figure 18). 

Participants identified a target (blue circle) item from among non-target distractors that shared  
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Figure 18.  A schematic diagram of the conjunctive visual search task. 
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the same color (blue squares), shape (pink circles), or that had no overlapping features 

(pink squares). To successfully identify the target item, participants needed to click on it with the 

computer mouse. Once the target was identified, it disappeared from the screen; the stimulus 

array remained visible for the full duration of the trial to ensure that time-in-trial was 

decorrelated from task difficulty. 

Stimulus array. Each stimulus array contained one target item and several non-target 

items that were evenly assigned to the array without replacement. That is, non-target types were 

equally represented in the stimulus array; when the number of non-targets was not evenly 

divisible by three, the remainder were randomly selected to ensure that non-target items were 

evenly represented throughout the experiment. These items were presented at random, non-

overlapping on-screen locations. 

Trial timing. Although aspects of the task differed across conditions, all participants 

experienced the same sequence of events. Each trial began with a fixation cross, presented for 

500 ms, followed by the presentation of the stimulus array. Once the trial elapsed, participants 

received on-screen feedback that was visible for 750 ms. These screens were separated by a 500 

ms delay, jittered by ±150 ms. Given these parameters, participants completed the experiment in 

about 50 mins. 

Task difficulty. Because this task was developed to assess participants’ sensitivity to 

changes in difficulty, difficulty was manipulated as a within-subject variable. Specifically, the 

difficulty of the task changed along a single dimension after every five trials; the remaining task 

dimensions were fixed at a value that represented an average level of difficulty (see Table 2). 

The values of the changing dimension were selected by semi-random algorithm (a Halton 

sequence; (Halton & Smith, 1964) from a sampling distribution that represented floor and ceiling 
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performance. This ensured that participants experienced levels of difficulty that reflected the full 

range of performance. Finally, sampling values along the same dimension were further 

randomized using the Fisher-Yates shuffle algorithm (Black, 2005) before assignment. This 

additional step ensured that task difficulty was decorrelated from time-on-task and was not 

informed by participants’ performance. 

Table 2. 
Both the dimension and level of difficulty were manipulated within-subjects. Difficulty condition was Latin Square 
counter-balanced, and the level of difficulty was randomly assigned after every five trials. The remaining 
dimensions were held at fixed values when they were not manipulated. 

difficulty 
condition description sampling 

values 
fixed 
values 

Click The number of times the target had to be 
clicked before it disappeared. 1 - 6 3 

Feedback The number of points lost after failing to 
identify the target. 2 – 45 25 

Set Size The number of non-target items in the stimulus 
array. 2 – 45 25 

Timing The amount of time the stimulus array appeared 
on screen. 1.04 s – 4.46 s 2.10 s 

 

Dimension of difficulty. The dimension along which the task was made more or less difficult 

was also manipulated as a within-subject variable (difficulty condition). Specifically, participants 

experienced changes along four different dimensions of difficulty (see Table 2). These changes 

z 

Box 2. A schematic diagram of the pilot study’s trial counterbalancing. Each rectangle at left 
represents 80 trials of each difficulty condition, which were blocked so that consecutive changes 
occurred across a single dimension of difficulty. For illustrative purposes, a single participant’s 
trials are illustrated at right. 
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were blocked so that participants performed 80 consecutive trials for each dimension of 

difficulty; counterbalancing was conducted using a Williams Latin Square design (see Box 2). 

Participants learned of these difficulty conditions at the beginning of the experiment and 

were informed of “changes in the nature of the task’s difficulty” at the start of each block; 

however, they did not receive information about presentation order. This omission allowed the 

experiment to more closely resemble realistic tasks in which the nature of difficulty must be 

inferred through past or current experience. 

Feedback. Participants began each five-trial segment with 100 points, a portion of which 

were lost each time the participants failed to identify the target. Participants were informed of 

their performance, in terms of target identification and points, after every trial. When 

participants’ points dropped below zero, they had to wait 30 s while the level “reloaded.” This 

waiting period served as an aversive consequence that motivated participants to engage with the 

game, a practice that has been adopted successfully across several applications153. After the 

waiting period, participants’ points were restored to 100 and the search task resumed. 

JODs. On some trials, the program paused and requested that participants make a JOD 

after receiving feedback. Participants were asked to indicate whether the task was easier or 

harder than before by clicking on one of two buttons. Framing JODs in this way increased 

reliability by ensuring that all participants anchored judgments to an objective task experience 

(Böckenholt, 2004). Once participants selected an option, the buttons disappeared, and the task 

resumed. 

JOD frequency manipulation. The frequency with which participants made JODs was 

manipulated as a between-subjects variable: half of the participants made a JOD after each trial 
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(frequent condition), while the other half made a JOD after every five trials (infrequent 

condition). 

 Results 

 Defining Variables 

Two outcome variables were used to conduct hypothesis tests and calibration analyses. 

Participants’ metacognitive accuracy was coded as a dichotomous variable that indicated 

whether participants were correct (1) or incorrect (0) in their JODs. Task performance was also 

coded as a dichotomous variable that indicated whether participants correctly identified the target 

on a trial (1) or not (0). 

Task difficulty was quantified by standardized difficulty, a within-subject predictor that 

equated difficulty across conditions by subtracting the lowest possible sampling value of a 

condition and dividing by the sampling range. This produced a variable where 0 represented the 

easiest level that participants encountered in a given condition and 1 represented the hardest; 

timing trials were reverse-coded to reflect that providing participants with more time made the 

task easier. Difficulty condition, a four-level categorical predictor, was included to model how 

task difficulty differed across dimensions (clicks, feedback, set size, or timing). 

Both experimental trial and trial in block were considered as within-subject predictor that 

could model the changes in behavior that occurred as people completed the task. The first of 

these predictors captured the number of trials that had elapsed since the start of the experiment 

(1-320), while the second captured the number of trials that had elapsed since the start of a 

difficulty condition block (1-80). Finally, JOD frequency, a two-level categorical predictor, 

indicated whether participants made a JOD after every trial (frequent) or after each block 

(infrequent). 
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All predictors were median-centered or effect-coded prior to analysis. This ensured that 

the model intercept represented participants’ average performance or metacognitive accuracy. 

Thus, significant effects could be interpreted as the degree by which a variable affected 

participants’ average performance or average metacognitive accuracy. With respect to task 

calibration, this allowed algebraic equations to be used to determine the appropriate values for 

the difficulty parameters in subsequent experiments (see Appendix A for additional information 

about task calibration). 

 Selecting A Random Effect Structure 

The random effect structure was informed by a previous publication that used a similar 

preparation (Vangsness & Young, 2018) and included the intercept, standardized difficulty slope, 

and trial slope. This allowed the model to capture individual differences in skill (intercept, 

standardized difficulty slope) and rate of learning (trial slope). Unlike the earlier preparation, this 

experiment manipulated difficulty condition as a within-subject variable. Thus, it was unclear 

whether learning effects would occur across the entire experiment or within each block (i.e., for 

each difficulty condition). AIC comparisons (Akaike, 1973) were used to determine which 

predictor – experimental trial or trial in block – was most likely to have produced the data. These 

analyses indicated that experimental trial best modeled individual differences in participants’ 

performance and JODs over time (see Table 3). 
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Table 3. 
AIC comparisons of random effect structures modeling participants’ performance and metacognitive accuracy. 

Random effect structure AIC ∆AIC 
Performance   

standardized difficulty + total trials 22283.66  
standardized difficulty + block trials 22730.44 446.78 

Metacognitive Accuracy   
standardized difficulty + total trials 4650.39  
standardized difficulty + block trials 4653.14 2.75 

Note. Models with lower AIC values are more likely to have generated the data; differences larger than ±3 are 
strong justification to select the best-fitting model. 
 

 Competing Hypotheses - Performance 

A multi-level logistic regression was used to calibrate the task and evaluate competing 

hypotheses regarding the influence of metacognitive judgments on performance. This model 

included the main effects of standardized difficulty, difficulty condition, and experimental trial, 

as well as the Standardized Difficulty × Difficulty Condition interaction. These terms were 

included to aid in calibration. The model also contained the main effect of JOD condition, as 

well as its two-way interactions with standardized difficulty and experimental trial. Intercept, 

standardized difficulty slope, and experimental trial slope were allowed to vary across 

participants to model individual differences in skill and rate of learning. The results of this model 

are presented in Table 4. 

Participants’ performance was affected by task difficulty (standardized difficulty) such 

that they were more likely to identify the target on easier trials than on harder ones; however, 

substantial performance differences emerged across difficulty condition, confirming that the task 

required calibration (see Figure 19 and Tables 5-6). Regression weights were calculated using 

the emmeans package in R (Lenth, Singmann, Love, Buerkner, & Herve, 2019) and were used to 

calibrate the task. Additional details about this procedure can be found in Appendix 1. 
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Planned contrasts indicated that participants’ performance did not differ as a function of 

JOD frequency, Bdifference = 0.16, SE = 0.21, z = 0.75, p = .45, nor did JOD frequency affect 

participants’ rate of learning in the task, Bdifference = 0.12, SE = 0.10, z = 1.18, p = .24 (see Figure 

20). These results provide partial support for the traditional paradigm (H1) and partially refute 

the self-regulated study (H2) and task switching (H3) hypotheses. 

Table 4. 
Unstandardized regression weights from a multi-level logistic model predicting the likelihood that participants 
would correctly identify the target on a given trial. 

predictor B SE z p 
intercept 0.57 0.11 5.35 < .001 
standardized difficulty -5.64 0.13 -42.29 < .001 
click condition -1.22 0.04 -27.56 < .001 
feedback condition -0.55 0.04 -13.78 < .001 
set size condition -0.43 0.04 -10.43 < .001 
experimental trial 0.39 0.05 7.84 < .001 
frequent JODs 0.10 0.10 0.92 .36 
Standardized Difficulty × Click Condition 0.16 0.16 0.95 .34 
Standardized Difficulty × Feedback Condition 5.73 0.15 38.89 < .001 
Standardized Difficulty × Set Size Condition 3.80 0.15 25.68 < .001 
Standardized Difficulty × Frequent JODs -0.01 0.08 -0.18 .86 
Experimental Trial × Frequent JODs 0.06 0.05 1.18 .24 

Note. Standardized difficulty (Mdn = 0.5) and total trials (Mdn = 160) were median-centered prior to analysis. 
Difficulty condition and JOD frequency were contrast-coded, with the timing condition and infrequent JODs 
serving as {-1, -1, -1} and {-1} baseline conditions, respectively. 
 
Table 5. 
Predicted performance intercepts for each difficulty condition. 

Condition B SE 95%CI 
click -0.77 0.11 [-0.99, -0.56] 
feedback -0.10 0.11 [-0.31, 0.11] 
set size 0.02 0.11 [-0.20, 0.23] 
timing 2.63 0.14 [2.36, 2.91] 

 

Table 6. 
Predicted standardized difficulty slopes for each difficulty condition. 

Condition B SE 95%CI 
click -5.48 0.16 [-5.79, -5.17] 
feedback 0.09 0.11 [-0.13, 0.31] 
set size -1.84 0.12 [-2.07, -1.61] 
timing -15.32 0.46 [-16.21. -14.42] 
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Figure 19. Standardized difficulty, difficulty condition, and experimental trial 
significantly predicted visual search performance. Experimental trial is depicted across 
panels; error ribbons represent ±1SE. 

Figure 20. Participants’ performance, learning rate, and sensitivity to changes in task 
difficulty did not differ as a function of JOD condition. Experimental trial is depicted 
across panels; error ribbons represent ±1SE. 
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 Predicting Metacognitive Accuracy 

A second multi-level logistic regression was used to assess whether the frequency of 

metacognitive judgments affected the accuracy of participants’ JODs. The fixed effect structure 

of the model included the main effects of standardized difficulty, difficulty condition, and 

experimental trial, as well as the Standardized Difficulty × Difficulty Condition interaction. 

These terms were included to determine the degree to which condition differences and workload 

affected metacognitive accuracy. The model also included the main effect of JOD frequency, as 

well as its two-way interactions with standardized difficulty and total trials. The results of this 

model are presented in Table 7. 

Table 7. 
Unstandardized regression weights from a multi-level logistic model predicting the accuracy of participants’ 
metacognitive JODs. 

predictor B SE z p 
intercept 0.75 0.05 14.18 < .001 
standardized difficulty -0.22 0.15 -1.44 .15 
click condition 0.19 0.06 2.89 .004 
feedback condition -0.41 0.06 -6.74 < .001 
set size condition -0.07 0.06 -1.13 .26 
experimental trial 0.04 0.05 0.89 .38 
frequent JODs -0.16 0.05 -2.94 .003 
Standardized Difficulty × Click Condition 0.14 0.21 0.67 .50 
Standardized Difficulty × Feedback Condition -0.18 0.20 -0.89 .38 
Standardized Difficulty × Set Size Condition -0.58 0.21 -2.76 .01 
Standardized Difficulty × Frequent JODs -0.11 0.15 -0.73 .46 
Experimental Trial × Frequent JODs 0.04 0.04 0.98 .33 

Note. Standardized difficulty (Mdn = 0.5) and total trials (Mdn = 160) were median-centered prior to analysis. 
Difficulty condition and JOD frequency were contrast-coded, with the timing condition and infrequent JODs 
serving as {-1, -1, -1} and {-1} baseline conditions, respectively. 
 

In general, participants tended to make less accurate metacognitive judgments as the 

difficulty of the task increased; however, the strength of this relationship differed across 

difficulty conditions (see Figure 21 and Tables 8-11). Participants’ metacognitive accuracy was 

highest in the Timing condition, followed by the Clicks and Set Size conditions. Additionally, 



42 

 

 

 

participants were most sensitive to changes in Timing, followed by Clicks and Set Size (see 

Figure 21). 

 
 
Table 8. 
Predicted averages (i.e., intercepts) for metacognitive accuracy in each difficulty condition. 

Condition B SE 95%CI 
click 0.93 0.08 [0.77, 1.09] 
feedback 0.34 0.07 [0.18, 0.49] 
set size 0.67 0.08 [0.52, 0.83] 
timing 1.04 0.09 [0.87, 1.21] 

 

Table 9. 
Planned comparisons of participants’ average metacognitive accuracy (i.e., intercept) in each difficulty condition. 

Condition B SE z p 
Click – Feedback 0.60 0.10 5.83 < .001 
Click – Set Size 0.26 0.10 2.48 .06 
Click – Timing -0.11 0.11 -1.01 .75 
Feedback – Set Size -0.34 0.10 -3.42 .003 
Feedback – Timing -0.70 0.10 -6.81 < .001 
Set Size – Timing -0.37 0.11 -3.43 .003 

 

 

Figure 21. Metacognitive accuracy differed as a function of task 
difficulty and difficulty condition. Error ribbons represent ±1SE. 
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Table 10. 
Predicted standardized difficulty slopes for metacognitive accuracy in each difficulty condition. 

Condition B SE 95%CI 
click 0.93 0.08 [0.77, 1.09] 
feedback 0.34 0.07 [0.18, 0.49] 
set size 0.67 0.08 [0.52, 0.83] 
timing 1.04 0.09 [0.87, 1.21] 

 

Table 11. 
Planned comparisons of standardized difficulty slopes for metacognitive accuracy in each difficulty condition. 

Condition B SE z p 
Click – Feedback 0.32 0.33 0.98 .76 
Click – Set Size 0.72 0.34 2.15 .14 
Click – Timing -0.48 0.38 -1.28 .58 
Feedback – Set Size 0.40 0.33 1.21 .62 
Feedback – Timing -0.80 0.37 -2.15 .14 
Set Size – Timing -1.20 0.38 -3.17 .01 

 

Additionally, the model indicated that participants’ metacognitive accuracy differed as a 

function of JOD condition. Participants who made frequent JODs were 64% likely to make a 

correct judgment on a given trial. In contrast, those who made infrequent JODs were 71% likely 

to make a correct judgment. Interestingly, these condition differences were unaffected by 

standardized difficulty, Bdifference = -0.22, SE = 0.30, z = -0.73, p = 0.46, or experimental trial, 

Bdifference = 0.09, SE = 0.09, z = 0.98, p = 0.33 (see Figure 22), suggesting that metacognitive 

accuracy was not further affected by the workload demands of the primary task. This provides 

partial support for the task switching hypothesis (H3) and refutes the traditional paradigm (H1) 

and self-regulated study (H2) hypotheses. 
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 Discussion 

The results of this experiment confirmed that task calibration is an important step for 

researchers to take if they are interested in understanding the cognitive processes that inform 

effort allocation and JODs. Participants performed substantially better in some difficulty 

conditions than in others, indicating that they encountered different ranges of difficulty levels in 

each condition. This finding was used to calibrate the experimental task for subsequent studies. 

Additionally, this experiment addressed competing hypotheses regarding the relationship 

between metacognitive JODs and performance. Participants’ performance in the visual search 

task was not adversely affected by making JODs. In contrast, the accuracy of participants’ JODs 

was influenced by the frequency with which they made these judgments. Participants who made 

Figure 22. Metacognitive accuracy was affected by JOD condition, but not standardized 
difficulty or experimental trial. Experimental trial is depicted across panels; error ribbons 
represent ±1SE. 
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JODs after every trial made judgments that were, on average, 7% less accurate than their 

peers who made JODs at the end of each block (five trials). Although this effect was not 

moderated by task difficulty or experimental trial, it provides support for the task switching 

hypothesis (H3) while refuting alternative hypotheses. 

Unlike the traditional paradigm (H1) or self-regulated study (H2) hypotheses, the task 

switching hypothesis predicts that participants’ metacognitive accuracy will be adversely 

affected by cognitive load. Here, cognitive load arises from two sources: the difficulty of the 

visual search and the process of making a JOD. Performance was not adversely affected by JOD 

frequency, suggesting that participants considered the visual search their primary task. 

Consequently, performance decrements appeared in the accuracy of participants’ JODs. 

One interpretation is that frequent metacognitive assessments increase workload and 

produce poor judgments. However, primary task workload (task difficulty) did not affect 

metacognitive accuracy, raising the potential for an alternative hypothesis. In the frequent JOD 

condition, participants were required to indicate whether the task was easier or harder than 

before on every trial, even those for which task difficulty did not change (i.e., trials 1-4). It is 

possible that these uninformative JODs led participants to down-weight information from certain 

cues to difficulty. This hypothesis lies beyond the scope of this dissertation; however, future 

follow-up analyses should be conducted to rule out this competing hypothesis.  
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Chapter 3 - Experiment 1 

The primary goal of Experiment 1 was to determine whether the cues that people used to 

make JODs while they performed a task were the same as those they used when they observed 

someone else perform the same task. In doing so, this experiment addressed competing 

hypotheses about the underlying mechanisms responsible for mindreading and metacognition 

(understanding other’s or one’s own experiences, respectively). The three competing hypotheses 

advanced by the metacognitive literature differed in their predictions about the relationship 

between performance-based peripheral cues and JODs. 

The simulation theory proposes that observation allows a person to imagine how they 

might perform a task. Imagined performance can be used to guide metacognitive judgments, 

such as estimates of task difficulty. This can be contrasted with performance settings in which a 

person may receive feedback. In these settings, feedback serves as a performance-based 

peripheral cue that can be used to calibrate metacognitive judgments (Dimaggio, Lysaker, 

Carcione, Nicolò, & Semerari, 2008). This suggests that that people weigh cues to difficulty 

differently depending on whether they are performing or observing a task. In concrete terms, the 

simulation theory suggests that performance-based peripheral cues only inform JODs when 

participants are engaged in the task; when trials are observed, self-efficacy beliefs guide 

metacognitive judgments. Although simulation is sometimes viewed as a conscious process 

(Koriat & Ackerman, 2010), it may also occur without our knowledge (e.g., the activation of 

mirror neurons while watching others perform a task; (Gallese & Goldman, 1998). 

This perspective can be contrasted with Carruther’s (2009) assertion that mindreading 

precedes metacognition. The mindreading-as-metacognition hypothesis asserts that cue use is 

unaffected by role. Both central and performance-based peripheral cues, such as feedback, 
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inform a person’s JODs whether they complete a task or watch someone else perform it. In the 

event that they are observing, performance-based peripheral cues reflect another person’s skill 

and effort allocation strategy. In this sense, metacognition is simply a specific form of 

mindreading in which the subject is oneself (i.e., all metacognition is mindreading; (Carruthers, 

2009). Thus, JODs should be informed by the same cues to difficulty, regardless of whether a 

task is performed or observed. 

The third perspective suggests that peoples’ metacognitive judgments are more accurate 

when they have access to internal cues that are unavailable while observing others perform a task 

(Koriat, 1997, 2000). These mnemonic cues (e.g., how hard it feels to retrieve a memory) or 

subjective “feelings” are only available when actively engaged in task completion. Although 

introspective feelings cannot be measured, metacognitive judgments do become more accurate 

after people gain personal experience with a task (Koriat & Ackerman, 2010) and can be biased 

by personal knowledge of task outcomes (Arkes et al., 1981; Christensen-Szalanski & Willham, 

1991; Kelley & Jacoby, 1996; Nussinson & Koriat, 2008). However, these same outcomes would 

also be expected given simulation theory. Because the key differentiating feature of this 

introspective theory is immeasurable (mnemonic cues), it will be captured by the error variance 

of statistical models. Thus, introspective theory predicts that central and peripheral cues to 

difficulty will become less predictive of JODs as people spend more time performing the task; 

changes in the weighting of central and peripheral cues will not occur when people are observing 

others.  

Experiment 1 will address these hypotheses by manipulating participants’ role in the 

visual search task. Specifically, participants will perform half of the trials in the experiment and 

will observe as another person (the computer) completes the other half of the trials. The order in 
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which participants serve in these roles will be manipulated between subjects. Participants will 

either perform half of the experimental trials and then observe the second half, observe half of 

the trials and perform the second half, or alternate between roles every 5 trials.  

In the context of this task, the three competing hypotheses are: 

H1 (simulation theory): The degree to which performance-based peripheral cues 

inform JODs will increase when participants perform the task and decrease when 

they observe someone else completing the task. 

H2 (mindreading theory): The degree to which performance-based peripheral 

cues inform JODs will increase over time across all role conditions. 

H3 (introspective theory): The degree to which performance-based peripheral 

cues and central cues inform JODs will decrease when participants perform the 

task. Additionally, there will be greater modeling error during performance trials. 

 Method 

 Participants 

This research complied with the American Psychological Association Code of Ethics and 

was approved by the Institutional Review Board at Kansas State University. The experimental 

task was completed by 65 participants (52 females) who received 1 hr of research credit as 

compensation. Two participants were omitted for failing to understand and follow the directions. 

Due to experimenter error, demographic information was not collected from two participants. 

 The Conjunctive Visual Search Task 

Participants completed a visual search task that was similar to that of the pilot study. The 

task differed in four important respects. First, task difficulty was equated across conditions using 

performance data from the pilot study. Second, participants made JODs after every trial. Third, 
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participants’ role was manipulated to test the critical hypothesis. Finally, an additional 

demographic measure was added for exploratory purposes. Additional details are provided 

below; readers interested in learning more about specific task parameters are directed to the pilot 

study. 

Task difficulty. Participants’ performance during the pilot study informed the difficulty 

level of the task. Specifically, a multi-level modeling approach generated estimates of the 

performance intercept and standardized difficulty slope for all four conditions; adjustments were 

made to equate participants’ performance (see Table 6). Unfortunately, attempts to equate 

difficulty across dimensions were unsuccessful; a more thorough discussion of this issue is 

provided in Appendix A. As before, the difficulty level of the task changed along a single 

dimension every 5 trials. The remaining task dimensions were fixed at the same level 

participants encountered during the pilot study to ensure that performance estimates were 

accurate. 

Table 12. 
Both the dimension and level of difficulty were manipulated within-subjects. Difficulty condition was Latin Square 
counter-balanced and the level of difficulty was semi-randomly assigned after every five trials. The remaining 
dimensions were held at fixed values when they were not manipulated. 
difficulty 
condition description sampling 

values 
fixed 
values 

Click The number of times the target had to be clicked 
before it disappeared. 

5 - 7 3 

Feedback The number of points lost after failing to identify the 
target. 

2 – 45 25 

Set Size The number of non-target items in the stimulus array. 1 – 42 25 
Timing The amount of time the stimulus array appeared on 

screen. 
4.25 s – 5.21 s 2.10 s 

 

JODs. Participants’ performance during the pilot study informed the frequency of JOD 

assessment. Although requesting a JOD after every trial reduced participants’ accuracy by 7%, it 

provided greater precision with which to track changes in cue use that occur as people learn 
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about a task. Thus, the program paused after participants received feedback on each trial to allow 

them to make a JOD. Participants indicated whether the task was easier or harder than before by 

clicking one of two buttons. Once participants selected an option, the buttons disappeared, and 

the task resumed. 

Role manipulation. At the beginning of each session, participants were automatically 

assigned to one of three role conditions. Participants in the perform-first condition completed the 

first 40 trials of each difficulty block themselves and watched “a video of participants’ average 

performance in the task” during the second 40 trials. Those in the observe-first condition 

watched the video during the first 40 trials and completed the second 40 trials of each block. 

Finally, participants assigned to the interleaved condition alternated between performing and 

observing every 5 trials. 

Participants were instructed that the observer trials would feature a video that depicted 

other peoples’ average task performance. In reality, these trials were programmed with a 

predictive modeling equation that mimicked participants’ performance during the pilot study. 

Although participants did not see cursor movements during these trials, they experienced all 

other aspects of the task including post-trial feedback and 30s time-outs. To ensure that 

participants experienced the same levels of difficulty that they observed, the difficulty levels of 

the first 40 trials were saved and used to construct the trials in the second half of each block (see 

Box 3).  

Demographic Information. At the end of the experimental session, participants 

indicated their sex and completed the 16-item Situational Motivation Scale (SIMS; Guay, 

Vallerand, & Blanchard, 2000), a survey developed to measure individuals’ motivations for 

engaging in a task, including their level of intrinsic motivation. 
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 Results 

 Defining Variables 

Participants’ use of central cues to difficulty was quantified by standardized difficulty, a 

variable that equated difficulty across conditions by subtracting the lowest possible sampling 

value of a condition and dividing by the sampling range. This produced a variable where 0 

represented the easiest level that participants could encounter in a given condition and 1 

represented the hardest (trial time was reverse-coded). Participants’ use of performance-based 

peripheral cues was quantified by target identification, a dichotomous variable that indicated 

whether participants correctly identified the target on a trial (1) or not (0). 

Trial number was also included as a predictor to model the behavioral changes that occur 

as people gain experience with and learn from a task. Analyses from the pilot study indicated 

 

Box 3. A schematic diagram of difficulty condition counterbalancing. Each rectangle at left represents 80 trials of 
each difficulty type, which was blocked so that consecutive changes occurred across a single dimension of 
difficulty. The between-subject role manipulation is depicted at right, where dark-colored squares represent 
observation trials and light-colored squares represent performance trials. 
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that performance tended to improve over the course of the experiment, while changes in JODs 

tended to occur within block. Log-transformed experimental trial and trial in block were used to 

model these changes in behavior; these variables are shortened for succinctness. 

Role condition, a three-level categorical predictor, indicated the between-subject 

manipulation a participant received (observe first, perform first, or interleaved). Finally, intrinsic 

motivation was used to quantify participants’ average score on the intrinsic motivation subscale 

of the SIMS. All variables were median-centered or effect coded prior to analysis. Performance 

data was subset to exclude observation trials, and JOD data was subset to exclude trials on which 

the difficulty of the task did not objectively change. 

 Performance Analysis 

A multi-level logistic regression was used to determine the degree to which difficulty 

condition, standardized difficulty, experimental trial, and role condition predicted successful 

target identification. The model also included the Standardized Difficulty × Difficulty Condition 

interaction to assess task calibration. Intercept, standardized difficulty slope and experimental 

trial slope were allowed to vary across participants to model individual differences in skill and 

rate of learning. The results of this model are presented in Table 13. 

Task difficulty (standardized difficulty) affected participants’ performance in a 

meaningful way (see Figure 23). Participants were more likely to identify the target on easier 

trials than on harder trials. The strength of this relationship depended upon the difficulty 

condition. Despite steps taken to calibrate the task, performance intercepts and slopes differed 

across conditions. While this is disappointing, it is not critical: difficulty condition was 

manipulated within-subject to ensure that participants experienced similar tasks. A more 

thorough discussion of these effects is provided in Appendix B.  
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Table 13. 
Parameter estimates from a multi-level logistic regression predicting the likelihood that participants would identify 
the target on a given trial. 

parameter B SE z p 
intercept -0.10 0.15 -0.64 .52 
standardized difficulty -1.25 0.22 -5.79 < .001 
clicks -4.81 0.20 -24.45 < .001 
feedback -0.07 0.09 -0.79 .43 
set size 0.23 0.09 2.61 .01 
experimental trial 0.25 0.06 4.21 < .001 
perform-first -0.24 0.19 -1.25 .21 
interleaved 0.10 0.21 0.48 .63 
Standardized Difficulty × Clicks -1.77 0.48 -3.70 < .001 
Standardized Difficulty × Feedback 1.21 0.24 4.95 < .001 
Standardized Difficulty × Set Size -0.53 0.25 -2.14 .03 

Note. Standardized difficulty (Mdn = 0.5) and experimental trial (Mdn = 180) were median-centered prior to 
analysis. The observe-first and timing conditions served as the {-1, -1} and {-1, -1, -1} baselines, respectively. 

 

Importantly, participants displayed evidence of learning in that they improved as they 

gained experience with the task (see Figure 23). In addition, performance did not differ across 

role conditions (see Figure 24 and Table 14), a between-subject manipulation. This provides 

Figure 23. Standardized difficulty, condition, and experimental trial significantly predicted visual search 
performance. Error ribbons represent ±1SE. 
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assurance that any differences in JODs that emerge across role conditions are not due to task 

difficulty or performance. 

 

 
Table 14. 
Performance estimates across role conditions. 

Condition B SE 95%CI 
interleaved -0.14 0.25 [-0.62, 0.34] 
observe first -0.11 0.28 [-0.65, 0.43] 
perform first -0.48 0.24 [-0.94, -0.02] 

 

 Predicting JODs 

A multi-level logistic regression was used to determine the degree to which central 

(standardized difficulty) and performance-based peripheral (target identification) cues to 

difficulty informed participants’ JODs. The model also included the Target Identification × Role 

Condition × Trial in Block interaction to test the competing hypotheses regarding cue use and 

role. Intercept, standardized difficulty slope, and target identification slope were allowed to vary 

Figure 24. Role condition did not significantly predict visual search performance. 
Error ribbons represent ±1SE. 
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across participants to model individual differences in cue use. The results of this model are 

presented in Table 15. 

Table 15. 
Parameter estimates from a multi-level logistic regression predicting the likelihood that participants would say the 
task was harder than before. 

parameter B SE z p 
intercept -0.23 0.09 -2.65 .01 
standardized difficulty 0.65 0.14 4.53 < .001 
identified target 1.24 0.09 13.85 < .001 
trial in block -0.01 0.04 -0.14 .89 
do first 0.21 0.12 1.73 .08 
interleaved -0.16 0.12 -1.29 .20 
Identified Target × Trial in Block 0.004 0.04 0.10 .92 
Identified Target × Do First 0.04 0.12 0.30 .77 
Identified Target × Interleaved 0.26 0.12 2.11 .03 
Trial in Block × Do First -0.13 0.06 -2.21 .03 
Trial in Block × Interleaved -0.01 0.06 -0.23 .82 
Identified Target × Trial in Block × Do First -0.10 0.06 -1.66 .10 
Identified Target × Trial in Block × Interleaved 0.001 0.06 0.03 .98 

Note. Standardized difficulty (Mdn = 0.5) and trial in block (Mdn = 37) were median-centered prior to analysis. 
Missed target and the observe-first role condition served as the {-1} and {-1, -1} baselines, respectively. 
 

Both central and performance-based peripheral cues informed participants’ JODs (see 

Figure 25). Although participants were more likely to say the task was harder than before when 

the task became objectively challenging, the strongest contributing factor to participants’ JODs 

was their performance. Participants were much more likely to indicate that the task was harder 

than before when they received feedback that they had missed the target. This contrasted a 

previous finding in which central cues to difficulty contributed most strongly to JODs 

(Vangsness & Young, in press). This study involved a very different task (a videogame), and it is 

possible that task characteristics affect when and how cues to difficulty inform JODs. 

Planned contrasts indicated that participants’ use of performance-based peripheral cues 

depended on their role condition and trial in block. Participants’ JODs did not differ on average 

across role conditions (see Table 16), nor did differences in cue use emerge when participants 

correctly identified the target (see Table 17). Condition and trial differences only emerged when  
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participants received feedback that they did not successfully identify the target, as illustrated by 

Figure 26. At the beginning of a difficulty block, participants differed in their willingness to 

endorse the task as being harder than before. Those in the perform-first condition were 89% 

likely to make this estimate. Similarly, those in the interleaved condition were 77% likely to do 

so. In contrast, participants in the watch-first condition were only 46% likely to indicate that the 

task was harder than before. This suggests that performance-based feedback most strongly 

informs the JODs of those performing a task, as compared to those observing. This difference 

gradually attenuated as participants gained experience and started performing the task – by the 

end of each block, participants in the interleaved, observe-first, and perform-first conditions used 

peripheral cues to a similar degree. Furthermore, the standard error decreased over time, 

regardless of condition (see Table 18). Together, these comparisons provide direct support for 

the simulation hypothesis (H1) and refute the metacognition-as-mindreading (H2) and mnemonic 

(H3) hypotheses.  

Figure 25. Central (standardized difficulty) and performance-based peripheral 
cues significantly predicted participants’ JODs. Error ribbons represent ±1SE. 
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Table 16. 
Planned comparisons of role condition intercept, as a function of target identification. 

Condition B SE z p 
Missed Target     

do first – interleaved 0.20 0.30 0.67 .78 
do first – watch first 0.72 0.33 2.20 .07 
interleaved – watch first 0.52 0.32 1.62 .24 

Hit Target     
do first – interleaved 0.59 0.28 2.14 .08 
do first – watch first -0.05 0.30 -0.17 .98 
interleaved – watch first -0.64 0.30 -2.14 .08 

 
 
Table 17. 
Slope estimates for the critical Role Condition × Trial in Block × Performance interaction. 

Condition B SE 95%CI 
Missed Target    

interleaved -0.01 0.10 [-0.19, 0.16] 
observe first 0.23 0.09 [0.04, 0.42] 
perform first -0.22 0.10 [-0.41, -0.03] 

Hit Target    
interleaved -0.02 0.10 [-0.22, 0.18] 
observe first -0.03 0.10 [-0.17, 0.24] 
perform first -0.04 0.10 [-0.24, 0.16] 

 

Figure 26. Role condition significantly changed participants’ use of performance-based 
peripheral cues. Error ribbons represent ±1SE. 
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Table 18. 
Planned comparisons of each role condition’s trial in block slopes. 

Condition B SE z p 
Missed Target, trial = 1     

Perform First – Interleaved 0.90 0.53 1.69 .21 
Perform First – Watch First 2.23 0.56 3.96 < .001 
Interleaved – Watch First 1.33 0.54 2.45 .04 

Missed Target, trial = 40     
Perform First – Interleaved 0.13 0.30 0.42 .91 
Perform First – Watch First 0.56 0.33 1.71 .20 
Interleaved – Watch First 0.44 0.32 1.35 .37 

Missed Target, trial = 80     
Perform First – Interleaved 0.04 0.32 0.13 .99 
Perform First – Watch First 0.38 0.34 1.10 .51 
Interleaved – Watch First 0.34 0.34 1.00 .58 

 

 Discussion 

This experiment demonstrated the conditions under which performance-based peripheral 

cues inform peoples’ JODs. While performance-based peripheral cues always informed JODs to 

some extent, the strength of this relationship differed as a function of role. Participants weighed 

performance-based peripheral cues more strongly when they were performing a task, whether 

that was at the beginning (perform-first condition) or the end (observe-first condition) of a block. 

When participants alternated between performing and observing the task, they did not change the 

weight they assigned to performance-based peripheral cues. Furthermore, the variability of 

participants’ JODs decreased over time. Together, these results discriminate between the 

competing hypotheses raised by the metacognitive literature and have important implications for 

learning environments. 

These results supported the simulation hypothesis, which asserts that people base their 

metacognitive judgments on their imagined performance of a task. This suggests that people 

have trouble evaluating the difficulty of novel tasks because they cannot estimate their 

performance; not because other people “make it look easy.” To this end, participants did not 
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weigh peripheral cues to difficulty as strongly when they were observing a task as they did while 

performing it. These results directly contradict the metacognition-as-mindreading hypothesis 

(H2), which predicts that cues should be used equally regardless of role. In addition, participants’ 

JODs converged as they gained experience of a task, regardless of condition. This decrease in 

variability could be occurring at the group (role condition) or subject level. That is, participants’ 

JODs may converge due to increased agreement between-subjects or to decreased variability at 

the individual subject level. Sample size limitations prevent the inclusion of trial in block 

interaction terms in the random effect structure. As such, the mnemonic hypothesis (H3) is only 

weakly refuted. 

Recently, researchers demonstrated that people underestimate task difficulty when they 

observe someone else perform a task (Kardas & O’Brien, 2018); however, these experiments did 

not identify the mechanism that underlies peoples’ misestimation. The results from Experiment 1 

clearly attribute misestimation to differences in the weighting of performance-based peripheral 

cues and illustrate that peoples’ bias is reduced over time, even as they continue to observe a 

task. This finding furthers the basic understanding of metacognitive processes and highlights 

several situations in which learners may be especially at risk. Consider a person driving their car 

in a snowstorm. Performance-based peripheral cues, such as abandoned vehicles, that provide 

valid cues to difficulty may be ignored in such a context. Future research should investigate the 

relationship between these cues and peoples’ risk mitigation strategies. 

Future research projects can also explore situations in which others’ performance can be 

observed as it occurs. Teachers, for example, have access to performance-based peripheral cues 

(students’ grades) as well as to learning behaviors that unfold in the classroom 

(i.e., performance). While this experiment focused narrowly on the former, it is possible to adapt 
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its structure to determine how proxy cues to difficulty, such as the fluidity of movements, 

contribute to JODs. A simple example might be to yolk observers to a performer and allow them 

to observe their on-screen cursor movements. These cue-rich situations remain an important 

avenue for future study.  
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Chapter 4 - Experiment 2 

Experiment 1 determined that performance-based peripheral cues are both experienced 

and estimated, depending on whether a person performs or observes a task. However, 

Experiment 1 did not determine how the information obtained through performance-based 

peripheral cues informs effort allocation strategies and JODs. Consider a student who must study 

for an upcoming exam. Past performance is a strong indicator of future performance, and the 

student may use performance-based peripheral cues (i.e., feedback) to inform their study 

strategies. One approach might be to invest extra effort in the material they’ve gotten wrong on 

previous assessments, as they are most likely to answer these questions incorrectly on the exam. 

Alternatively, they might cut their losses and invest less effort in the material they frequently get 

wrong. This would allow them to focus their resources on strengthening their understanding of 

the material they are most likely to answer correctly. A third approach would be to integrate 

performance-based peripheral cues with information about the incentive structure of the 

environment and to spend the most time studying unfamiliar material that has been assigned a 

high point value. Experiment 2 sought to disambiguate these competing hypotheses regarding 

peoples’ effort allocation strategies. 

The Diminishing Criterion Model (DCM; (R. Ackerman, 2014) proposes that people 

compare past to desired performance and adjust their effort allocation strategies to align with 

their goals. If a person’s past performance aligns with their goals, they will not invest additional 

effort in a task; however, if they perform more poorly than expected, they will invest additional 

effort to meet their goal. In this way, the DCM predicts that people will invest the most effort in 

challenging tasks – those for which they will perform the poorest. Thus, the DCM predicts that 
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future performance will be informed by performance-based peripheral cues (performance 

feedback) and central cues (task difficulty), but little else. 

The DCM can be contrasted with the Proximal Zone of Learning Theory, which predicts 

that people will allocate more effort towards tasks that lie within the level of their skills and 

abilities (Dunlosky et al., 2003; Metcalfe, 2009). This theory suggests that people compare the 

difficulty of a task to their current skills and abilities, and invest effort only in those tasks that 

they believe can be achieved. When a person’s skills and abilities are accurately estimated, this 

strategy prioritizes resource efficiency by allocating effort towards tasks that are achievable and 

avoiding those that are not. In this way, the Proximal Zone of Learning Theory predicts that 

people will invest the most effort in easier tasks – those that are most easily accomplished, given 

their skills and abilities. Thus, future performance will be informed by performance-based 

peripheral cues (performance feedback) and central cues (task difficulty), but little else. 

By contrast, moderation models of effort allocation such as Agenda-Based Regulation 

(Ariel et al., 2009) and the Strategic Task Overload Model (Wickens, Gutzwiller, et al., 2016) 

suggest that people will allocate greater effort towards tasks that seem easier to complete, but 

that this preference is affected by the incentive structure of the environment: people will also 

allocate greater effort toward more challenging tasks that are strongly incentivized. In other 

words, peripheral cues, central cues, and incentives will affect the amount of effort that is 

allocated towards a task, and performance will change as a function of incentive value.  

In the context of this task, the three competing hypotheses are: 

H1 (Diminishing Criterion Model): future performance (i.e., effort allocation) 

should be sensitive to past performance-based peripheral and central cues.  
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Specifically, performance will improve after participants receive negative 

feedback on the previous trial. This effect will be stronger for harder trials than 

for easier ones. 

H2 (Proximal Zone of Learning Theory): future performance (i.e., effort 

allocation) should be sensitive to past performance-based peripheral and central 

cues.  

Specifically, performance will improve after participants receive negative 

feedback on the previous trial. This effect will be stronger for easier trials than for 

harder ones. 

H3 (Agenda-based Regulation Theory): future performance (i.e., effort allocation) 

should be sensitive to past performance-based peripheral and central cues. This 

relationship will be moderated by incentive value such that performance will 

improve the most for easy tasks assigned the highest incentive value. 

 Method 

 Participants 

This research complied with the American Psychological Association Code of Ethics and 

was approved by the Institutional Review Board at Kansas State University. The experimental 

task was completed by 53 participants (36 females) between the ages of 18-65, who received $10 

compensation. Two participants were omitted for failing to comply with instructions. 

 The Conjunctive Visual Search Task 

Participants completed a visual search task that was similar to that of the pilot study. The 

task differed in several respects. First, task difficulty was concurrently manipulated along two 

dimensions. The primary dimension (clicks, set size, or timing) involved central cues that 
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affected performance in the pilot study, while the secondary dimension (feedback) changed the 

incentive structure of the environment. As before, these cues to difficulty were manipulated 

every five trials, and the remaining task dimensions were fixed at the same level participants 

encountered during the pilot study to ensure that performance estimates were accurate (see 

Table 6). 

This task also differed in when information about the incentive structure became 

available: half of the participants learned the consequences for failing to identify the target in 

advance of each five-trial block; the other half only received information about each block’s 

incentive value through the feedback provided after each trial. Finally, participants made JODs 

after every trial, and an additional demographic measure was added for exploratory purposes. 

Details are provided below; readers interested in learning more about specific task parameters 

are directed to the pilot study. 

Task difficulty. In contrast to the pilot study, the difficulty level of the task changed both 

along a primary (clicks, set size, timing) and a secondary (feedback) dimension. The ranges of 

difficulty encountered in each dimension were informed by participants’ performance in the pilot 

study. Specifically, a multi-level modeling approach generated estimates of the performance 

intercept and standardized difficulty slope for all three conditions; adjustments were made to 

equate performance across dimensions (see Appendix A and Table 6). Changes in task difficulty 

occurred every five trials, and the remaining task dimensions were fixed at the same level 

participants encountered during the pilot study to ensure that performance estimates were 

accurate. These changes are illustrated by the schematic diagram in Box 4. 

Feedback timing manipulation. At the beginning of each session, participants were 

automatically assigned to one of two feedback conditions. Participants in the pre-trial condition 
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learned of the consequences for failing to identify the target at the start of each trial and again 

when they received performance-based feedback. Participants in the post-trial condition only 

learned of the block’s incentive value when they failed to identify the target. 

 

JODs. Participants’ performance during the pilot study informed the frequency of JOD 

assessment. Although requesting a JOD after every trial reduced participants’ accuracy by 7%, it 

provided greater precision with which to track changes in cue use that occur as people learn 

about a task. Thus, the program paused after participants received feedback on each trial 

Participants indicated whether the task was easier or harder than before by clicking one of two 

buttons. Once participants selected an option, the buttons disappeared, and the task resumed. 

Demographic Information. At the end of the experimental session, participants 

indicated their sex and age. They also completed the 16-item Situational Motivation Scale 

(SIMS; Guay, Vallerand, & Blanchard, 2000), a survey developed to measure individuals’ 

motivations for engaging in a task, including their level of intrinsic motivation. 

 

Box 4. A schematic diagram of difficulty type counterbalancing. Each rectangle at left represents 106 trials of 
each difficulty type, which will be blocked so that consecutive changes occur across a single dimension of 
difficulty. Concurrent changes in incentive value, the number of points lost for failing to identify the target, are 
depicted at right. Light-colored squared represent fewer points than do dark-colored squares. 
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 Results 

 Defining Variables 

Participants’ use of central cues to difficulty was quantified by standardized difficulty, a 

variable that equated difficulty across conditions by subtracting the lowest possible sampling 

value of a condition and dividing by the sampling range. This produced a variable where 0 

represented the easiest level that participants could encounter in a given condition and 1 

represented the hardest (trial time was reverse-coded). Participants’ use of performance-based 

peripheral cues was quantified by target identification, a dichotomous variable that indicated 

whether participants correctly identified the target on a trial (1) or not (0). Finally, time-lagged 

target identification (TTI) was used to determine the degree to which performance on the 

previous trial informed effort allocation on the subsequent trial.  

Trial number was also included as a predictor to model the behavioral changes that occur 

as people gain experience with and learn from a task. Analyses from the pilot study indicated 

that performance tended to improve over the course of the experiment, leading to changes in 

JODs. Log-transformed experimental trial and block trial were used to model these changes in 

behavior; the variables are shortened for succinctness.  

Feedback condition, a two-level categorical predictor, indicated the between-subject 

manipulation a participant received (pre-trial or post-trial feedback), and incentive value 

indicated the number of points that were at stake on a given trial. Finally, intrinsic motivation 

was used to quantify participants’ average score on the intrinsic motivation subscale of the 

SIMS. Age was included as a model covariate to control for differences in performance due to 

age-related decline. All variables were median-centered or effect coded prior to analysis. JOD 

data was subset to exclude trials on which the difficulty of the task did not objectively change. 



67 

 

 

 

 Performance Analysis 

An initial exploratory analysis confirmed that the calibration challenges encountered in 

Experiment 1 were also present in Experiment 2. Namely, participants’ performance was only 

affected by changes in set size. Performance in the timing and clicks conditions was at ceiling 

and floor, respectively. While this is disappointing, it is not critical: difficulty condition was 

manipulated within-subject to ensure that participants experienced similar tasks. The 

consequences of this challenge are discussed briefly in the analysis section, while a more 

thorough discussion is provided in Appendix B. 

A multi-level logistic regression was used to determine the degree to which standardized 

difficulty, TTI, feedback condition, incentive value, experimental trial, and age predicted 

successful target identification. The model also contained the Incentive Value × Feedback 

Condition × Standardized Difficulty and TTI × Standardized Difficulty interactions to test the 

critical hypotheses. Lower-order interactions were also included. Intercept, standardized 

difficulty slope and experimental trial slope were allowed to vary across participants to model 

individual differences in skill and rate of learning. The results of this model are presented in 

Table 19. 
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Table 19. 
Parameter estimates from a multi-level logistic regression predicting the likelihood that participants would identify 
the target on a given trial. 

Parameter B SE z p 
intercept 0.17 0.05 3.67 < .001 
standardized difficulty -0.50 0.08 -6.58 < .001 
missed TTI -1.31 0.02 -55.91 < .001 
incentive value -0.001 0.002 -0.55 .58 
post-trial feedback 0.05 0.04 1.20 .23 
trial in experiment 0.25 0.29 0.86 .39 
age -0.01  0.003 -4.51 < .001 
Standardized Difficulty × Missed TTI -0.29 0.07 -4.01 < .001 
Standardized Difficulty × Incentive Value -0.003 0.01 -0.53 .60 
Standardized Difficulty × Post-trial Feedback -0.10 0.07 -1.33 .18 
Incentive Value × Post-trial Feedback -0.003 0.002 -1.97 .05 
Standardized Difficulty × Incentive Value × Post-
trial Feedback 

0.01 0.01 2.63 .01 

Note. Standardized difficulty (Mdn = 0.5), trial in experiment (Mdn = 160), and incentive value (Mdn = 24) were 
median-centered prior to analysis. Correct TTI and pre-trial feedback served as the {-1} and {-1} baselines, 
respectively. 
 

As before, participants’ performance was affected by task difficulty (standardized 

difficulty) such that they performed more poorly on trials that were objectively harder. This was 

particularly true when they had failed to identify the target on the previous trial. In this way, past 

performance was a strong predictor of future performance (see Figure 27). As anticipated, 

performance deteriorated as a function of age (see Figure 28). Surprisingly, there was 

insufficient evidence to suggest that participants’ performance improved over time (see 

Figure 29), perhaps due to the floor effect present in the clicks condition. 
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Figure 28. Older participants were less likely to identify the target on a given 
trial. Error ribbons represent ±1SE. 

Figure 27. Central (standardized difficulty) and peripheral (past performance) 
cues significantly predicted participants’ performance. Error ribbons represent 
±1SE. 
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Planned contrasts indicated that participants’ performance depended on the difficulty 

level of the task and their knowledge of the incentive structure (see Table 20). Participants who 

knew of the incentives in advance (pre-trial feedback condition) incorporated this knowledge 

into their effort allocation strategy. When incentives were low, pre-trial participants performed 

more poorly than did those in the post-trial condition, regardless the difficulty level of the task. 

As incentives increased, pre-trial participants allocated more effort towards easy trials and less 

effort towards harder trials. By contrast, post-trial participants’ performance was sensitive to task 

difficulty when incentives were low. As incentives increased, they became less likely to identify 

the target regardless the difficulty level of the task. This effect is illustrated by the changes in 

standardized difficulty slope that occur across panels in Figure 30. Slope estimates are available 

in Table 21. Together, these results provide support for agenda-based regulation (H3) and 

directly refute the DCM (H1) and Proximal Zone of Learning (H2) theories. 

Figure 29. Participants did not become better at identifying the target over time. 
Error ribbons represent ±1SE. 
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Table 20. 
Planned comparisons of each feedback condition’s standardized difficulty slopes at three points along the critical 
feedback magnitude continuum. 

Condition B SE z p 
Feedback magnitude = 1     

Post-trial – Pre-trial -0.80 0.28 -2.85 .004 
Feedback magnitude = 24     

Post-trial – Pre-trial -0.20 0.15 -1.33 .18 
Feedback magnitude = 48     

Post-trial – Pre-trial 0.46 .28 1.64 .10 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 30. Effort allocation strategy was affected by central (standardized difficulty) cues and feedback magnitude. 
The direction of this effect depended on when participants received information about feedback magnitude. 
Feedback magnitude is depicted across panels; error ribbons represent ±1SE. 
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Table 21. 
Slope estimates at three points along the critical Feedback Condition × Standardized Difficulty × Feedback 
Magnitude interaction. 

Condition B SE 95%CI 
Feedback magnitude = 1    

pre-trial -0.04 0.20 [-0.43, 0.36] 
post-trial -0.84 0.20 [-1.23, -0.46] 

Feedback magnitude = 24    
pre-trial -0.40 0.11 [-0.61, -0.19] 
post-trial -0.60 0.11 [-0.81, -0.39] 

Feedback magnitude = 48    
pre-trial -0.80 0.21 [-1.20, -0.40] 
post-trial -0.34 0.20 [-0.72, 0.05] 

 
 Predicting JODs 

A multi-level logistic regression was used to determine the degree to which central 

(standardized difficulty) and performance-based peripheral (target identification) cues to 

difficulty informed participants’ JODs. The model also included the Standardized Difficulty × 

Difficulty Condition interaction to control for calibration issues, and the Target Identification × 

Role Condition × Trial in Block interaction to test competing hypotheses regarding cue use and 

role. Intercept, standardized difficulty slope, and target identification slope were allowed to vary 

across participants to model individual differences in cue use. The results of this model are 

presented in Table 22. 

Both central and peripheral cues informed participants’ JODs (see Figure 31). 

Participants were more likely to say the task was harder than before when the task became 

objectively challenging and when the incentives were higher. Still, the strongest contributing 

factor to participants’ JODs was their performance. Participants were much more likely to 

indicate that the task was harder than before when they received feedback that they had missed 

the target. This aligned with the results of Experiment 1. 
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Table 22. 
Parameter estimates from a multi-level logistic regression predicting the likelihood that participants would say the 
task was harder than before. 

parameter B SE z p 
intercept -0.03 0.12 -0.28 .78 
standardized difficulty 0.59 0.16 3.72 < .001 
incentive value 0.01 0.003 3.11   .002 
missed target 1.66 0.13 13.26 < .001 
post-trial feedback 0.14 0.11 1.29 .20 
clicks condition -0.52 0.10 -5.22 < .001 
set size condition 0.17 0.07 2.52 .01 
trial in block -0.04 0.05 -0.83 .41 
age 0.01 0.01 0.83 .40 
Standardized Difficulty × Incentive Value -0.01 0.01 -1.00 .32 
Incentive Value × Missed Target -0.0004 0.003 -0.14 .89 
Missed Target × Post-trial Feedback -0.08 0.10 -0.81 .42 
Incentive Value × Post-trial Feedback 0.001 0.003 0.24 .81 
Standardized Difficulty × Clicks Condition -0.75 0.19 -4.06 < .001 
Standardized Difficulty × Set Size Condition 1.17 0.23 5.12 < .001 
Incentive Value × Missed Target × Post-trial 
Feedback 

0.004 0.003 1.31 .19 

Note. Standardized difficulty (Mdn = 0.5), trial in block (Mdn = 53), and incentive value (Mdn = 24) were median-
centered prior to analysis. Identified target, pre-trial feedback, and the timing condition served as the {-1}, {-1}, and 
{-1, -1} baselines, respectively. 

 

Figure 31. JODs were informed by central (standardized difficulty) and peripheral (performance, feedback 
magnitude) cues to difficulty. Feedback magnitude is depicted across panels; error ribbons represent ±1SE. 
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Due to the calibration of the task, some difficulty conditions were objectively more 

challenging than others. Model estimates indicate that participants recognized these differences, 

as illustrated by the intercept and slope differences present in Figure 32. A Tukey’s HSD 

confirmed that the differences across difficulty condition were significant (see Tables 23-24). 

Feedback condition did not affect participants’ JODs, Bdifference = 0.27, SE = 0.21, z = 1.29, 

p = .20, nor did feedback condition affect participants’ sensitivity to changes in task difficulty or 

incentive value (see Figure 33 and Table 25).  

 
Table 23. 
Comparisons of each difficulty condition’s standardized difficulty slope. 

Condition B SE z p 
Clicks – Set Size -1.92 0.35 -5.45 < .001 
Clicks – Timing -0.34 0.34 -1.00 .58 
Set Size – Timing 1.59 0.41 3.89 < .001 

 

Figure 32. JODs differed across difficulty condition. Error ribbons represent 
±1SE. 
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Table 24. 
Standardized difficulty slopes for each difficulty condition. 

Condition B SE 95%CI 
Clicks -0.17 0.19 [-0.55, 0.20] 
Set Size 1.75 0.31 [1.15, 2.35] 
Timing 0.16 0.28 [-0.39, 0.71] 

 

 

 

Table 25. 
Standardized difficulty and incentive value slopes for each feedback condition. 

Condition B SE 95%CI 
standardized difficulty slope    

pre-trial 0.58 0.16 [0.27, 0.89] 
post-trial 0.58 0.16 [0.27, 0.89] 

feedback magnitude slope    
pre-trial 0.01 0.004 [0.001, 0.02] 
post-trial 0.01 0.005 [0.03e-3, 0.02] 

 

Figure 33. JODs were not affected by feedback condition, nor did the manipulation affect 
participants’ sensitivity to changes in task difficulty (standardized difficulty) or incentive value. 
Incentive value is depicted across panels; error ribbons represent ±1SE. 
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 Discussion 

This experiment determined how people use performance-based peripheral cues to inform 

effort allocation strategies and identified an important way in which this differed from how they 

make JODs. Effort allocation strategies and JODs were both informed by central and peripheral 

cues to difficulty, including past performance and feedback magnitude. However, effort 

allocation strategies differed as a function of when participants learned of the incentive structure 

of the environment. When participants learned of this information in advance, it informed their 

effort allocation strategies: participants allocated the most effort to easy tasks that were highly 

incentivized. When participants learned of this information through feedback, they allocated less 

effort towards easy tasks, especially those that were highly incentivized. These feedback 

condition differences did not emerge with respect to JODs, suggesting that participants’ effort 

allocation strategies did not change because they perceived the tasks to be easier or harder. 

Rather, effort allocation seemed to be driven by the task’s incentives. Together, these results 

disambiguate the results of Experiment 1 and discriminate between competing hypotheses 

regarding peoples’ effort allocation. 

These results supported moderation models of effort allocation, which propose that 

peoples’ effort allocation decisions are informed by both task difficulty and incentives. 

Participants who knew of the incentive structure in advance performed better on easy trials that 

were highly incentivized. When these same easy trials were poorly incentivized, performance 

dropped and was similar to that of more difficult trials. These results directly contradict the 

predictions of the DCM (H1), which predicts that people moderate their effort to improve their 

performance on the most difficult tasks. The results also contradict the Proximal Zone of 

Learning Theory (H2), which predicts that people moderate their effort to improve performance 
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on easier tasks that are within the level of their skills and abilities. While people were more 

likely to improve following poor performance on an easy trial, the degree to which they did was 

affected by the task’s incentives. 

Participants also used task incentives to inform their JODs, even though the two variables 

were decorrelated in this context. This illustrates how ecological adaptations (e.g., (Gigerenzer et 

al., 1999)) can lead people to make seemingly illogical judgments. Often, difficult tasks are more 

highly rewarded. Consider that teachers assign more points to term papers than to weekly 

quizzes, and that there is more prestige associated with climbing Mount Everest than with 

climbing the stairs to your office. The relationship between difficulty and reward is so 

pronounced that it defines some peoples’ understanding of difficulty (difficulty-as-importance; 

(Fisher & Oyserman, 2017). Although the inverse is not always true, as in this case, it likely 

takes time for people to adapt in their judgments. 

These findings further advance the basic understanding of effort allocation and illustrate 

how future performance can be affected by task difficulty and incentives. Consider a student who 

must decide whether to allocate study time to a 5-point paper or a 50-point exam. These results 

suggest that they are likely to study for the exam, but only if they believe that it lies within the 

level of their skills and abilities. If the exam seems insurmountably hard, the student may 

allocate just as much time towards writing their paper. This interplay between task difficulty and 

incentives can be used to structure environments in ways that advance learning. Future research 

should seek to confirm this relationship within a naturalistic context and with direct measures of 

effort allocation (e.g., EEG).   
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Chapter 5 - General Discussion 

Performance-based peripheral cues to difficulty arise from many circumstances. For 

example, a student may use their semester quiz scores to determine how much time to invest in 

studying for the final exam. In a similar way, performance-based peripheral cues can inform 

behaviors in dynamic environments where feedback is frequent. For example, a pilot might use 

moment-by-moment data to make decisions about whether to make a route adjustment or to radio 

for assistance. In both cases, past performance is used as a predictor of future behavior and as a 

guide for behavioral change. To make educated decisions, these individuals must have an 

accurate understanding of the task’s difficulty and how well they can perform under those 

circumstances. 

There has been a great deal of effort invested in determining what makes task difficult, 

but considerably less attention to when or why tasks are perceived as being so. This dissertation 

addressed the latter by manipulating the conditions under which performance-based peripheral 

cues to difficulty were made available. In Experiment 1, participants received performance-based 

peripheral cues as they performed a task as well as while they observed someone else complete 

it. In Experiment 2, some participants received information that foreshadowed the magnitude of 

the performance-based peripheral cues, while others did not. Together, these experiments 

disambiguated competing hypotheses and clarified the relationships between task difficulty, 

resource allocation, and performance. 

 Performance-based Peripheral Cues are Down-weighted in Observational 

Settings 

Frequently, observation is used as a tool to familiarize people with a task. For example, 

surgeons are trained by watching other people in the operating theater and football players often 
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watch tape-recorded games before playing a new opponent. Common wisdom suggests that 

observation allows trainees to “learn through experience;” however, recent research has shown 

that people tend to under-estimate the difficulty of tasks they observe. This bias is evidenced 

across many contexts (Arkes et al., 1981; Hoelzl & Rustichini, 2005; Kardas & O’Brien, 2018; 

Kruger & Dunning, 1999; Kruger et al., 2008); however, its underlying cause is unclear. 

Identifying the factors that lead to observers’ under-estimation of task difficulty will improve the 

specifications of observational contexts and, in turn, the quality of training. 

Experiment 1 used a role-based manipulation to determine how people incorporate 

performance-based peripheral cues into JODs. The results illustrated the importance of hands-on 

experience: people who engaged in early observation underestimated the difficulty of the task 

relative to their peers who received full or partial hands-on experience. Once observers received 

hands-on experience, their estimation dramatically improved and aligned with their peers. This 

change was driven by observers’ weighting of performance-based peripheral cues, which 

contributed less to their early JODs. This suggested that observers’ misestimation was caused by 

their inexperience with the task, rather than a willingness to treat another person’s performance 

as a stand-in for their own. In other words, difficult tasks seem easy because we’ve never tried 

them; not simply because other people make them look easy. 

These results align with the simulation hypothesis (Dimaggio et al., 2008), which 

suggests that peoples’ JODs are based upon their imagined performance of a task. On the 

surface, this tendency to down-weight observed performance seems helpful: people are unlikely 

to use an expert’s performance as an indicator of their own. However, it also means that people 

are unlikely to learn from watching others and may assume that they “could do it better,” 

especially when they lack experience with a task. Providing hands-on experience seems to 
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reduce the degree of peoples’ mis-estimation relative to peers; however, additional research is 

necessary to understand the mechanism responsible for this change. 

It is also important to note that alignment does not necessarily imply accuracy – 

participants may exhibit bias in their JODs. Previous research indicates that biased JODs are 

prevalent across many contexts (Burson et al., 2006) - for example, most people rate their driving 

skills as above average, relative to their peers (Marottoli & Richardson, 1998). Previous research 

has found that novices tend towards under-estimation of task difficulty relative to experts, a 

result that is partially explained by Experiment 1. However, a lack of experience with 

performance-based peripheral cues does not explain over-estimation by experts, implying that 

additional mechanisms may be at work. Future research should address this concern by 

determining the degree to which different cues influence peoples’ discrimination and bias 

(Maniscalco & Lau, 2012). 

 Updating the Model of Task Difficulty and Performance 

The specific circumstances under which performance-based peripheral cues informed 

JODs provides insight to the relationship between task difficulty and performance. Performance-

based peripheral cues were down-weighted when people first observed a task. This led observers 

to underestimate task difficulty relative to those who had performed the task. However, their 

JODs came into alignment once they received hands-on experience. This suggests that the 

performance-based peripheral cues that arise through a person’s experiences have enduring 

effects on their JODs, lending support to a model where performance-based peripheral cues 

inform self-efficacy beliefs (see Figure 34). 
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 Disambiguating the role of performance-based peripheral cues 

In addition to serving as a valid cue to difficulty, performance-based peripheral cues 

provide information about risks and rewards. Researchers have suggested that people use this 

information to plan their resource allocation strategies (Kurzban et al., 2013). For example, a 

student may allocate more study time to topics they’ve previously failed to accurately recall for 

past assignments, especially when those topics are likely to be worth many points on an 

upcoming exam. The score a student receives could inform their future resource allocation (e.g., 

study time) in two ways. Perhaps lost points lead students to doubt their self-efficacy and over-

estimate the difficulty of the material. They, in turn, allocate more (R. Ackerman, 2014) or less 

(Metcalfe & Kornell, 2005) effort to studying it. Conversely, a student’s self-efficacy beliefs 

could remain intact, and point-value information could be used to plan future study strategies, 

given how difficult the material is perceived to be (Ariel et al., 2009). Determining the nature of 

this relationship will reveal the ways in which incentives impact effort allocation behavior and 

facilitate the development of learning contexts that prompt task engagement. 

Experiment 2 used a feedback manipulation to determine how information about the 

incentive structure of the environment informs JODs and effort allocation decisions. Some 

participants completed a task with clearly defined incentives that were presented at the start of 

each five-trial block. Other participants only learned of task incentives through performance-

based peripheral cues (i.e., post-trial feedback). Although the participants within these groups 

made similar JODs, they differed in their performance. Participants who learned of incentives in 

advance used this information to develop a resource allocation strategy: these participants 

performed the best on easy trials that were strongly incentivized. In contrast, participants who 

only learned of incentives through performance-based peripheral cues exhibited the opposite 
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pattern of behavior: they performed worse on easy trials that were strongly incentivized. Because 

JODs did not differ across the two groups, it is likely that incentive information moderates the 

relationship between JODs and effort allocation. However, the degree to which it does so appears 

to differ depending on how that information is received. 

Incentive information that is provided at the start of a task does not change the likelihood 

of a negative outcome. However, when incentives are learned through performance-based 

peripheral cues, the riskiness of the situation has changed. Consider a student studying for an 

exam. A high-performing student may feel more motivated to review the material they’ve missed 

on previous exams because their grade is at stake. However, it is not worthwhile for a student 

with a D in the class to invest the same amount of effort if it is unlikely to impact their grade. 

Thus, both risks and rewards contribute to effort allocation decisions, supporting the hypotheses 

of agenda-based regulation (Ariel et al., 2009). 

It is interesting to note that when performance is incentivized, resource allocation 

becomes a preventative risk mitigation strategy that can be used to avoid negative consequences. 

Previous research has shown that people are less likely to implement preventative strategies after 

experiencing losses unless those preventative strategies are made easier-to-use (Vangsness & 

Young, 2017). The results of Experiment 2 would suggest that people are also more likely to 

implement preventative strategies when they are aware of consequences in advance. Future 

research should confirm this relationship in contexts that involve other risk mitigation strategies. 

 Updating the Model of Task Difficulty and Performance 

In Experiment 2, participants’ performance-based peripheral cues informed JODs, 

replicating the results of Experiment 1. Specifically, participants’ accuracy on the previous trial 

strongly informed their JODs. This result provides additional support for a relationship between 
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performance-based peripheral cues and self-efficacy beliefs. Interestingly, the incentive value of 

a given trial also informed participants’ JODs: trials on which participants stood to lose more 

points were judged to be harder than those on which participants lost few. This relationship was 

present among all participants, regardless of whether the incentive structure was known in 

advance or learned through feedback (i.e., embedded within performance-based peripheral cues). 

In addition, participants’ knowledge of the incentive structure informed their JODs separately 

from their use of central cues to difficulty. This indicates that incentive structure uniquely 

moderates the relationship between self-efficacy beliefs and JODs. 

Finally, participants’ knowledge of the incentive structure affected their performance and 

changed their resource allocation strategies. Participants who knew the incentive structure in 

advance used it to plan their resource allocation; they performed strongly on easy trials that were 

highly incentivized and invested less effort on trials that were poorly incentivized or particularly 

difficult. Those who learned of the incentive structure through feedback employed the opposite 

strategy and tried to compensate for losses they’d already incurred: they performed well on easy 

trials that were poorly incentivized and invested less effort on trials that were highly incentivized 

or particularly difficult. These results indicate that knowledge of the incentive structure 

moderates the relationship between JODs and resource allocation. These results also indicate that 

this relationship is further moderated by central cues to difficulty (see Figure 34). 
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Although this dissertation clarifies the relationships between performance-based 

peripheral cues, JODs, and resource allocation, important questions remain. For example, the 

relationship between the incentive structure of the environment and participants’ performance 

was strongly affected by when this information was made available. It is possible that context 

(e.g., gain/loss framing (Tversky & Kahneman, 1991)) moderates this relationship and changes 

how people allocate their resources in response to incentives. It is also possible that separate 

mechanisms are responsible for peoples’ resource allocation strategies in each context. This 

question could be answered through a future modification that manipulates how frequently the 

incentive structure changes. This manipulation changes how easily the incentive structure can be 

learned when this information is provided through feedback alone. If fundamentally different 

mechanisms are at work, participants in the post-trial condition should exhibit different 

behavioral patterns even when the incentive structure of the environment is constant (i.e., is 

easily learned). 

Self-efficacy 
beliefsSkills/abilities JODs

Resource 
allocationPerformance

Central cues

Performance-based 
peripheral cues

(i.e., feedback)

Proxy 
peripheral cues

(e.g., time-on-task)

(Learning) Incentive 
structure

(L
ea

rn
ing

)

Figure 34. A revised model of the relationships between JODs, resource allocation, and performance. 
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Another important question involves the role of JODs in effort allocation and risk 

mitigation decisions. In a previous study, domain-specific experience (i.e., self-efficacy beliefs) 

affected participants’ JODs. Risk mitigation decisions were informed by performance-based 

peripheral cues (Vangsness & Young, 2017). These findings provide further support for the 

relationships between performance-based peripheral cues and self-efficacy beliefs, as well as the 

moderational relationship between learned incentives and resource allocation. They also suggest 

that risk assessment arises from peoples’ learned experiences with a task (see FIGURE 35), and 

that a person’s risk tolerance may moderate their allocation of resources. 

 

 

 Figure 35. Performance-based peripheral cues provide information about a situations’ risks; resource 
allocation may be moderated by a person’s risk tolerance. 
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 Implications and Broader Impacts 

While adages occasionally undervalue the importance of hands-on experience2, 

personalized feedback provides information about a person’s skill level, as well as the incentives 

of the task. This information allows people to make accurate JODs and to invest their effort in 

ways that maximize reward and performance. When this information is lacking, people tend to 

overestimate their skills and underestimate the difficulty level of the task. Such judgments 

produce poor outcomes and deteriorate performance. 

Although these experiments were conducted in a controlled environment, it is not 

difficult to generalize their results to an applied context. While writing this dissertation, I also 

taught indoor cycling classes at a local gym. One of these classes required riders to create a bike 

profile that automatically calculated the physical effort they should put forth to reach different 

levels of intensity. During class, the bike computer provided feedback that signaled whether 

riders were meeting the level of intensity that I was coaching. Early in the semester, I discovered 

that new riders frequently overestimated their fitness level and were unable to keep up with the 

group. Often, these riders did not return to class. In light of this, I began encouraging new riders 

to underestimate their fitness level and scale up as they felt comfortable. This allowed riders to 

gain experience with the class and their abilities. Although I still saw new riders, fewer dropped 

the class after making this change. 

The challenges encountered in cycling studios, college classrooms, and other training 

environments differ from the visual search task in many ways. For example, in some contexts, 

learners who are feeling overwhelmed can select alternative courses of study rather than to 

                                                
2 e.g., Smart people learn from their own mistakes, while wise people learn from others. 
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withdraw from a task completely. It is unknown whether the relationships observed in this 

dissertation will generalize directly to applied domains. However, the model of task difficulty, 

resource allocation, and performance depicted in Figure 34 provides a framework to test the 

generalizability of these findings to other measures (e.g., EEG) and circumstances. Doing so will 

improve the validity of these findings and provide insights that can be used to improve training 

environments and to encourage task completion. 
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Appendix A - Calibrating the Visual Search Task 

 Task Calibration 

Standardizing and means-centering difficulty allows comparisons to be made across 

conditions. These cross-condition comparisons can also be used to calibrate the task by 

estimating the parameter values that will produce equivalent performance in all four conditions. 

Specifically, the condition intercepts and Condition × Standardized Difficulty fixed effect slopes 

can be used to center and set the range of parameter values, respectively.  Unfortunately, post-

hoc analyses of participants’ performance in Experiments 1 and 2 (see Appendix B) indicated 

that the calibration adjustments were made in the wrong direction. 

 Calibrating average difficulty 

 Because incentive magnitude does not change the difficulty level of the task itself, the 

feedback condition was used to calibrate difficulty across conditions. The emmeans package in R 

(Lenth et al., 2019) was used to determine condition intercepts, which were uncentered and back-

transformed to the original scale using the inverse link (logistic) function. These intercepts could 

be compared and unstandardized to determine how much to shift the range of each parameter 

(see Table A.1). Algebraic calculations indicated that the click condition needed to be made 

more challenging by shifting the mid-point upwards by 2 clicks, while the set size and timing 

conditions needed to be slightly easier by shifting their ranges downwards by 3 non-target items 

and upwards by 1.5 s, respectively. 
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Table A. 1 
Intercept parameter estimates from a multi-level logistic model predicting the likelihood that participants would 
correctly identify the target on a given trial. Estimates are un-centered and back-transformed to the original scale for 
ease of comparison. 

condition intercept (B0) SE original scale 
Clicks -0.79 0.11 0.43 
Feedback -0.05 0.11 0.61 
Set Size 0.03 0.11 0.63 
Timing 2.58 0.14 0.96 

 

 Calibrating the range of difficulty 

Because screen dimensions restricted the number of non-target items that could be 

presented on the screen at one time, the set size condition was used to calibrate the range of 

difficulty across conditions. The emmeans package in R was used to determine the standardized 

difficulty slope in each condition. New ranges could be calculated by multiplying this ratio by 

the existing range (see Table A.2). Algebraic calculations indicated that the clicks condition 

needed to be narrowed to 2 clicks and the timing condition needed to be narrowed to 0.48 s. The 

feedback condition was not included in these comparisons because changes to incentive 

magnitude did not significantly affect participants’ performance. 

Table A. 2 
Slope estimates from a multi-level logistic model predicting the likelihood that participants would correctly identify 
the target on a given trial. 

condition BstdDiff SE new parameter range 

Clicks -5.48 0.16 −1.81
−5.48 × 5 = 1.65 

Set Size -1.81 0.12 n/a 

Timing -15.00 0.44 −1.81
−15.00 × 4 = 0.48 
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Appendix B - Supplemental Analyses 

 Experiment 1 

 Performance Calibration 

The emmeans package (Lenth et al., 2019) was used to generate and compare 95% 

confidence intervals for the estimates that involved difficulty condition. Participants’ average 

performance differed considerably across conditions (see Table B.1). In addition, changes to task 

difficulty affected performance more strongly in some conditions than in others: only changes to 

set size affected participants’ performance (see Table B.2). 

Table B. 1. 
Condition estimates from a multi-level logistic regression predicting the likelihood that participants would identify 
the target on a given trial. 

condition B SE CI95% 
click -5.10 0.29 (-5.67, -4.52) 
feedback -0.28 0.13 (-0.54, -0.02) 
set size -0.02 0.13 (-0.28, 0.24) 
timing 4.45 0.22 (4.02, 4.88) 

 
Table B. 2 
Standardized difficulty slope estimates from a multi-level logistic regression predicting the likelihood that 
participants would identify the target on a given trial. 

condition B SE CI95% 
click -3.00 0.59 (-4.15, -1.85) 
feedback -0.04 0.16 (-0.34, 0.27) 
set size -1.79 0.17 (-2.13, -1.45) 
timing -0.21 0.64 (-1.46, 1.05) 

 

Performance differed substantially from that of the pilot study, which can be illustrated 

by comparing human performance with computer performance during the observation trials (see 

Figure B.1). Performance intercepts (the central points of each line) and standardized difficulty 

slopes differed during the performance trials (left panel), but were similar across the observation 

trials (right panel). These differences likely emerged as a result of improper calibration of the 
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task, which was discovered post-hoc. Specifically, the timing and clicks conditions should have 

been made harder and easier, respectively. Instead, they were made the opposite. Although this 

error prevents conclusions from being drawn regarding the effects of dimension of difficulty, the 

within-subject design and counterbalancing techniques that were employed preserve the main 

findings of the experiments. 

 Exploratory Analysis – Intrinsic Motivation 

Two exploratory analyses were conducted to determine whether intrinsic motivation 

affected participants’ performance or JODs. These analyses involved the same model 

specifications as before but included the main effect of intrinsic motivation in the fixed effect 

structure. Intrinsic motivation did not significantly impact performance or JODs, and the 

reported effects were unchanged (see Tables B.3 and B.4). 

  

Figure B. 1. Participants’ performance in the visual search task (right) differed substantially from the pilot 
experiment predictions, which are illustrated by the computer performance trials at left. Error ribbons represent 
±1SE. 
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Table B. 3 
Parameter estimates from a multi-level logistic regression predicting the likelihood that participants would identify 
the target on a given trial. 

parameter B SE z p 
intercept -0.08 0.16 -0.51 .61 
standardized difficulty -1.25 0.22 -5.79 < .001 
clicks -4.81 0.20 -24.43 < .001 
feedback -0.07 0.09 -0.80 .42 
set size 0.23 0.09 2.59 .01 
experimental trial 0.25 0.06 4.25 < .001 
perform-first -0.23 0.19 -1.18 .24 
interleaved 0.07 0.22 0.34 .74 
intrinsic motivation -0.04 0.09 -0.39 .69 
Standardized Difficulty × Clicks -1.78 0.48 -3.71 < .001 
Standardized Difficulty × Feedback 1.21 0.24 4.96 < .001 
Standardized Difficulty × Set Size -0.53 0.25 -2.14 .03 

Note. Standardized difficulty (Mdn = 0.5), experimental trial (Mdn = 180), and intrinsic motivation (Mdn = 2.75)  
were median-centered prior to analysis. The observe-first and timing conditions served as the {-1, -1} and {-1, -1, -
1} baselines, respectively. 
 
Table B. 4 
Parameter estimates from a multi-level logistic regression predicting the likelihood that participants would say the 
task was harder than before. 

parameter B SE z p 
intercept -0.20 0.09 -2.24 .02 
standardized difficulty 0.65 0.14 4.53 < .001 
identified target 1.24 0.09 13.82 < .001 
trial in block -0.01 0.04 -0.13 .89 
do first 0.23 0.12 1.91 .06 
interleaved -0.20 0.13 -1.61 .11 
intrinsic motivation -0.07 0.06 -1.19 .24 
Identified Target × Trial in Block 0.004 0.04 0.10 .92 
Identified Target × Do First 0.04 0.12 0.30 .77 
Identified Target × Interleaved 0.26 0.12 2.13 .03 
Trial in Block × Do First -0.13 0.06 -2.20 .03 
Trial in Block × Interleaved -0.01 0.06 -0.22 .83 
Identified Target × Trial in Block × Do First -0.10 0.06 -1.67 .10 
Identified Target × Trial in Block × Interleaved 0.001 0.06 0.02 .99 

Note. Standardized difficulty (Mdn = 0.5), trial in block (Mdn = 37), and intrinsic motivation (Mdn = 2.75) were 
median-centered prior to analysis. Missed target and the observe-first role condition served as the {-1} and {-1, -1} 
baselines, respectively. 
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 Experiment 2 

 Performance Calibration 

The emmeans package (Lenth et al., 2019) was again used to generate and compare 95% 

confidence intervals for the estimates that involved difficulty condition. Participants’ average 

performance differed considerably across conditions (see Table B.5). In addition, changes to task 

difficulty affected performance more strongly in some conditions than in others: only changes to 

set size affected participants’ performance (see Table B.6). 

 

Table B. 5 
Condition estimates from a multi-level logistic regression predicting the likelihood that participants would identify 
the target on a given trial. 

Condition B SE CI95% 
Clicks -4.03 0.17 (-4.36, -3.70) 
Set Size -0.04 0.15 (-0.33, 0.24) 
Timing 5.81 0.24 (5.33, 6.29) 

 
Table B. 6 
Standardized difficulty slope estimates from a multi-level logistic regression predicting the likelihood that 
participants would identify the target on a given trial. 

Condition B SE CI95% 
Clicks -1.52 0.23 (-1.97, -1.06) 
Set Size -2.29 0.15 (-2.57, -2.00) 
Timing -0.63 0.55 (-1.71, 0.44) 

 

As before, performance differed substantially from what was predicted by the pilot study, 

due to the improper calibration of the task. Performance intercepts (the central points of each 

line) and standardized difficulty slopes significantly differed across difficulty conditions (see 

Figure B.2). 
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 Exploratory Analysis – Intrinsic Motivation 

 Two exploratory analyses were conducted to determine whether intrinsic 

motivation affected participants’ performance or JODs. These analyses involved the same model 

specifications as before but included the main effect of intrinsic motivation in the fixed effect 

structure. Intrinsic motivation did not significantly impact performance or JODs, and the 

reported effects were unchanged (see Tables B.7 and B.8). 

  

Figure B. 2. Participants’ performance in the visual search task (left) differed 
substantially from the pilot experiment predictions. Error ribbons represent ±1SE. 
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Table B. 7 
Parameter estimates from a multi-level logistic regression predicting the likelihood that participants would identify 
the target on a given trial. 

Parameter B SE z p 
intercept 0.17 0.05 3.68 < .001 
standardized difficulty -0.50 0.08 -6.60 < .001 
missed TTI -1.31 0.02 -55.91 < .001 
feedback magnitude -0.001 0.002 -0.57 .57 
post-trial feedback 0.06 0.05 1.26 .21 
trial in experiment 0.25 0.29 0.86 .39 
age -0.01  0.003 -4.50 < .001 
intrinsic motivation 0.01 0.04 0.37 .71 
Standardized Difficulty × Missed TTI -0.29 0.07 -4.00 < .001 
Standardized Difficulty × Feedback Magnitude -0.003 0.01 -0.52 .60 
Standardized Difficulty × Post-trial Feedback -0.10 0.07 -1.32 .19 
Feedback Magnitude × Post-trial Feedback -0.003 0.002 -1.97 .05 
Standardized Difficulty × Feedback Magnitude × 
Post-trial Feedback 

0.01 0.01 2.63 .01 

Note. Standardized difficulty (Mdn = 0.5), trial in experiment (Mdn = 160), and intrinsic motivation (Mdn = 3.5) 
were median-centered prior to analysis. Correct TTI and pre-trial feedback served as the {-1} and {-1} baselines, 
respectively. 
 
Table B. 8 
Parameter estimates from a multi-level logistic regression predicting the likelihood that participants would say the 
task was harder than before. 

Parameter B SE z p 
intercept  -0.03 0.12 -0.28 .78 
standardized difficulty 0.59 0.16 3.72 < .001 
feedback magnitude 0.01 0.003 3.11 .002 
missed target 1.66 0.13 13.26 < .001 
post-trial feedback 0.14 0.11 1.29 .21 
click condition -0.52 0.10 -5.22 < .001 
set size condition 0.17 0.07 2.52 .01 
trial in block -0.04 0.05 -0.83 .41 
age 0.01 0.01 0.83 .41 
intrinsic motivation 0.01 0.09 0.12 .90 
Standardized Difficulty × Feedback Magnitude -0.01 0.01 -1.00 .32 
Standardized Difficulty × Missed Target -0.0004 0.003 -0.14 .89 
Missed Target × Post-trial Feedback -0.08 0.10 -0.81 .42 
Feedback Magnitude × Post-trial Feedback 0.001 0.003 0.24 .81 
Standardized Difficulty × Click Condition -0.75 0.19 -4.07 < .001 
Standardized Difficulty × Set Size Condition 1.17 0.23 5.12 < .001 
Feedback Magnitude × Missed Target × Post-trial 
Feedback 

0.004 0.003 1.31 .19 

Note. Standardized difficulty (Mdn = 0.5), trial in block (Mdn = 53), and intrinsic motivation (Mdn = 3.5) were 
median-centered prior to analysis. Identified target, pre-trial feedback, and the timing condition served as the {-1}, 
{-1}, and {-1, -1} baselines, respectively. 


