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CHAPTER 1

INTRODUCTION

1.1 Introduction

The technique of simulation is used in developing and evaluating a
model of some real world system. It is a numerical technique based on
a mathematical model of the system. In the present work results of
simulation experiments obtained by a digital computer are discrete ap-
proximations of mathematical expressions.

Simulation experiments are useful in solving multivariable problems
that are too complex to be represented by mathematical expressions in
predicting the behavior of a proposed system. Simulation experiments
differ from Monte Carlo Methods in that Monte Carlo analysis is used to
solve deterministic problems whereas simulation techniques are applied
to dynamic problems for which no closed mathematical expression can be
constructed. (9)

Steady state conditions in a simulation experiment are reached when
successive observations of an output statistic give no extra information
regarding the future behavior of the system. At this stage the variable
becomes statistically stable, i.e. there is no change in its expected
value and its variance.

"The term steady state is used in reference to parameter stability.
In its usual context this term refers to the stabilizing of the proba-
bilities of the various system states. It is felt that the parameters
being estimated are reasonably good indicators of this stabilizing process

and the aforementioned definition is made." (26)



An experimenter usually starts a simulation run with atypical values

which do not correspond to the steady state conditions. Consequently there

is a bulld-up in the system during which the expected value and the wvari-
ance of output statistics are unstable., This period in a simulation run

is called the transient phase. Figure (1.1)

T

Output

Starting
Transient

Simulation run

Figure 1.1

To the analyst, the information gathered during the transient phase
is of no use because he is basically interested in information concerning
a statistic only when it has reached steady state conditions. '"Transient
period data adds nothing to the final solution and should be discarded
whenever posslble. Its only real use is in indicating the termination of
the transient period." (26) The transient phase, therefore, becomes an
unwanted region in a simulation run.

Research workers have suggested several techniques to reduce the
variability of statistics during the transient phase so as to attain
steady state conditions earlier in simulation experiments. (13) The

techniques are of a physical or a statistical nature. A typical example



of a physical trial and error technique is the several types of preloading
procedures in which the experimenter loads a system to a certain value at
the commencement of the simulation run so that the initial build-up may

be reduced. In some predictive experiments where no information is avail-
able concerning a statistic, it is only a guess as to what the level of
preloading should be. In such cases any physical technique to control the
build-up would call for a hit and miss method which may result in increased

computer cost.

1.2 Literature Review

1.2.1 The Reduction of the Length of the Transient Period

A simulation experiment conducted with straightforward sampling will
usually go through a long transient period before steady state conditions
are attained. This involves high computer costs. Several experimental
and statistical procedures have been suggested to reduce the variability
of the output statisties, consequently reducing the transient phenomenon
in simulation experiments. Gaver (13) has summarized some of these pro-
cedures.

Conway (3) suggested an approach which consisted of making two or
more replications of a simulation experiment, each time using a different
random sequence to generate the random variates. This procedure is experi-
mental and not statistical. It reduces the variability of the output
statistic but does not prove econcmical by the way of computer cost.

Some attempts were made by experimenters to use various preloading
methods where some prespecified values are assigned to the system para-

meters at the commencement of the run in order to reduce the initial



build-up in the system. The major objection to this procedure is that it
cannot be used in many predictive models.

Hammersley and Morton (18) introduced the concept of antithetic
transformations and Hammersley and Handscomb (17) extended this idea to
form antithetic variates for the Monte Carle techniques and the simula-
tion experiments. They showed that the pairs of random variates formed
by using random numbers and the complements of these random numbers are
negatively correlated. A mathematical proof of this is given by Page. (24)
Page alsc shows that if a 2-tuple is formed by using random numbers ry and
8 and if another 2-tuple is formed by using random numbers ri' = (l—ri)
and si' = (l—si), then the two 2-tuples are negatively correlated. In
the present work an attempt is made to reduce the variability of an out-
put statistic by using the antithetic variate approach.

Stratification as explained by Gaver (13) is essentially an extension
of the antithetic variate appreach, with the difference that it uses three
random numbers r, (r+l/3) and (r+2/3) in the range (0,1) to form negatively
correlated random variates.

The random variates In the simulation experiments are formed by using
random numbers generated by one or more pseudorandom generators. Before
starting a simulation experiment it 1s necessary to test the generated
random numbers to ascertain that they are uncorrelated.

Coveyou and MacPherson (4) showed that random numbers generated by
the multiplicative congruence method satisfy most statistical tests for

independency. Some of these tests are described by Kendall and Smith

(20), Naylor et. al. (22), and Good (15}.



In the present study a frequency test and a spectral analysis (1)

were performed to test the generated random numbers.

1.2.2 The Determination of the End of the Transient Period

In simulation experiments it is very important to correctly locate
the end of the transient phase. A failure to do this leads to erroneouse
results in estimating the system parameters. It is accepted by research
workers that the system parameters are good indicators of the stability
of any system.

Beuno (2) suggested that the stability of the sample mean should be
used as the indicator of system stability. He presented a technique for
comparing means of successive samples from time series by using a sequential
t-test. The shortcoming of Beuno's method is that it uses the stabili-
zation of the sample mean as the one decision criterion and does not take
into account the stability of the variance of this mean. Also, Beuno as-
sumes the data to be independent which is not true for a time series.
Fishman (10) showed that successive observations in time series are highly
autocorrelated. This is also supported by Reese (26), Gaver (14), and
Newell (23}, Fishman suggested a method for comparing sample means of
autocorrelated data taking into consideration the autocovariance between
the observations. Reese (26) combined this concept of autocorrelation
with Beuno's dynamic procedure and suggested a technique to compare suc-
cessive sample means using a sequential t-test.

In 1969 Fishman (12) developed a procedure for determining the sample
size necessary to estimate the sample mean of the autocorrelated data.

This procedure is used in the present study on successive samples from



simulation outputs and the means of these samples are compared to study

the stability of the process.

1.3 The Antithetic Variate Approach

The antithetic variate approach is a statistical technique recom-
mended for reducing the variability of an output statistic in a simu-
lation run. A statistical explanation of the antithetic variate approach
is as follows:

Let a statistic Z(t) which is a function of time t be represented

Z{t) = X(t) + ¥(t)

Then,

V[z{t)] = V[X(£) ] + V[Y(t)] + Cov[X(t)}, ¥(t)]

It is desired to reduce the variability of Z(t).

Since V[X(t)] and V[Y(t)] are positive quantities, V{Z(t)] is re-
duced by assigning a negative value to Cov[X(t), Y(t)]. In other words,
X(t) and Y(t) should be chosen such that they produce a negative corre-
lation. The variables produced by purposely introducing negative cor-
relation between pairs are known as antithetic variates. (17)

If X(t) is a function of a random number r, where r is uniformly
distributed over (0,1) and Y(t), a function of (l-r), it can be shown
that X(t) and Y(t) are negatively correlated. (24) If X(t) and ¥(t) are
antithetic variates, Cov[X(t), Y(t)] will tend to reduce the variability

of Z(t). TFigure (1.2)
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Figure 1.2

In the present work an attempt is made to study the extent to which
the antithetic variate approach affects the variability of an output
statistic in a simulation experiment. A single server queueing system
is simulated with a facility to change the utilization factor of the
process. The statistic gathered is the time averaged number of units in
the system. Two seed values are used for random number generation; one
for generating interarrival time and the other for service time. Two
simulations are conducted simultaneously in a single run, one using the
generated random numbers and the other using their complements, so that
the output statistics of the two simulations will form antithetic wvar-~
iates. The mean of the realizations from the two simulations is expected
to have less variability than that observed in each of the two individual

simulations.



The effectiveness of the antithetic wariate approach is measured by
the simulation efficiency. The efficiency of a variance reduction tech-
nique can be meagsured in terms of the necessary sample size or computer

time used to attain steady state conditioms,

lOO(TS - T.)

sim T

T

Simulation efficiency 4

]
=3

8

where, T Computer time required by straightforward

S
sampling

TI = Computer time required by wvariance reduction
technique.

Usually, by using a variance reduction technique, the sample size is re-
duced. {13}, (8)

The output statistics of a simulation experiment are usually auto-
correlated. Consider, for example, the waiting time of a unit as an out-
put statistic. The waiting time of the nth unit will depend to a certain
extent on that of the (n-l)th unit and to a certain extent on the (n-2)th
unit and so on. When the value of an observation depends upon its predeces-

sors such data is called autoccorrelated data. (10)

1.4 Autocorrelated Data in Time Series

For an independent data sample of size N, the mean is estimated as

N
X=1/N ] X f o Ly By mewy B

and the variance of the mean is estimated by



N
s%(X) =1 ) (Xi—.‘e_{)Z/N
1=1

But this is not applicable to autocorrelated data where the autocovariance
between cbservations at all significant lags must also be considered.

The estimated autocovariance of data at any lag is given by

E [(x -X) (X, _ 0]

Oy,

where T = lag
Xt = gbserved value in the time series at time t
X = estimated mean of the sample

Because of this autocorrelated structure of the data, an estimated wvariance

of the sample mean is given by

% M A
V(X) = % {R(O) +2. (l—T/M)R(T)}
=1
where T = Time length of the sample
R(0) = Estimate of the variance of X
M = Order of the scheme
R(t) = Estimated autocovariance coefficient at lag t (15)

Data from a simulation experiment is often autocorrelated. The experi-

menter has no prior knowledge of the autoregressive coefficients and the
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order of the autoregressive scheme, Some technique has to be used, there-
fore, to estimate the parameters of the linear autoregressive scheme that

will represent the autocorrelated data.

1.5 The Fishman Technique (12)

G.S. Fishman has suggested a technique that determines the sample
size of autocorrelated data so that its mean can be estimated with a pre-
specified level of confidence. In the present work an attempt is made to
locate the end of the transient phase in simulation experiments by using
the Fishman technique in a recursive manner. The Fishman technique esti-
mates the sample mean such that the variance of this sample mean is within
prespecified limits. The decision criterion in a Fishman technique, there-
fore, is the limiting value of the variance of the sample mean.

A good indication of the steady state conditions in a system is the
stabilization of the parameters, namely the mean and the variance of dif-
ferent output statistics. If the Fishman technique is applied teo successive
samples from a time series, the value of the sample mean will tend to
stabilize as the process becomes stationary. Thus, if we can obtain the
conditions in a time series where the sample mean and the variance of this
mean become stable, it will indicate that the system has reached steady
state.

In order to study the stability of the sample mean, a limit is im-
posed on the algebraic difference between successive sample means. As we
proceed to take successive samples from a time series we expect that this
difference will diminish until it is less than the specified limit. At
this stage we can say that the system has reached stable conditions.

Figure (1.3)
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Figure 1.3

In the transient phase the size of the successive samples and the
order of the autoregressive scheme as determined by the Fishman tech-
nique fluctuate because the process is non-stationary. However, after
the process reaches steady state conditions the successive samples are
expected to have the same relative size and the same order for the auto-
regressive scheme.

By using the Fishman technique successively on the simulation data,
we expect to locate the end of the transient phase by studying the sta-
bility of the sample mean, the variance of this mean, and the sample size

and the order of the autoregressive scheme.

1.6 Scope of Work

The work proposed to be carried out on this thesis is summarized

as follows.

11
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To conduct simulation experiments with the antithetic variate ap-
proach for a single server queueing system with utilization factors
of 0.5, 0.6, 0.7, 0,8 and 0.9.

To study the effect of this antithetic variate approach on simulation
efficiency.

To study the characteristics of a typical output statistic from the
simulation experiments,

To apply the Fishman technique on successive samples of the data to
locate the end of the transient phase.

To study the effect of utilization factor on the length of the trans-

ient phase.



CHAPTER 2
THE SIMULATION

2.1 GASP II A

Simulation experiments were conducted using GASP II A. (General
Activity Simulation Program). GASP II A uses various subroutines written
in FORTRAN IV which perform most operations required for simulation ex-
periments. Readers are referred to the book "Simulation with GASP II A"
by Pritsker A.A.B. and Kiviat P.J. (25), where a detailed description of
these subroutines is included. A simulation program using GASP IT A is
directed by programmer-written subroutines which control the flow of the
simulation.

A general flow diagram showing the operation of a GASP II A system

is given in figure (2.1). (25)

2,2 System to be Simulated

A single server queueing system was simulated for the present study.

The utilization factor for a single server queue system is given by,

where,

©
]
g =

Mean arrival rate

>
Il

Mean service rate

g s
I

Experiments were conducted with utilizatlom factors of 0.5, 0.6, 0.7, 0.8
and 0.9, The arrival rate and the service rate were assumed to follow

exponential distributions with means A and u respectively.

13
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Figure 2.1 A Typical GASP Program



A schematic diagram of this model is given in figure (2.2).

Arrival . Departure
- | Beie Service 2
u
Figure 2,2

2.3 The Antithetic Variate Approach

Two independent simulations were carried out simultaneously in each
run. This was done by using the generated random numbers for one simu-
lation (simulation A) and the complements of these numbers for the second
simulation (simulation B). The two simulations were kept separate by as-
signing different values to a coding attribute to the entries in each
simulation. The output statistic gathered by these simulations are nega-

tively correlated.

2.4 Files
Three files were maintained to store the Information pertaining to
the entries.
1. TFile number 1 was the event file to store the attributes of an entry
associated with any event in the simulation.
2. File number 2 was the queue file for storing the attributes associlated
with an element in the queue, belonging to simulation 1.
3. File number 3 was similar to file number 2 except that it was used

for the elements belonging to simulation 2,

15



2.5 Attributes

The following attributes were used to give full information con-

cerning an entry in a file,

integers, were represented by JTRIB(I). All floating point attributes

were represented by ATRIB(I). This is a special facility offered by

GASP II A.

ATRIB(1)

ATRIB(2)

JTRIB{1)

JTRIB(2)

The indexing or coding attributes which were

16

Denotes the time that an event is to occur. This is the ranking

attribute for file 1 and its value determines the service
priority of an entry in the file.

Denotes the time when a unit enters service.

Denotes the event code of an entry. The value of JTRIB(1l) in-
dicates which event is to take place.

Denotes to which of the two simulations an entry belongs. If
JTRIB(2} = 1, the entry belongs to simulation A and if JTRIB(2)
the entry belongs to simulation B. This keeps the two simu-

lations separate from each other.

2.6 Priority Rule for Service

The priority rule for service was First In First Out. (FIFO). The

ranking attribute was the time of arrival which was denoted by ATRIE(1).

Elements were picked from the queue files on the 'Low Value First (LVF)'

basis.

2,7 Output Statistic

The statistic gathered was the time averaged number of units in the

system.

From GASP subroutine TMST, the time averaged number in the system
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is given by SSUMA(N,2), where N is a code associated with an entry. This
SSUMA(N,2) is a variable in the subroutine TMST. It calculates the pro-
duct of the Instaneous number of units in the system and the current
simulation time.

SSUMA(N,2) was reset after each report time. This gave only the
value of the area between two successive report times. (Figure (2.3)).
The value of the statistic was multiplied by a scaling factor SKALE to
account for the decimal points and the final output was taken in an in-
teger form.

The output was collected in the form of punched cards so that the
data could be used for subsequent operations and testing. Six fields
were reserved on a card for each observation. The program stored twelve
cbservations at a time, six for each simulation. After taking the twelfth
observation all twelve values were punched on a card and then the storage
was cleared for the next observation. A facility was provided to sequence

the cards for reference.

Qutput

Figure 2.3
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2.8 Main Program

A main program was written to initialize all non-GASP variables.
The variables were made available to all programmer written subroutines
through common statements.

The non-GASP variables used are given below:

XISYS ~ Instantaneous number of units in the system.

XL - Mean arrival rate A.
XMU - Mean service rate .
TAU =~ The time interval at which reporting is done.

2.9 Subroutine EVNTS

Subroutine EVNTS assigned codes to different events occurring in a
simulation experiment. This subroutine 1s called by GASP each time an
event is scheduled to take place. The event codes assigned were 1 for

arrival, 2 for service and 3 for reporting.

2.10 Subroutine ARRVL

Subroutine ARRVL is called by subroutine EVNTS whenever an arrival
is scheduled to take place. First it schedules the next arrival by drawing
a random variate from an exponential distribution with mean ), and files
it. It then checks the status of the service facility. If the server
is busy the arriving unit is placed in the queue file and processed later.
If the server is free the arriving unit is served. This is done by drawing
a random variate from an exponential distribution with mean u, and filing
an end of service event. After this the control is turned back to GASP
through subroutine EVNTS. A flow diagram of the arrival event is given

in figure (2.4).
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2.11 Subroutine ENDSV

Subroutine ENDSV is called by subroutine EVNTS when an end of service
occurs. If there are units waiting in the queue, it serves one unit from
the queue according to the assigned priority rule. This is done by drawing
a random variate from an exponential distribution with mean p, and filing
an end of service event. If there are no elements in the system the server
remains idle until the arrival of the next unit. A flow diagram of the end

of service event is given in figure (2.5).

2.12 Subroutine REPORT

Subroutine REPORT is called by subroutine EVNTS whenever the programmer
desires to have a report on the statistic being collected. In the present
work the subroutine REPORT is called after every TAU time units.

Subroutine REPORT computes the required statistic with the help of
the GASP subroutines TMST and COLCT, and then returns control to GASP
through subroutine EVNTS.

In the present work, each time the subroutine REPORT was called, it
gave a pair of output observations. The first belonged to simulation 1
and the second belonged to simulation 2.

A FORTRAN listing of all programmer written subroutines is given in

Appendix B.

2.13 The Random Generator

2,13.1 Random Number Generation
In the present work the arrival and end of service events were created
by using random variates generated from a pseudorandom generator. The

random numbers were generated by the multiplicative congruence method.
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"Coveyou and MacPherson, who offer a unified theory of the statistical be-
havior of n-tuples of pseudorandom generators conclude that currently there
is no better method of generating n-tuples than by the simple multipli-
cative congruence method.'" (11).

A mathematical representation of the multiplicative congruence method

is

Ci+1 = Ci A {(mod P)

(i+l)th random number

where, Ci+l

.th
i random number

C,
i

A and P are constants.
As seen from the above expression the ith random number is used for gen-
erating the (i+l)th random number. In order to start the sequence an
initial value C = Co is required. This is called the seed for random
number generation.

A truly random sequence of numbers is produced by some random natural
processes; but it is preferred to generate random numbers using a computer
because the generation is fast and reproducible. However such a sequence
is mot truly random. "The random generators based on mathematical re-
lations are not truly random since the sequence is completely determin-
istic.” (9). Such a sequence is called a sequence of pseudorandom numbers.
A shortcoming of this sequence is that it is of a repehitive nature; but a
proper choice of A, Co’ and P will give a long sequence before it starts
repeating itself.

It was necessary to test the generated random numbers for their in-

dependency before the generator could be accepted for uszing in simulation



experiments. The procedures used for testing the generator are described

below.

2.13.2 Testing of Random Numbers

Random numbers generated on a computer are expected to be uniformly
distributed. This means if we generate R random numbers over (0,1l) and
tabulate relative frequencies in N equal intervals, the probability of
a number falling in one particular interval is 1/R. (Figure 2.6)

The hypothesis that the generated random numbers come from a uniform
distribution can be verified by performing a chi-square test. (9).

The variable

is approximately distributed as chi-square with N-1 degrees of freedom.

number of intervals

where, N

F, = actual frequency of
F i  random numbers in the

%

.th |,
4 i interval

F.. = theoretical frequency
i of random numbers in

the ith interval

Range

Figure 2.6

The calculated value is compared with the theoretical chi-square

value with (N-1) degrees of freedom at a specified confidence level. If

23



the calculated value 1s less than the theoretical value, the hypothesis
that the random numbers came from a uniform distribution is accepted.
A FORTRAN listing of the chi-square test is given in Appendix C.
The serial test suggested by L.J. Good (14} is an extension of the
.frequency test. This procedure tests the autocorrelation between random
numbers only for a lag of 1. This is not conclusive in testing for in-
dependence between random numbers for lags greater than one. Plots of
the autocorrelation function and the power spectrum were obtained and
studied to detect any probable autocorrelation and cyelic behavior for
lags greater than 1. A description of the plotting and the interpre-
tation of the autocorrelation data and the power spectrum is given in
the references. (1), (21) The plots showed that the random numbers
were fairly independent and acceptable for the present study. The plots
are given in Appendix C.
The pseudorandom generator was accepted, therefore, to generate the

random variates for the simulation experiments,

2.13.3 Function RANI(IL)
The function subprogram RANI(I) was written to generate random

numbers r, and their complements (1—ri). The ith random number put out

i
by the subprogram is the generated random number or its complement de-
pending upon the seed index (I) which is used as the argument of the

subprogram.

Mathematically, the ith random number is given by

ri,(Zk—l) & r(i—l),(?k—l) A (mod P)

24
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-

L2 = -, ) A (mwod B) ks 15 B s

where, (2k-1) and (2k) Seed number indices

A

Multiplying constant

In other words, if the seed index is odd the subprogram gives the gen-
erated random numbers and if the seed index is even it gives the comple-
ments of the generated random numbers. This switching operation is done
by the subroutine MOD(I,J).

A FORTRAN listing of RANI(I) is given in Appendix B.

2.14 Testing the Simulation Output

Box and Jenkins Procedure

The simulation output was subjected to a testing procedure suggested
by Box and Jenkins (1) to study the statistical behavior of the data. (21)
This procedure calculates and plots the sample autocorrelation coeffici-
ents and the partial autocorrelation coefficients of the given data.
These plots are shown in Appendix D. The nature of these plots assists
in deciding whether the given data should be represented by an autoregres-—
sive scheme, a moving average scheme or a combination of the two. The
findings of these tests are discussed in Chapter 4,

The data was tested for autocorrelation up to a lag of 50.
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CHAPTER 3

FISHMAN TECHNIQUE

3.1 The Fishman Procedure

For autocorrelated data the Fishman technique (12) determines the
sample size required to estimate the sample mean with a specified level
of confidence. It 1s designed to be built into a simulation experiment.
In the present work the Fishman technique is used as a subroutine (FISHMN}.
A step by step description of the Fishman technique is as follows.

1. Subroutine FISHMN draws an initial sample of size IM. The mean
of the sample and the autocovariance for lags 0 to IRP are calculated.
IRP is the highest order of autoregressive scheme for which the data is
tested. Usually an order of scheme between 5 and 10 is adequate. (12)

Autocovariances at all lags v are calculated by the formula
N-t

L Xm0, R T =0, su IRP (3.1)
=1

1

CN,T B N

where N = sample size.

X

]

sample mean.

2, The next step 1s to estimate the autoregressive coefficients

[br S(r=0,IRP;s=O,r)}. Here r corresponds to the order of the scheme and
]

s corresponds to lags. For s =0, b 1 r =0, 1, ..., IRP

r,0 ]

Using the expressions presented by Durbin (7) and Whittle (27)

r .
vo= 1 b _C r=0, ..., (IRP-1) (3.2)



¥ =
W= z b C (3.3)

- wr/vr (3.4)

~ ~ A

= b

rtl,s = Pr,s T Pral,r+l T Pror-stl s=1, .eusr (3.5)

3. Using the estimates of autoregressive coefficients, an estimate

of the sample residual wvariance of the autoregressive scheme at all lags

is found by
N T
"2 1 = D
] s [ ) b (X___-X)] r=0, 1, ..., (IRP-1)
r+l1 N~r fopdl gl r+l,s t-s

(3.6)

It may be noted that for a lag of zero, the variance is equal to the
variance of the independent data.

4. The order of the autoregressive scheme depends upon the signifi-
cance of the autocorrelation cocefficients. The order of the scheme is the
biggest lag for which the autocorrelation coefficient is significant. A
confidence band is placed on each of the diagonal elements of the auto-
regression coefficient matrix.

According to the results shown by Whittle (27), the square of the

standard deviation or the unexplainedvariability is given by

mr =1 - br,r (3.7)

and the confidence band for br & is given by
]
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3 1
br £ i_P(mr/N)

»

/2 (3.8)

where, N = sample size
o = gpecified significance level
P = normal point corresponding to do.

~

Placing this conflidence interval on br £ the order of the last signifi-
L]
cant autocorrelation coefficient is determined. This is the order of the

autoregressive scheme.

5. The sum of the autocovariances Z CT =m is a finite quantity
T

for non-cyclic data because the effect of the autocorrelation decreases
as the number of intervening events increases.

If the order of the scheme is p, an estimate of m is given by

- P (3.9)

(5 b )2

s=0 P:%

If the order of the scheme is zero it means that the data is not auto-
correlated and m = Co'
6., Having obtained m for a sample of size N, the variance of the

sample mean is given by m/N.

The reliability of the sample mean is expressed by

P_[|%-u| < @/ n/N ] < (1-B) (3.10)

where,

population mean

=
]

™
I

specified significance level
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Q = normal point corresponding to B
Suppose we wish to determine a sample size N* such that the variance

of the resulting sample mean i8 less than or equal to V with a probability

of (1-B) or,

P IR, - @) <u < Fg + W] < (1-8) (3.11)
Then vV = é/N*
or, N# = ;/V (3.12)

Now, 1f ¢ is a specified constant, we may write
PLIRgyme) < u < Fgta)] < (1-8) (3.13)

Then from (3.11) and (3.13)

¢
I

QYv

or,

<
I

(c/Q* (3.14)

Using expressions (3.9), (3.12), and (3.14), the value of N%* is calculated.

If the size of the sample drawn, N, is less than N¥%, the new sample
size is calculated by adding a fraction y of the difference (N*-N) to N.
Such a scaling increases the number of iterations and the convergence is
slower but it prevents the drawing of an excessive sample from the simu-
lation experiment. The procedure is repeated from Step (2) omwards after
updating the sample size and drawing extra observations.

8. When the actual sample size is greater than or equal to the re-

quired sample size N*, the program computes the sample mean and variance.
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A block diagram of the Fishman technique is given in Appendix E.

3.2 Main Program

It was decided to use the Fishman technique to locate the end of
the transient phase in the simulation experiments. This was done by
checking the stability of the sample mean. The algebraic difference
between successive sample means was used as the criterion for stability
of the sample mean. If the difference between successive sample means
is less than a specified value &, then it is considered that the sample
mean has attained a steady value. This was accomplished by a main pro-
gram coupled with the subroutine FISHMN.

A step by step description of the main program is as follows.

A. The parameters read into the main program are listed below.

IM = Initial sample size

IRP = Proposed (maximum) order of the scheme

P = Normal point corresponding to a significance level a.

Q = Normal point corresponding to a significance level R.

CONF = A constant for placing a confidence interval on the
sample mean.

DELTA = A constant for comparing successive sample means,

GAMMA = A scaling factor for drawing additional sample.

B. Elements of the time series are read in and stored. These reali-
zations are obtained from the punched output of the simulation
experiments conducted separately.

C. A reporting time interval is selected which is a multiple of the

original time interval used in the simulation experiments. TAU
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represents the original time interval and TINT represents the de-
sired time interval.

D. Control 1s passed to subroutine FISHMN to obtain a sample mean.

E. The successive values of the sample means are obtained from sub-
routine FISHMN and are compared. If the difference between two
successive samples is less than the specified value ¢, the main
program prints a comment accordingly.

F. A fresh sample is fed to subroutine FISHMN and the procedure is

repeated.

3.3 Parameters used in Subroutine FISHMN

ARGUMENT
X: These are the elements of the time series passed as an array
from the main program to subroutine FISHMN.
COMMON
IM, IRP, P, Q, GMA, CONF: These values are read in by the main
program and passed on to subroutine FISHMN. Their significance
ig explained earlier.

NEXT: The value of the sample size when it exceeds the required sample
size. The value of NEXT is passed from subroutine FISHMN to the
main program.

NBASE: The point in the time series where testing by the Fishman tech-
nique is concluded. A fresh test commences from the observation
X(NBASE+1), NBASE is updated by adding to it the value of NEXT

after the completion of each Fishman test,
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XBARR: The value of the sample mean calculated by the subroutine FISHMN
and passed to the main program. It is stored in the main pro-
gram as an array and is used for comparison of successive
means,

NOBS : The value of the total number of observations available. It is
computed in the main program and passed to the subroutine FISHMN.
If the size of the sample to be drawn by the subroutine FISHMN
exceeds NOBS, the program stops, thus preventing a waste of

computer time.

3.4 Values of Parameters Selected for the Experiments

IM = 50
IRP = 10
a = 0.05
P =2.24
B=0.1
Q = 1.65
CONF = 0.33
DELTA = 10.00

GAMMA = 0.3333
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CHAPTER 4

DISCUSSION OF RESULTS

4.1 Testing of Random Numbers

The generated random numbers were expected to come from a uniform
distribution. A frequency test was performed on 4000 generated random
numbers divided into 100 equal intervals over (0,1). The one tail chi-
square test performed at the 95% confidence level was accepted. A FORTRAN
listing of this test and the results are given in Appendix C. The ex-
ponential random variates required for the simulation experiments are de-
veloped from the uniform randem sequence given by this generator.

Having accepted the generated random numbers as uniformly distributed,
they were tested for the presence of any autocorrelation and any cyelic
component.

The autocorrelation test was performed by plotting the autccorrelation
coefficients for 2000 random numbers for a maximum lag of 10Q0. For a large
sample N, assuming that the theoretical autocorrelation ccefficients are
equal to zero, the standard deviation of the autocorrelation coefficients
is given by ¢ = 1/vN. A confidence interval of +20 was placed on the plot
of the autocorrelation coefficients. This plot and the calculations for
the confidence interval are given in Appendix C. Most of the data points
fell well within this confidence interval; so it was safe to assume that
there is no significant autocorrelation between the random numbers.

A plot of the power spectrum for 2000 random numbers was obtained to

study the presence of any cyclic component in the data. The plot of the
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power spectrum and the calculations for the confidence interval are given
in Appendix C. No peak with excessive power was found in the power
spectrum, hence no significant cyclic component was identified,

The frequency test, the autocorrelation test and the spectrum test
indicate that the generated sequence is random and independent. Hence,

the random number generator was accepted for the simulation experiments.

4.2 The Simulation Efficiency

The simulation efficiency shows that the antithetic variate simulation
approximately halves the transient phase. The results of the efficiency
measurements for the utilization factors of 0.5, 0.6 and 0.7 are given
in Appendix A. It was not possible to obtain these measurements for the
utilization factors of 0.8 and Q.9 because the simulations did not converge
at these utilization factors. A sample plot of the cumulative means for
the two simulations and for the mean value simulation is given in Appendix

B. The plot is for the utilization factor of Q.5.

4.3 Box and Jenkins Procedure

4.3.1 The Autoregressive Nature of the Data

A test suggested by Box and Jenkins was applied to study the nature
of the simulation output. The test says that if the autocorrelation
function of the data appears in the form of damped exponentials and/or
damped sine waves and if the partial autocorrelation function cuts off
then the process is autoregressive. Autocorrelation coefficients were
plotted for a maximum lag of 50. A plot for the utilization factor of

0.5 and a reporting time interval of 25 time units is given in Appendix D.



The plot showed that the autocorrelation coefficients were in the form of
a damped sine wave, whereas the partial autocorrelation coefficients
showed a cutoff point after which they tailed off. It was inferred from
these results that the simulation data can be represented by an auto-
regressive process. The Fishman technique which is designed to test

autocorrelated data can, therefore, be applied to this simulation output.

4.3.2 Effect of the Utilization Factor on the Autocorrelated Data

The plots of the autocorrelation coefficients for the utilization
factors of 0.5, 0.6, 0.7, 0.8 and 0.9 and the reporting time interval
of 25 time units are given in Appendix D. From these plots it is seen
that the autocorrelation between observations as well as the order of the
scheme increase as the utilization factor of the process is increased.
Thus as the congestion in a queueing system increases the realizations
of a statistic in the resulting time series become more and more depen-
dent upon the preceding realizations of the statistic. The plots show
a very high autocorrelation between observations for the utilization

factors of 0.8 and 0.9,

4.3.3 Effect of the Reporting Time Interval on the Autocorrelated Data

The plots of the autocorrelation coefficients for the reporting
time intervals of 10, 25, 50, 100 and 200 time units at a utilization
factor of 0.5 are given in Appendix D. These plots show that the auto-
correlation between cbservations decreases as the reporting time interval
is increased. This is in accordance with the intuitive concept that the

dependence of an element upon a preceding element in a time series will

35
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become less as the two elements are farther apart in time.

A very important phenomenon observed in these tests was that as the
reporting time interval was increased, the sample autocorrelation coef-
ficients started to show a cut-off point and the partial autocorrelation
coefficients damped out. This indicates that as the reporting time in-
terval is increased, the nature of the process changes from an autore-
gressive scheme to a moving average scheme. The Fishman technique,
therefore, was not expected to give meaningful results for the data cor-

responding to high reporting time interwvals.

4.4 The Fishman Tests

Initially the cumulative means of the data points obtained from
simulation experiments were used as input data for the Fishman tests;
but this data was highly autocorrelated and consequently very large
samples were demanded by the Fishman tests. This approach was abandoned,
therefore, and the tests were conducted using the instantaneous values
obtained from simulation experiments.

The results obtained from successive applications of the Fishman
technique on the simulation output for the utilization factors of 0.5, 0.6
and 0.7 are given in Appendix A. It was possible to obtain fair results
for the utilization factor 0.5, but for the utilization factors of 0.6
and 0.7 the tests demand a very high sample size. The values of the
sample mean and the variance of this sample are fairly comsistent, but
the order of the autoregressive scheme and the size of the sample fluct-
uate considerably from test to test. The plot in Appendix E shows the

inconsistent fluctuation of the autocorrelation coefficients for some
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successive tests. These values correspond to a utilization factor of 0.5
and a reporting time interval of 10 time units.

The plots in Appendix E show the effect of the utilization factor
on the autocorrelation between observations. It is clear from the plots
that the autocorrelation between observations increases as the utilization
factor of the process is increased. The plots correspond to the utili-
zation factors of 0.5, 0.6 and 0.7 and a reporting time interval of 25
time units.

Next it was desired to study the effect of the reporting time in-
terval on the results of successive Fishman tests. Plots in Appendix E
show the change in the autocorrelation due to the change in the reporting
time interval. The tests were conducted with reporting time intervals of
10, 25, 53, 100 and 200 time units and the utilization factor of the pro-
cess was 0.5.

It is obvious from the plots that the correlation between observa-
tions decreases as the reporting time interval is increased, since the
autocorrelation between observations drops as the number of intervening
events increases. The Fishman tests also show that the required sample
size increases considerably as the reporting time interval is made larger.
Data obtained at higher reporting time intervals cannot be represented by
an autoregressive scheme and consequently the Fishman technique which
is built essentially for autocorrelated data, fails to give meaningful
results. There is a possibility that the order of the autoregressive
scheme is higher than 10, but a maximum order of scheme of 10 was chogen
for our experiments because, according to Fishman, an order of scheme

of 10 should be more than adequate to represent the autoregressive scheme.
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The Fishman tests were found inconclusive for locating the end of
the transient phase for the type of data obtained from our simulation
experiments. The technique appears to be extremely sensitive to the
autocorrelation between cobservations and the data to be tested by this

technique will have to be chosen carefully so as to have some consistent

autoregressive representations.

4.5 Conclusions

1. The pseudorandom generator, using the multiplicative congruence
method, is acceptable for simulation experiments.

2. The simulation conducted with the antithetic variate approach
approximately halves the length of the transient period. It does not
appear to be an effective technique for reducing the computer cost in-
volved in simulation experiments.

3. The reporting time interval of the simulation experiments has
a significant effect on the nature of the simulation output. As the
reporting time interval is increased the representation of the time
series changes from an autoregressive scheme to a moving average scheme.

4. The Fishman technique is sensitive to the autocorrelation
between the observations of the data sample. Successive applications of
the Fishman test on the simulation output do not give conclusive infor-
mation regarding the termination of the transient phase.

5. The Fishman technique is applicable strictly to autocorrelated

data and will not give any meaningful results for any other type of data.



APPENDIX A

The Results

1. The Simulation Efficiency.

'

2, The Results of the Fishman Test.
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A.1 The Simulation Efficiency

The simulation efficiencies are calculated from the plots of the
cumulative means for simulation A, simulation B, and the mean value

simulation.

TABLE 1
Utilization Simulaticon
Factor Efficiency
0.5 58.63%
0.6 58.477%
0.7 54.947%

No wvalues are available for utilization factors of 0.8 and 0.9 because

the output statistic did not converge to a steady value.

40
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A.2 The Results of the Fishman Test
TABLE T
Results of the Fishman tests for different reporting time interwvals.
Utilization facter = 0.5
The results are for the mean value simulation.
TINT = 10
U—
_ X
Test ¥ X Std. Dev. of Ord. of No. of
No T T Mean Sample Mean Scheme Tterations
1 250 500 83.46 12.86 2 1
2 340 500 83.46 15.18 1 1
3 200 500 83.46 11.58 2 1
4 480 620 92.20 16.00 7 2
5 530 590 85.98 17.36 1 2
6 1310 1910 100. 47 15.08 2 9
7 3340 3360 93.56 18.13 2 8
8 760 870 80.17 17.08 1 7
9 420 500 83.46 16.80 2 1
10 780 4280 98.69 7.77 2 2
11 910 1240 94,35 15.61 1 2
12 640 690 90.55 17.61 1 4
13 760 970 88.81 16.16 2 2
14 770 3080 96.04 9.14 2 3
15 680 700 89.62 18.00 1 3
16 90 500 83,46 18.11 10 1
17 450 500 83.46 17.28 1 1
18 100 500 83.46 3.31 5 1
19 2400 3890 96.44 14.30 2 5
20 550 670 91.43 16.56 5 3
T+ is the time corresponding to the required sample size,
T is the time corresponding to the sample size fed in.
* Indicates incomplete tests due to insufficient data points,



TABLE I (Continued)
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TINT = 25
U—
_ X
Test + X Std. Dev. of Ord. of No. of
No. T T Mean Sample Mean Scheme Iterations
1 1425 1425 250.94 18.24 0 6
2 1725 1725 262,59 18.22 Q 9
3 5925 5925 279,28 18.18 10 7
4 6225 6225 282.03 18.20 1 6
5 6425 6475 276.43 18.14 1 6
6 17225 41075 262,35 11.78 8 7
7 2075 3275 238.17 14.48 4 4
8 4225 5550 268.43 15.86 2 3
9 13150 13175 260. 87 18.17 8 11
* 10 46700 16400+ - - 1 1
TINT = 50
G—
N X
Test 4 X Std. Dev. of Ord. of No. of
No. T T Mean Sample Mean Scheme Iterations
1 62950 63200 522,62 18.15 2 11
* 2 47000 37350+ - ~ 1 10
TINT = 100
Gu—
_ X
Test " X Std. Dev, of Ord. of No. of
No. T T Mean Sample Mean Scheme Iterations
® 247800 97200+ - - 1 3
TINT = 200
0—
_ X
Test ¥ X S5td. Dev. of Ord. of No. of
No. T T Mean Sample Mean Scheme Iteratiaons
* 359800 126600+ - - 1 1




A.2 The Results of the Fishman Test (Continued)

TABLE II
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Results of the Fishman test for different utilization factors, for

the independent simulations and the mean value simulation.

Reportive time interval TINT = 25

Utilization factor = 0.5

## Results for the mean value simulation are given in TABLE I,

A-simulation

a

X
Test 4 X Std. Dev. of Ord. of No, of
No. T T Mean Sample Mean Scheme Lterations
1 14625 14625 226,53 18.20 1 8
2 48350 53125 263,07 17.35 4 10
3 12450 16575 229.74 15.77 4 8
% 4 238450 1250 - - 1 1
B-simulation
)
X
Test X Std, Dev. of Ord. of No. of
No. TJr T Mean Sample Mean Scheme Iterations
1 22100 38425 258.50 13.79 2 6
2 24875 51525 260.16 12,64 2 3
3 3800 3800 238.50 18.19 0 8
4 171750 68750 - - 1 3
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A.2 The Results of the Fishman Test (Continued)

TABLE II (Continued)
Utilization faector = 0.6

Mean Value Simulation

G—
_ X
Test 4 X Std. Dev. of Ord. of No. of
No. T T Mean Sample Mean Scheme lterations
1 19025 19025 370.61 18.19 2 13
* 2 54725 54550 - - 3 9
A-simulation
* 1 135525 98975 - ~ 9 4
B—simulation
® 1 74000 72900 - - 3 8
Utilization factor = 0.7
Mean Value Simulation
177050 1250 - - 7 1
A-simulation
548400 82775 - - 3 3

B-gimulation
362600 91300 - 3 2




APPENDIX B

The Simulation

1. FORTRAN Listing of the Simulation Program.

2. Sample Plot of the Cumulative Means.
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B.1 FORTRAN Listing of the Simulation Pregram

Main Program

COMMEN TCyIMy INTIT o JEVNT g JUNTT o MF Sy FSTOP ¢ MX ¢ MXCy, NCLCTZNHIST,

IRCC ¢ M CRPT ¢NCT o NPAMS p NRUN y NRUNS G NSTAT, 0UT , TNMK

ZIBSG y TET L MUY  NPENT  NCRDPZ JAEP VLAY, IMMyMAXCS  MAXNS,
FATRIBIINIGEVQULAY y INNMETIA) s JCELST1U30) yKRANK(LA yMAXNQ(]GY 4 MFELLS)
Lo MLCAT4) SMCTLSED Iy NQULA Y PASAMI2D 4, CTINMELL14) 3 SSUMALLC 5 5UMA(]
GCe 51 s MAMZLOE) p NPTOS ¢ MONyNLDAY g NYRy JCLRGJTRIBLLZ2 ), IXIB) a3 MLE014),

EXL s XMULGXISYSHZI,TLD(2)Y 3 TAL s SKALEy TSIHe INDeNCALNTEXPpJAREATLZ)
CIVENSION NSETI500),QSETISC?

NCRDE = 1
NPRNT = 3
ING = 0
NCA = O
XISYS{1)
X1SyYsi{2)
TLCLYY =
TLC(2) = 0.0

READ 10, XL XMUSTAU, SKALE «NEXP

UFACT = xL/xilU

10 FCRMAT(4FLID 5,13
20 FCRVMAT('OMEAN INTERARRIVAL TINME =',T50,F10.5/" MEAN SERVICE TIME

1 =t,750,F1Ce5/" UTILIZATICN FACTCR  =',TS04FL0.5/" SCALE =*+T50,
PF10.5/" REPCRTING [HMTERVAL =t,T5C:F105/0 END NF SIMULATION AT !
3,T50,F10.,2/% NUNRER DOF ZXPERIMENT =',T750,15}

CALL GASPIMNSCI,LSETH

WRITE(2, 000 %L oAU, UTFACT s SKALE +TAUSTFIN, NEXP

Ceatl EXIT

END

oo

Qs
Ce
« 0

D0 0



B.1 TFORTRAN Listing of the Simulation Program (Continued) ' 47

4

Subrqutine EVNTS

SUBRNUTIME EVNTSTIXX4NSEZT,CScT)

COMMEN B0 oIy INIToJEVNT g ONNIT o MFA,¥STOPy MXsMXCyNCLCTyNHIST,

INOD s NORPTZNCT o NPRMSy HRUN g ARGHS o ASTAT, QUT s TNCH »
ZTPEG,TFIH,HX(.NPRWT,WCRDR,hiP;VNQ(lQ),INN,H&XCS,V&XNS,

AATRIRILI0) END L4y IMNIL4) 3 JCELS (10,300 o KRANK (14D, MAXICL14) 4 MFELLA)Y
q.,VLCL1LM ,NCELS(S!,NQ(lﬁJ|PAFLV(ZC'4),CTIM£(lﬁ);SSUMAl10v5),SUHA{1
5C15),MAM5(6).NPROJ,HQN,HELY,NYR.JCLR'JTRIB(12)1IX18).MLEILA),
6XL.XVU.KISYS(Z).TLD(2i,TAU,ShALE,ISIM,IND,NCA,NEKP.J&REA(lZ)

DINMENSICH NSETIL),GSET(L)

ISIM = JTRIB{Z}

CC To [1,2+33,1XX
1 CALL ARRVLINSET,0SET)

RETURN
2 CALL ENCSV(NSET,QSET?

RETURN
3 CALL REPRTINSET,.CSET)

RETURM

ENE
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B.1 FORTRAN Listing of the Simulation Program (Continued)

Subroutine ENDSV

SUBRCUTTINE ENCSVINSET,QSET)

COMMCM TUsT ¥ INTTyJINAT y JMNIT 4 MFA¥STOP, MXyMXC,NCLCT yNHIST,
1N00,NORPT,NCT,MPRNS,NRUNthLkS'NSTnT,DUT,TNOw.
ZTBEG,TFIN'MXX,NPRHT,HCRDR,NEP,VHU{lé},IHH,HAXCS,M&XMS,
FATRIPILIOI,ENNELG) o TNNI14 )y JCELSUL1O30)KRANK 114 ), MAXHG(14)4MFE(L4)
4GMLC(14) ,MCELS!S),NO(lq),PﬂRAH(?o.&),DTIME(lh),SSUFA(IG,S),SUMA!1
B5Cy5) g NAMELE ) g NPROJy MON MTAY yNYR, JCLRSJTRIBIL2Y,1X(8)MLE(L4),
6XL,KNU.XISYS(2).TLD(Z);ThU.SKhLE,ISIM.IND.NCA,NEXP.JAREAIXZ)

CIMENSION NSEZETL1),QS52THL?

7 = XISYS(ISIM)

CALL TMST(Z TANChy ISTM,NSET,LSET)

TLDUISIMY = TKRCW

XISYSUISIMY = XISYS(ISIM) -1.C

IF{NCLISIY + 13)748,9

CALL ERROR{41 4NSETLOSET?

RETURN

MFEZ=MFZ(ISIM+1} :

CALL RVMPYE(MFEZ, (ISTIM+L)} ,NSETHQSETY
THCW —XMURALOGIRANICLISIVM +2))

ATRIB(L) =

JTRIB(YY = 2

JTRIR(2) = ISIM : ‘
CALL FILEM{1,NSET,Q8ET)

RETURN

ENC
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B.1l TFORTRAN Listing of the Simulation Program (Continued) %

Subroutine OTPUT

SUBROUTINEG OTPUTINSET,QSTITY

COMMIN IO,IN‘[NIT'JEVﬂTgJMNITvMFAvMSToprMK,MXC.NCLCTvNHISTv
1NUC,NGRPT;NCT,MPRNS;NRUN.KPUNSVNSTAT.OUTyFNOh'
2TBEG.TFIN,MXK,NPRNTqNCRUu,NéP,VNO(lAI,IMM.MAKUS'PAXNS,
BATRIB(I”);EWﬁilél'INW(IQ},JCELS{1Cy30)'KRANKl14).MAXWQl14).MFF!14)
4NLC LMD ,NCZLS(S)y%D(l#).PﬁPAN(EU,4¥'GTIMEll&i'SSUMAl10r51-5UMA(1
5C.5),NAWE(6),V9ROJ,MUN.N£AY,HYR,JCLR,JTRIBIIZ)'IX(S).MLE(lQ},
6XL.XMU'XISYS(E),TLD(Z],TAU;SKALE,ISIM.]ND;WCA.NEXP.JAREA([Z)
CIMENSION NSET(L)QSET(LY

RETURN

END
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99

7 50
B.1 FORTRAN Listing of the Simulation Program (Continued)

Subroutine REPRT

SUBROUTIHNE REPRTINSET,QSET)

COMHaN In,lm,1N[T.Jsvwr,JHNLT.MFA,MSTUP,HX,HXC.NCLCT.NHIST,
INOQ, NORPT ¢ NOT yNPRNSy HAUN g NRUNS » ISTAT  QUT » THTH,
ZTREGs TELM s MX A NPRNT p NCKDR g NEP p VHEE 14) 3 [IMy MAKQSyMAXNS,
3ATR[B[131,ENU(14},IAH{lé),JLELS(iﬁg3J).KRANK(léirMAXMQ!IQ),MFE!l4)
GyMLC{L14) .NCELS(&],NU(lq!.PARAMtE),Al,CTIME(l«i.SSuMAl1:,51,SUMA(1
50,5},NAH&(O),NPRHJ.FUN.&D&Y,VYN,JCLR,JTRIB(I?J'IKlB),MLE(lﬁl,
6XL,XMU,X[SYS(2},ILD(2),TAU.SKALE,ISIM,IND.NCA.HEKP.JAREAIIZ}
CIMENSIUN NSETIL)ZQSETLL)

DO 169 JSIM = 1,2

ISIM = JSIHM

XAS=XISYS{ISIM)

IND = INU + 1

AREA = SSUMACISIM, 2}

JAREA(IND) = AREA®SKALE

CONT INUE

IF {IND = 12)1746,46

MCA = NCA + 1

PUNCH 99, (JAREA(INDY, IND = 1,512)¢NCA,NEXP

IND = 0

ATRIBI1) = TihOW + TAU

CALL FILEM[14NSET+RSET)

SSUMA{L1,2) = Dev

SSUMl\lZ’Z} = '340

FORMAT(12164,214)

RETURN

END
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Function RANT

FUNCTICN RAMELD)

CONMMDN ID,IV,EVIT,JEVHT.JNA]T.PFA.PSTDP,MK;HXC.NCLCT.NHIST.
INGQ‘MURPT,NDT,NpRVS,NRUh.hRLNS.NSTAT.UUT'TNCH,
‘21EEG,TF{H.MXX.YPRNT,HCRDR.NEP.VHQ{l#),IHM.MAXGS,HAXNS,
3nTRlﬂtlD),Ethlﬁ),IMN(IA).JCELS(lO.BO),KRAHK[14).MAxMQ(14},MFE{14)
GyMLC (1 4) ,MC&LS[BI,MQ(lq),FdRﬁF(Zaiql.CT1MEI14),SSUMhllO'S),SUMA[l
56,5),MbME(b),NDRDJ,MUN,HEAY,NYR,JiLH.JTR!B(lZ),IKtﬂ},MLEIlA),
GNL.xNU,XISYSlZ).TLU(Z)vTAUvSKLLE,ISIM-IHU.MCA,NExP,JnREA{lZ:
DIMENSION NSTTILYQSETLL)

IX01) = IX(13¥®E5537

IF(IX (1) oLT e} Ix{ID) = 1X(1)+214748364T+1

RANT = IX{I)%*0.4£56613D-G
EF‘NUDI‘IZ)OEG-C} RANI=1aC -RANI
RETURN !

END
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Sample Plot of Cumulative Means (Continued)
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B.2 Sample Plot of Cumulative Means (Continued)
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Sample Plot of Cumulative Means (Continued)
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APPENDIX C

Testing of Random Numbers

1.

FORTRAN Listing of the Chi-square Test for Generated Random Numbers
and the Results of this Test.

Confidence Interval for the Plot of the Autocorrelation Function.
Plot of the Autocorrelation Function.

Confidence Interval for the Power Spectrum,

Plot of the Spectrum.
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C.1 FORTRAN Listing of the Chi-square Test for Generated Random Numbers 57
and the Results of this Test. L '

Iv G LEVEL. 18 MAIN DATE = 71159 09/44/04

GCIMENSICN TRANGELLIC)
READ G99, 1G
999 FCGRMATI(IL)
READ 171, MMBRS yKhOKNGE, TBLCHL
1r1 FGRMATIZTS, Fll.2)
CU 125, I=1,/A0RNGE
125 IRANGE(]I)=7
CO 102 I=1y5NMbRS
I¥Y=156%65539
IFLIY) 18,103,103
108 IY= 1Y + 2147483647 + 1
183 YFL=1Y
YEL=YPL % D 46566130-46
L=YFL¥N{RNGE+]
IRANGEILY=TRANGE(L)+1
122 IG=1Y
SUMCHL=0.1
AN1=NVFBRS
ANZ=NCRNGE
Y=AN1/ANZ
L0 201 I=1,NCRRGE
201 SUMCHL1=SUMCHI+([IAANGE{I)-Y])*x2})/Y
WHITE{3,343) NMBRS, HORMGE
303 FCRMAT(? DISTRIBUTIUN OF'4y 16, UNIFORM RANLOM NUMBERS 1IN
1v,16,% THTCRVALSY//) '
N=NUGRNGE/ 101
L0 304 I=1,10
L=08{I-1)41
F=L+N
304 WEITFL3309 {IRANGE (R YK=L+ M)
355 FCRMATI/,10X,101061
WRITE (3,3 76)SUMCHL, TOLCH]
306 FORMAT(//S " UESs CHI-SQs VALUE=",FB8,3," CHI-S¢. VALUE FR
10M TABLES = 'FS8.3,//1
IF{SUNCHI-TBLCHLII32T7 3074308
ICT WRITE(3,379)

309 FORMAT( UBSe. CHI-SRQ. VALUE BEING SMALLcR THAN TAHLE VALUE Tc
1ST FOR UNIFORM RANDOMNESS IS SUCCESSFULY)
CO T 318 %

300 WRITE(3,317) :

31C FORKAT(Y 0655« CHI-SGC. VALUE BEING GREATER THAN TABLE VALUE TE
18T FUR UNTFGRM RAMNDOMNESS TS5 LNSLOCESSFUL'Y)

318 sice

END
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C.2 Confidence Interval for the Autocorrelation Function
For a large sample the standard deviation o_ = —
P
where, N is the sample size
The standard deviation for the data at lag 0 = S 0.02235
¥2000
The confidence interval + 2 o = + 0.0447
The standard deviation for the data at lag 100 = L - 0.0229
¥1900
The confidence interval + 2 ¢ = + 0.0458



C.3 Plot of the Autocorrelation Function
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C.4 Confidence Interval for the Power Spectrum

The degrees of freedom

v=2Db (N/M)

where,
N = Number of data points
M = Number of lags
b =

For the Tukey window b = 4/3

2000

100 - 53.3 = 53

v=E2x x

3

Using a 99% confidence level,

o (53) = 82.25 1In(53/82.25) = 1n(0.664)
0.995
2 = =
X0.005 (53) 30.25 1n(53/30.25) In(1.750)
The lower control limit = -1.870 - 0.440 = - 2.31
The upper control limit = -1.870 + 0,560 = - 1,31

1

Constant for the type of window

-0.440

0,560

61



C.5 Plot of the Spectrum.
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APPENDIX D

Box and Jenkins Procedure

1.

Plot of the Autocorrelation Coefficients and the Partial Auto-
correlation Coefficients.

Effect of the Utilization Factor on the Autocorrelation Coefficients.
Effect of the Reporting Time Interval on the Autocorrelation
Coefficients.

Effect of the Reporting Time Interval on the Partial Autocorrelation

Coefficients.
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D.3 Effect of the Reporting Time Interval on the Autocorrelation Coefficients
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APPENDIX E

The Fishman Technique

1.

2,

FORTRAN Listing of the Fishman Technique.

Plot of the Autocorrelation Ceoefficients for Successive Fishman

Tests.

Effect of the
Effect of the
Coefficients,

Block Diagram

Utilization Factor on the Autocorrelation Coefficients.

Reporting Time Interval on the Autocorrelation

of the Fishman Technique.
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E.1 FORTRAN Listing for the Fishman Teclinique

150
101

60
50

1C

153

155

154

CIMENSTION IK(EO};XMEAN!20},l[SGOO),A(EJ-UOOI'E(SOOO)
CIMENSION AXlSOCG),EXISCCG?yCXl50CC)

COMMON IN.IRP|P7C|GMAyCUNFgKEXT|NﬁﬁSE'XBARRgNUBS
RTAD (5!150)INlKARDSvIf(PvPyC1GVAyCCNFtﬂELTA'fﬁU’TINT
FCRMAT(]50110|1517F1003)

FCRVATILZIE) ‘

1=0

CC 50 J=l,KARDS

REﬂf(s,lUl}l[X{N),N=1v12}

CC 60 M=1412.2

I=1+1

L=M+]

AlIr=1xX{M}

BLIY=1x(L)

CCNTTINLE

CONTTNUE

NACD=TINT/TAU

NCBS=KARDSY¥& « /NADD

I=C

£C 10 J=1,NOES

ASUF=D.0

BSUV:0.0

CD 20 K=1sNADD

I=1+41

ASUM=ASUN+ALT)

BSUM=BSUMFBLT)

CCRTINUE

AX (JY=ASUM

BYX(Jy=RSUM

CX‘J’=‘AK‘J)+BX!J))/?-0

¥lJi=Cx(J4}

COCNTINRUE

NBASE = 0O .

NUM=4*KARDS

0L 154 J=1420

NEKW = NUM - NBASE

WRITE({&,:53) 4 )

FOREAT (UL TEST MUMBER?® 4 2%, 1241 )

CALL FESHEN(X)

NBASE = NBASZ + NEXT

XMEAN{J) = ABARR

IF(JCCaei} GO TC 154 .
IF(&RS[XFEA\‘J)"XNE&W(J—I)Q-GT'DELTA) GO TO 154
WRITE(6H.1550 AMZANIID

69

FCRMAT{////1 YEAN VALUE OF THE STATISTICS 'y /s® FOUND BY RECURRENCE

1TEST I5,T40,F102)
CCNTIMGE

STCP

EAND



E.1 TFORTRAN Listing for the Fishman Technique'(Continued)

103

1100

10

20

. 4G

30

5100 FORMAT(Y TOT=1T20,F22.2,/" XBAR =",T20,F10.2,/" NX ="4T20,15,/"'

N0
2C00

60

70

50

919
137G

1

SUBRNUTINE FISHMR{X)

DIMENSTON X (1) XP(5030),0020148(22,22},VAR(22),UMNCGA(20)
COMMON TV IRP4P Ly GMAZCUNFyNEXT yNBASE s XBARR,NOBS

IRC = IRP + )

K =0
KOUNT = 0
N=IM
TOT = C.u

KQUYT = KOUNT + |
WRITE(6,103) KOUNT

FORMAT(////* #% ITERATIUN NUMBER',2X,13,% &%¢)
LT = k+ 1
WRITE(6,110C LT NyNBASE
FORMAT{311C)

NX = LT + NBGASE

NY = N + NGASE

IF (NY.GT.NOBS) STCP

DO 10 L=NX,HY

TOT=TOT4+X(L)

CONT INUE

XBAR = TOT/{N=-K])

£0 20 J=NX,NY

XPEd) =X () ~XBAR

CONT INUE

DO 30 J = 1,IRC

SUMA = 040

b= g -1

NZ=NY=JJ

0O 40 JK=NX,N2 ©

SUMA = SUMA + XPLJK)IEXP(JIK + JJ)
CONTINUE

C{J) = SUMA/(ii=K)

Blads 1LY =144

CONT INUE
WRITE(6y51C0) TOT  XBAR y X, NY

=',T23,15)
00 2700 LL = 1,IRC
WRITE(6,900)C(LL)

FORMAT (20X ,F2262)
CONT I NUE

DO 50 IR =14IRP
SV = N4

SH = 0Oub

G0 60 IS = 14IR

SV = SV + BlIR4ISI=*CLIS)

SH = SW + BIIR,IS)I*C{IR-IS+2)
CONT INUE

BIIR+L,IR+1) = —-Swn/SV
IF(IR.EC.1) GO TD 52

DO 73 JS=2,1R
BOIR+14JS)I=BlIRyJSI+BUIR+1,IR+LIFBIIR,IR-IS+2)
CONT INUE

CONT IKUE

0o 1520 I1=1,IRC
HRITE(6,IL2)(BIILyJd)eJd=1,11)
FORMAT{LUF1C.3)

CONT INUE

VAR{ 1 ¥=0a0)

OMEGA(L)=D.0

70

HY



E.1 FORTRAN Listing for the Fishman Technique (Continued)

00 330 [=2,IKC
IK=1-1
NT=N+1
SUMB=0,0
DO 310 KT=1,4NT
"SUMC=9,0
B0 320 KS=1,IK
SUMC=SUMC + (I +KS)E{X(KT-KS+NBASE} - XBAR)
320 CONT INUE
SUMB=SUMB + SUMC%*#2
310 CONTINUE
. OVARLI) = SUMB/ZIN-K)
OMEGALI)=1.00 — BlL,I)%%x2
390 CONTINUE
0 3800 [=1,IRC
3900 WRITE(6,4000) VARCI),OMEGA(I])
43I0 FORMAT{ZUXsFLI43420X,F10.3)
IP=1
JP=0
- LR=1
450 L2=LR + 1
TEST=P#(UMEGAILR)Z{N-K}}%%T.5
Al=B[LR,LR)} + TEST
AZ=B(LR,LR} — TEST
IF({ALeGTela) v AND o (A2.LToZ4)) GO TO 410
1P=LR
410 IFILRLLTLIRC) GO TO 480
JP o= IP-1
WRITE(&,5000)4p
5070 FORMAT(Y ORLEER OF THE SCHEME IS 1,T50,13)
IF(IP.EQ.L) GO TO 504
BPzO.G
DO 602G I=1,1pP
BP=RBP + B(IP,1)
600 CDONTINUE
EM=VAR({ P ) /(uP¥x2)
C K=EM/CIL)
HRITE [6,1530) K
1590 FORMAT(* THE BIAS ADJUSTNMEHNT IS 1,T50,15)
GO 1O 610 )
590 EM=C{1l)
K=0
610 VE=(CONF/Q %2
NSTAR=EM/VE
HRITE[6,2550) NSTAR,N
S 2500 FURMATL' REQUIRED SAMPLE SIZE 1S ', 150,110/
11S ' 4T52,11u)
IF (NSTARLLEL(MN-K)) GO TO 719
M=GMA* (HSTAR=N+K) + 1.
N=GMAX[NSTAR+K) + [1.0-GMAIEN + 1.
WRITEL6,2100)
Z100 FORMATU(//Y DEFECILENT SAMPLE SIZE =',T50,110)
GO0 TOD 1
710 SUMD=0.LY
MK=K+1
DO 870 L=MK, N
) SunnN=SuMb + X(L])
830 CONT INUE
XBAR=SUMND/ (M=K )
VXBARZEM/ (A=K )

71
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E.l FORTRAN Listing for the Fishman Technique *(Continued)

STDEV = VXBAR®*),5

WRITE (06300 KBARWVXBAR, STCLCY

ECNO FORMAT(® MEAN OF THE SAMPLE

[s

Ny T50,Fl0e24/"

VARIANCE UF THE SAM

1PLE MEAWd IS 'y TH5CeF1Ge2y/' STANUARU DEVIATION IS',T5G,F10.2)

NEXT = N
XBARR = XBAR
RETURN

END
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Plot_of the Autocorrelation Coefficients for Successive .Fishman Tests
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E.3 Effect of the Utilization Factor on the Autocorrelation Coefficients
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E.4 FEffect of the Reporting Time Interval on the Autccorrelation Coefficients
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ABSTRACT

A single server queueing system was simulated on the computer using
GASP II A, The random generator used for the simulation experiments was
tested for independency. A subroutine with this generator was used for
generating antithetic variates for the simulation. Utilization factors
of 0.5, 0.6, 0,7, 0.8 and 0.9, and reporting time intervals of 10, 25,
50, 10Q and 200 time units were tried.

The nature of the output was studied by using the Box and Jenkins
procedure. It showed that the process is of an autoregressive nature
for small reporting time intervals and of a moving average nature for
larger intervals. It also showed that the autocorrelation between obser-
vations increased as the utilization factor of the process was increased.

The Fishman technique was applied to the successive samples from
simulation outputs. The Fishman technique was found very sensitive to
the nature of the data and the autocorrelation between observations. The
successive tests did not give any conclusive results regarding the end

of the transient phase in simulation experiments.



