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1. INTRODUCTION

Radiation dosimetry is the art of determining radiation

dose by measuring the effects of radiation. Radiation dose re-

fers to the amount of energy deposited in an absorbing material

and is dependent on the type and energy of the radiation. The

basic unit for radiation exposure due to gamma rays is the

roentgen, defined as "that amount of x or gamma radiation such

that the associated corpuscular - emission per .001293 S °? &ir

produces, in air, ions carrying one electrostatic unit of quan-

tity of electricity of either sign." A more useful unit of

radiation dose is the rad, which is equivalent to 100 erg ab-

sorbed per gram in the material in which the absorption occurs.

Historically, the search for an ideal radiation dosimeter

has been continuing since the discovery of ionizing radiation.

For a long while the ionization chamber was the basis for all

dosimetry until supplemented by photographic emulsions and

chemical dosimetry. Recently, solid-state dosimetry has been

shown to be quite promising. As given by Spurny* ', solid-

state dosimetry is based upon any of the following phenomena:

a) radiocoloration or decoloration;

b) radiophotoluminescence effect;

c) radiothermoluminescence effect;

d) luminescence degradation;

e) miscellaneous effects, such as changes of conductivity,

blackening of a photoemulsion, etc.



The thermoluminescence phenomenon has been the subject

of much research. Thermoluminescent dosimeters (TLD's) have

been developed that have a number of advantages. They are

useful over a wide range of dose (10" to 10 R) and are sen-

sitive to alpha, beta, gamma, neutron and proton radiation.

They are small in size, precise, easily read, and reusable.

The only drawbacks are that they require calibration prior to

use in unknown radiation fields, they are sensitive to impuri-

ties and therefore quite difficult to reproduce, and the reader

equipment is complicated and expensive. Thermoluminescent do-

simeters have found use in the fields of health physics, space

exploration, radiobiology, radiotherapy, civil defense and

industry. A list of materials exhibiting thermoluminescent

properties is given in ref. (1).

Thermoluminescent dosimetry utilizing LiP was first de-

(2)veloped by Daniels . Lithium-fluoride thermoluminescent

phosphors are available in three forms and are manufactured by

the Harshaw Chemical Company. TLD-100 (natural LiP) is composed

of 92.5$ ^Li isotopic abundance. TLD-600 is enriched to 95.62$

in 6
Li. TLD-700 contains 99.99$ 7Li. TLD-600 and TLD-700 have

been used in thermal neutron and gamma ray mixed field dosime-

try^ fJfH-f^i
m rp^e £W0 types of dosimeters have nearly identical

gamma responses, but TLD-700 is nearly insensitive to thermal

neutrons. Above thermal energies, the neutron responses of

TLD-600 and TLD-700 have been shown to be quite energy de-

( 6 )

pendent v
'

.



The light emitted by a thermoluminescent material is pro-

portional to the dose received, so calibration is required be-

fore light emitted from a dosimeter with unknown exposure can

be empirically related to actual dose received. A calibration

curve relating thermoluminescent response in relative light

units to radiation dose is generally produced prior to experi-

mentation in unknown radiation fields. It was the purpose of

this research to determine calibration curves for LiF and LiP

for gamma-radiation and fast-neutron dose, to compare these

calibrations, and to determine the response characteristics of

these two types of dosimeters to combined neutron and gamma-

radiation dose. Studies of mixed radiation-field effects,

dose-rate effects, temperature, annealing and other physical

environment effects are important in gaining new insights of

the thermoluminescence phenomenon.



2. THIS ORY

2.1. EXPLANATION OF SOLID-STATE TERMINOLOGY

2.1.1. Energy-band Model of a Crystal:

When two isolated atoms are brought together, their outer

or valence electrons interact to bind the atoms together. The

valence electrons of one atom are attracted to the nucleus of

the other atom, and the energy required to replace an electron

from one nucleus to the other is therefore reduced. A valence

electron is equally likely to be near either of the nuclei, and

there are two energy levels for electrons at each nucleus. When

many thousands of atoms are brought together in a crystal, these

energy levels merge into a single band called the valence band.

The upper unoccupied energy levels of atoms are similarly split

when a crystal is formed from isolated atoms, forming what is

known as the conduction band. For a pure insulating crystal,

the energy band model can be represented as shown in Fig. la.

Conduction band

Forbidden energy gap

Valence band

4
i.

_*__
«*

t

a. Ideal crystal b. Non-ideal crystal

Fig. 1. Energy-band model of ideal and non-ideal crystals.

For a complete explanation of the energy-band model, the

reader is referred to pertinent literature *•'.



2.1.2. Traps:

Structural imperfections, such as vacancies, inter-

stitials, or impurities, create centers of localized positive

or negative charge within a crystal. A positive localized

charge is capable of attracting and trapping an electron, and a

localized negative charge is capable of attracting and trapping

a positive hole. An electron trapped at an anionic vacancy is

known as an F-center, and a hole trapped at a positive ion

vacancy is known as a V-center. An F-center roughly resembles

a hydrogen atom in which an electron is bound by the positive

charge of the nucleus. Like the hydrogen atom, the F-center

has certain discrete allowed energy levels and can make transi-

tions between the various energy levels by absorption or emission

of the proper quanta of energy. This energy of absorption or

emission can be in the form of light quanta or as heat or vi-

brational energy. The possibility of absorbing light makes

the crystal colored, and the traps which give rise to these

absorptions are therefore also knoim as color centers.

2.1.3. Trap Depth:

Energetically, traps are located in the forbidden energy

gap of a pure insulating crystal as shown in Fig. lb. For a

trapped electron, the trap depth is the energy difference be-

tween the trap and the bottom of the conduction band, E-, . For

a trapped hole, the trap depth is the energy difference between

the trap and the top of the valence band, E2 .



2.1.i|. Phosphorescence:

Upon irradiation, certain insulating crystals containing

various available traps store radiation-energy deposited by

trapping electrons or holes or both. At a later time, they

release this energy in the form of light photons. This general

process is called phosphorescence.

2.1.5. Thermoluminescence:

At room temperature, there is a finite but small prob-

ability that traps will give rise to phosphorescence. This

probability for release of trapped electrons and holes in-

creases with increasing temperature. If the phosphorescence

process is thus accelerated by increasing the temperature of

the crystal, this phenomenon is known as thermoluminescence.

2.1.6. Phosphor:

A phosphor is a material which exhibits phosphorescence.

The basis for a phosphor is a pure insulating crystal, but it

is the irregularities in the crystal that are responsible for

the phosphorescence.

2.1.7. Glow Curve;

As a phosphor is heated, the luminescence increases until

nearly all the traps are emptied. A plot of the intensity of

this light emitted vs. temperature or time is referred to as

the glow curve

.



2.2. THE PROCESS OF RADIATION THERMOLUMINESCENCE

:

The proce-ss of radiation thermoluminescence involves

several individual steps. First, the effect of radiation on

a phosphor is to excite electrons from the filled valence band

to the previously empty conduction band. Secondly, electrons

from the conduction band fall into traps within the forbidden

energy gap. If these traps are shallow, the electrons may

receive enough thermal energy to escape from the traps at room

temperature . This is the case in semiconductors, where the

forbidden energy gap is narrow, and the traps are located only

slightly below the conduction band. In phosphors, however, the

traps are relatively deep, and the electrons have a very small

probability of escape at room temperature. Trap depth, there-

fore, is one measure of the suitability of a phosphor for use

as a thermoluminescent dosimeter. The number of filled traps

in an irradiated phosphor is a function of the radiation dose

received; it. may also be a function of dose rate as well as

other variables collectively termed radiation quality (type of

radiation, energy, polarization). To determine the dose re-

ceived, the phosphor is heated. As the temperature increases,

the probability for escape of electrons increases, and as they

escape, the electrons are again free to wander in the conduction

band. Finally, these free electrons combine with free holes

in the valence band or with trapped holes within the forbidden

energy gap, giving off excess energy in the form of light pho-

tons. An analogous series of processes can also take place
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wherein a trapped hole is thermally liberated from its trap and

migrates through the valence band until it combines with a

trapped or conduction band electron, emitting a photon in the

process.

This is a reasonable but oversimplified explanation of

thermoluminescence. The complicated nature of glow curves

suggests that several different types of electron and hole traps

exist, and their de-population mechanisms may be much more com-

plicated.

2.3. THERMOLUMINESCENT DOSIMETRY

2.3»1« Use of a Phosphor as a Dosimeter:

Thermoluminescent dosimetry involves detection of the

light emitted by a phosphor as a measure of the radiation re-

ceived by the phosphor. The detection of the light photons

which arise from the releasing of trapped electrons and holes

is accomplished by a photomultiplier tube. The light detected

by the P.M. tube is proportional to the number of filled traps

which is in turn proportional (though not necessarily linearly

(Pi)
proportional) 1, to the radiation dose absorbed by the crystal.

2.3.2. Useful properties of TLD materials:

In an excellent review article by 3 chulman v
, desirable

properties of useful TLD materials are listed:

1) a high concentration of electron and hole traps;

2) high efficiency of luminescence when electrons or holes are

thermally released and recombine;



3) long storage of trapped electrons and holes at normal working

temperatures;

1|) a simple trap distribution for greatest simplicity of oper-

ation and reading interpretation;

5) a luminescence spectrum which matches the detector and is

separated as far as possible from the incandescent emission

of the heating source;

6) stability of the phosphor to radiation ( i.e. , radiation should

fill the traps but not create or destroy traps).

In addition to this list, Spumy* ' also specifies the

following:

1) no excitation of phosphor other than by radiation;

2) linear response over range of dose;

3) cheap and reproducible production of the phosphor material.

2.3.3. The Effect of Impurities:

Several different types of traps are normally present

in materials used for thermoluminescent dosimetry. Therefore,

the glow curve may exhibit several peaks, and the emission

spectrum may be quite complicated •

To control the emission spectrum of a phosphor for do-

simetry use, it is often doped with known amounts of certain

impurities. For instance, if silver, Ag, is used as an impurity,

electron trapping leads to F-center formation as usual, but holes

may be trapped at the Ag ion. V/hen an electron is excited from
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an F-center to the conduction band, it combines with the hole

at the Ag ion and excites characteristic ultraviolet-blue

Ag luminescence.

A divalent cation impurity can act as a possible elec-

tron trap because of its excess positive charge. Magnesium

as an impurity has been shown to have important effects on the

- T .„ , . . (10-12)
use of LiF as a dosimeter

2.3.I4.. Use of LiF as a TLD:

LiF was among the first materials to be used as a

(2 1"})
TLD ' . The thermolumine sconce from LiF is unusually bright,

and the coloration lies primarily in the ultraviolet range.

Its tissue equivalence makes it ideal for use as a personnel

dosimeter. The thermolumine scent response of LiF has very

little dependence on photon energy ^ although the neutron

response is known to be energy dependent v
'

.

As described in section 1, LiF is available in three

different forms: TLD-100, containing natural LiF; TLD-600,

containing primarily Li; and TLD-700* containing primarily

?Li.

A typical glow curve obtained from TLD-100 is shown in

Fig. 2* -"
. This curve is characterized by five peaks, as

numbered in Fig. 2. The approximate temperatures at which the

second and fifth peaks appear are 105°C and 190°C, respectively.

All the peaks show some tendency to decay at room temperature,

and the half lives of peaks 1 to 5 are 5 min., 10 hr., 0.5 yr.,
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Fig. 2. Typical glow curve for TLD-100.
(Peaks 2 and 5 appeared at times in the heating

o o
cycle corresponding to 105 C and 190 C, respectively.)
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7 yr., and 80 yr., respectively. Peak £ is most suitable for

LiP dosimetry.

The upper limit for LiF dosimetry is set by saturation

effects that become pronounced at about 10^ R. The lower limit

of detectability is set by background dark current in the reader

equipment and black body-radiation from the heater element.

2.1}.. FOIL-ACTIVATION DETERMINATION OF FAST-NEUTRON FLUENCE

2.I4..I. Purpose:

When dealing with neutron dosimetry, it is often necessary

to determine the neutron fluence (n/cm ) at a given point in a

reactor or near the target of a neutron producing accelerator.

Such determinations are usually difficult and very often expen-

sive. Methods in common use include proton recoil detectors,

BF-, probes, alpha detectors, and proton recoil counting in

emulsions.

An accurate and inexpensive method for fluence measure-

ment is the foil-activation technique. The initial activity of

an activated foil is determined and related to the neutron flux

by the solution of the appropriate differential equations for

the production and decay of a specific radioisotope. This

method requires that the activation cross section of the desired

nuclear reaction be well known. The absolute activity of the

irradited foil must be determined within reasonable statistical

limits. The standard deviation of the flux, and therefore, the

standard deviation of the fluence, depend on the accuracy of

both the cross section and the absolute activity.
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2.I4-.2. The Sum- Peak Method for Absolute Activity:

The sum-peck method was developed by Brinkman et al; *"
.

It allows the determination of absolute activity within _f 5% »

For a radioisotope emitting two coincident gamma rays,

the energy spectrum determined by a Nal(Tl) scintillation

crystal detector is characterized by two prominent photoelectric

peaks. Since there is a finite probability that the two gamma

rays will be detected at the same time, a small "sum peak" will

also appear at a point corresponding to the total energy of the

two gamma rays.

For a given radioisotope, let N equal the disintegrations

during a given counting time. Also define:

£, = detector efficiency for photoelectric absorption of Y,,

£
2 = detector efficiency for photoelectric absorption of y

e
-j_' = detector total efficiency for photoelectric, Compton or

pair production absorption of Y-,,

e
2

! = detector total efficiency for photoelectric, Compton or

pair production absorption of Yp.

Then:

A-l = N^Cl-^O = area under Y, photopeak, (2.1j..2-l)

Ap = NEp(l-e^t) = area under Yp photopeak, (2.1^.2-2)

A-J2 = Ne-, £p = area under the sum peak. (2.1].. 2-3)

The total area in the spectrum is

A r N-N(l- ^)(l- £

2
') (2.^.2-Ij.)

where (1- ^« ) (l-e2
» ) is the probability that neither Y

]L
nor ^

2



Ill-

is detected. Equations (2.lj.. 2-1) through (2J|.2-Ij.) can be com-

bined to give

A
1
A
2

N = A 4 -4~£ (2J4..2-5)
A12

Equation (2.1^.2-5) shows that the absolute activity of the

radioisotope can be determined without information about the

detector efficiencies.

2.lj..3. Fluence Determination Using Foil Activity:

The absolute activity of a radioisotope can be related

to the flux used in the irradiation of a sample. The solution

of the well known differential equation for the production of

isotope B from the neutron activation of isotope A is

-vVb = $aN
A (1 - e ) (2. Ij.. 3-D

where

NA * number of parent nuclei,

Ng = number of daughter nuclei,

Xg = decay constant for product B, sec
-

,

$ = neutron flux, neutrons/cm , sec,

• a = activation cross section for production of A from B,

2cm ,

t = time of irradiation.

When the sample is removed from the neutron flux, the

activity begins to decay and is given as a function of time by

- \>t - \nl
N
E B

= $aN
A (1 - e )e (2.1^.3-2)
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where E is the corrected decay time to account for decay of the

sample during a finite counting time. E is given by

-t /t
€ = tr-tm {ln [tm(l-e

s m
)/t

s ]} (24.3-3)

where

t is the time from removal from the neutron flux to the

beginning of the count,

t_ is the counting time,

ti is the half life of the radioactive product,

t is the mean life of the radioactive product (t^/ln2).

The product of Eq. (2.1|.3-2) and t is the disintegrations

of the sample in the counting time. This is also given by Eq.

(2.Ij..2-5). This equality gives the following relation for the

neutron flux:

(.1-2 f A) e
B

* =
12

,xRt (24.3-W
NA (l-e

B
)t

s

The number of parent nuclei is given by the product of

Avogadro ! s constant and the weight of the sample, w, divided

by the atomic weight, ¥. of material A.

n
a

=
tr

'

(2^.3-5)
A

where L is Avogadro»s constant, 6.02 x 10 mole

The fluence is given by the product of the flux and the

irradi-ation time:
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( 1| + A) e WAt

P = 12. n—— (24-3-6)

Lw(l-e D
)t

g

2.I4..I4.. Curve-Pitting Technique for the Sura-Peak Method:

The main source of error in determination of the absolute

activity by the sum-peak method is the evaluation of the areas

(15)
under the three peaks. This difficulty led Brinkman et al, '

to conclude that the absolute activity could be determined with

only a +5^ precision.

By a method described in Appendix A, it was possible to

use a least-squares analysis to fit the photopeaks to a Gaussian

curve. This allowed determination of the absolute activity of

activation foils within a ±yf precision.
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3. FACTORS AFFECTING LiF THERI-10LIMI1IESCENCE

3.1. PREIRRADIATION ANNEALING

3.1.1. Necessity for Preirradiation Annealing:

Following irradiation and readout, it is necessary that

LiF be annealed to insure that all traps are emptied. As shown

by Zimmerman et al. ' , the method of annealing has marked effect

on the subsequent readout of irradiated LiF. For consistency,

it is therefore necessary to decide upon and adhere to a suit-

able annealing procedure.

3.1.2. Suggested Preirradiation Annealing Methods:

For the TL-22 and TL-23 dosimeters used in this research

(see section l\..l for description), ref. (8) suggests a primary

annealing such as 1 hour at 350 C or Ij.00 C followed by a 2X\.

hour annealing at 80°C . Zimmerman et al; ' studied the effects

of preirradiation annealing on TLD-100 and reported that anneal-

ing for 1 hour at Ij.00 C removes all effects of previous anneal-

ing, and that annealing at i|00 C beyond 1 hour has little effect

on the glow curve. They also recommended an 80 C annealing for

2i| hours following the l+OO C annealing to reduce peaks 1 and 2

(Fig. 2) relative to the higher temperature peaks.

The low-temperature peaks can also be reduced by a

postirradiation partial annealing (see section 3*2.2)

.

(17)Kaiseruddin v
' investigated the effect of eliminating the

2i| hour 80 C annealing and reported no significant change in

standard deviation of the response values. Therefore, Kaiserud-

din^ adopted the I|.00
o
C annealing procedure for TLD-100.
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Since the chemical and crystal structure of TLD-600 and TLD-700

are similar to that of TLD-100, the same results were assumed

to hold true for TLD-600 and TLD-700, and the same Ij.OO°C anneal-

ing procedure was adopted for this research.

3.2. POSTIRRADIATION ANNEALING

3.2.1. Purpose:

To function as a satisfactory dosimeter, a phosphor should

have a thermoluminescent response that is independent of the

storage time prior to readout. Fading effects in LiF have been

studied by Endres ^' who reported a 5% decrease in the total

light output over a period of 15 days. Karzmark et al ' ' re-

ported a 10?o to 20>£ decrease in total light output over a period

of 3 weeks followed by an increase toward the initial value in

6 to 8 weeks. This fading effect is probably due to the thermal

release of lower- temperature traps at room temperature. This

release leads to two effects:

1) a reduction in the total light output due to reduction in

height of lower-temperature peaks;

2) an increase in the height of high temperature peaks caused

by a fraction of the electrons released from low temperature

traps falling from the conduction band into high temperature

traps.

Therefore, for consistent results, it is necessary to remove

these lower-temperature peaks by a standardized method, since

their random decay can lead to inconsistencies.
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3.2.2. Suggested Methods of Postirradiation Annealing:

(\q)
Cameron et al;

' '' reported that low temperature peaks

could be removed by postirradiation annealing at 100°C for 10

minutes. Dean and Larkins* ' reported annealing the dosimeters

at 110°C for 7 minutes, approximately 1 hour after the irradia-

tion. This latter technique was investigated and is reported

in section 5>.l.

3.3. TYPE OF RADIATION:

The type of radiation has marked effect on the creation

and readout of traps in LiF. Such effects must be well known

before a dosimeter is used in a mixed radiation field.

3.3«1« Effect on Production of F-centers:

The energy required to produce an F-center in LiF by

different types of radiation has been determined by Morehead

(21)
and Daniels and is reported in Table 1.

Table 1. Energy (eV) required to produce an F-center
in LiF (from ref . 21)

Radiation Initial after 10
6rad after 10

8
rad

2 MeV alpha particles 700 700 700

2 MeV electrons llj.0 llj.0 700

1 MeV gamma photons 62 160 700

Thermal neutrons 65 100 700
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3.3.2. Effect on the Glow Curve:

( 21)
Morehead and Daniels v ' also determined the effect of

different types of radiation on the glow curve areas for a given

F-center concentration created by that radiation. The results

are reported as in Table 2.

Table 2. Glow curve areas produced from F-center concen-
trations of 2 x lO1" cm" 3. (from ref. 21)

-i O O p
Radiation producing 2 x 10 F-centers cm""-

5 Area (in /mg LiF)

10 rad thermal neutrons 2^00

10° rad betatron 2200

1.5 x 10 rad gamma photons 2000
•7

10' rad alpha particles lj.000

3 .It. . Li Isotopic Abundance:

As described in section 1, LiF is available in three dif-

ferent forms: TLD-100, containing 92. 5fo
7Li and 7.j$ Li; TLD-

600, containing 95. 62$ °Li and \±.2&%
7Li; and TLD-700, containing

99.99/^ 7Li and 0.01$ 6
Li.

3.1|..l. Effect on Photon Response:

For Co and Ra gamma rays, Kastner et al; found the

responses of TLD-700 to be very nearly the same. The Co gamma-

ray response for the EG and G dosimeters used in this research

(see section lj.,1 for description) was investigated and is reported

in section 6.2.
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3.1].. 2. Effect on Neutron Response:

Neutron induced thermolumine scent response in LiF is a

secondary process resulting from ionizing radiations produced

by neutron reactions on Li. Fluorine reactions are also poss-

ible, but should be identical for both TLD-600 and TLD-700.

Since the cross sections for neutron reactions are energy de-

pendent, it is necessary to consider the neutron response over

energy ranges.

3.I4-. 2. (a). Thermal Neutrons:

Inspection of the thermal neutron cross section tables' •*)

/ 7
for Li and 'Li reveals a large (9lj-5 b) cross section for the

Li(n,a)-ll reaction. The alpha particle is a highly ionizing

particle, and the -% atom emits a highly ionizing beta particle,

both of which can easily create traps in the LiF phosphor.

Therefore the LiF thermoluminescent response is large compared

7
to the negligible LiF response, because a thermal neutron re-

action leading to trap production by ionizing radiation does

7not occur to a significant extent in 'Li.

3.1}..2j(b). Fast Neutrons:

For neutrons up to 1.2 MeV in energy, the response of

TLD-700 has been reported to be negligible compared to the TLD-

(22)
600 response v

. For the lij..7 MeV neutrons produced by the

Cockcroft-V/alton accelerator described in section i|.I{., the

total neutron cross sections for Li and 'Li are nearly the same.
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The response characteristics of TLD-600 and TLD-700 for II4..7

MeV neutrons were investigated and arc reported in section 6.3-

3.1|..3. Mixed Radiation Field Studies:

In a mixed field of thermal neutrons and gamma rays,

TLD-600 and TLD-700 can be irradiated simultaneously, and the

response due to the individual components of the radiation

field can be determined. The TLD-700 response can be taken

as the response due to gamma rays alone, and since the TLD-

600 responds to both thermal neutrons and gamma rays, the

difference between the TLD-600 response and the TLD-700 response

can be taken as the response due to thermal neutrons alone.

For discrimination between gamma rays, thermal neutrons,

and fast neutrons up to 1.2 MeV, a series of three dosimeters

has been used^ . The first dosimeter was composed of TLD-700

and measured primarily the response due to gamma rays alone.

The second dosimeter was composed of TLD-600 and measured the

response due to thermal neutrons and gamma rays. The third

dosimeter was composed of TLD-700 surrounded by ethyl alcohol,

The fast neutrons collided with the hydrogen nuclei of the al-

cohol, thus projecting energetic protons into the LiF grains and

giving rise to indirect fast-neutron response. This third

dosimeter provided a measure of the response due to gamma rays

and fast neutrons.

Oltman et al. ^ investigated the effect of neutron ir-

radiation on the gamma-ray response of 'LiF for both simultaneous
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neutron irradiation and post-gamma neutron irradiation. Gener-

ally, they report a decrease of from Qf to 12^ in the thermol-

uminescent response regardless of whether the neutron irradia-

tion was carried out simultaneous with or following the gamma

irradiation. The percentage drop is also reported to be inde-

pendent of the total exposure and the energy of the neutron

exposure up to 1 MeV. Neutron irradiation time was used as a

relative measure of fluence in their data, but no indication of

the response, if any, due to neutrons alone was given.
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[[.. DESCRIPTION OF APPARATUS

I4..I. DOSIMETERS:

Two types of LiF miniature dosimeters were used in this

research. Model TL-22 dosimeters, containing TLD-600, and

model TL-23 dosimeters, containing TLD-700, both manufactured

by Harshaw Chemical Co. were supplied by Edgerton, Germeshausen,

and Grier (EG and G). Each dosimeter contained about 10 mg of

LiF phosphor sealed in a glass capillary I.I4. mm in diameter

and 12 mm long. The tips of the dosimeter were color coded

with blue (TL-22) and pink (TL-23) glass to insure against loss

of identity.

The dosimeters were useful over a range of lOmR to 10-^R

for gamma-photon irradiations, although they were nonlinear

above 10-^R. Response was slightly energy dependent for photons,

but the response had negligible temperature dependence at room

(17)temperature. Kaiseruddin v
' ' reported some dose-rate dependence

at very high dose rates for the very similar TL-21 natural LiF

dosimeter.

Response was reproducible to 43/£ above 1 R and to +20^

at 10 mR. Each of the dosimeters was supposed to contain very

nearly the same amount of phosphor, but to account for the very

slight fluctuations in the phosphor weight, geometry of different

ampules, varying grain sizes and sensitivities, dosimeters were

preselected in a batch by the manufacturer such that the response

values were supposed to be within *10/£ of the mean. .
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If.. 2. READER UNIT:

An EG and G model TL-3B Thermolumine scent Dosimeter

Reader was used for dosimeter readout. The function of the

reader unit was to position the dosimeter for readout, provide

a heater current, detect the light emitted by means of a PM

tube, convert the emitted light to an electrical signal, and

provide a permanent chart record of the resulting glow curve.

The reader was enclosed in a single aluminum cabinet 18 inches

deep, 20 inches wide, and 13 inches high. The reader unit is

shown in Fig. 3.

A block diagram of the circuitry of the reader unit is

shown in Fig. If.. A regulated power supply fed the unit.

When the READ push button was depressed, a heater current of

6.5 A was supplied to the read head adapter which held the do-

simeter in the proper position. Light emitted from the dosime-

ter was reflected toward the PM tube. The signal from the PM

tube was routed through the automatic ranging circuit to the

pen servo-mechanism. The sensitivity of the PM tube was orig-

inally set to its maximum, which gave the lowest range on the

recorder. When the light output increased beyond this range, the

sensitivity of the PM tube was lowered by a factor of 10 by the

automatic ranging circuit. The control logic sequenced these

events so that readings from the lowest full scale range, 50mR,

to the highest full scale range, 5 kR, were possible with a

single depression of the READ button. Upon completion of the

readout, the status indicator gave the full scale range of the

recorder.
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A reference light was provided which enabled the system

to be adjusted for accurate readings relative to a known refer-

ence. The reference light was constructed for use with the model

TL-81 read head adapter. The reference light contained +C in-

timately mixed with thermoluminescent calcium fluoride. The beta

radiation emitted from the ^"C caused the calcium fluoride to

emit a glow which was equivalent to 3I4.O mR. This value was de-

termined by EG and G by exposing reference detectors to a Co

radiation dose measured by an NBS-calibrated ionization chamber,

computing the average output of the detectors, and comparing it

with the output of the reference light.

A typical chart record obtained i^ith this reader unit is

shown in Fig. 5« The heater current turned on when the recorder

reached the short vertical line near the center of the chart and

turned off at the end of the chart. The pen marking at the top

of the chart shows a small "pip" each time a change of scale

took place. Thus, knowing the lowest full scale range, the

final full scale range could be ascertained by counting the

number of "pips" on the chart, as well as by reading the status

indicator.

The EG and G model TL-81B read head adapter shown in

Fig. 6 was used to position and heat the dosimeters in the reader

unit. The read head adapter was inserted in the front of the

reader unit and enclosed the dosimeter in a light tight chamber.

The read head adapter consisted of a heating coil and a shunt

resistance which could be adjusted so that the current allowed
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Fig. 6. EG and G read head adapter model TL-81]
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to flow through the heating coil resulted in the glow peak on

the strip chart (Fig. 6) occuring near the middle of the 3

lines to the left of the chart.

Since the heating cycle was reproducible for each dosim-

eter, the peak height could be used as a measure of thermolu-

minescence, rather than the entire area under the glow curve.

I4..3- GAMMACELL:

Gamma-photon irradiations were performed with a Gammacell

220 irradiation unit manufactured by Atomic Energy of Canada Ltd.

The Gammacell was loaded with a 3*963 Ci Co source on March 15,

60
1965« The Co source consisted of 12 linear source elements

equally spaced in a stainless steel rack to form a radioactive

cylindrical shell, 8.75 inches measured between centers of

opposing elements. Each linear element consisted of a welded

stainless steel pencil filled with metallic cobalt. Internal

dimensions of each pencil were 0.395 inch in diameter and 8

inches in length.

A motor driven drawer of the assembly consisted of a

steel-encased lead cylinder 53«75 inches long and 6.5 inches in

diameter. The drawer was centrally located in a surrounding

radiation shield and was driven vertically through the center

of the source. The drawer consisted of solid upper and lower

sections and a hollow sample chamber. Material to be irradiated

was placed in the sample chamber and then lowered to the ir-

radiation position with the sample chamber at the center of
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the source. The sample chamber was 8.125 inches in height and

had an inside diameter of 6.0625 inches.

Control of the G-ammacell was from a panel mounted at

the side of the unit. The control panel included a drawer •Up 1

button, a drawer •Down 1 button, a digital timer with a range of

to 999 hours, and a timer •In 1 switch which enabled the timer

to be admitted into the control circuit when desired.

Correct dose rate at the time of irradiation was obtained

from a graph of dose rates available at the Gammacell.

l|..i|— NEUTRON GENERATOR:

Neutron irradiations were performed with a Texas Nuclear

Corp. Neutron Generator (Fig. 7). For production of II4..7 MeV

neutrons, the generator uses the following reaction:

^H + ^H * qU + |He * 17.6 MeV.

Figure 8 shows a block diagram describing the function of the

3 basic components of the generator. Operation of the gener-

ator depends on the production, extraction and acceleration of

deuterium ions.

Fig. 8. Basic components of the neutron generator.

Ion Source Accelerating Tube Target

Production, Acceleration of Production

Extraction, Positive Ions of Neutrons

Focusing

of Positive Ions
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The major components of the neutron generator are shown

schematically in Fig. 9. Positive ions created in a radio fre-

quency type ion source were extracted by applying a potential

across the ion source bottle. A quartz sleeve which surrounded

the aluminum exit canal of the ion source bottle prevented

surface recombinations of the ions. The quartz sleeve also

served to focus the ion beam, as did the gap lens situated just

beyond the exit canal. After passing the gap lens, the ions

entered the field of the accelerating tube where they were ac-

celerated through a potential of 150 kV. After leaving the

accelerating tube, the ions drifted through a potential-free

drift tube region until they fell on the tritium target, pro-

ducing the desired reaction. The entire system was maintained

in a vacuum to minimize scattering of the ion beam. An aluminum

cap could be rotated for selection of one of the five available

tritium targets. The neutron generator was operated from a re-

mote console shown in Fig. 10.

The flux produced at the target was very nearly isotropic

as shown in Table 3 which gives the neutron yield relative to

Tab

(25)

forward emission J
. Table l\. gives neutron energy as a func-

tion of emission angleo-

Table 3« Neutron yield relative to forward emission.

Angle with Deuteron Beam Neutron Yield (relative to 0°)

0° 1.00
60 .97
90 ,9lj.

120 .91
150 .88
180 .87
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Fig. 10. Neutron generator remote console,
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Tabic 4* Neutron energy as a function of emission angle.
(E, equals kinetic energy of deuteriura ion)

Angle with Deuteron Beam

0'

30

fo
75
90

105
120
135
150
165
180

Neutron Energy
Ed

= 100 keV

II4..6I1 Me 7
11J..62
II]-. 56
IIJ..I4.6

111-. 35
11+. 21
lli.06
13.91
13.78
13.65
13.56
13.52
13-49

E
d

= 150 keV

H4-.7I4- MeV
111-. 72
ill.. 65
ill..A
1J4..L10

14.23
34.06
13.89
13.74
13.61
13.51
13.44
13.42

4.5. RADIATION DOSIMETER HOLDERS

4»5«1. Mounting in Gammacell:

A polyethylene disc about \ inch thick, made to fit in-

side the sample chamber of the Gammacell was used in photon ir-

radiations. Dosimeters were inserted vertically in the disc

along the circumference of a 2 inch diameter circle concentric

with the outer diameter. This insured that all dosimeters

irradiated at the same time received the same amount of dose.

The location of the disc within the sample chamber such that

dosimeters located on the 2 inch diameter received the same dose

as if they were located at the center of the chamber was de-

termined from the iso-dose curves supplied by the manufacturer.

For the 2 inch diameter, this height was 2.75 inch above the
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base of the chamber. The Gammacell with dosimeter holder in

place is shown in Fig. 11.

1|.5.2. Mounting Near the Neutron Generator Target:

For neutron irradiation, an irradiation package con-

sisting of polyethylene-enclosed dosimeters and an activation

foil (see section I4..6) was used. The package was attached to

a motorized assembly which rotated the dosimeters and activa-

tion foil about an axis perpendicular to the center of the ac-

celerator target. The irradiation package was placed as near

the accelerator target as possible with the foil between the

target and the dosimeters. The irradiation package is shown in

Fig. 12.

The best configuration for packaging of the dosimeters,

was determined and is described in section 5.3.

i|..6. ACTIVATION FOILS:

Sodium-21}., produced from the 'Al(n,a) ^Na was the radio-

isotope chosen for use with the sum-peak method. The decay

scheme of ^"Na is shown in Fig. 13

.

24-

1
+ _ (0.025 sec_) 2 24-,

ff _
12 J

5. S16 MeV

4.122 MeV

1.368 MeV

Fig. 13. Decay scheme of hla.
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Fig. 11. Gammacell with dosimeter holder in place,
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Fig. 12. Neutron irradiation package.
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*"Na decays to h'lg which emits the required coincident gamma

rays which are well separated in energy. The half life is

fifteen hours. The ' Al formed by the (n, y) reaction and the

'Mg formed by the (n,p) reaction have relatively short half

lives of 2.3 and 9.5 minutes respectively. Therefore, within

about two hours after irradiation, essentially only the

desired ^Na was present.

An additional advantage of the use of activated aluminum

was the ready availability of aluminum in very pure thin foils.

Commercial aluminum foil was used to make activation foils

about 2>/k inch in diameter weighing approximately .0155 g«

The cross section for the *Al(n,a) ^Na reaction was

determined from the values tabulated in Table 5 which were

( ?f }

taken from BKL 325 . The values were averaged, and the

standard deviation of the average was determined by propagation

of error. This resulted in a cross section of 115«3 + 2.8 mb.

Table 5. Cross section tabulation for 'Al(n, a
) ^"Na reaction.

Author Date Energy Cross Section

Kern

Yasumi

Mani

Strohal

Jeronymo

Gabbard

1959 111- -7 MeV

1957 11+.7

I960 111-. 75

1962 111. ,6

1963 14.7

1962 1^.7

113 + Ik mb

120 + is

111 + 3

115 + 2

110 + 10

115 t 10
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1959 11J..8 H!eV 134 + 7 mb

1962 li|..68 115 i 5

1961 11+.

7

120 i 5

1961 11^.68 119.5 + 6

Table 5. Cross section tabulation for 'Al(n, <*)^Na reaction,
(continued)

Author Date Energy Cross. Section

Poularikas

Butler

Bermann

Bayhirst

1|.7. SPECTROMETER SYSTEM:

The spectrometer system used to count the activation foils

was a Harshaw Chemical Co. Nal(Tl) solid scintillation detector

with an attached RCA photomultiplier tube. A Technical Meas-

urements Corp. (TMC) preamplifier was used with this integral

line assembly. The detector assembly was shielded by a cavity

of I4. inch lead bricks walls lined with a 20 mil layer of

cadmium and a 20 mil layer of copper. A TMC I4.O96 multiparameter

analyzer operating in the pulse height mode was used with the

detector system. Figure II4. shows a block diagram of the de-

tection instrumentation. A typical ^"Na spectrum obtained

with this spectrometer system is shown in Fig. lf>.
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Nal(Tl)
Scintillation

Crystal

Photo-
multiplier

Tube

High
Voltage
Power
Supply

Preamplifier

Analog to

Digital

Converter

Storage

Parallel

Printer

Fig, 14 Block diagram of detection instrumentation,
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5. PRELIMINARY EXPERIMENTAL PROCEDURES AND FINDINGS

5.1. FADING STUDIES

5.1.1. Procedure:

Fading effects in LiF thermolumine scent dosimeters have

been described in section 3.2.1. There were inconsistencies

reported in the literature concerning the proper way of removing

the fading effects. From the typical glow curve of Fig. 2, it

was seen that the distinct low temperature peak appeared at

105°C . Therefore the annealing procedure of Dean and Larkins* '

appeared to be more logical since annealing at 110°C for 7 min-

utes should be effective in removing this peak. This postir-

radiation annealing technique was investigated for comparison

with a procedure of no postirradiation annealing.

One hundred TL-22 dosimeters and one hundred TL-23 do-

simeters were irradiated to about 200 R by a L sec irradiation

in the Gammacell. Fifty of the TL-22' s and fifty of the TL-23»s

were subsequently annealed at 110 C for 7 minutes. For all

annealing procedures the dosimeters were placed vertically in

a 1 inch thick graphite block drilled with small holes approxi-

mately 5 van. deep spaced about \ inch apart and fed into the

furnace. The unannealed and partially annealed dosimeters were

then read out in groups of ten at five different times over a

period of 72 hours. For each group of ten dosimeters, a mean

response and the standard deviation of the mean response were

calculated.
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5.1.2. Results:

The results of the fading study for LiP are presented in

Figs. 16 and 17. The results of the fading study for 'LiF are

presented in Figs. 18 and 19.

For 'LiF, Figs. 18 and 19 show that the partial annealing

process had little effect on the thermolumine scent response or

the standard deviation of the response up to 2 days after the

irradiation. However, 3 days after the irradiation, fading did

appear in the unannealed dosimeters.

For LiF, Fig. 16 shows that the response of the unannealed

dosimeters was very inconsistent over the 72 hour period of

readout. The partial annealing process had an unusual effect on

the LiF response. Figure 17 shows that the response was con-

siderably lower than the average during the first few hours

after irradiation but was quite consistent after approximately

2l\. hours.

5.1.3. Conclusions:

For control of later experiments involving both the LiF

7and 'LiF thermoluminescent response, it was necessary to be con-

sistent in postirradiation annealing and readout procedure. The

inconsistency of unannealed LiF dosimeter response ruled out

the non-annealing process. If the partial annealing process

were to be used, however, readout of the LiF dosimeter would

be inconsistent unless readout was performed at least 2lj. hours

after irradiation. Therefore the following procedure was

adopted:
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a) all dosimeters were partially annealed after irradiation for

7 minutes at 110°C, and

b) all dosimeters were read out at least 2l\. hours after irradia-

tion.

5.2. ESTIMATION OP THE GAMMA-RAY CONTAMINATION ON THE NEUTRON

GENERATOR

5.2.1. Basis of Contamination Determination:

For neutron irradiation, dosimeters were placed behind

an activation foil as described in section I4..5.2. The flux of

neutrons at the target was nearly isotropic (see Table 3) and

activity was therefore also induced in all directions around

the target in the accelerator components, primarily in the

aluminum cap which held the 5 tritium targets. This activity

induced in the activation foil and the aluminum cap could

cause an additional response due to gamma rays in the neutron

irradiated dosimeters. Since the activation foil and acceler-

ator cap were both aluminum, the reactions of concern were the

'Al(n,Y) Al reaction, the 'Al(n,p) 'Mg reaction, and the

27 2lt,'Al(n,a)^Na reaction. The activation cross sections of

these reactions are approximately 215, 80, and 115 millibarn,

respectively. The half lives of the products are 2.3 min., 9.5

min., and 15 hr., respectively.

As described in section 2.1l.3* the activity of isotope

B caused by the neutron activation of isotope A is

NB
A
B

= * a N
A
(l " e"V ). (2.^.3-D
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After removal from the neutron flux, the activity is

N
B

*
B

= *a N
A
(1 - e~V) e""V . (2.1^. 3~2)

For each of the three reactions, the flux, $ , and N , the

atoms of material A were constant. Therefore, during irradia-

tion, the activity of each of the activation products, B., was

proportional to the product of the activation cross section and

the term (1 - e" B
i )

.

N X
B

a o(l - e""^ ) (5.2-1)
i i i

After irradiation, the activity of each of the activation prod-

ucts is proportional to the product of the activation cross sec-

tion, the term (1 - e" b^ ) and the term (e~ %t )•

N
B?B

a a
i{1 ' e~^ )e~^ (5.2-2)

i i

Using equation (5.2-1), the buildup of each of the three

activation products was calculated over a 25 minute irradiation

period. Using equation (5.2-2), the decay of each of these

products was calculated over a 60 minute period following the

25 minute irradiation. The buildup and decay of each of the

products is shown in Fig. 20.

The total activity of each of the activation products

induced during an irradiation time, t, was proportional to the

area from to t under the three time functions defined by

equation (5.2-1). After irradiation, the total activity of the

activation products during a decay time from t to t was pro-

portional to the area from t to E under the three time functions
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defined by equation (5.2-2). By trapezoidal integration of the

functions defined by equation (5.2-1) and equation (5.2-2), the

ratio of the total activity from to t to the total activity

from t to t could be obtained. This ratio was the same as the

ratio of the dosimeter response due to gamma rays from to t

to the dosimeter response due to gamma rays from t to £. The

total activity during the irradiation period and the dosimeter

response due to this total activity could not be directly meas-

ured. However, by placing a package of unirradiated dosimeters

in position with the activation foil and accelerator components

immediately following a neutron irradiation, the dosimeter

response due to induced activity during a decay period could

be determined. This response could then be related to the

response due to activity induced during the irradiation period

by multiplication by the ratio of total activities determined

by trapezoidal integration.

5.2.2. Procedure and Results: .

A package of ten dosimeters, five TL-22's and five TL-23 f s

was irradiated 25 minutes on the neutron generator. A second

identical package of ten dosimeters was positioned immediately

after the irradiation in the place previously occupied by the

first package. The second package of dosimeters was allowed to

absorb gamma-ray dose from the activation foil and the aluminum

cap for a period of 60 minutes. All dosimeters were then

annealed for 7 minutes at 110°C and read out after 21). hours.
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From the first package, the response of the neutron irradiated

TL-22's v/as 72.0 + 17. 8 reader units (R.U.). The response of

the neutron irradiated TL-23's was 63.1; 4 7.8 R.U. The re-

sponse of the gamma irradiated TL-22' s from the second package

was 2J4.8 +_ 15.6 mR.U. The response of the gamma irradiated

TL-23's was 296.2 + 60.1}. mR.U.

The results of the trapezoidal integration from Fig. 20

are presented in Table 6. Also presented are similar results

for a 60-minute irradiation.

Table 6. Trapezoidal integration of equations (5.2-1) anc

(5.2-2). (All areas have units of cm^.)

D .. At, area AQ , area Ao, area Aj. , area
Reaction 1* 2' j>

s
l\-

3

to 25 min 25 to 85 min to 60 min 60 to 120 min

(n, y) i|.656 42 718.56 12180.95 718.914-

(n,p) 1080.95 908. I4.8 3716.61 1069.76

(n,cc)
• 28.69 13^.15 163.79 317.68

Total 5765.06 1761.19 16061.35 2106.39

Multiplication of the gamma-ray responses reported above

by the ratio of total A-,/Ap gave an estimate of the response due

to gamma activity during the irradiation. Thus the response due

to gamma-ray activity during a 25 minute irradiation was found

to be 811.8 mR.U. for TL-22 and 969.6 mR.U. for TL-23- These

values represent 1.13$ of the TL-22 neutron response and 1*53% of

the TL-23 neutron response for a 25 minute irradiation.
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If a 60 minute irradiation were carried out at the same

flux level, the response due to gamma rays during the irradiation

v/ould be increased by a factor of A-Va, . The neutron response

would, be increased approximately by a factor of 60/25. In

this case, the gamma-ray response would represent 1.31/° and

1,77% of the neutron response for TL-22 and TL-23, respectively.

For all the various time durations of neutron irradiation

used in the determination of the neutron calibration curves,

the gamma-ray response represented only between 1% and 2% of

the neutron response, and was therefore neglected.

5.3. DETERMINATION OF BEST DOSIMETER PACKAGE CONFIGURATION:

The tritium targets of the accelerator were approximately

1 inch in diameter, and the activation foils were approximately

3/I4. inch in diameter. Ten dosimeters placed side by side in a

small polyethylene cover resulted in a dosimeter package just

under 3/k- inch across, so that the activation foil just covered

the package. However, irradiation in this configuration gener-

ally resulted in 1 or 2 dosimeter responses which were extremely

low. These low responses generally occurred for the dosimeters

at the edges of the irradiation package.

To improve the standard deviation of the response of

neutron irradiated dosimeters, a method to eliminate the ex-

tremely low responses was sought. Therefore, instead of pack-

aging the dosimeters ten across, irradiation of dosimeters

placed eight across, several packages in depth, was investi-

gated. The results are presented in Table ?•
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Table 7. Results of multiple packaging of dosimeters for
neutron irradiation.

Package No. Average Response

1 (nearest the target) 20.3 + 2.3

2 19.1 I 1.5

3 11}.. 5 + 1.8

The composite average of the response from the first two

packages was 19.7 + 2.0. The response values from the third

package were much lower than those of packages 1 and 2. Based

on these data, it was concluded that geometric and material

attenuation were such as to limit the number of packages to

two in depth.
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6. DETERMINATION OP CALIBRATION CURVES

6.1. NECESSITY OP CALIBRATION CURVES:

Since the peak height measured on the glow curve from

the EG- and G reader unit gave the dosimeter response in rela-

tive units, it was necessary to obtain a calibration for con-

verting response to dose or response to neutron fluence. Over

the range to 10-^ R, the response was supposed to be linear with

respect to the dose. Therefore, a calibration factor, k, could

be obtained for use over this range. In the range 10^ to 10-^

R, the response was supposed to bo reproducible but non-linear

with respect to the dose. Therefore, a full experimental cal-

ibration curve was required over this range.

6.2. GAMMA-RAY CALIBRATION CURVE

6.2.1. Linear Calibration Function:

The dose rate in the Gammacell at the time of the cali-

bration was SS»Sh R/sec. The timer on the Gammacell allowed

irradiation for any length of pre-set time. However, the timer

did not start counting until the drawer of the assembly was in

its lowest position. The drawer did not move upward until the

end of the pre-set time. Therefore, the dosimeters absorbed a

considerable amount of dose during the up and down travel of

the drawer. This additional dose x^as a constant irrespective

of the pre-set irradiation time.

In order to determine the additional dose absorbed by

the dosimeters during the travel time, the following mathematical
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model was used. If the dose rate in response units was repre-

sented by R, the dose due to the constant additional dose by

R , and the pre-set irradiation time by t, then the total re-

sponse of the dosimeter, R, could be given by

•

R = R
Q + Rt. (6.2.1-1)

•

The parameters R and R could be obtained by a least-squares

analysis of the experimental response values in the range to

1CK R. Over this linear range, the calibration factor, k, hav-

ing units of R per reader unit could then be obtained by divid-

ing the known dose rate, D, by the dose rate in response units,
•

R. The dose absorbed during the travel time was then calculated

as the product of k and R . The total dose was then given by

D = D
Q + Dt (6.2.1-2)

6.2.2. Experimental Procedure:

To determine the calibration curve, groups of twenty do-

simeters, ten TL-22»s and ten TL-23*s, were irradiated at one

time for pre-determined time periods set on the Gammacell timer.

All dosimeter had been annealed for 1 hour at [j.00
o
G before ir-

radiation. Following irradiation, the dosimeters were partially

annealed at 110 C for 7 minutes. Dosimeters were read out 2\\.

hours after the partial annealing.

6.2.3. Analysis of Data and Results:

Ten response values were available for analysis for each

type dosimeter at each time setting. To limit the effects of
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error in dosimeter response, the extreme values of response

were eliminated at each data point. Thus, eight response values

were used to determine the mean response and the standard devi-

ation of the mean response at each point.

Using the response data for irradiation times of 0, 2,

6, and 12 seconds ( i.e. , the irradiation times resulting in a

dose of less than 1CK R), the values of R and R for each type

dosimeter were calculated by a least squares analysis using

equation (6.2.1-1). The fit was obtained using the eight in-

dividual response values at each time setting rather than the

mean response at each time setting.

For the TL-22 dosimeters, R was calculated to be lj..52 f

.15 R.U./sec, and R was calculated to be 15.229 R.U. Tnerefore,

k was calculated to be 12.288 R/R.U., and D was found to be

187.13 R« The total dose for each time setting was calculated

by equation (6.2.1-2).

For the TL-23 dosimeters, R was calculated to be 5*539 +

.2I4.I R.U./sec, and R was calculated to be 17.167 R.U. Therefore,

k was calculated to be 10.027 R/R.U., and DQ was found to be

172.13 R. The total dose for each time setting was calculated

by equation (6.2.1-2).

Theoretically, the dose calculated by equation (6.2.1-2)

at each time setting should have been the same regardless of the

type dosimeter used to calculate D. Because of the difference

in the calculated values of D for each dosimeter type, there

was a discrepancy of 15 R in the dose at each time setting. To
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resolve this conflict, the experimental value of R ( i.e. , the

response of each dos5.meter type for a zero time irradiation)

was used to calculate D . This resulted in values of D of

178.17 R and 1.76.17 R for TL-22 and TL-23 respectively. These

values of D were then used to calculate a corrected dose at

each irradiation time. This procedure reduced the discrepancy

from 15 R to 2 R.

The results of the gamma ray calibration are presented

in Table 8. The corrected dose values from Table 8 were plotted

in Pigs. 21 and 22 against the total response to obtain the

calibration curves. Since the calibration was linear over the

range to 10^ R, points were connected by a line with slope

equal to the calibration factor, k. Above 1(K R, the calibration

line was drawn through the experimental points since the response

was reproducible but not linear.

By comparison of Pigs. 21 and 22, it was observed that

the responses of TL-22 and TL-23 dosimeters to gamma dose were

slightly different. Throughout the dose range investigated,

the TL-23 response was about 20^ higher than the TL-22 response.

6.3. NEUTRON CALIBRATION CURVE

6. 3»1» General Considerations:

The neutron calibration was inherently more difficult

than the gamma calibration. The dose- rate in the Gammacell was

known from prior calibration, but the dose rate of the neutron

generator was not well known, nor was it constant. The dose
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Table 8. Data and results for the gamma calibration curves.

S. No.
Irrad.

time, sec.
Estimated
dose-"-, R

Total Response,
reader units

Corrected
dose, R

22-1 II4-. 50 4 1.89 178.17

22-2 2 111.08 26.51|- 4 3.27 289.25

22-3 6 333.4 ii.O.63 + 3.39 51141

224 12 66648 70.25 + 5.09 814.65

22-5 21*. 1332.96 114.63 ± 6.55 1511.13

.

22-6 ko 2221.6 269.13 + 12.05 2399.77

22-7 60 3332.k 381}.. 38 4 31.14 3510.57

22-8 80 141+3.2 566.25 4 38.98 4621.37

22-9 100 55a -0 798.75 i 117.65 5732.17

23-1 17.57 4 45 176.17

23-2 2 111.08 33.63 4 1.37 287.25

23-3 6 333-4 I4JL.8I4. 4 2.27 50941

234 12 666 48 88.38 4 3.72 8ij.2.65

23-5 2k 1332.96 177.13 4 8.06 1509.13

23-6 k-o 2221.6 306.63 4 4.63 2397.77

23-7 60 33324 512.13 4 4.11 3509.57

23-8 80 W4-3.2 '683.75 4 40.33 4619.33

23-9 100 55S..O 906.11 4 82.91 5730.17

'Estimated dose = (Dose rate in Garamacell x Duration of irradia-
tion)
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rate of tho neutron generator depended upon a number of factors

including the deuterium pressure, the extraction voltage, the

accelerating potential, the depletion condition of the target,

and the position of the irradiation package. Therefore, a dose

rate was not exactly reproducible from one irradiation to the

next. This was the reason that the foil-activation fluence de-

termination was necessary rather than using charge (beam current x

irradiation time) as a relative measure of fluence. Operating

conditions during a given irradiation period were relatively con-

stant, but it was very difficult to reproduce the very same op-

erating conditions during a succeeding run. The assumption made

in using the foil activation technique was that the neutron flux

was constant during a single run.

6.3.2. Experimental Procedure:

The neutron calibration was performed by irradiating

nine dosimeter packages for nine different periods of time.

Preliminary experimentation had shown the order of magnitude of

response obtained for a particular irradiation time, so dosime-

ters were irradiated over such a range of fluence that the

neutron response was of the same order of the response range

considered in the gamma calibration. As it turned out, the

fluence s actually used in neutron irradiation had much higher

equivalent tissue doses than the gamma-ray doses which resulted

in an equivalent dosimeter response.

The first part of the neutron calibration was performed

without the presence of a second package of dosimeters behind
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the activation foil and primary dosimeter package. Ten dosime-

ters, five TL-22's and five TL-23»s, were annealed at Ij.OO°C

for 1 hour prior to irradiation and then placed in a polyethylene

package, alternating the two types of dosimeters. Different

packages were irradiated for $, 10, 20, 30, and J+O minutes. The

activation foils were removed and counted after a period of two

hours to allow decay of the unwanted 'Mg and Al products.

The foils were placed directly on top of the Kal(Tl) scintilla-

tion crystal and counted for a period of time long enough to

give approximately 90,000 counts in the 1.37 MeV photopeak.

The spectrum data was then used to determine the fluence by the

sum-peak method.

Following irradiation, the dosimeters were partially

annealed at 110°C for 7 minutes and read out 21}. hours after the

partial annealing. Since only 5> dosimeters of each type were

read out for each irradiation period, the standard deviations

of the response values were relatively high. As noted earlier

in section 1|.3j when ten dosimeters were irradiated side by

side, one or two dosimeter responses from each package were

generally extremely low. These very low dosimeter responses

were eliminated from each data set when necessary, and the

mean response and the standard deviation of the mean response

were calculated on the basis of four dosimeter readouts.

At this point, new, un-depleted tritium targets were

installed in the neutron generator in an effort to obtain a

higher range of dosimeter response. To improve the standard
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deviation of the response values, irradiation of two dosimeter

packages was employed. The dosimeter types were alternated in

each package. Irradiation of different packages for periods

of 15, 35 , 60, and 90 minutes was accomplished. Again the ac-

tivation foils were removed and counted after a decay period of

about two hours. Pluence was determined by the sum-peak method.

The dosimeter were partially annealed at 110 C for 7 minutes and

read out 2lj. hours after the partial annealing.

For each irradiation period of IS, 3S, 60, and 90 minutes,

eight dosimeters of each type were read out. Consistent with

the procedure employed in the gamma calibration, the high and

low extreme responses were discarded, and the remaining six re-

sponse values were used to calculate the mean response and the

standard deviation of the mean response.

6. 3»3- Analysis of Data and Results:

The results of the neutron calibration are presented in

Table 9.

Table 9. Data and results for the neutron calibration curves.

TL-22 Response, TL-23 Response,
reader units reader units

5.01 + .98 5-56 + .96

10.86 * 2.75 10.13 + 1.73

21.77 + l|-.92 21.32 + J+.70

614 + 9.1 62.5 + 7.1

Irrad

.

time, min.
Pluence,
109 n/cm2

5 66.51]- + 7.77

10 176.9 + 15.7

20 26I4..2 + 8.9

30 7Wi-.9 * 19.5
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Table 9. Data and results for the neutron calibration curves.
(Continued)

ko 1177. ± 31.

15 1919. ± w.

35 3279. i 85.

60 14-599. ± ll8 -

90 514-50. + lh.0.

Irrad. Fluence,- TL-22 Response, TL-23 Response,
time, min. 10° n/cm reader units reader units

86.2 + 2lj..3 93-8 + 12.9

189.8 j- 23.5 200.3 + 2I4..7

365.7 i 7^.0 38O.7 i 61.1

551.0 + 58.2 14.92.5 + I4.7.6

571+.8 + 79.8 552.2 + 61.

5

For the purpose of this calibration, multiplication of

fluence values by a conversion factor for fluence to dose was

not performed. Absorbed dose units must be defined for the

material in which the absorption occurred, such as tissue dose

in rad or rad in LiF. Since the gamma calibration was completed

using the exposure dose in R units, fluence rather than absorbed

dose x^as considered a more comparable indication of. dose, since

neither R nor fluence definitions define the material in which

the absorption occurred.

The data of Table 9 were displayed in Figs. 23 and 21]..

In Fig. 23, the fluence was plotted against the TL-22 response.

In Fig. 2I4., the fluence was plotted against the TL-23 response.

A linear least squares analysis was used to fit a straight line

through the data points using

F = aR + b (6. 3. 3-D

where
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9 , P
F = fluence, 10 7 n/cm ,

R = dosimeter response, R.U.,

9 2
a « constant, 10 n/cm , R.U.,

9 2
b = constant, 10 n/cm .

Due to the much greater magnitude of the high response

data points, this technique resulted in a poor fit of the lower

data points. Therefore, equation (6.3.3-1) was used to fit the

data over a lower range and an upper range. The first four data

points were used for the lower range, and the last five data

points were used for the upper range. For the TL-22 calibration

data, the lower range fit resulted in values of a = 11.75 + •5^4-

9 2 9 2
10 n/cm , R.U. and b = 22.23 10 n/cm . The upper range fit

9 2
resulted in values of a = 8.19 + .65 10 n/cm , R.U. and b =

391.37 109 n/cm2 . For the TL-23 calibration data, the lower

9 2range fit resulted in values of a = ll.lj-9 ± .66 10 n/cm , R.U.

9/2
and b 27.35 10 n/cm . The upper range fit resulted in values

of a = 9.13 f .70 109 n/cm2 , R.U. and b = li^.29 109 n/cm2 .

These least squares lines are also shown in Figs. 23 and 2i|.

6.1}.. CORRELATION OF GAMMA AND NEUTRON CALIBRATIONS:

By correlating the gamma calibration and neutron cali-

bration, it was possible to find a neutron fluence and a gamma

dose in R that induced equivalent thermolumine scent peak heights.

This was possible over the whole range of response values cali-

brated so that a curve plotting gamma dose in R vs. neutron

fluence could be obtained. The results of this correlation are
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presented in Figs. 25 and 26 for TL-22 and TL-23, respectively.

Fluence values were obtained from the least- squares fits of Figs

23 and 2I4.. Gamma dose values were obtained using the calibra-

tion factor in the range (0 - 10 JR) and graphically above 10 jR.

6.5. DIFFERENCES IN GAMMA AND NEUTRON CALIBRATIONS:

The gamma fading study described in section 5.1 was suc-

cessful in determining a method vrhich lead to more stable re-

sults in readout. However, the partial annealing process

adopted was not completely successful in removing the low tem-

perature peaks in the glow curve. Figure 5 showed a typical

glow curve for a gamma irradiated dosimeter which had been

partially annealed. It was noted during the gamma calibration

that there was a good deal of correlation between the height

of the main peak and the height of the low temperature peak.

This was true for both the TL-22 and TL-23 dosimeters as shown

in Table 10.

Table 10. Correlation of main peak and secondary peak heights.

Irrad. TL-22 TL-22 TL-23 TL-23
Time,
sec.

Response,
R.U.

Secondary
Peak, R.U.

Response,
R.U.

Secondary
Peak, R.U.

2
6

34.50 •*•

26.51}- 7
^0.03 ±

1.89
3.27
3.39

1.30 4 .15
2.37 •* .21
3.58 7 .18

17.57 * 45
33.63 + 1.37
[j.1.81}. 4 2.27

1.22 4 .07
2.3I4. + .08

3.23 i .15

12

k.0

70.25 +

114.63 7
269.13 +

5.05
6.55

12.05

6 45 + -3k
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For both the TL-22 and TL-23 dosimeters, th-j secondary,

peak height was an increasing function of the dose, up to the

dose corresponding to 40 second- irradiation time in the Gamma-

cell. Above this dose, a depression in the secondary peak

height occurred , followed by further increase in the secondary

peak height. These data were for a readout performed 24 hours

after the partial annealing, and. were quite different than

that for readout at a different time following the partial

annealing.

A typical chart record obtained from a neutron irradiated

dosimeter which was partially annealed 24 hours prior to read-

out is shown in Fig. 27. It was noted that no secondary peak

occurred in the glow curve of a neutron irradiated dosimeter.

This was true for both types of dosimeters over the entire

response range considered in the neutron calibration.
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7. DETERMINATION OP COMBINED DOSE EFFECTS

7.1. DETERMINATION OF GENERAL COMBINED RESPONSE CHARACTERISTICS

7.1.1. Basis:
/ 7

Since both LiF and LiF thermoluminescent dosimeters

are sensitive to both gamma rays and 11].. 7 MeV neutrons in such

a way that the response is an increasing continuous function

of the dose, the effect of combined neutron and gamma dose on

the response was investigated to determine if the presence of

populated traps created by one type of radiation would affect

the creation of populated traps by the other type of radiation.

7.1.2. Experimental Procedure:

Twenty-four TL-22 dosimeters were annealed at lj.00
o
C for

1 hour. Sixteen of the dosimeters (group A and group B) were

irradiated for 50 seconds in the Gammacell. Eight of these

dosimeters (group A) were used to monitor the response due to

gamma rays alone. The other eight dosimeters (group B) were

then packaged in two small polyethylene covers, placed alter-

nately in the packages with eight more dosimeters (group C).

Each package contained eight dosimeters, four from group B and

four from group C. The packaged dosimeters were then positioned

as usual near the neutron generator target behind an activation

foil (see section lj.,5.2) and neutron irradiated for 65 minutes.

All dosimeters were then partially annealed for 7 minutes at

110 C and read out after 21}. hours. The same irradiation pro-

cedure was repeated using twenty-four TL-23 dosimeters, except
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a different tritium target was used, and neutron-irradiation

time was 50 minutes instead of 65 minutes.

7.1.3* Results and Conclusions:

Eight dosimeter responses were used to calculate the mean

response end standard deviation of the mean response for each

group. Group A represented the gamma response, group C repre-

sented the neutron response, and group B represented the com-

bined response. The results obtained are presented in Table 11.

Table 11. Response of dosimeters to combined dose.

Dosimeter Neutron Gamma Combined
Type Response, Response, Response,

R.U. R.U. R.U.

TL-22 319.1 i ^8.6 298.8 £ 38.6 6694 ± 67.6

TL-23 3J4-6.I + 5^.9 3*1-8.1 + 31.1 805.9 + Ik- 7

From the calibration curves (Figs. 21-2!].), the gamma-ray

dose and neutron fluence corresponding to each response value in

Table 11 was determined. For TL-22, the neutron response cor-

12 2responded to a fluence of 3*01 x 10 n/cm , and the gamma re-

sponse corresponded to a dose of 2.59 x 1CK R. For TL-23, the

2 p 2neutron response corresponded to a fluence of 3*31 x 10 n/cm ,

and the gamma response corresponded to a dose of 2.62 x 10^ R.

For TL-22, the experimentally determined combined response

mean value of 669.1 \ 67.6 was compared to the calculated com-

bined response value of 617.9 + 62.1, determined by addition of
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the gamma response and the neutron response. For TL-^3, the

experimentally determined combined response mean value of 80S»9 +

71^.7 was compared to the calculated combined response value of

69i|.2 { 63.I. For both dosimeter types, the experimental mean

response value was slightly larger than the calculated value,

but the experimental and calculated values overlapped within the

standard deviation.

7.2. DETERMINATION OP EFFECT OF NON-SIMULTANEOUS IRRADIATION

7.2.1. Basis:

Use of dosimeters in combined dose fields would generally

take place with simultaneous absorption of the different radia-

tion components. Since separate equipment was used to provide

neutron and gamma radiation, it was impossible to determine

combined dose effects using simultaneous irradiations. There-

fore, experiments were performed to determine the combined dose

effects with neutron exposure followed by gamma exposure and

with gamma exposure followed by neutron exposure. Section 7*1

showed that the presence of populated traps created by gamma

radiation did not affect the creation of populated traps by

neutron radiation. Therefore, if the combined response was

shown to be the same for neutron dose followed by gamma dose

and for gamma doss followed by neutron dose, it could also be

concluded that the presence of populated traps created by neu-

tron radiation did not affect the creation of populated traps

by gamma radiation. Therefore, the dosimeters could be used in
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simultaneous combined radiation fields, . knowing the presence of

populated traps created by one type of radiation did not affect

the creation of populated traps by the other type of radiation.

7.2.2. Experimental Procedure:

Two series of irradiations were performed with both dosim-

eter types. Sixteen TL-22 dosimeters were irradiated in the

Gammacell for 6 seconds. Eight of these dosimeters (group A)

were used as a monitor of the response due to the gamma radia-

tion. The other eight dosimeters (group B) were packaged with

eight un-irradiated dosimeters (group C) and then neutron ir-

radiated for about 5 minutes (which was calculated to give

about the same response due to neutron irradiation). The eight

group C dosimeters were then irradiated in the Gammacell for 6

seconds with eight more dosimeters (group D) which served as

a monitor of this second gamma irradiation. All twenty-four

dosimeters were then partially annealed at 110 C for 7 minutes

and read out'2lj. hours later. This procedure was repeated using

TL-23 dosimeters. Then the entire procedure was repeated for

both dosimeter types using a Gammacell irradiation time of 5>0

seconds and a neutron generator irradiation time of approxi-

mately 55 minutes.

All dosimeters had been annealed for 1 hour at l4-00°C

prior to irradiation.
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7.2.3. Results and Conclusions:

For each dosimeter type, the two series of irradiations

covered a relatively low response range and a response range of

approximately an order of magnitude higher. Eight response

values were- used to calculate a mean response and the standard

deviation of the mean response. The results obtained are pre-

sented in Table 12, along with equivalent gamma dose and neutron

fluence for each mean response.

In table 12, the column labeled "B - A Response" repre-

sented the response due to neutron irradiation for dosimeters

with a prior gamma exposure; the column labeled "C - D Response"

represented the response due to neutron irradiation for dosime-

ters receiving a gamma exposure after neutron irradiation. In

each case, the (B - A) mean values were within the standard

deviation of the corresponding (C - D) values, and the (C - D)

mean values were within the standard deviation of the corres-

ponding (B - A) values. This demonstrated that the response

due to neutron radiation was not dependent on whether or not

populated traps created by gamma radiation were present, and the

response due to the gamma radiation was not dependent on whether

or not populated traps created by neutron radiation were present.

Thus, the dosimeters could be used in simultaneous combined

radiation fields, and the presence of one type of radiation

would not affect the response due to the other type of radiation.
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7.3- EFFECT OF COMBINED DOSE ON SECONDARY PEAK:

The correlation between the lox-7 temperature peak and the

main peak in the glow curve, which was described in section

6.5>j did not appear for combined dose radiations. The secondary

peak did appear in combined dose glow curves, but it was not in

the same proportion to the main peak as it was for gamma radia-

tion alone, nor was it the same magnitude as it was for a gamma

radiation of the same dose used in the combined radiation.
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8. DISCUSSION AND CONCLUSIONS

8.1. DISCUSSION OF PRELIMINARY EXPERIMENTS:

. The gamma-ray background on the neutron generator was

determined to be slightly larger in terns of percentage for

TL-23 dosimeters, since the neutron response of TL-23 dosim-

eters was lower, and the gamma response was higher than the

corresponding responses of the TL-22 dosimeters. In either

case, the response due to gamma rays did not exceed 2% of the

response due to neutrons. The primary gamma-ray dose received
on po

during irradiation was due to the Al(n,Y) Al reaction in

the activation foil and the accelerator cap. The short half

life of this product resulted in attainment of saturation ac-

tivity in a relatively short time, so that for irradiation

periods of greater than about 15 minutes, the slight increase

in the gamma response as a percentage of trie neutron response

24- 27
was due to the buildup of tne two ether products, Na and Mg.

By keeping a detailed record of irradiations performed, it

would have been possible to estimate the gamma-ray contamina-

tion received by each set of neutron-irradiated dosimeters.

This was not done, due to the limited number of dosimeters

available and the additional computer time which would have

been necessary to perform trapezoidal integrations to relate

post-neutron irradiation response to response during irradia-

tion (procedure as described in section 5.2). For most ir-

radiations, the gamma response was between X'o and 2'o of the

neutron response.
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The results of the fading study lead to the adoption of

the post-irradiation procedure described in section 5>.1.3. When

gamma-irradiated dosimeters were read out 2l\. hours after post-

irradiation annealing, there was a good deal of correlation

between secondary peak height and main peak height. The fading

study glow curves showed, however, that the secondary peak de-

cayed considerably over the 72 hour fading study period, and

the correlation between the secondary peak and the main peak

was greatest at the 2l\. hour readout time.

The partial annealing procedure produced low main peak

response for TL-22 dosimeters read out 1.5 hours after partial

annealing. This suggested that an equilibrium process was in-

volved between low temperature and high temperature traps in

6 7
LiP. The process evidently either did not occur in 'LiF, or

equilibrium was attained sooner than 1.5 hours after the par-

tial annealing.

8.2. DISCUSSION OF CALIBRATION EXPERIMENTS:

Over the range to 10^ R, the calibration factors ob-

tained for conversion of response (reader units) to gamma-ray

dose (R) were 12.288 R/R.U. and 10.027 R/R.U. for TL-22 and

TL-23 dosimeters, respectively. Thus for a dose in this

range, the TL-23 response would be about 2yf higher than the

TL-22 response. In the range above 10-^ R, the TL-23 response

was higher at each calibration dose by a factor of from ll\.% to

33/o j averaging 20/o higher. It has been reported that the re-

6 7
sponses of LiF and 'LiF to gamma-ray dose are essentially
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identical*-*. Evidently the higher gamma-ray response obtained

for the TL-23 dosimeters used in these experiments was due to

grouping by the manufacturer. After a standardized irradiation,

dosimeters were grouped by the manufacturer to be within ±10fo

of the mean response. The group of TL-23 dosimeters evidently

had a mean response of about 20fo higher than the mean response

of the TL-22 dosimeters. This was probably due to slight dif-

ferences in the amount of phosphor in the ampule.

The least squares fit in the low response range of the

neutron calibration using equation (6. 3 .3-1)* F = aR + b, re-

9 2
suited in values of a = (11.75 t »5h) x 10 n/cm , R.U. and b =

22.23 x 109 n/cm2 for TL-22, and a = (ll.lj.9 f .66) x 109 n/cm2 ,

R.U. and b = 27.35 x 109 n/cm2 for the TL-23 dosimeters. It

thus appeared that the neutron responses of the TL-22 and TL-23

dosimeters were very nearly identical in the low response range.

However, to adjust for the greater amount of phosphor contained

in each TL-23 dosimeter, the neutron response of TL-23 dosimeters

should be reduced by about 20$ to obtain TL-23 response due to

a quantity of phosphor equivalent to the quantity of phosphor

in the TL-22 dosimeters.

As described in section 6.3*2, the neutron calibration

was performed over the same response range as the gamma calibra-

tion, without regard to the actual tissue dose received in the

neutron irradiation. For gamma-ray radiation, LiF is nearly

tissue equivalent, but for neutron radiation, it is not. A re-

sponse of 50 reader units, for instance, corresponded to a
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gamma-ray dose of 6II4..I4. R or 609.7 x 109 n/cm2 for the TL-22

dosimeters and corresponded to a gamma-ray dose of 501. 1| r or

601.5 x 109 n/cm2 for the TL-23 dosimeters. Prom ref. (27),

the conversion factor for R to tissue rad is .965 tissue

rad/R. From ref. (28), the conversion factor for II4-.7 MeV

fluence to first collision dose in tissue rad is 6.06 x 10

rad/(n/crn ). Therefore, the dose in tissue which gave a TL-22

60
response of 50 reader units was 592.9 rad Go gamma dose or

3695 rad II4. . 7 MeV neutron dose. The dose in tissue which gave

a TL-23 dosimeter response of 50 reader units was J4.83 . 9 rad

gamma dose or 361+7 rad II4..7 HeV neutron dose. (A set of dose

values inducing equivalent responses could be obtained from

Figs. 25 and 26 by considering responses other than 50 reader

units.) Based on the response of 50 reader units, the TL-22

dosimeters were more sensitive to Co gamma rays than to II4..7

MeV neutrons by a factor of approximately 6.23, based on

equivalent tissue dose. The TL-23 dosimeters were more sensi-

tive to Co gamma rays than to II4-.7 MeV neutrons by a factor

of approximately 7.70.

8.3. CONCLUSIONS:

Several conclusions can be drawn based upon the results

of these studies.

(1) The postirradiation annealing process (7 minutes

at 110 C) has a different effect on LiF thermoluminescent do-

7simeters and on '"LiF thermoluminescent dosimeters.
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6 7
(2) Gamma-ray irradiation of both LiF and 'LiF dosime-

ters followed by postirradiation annealing results in lower -

temperature traps. For neutron irradiation, no such traps

appear.

7
(3) The response of 'LiF thermoluminescent dosimeters

to II4..7 MeV neutrons is lower by about 20fo than the response

of LiF thermoluminescent dosimeters to an equivalent neutron

dose.

(i|) On a tissue dose basis, TL-22 dosimeters are approx-

imately 6.2 times as sensitive to ' Co gamma rays as to Hj.,7

MeV neutrons. TL-23 dosimeters are about 7»7 times as sensi-

tive to Co gamma rays as to lI{-.7 MeV neutrons.

(5) In a mixed radiation field of II4-.7 MeV neutrons and

Co gamma rays, the presence of populated traps created by one

type of radiation does not inhibit the creation of populated

6 7
traps by the other type of radiation in either LiF or 'LiF.
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9. SUGGESTIONS FOR FURTHER STUDY

In the field of thermoluminescent dosimetry, many areas

still need investigating.

The neutron energy dependence of the response of LiF

7
and 'LiF dosimeters needs further investigation over a wide

range of neutron energies.

Since the lower -temperature peak did not appear in the

glow curve of neutron-irradiated dosimeters, a fading study of

neutron-irradiated dosimeters would be quite interesting, as

a key to the actual cause of fading in gamma-irradiated dosime-

ters. This would require a source of neutrons capable of ac-

curate reproduction of the dose received by the many dosimeters

required for a fading study.

The availability of a neutron source to accurately re-

produce the dose received by many dosimeters would also enable

study of different gamma-ray doses applied over a given level

of neutron dose. From this study, perhaps some correlation

could be found between the gamma dose and the secondary peak

height for a dosimeter which received a combined dose.

Determination of the differences in the thermoluminescent

6 7emmission spectra of LiF and 'LiF for gamma radiation and neu-

tron radiation might indicate the mechanisms responsible for

the differences in the glow curves of neutron and gamma-

irradiated dosimeters.
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12. APPENDIX A

CURVE FITTING METHOD

The following method was used in this work to fit the

two photo-peaks and the sura peak of the ^Na-decay spectra to

a Gaussion function.

The peaks were assumed to be pure Gaussian, i.e. ,

-(x^- x )

2

Y
±

= Y e ^ (A-1)

where

Y^ = counts in channel i of photopeak,

Y = count corresponding to channel x ,

x «b raean channel of the Gaussian function,

x- = channel number,

p
b = 2 °
o
p

o = variance of the Gaussian function.

Equation (A-1) is nonlinear and must be linearized to apply the

principle of least squares. The logarithm of equation (A-1)

yields a linear form:

xn
2

2xn 1 P
In Y

±
"- in YQ - ,-2- 4- 5-° x. - ^ x.

d
(A-2)

o

Equation (A-2) can be written in terms of new variables:

o
z
±

= a
x

+ a
2
x
±

+ a^x
i , (A-3)

where



9*.;

Z. = In Y.
1 1

xn
2

a
l

= in Y -

2x
o

o
'

_b~;

a
2

=
b
o

1
a
3

= ~
E
o

The principle of least squares applied to equation (A-3) yields

(29)
the following matrix equation v ":

a = (X»W X)"1 (X»W Z), (A-I4.)

where

a is a (3x1) vector of the coefficients a-,, a2 , and a-,,

X is a (n x 3) matrix whose first column is composed of all

unity values, the second column is composed of the x- values,

2
and the third column is composed of the x. values,

X I is the traspose of X,

Z is a (n x 1) vector of the z- values,

W is a (n x n) diagonal weighting matrix whose elements are

the inverse of the variances of the Z. values,

n is the number of data points.

The variance of Z. can be obtained by *-* '

:

2( Z .) -. 1 o2(Y.) »|_. U_5)
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It should be noted that by applying the principle of

least squares to equation (A-3) instead of to equation (A-l),

the minimum total squared deviation is

n x
2

2x 1 p 2
SL - Z (in Y. - (In Y -

b
-~ 4-

h
~^x

±
- ^-x^) ) . (A-6)

1=1 o o o

The desired minimum total squared deviation is

-<x
i - x

o>
2

-

Minimumizing SL does not guarantee a minimum for Sn . To

minimize SD requires an iterative technique which employs a

Taylor 1 s series expansion and can result in unstable solutions

for cases with variations in the data. In addition, this

method requires a significantly longer amount of computation

time.

Variance values for Y ,x , and b
Q
were obtained by:

2 2 2
02(Y

o>
= {C 1,1 + !y°2,2 * f^C

3, 3
)}e*P {2

( al " £fJ
} CA-8)

i

3
l+a^K*% h£ ' ^3

° 2(x
o) = £| {C

2,2
+ (V a

3
)2c

3,3
} (A" 9)

2
(b

Q ) = C
3j3

/a^ (A-10)

where



97

a-,, a.p, and a., are the elements of the vector a,

and

C-, -,, Cp p, and C ^ -. are the diagonal elements of the

(X'W X)"
1
matrix.

Since the Y value is just a normalization term, it could

also be calculated by minimizing Sn after x and b were ob-

tained by minimizing S-r. This method yielded lower variance

p
values for Y . Hence, Y and (Y ) were calculated from

n

o " i=l 1 x 1 (A-ll)

n W.K,
2

z i i

i=l

a2 (Y ) = 1 (A-12)

n W.K. 2
Ell

i=l

where

n = the number of data points used in the fit,

K
±

= exp(-(x
i

- x )

2/b
Q

}

In deriving equation (A-12), it was assumed that W. = 1/Y .

.

Having determined the parameters of the Gaussian Func-

tion, the area of the peak was determined by integration of

equation (A-l) from - °° to + °°
. The area was given by

A = Y (ttdJ 32
(A-13)
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FORTRAN

OOOl

000?
000

3

000*
000*

0010
0011
0012

0013
oot*
0015
0016
0017

0018
0019
0020
0021
0022
0023

002*
0025
0026
002 7

IV G LEVEL 1. WOO 5

PfioioM CoSe - Prefsammcf £y EcJcMf- M&*t,eS £y £/'*,
MAIN DATE - 69080 l*/21/*0

niNENSIUNSPECII256>, BKG I 2 56 ) , V AH I 2 >(, ) . A I I. 1 ) , I ) I , 1 1 1 2 I . M I

1).VARI(2561.SPEC1<256I.C(256I,E 1 101 .C M 296 I .ARE AS I » ) . < ( M ) . BK i.m i .">

26)
t FORMAT!*.!))
2 F0RMAM6X.12F6. 0,2X1
3 F0RMA1 ( S( 1*.81
*, FORMAT (/3X.7H ENERGY , 1 3X , »M YO.13X.3H X0.13X.3H hi,I,:<,'.m FMHN.8X
I.UH RESOLUTION. 8X.5M AREA /)

*> FORNAM20A*)
7 FORMAT I E1*.B,*K,EI*.8,2X,E1*.8,2X,E1*.8,2X,E1*.8,2X,C1*.8,2X,E1*
1.8)

8 FORMAT!/ 8X, 1 3, 7X,E1*.8, I0X,EI*.8 )

9 i ""Ml // 5X.8M CHANNEL. 10X.9H SPEC TRUM, 1 OX , 1 6H WTSfLOC DOMAIN)
l/»

10 FORMAT) Uil )

11 F0*NAT(1SX,29H COMPTON EOCE MINUS GAUSS FIT I

12 FORMAT! // 5X.8H CHANNEL , 1 OX , 9M SPECTRUM, 10X
1/1

HTSIMN OOMA(N)

13 FORMAT! MOH STAND DEV /)

1* FORMAT! /// tOX,8H SLHPE * ,E I* . 6. 1 OX . 1 2H INTERCEPT - ,E1*.6 / )

IS FORMATI// 1SX.33H PHOTO PEAK MINUS EXPONENTIAL FIT )

17 F0RMAT(8F10.UI
18 F04MATI IH1 , 7H Al = .F12.6.7H A2 = .F12.6.8H A12 = .E12.6.10H

1 TOTAL > .F12.6,* DISINTEGRATIONS **,E12.61
19 FORMATI2F*.0)
20 Fn4MAT(5A*,*Fl0.5>
21 FORMATISA*)
22 FORMAT I IH0.6X, 'DISINTEGRATIONS PER GRAM , El *. . h I

2* E01MATT lH0,6X,*2ERn TIME DISINTEGRATIONS * a ,El*.6>
25 FORMAT I 1H0.6X, ' IRRAD TIME «',F8.*,' COUNT TIME -'.F8.*,* DECAY

I TIME «*,F8.*,' CORR OECAY TIME , ,F8.*)
26 FORMAT! 1H0, 1*X. 'TOTAL N/SQ.CM. » a .EL6.8,' STO. UEV. > a ,E16.8>
27 FORMAT (8F10. 5)
2R FORMATI I*,F*.0)
29 FORMAT! I HO, 1 *X ,

* VAH 1 •,E16.8,< VAC' • , P t 6 . 8 ,
• VAR3 > '.E16.8

I)

30 FORMAT 1 IHO, l*X, 'VARFl - , ,E16.B.' VARF2 .E16.8)

•••• ALL VARIANCES IN THE LOG DOMAIN
•••••NOSPEC IS THE NUMBER OF SPECTRA USING THE SAME BKG

STIME IS THE COUNTING TIME FUR THE SPECTRUM
BTIME IS THE COUNTING TIME FOR THE BACKGROUND
HT1MF = 2ERU IF THERF IS NO BACKGROUND COUNIING TIME

TR « TIME FROM REMOVAL TO BEGINNING OF CUUNT
II-*-* IRRADIATION TIME
ALL 1IMFS EXPRESSED IN MINUTES

0029
003O
0031
0032

• ••MODEM INPUT BY 6X.12F6.0.2X
2 INPUT BV 8F10.0

••• KIN0»1 BKG IS NOT SUBTRACTED
2 BKG IS SUBTRACTED

•• NPEAK IS THE NUMBER OF PEAKS TO BE FIT PER SPECTRUM

100 READ! 1,2»)N0SPEC, BTIME
BI tME=BT IME/60.
IFINOSPEC.EQ.OICALL EXIT
00 70* II»1, NOSPEC

FORTRAN [V G LEvei

0033
003*
0035
0036
0031 110
003S
0031 101
00*0
00*1
00*2
00*3 HI
00**
0045 112
00*6 118
00*7 1201
00*8 119
00*1
0050 120
0051
0052
0053 121
005*
0055 130
0056
0057
0058
0059
0060
0061 1303
0062 1300
0063 1301
006*
0065 133
0066 1302

A1N DATE PAGE 0002

RCAOI I, 201 I 01 1 I, 1*1,5 ), ME I GUT, ST 1 ME.TIRR.TR
STIMf=ST|ME/60.
IIRR=I[RR/60.
TR*TR/60.
READ! 1, 1 I NCHN, MODE, KIND, NPEAK
READ!1,27)!E( I I. 1 = 1, NPEAK)
Kin .r,r. UG0I0U9
IFI (MODE.EQ.2I.AND.IKIND.E0.1))GO TO 121
IF(MODE.E0.2)GO TO 112
Ft IMODE.EO. II. AND. IKINO.EO. 1 ) ) GO! 01 20
RFAD! 1.2XBKGIJ). J=l.NCHN)
GOTO! 18
READ! 1,171 (BKG! J) , J= 1 , NCHN

)

DO 1201J-1.NCHN
BKGMIJ)«BKG( J)
CONTINUE
IF(M0DE.EQ.2)G0 TO 121
READ I 1.2) ( SPEC T I Jl, J=1,NCHN1
IF (Kl'ID.FQ.l IG0T01 301
GO TO 130
READ! l» 171

(

SPECTIJ), J-l.NCHN)
IMK INO.EO.l )GOT01 301
CONTINUE
FACT=ST|ME/BTINE
D01300 JM.NCHN
SPECTUI«SPECT(J)-6KGMU)«FACT
IFISPECTIJI.LT.0.0IGOTOI3O3
G0TO1300
SPFCT! J)»0.0
CONTINUE
IA«EA*0.0
D0133 J«1,NCHN
TAREA=TAREA*SPECTIJ)
00 700 JJ»1, NPEAK

• IPPLL IS THF LOWER LIMIT UF THE PEAK
• IPPUL IS THE UPPER LIMIT OF THE PEAK
•NCOMP IS THE FIRST DATA POINT OF THE COMPTON EOGE
•LINE IS THE LAST DATA POINT USEO IN THE EXPONENTIAL
•LEAST SQUARES FIT

006 7

0068
0069
0070
0071 1*0
0072
0073
0074
0075
0076 131
0077 132
00 78
00 79
0080
00,1 1000
0082 1*1
00,1 1*2

READ! I, SI 10! 1 ), 1 = 1,20)
WR|TE(3.10r
wW 1 T F I 3,51 (01 I I , I = 1 ,20)
URITFI 3«9I
RE AD I 1 , 1 I I PPLL , IPPUL , NCONP, L INE
DO 132 J'NCOMP, IPPUL
IFIKIND.EO. 1)G0 TO 131
va'-m j I I (SPECK J) -FACT •BKG* UH*»2)/1 SPECT I J> *BKGM|J >«FACT**2 )

IF(K!N0.EQ.2)GU TU 132
VARIJKSPECUJ)
CONTINUE
MHI TF I 3,8 1 (J. SPECT (J ) , V AR IJ I , J-NCOMP, I PPUL

1

001000 J«NCOMP, I PPUL
VARU JI-VAHIJ)
SPFCl 1 Jt-SPECM J)
AREAO-O.
CALL GAUSS I SPEC I, NCHN, IPPLL. I PPUL , 80, YO, XO . ARE A ,C . VAR , A , 8 I
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FORTRAN IV G LEVEL 1, MOO 3 MA IN DATE

0084
0085
0086
0087
0088
008"*

0090
0091
0092
0093

W«1.6**»S0RT(BOI
R«M*100./I0
WRITEI3,*)
WRITEI3,7)EIJJI,VO,XO,BO,W,R,AREA
«KI IH 3, I II
-•' I l i

i I, mi i
i il ,1 i i i , •: i i ,

i

i l ,C(*I ,CI5I ,C(6I
CCI JJ)=CI6)
AREAS! JJI*AREA
GOTDTOO
IFIJJ.EQ.3IGOTO700

0094
0095
0096

0097
0098
0099
0100
0101
0102
0103
010*

0105
0106
0107
0108
0109
0110
0111
0112
0113
Oil*
0115
0116
0117
0118
0119
0120
0121

0122
0123
012*
0125
0126
0127
0128
0129
0130

IIY0U2I LABEL
RAT=AREAO/AREA
IFI 10. 950.LT. RATI. ANO. I 1.050. CT. RAF) ICO TO 700
AREAO=AREA

C
£•••••••• SUBTRACT FIT FROM COMPTON EOCE
C

WRITE! 3,101
WRITE! 3,111
WRITEI3.12)
00 150 K=NCONP,LINE
CIK)=YO»EXPI !-lFLOAT(K)-XOI««2l/BOI
BKGIK)=( (SPEC! IKI-CIKI I »»2 I /SPEC TIKI

150 i It I Al in. I
.!! (. I < l -i. I Kl l

URI TEI 3,81 IK.CIKI.BKCIKI ,K=NCOMP,L I NE

I

C
(*••••••• FORM SOLUTION MATRIX
C

XK =

DO 2

BID
00 2

200 Al I,
on 2

All,
Al 1,

AI2,
BUI
BI2I

210 XK = X

AI2,
SLOP
CEPT
CEPT
WRIT

00 1 = 1,2

: = NCtlMP,LINE
111, 1 MBKGIK)
II 1,2)»XK«BKG(KI
i!2.2l*(XK»»2l»BKGIK)
)»CIK I'BKGIK I

!>»XK*C(KI»8KG(K)

111,21
II1,1I*BI2I-AI2,1I*BI1II/IA(1,1I«AI2,2I-AI2,1I*AI1,2II
'IIBI1I*AI2,2I-BI2I*A(1,2I)/IAI1,1I*AI2,2)-A(2,1I*AI1,2)II
>T»EXPI-SLOPE»FLOAT(NCOMP) I

1*ISL0PE,CEPT
C
£•••*«**• SUBTRACT EXP FIT FROM PEAK
C

001001 J=NCOMP, IPPUL
VARIJI=VAR1 I J)

1001 SPECTIJ)=SPEC1I J)
WRITEI3, 15)
D0699 K=IPPLL. IPPUL
EXTRAP=CEPT»EXP( SLOPE 'FLOAT I Kl

I

VARIK)=I (SPECTIK)-EXTRAP)»»2I/ISPECTIKI»(FL0ATIK) >**2)»VARIK)
SPECTIK)=SPECT(K>-EXTRAP

699 CONTINUE

FORTRAN IV G LEVEL 1, MOO 3 DATE = 69080 PAGE 000*

0131
0132
0133
013*
0135
0136
0137
0138
0139
01*0
01*1
01*2
01*3
01**
01*5
01*6
01*7
01*8

01*9
0150
0151
0152
0153
015*
0155
0156
0157
0158
0159
0160
0161
0162

701 WRIT
WRIT
GOTO

700 CONT
703 CR = A

WRIT
CRl
WRIT
ALAM
FEE =

FIE =

FOE =

FUM=
TBAR
WRIT
CRNO
WRIT
FLU*
IE)
SIG1
SIG2
sir.i

SIS2
WRIT
SIG2
SIG2
SIG2
WRIT
SIGF
WRIT

70* CONT
GOTO
END

EI3,9)
EI3.8)
1*2
INUF
REASI1
EI3.18
CR/WEI
E I 3,22
=.693/
.693»S
l.-EXP
ALOGIF
F0F«15
=TR-FU
H 3,25
T=CR»E
El 3,2*
CRNOT»

IK.SPECTIKI ,VAR(K),K=IPPLL, IPPUL )

)*ARE
AREA

GHT
ICR1
15.
TIME/
l-FEE
IE/FE
./.69
n

I T IkR
XPIAL
ICRNO
26.98

ASI2 l/AREASI 31 TARE*
SI1I,AREASI2I,AREAS(3I,TAREA,CR

ST IME.TRtTBM
AM* TBAR

I

T

• TIRR/I . U525».602»WEIGHT»I l.-EXP!-ALAM»TIRR)l»STIM

= ICCI 1 l*AREASI 2 l/AREASI J I l*»2
=(CC(2»»AREAS(1>/AREAS!3II««2
=(AREAS(l)«AREASI2l»CC(31/IAREASI3l*«2)l*»2
G=SIGI»SIG2«S1G3»TAREA
Fl 3,29ISIG1,SIG2,SIG3
Fl=(FLU/CRI»*2»SIG2G
F2= I FLU*. 00277/. 11525 I ««2
F=SIG2Fl*SIG2F2
F I 3, IUISIG2FI.SIG2F2
SIG2F»».5

El 3.26IFLU.SIGF
INUE
100
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FORTRAN IV G LEVtL 1, Mini 1 GAUSS DATE • 69080

OOOI
000?
0003

0004
ooos
0006
OOOT
0008
0009
0010
0011
0012
001}
0014
0015

0016
0017
0018
0019
0020
0021
0022
0023
002*
0025
0026
0027
0028
0029
0030
0031
0032
00 3 3

0034
0035
0036
0037
0038
00 39
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056

SUBROUTINE GAUSS! SPEC T.NCHN, IPPLL, I PPUL ,B0, YO.XO, AREA, C, VAR , A, B

I

0IMENSIONSPECTt256),AI3,3),BI3I.C!6),B2t 30 I ,BKG 1256 ) ,VARI 30 )

4 FURMATI35H LOWER LIMIT OF PHOTOPEAK FROM CHAN, 14. 8H TO CHAN, 14,/
1.35H UPPER LIMIT OF PHOTOPEAK FROM CHAN, 14, 8H TO CHAN, 14)

9 FORMAT! //30H EXPERIMENTAL PHOTOPEAK POINTS / I

10 FnRMATI //28H CALCULATFO PHOTUPEAK POINTS / »

14 FORMAT!// 18H FUNCTION ERROR ,E 14.8, 5X, 1 1HLN ERROR .EI4.8/I
15 FORMAT! 1X.5E16.8 I

FIX|.VO»EXP(-l (X-X0)*«2)/Bni
IPPLO'IPPLL
IPPUO- IPPUL

212 XN=0.
00 20 1-1,3
Bl I 1*0.
00 20 J'1,3

20 All, JI'O.
C«»«» FORM SOLUTION MATRIX

00 30 l=IPPLL, IPPUL
XN2=XN»XN
XN3-XN2«XN
XN4=XN3»XN
ZN'ALOGISPECTt I I I

All, 11=4(1, 1 |.XN4«VAR( I

)

A(1,2I=AI1,2I»XN3»VARII1
Al I, ll=4( 1, II »XN2»VAR I I I

A( 2. (>=A( 2, 3)»XN»VARI 1 I

A!3,3)*A(3.3>«VARI I I

B(1I>B(1)»XN2«JN»VAR(I I

8(?)=B(? I»XN*ZN«VAR( I I

B( 3)=B(3)*7N«VARI I I

30 XN=XN»1.
A<2, 1I«A( 1,2)
AI3, 1 1=1(1,31
A(2.2I'A(1,3)
A(3,2I=AI2,3)
CALL INVERT(3,A,B)
XO=(-B(2)/(2.»B(l ) I 1

B0--1./BI 1)

Y1 = 0.
Y2*0.
XN = 0.
00 104 I'IPPLL, IPPUL
Y1=Y1»EXPI-(XN-Xnl ••2/801
Y2=Y2»EXPI-2»IXN-X0)««2/B0I/SPECTI I I

104 XN=XN»1.0
Y0=Y1/Y2
C(3l=l./Y2
XO=Xn«FLOAT(IPPLLI
N=0
RES-O.
STOEV=0.
XN-0.0
00 40 I=IPPLL, IPPUL
STUEV = STDEV»I (ALOGISPECT! I I )-BI 3 1-B I 2 1 «XN-B I 1 >»XN»»2 I *«2

)

RES=RES»(SPECT( I I -F I FLOAT I I 1)1 *»2
40 XN=XN»l.

WRITEI 3,14)RES,STD6V
STDEV=SORT(RES/FLOATI I PPUL-I PPLL-2 I

)

FORTRAN IV G LEVEL I, MOD 3 GAUSS DATE • 69080

0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094

IFI 1.5»STDFV.GT.ABS( SPECK I PPLL I -F IFLOAT I I PPLL I ) ))G0 TO 50
IPPLL-IPPLL*1
N*l

50 IFISTOEV.GT.ABSISPECTI IPPUL 1-FIFLOATI I PPUL )>

)

IGO TO 60
IPPUL=IPPUL-1
N=l

60 IFIN.EQ. 1) GO TO 212
SIG'SQRTIBOI
AREA".Y0»S0RT(3.1416)»SIG
IFI1PPL0.NE.IPPLLI GO TO 70
IFI IPPUO. E0.1PPULIG0 TO 71

70 WRITEI3.4) IPPLO, IPPLL, IPPUO, IPPUL
71 ZN-l./(4.«B< 1)»»2)

XN-IBI21/BI 11 !*»2
XN2=l./IBI 1I»«4I
XN3*XN/4.
XN4-I XN*»2I /FLOATINCHN)
Cll>=2N*(A<2,2)«XN*A(l,L))
CI2)=XN2*Atl,l>
CI4)*0.6922*CI2)/B0
C<5)*HCt4)*Clll»2.7689»B0/(X0«»2) l/(X0»»2) I

CI6)-3.l*16*IBO»CI31»CI2l»Y0»»2/t4.»B0> I

00 100 1=1,6
100 CD I =SORTICI 1)1

CI5)=100.*C(51
MAX-IPPUL-IPPLL»l
XN*0.
XO-XO-FLOATI IPPLL)
on 105 1=1, max
B2(

I

l-FIXN)
105 <N=XN»1.

X0-XD»FLOATI IPPLL)
HRITEI3.9)
WRITE I 3, 15) ISPECTI I ) , I -1 PPLL, IPPUL

)

WRITEI), 101
WRITE I 3, 15) (B2I I), I 'I.MAX I

RETURN
ENO
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ABSTRACT

Theory of thermoluminescence and thermoluminescent dosim-

etry was reviewed. Factors affecting the thermoluminescent

response of LiP were discussed. The theory of foil activation

as a means of fluence determination using the sum peak method

to determine absolute activity was discussed.

A postirradiation annealing procedure of 7 minutes at

110°C followed by readout 2\\. hours later was found experimen-

tally to reduce problems of fading in EG- and G model TL-22 and

model TL-23 thermolumine scent dosimeters.

Calibration curves for Co gamma radiation in the dose

2 3range (10 to 6 x ICk) R were determined for both dosimeter

types. Calibration curves for II4..7 MeV neutrons in the fluence

range (.6 x 10 to 60 x 10 ) neutrons/cm were obtained. Cor-

relation curves for equivalent response plotting Co dose vs.

fluence were also obtained.

Conclusions drawn from analysis of the data were:

(1) the postirradiation process has a different effect

6 7
on Lip and 'LiP thermoluminescent dosimeters;

6 7
(2) ganma-ray irradiation of both LiP and 'LiF TLD's

followed by postirradiation annealing results in lower-temper-

ature traps, while neutron irradiation followed by postirradia-

tion annealing does not result in lower-temperature traps;

.(3) the response of 'LiF TLD's to II4..7 MeV neutrons is

lower by about 20^ than the response of LiP TLD's to an equiva-

lent neutron dose;



(4) on a tissue dose basis, TL-22 dosimeters are approx-

imately 6.2 times as sensitive to Go gamma rays as to 14-. 7

MeV neutrons, while TL-23 dosimeters are about 7*7 time's as

sensitive to Co gamma rays as to 1^.7 MeV neutrons;

(5) in a mixed radiation field of 14.7 MeV neutrons and

60
Co gamma rays, the presence of populated traps created by one

type of radiation does not affect the creation of populated

traps by the other type of radiation in either LiF or LiF.




