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Abstract 

Prescribed burning in tallgrass prairie affects a wide range of human and natural systems.  

Consequently, managing this biome based on sound science, and with the concerns of all 

stakeholders taken into account, requires a method for mapping burned areas.  In order to devise 

such a method, many different spectral ranges and spectral indices were tested for their ability to 

differentiate burned from unburned areas at both the field and satellite scales.  Those bands 

and/or indices that performed well, as well as two different classification techniques and two 

different satellite-based sensors, were tested in order to come up with the best combination of 

band/index, classification technique, and sensor for mapping burned areas in tallgrass prairie.  

The ideal method used both the red and near-infrared spectral regions, used imagery at a spatial 

resolution of at least 250 m, used satellite imagery with daily temporal resolution, and used 

pixel-based classification techniques rather than object-based techniques.  Using this method, 

burned area maps were generated for the Flint Hills for every year from 2000-2010, creating a 

fire history of the region during that time period.  These maps were compared to active fire and 

burned area products, and these products were found to underestimate burned areas in tallgrass 

prairie. 
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CHAPTER 1 - Impacts of Prescribed Burning on Tallgrass Prairie 

1.1 Impacts on Plants 
Before trying to characterize and map burned areas in tallgrass prairie, it is helpful to 

review the links between fire and the tallgrass prairie ecosystem.  Currently, spring burning of 

tallgrass prairie is widely prescribed as a management technique in the Flint Hills of Kansas and 

Oklahoma, and has been practiced since the early 1900s (Towne and Owensby 1984).  Prior to 

settlement, lightning and Native Americans may have been responsible for igniting these fires 

(Anderson 1990).  Regardless of how they are started, fire in tallgrass prairie continues to 

perform the same ecological role it has played for millennia: to influence the sustainability, 

species composition, and productivity of plant communities (Knapp and Seastedt 1998).  This 

comes as no surprise, as tallgrass prairies most likely evolved into their modern form due at least 

partly to fire (Bragg and Hulbert 1976).  In fact, it is possible that no other North American 

biome relies so heavily on fire to remove dead biomass and maintain ecosystem function (Knapp 

and Seastedt 1986). 

1.1.1 Sustainability 

Prescribed burning plays a primary role in preserving and sustaining the tallgrass prairie 

ecosystem.  One way it does so is by preventing trees and other woody plants from replacing 

native grasses and forbs.  Even in places where precipitation is sufficient to support woody 

species, fire allows the ecosystem to be dominated by C4 graminoid species such as Andropogon 

gerardii (big bluestem), Schizachyrium scoparium (little bluestem), Sorghastrum nutans 

(indiangrass), and Panicum virgatum (switchgrass) (Collins 1992, Glenn et al. 1992, Collins and 

Steinauer 1998, Hartnett and Fay 1998). 

In addition to suppressing trees and other woody species, fire may prevent non-native 

grass species from invading tallgrass prairies.  Simmons et al. (2007) found this to be true in two 

midgrass Texas prairies, and Smith and Knapp (1999) found it to be true in tallgrass prairie.  

Specifically, the latter study suggested that fire reduced exotic species richness (which was 

composed of about 90% C3 plants) by 80-90%, and reduced the cover of exotic species.  The 

tendency of fire to reduce the abundance of some C3 grasses has also been noted by Abrams and 
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Hulbert (1987) and by Towne and Kemp (2003).  These traits are very important to maintaining 

the economic vitality of the tallgrass prairie and parts of the Flint Hills region, as prescribed 

burning is a relatively inexpensive means by which ranchers can control less-palatable non-

native plants and woody vegetation (Bernardo et al. 1988). 

1.1.2 Species Composition 

Fire also affects the spatial and temporal heterogeneity of plant communities (Collins 

1989, Hartnett and Fay 1998).  Typically, plant community heterogeneity is inversely related to 

burn frequency, so that as burning increases, plant communities become less diverse (Abrams 

and Hulbert 1987, Collins 1992).  This effect can be so pronounced that even some native, 

warm-season grasses, such as P. virgatum, be virtually excluded from pure stands of other warm-

season grasses, such as A. gerardii (Knapp 1985).  Collins and Smith (2006) found that both 

spatial and temporal community heterogeneity were lowest on annually burned sites and highest 

on sites burned every twenty years.  Additionally, Collins (1992) and Collins and Steinauer 

(1998) found that a significant, positive relationship exists between spatial and temporal 

heterogeneity.  That is, areas that are spatially homogenous, such as annually burned areas, tend 

to remain that way across the time span of several years, and vice versa.  Collins and Steinauer 

(1998) noted that it is unusual to have a disturbance (fire in this case) that stabilizes and 

homogenizes an ecosystem.  Consequently, these effects of fire may be unique, at least in North 

America, to tallgrass prairies. 

Several factors are responsible for the homogenizing effects of fire on tallgrass prairie.  

Many woody species have exposed meristems and early aboveground growth that is also easily 

damaged by fire (Hartnett and Fay 1998), while native grasses have large root systems and 

belowground meristems (at least during early spring burning) that protect them from fire 

(Hartnett and Fay 1998).  It should be noted, however, that not all published research agrees on 

the importance of direct mortality to woody species (Collins and Steinauer 1998).  Frequent 

burning also favors a few species due to its tendency to volatilize nitrogen (N) in dead plant 

matter (Hobbs et al. 1991).  As this N is lost to frequent burning, the store of soil N is gradually 

depleted.  This favors a few species that can cope with reduced N levels, usually matrix species 

such as A. gerardii (Collins and Steinauer 1998).  Another effect of frequent burning is that it 

allows consistent amounts of sunlight to reach the soil, which also favors matrix species (Collins 



 3

and Steinauer 1998).  The seasonality of the burn event can also influence plant community 

structure.  Although Towne and Kemp (2003) found that the homogenizing effects of fire 

occurred regardless of burn seasonality, Engle et al. (1998) found that late season fires tended to 

reduce the production of matrix grasses and increase production of forbs.  However, this 

relationship may be more complicated than originally thought, as Engle et al. (1998) also found 

that these effects are less dramatic in years of higher precipitation, and Engle and Bidwell (2001) 

found that they might be routinely overestimated at larger spatial scales, such as the entire Flint 

Hills. 

Finally, it should be noted that although frequent fire has a homogenizing effect, all of 

the relationships discussed above are highly dependent on spatial scale.  For example, an 

annually burned (and therefore homogenous) five-hectare tract might only be part of a larger, 

more diverse several-hundred hectare pasture that is burned at varying frequencies.  This issue is 

further complicated when the spatial variation of pre-burn biomass (and therefore burn 

completeness) is considered (Collins and Smith 2006). 

1.1.3 Productivity 

In addition to being more homogenous, burned tallgrass prairies have been shown to 

consistently produce more biomass than similar unburned areas, particularly if the burning is 

done in late spring when warm-season grasses are beginning to grow (Towne and Owensby 

1984, Knapp and Seastedt 1986, Svejcar and Browning 1988).  Towne and Owensby (1984) also 

found annual burning did not limit productivity in any way, even after being sustained for many 

years.  One reason for this increase in productivity is that prescribed burning liberates nutrients 

contained in dead plant material in order to stimulate new growth.  For example, Anderson et al. 

(2006) found that N availability increased (and so productivity increased) when grasslands were 

both burned and grazed, but that this occurred only when pastures were both burned and grazed.  

That is, one or the other alone did not produce the same effect; and burning alone has been 

shown to reduce N availability (Collins and Steinauer 1998).  Additionally, Svejcar (1990) noted 

that A. gerardii produced more tillers on burned areas than on unburned areas.  These additional 

tillers during the growing season led to more aboveground biomass production. 

Another way prescribed burning stimulated more biomass growth is by increasing solar 

radiation and lowering leaf temperatures to the optimal range for growth.  Knapp (1984) 
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demonstrated that standing dead biomass reduces incident radiation on new shoots by up to 

58.8%, leading to a 55.4% reduction in biomass production.  Additionally, Knapp (1984) showed 

that burned prairies maintained more optimal leaf temperatures in the range of 25-35º C, rather 

than the much higher temperatures maintained by unburned plots.  Furthermore, Knapp (1985) 

showed that A. gerardii on burned patches showed higher rates of photosynthesis, leaf thickness, 

and shoot biomass compared to unburned areas.  

 Other research suggests that productivity increases on burned areas independently of 

external controls.  Heisler and Knapp (2008) found that burned areas consistently out-produced 

unburned areas with respect to aboveground net primary production (ANPP), despite equal 

amounts of precipitation over several similar study sites.  Finally, Towne and Kemp (2003) 

found that burn seasonality did significantly affect biomass (as was previously thought) because 

burning increased biomass in all seasons tested (fall, winter, spring). 

1.2 Link Between Fire and Grazing 
Although the effects of prescribed burning on plant communities are important in their 

own right, their effects are often interrelated with grazing in tallgrass prairies, and fire and 

grazing are often identified as the two most important disturbance types in tallgrass prairie 

(Collins and Steinauer 1998).  One example of this relationship is that herbivores such as Bison 

bison (bison) and Bos taurus (cattle) are attracted to recently burned areas for the high quality, 

recently regenerated vegetation (Vinton et al. 1993, Coppedge and Shaw 1998).  For this reason, 

grazing often has the opposite effect of frequent burning because it reduces the dominance of 

native grasses (they are preferentially grazed) and provides space for other species to colonize 

the area.  This increases plant community heterogeneity (Collins 1987, Glenn et al. 1992, 

Hartnett et al. 1996, Hickman et al. 2004) in a manner similar to that expected from less 

frequently burned non-grazed areas (Collins and Steinauer 1998).   

Grazing also tends to increase heterogeneity by moving N stores from aboveground 

plants to the soil.  This prevents burning activities (even on frequently burned patches) from 

volatilizing the N, whereby it would be lost (Hobbs et al. 1991).  Again, higher N concentrations 

allow more plant species to compete.  Finally, it is worth mentioning once again that the changes 

in heterogeneity wrought by grazing are entirely related to the scale of the activity (Collins and 
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Smith 2006), and likely depend on the specific plant species that are being studied as well 

(Hickman et al. 2004). 

1.3 Impacts on Wildlife 
In addition to plants and grazing animals, prescribed burning affects wildlife.  For 

example, Wilgers and Horne (2006) found that herpetofaunal community compositions within 

different burn treatments are significantly different from one another, and that several species 

showed clear preference for a specific burn treatment, though overall species diversity was 

similar among all treatments.  It should also be noted that fires impact reptiles directly, as they 

are often too slow (due to cold-bloodedness) to escape fires (Kaufman et al. 1998a).   

With regard to small mammals, Kaufman et al. (1990, 1998b) reported that different 

species respond differently to burning, with some increasing and some decreasing, though 

overall species richness was lower on burned areas.  It is likely that small mammal responses 

were due to the higher biomass production associated with burning, rather than due to the direct 

effects of fire (Collins and Steinauer 1998).   

Insect populations are closely tied to burning events as well.  Jonas and Joern (2007) 

found that prescribed burning affected grasshopper abundances and community composition.  

Evans (1984, 1988) reported that overall grasshopper species diversity increases with time since 

fire because grasshopper diversity depends directly on plant species diversity.  Furthermore this 

increase is more pronounced with forb-feeding species than with grass-feeding species (Evans 

1988).  Additionally, grass-feeding species tend to peak and decline earlier in burned areas 

(Evans 1984).   

Regarding grassland birds, upland bird numbers were found to increase two years after an 

area was burned, in spite of the fact that the initial burning tended to destroy bird nests (Van 

Dyke et al. 2007).  Furthermore, Fuhlendorf et al. (2006) found that patch burning increased bird 

diversity compared to homogenous burning of an entire area.  Zimmerman (1992) noted that 

during non-drought years, burning had little effect on grassland-dependent bird species 

(Ammodramus henslowii—Henslow’s Sparrow —was an exception), but that species richness 

decreased in drought years.  Many negative effects of burning on birds have been demonstrated 

as well.  Population models by With et al. (2008) show that three species of songbird could not 

sustain viable populations in the Flint Hills in 2004 or 2005 based on rough burned area 
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estimates.  Their analysis suggests that even very large tracts of tallgrass prairie might not be 

enough to maintain viable breeding populations of some birds if the focus of fire-based 

management on those large areas is directed toward livestock production alone.   

In the case of all species mentioned above, the trends depend on the scale at which the 

areas were burned, and it is possible that by constantly rotating what areas are burned (and 

grazed), ranchers can sustain livestock production while conserving plant biodiversity (and 

therefore animal biodiversity) at the same time (Anderson et al. 2006, Fuhlendorf et al. 2006, 

Wilgers and Horne 2006).  That is, fire cannot be removed from tallgrass prairies without 

negative consequences for both human and natural interests, but overusing fire in order to 

maintain homogenous stands of matrix tallgrass species is not ideal either, as fire and grazing 

treatments that promote uniformity cannot maintain biodiversity in tallgrass ecosystems 

(Kaufman et al. 1998b, Fuhlendorf et al. 2006). 

1.4 Impacts on Humans 
The effects of prescribed burning in tallgrass prairie are not always limited to the plants, 

animals, and economic interests associated with the immediate area.  Pollutants from biomass 

burning in general, though often considered only a nuisance, can have serious health implications 

for humans living within the airshed of burned areas (Radke et al. 2001), and these airsheds can 

extend for hundreds of miles (Niemie et al. 2005).  Furthermore, these implications could 

become more serious as the Earth’s climate continues to change (Ebi and McGregor 2008).  The 

most common chemicals produced by biomass burning are oxocarbons (COX), sulfur oxides 

(SOX), ozone (O3), ammonia (NH3), nitrogen oxides (NOX), methane (CH4), and other non-

methane hydrocarbons (NMHC) (Dennis et al. 2002, Pope et al. 2002).  Although brief exposure 

to these chemicals causes little risk, longer-term exposure can be harmful, particularly in the case 

of sulfur oxides (Pope et al. 2002).  Biomass burning is usually responsible for only a small 

portion of the total budget of these chemicals in the atmosphere, though an exception may be 

carbon monoxide, where total emissions due to fires may be as much as 10% of the total budget 

according to a study by Dennis et al. (2002).  

More likely to affect human health than chemicals are the particulates released during 

burning.  Whereas only small percentages of the total atmospheric mass of the chemicals 

mentioned above are from biomass burning, a large percentage of airborne particulates are from 
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this activity (Dennis et al. 2002).  Furthermore, particulates are likely to do more damage to 

humans, especially when they are less than 2.5 μm in size.  Particles of this size, unlike larger 

particles of 10-15 μm, are strongly associated with elevated mortality due to lung cancer and 

other cardiopulmonary-related causes (Pope et al. 2002).  Particulates are also associated with 

the production of O3, and controlling particulates helps to alleviate ozone pollution problems as 

well (Meng et al. 1997). 
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CHAPTER 2 - This Place of this Study in Burned Area Mapping 

Research 

2.1 Importance of Burned Area Mapping Research 
Chapter 1 establishes that prescribed burning in tallgrass prairies affects a wide variety of 

both human and natural systems, including but not limited to plant species diversity and 

community structure, biomass production, wildlife species diversity and numbers, ranching-

based economies, and local and regional human health.  Furthermore, prescribed burning and its 

effects are important to a wide range of academic disciplines and government agencies 

conducting research or otherwise working in tallgrass prairies.  All of these interests would 

benefit from knowing how much area is burned each year, and when and where that burning 

takes place (Pereira et al. 1997, Eva and Lambin 1998, personal observation).  As of this writing, 

however, only the Bluestem Pasture Report (USDA-NASS 2011), a voluntary survey based on 

producer-reported estimates of burned area, exists for the Flint Hills.  For this reason, the 

overarching goal of this research was to develop a method of accurately mapping burned areas in 

tallgrass prairie of the Flint Hills. 

2.2 State of Burned Area Mapping Research 

2.2.1 The Utility of Remotely Sensed Data 

This study used remotely sensed data from both in situ measurements and from satellite-

based sensors.  Remotely sensed imagery is ideal for burned area mapping because of its 

relatively high temporal and spectral resolution, its cost effectiveness, and its ability to access 

otherwise inaccessible areas (Pereira et al. 1997, Al-Rawi et al. 2001, Roy et al. 2002).  In fact, a 

large body of literature that explores the utility of remote sensing methods for mapping burned 

areas already exists, and forms the theoretical basis for the application of burned area mapping 

methods in a wide range of land cover types.  Despite its large size and critical role, however, 

this body of knowledge could be further enriched by research that develops theories, methods, 

and products that are specific to mapping burned areas in grasslands, including tallgrass prairie, 

for the reasons outlined below. 
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2.2.2 Active Fire and Burned Area Products 

Current satellite-derived products that show burned areas or estimate burned area from 

active fire data are often inaccurate and of questionable usefulness (Eva and Lambin 1998).  For 

example, Boschetti et al. (2004) found little agreement between two different burned area 

products, particularly with regard to the areal extent of the burned patches.  Giglio et al. (2006) 

found that active fires correspond poorly with actual burned areas (burned areas are severely 

underestimated), and that this correspondence was even poorer in cover types with few trees, 

such as grasslands and savannahs.  Chuvieco et al. (2008) note similar problems with estimating 

burned area with active fire products.   

The failure of active fire data to estimate burned areas accurately is due to a number of 

factors.  In the case of the products evaluated by Boschetti et al. (2004), the estimates were made 

from active fires that were detected at night, when only self-sustaining fires, such as forest fires, 

were left burning.  In contrast, prescribed grassland fires started during the day would have likely 

burned out by the time of satellite overpass, and only burn scars would remain (Eva and Lambin 

1998, Pereira 2003).  Even with an optimal overpass times and daily imagery, however, the brief 

nature of grassland fires would inevitably lead to significant inaccuracy, as not every pixel that is 

actually burned is detected as a fire pixel (Eva and Lambin 1998, Roy et al. 2002, Boschetti et al. 

2004, Li et al. 2004, Giglio et al. 2006).   

Another problem with using burned area products and active fire estimates is that they 

were developed to map burned areas regionally or globally across a wide range of biomes.  

Because of this, they must marginalize certain cover types to some extent (Chuvieco et al. 2008, 

Giglio et al. 2009).  Grassland, where estimating burned area from active fires is relatively 

difficult, is usually the cover type that is marginalized.  Nonetheless, it is important to note that 

Silva et al. (2004), Roy et al. (2005), and Loboda et al. (2007) have made headway in mapping 

burned areas across diverse ecosystems using adaptable detection algorithms.  Similarly, 

Boschetti et al. (2008) found that two independent burned area products corresponded well to 

each other, though these results were in forest rather than grassland.  Despite this progress, 

however, these studies are still far from producing global estimates that are as reliable as local 

ones.  Consequently, the focus of this study was to directly estimate the spatial and temporal 

extent of burned areas, rather than derive them from active fire data or burned areas products, 

though it compared burned area maps produced for the Flint Hills to both of those products. 
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2.2.3 Current Burned Area Mapping Research 

2.2.3.1 Grassland Burned Area Mapping Research 

Another reason for conducting grassland burned area mapping research is that relatively 

little work has been done in this ecosystem type, though grasslands are specifically addressed in 

a few instances.  For example, Cao et al. (2009) mapped burned areas in a semi-arid grassland 

with a Support Vector Machine (SVM) approach, while Rahman and Gamon (2004) 

characterized the evolution of a semi-arid grassland burn scar using in situ measurements.   

Research performed in other grassland types is often of limited use for burned area 

mapping in tallgrass prairie.  In the case of both studies mentioned above, the lower biomass of 

the semi-arid grassland produced far less char on the burned surface, and led to more exposed 

soil in both burned and unburned areas, than would be the case in tallgrass prairie (Rahman and 

Gamon 2004, Cao et al. 2009).  This lessened the contrast between the burned and unburned 

areas, which typically makes burned area identification more difficult (Pereira et al. 1997).  In 

fact, Rahman and Gamon (2004) show that with the exception of the charcoal signal (which 

quickly disappears) burned and unburned areas of semi-arid grassland are statistically similar 

until re-growth begins.  Another difference between these two grassland types is that re-growth 

does not usually take place immediately after burning in semi-arid grasslands, but spring burning 

leads to immediate re-growth on tallgrass prairie. 

The work of Silva et al. (2004) also illustrates that current grassland burn mapping 

research is often of only minor help to mapping burned tallgrass prairies.  In this case, Silva et al. 

(2004) worked toward a global burned area-mapping algorithm using the Système Probatoire de 

l'Observation de la Terre (SPOT)-VEGETATION (VGT) instrument by breaking down land 

cover into separate classes (including grasslands).  This work does provide suggestions for band 

and index selection for grassland burn mapping, but is limited in scope to the few bands 

available on the SPOT-VGT sensor.  Finally, Mohler and Goodin (2010) simulated (from 

radiomteter data) and examined the utility of two common spectral regions and one index for 

differentiating burned from unburned areas in tallgrass prairie.  However, this study has yet to be 

expanded to include the full range of potentially useful spectral regions and indices. 

2.2.3.2 Burned Area Mapping In Other Cover Types 
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Like the grassland-specific work mentioned in the previous paragraph, burned area 

mapping studies in other land cover types can provide information that is useful to burned area 

mapping in tallgrass prairies.  For example, Pereira (2003) found that the loss of telltale 

combustion products due to scattering by the wind, the quick recovery of the burn scars, and the 

persistence of cloud cover are major challenges to burned area mapping in savannahs with 

remotely sensed imagery.  Trigg and Flasse (2000) noted a rapid removal of the char signal in 

savannahs poses another challenge.  Shao and Duncan (2007) discuss the challenges associated 

burned area mapping during rapid re-growth—in their case, with Florida oak scrublands.  Pereira 

(2003) points out that different biomass fuel loads lead to different burn signatures in savannahs.  

This complicates burned area mapping in that “burned surface” can refer to any number of 

different spectral classes (Pereira 2003).  All of these challenges apply to burned area mapping in 

tallgrass prairie as well, because ash and char can be scattered rapidly by the wind and rain, the 

spectral properties of different burned areas vary, and the wet season (and therefore cloud cover) 

in spring corresponds to the period of highest burning activity and most rapid vegetation re-

growth.  Though they are be discussed in more detail in Chapter 4, burned area mapping studies 

in other cover types can also be valuable for their identification of spectral regions and indices 

that might be useful for burned area mapping in tallgrass prairie.   

Burned area mapping work in cover types other than grasslands can be useful for its 

methodological findings as well.  For example, Mitri and Gitas (2004a, 2004b, 2006, 2008) 

demonstrated the superiority of object-based classification methods over pixel-based 

classification methods for mapping forest fire scars.  Although forests and grasslands are very 

different cover types, it is likely that many of the technical aspects of this work would apply to 

grasslands as well.  A study by Hudak and Brockett (2004) is another example.  They 

demonstrate and discuss the utility of the parallelpiped classifier for burned area mapping in a 

savannah, and aspects of this study could prove useful to the same pursuit in tallgrass prairie. 

Despite their usefulness in many instances, caution must be exercised when applying 

findings from other cover types to tallgrass prairie.  If the cover types are different enough, this 

is often intuitive.  For instance, Stroppiana et al. (2002) found that the best spectral regions for 

differentiating burned from unburned forest areas could not perform the same task well in 

grasslands because the spectral differences between burned and unburned forest remain on the 

landscape longer than in grasslands.  This happens because more forest biomass is burned, 
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because forest combustion products (char and ash) are more likely to remain on the ground 

longer, and because forest re-growth is very slow (Pereira 2003).   

Perhaps less intuitively, savannah areas and even grassland areas (like the semi-arid ones 

discussed at the beginning of this section) often fail to accurately represent other grasslands, 

including tallgrass prairie.  Furthermore, these inadequacies remain even when the grassland 

component of a savannah area is evaluated independently of the ecosystem as a whole 

(Stroppiana et al. 2002, Silva et al. 2004).  Stroppiana et al. (2002), noted that the probability of 

misclassifying burned patches increased more rapidly with burn age in grasslands than in other 

cover types.  Another example is provided by Pereira (2003), who found that if burning occurs in 

the understory of moderately dense tree cover, such as in a woodland savannah, the major 

reflectance change is a drop in the near-infrared (NIR), while burning in sparse tree cover or pure 

grasslands results in a decrease in reflectance across the entire spectrum.  Trigg and Flasse 

(2000) and Dempewolf et al. (2007) also discuss these issues.  Although most researchers 

maintain that the char signal of a burned savannah area disappears quickly (e.g., Trigg and Flasse 

2000, Pereira 2003), Dempewolf et al. (2007) notes that “quickly” might mean up to two weeks 

or more, due in part to the absence of re-growth in many savannah studies.  This may not be 

likely in tallgrass prairies, where most burning takes place during the wet season and wind is a 

constant factor.  Not only do these factors rapidly decrease the char signal, but, in the case of 

precipitation, can also cause both burned and unburned areas to re-grow rapidly (Pereira et al. 

1997).  This process steadily eliminates the spectral differences on which burned area detection 

depends (Trigg and Flasse 2000, Mohler and Goodin 2010), and can lead to confusion between 

unburned vegetation and older burned areas (Eva and Lambin 1998). 

2.2.3.3 Global Burned Area Mapping Techniques   

Finally, a discussion on current burned area mapping research would not be complete 

without at least a brief discussion of burn mapping techniques over large, diverse regions and 

over the entire Earth.  Many studies have concluded that applying a methodology for mapping 

burned areas to all land cover types, and even to specific subtypes within certain biomes, is 

difficult due to the great diversity of landscapes at a global level (Pereira 2003).  Consequently, 

the automation of wide-scale burned area mapping applications is extremely difficult (Periera et 

al. 1997).  Chuvieco et al. (2008) demonstrated this with regard to burned grasslands, which 

showed the least overall classification accuracy of any cover type when mapped across Central 
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and South America.  Interestingly, these differences were regional as well, as burned areas 

mapped in temperate grasslands were less accurate than those in tropical grasslands (Chuvieco et 

al. 2008).  It is clear, then, that global burned area mapping algorithms, if they are to be viable, 

must include local factors specific to the ecosystem being studied (Chuvieco et al. 2008).  This 

study, therefore, used the information provided by post studies of other cover types, as well as 

information from tallgrass prairies, to create a body of literature that concentrates specifically on 

burned area mapping in tallgrass prairie. 

2.3 Research Questions, Objectives, and Hypotheses 
The questions and objectives of this research are based on the interrelated issues 

discussed above.  First, that the current body of knowledge concerning burned area mapping with 

remotely sensed imagery in grasslands, and in tallgrass prairie in particular, will benefit from 

additional research.  Second, that conducting this research will allow a wide range of affected 

entities, both human and natural, to benefit from the resulting theories, methods, and products.  

The specific research questions and objectives of this paper are as follows: 

 

Research Question: Which spectral regions and indices can differentiate between burned and 

unburned tallgrass prairie at the individual patch scale? 

Objective: Reveal the utility of various simulated bands and indices for differentiating between 

burned and unburned tallgrass prairie from burning through senescence at the patch scale 

based on hyperspectral data gathered in situ. 

Hypothesis: A statistical difference exists between burned and unburned patches of tallgrass 

prairie with the simulated band/index in question for a particular time since burning took 

place. 

   

Research Question: Are the bands and indices that performed well when measured in situ also 

effective at the satellite imagery scale? 

Objective: Reveal the utility of different TM and MODIS bands and indices for differentiating 

burned from unburned tallgrass prairie at the satellite image scale. 
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Hypothesis: Those bands and indices that were successful in differentiating burned from 

unburned tallgrass prairie using in situ data will also do so effectively at the satellite image 

scale. 

 

Research Question: Which bands/indices, sensors, and techniques perform best for mapping 

burned areas in tallgrass prairie? 

Objective: Use the band/index suitability information that was obtained by accomplishing the 

first and second objectives to identify which bands/indices, sensors, and classification 

techniques work best for mapping burned areas in tallgrass prairie. 

Hypothesis: Object-based classification techniques will map burned tallgrass prairie more 

accurately than pixel-based techniques based on prior studies in other cover types. 

Hypothesis: TM will allow for more accurate burned area mapping in tallgrass prairie than 

MODIS due to its superior spatial resolution. 

Hypothesis: Due to cloud cover, MODIS must be used in order to achieve a sample that is 

temporally dense enough for burned area mapping in tallgrass prairie. 

Hypothesis: Bands and/or indices composed of red and NIR wavelengths will be required for 

optimal burned area mapping in tallgrass prairie because they represent the best compromise 

in spatial and temporal resolution. 

 

Research Question: What is the burn history of the Flint Hills? 

Objective: Reconstruct the spatio-temporal fire history of the Flint Hills for as far back in time 

as suitable imagery is available (identifying this time depends upon completion of the 

previous three objectives). 

 

Research Question: How do estimates of burned areas calibrated specifically to tallgrass prairie 

compare to those from global burned area and active fire products? 

Objective: Compare final burned area maps to MODIS active fire product and MODIS burned 

area product. 

Hypothesis: Locally produced burned area maps will depict burned areas more accurately than 

active fire product. 
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Hypothesis: Locally produced burned area maps will depict burned areas more accurately than 

the monthly burned area product. 
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CHAPTER 3 - Study Area 

 The study area of this research was an 18-county region in the Flint Hills of Kansas and 

Oklahoma (Figure 3.1).  The Flint Hills are the largest extant patch of tallgrass prairie 

(Kollmorgen and Simonett 1965, Knapp and Seastedt 1998).  All satellite-level analysis in 

Chapters 5 and 6 used portions of this study area.  All historical burned area mapping (Chapter 7) 

and the comparison of these results to active fire and burned area products (Chapter 8) was 

preformed across the entire 18-county region.  All in situ hyperspectral sampling (Chapter 4) was 

performed solely on the Konza Prairie Biological Station (KPBS; Figure 3.1), a 3,487 ha Long-

Term Ecological Research (LTER) site located in Riley County, Kansas.  The KPBS was used 

for this purpose because it is managed so that different watersheds are burned at different, known 

intervals of between one and twenty years.  Additionally, each watershed receives one of three 

grazing treatments (no grazing, grazing by B.  taurus, and grazing by B. bison).  Knowing these 

factors, as well as the spatial extent of each watershed, allowed these variables to be controlled 

(or at least accounted for) in the in situ analysis. 

Precipitation for Manhattan, KS, near the KPBS in the northern part of the study area, 

averages 835 mm per year, with approximately 52 mm of this coming as snowfall (Hayden 

1998).  This precipitation is usually concentrated during the growning season (approximately 

75%), though this value is highly variable from year to year (Hayden 1998).  Temperature for 

Manhattan, KS averages –1.8 °C for the month of Januray, and 26.5 °C for the month of July. 

Although tallgrass prairie dominates the study area due to thin upland soils (Freeman 

1998), several other land cover types are also found there.  Croplands, usually planted to corn or 

soybeans, are prevalent in the relatively flat floodplains of the area’s streams and rivers.  In 

addition to cropland, gallery forests follow the course of many streams and rivers.  Although rare 

in the uplands overall, trees can be locally common in areas where fire and grazing have been 

suppressed.  These species, despite their relative rarity, contribute greatly to the species richness 

of the study area (Freeman 1998).  Figure 3.2 shows simplified land cover for the study area 

based on the Kansas Gap Analysis Program (GAP) data (Kansas Applied Remote Sensing 

Program 2001). 
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Although the vegetation of the study area can be divided roughly into the land cover 

classes of tallgrass prairie, tree cover, and crops, a large amount of heterogeneity exists within 

even the seemingly homogenous tallgrass prairie class.  Although matrix species such as A. 

gerardii, S. scoparium, S. nutans, and P. virgatum dominate the Flint Hills, species typically 

associated with drier environments, such as Bouteloua gracilis (blue grama), Bouteloua 

curtipendula (sideoats grama), and Buchloe dactyloides (buffalograss) occur in more xeric sites 

(Freeman 1998).  Other non-graminoid species are interspersed within the tallgrass matrix as 

well, including many species of forbs and woody shrubs (Freeman 1998).  As mentioned in 

Chapter 1, these species increase or decrease with regard to burn frequency, climate, and grazing 

intensity.  Finally, it should be noted that the main large herbivore in the study area, B. bison, 

was replaced by B. taurus after Euro-American settlement (Hartnett et al. 1996). 
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Figure 3.1:  18-county study area in Kansas and Oklahoma, showing KPBS in Riley 

County, Kansas. 
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Figure 3.2: Map of grassland and non-grassland areas within the larger study area.  

Adapted from Kansas GAP data (Kansas Applied Remote Sensing Program 2001). 
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CHAPTER 4 - In Situ Hyperspectral Analysis 

4.1 Introduction 
The first objective of this study was to investigate the utility of various simulated bands 

and indices for differentiating between burned and unburned tallgrass prairie from burning 

through senescence based on hyperspectral data gathered in situ.  This objective was 

accomplished by testing the hypothesis that a statistical difference exists between burned and 

unburned patches of tallgrass prairie with the simulated band/index in question for a particular 

time since burning took place.  Meeting this first objective is necessary because characterizing 

the spectral-temporal properties of burned and unburned areas, as well as the change in these 

properties over time, is the logical first step toward the larger goal of mapping burned areas with 

satellite imagery (Chuvieco and Cognalton 1988, Pereira et al. 1997, Trigg and Flasse 2000).  

This is even more important in this case considering the lack of research in grasslands (Silva et 

al. 2004, see Chapter 2). 

4.2 Methods 

4.2.1 Band and Index Selection 

The specific bands and indices tested were chosen based the published performance of 

equal or similar bands and indices in various cover types, including both tropical and boreal 

forest, savannahs with varying amounts of tree cover, an oak scrubland, and two semi-arid 

grasslands.  Although these cover types are different (sometimes very different) than tallgrass 

prairie, little published literature evaluates the usefulness of any spectral region or index in 

tallgrass prairie specifically, and rarely does so in any grassland type.  As a result, many spectral 

regions and indices were considered here, even though they are only known to be effective in 

cover types other than grasslands.  Finally, it should be noted that all bands in this study were 

simulated based on their MODIS wavelength ranges only, though the exact wavelength range of 

similar spectral regions usually varies by sensor (Table 4.l).  This is justified in section 4.2.3. 
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Table 4.1: Comparison of similar bands for several satellite-based sensors.  The number on 

the left of the semicolon is the name of the band, while the range to the right is the area of 

the spectrum covered in micrometers.  The acronym ASTER, which is not defined in the 

text, stands for Advanced Spaceborne Thermal Emission and Reflection Radiometer. 
Band TM MODIS SPOT-VGT AVHRR ASTER 
Blue 1; 0.45-0.52 3; 0.459-0.479 BO; 0.43-0.47  
Green 2; 0.52-0.6 4; 0.545-565 1; 0.52-0.6 
Red 3; 0.63-0.69 1; 0.62-0.67 R; 0.61-0.68 1; 0.58-0.68 2; 0.63-0.69 
NIR 4; 0.76-0.90 2; 0.841-0.876 NIR; 0.79-0.89 2; 0.725-1 3; 0.76-0.86 
LNIR  5; 1.23-1.25  
SMIR 5; 1.55-1.75 6; 1.628-1.652 MR; 1.58-1.75 3A; 1.58-1.64 5; 1.6-1.7 
LMIR 7; 2.08-2.35 7; 2.105-2.155 5-9; 2.145-1.365

 

4.2.1.1 Bands 

Among the bands that were simulated, NIR was chosen because it performed well across 

a wide variety of cover types (e.g., Lopez-Garcia and Caselles 1991, Koutsias and Karteris 1998, 

Pereira 1999, Stroppiana et al. 2002, Pu and Gong 2004, Shao and Duncan 2007), which should 

be expected (Silva et al. 2004).  More specifically, Mohler and Goodin (2010) found that NIR 

could differentiate burned areas from unburned for at least a month in tallgrass prairie, while 

Trigg and Flasse (2000) place this figure at only a few days in a senescent savannah (likely 

because regrowth had not commenced and both dead and burned vegetation look the same.  

Additionally, the decision tree of Dempewolf et al. (2007) did not select NIR, though this does 

not speak directly to its usefulness. 

Unlike NIR, the red spectral region saw mixed reports in the literature as to its 

usefulness.  Among those studies that did not identify red as an important spectral region for 

burned area mapping were Koutsias and Karteris (1998) using TM in a forest area, Pereira 

(1999) using AVHRR in a shrubland/forest, Pu and Gong (2004), Silva et al. (2004) using 

SPOT-VGT in various cover types, Shao and Duncan (2007), and Dempewolf et al. (2007).  

Trigg and Flasse (2000) found this wavelength to be sensitive for only a few days, while Mohler 

and Goodin (2010) found it to be useful for up to two months.  Lopez-Garcia and Caselles (1991) 

noted that it could separate burned areas, but did not excel at doing so, while Stroppiana et al. 

(2002), using SPOT-VGT in a savannah, echoed this sentiment. 
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Like NIR, long-wavelength middle infrared (LMIR) was deemed useful for burned area 

mapping in a wide variety of cover types (e.g., Lopez-Garcia and Caselles 1991, Koutsias and 

Karteris 1998, Trigg and Flasse 2000, Li et al. 2004, Pu and Gong 2004).  In contrast to the 

above studies, Shao and Duncan (2007) found this band to perform only mediocre.   

The performance of other TM and MODIS bands for burned area mapping varied among 

cover types.  Koutsias and Karteris (1998) and Shao and Duncan (2007) cited TM band 5, which 

corresponds roughly to MODIS band 6 and is referred to as short-wavelength middle infrared 

(SMIR), as performing very poorly.  Pu and Gong (2004) found it slightly more useful, while 

Lopez-Garcia and Caselles (1991) wrote that it performed well.  MODIS band 6 was found by 

Trigg and Flasse (2000) to only differentiate burned from unburned savannah for a few days, 

while Li et al. (2004) claim that this is the poorest performing of the longer wavelength MODIS 

bands (bands 5-7).  Stroppiana et al. (2002) and Silva et al. (2004), citing this band’s counterpart 

on the SPOT-VGT instrument, found it useful for burned area mapping in grasslands.   

Another band that was simulated was MODIS band 5—long-wavelength near infrared 

(LNIR).  Though it has no TM counterpart, LNIR was found by Trigg and Flasse (2000) to 

differentiate between burned and unburned savannah for at least 13 days after burning.  Li et al. 

(2004) also found this band useful.  Testing the utility of these longer wavelengths is especially 

important because they are relatively unaffected by smoke and light clouds, and so are 

sometimes superior to those that use only visible and NIR spectral space (Pereira et al. 1997).  

Unlike the above spectral regions, blue was not simulated because it is universally found 

to be poor at identifying burned areas (Lopez-Garcia and Caselles 1991, Trigg and Flasse 2000, 

Stroppiana et al. 2002, Pu and Gong 2004, Shao and Duncan 2007), with the exception of 

Koutsias and Karteris (1998), who found that it outperformed both the red and green bands of 

TM for burned area mapping in a forested area.  Because its performance was only slightly better 

than blue in most studies (Lopez-Garcia and Caselles 1991, Trigg and Flasse 2000, Pu and Gong 

2004, Shao and Duncan 2007) and worse than blue in one study (Koutsias and Karteris 1998), 

green was not simulated either. 

4.2.1.2 Indices 

The Normalized Difference Vegetation Index (NDVI) was chosen because it has been 

extensively studied for mapping burned areas in various cover types with mixed results.  Al Rawi 

et al. (2001) successfully used NDVI from the Advanced Very High Resolution Radiometer 
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(AVHRR) in a neural network to map burned forest areas, while Mohler and Goodin (2010) 

found through in situ radiometer analysis that it could differentiate burned from unburned 

tallgrass prairie for up to two months.  Similarly, Pu and Gong (2004) found that it was suitable 

for differentiating burned from unburned forest, and Shao and Duncan (2007) found that it was 

able to differentiate between burned and unburned oak scrubland using TM data.  Despite these 

studies, however, NDVI was found to perform poorly for burned area mapping on several 

occasions in both forest and savannah using both AVHRR and MODIS imagery (e.g., Pereira 

1999, Li et al. 2004, Dempewolf et al. 2007).  Most likely, this inconsistency in performance is 

due to the variation in cover type being studied, as has been suggested by the work of Chuvieco 

et al. (2002) using AVHRR and TM data. 

The Global Environmental Monitoring Index (GEMI; Pinty and Verstraete 1992) was 

chosen because its usefulness for burned area mapping (though it was not originally intended for 

this purpose) is purported in several works in a variety of cover types and with a variety of 

sensors (e.g., Pereira 1999, Stroppiana et al. 2002, Cao et al. 2009).  However, like NDVI, 

Chuvieco et al. (2002) found that its performance depended on cover type, and the decisions tree 

used by Dempewolf et al. (2007) did not select it as an important index for mapping burned 

savannah areas.   

Unlike NDVI and GEMI, two other indices that were chosen, the Burned Area Index 

(BAI) and Normalized Burn Ratio (NBR), were developed specifically for burned area detection.  

Like NDVI and GEMI, however, BAI has shown mixed results for burned area mapping.  

Chuiveco et al. (2002) found that it performed well in various cover types, though the authors 

were quick to note that its performance is based upon the existence and persistence of a char 

signal.  Dempewolf et al. (2007) also found that BAI performed well.  Cao et al. (2009), 

however, found that it performed poorly, likely because char in semi-arid grasslands is rare, due 

both to an initial lack of vegetation, and to rapid removal by wind.  NBR was first published as a 

tool for burned area mapping Lopez-Garcia and Caselles (1991), who found that it performed 

well in forested areas with TM data.  Pu and Gong (2004) and Loboda et al. (2007) reached the 

same conclusion in the same cover type with the ETM+ and MODIS sensors, respectively.   

The final index used was the Middle-Infrared Burn Index (MIRBI) developed by Trigg 

and Flasse (2001) in shrub savannah from in situ radiometer data.  All bands and indices used in 

this chapter are shown in Table 4.2. 
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Table 4.2: Bands and indices simulated using hyperspectral radiometer data and the 

maximum spatial resolution available for each from the MODIS sensor. 
Index/Band Abbreviation Resolution (m) 
red red 250 
Near-Infrared NIR 250 
Long-Wavelength Near-Infrared LNIR 500 
Short-Wavelength Middle Infrared SMIR 500 
Long-Wavelength Middle Infrared LMIR 500 
Normalized Difference Vegetation Index NDVI 250 
Global Environmental Monitoring Index GEMI 250 
Burned Area Index BAI 250 
Normalized Burn Ratio NBR 500 
Mid-Infrared Burn Index MIRBI 500 
 

4.2.2 Data Collection 

In situ hyperspectral reflectance data were collected from both burned and unburned 

hilltop areas on KPBS for three years (2008, 2009, and 2010).  Although much tallgrass prairie 

exists in bottomlands and on side hills, only hilltops were sampled in this study.  This effectively 

controlled variance due to topographic position, which allowed a more meaningful comparison 

of results between years and between bands/indices.  Additionally, concentrating samples in one 

area made sampling easier, which was vital on many days were measurements were made 

between cloud overpasses.  It is likely that several days of sampling would have been sacrificed 

if sample points had been dispersed across hilltops, bottomlands, and side hills.  Although the 

conclusions drawn from analysis of this data likely provide an accurate general overview of the 

utility of each band or index for burned area mapping in tallgrass prairie, caution should be 

exercised when applying these conclusions to tracts of prairie that contain bottomlands or side 

hills.   

Data were collected using an Analytical Spectral Devices (ASD) FieldSpec Pro portable 

spectrometer that yields a 0.5 m diameter field of view on the canopy.  Between 350 and 1050 

nm, the spectral resolution varies, but is approximately 3 nm at the 700 nm wavelength.  Spectral 

resolution from 1050 and 2500 nm is between 10 and 12 nm.  All measurements were referenced 

to a Spectralon white target prior to sampling, which allowed conversion of the data to 

reflectance.   

In 2008, data were sampled from a single hilltop that was divided into two watersheds.  

One of these was burned (treatment) and the other was unburned (control).  Sampling in 2008 
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commenced immediately prior to the treatment watershed being burned (April 23), and 

continued through senescence (July 31).  Due to a severe winter ice storm, the standing dead 

biomass of the control watershed was heavily damaged.  In 2008, approximately 75 samples 

were taken per watershed (treatment and control).   

In 2009, sampling on the treatment and control watersheds commenced on April 7 (after 

the treatment watershed had already been burned, though regrowth had yet to take place), and 

continued to August 12.  Unlike in 2008, the standing dead biomass was relatively undamaged.  

Also, 150 points were gathered per watershed rather than 75.   

In 2010, two watersheds were sampled.  One of these (2010a) was the same area as in 

2008, though with little winter damage.  The other (2010b) had been grazed by cattle, and was 

the only case in which samples were taken from a grazed area.  In 2010, sampling on the two 

grazed watersheds commenced on April 8, after the treatment watershed had already been burned 

and regrowth had commenced.  The control watershed, due to having been grazed, exhibited 

relatively little standing dead biomass.  Sampling of the ungrazed watershed commenced on the 

same date, but the treatment watershed had not yet been burned.  All 2010 sampling ceased on 

August 23.  Like in 2009, 150 samples were taken per watershed in 2010.  In all three years, the 

treatment watershed was on an annual burn schedule, while the control watershed was on a 

biennial burn schedule in 2008 and 2010a, and a quadrennial burn schedule in 2009.  2010b had 

a variable burn schedule.  General information for the three sampling years is given in Table 4.3, 

while locations of each set of samples within KPBS are given in Figure 4.1. 

 

Table 4.3: Information for samples taken with the hyperspectral radiometer on KPBS. 
 2008 2009 2010a 2010b 
Burn date 24-Apr. 25-Mar. 20-Apr. 3-Mar. 
Sampling start 23-Apr. 7-Apr. 8-Apr. 8-Apr. 
Sampling end 31-Jul. 12-Aug. 23-Aug. 23-Aug. 
Number of sample dates 14 14 10 12 
Re-growth commenced? No Yes No Yes 
Condition of standing dead biomass Damaged Good Good Grazed 
Sample points per watershed 75 150 150 150 
Grazed No No No Yes 
Burn frequency (control) Biennial Quadrennial Biennial Variable 
Burn frequency (treatment) Annual Annual Annual Variable 
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Figure 4.1: Location of hyperspectral samples within KPBS. 
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4.2.3 Data Processing and Index Calculation 

In order to simulate the bands that were chosen for analysis, the 1 nm values within the 

upper and lower boundary of each simulated band were averaged for each sample point.  Often, 

integration across each band’s spectral response function is used for this step (e.g., Trigg and 

Flasse 2000).  However, several tests with various simulated spectral ranges showed differences 

between integration and averaging to be only tenths of a percent, which is not within several 

significant digits, and so is negligible.   

Although the exact wavelength range used to calculate each spectral region or index 

would be different depending on which sensor was used as the model, only MODIS was used in 

this chapter.  This was advantageous because it reduced the amount of data preparation and 

analysis that was necessary.  MODIS in particular was used because it covers the spectrum more 

completely than other sensors (Table 4.1) and so allows more bands and indices to be tested.  

Using only MODIS data assumed that differences between the specific wavelength ranges of 

similar spectral regions from sensor to sensor were negligible, and could be ignored.  An 

Analysis of Variance (ANOVA) test that compared data as derived from both the TM and 

MODIS wavelength ranges (based on the 2008 and 2009 samples) confirmed this fact.  In this 

preliminary analysis, the hypothesis that a statistical difference existed between data from the 

two sensors was rejected in the case of all bands and indices tested (Table 4.4).  LNIR is missing 

from this analysis because this spectral region is not available from TM, and so could not be 

compared. 

 

Table 4.4: ANOVA probabilities showing no significant difference between data from TM 

and MODIS, regardless of which band or index is used.  Probabilities less than 0.05 meant 

that the null hypothesis would have been rejected at the 95% confidence interval. 
Band/Index Probability 
red 0.9709 
NIR 0.7349 
SMIR 0.663 
LMIR 0.7831 
NDVI 0.8376 
GEMI 0.7303 
BAI 0.769 
NBR 0.8927 
MIRBI 0.8469 



 28

Once all bands were simulated for MODIS in all three years, these were used to calculate 

the appropriate indices.  The specific wavelength ranges for all bands used in the equations are 

shown in Table 4.1.  First, NDVI was calculated as 

NDVI = (ρNIR - ρred) / (ρNIR + ρred)                                               (4.1) 

where ρNIR and ρred are the reflectance values of the MODIS NIR and red bands, respectively.   

GEMI (Pinty & Verstraete 1992) was calculated as 

                           GEMI = η(1 - 0.25η) - (ρred - 0.125) / (1 - ρred)                                   (4.2) 

where η = (2(ρ2
NIR - ρ2

red) + (1.5ρNIR + 0.5ρred) / (ρNIR + ρred + 0.5), and ρNIR and ρred are defined 

the same as in the NDVI equation.   

BAI, first published by Chuvieco et al. (2002) was calculated as 

                               BAI = 1 / [(ρcred – ρred)2 + (ρcnir – ρnir)2]                                          (4.3) 

where ρcred and ρcnir are the red and NIR reference reflectance values, respectively, and ρred and 

ρnir are the actual reflectance values in the same bands (defined as in NDVI and GEMI).  The 

reference reflectance values, ρcred and ρcnir used constants of 0.1 and 0.6, respectively, as these 

tend to emphasize the charcoal signal (Chuvieco et al. 2002, Dempewolf et al. 2007). 

NBR, first used for burned area mapping by Lopez Garcia and Caselles (1991) but not 

named until later, was calculated as 

                                NBR = (ρNIR – ρLMIR) / (ρNIR + ρLMIR)                                           (4.4) 

where ρNIR is defined as it is in the above indices and ρLMIR is the reflectance value of MODIS 

LMIR. 

The final index used was the MIRBI proposed by Trigg and Flasse (2001), and was 

calculated as 

                                 MIRBI = 10(ρLMIR) – 9.8(ρSMIR) + 2                                            (4.5) 

where ρLMIR is defined as in the NBR equation and ρSMIR is the reflectance value of MODIS 

SMIR. 

4.2.4 Assessing Band/Index Suitability 

Detection of burned areas in tallgrass prairie with satellite imagery depends on a burn 

scar that remains on the landscape for some time after the area is burned, or at least remains 

distinctive from unburned grassland (Trigg and Flasse 2000).  Ideally, with cloud-free daily 

imagery, this burn scar could persist for only 24 hours and still be detectable.  However, clouds 
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often obscure the ground surface for up to a week at a time in the Flint Hills, particularly during 

spring when most burning takes place.  Therefore, the longer a burned area can be differentiated 

from an unburned area with a given band or index, the more useful that band or index is for 

burned area detection (Sa et al. 2003).  Furthermore, because most of the Flint Hills is grazed, 

this usefulness should persist even on grazed areas. 

Additional factors affect the efficacy of certain bands or indices as well.  First, rapid re-

growth of burned areas is common in tallgrass prairie, and it is plausible that a clear image might 

be taken immediately after burning, whereby grass has not begun to re-grow on the burned area.  

This is the nature of performing remote sensing analysis, as clear image dates are often unevenly 

distributed temporally (Eva and Lambin 1998).  Conversely, the first clear image of the burned 

area, if clouds have been persistent, might be several days after burning, and grass might be re-

growing rapidly.  Therefore, an ideal band or index would also distinguish between burned and 

unburned areas regardless of the regrowth status of the vegetation.   

Finally, it should be noted that not all bands and indices are available at the same spectral 

resolution, and that bands or indices with a higher spatial resolution are better, all other things 

being equal.  The purpose of this section, therefore, is to quantify how each band or index tested 

aligns with the ideal outlined above. 

To do this, three different ANOVA tests for repeated measures were performed using 

SAS v. 9.2 software.  All three tests used the mixed procedure (PROC MIXED).  In all cases, 

either the autoregression 1 (AR1) or unstructured (UN) variance/covariance structure was used, 

depending on which provided the best fit for the band or index in question based on the Akaike 

Information Criterion with finite sample size adjustment (AICc; lower values are better).  All 

three tests also used the Satterthwaite denominator degrees of freedom adjustment, and the 

Schaffe adjustment to control for Type 1 error.  In all cases, the original sample dates were 

classified into six time periods, with class 0 representing all pre-burn measurement, and classes 

1-5 representing a set period of time since the treatment watershed was burned (Table 4.5).  

Samples could not be analyzed based on their original dates because these dates were not 

consistent from year to year due to cloud conditions.  Therefore, some temporal resolution was 

lost when dates were aggregated into the six classes.  Classifying the original sample dates based 

on the time since burning was more desirable than dividing them based on absolute calendar 
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dates, as different watershed were not burned at the same time, and were burned well over one 

month apart in some cases. 

 

Table 4.5: Categorical aggregation of sample dates.    
Time Period Weeks Since Burn 
0 Pre-burn 
1 1-3 
2 4-7 
3 8-11 
4 12-15 
5 > 15 
 

 

The first test compared all data from 2008, 2009, and 2010a, which were similar in that 

none of them came from a grazed watershed.  In fact, the grazed watershed (2010b) was not used 

here because including it would have introduced variation to the test, which would have made 

drawing meaningful conclusions more difficult.  Variables in this test included year (2008, 2009, 

and 2010a), treatment (burned, unburned), and time period (0, 1, 2, 3, 4, 5). 

The second test compared 2008 and 2010a, since the same burned and unburned 

watersheds were sampled in both of these years.  This controlled for some of the variability 

arising from differences among watersheds (vegetation composition, burn frequency, etc), 

though the variables in this test are the same as in the previous test with the exception of one less 

year (2009). 

The final test compared 2010a to 2010b in order to detect any effects that grazing might 

have on the ability of the bands or indices to differentiate between burned and unburned areas.  

In this case, the year variable is replaced by a grazing variable (yes, no), though the treatment 

and time period variables remain the same as in the previous two tests. 

In the case of all three tests, an adjusted (Schaffe) probability value of greater than 0.05 

meant that the hypothesis was rejected at the 95% confidence interval.  This meant that, for the 

band or index in question, no statistical difference could be confirmed between burned and 

unburned watersheds for the variable combination in question (using time period, grazed, etc.).  

This significance, or lack thereof, was taken as an indication of that bandwidth or index’s ability 

to detect burned areas under the given circumstances. 
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4.3 Results and Discussion 

4.3.1 The First ANOVA Test (2008, 2009, and 2010a) 

For each of the six time periods in the study, the combined effect of both the treatment 

(burned or unburned) and time (0-6) variables on the ability of each band or index to differentiate 

burned from unburned areas was examined.  As mentioned in section 4.2.4, the ability of a band 

or index to differentiate burned from unburned areas for a long time after burning had taken 

place (a probability value of less than 0.05 in several consecutive time periods) would be ideal.  

Because the pre-burn time period (0) had no bearing on the efficacy of a band or index, it is not 

discussed here. 

The LMIR band performed very poorly in this analysis, as it was the only band or index 

tested that did not display a significant probability value in any of the five time periods since 

burning (Table 4.6).  That is, it was not able to distinguish burned from unburned areas at any 

point in the study.  Additionally, it is available at a maximum spatial resolution of only 500 m 

from MODIS.  These attributes of LMIR suggest that it is of little use for burned area mapping in 

tallgrass prairie.  It should be noted that this is in contrast to studies in other land cover types, 

where LMIR was found to be useful for mapping burned areas. 

 

Table 4.6: Probability values from the first ANOVA test (2008, 2009, and 2010a) showing 

the effect of treatment (burned or unburned) and time period (0-6) on the ability of each 

band or index to differentiate burned from unburned areas in each of the six time periods. 
Band/Index 0 1 2 3 4 5
red 0.88 <0.01  0.02 <0.01 0.04 0.53
NIR 0.85 <0.01  0.40 0.04 <0.01 0.59
LNIR 0.10 <0.01  0.06 0.70 0.65 0.66
SMIR 0.57 <0.01 0.11 0.16 0.21 0.29
LMIR <0.01  0.64 0.79 0.79 0.70 0.94
NDVI 0.86 0.54 0.03 0.00 0.04 0.28
GEMI 0.75 <0.01 0.95 0.02 0.04 0.33
BAI 0.89 0.02 0.73 0.82 0.07 0.83
NBR 0.71 <0.01 0.62 0.25 0.01 0.07
MIRBI 0.46 <0.01 <0.01 <0.01 <0.01 0.01

 

 

  NDVI also performed poorly, as it was unable to differentiate burned from unburned 

areas in time period number 1 (Table 4.6).  Interestingly, the insignificant value in the first time 
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period was followed by significant values in the next three time periods, meaning that although 

NDVI is unable to differentiate between burned and unburned areas immediately after burning, it 

can do so several weeks to a over a month after burning.  This is due to the regrowth 

characteristics of the vegetation on the study sites.  In the first time period, regrowth on the 

treatment watershed had yet to commence, allowing standing dead biomass on the unburned 

watershed and bare ground on the burned watershed to appear similar with NDVI.  Once 

regrowth had commenced on the burned watershed (time periods 2-4), this watershed produced a 

much stronger NDVI signal than the unburned watershed, which was still dominated by standing 

dead biomass.  Insignificant values for the last time period represent regrowth on the unburned 

watershed overtaking the standing dead biomass and making this watershed look similar to the 

burned one.   

This analysis shows that the performance of NDVI for differentiating burned from 

unburned areas depends on whether or not regrowth has taken place.  Specifically, a different 

relationship exists when comparing unburned prairie to charred areas that have not begun to 

regrow than exists when comparing unburned prairie to burned, regrowing prairie.  This, along 

with the diverse range of cover types examined in existing NDVI studies, likely explains the 

wide range of opinions regarding the utility of NDVI for burned area mapping.  What is clear is 

that this attribute of NDVI drastically reduces its usefulness in tallgrass prairie, because the 

researcher must know the state of vegetation regrowth in order to know what relationship 

between burned and unburned areas to look for.  This might be possible over smaller areas, but 

would be impossible over wider areas, and this fact makes NDVI impractical for mapping 

burned areas over large tracts of tallgrass prairie. 

Six of the bands or indices tested were able to distinguish between burned and unburned 

areas for the first time period, but could not do so for at least two consecutive time periods at the 

beginning of the sample (Table 4.6).  They were NIR, LNIR, SMIR, GEMI, BAI, and NBR.  In 

the case of NIR, the initial significant value during the first time period was followed by and 

insignificant value on the second time period, and two significant values in the third time period.  

Similar patterns are shown by both GEMI and NBR, both of which have NIR as a component.  In 

the case of all three (NIR, GEMI, and NBR), the initial significance is due much higher NIR 

reflectance values on the unburned watershed up to three weeks after burning.  However, the 

insignificant values in the second time period, as well as the significant values in the third and 



 33

fourth (NIR, GEMI) or fourth (NBR) time periods represent a transition to higher NIR 

reflectance values on the burned watershed as new vegetation growth boosts the NIR signal past 

that of the unburned watershed.  As was the case with NDVI, the inconsistency of the 

relationship between burned and unburned areas means that knowledge of vegetative regrowth 

status would be necessary for burned area detection over large areas (and would again be 

impractical).  However, unlike with NDVI, the relationship between burned and unburned areas 

with these three bands/indices is consistent for at least three weeks after burning, during which 

time any of them could accurately detect burned areas.  The findings for NIR, GEMI, and NBR 

are not in direct contrast to findings from other studies, which tout the utility of all three for 

burned area detection in a variety of cover types.  Additionally, NIR and GEMI have the added 

advantage of being available at 250 m spatial resolution from MODIS, while NBR can be 

calculated at a maximum resolution of only 500 m from MODIS. 

Though their performance was, for all practical purposes, equal to the three bands/indices 

discussed above, BAI, LNIR, and SMIR did not exhibit any significant values other than in the 

first time period (Table 4.6).  Nonetheless, this suggests that these bands and index are suitable 

for burned area detection for approximately three weeks after burning has taken place.  In the 

case of BIA, this is consistent with what was found by Pereira (2003) in other grassland 

environments, and is consistent with the original intent of BAI, which was to detect the 

distinctive char signal of recently burned areas (Chuvieco et al. 2002).  BAI, unlike LNIR and 

SMIR, also has the advantage of being available at 250 m spatial resolution from MODIS. 

One of the bands (red) and one of the indices (MIRBI) excelled at differentiating burned 

from unburned areas (Table 4.6).  The red band exhibited a significant probability value in the 

first four time periods, while MIRBI exhibited a significant value in all five of the time periods 

(Table 4.6).  In the case of the red band, reflectance values on the burned watershed remained 

significantly lower than those on the unburned watershed until the last time period—a time span 

of up to 15 weeks.  This makes sense, as both charred and regrowing vegetation reflect little red 

light compared to standing dead biomass.  This analysis suggests that red, given its ability to 

differentiate burned from unburned areas for up to 15 weeks, shows great promise for detecting 

burned areas in tallgrass prairie for up to three months after an area is burned.  This finding adds 

to the already disputed picture of the utility of the red wavelength to differentiate between 

burned and unburned areas in various cover types (see section 4.2.2.1), and suggests that the 
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overall usefulness of red depends on the cover type being studied.  The red spectral region also 

has the advantage of being available on a wide range of sensors, and is available at 250 m 

resolution from the MODIS sensor.  In the case of MIRBI, the significant values in all five post-

burn time periods indicated that index values were higher on the treatment watershed than on the 

control for the entire study period.  Like red, MIRBI showed great promise for detecting burned 

areas in tallgrass prairie, despite the fact that it is only available at 500 m spatial resolution from 

the MODIS sensor.  The utility of MIRBI is not surprising, as it was designed specifically to 

amplify burn signals while minimizing spectral variability from other factors (Trigg and Flasse 

2001).          

4.3.2 The Second ANOVA Test (2008 and 2010a) 

In the second test, which included only the samples from 2008 and 2010a that came from 

identical watersheds, both LMIR and NDVI performed poorly once again, with LMIR failing to 

record a significant value in any of the five post-burn time periods, and NDVI again having an 

insignificant value in the first post-burn time period before displaying significant values for the 

next three time periods (Table 4.7).  As stated in Section 4.3.1, this effectively disqualifies both 

LMIR and NDVI from burn mapping applications in tallgrass prairie. 

 

Table 4.7: Probability values from the second ANOVA test (2008 and 2010a) showing the 

effect of both treatment (burned or unburned) and time period (0-6) on the ability of each 

band or index to differentiate burned from unburned areas in each of the six time periods.   
Band/Index 0 1 2 3 4 5
red 0.81 <0.01  0.11 <0.01 0.09 0.12
NIR 0.42 <0.01  0.42 0.05 0.23 0.96
LNIR 0.06 0.04 0.05 0.98 0.77 0.84
SMIR 0.63 <0.01 0.34 0.45 0.68 0.62
LMIR 0.00 0.65 0.88 0.80 0.79 0.87
NDVI 0.93 0.53 <0.01 0.02 0.43 0.39
GEMI 0.57 <0.01  0.15 0.03 0.25 0.82
BAI 0.97 <0.01 <0.01  0.70 0.71 0.29
NBR 0.34 <0.01 0.33 0.10 0.36 0.53
MIRBI 0.47 <0.01  0.24 0.01 <0.01 0.94

 

 

As in the first test, six of the bands or indices were able to distinguish burned from 

unburned areas for more than one consecutive time period starting with the first time period 
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(Table 4.7).  They included red, NIR, SMIR, GEMI, NBR, and MIRBI.  Interestingly, the bands 

that performed best in the previous test, red and MIRBI, did not perform as well in this test.  All 

six of these bands or indices were able to differentiate burned from unburned areas for at least 

three weeks (the first sample period), and may still prove useful for mapping burned areas at the 

satellite image scale.  The two bands that performed best in this analysis, LNIR and BAI, were 

both able to distinguish burned from unburned areas for the first two time periods (up to seven 

weeks), though neither displayed a significant value in the three remaining time periods.  

Ultimately, this second test confirmed what was shown by the first test—that LMIR and NDVI 

are unsuitable for detecting burned areas in tallgrass prairie, but the other eight bands or indices 

show varying degrees of utility depending on the circumstances tested. 

4.3.3 The Third ANOVA Test (2010a and 2010b) 

  The third test included only the samples from 2010a and 2010b, one of which was a 

grazed pair of watersheds (2010b), and the other of which was a non-grazed pair of watersheds 

(2010a).  This allowed a new variable (grazed or not), to affect the ability of a band or index to 

differentiate between burned and unburned areas.  Once again, both LMIR and NDVI performed 

poorly (Table 4.8).  In this case, NDVI again had an insignificant value in the first time period.  

When grazing was taken into account, however, NDVI only showed one significant figure in all 

five time periods (period 2), suggesting that NDVI performs even more poorly when trying to 

differentiate burned from unburned areas in grazed tallgrass prairie.  This alone is detrimental to 

its ability to detect burned areas across the Flint Hills at large, as they are almost entirely grazed.  

Once again, LMIR did not have a single significant value in any of the five post-burn time 

periods. 

Unlike in the previous two tests, LMIR and NDVI were not the only two bands that failed 

to have a significant value in the first time period, as GEMI, BAI, and NBR failed to do so as 

well (Table 4.8).  In fact, none of these indices exhibited a significant value in any of the five 

post-burn time periods.  Most likely, this is because they are overly sensitive to the fact that 

grazing makes burned and unburned areas more similar, as it reduced standing dead biomass on 

unburned areas, which allows regrowing vegetation to make up a larger portion of the canopy.  

As was the case with LMIR and NDVI, the inability of these indices to differentiate between 



 36

burned and unburned areas regardless of grazing practice leaves their burn detection capabilities 

in doubt—especially in the Flint Hills. 

 

Table 4.8: Probability values from the third ANOVA test (2010a and 2010b) showing the 

effect of treatment (burned or unburned), time period (0-6), and grazing (yes or no) on the 

ability of each band or index to differentiate burned from unburned areas in each of the six 

time periods.  
Band/Index 0 1 2 3 4 5
red 0.02 <0.01 <0.01 0.29 0.71 0.78
NIR 0.44 0.04 0.25 0.99 0.70 0.87
LNIR 0.23 <0.01 0.26 0.09 0.10 0.42
SMIR 0.15 <0.01 <0.01 0.03 0.16 0.37
LMIR 0.88 0.59 0.22 0.93 0.80 0.93
NDVI 0.56 0.06 0.02 0.57 0.92 0.93
GEMI 0.64 0.19 0.16 0.97 0.67 0.89
BAI 0.89 0.66 0.62 0.61 0.17 0.95
NBR 0.41 0.11 0.18 0.95 0.70 0.95
MIRBI 0.08 <0.01 0.03 0.01 0.07 0.28
  

 

As they had done in the previous two tests, NIR and LNIR were able to differentiate 

between burned and unburned areas in the first time period (up to three weeks after the area was 

burned), though neither had a significant probability value in any other time period (Table 4.8).  

This shows that the ability of NIR and LNIR to differentiate burned from unburned areas is not 

compromised by grazing practices—at least not within three weeks of an area having been 

burned.  Consequently, both of these spectral regions show utility for detecting burned areas in 

tallgrass prairie. 

Two bands and one index were easily able to differentiate burned from unburned areas 

despite the effects of grazing.  They were red, SMIR, and MIRBI.  In the case of red and SMIR, 

significant probability values were exhibited in the first two time periods.  For MIRBI, these 

significant values extended through the third time period.  This implies that MIRBI, and to a 

slightly lesser extent red and SMIR, are the best bands (or index) for detecting burned areas in 

grazed tallgrass prairie, since they performed equally well (and slightly better in the case of 

SMIR) regardless of whether an area had been grazed or not. 
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4.4 Conclusions 
Two of the bands and indices tested in this analysis, LMIR and NDVI, showed little 

promise for detecting burned areas in tallgrass prairie, as they were unable to consistently 

differentiate between burned and unburned areas.  The failure of LMIR was remarkable, as it did 

not exhibit a single significant probability value in any case during any of the three tests.  That is, 

the hypothesis that a statistical difference existed between the burned and unburned areas was 

not supported in any instance.  In the case of NDVI, the relationship between burned and 

unburned areas depended on regrowth, thereby requiring a priori knowledge of the condition of 

a burned area.  Because this is impractical over large areas such as the Flint Hills, the likelihood 

of NDVI being useful for detecting burned areas is low. 

Two other bands, GEMI and NBR, were of little use as well, as they could not 

differentiate between burned and unburned areas if those areas had been grazed.  Because the 

vast majority of the Flint Hills is grazed, there is little likelihood of these two indices 

contributing substantially to any process of detecting burned areas in tallgrass prairies of that 

region at a wider scale (e.g., with satellite imagery).  This is particularly true considering that 

better-performing bands and indices are available at equal or higher spatial resolution.  Because 

of their poor performance, none of the four bands mentioned to this point are analyzed in 

subsequent chapters. 

Of the remaining bands and indices, BAI was the poorest performer, as its power to 

differentiate burned from unburned areas is poor when those areas have been grazed.  However, 

it is included in later analysis based on its performance in the second test, where it was able to 

differentiate burned from unburned areas for up to seven weeks.  Other bands and indices, such 

as red, NIR, LNIR, SMIR, and MIRBI, were able to differentiate burned from unburned areas 

consistently, regardless of grazing, for at least three weeks after burning had taken place, and 

often much longer than that (e.g., red, LNIR, SMIR, BAI, and MIRBI).  In these cases, the 

hypothesis that a difference existed between burned and unburned areas was accepted for at least 

the first time period in all three tests, and for several time periods after than in the case of some 

of these bands and indices.  Finally, it should be noted again that all samples came from hilltops 

only, though they likely approximate the efficacy of these bands and indices in tallgrass prairies 

in general. Table 4.9 gives a summary of the performance of each band or index tested according 

to each of the three ANOVA tests. 
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Table 4.9: Consecutive length of time in weeks (calculated beginning with time period #1) 

over which each band or index was able to differentiate burned from unburned areas 

according to each of the three ANOVA tests. 
Band/Index Test #1 Test #2 Test #3 
red 15 3 7 
NIR 3 3 3 
LNIR 3 7 3 
SMIR 3 3 7 
LMIR 0 0 0 
NDVI 0 0 0 
GEMI 3 3 0 
BAI 3 7 0 
NBR 3 3 0 
MIRBI > 15 3 11 
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CHAPTER 5 - Satellite Level Normalized Distance Analysis 

5.1 Introduction 
The second objective of this study was to reveal the utility of different TM and MODIS 

bands and indices for differentiating burned from unburned tallgrass prairie at the satellite image 

scale.  This objective was completed by testing the hypothesis that those bands and indices that 

were successful in differentiating burned from unburned tallgrass prairie using in situ data will 

also do so effectively at the satellite image scale.  Testing this hypothesis would give further 

indication of the efficacy of the bands and indices examined in Chapter 4.  It would also reveal 

much about the similarities and differences between in situ measurements and satellite-based 

measurements, between different burned areas, and between the two sensors.  The method used 

to test this hypothesis and accomplish this objective was a normalized distance comparison of 

burned and unburned areas.   

5.2 Methods 

5.2.1 Justification for Using the TM and MODIS Sensors 

The paradox of whether to use higher temporal or spatial resolution is important in 

burned area studies (Eva and Lambin 1998), because burned areas can change rapidly following 

the burn event (Eva and Lambin 1998, Trigg and Flasse 2000).  That is, the sensor used must 

possess high enough spatial resolution to identify the smallest burned areas in the study area, yet 

must produce an image of the area frequently enough to identify burned areas before the scars 

disappear.  The TM and MODIS sensors provide an example of this paradox.  TM provides 

better spatial resolution (30 m multi-spectral; 60 m thermal compared to 250 and 500 m for 

MODIS), while MODIS provides better temporal resolution (daily passes by both Aqua and 

Terra compared to one pass every 16 days with TM).  Therefore, the use of TM and MODIS in 

this chapter helped identify which type of resolution (spatial or temporal) is more important to 

burned area mapping in tallgrass prairie, in addition to accomplishing the objective mentioned in 

the introduction.   
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5.2.2 Data Collection and Processing 

The first data acquired were all path 28-row 33, path 28-row 34, path 27-row 34, and path 

27-row 33 TM scenes imaged between March 1 and August 30, 2008.  All scenes were 

downloaded through the Unites States Geological Survey’s (USGS’s) Global Visualization 

Viewer (GloVis) as georectified tagged image file format (TIFF) files.  Although five different 

TM scenes are required to cover the entire Flint Hills study area (Figure 3.1), they were not 

required in this part of the analysis, as the goal was to evaluate the temporal signature of burned 

and unburned grasslands through the growing season at the satellite image scale.  This could be 

done using a much smaller region, and so only subsets of the four scenes mentioned above were 

used.  All TM imagery was calibrated to top of atmosphere reflectance using the method of 

Chandler and Markham (2003), which allowed for more meaningful comparison between image 

dates.  It should be noted that not all of these scenes were used in this chapter, but were 

downloaded because they needed to be examined in order to determine their suitability.  The 

justification for this is given below in section 5.2.4. 

In addition to the TM scenes, all relatively cloud-free 2008 MODIS scenes captured 

between March 1 and August 30 from both the Aqua and Terra satellites were downloaded 

through the National Aeronautics and Space Administration’s (NASA’s) Warehouse Inventory 

Search Tool (WIST).  These scenes were downloaded in two parts, including the red and NIR 

bands at 250 m spatial resolution (MOD09GQ, MYD09GQ), and all other bands at 500 m spatial 

resolution (MOD09GA, MYD09GA), which was the highest resolution available for each 

respective band.  These were converted from their native Hierarchical Data Format (HDF) to 

TIFF files and georectified to Universal Transverse Mercator (UTM) coordinate system (zone 

14) using the MODIS Reprojection Tool (MRT).  Finally, they were subset to the extent of the 

study area.  Although four TM scenes are required to cover the study areas, only one MODIS 

scene was necessary for this task because of its larger footprint. 

5.2.3 Band/Index Selection for Normalized Distance Analysis 

The bands and indices tested by normalized distance analysis in this chapter were those 

that proved useful for differentiating burned from unburned grasslands in Chapter 4 (BAI, 

MIRBI, red, NIR, LNIR, SMIR).  In this case, they were calculated directly from the 2008 TM 

or MODIS scenes, rather than being simulated with data gathered in situ.  All bands were 
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calculated using both TM and MODIS (except LNIR which is only available on MODIS), 

despite the fact that the two sensors mirrored each other when simulated in the 2008 and 2009 

field level analysis.  This was done to uncover any variation in normalized distance that may 

arise due to differences in the spatial resolution of the two sensors (30 m for TM vs. 250 or 500 

m for MODIS), which could not be accounted for in the field level analysis.  The bands and 

indices used in this normalized distance analysis, as well as the spatial resolution of each with 

both sensors, are given in Table 5.1. 

 

Table 5.1: Indices and bands used in the normalized distance calculation. 
TM MODISIndex/Band resolution (m) resolution (m)

BAI 30 250
MIRBI 30 500
red 30 250
NIR 30 250
LNIR NA 500
SMIR 30 500

 

 

5.2.4 Normalized Distance Calculation 

Normalized distance (D), sometimes called standard distance, was originally developed 

by Kaufman and Remer (1994), and has been used extensively to test the ability of bands and 

indices to differentiate between different pairs of cover classes (e.g., Pereira 1999, Chuvieco et 

al. 2002, Silva et al. 2004, Cao et al. 2009, Stroppiana et al. 2009).  It is calculated by the 

equation 

D = |μB – μU| / (σB + σU)                                                         (5.1) 

where D is the normalized distance, μ is the mean of the pixels included in the sample of 

each cover type, σ is the standard deviation of those pixels, B denotes a burned area, and U 

denotes an unburned area.  D-values greater than 1 indicate good discriminatory ability, while 

values less than 1 indicate an unacceptable degree of overlap between the histograms of the two 

cover classes, and, therefore, poor discriminatory ability (Kaufman and Remer 1994; Pereira 

1999).  It should be noted that in the case of the in situ data analysis from the previous chapter, 

the inferential Mann-Whitney U-test and Student’s t-test were warranted, as those data were 

samples from a larger population (Pereira 1999).  In this analysis, however, entire populations 
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(all pixels within a burned or unburned area) were compared, making the normalized distance 

technique more appropriate (Pereira 1999).  Furthermore, because it accounts for interclass as 

well as intraclass variance (Pereira 1999), normalized distance does not make the assumption of 

equal variance between the two samples, and so accounts for the effect of noise on the signal 

(Kaufman and Remer 1994).   

 

Figure 5.1: Area of overlap between TM path 27 and path 28 showing the selected burned 

and unburned area pairs. 

   
 

 

Each burned/unburned sample pair was compared using each band or index and for both 

sensors (except LNIR, which was available only with MODIS).  This yielded two D-values per 

band or index per sensor (one for each sample pair).  The sampling period covered for each pair 

of areas, as well as which dates were sampled, is outlined for TM in Table 5.2, and for MODIS 

in Table 5.3. 
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Table 5.2: Dates of TM imagery used in this chapter for each burned/unburned pair.  

Number denotes the path and row from which the scene from that date came.  Total 

denotes the number of image dates used for each pair. 
Date Burn #1 Burn #2 
4/2/08 28-33 28-34 
5/4/08 28-33 28-34 
5/20/08 28-33 28-34 
6/14/08 27-33 27-34 
6/21/08 28-33 Cloudy 
6/30/08 Cloudy 27-34 
7/7/08 28-33 28-34 
7/23/08 28-33 28-34 
8/1/08 27-33 27-34 
8/8/08 28-33 28-34 
Total 9 9 
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Table 5.3: Dates of MODIS imagery used in this chapter for each burned/unburned pair.  

Total denotes the number of image dates used for each pair.  Missing values mean that 

cloud cover blocked the view of that particular sample pair.  Aqua or Terra designation 

denotes which satellite provided the highest-resolution image for that date. 
Date Burn #1 Burn #2  Date (contd.) Burn #1 Burn #2 
3/19 Aqua   6/17 Terra Terra 
3/20 Terra   6/18 Terra 
3/21 Aqua   6/20 Terra Terra 
4/1  Aqua  6/21 Aqua 
4/2 Aqua   6/22 Terra Terra 
4/5  Terra  6/25 Aqua Aqua 
4/6 Aqua Aqua  6/26 Terra Terra 
4/13 Aqua Aqua  6/27 Terra
4/14 Terra Terra  6/29 Terra Terra 
4/15 Terra Terra  6/30 Aqua 
4/19 Terra Terra  7/1 Terra Terra 
4/22 Aqua Aqua  7/2 Terra 
4/25  Aqua  7/4 Aqua Aqua 
4/28 Terra Terra  7/11 Terra
5/2  Aqua  7/13 Terra
5/3 Terra Terra  7/14 Aqua Aqua 
5/4 Aqua Aqua  7/17 Terra
5/5  Terra  7/19 Terra 
5/8 Terra   7/20 Aqua Terra 
5/11 Aqua Aqua  7/21 Aqua Terra 
5/12 Terra Terra  7/22 Terra 
5/14 Terra   7/23 Aqua Aqua 
5/15 Aqua   7/24 Terra Aqua 
5/16 Aqua   7/27 Aqua 
5/17 Terra Terra  7/31 Aqua
5/18 Aqua Aqua  8/1 Aqua Aqua 
5/20  Aqua  8/2 Terra Terra 
5/25 Aqua Aqua  8/3 Aqua Aqua 
6/1  Aqua  8/4 Terra Terra 
6/3 Terra Terra  8/5 Terra Aqua 
6/4 Terra Terra  8/13 Aqua
6/6 Terra Terra  8/22 Aqua Aqua 
6/13  Aqua  8/26 Aqua 
6/14 Aqua Aqua  8/28 Aqua Terra 
6/15 Terra   8/29 Aqua
    Total 54 54
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5.3 Results and Discussion 

5.3.1 BAI 

The first normalized distance comparison was performed on BAI calculated from TM.  In 

the case of Burn #1 and Burn #2, only the April 2, 2008 sampling date exhibited a D-value 

greater than 1 (values > 1 indicate good discriminatory power); in this case, 1.43 and 1.89, 

respectively.  By May 5, these values had dropped to 0.74 and 0.39, respectively—well below 

the threshold of 1 (Figure 5.2).  It should be noted that Burn #1 was known to exist on March 15, 

and Burn #2 existed by March 25.  Furthermore, it can be safely assumed that D-values for both 

burns would have been greater than 1 prior to the April 2 sampling date, and likely would have 

remained above 1 for several weeks after the sampling date as well.  Therefore, it is likely that 

BAI could discriminate between burned and unburned areas for approximately one month or 

slightly more.  However, the temporal resolution of the TM imagery prevents this from being 

confirmed. 

When BAI was calculated from MODIS, a similar patter emerged.  In the case of Burn 

#1, D-values remained above 1 from the first sampling date on March 19 (2.25) through April 15 

(1.36), before they dipped slightly below 1 on April 19 and 22 (0.94 and 0.91, respectively), then 

climbed above 1 again on April 28 and remained there through May 3 before dropping to 0.48.  

This finding is consistent with that from TM, where discrimination with BAI is possible for 

approximately one month after burning takes place (March 15 to April 15).  Burn #2 roughly 

followed the signature of Burn #1, starting with a D-value of 1.79 on the first sampling date 

(April 1).  Values remained above 1 until April 22, where they dropped to 0.95 before returning 

to 1.03 on April 25 (Figure 5.2).  Once again, this finding is consistent with that of TM in that 

the signal is detectable for approximately one month. 

In all four cases, the time period during which BAI can be reliably used to detect burned 

areas appears to be approximately one month or slightly longer, as both sample burns, regardless 

of which sensor is used, show approximately the same temporal D-value curve.  Additionally, 

this finding is supported by the in situ analysis (Chapter 4)—specifically, that BAI, like all NIR-

based indices, is typically useful for burn detection for approximately one month.  Because BAI 

can differentiate burned from unburned areas reliably for approximately one month, and can be 
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calculated from both TM and MODIS (and from MODIS at 250m), it appears to be a viable 

option for burned area mapping in tallgrass prairie. 

 

Figure 5.2: BAI normalized distance values for the duration of the sampling period.  For all 

graphs in this section (5.3), values greater than 1 indicate good discriminatory power. 

 
 

 

5.3.2 MIRBI 

When calculated from TM, MIRBI performed better than BAI in the case of both sample 

burns.  Burn #1 was detectable for the first three sample dates (April 2, May 4 and May 20), with 

values of 2.15, 1.51, and 1.17, respectively.  Burn #2 exhibited D-values greater than 1 for the 

first two sampling dates (2.05 and 1.23, respectively), before the D-value fell below 1 on May 

20, at 0.87 (Figure 5.3).  As was the case with BAI, the significant D-values almost certainly 

existed immediately after the area was burned, and most likely continued for some time after it 

was last proven with the imagery.  Therefore, MIRBI was most likely able to distinguish burned 

from unburned areas for at least five weeks in the case of Burn #2, and for eight weeks in the 

case of Burn #1, though, as was the case with BAI when taken from the TM sensor, caution must 

be exercised when citing these values. 

The results from TM were, with a few exceptions, confirmed by MODIS.  For burn #1, 

D-values remained above 1 from the first sampling date (March 19) through May 14, with the 

exception of March 21 (0.92).  However, given the high D-values surrounding this date, and its 

proximity to 1, Adequate burned area discrimination most likely exists for the entire period 

ending on May 14, or for approximately eight weeks.  For Burn #2, the initial D-value on April 1 
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was 0.61.  However, after this date, all values remained above 1 until April 25 (Figure 5.3).  The 

April 1 value aside, MIRBI was able to consistently detect Burn #1 for approximately four 

weeks. 

As was the case with BAI, MIRBI showed little difference between the two sensors.  This 

was best illustrated by Burn #1, which was detectable for approximately eight weeks regardless 

of which sensor was used.  Burn #2 provided an exception, as it was detectable with TM for 

slightly longer than with MODIS, though this difference was limited to approximately one week.  

Unlike with BAI, however, the two sample burned areas differ in how long they could be 

differentiated from burned areas, with Burn #1 being detectable for nearly twice as long as Burn 

#2.  Most likely, this phenomenon is explained by the variation that must exist between the two 

burned areas.  However, this difference was largely unnoticed with BAI.  Most likely, the 

shorter, month-long period during which burned and unburned areas could be detected with BAI 

did not allow for variation between burned areas later in the sample.  This suggests that different 

bands or indices deal with between-burn variation differently, which should be taken into 

account when mapping burned areas over wider scales. 

More differences become apparent when the temporal curves from this analysis are 

compared to those produced by the in situ data.  While the field-level analysis suggested that 

MIRBI was capable of differentiating burned from unburned areas for at least five months, the 

normalized distance analysis limits this estimate to 4-8 weeks.  Nonetheless, MIRBI is capable of 

detecting burned areas longer than one month—especially if the D-values for Burn #1 are 

cited—and so has the potential to outperform BAI by several months, though caution should be 

used due to its inconsistency.  Finally, it should be noted that MIRBI, though it was able to 

detect burned areas for longer periods of time than BAI, is limited to 500m spatial resolution 

when MODIS imagery is used.  
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Figure 5.3: MIRBI normalized distance values for the duration of the sampling period. 

 
 

 

5.3.3 Red 

The red TM D-values for Burn #1 were greater than 1 only on the April 2 image date, 

with a value of 1.64.  For Burn #2, a value of 2.32 on April 2 was followed by a value of 1.09 on 

May 5, after which the values dropped to less than 1 (Figure 5.4).  This suggests that red is 

capable of differentiating burned from unburned areas for up to four weeks in the case of Burn 

#1, though this again assumes that the D-values remained above 1 for some time after the last 

date on which they were known to be greater than 1.  In the case of Burn #2, this time frame can 

be reliably extended to approximately five weeks.  Again, it must be remembered that the 

temporal density of the TM samples prevents these time periods from being reliably estimated 

past what the data show. 

The MODIS data for Burn #1 suggest that discrimination between burned and unburned 

areas in the red band are possible for more than nine weeks, as all values are above 1 until a 

value of 0.77 appears on June 3.  Burn #2 follows a temporal curve similar to that of Burn #1, 

with values greater than 1 through May 17, after which two values of 0.76 and 0.86 are recorded 

on May 18 and 20 (Figure 5.4).  It is worth noting that this time period could be further extended 

through June 3 if two values of 0.76 and 0.86 on May 18 and May 20 are taken to be close 

enough to 1 to indicate at least some level of discriminatory ability. 

Like the MIRBI index reviewed above, the red band of TM and MODIS exhibited 

inconsistency between burned areas in the amount of time that D-values were greater than 1.  As 

was the case with MIRBI, this is not surprising and is easily explained by between-burn 
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variation.  Much different than with MIRBI or BAI, however, was the fact that estimates from 

the two sensors did not correspond to each other.  MODIS, even if the two outliers are treated as 

the end of the significant differentiation period, was able to detect the burned areas from much 

longer than TM based on either of the two sample burns.  This can be explained by either the 

difference in the wavelength ranges between the two sensors (Table 4.1), or by the difference in 

spatial resolution between the two sensors (30m for TM compared to 250m for MODIS).  

However, because the in situ analysis (which calculated bands from the same wavelength ranges 

as this analysis) revealed no such trends, the difference is most likely due to the effects of 

varying sensor spatial resolution. 

Much like MIRBI, red D-values became insignificant much earlier than the z and t-values 

produced by the field-level analysis, as the field-level values are significant throughout the end 

of the study period in two of the four cases.  Even in the two cases where significance is not 

maintained through the study period, they are significant well into July.  Taken together, the 

evidence from both the field-level analysis and the satellite-based analysis suggests that red is 

capable of differentiating burned from unburned areas for at least four months, and up to nine 

months in some cases.  Clearly, this suggests that it is well suited for burned area detection in 

tallgrass prairie.  Furthermore, its usefulness is amplified by the fact that it is available on both 

sensors, and is available from MODIS at the maximum resolution of 250m. 

 

Figure 5.4: Red normalized distance values for the duration of the sampling period. 
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5.3.4 NIR 

When TM NIR was used to calculate D-values for Burn #1, only the April 2 value of 1.5 

was greater than 1.  This is reflected by Burn #2, where the value of 1.97 on the same date was 

the only value greater than 1.  In both cases, these values are followed by lesser values on May 4, 

before they fail to even approach 0.5 for the remainder of the study period (Figure 5.5).  Again, 

the burned areas could be, and most likely are, detectable for approximately one month, though 

this cannot be proven.   

The MODIS NIR D-values for Burn #1 remained above 1 until May 4, where a value of 

0.95 occurred.  This value was followed by three more values greater than 1 through May 12, 

before a value of 0.63 was recorded on May 14.  Burn #2 exhibited values at or near 1 until April 

22 (0.95), before a value of 1.08 on April 25, then dropped below 1 on April 28 with a value of 

0.9 (Figure 5.5).  From the MODIS D-values, it appears that NIR can distinguish burned areas 

for just over six weeks in the case of Burn #1, and for approximately one month in the case of 

Burn #2. 

As was the case with BAI, its component band, NIR, showed similarity between the two 

sensors, as those time periods during which MODIS was able to differentiate burned from 

unburned can easily fall within the temporal range during which TM can be assumed to 

effectively perform the same task.  However, unlike BAI, Burn #1 and Burn #2 varied in how 

long each was distinguishable, which is more characteristic of MIRBI.  For the most part, these 

satellite level findings support those from in situ analysis, though Burn #1 was distinguishable 

for longer than any of the four field-level examples.  Despite the advantage that NIR can be 

calculated from either sensor, and from MODIS at 250m, its utility for burned area detection in 

tallgrass prairie is less than MIRBI or red, though it is useful if burn detection takes place within 

one month of an area being burned. 
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Figure 5.5: NIR normalized distance values for the duration of the sampling period. 

 
 

 

5.3.5 LNIR 

LNIR, which was only available from the MODIS sensor, exhibited D-values of greater 

than 1 through May 11 for Burn #1 (Figure 5.6).  This meant that Burn #1 was detectable for 

nearly eight weeks with LNIR.  Burn #2, however, consistently showed D-values greater than 1 

only until April 13, before this value dropped to 0.6 on April 14 (Figure 5.6), meaning that Burn 

#2 was only detectable for just over two weeks. 

In the case of LNIR, the two burned areas show very different lengths of time over which 

they are detectable, (eight weeks compared to just over two).  Similar inconsistencies occurred 

with the red band and MIRBI index reviewed earlier, though not to this extent.  Compared with 

the in situ findings of the previous chapter, the LNIR D-values corroborated some findings and 

contradicted others.  For example, the approximately two-week time period during which Burn 

#2 was detectable was shorter than all four periods in the in situ analysis, the shortest of which 

was at least four weeks long.  On the other hand, Burn #1 (detectable for approximately 8 weeks 

in this analysis), was detectable for a shorter time period (4-5 weeks) in one in situ sample, for a 

similar time period (8 weeks) in another, and for much longer time period (through the end of 

August) in the remaining two.  

The performance of LNIR in both the field level analysis and the normalized distance 

analysis suggests that the efficacy of LNIR for differentiating burned from unburned tallgrass 

prairie is highly subject to variability within that prairie.  It is also worth noting that LNIR is 

disadvantaged by the fact that it is only available from the MODIS sensor, and then only at 500m 
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spatial resolution.  For these reasons, it is likely that LNIR is of limited utility for burned area 

mapping at the satellite scale in tallgrass prairie. 

 

Figure 5.6: LNIR normalized distance values for the duration of the sampling period. 

 
 

 

5.3.6 SMIR 

The SMIR D-value of Burn #1, when calculated with TM, failed to reach 1 in any of the 

sampling dates.  The closest it came was a value of 0.88 on April 2, after which no value was 

higher than 0.62 for the remainder of the study period.  For Burn #2, only the April 2 date was 

significant (1.49), with the maximum value in any other TM image date being only 0.74 (Figure 

5.7).  From these results, it is difficult to assume that SMIR would have any utility for 

differentiating burned from unburned areas, except that Burn #2 might be discernable for 

approximately four weeks. 

The MODIS SMIR D-values for Burn #1 were greater than 1 for only two sampling 

dates, March 19 and 20 with values of 1.17 and 1.87, respectively, before dropping to 0.79 on 

March 21.  After this, D-values fail to consistently remain above 1 for any appreciable length of 

time.  For Burn #2, values remain greater than 1 until May 17, after which they drop to 0.85 and 

0.56 on May 18 and 20, respectively (Figure 5.7).  According to the MODIS values, Burn #2 is 

discernable for over 7 weeks, while Burn #1 is not discernable for an appreciable length of time. 
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Figure 5.7: SMIR normalized distance values for the duration of the sampling period. 

 
 

 

The analysis of SMIR revealed that the two sample burned areas were not similar in any 

way.  While Burn #1 was not discernable for long, Burn #2 was discernable for more than seven 

weeks.  This is directly in contraction to any other band where the two burn samples differed.  In 

all of those cases, Burn #1 was detectable for much longer—sometimes for twice the amount of 

time.  This suggests that SMIR, when it is used to distinguish between burned and unburned 

tracts of tallgrass prairie, focuses on different characteristics of burned areas than other indices 

and bands. 

Although the two pairs responded differently when examined with SMIR, the two sensors 

showed some similarities.  Neither sensor detected Burn #1 for any substantial amount of time.  

Burn #2 was detected by both sensors, though TM could not do so for as long as MODIS (four 

weeks compared to seven weeks).  The satellite-based findings of neither sensor corresponded to 

the field-based analysis from the previous chapter.  In the in situ analysis, SMIR values were 

significant for the entire study period in three of the four sample years, and significant through 

the end of July in the fourth.  This suggests that major differences in the response of SMIR occur 

depending on the spatial resolution at which it is used, and on the characteristics of the burned 

areas to be detected.  Finally, SMIR performed poorer than any other band or index tested in this 

satellite-level analysis, which, combined with its 500m maximum MODIS resolution, suggests 

that its use at this scale in tallgrass prairie is limited, despite its stellar performance in the in situ 

analysis. 
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5.4 Conclusions 
The hypothesis proposed at the beginning of this chapter was that those bands and indices 

that were successful in differentiating burned from unburned tallgrass prairie using in situ data 

will also do so effectively at the satellite image scale.  In most cases, this hypothesis was 

confirmed in that all bands or indices were able to differentiate burned from unburned areas for 

approximately one month or longer, and so could be said to do so effectively.  The exception to 

this, and the band for which the hypothesis is rejected outright, is SMIR, as it performed 

extremely well when simulated from in situ data, but was only able to differentiate burned from 

unburned for any appreciable amount of time in one of the four scenarios tested in this chapter.  

Consequently, SMIR is not used for classifying burned areas in subsequent chapters of this 

paper. 

Although the hypothesis was effectively confirmed for all bands and indices except 

SMIR, the length of time during which each band or index was capable of discriminating burned 

from unburned areas was usually different between the field-level analysis and the normalized 

distance analysis.  In almost all cases, the z and t-values from the field-level analysis remained 

significant longer than the D-values from this analysis.  This could have been caused by 

differences in the sensitivity of the two methods used, or by differences in the spatial scale at 

which the burned areas were evaluated by the two methods.  However, because these differences 

in scale between the two methods remain constant throughout the time period of analysis, while 

the similarity between t/z-values and D-values lessens, scale differences are likely not the cause.  

If they were, dissimilarities would occur throughout the study period, rather than at the middle 

and end.  Therefore, the dissimilarities most likely stem from differences in the sensitivity of the 

two methods.  Specifically, the normalized distance method is accounting for greater sample 

variability (the field-level analysis techniques assumed equal variance) later in the study, which 

lowers the chance of having a value less than 1 during these dates.  It is possible that this 

variance is partly related to the inclusion of bottomland and side hill grassland areas in this 

analysis, whereas only hilltops were sampled in Chapter 4.  If this is the case, it could be argued 

that the conclusions regarding the efficacy of indices and bands for burned area mapping 

produced by this chapter are more accurate than those from Chapter 4, as they account for 

topographic variation within the burned area. 



 55

Because the two different burned area samples used in this chapter yielded different 

estimates of how long burned areas can be differentiated from unburned areas with a given band 

or index, one estimate must be selected to provide the baseline for further analysis.  This should 

be the most conservative one.  For example, though LNIR might be able to detect burned areas 

that share the characteristics of Burn #1 for more than two months after they are burned, it can 

only detect burned areas with the characteristics of Burn #2 for 19 days.  This means that a 

maximum efficacy of 19 days should be assumed, as the percentage of burned areas in the entire 

study area that share the characteristics of Burn #2 is unknown, and might be very large. 

It is also worth noting that the results of this normalized distance analysis did little to 

expose differences in burned area mapping capability between the TM and MODIS sensors, as 

the differences in spatial resolution did not seem to account for differences in the efficacy of the 

individual bands of indices.  Those differences that were present fail to form a clear relationship, 

and can be mostly accounted for by temporal sample density. 

All bands and indices except SMIR were retained for use in the classification of burned 

areas in the next chapter.  These bands and indices were used because they were able to 

differentiate burned from unburned areas for longer periods of time than did SMIR, and/or 

because they contributed something (consistency between burns/sensors, high spatial resolution 

with MODIS, etc.) that was not also provided from a band or index with better performance.  

The length of time over which all bands and indices were able to differentiate burned from 

unburned areas is shown in Table 5.4. 

 

Table 5.4: Length of time (at least) for each burn pair during which D-values remained > 1.  

Days of known burn existence prior to the first sampling date are counted in the total.  

Values in parenthesis in the table indicate a much longer period of significance that was 

interrupted by one or two D-values < 1. 
 Resolution (m) Length of significance in days 
Band/Index TM MODIS TM Burn #1 TM Burn #2 MOD. Burn #1 MOD. Burn #2
BAI 30 250 18 8 31 25
MIRBI 30 500 66 40 5 (60) 0 (28) 
red 30 250 18 40 71 53 
NIR 30 250 18 8 49 (58) 25 
LNIR NA 500 NA NA 57 19 
SMIR 30 500 0 8 5 53 (73) 
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CHAPTER 6 - Image Classification and Accuracy Assessment 

6.1 Introduction 
The third objective of this study was to use the band/index suitability information that 

was obtained by accomplishing the first and second objectives to identify which bands/indices, 

sensors, and classification techniques work best for mapping burned areas in tallgrass prairie.  

Developing methods to identify burned areas with digital imagery is critical for two main 

reasons.  First, fire scars that are obvious to an interpreter are usually less obvious using 

classification algorithms and other automated techniques (Hudak and Brockett 2004).  However, 

these techniques must be used to some extent, as the patchiness and roughness of burned areas 

makes manual digitization both tedious and subjective (Hudak and Brockett 2004).  Second, 

manual digitization can use only three-band displays, while automated methods can use a 

virtually unlimited amount (Hudak and Brockett 2004).   

To accomplish this chapter’s objective, four hypotheses were tested.  First, that object-

based classification techniques will map burned tallgrass prairie more accurately than pixel-

based techniques based on prior studies in other cover types.  Second, that TM will allow for 

more accurate burned area mapping in tallgrass prairie than MODIS due to its superior spatial 

resolution.  Third, that due to cloud cover, MODIS must be used in order to achieve a sample 

that is temporally dense enough for burned area mapping in tallgrass prairie.  Finally, that bands 

and/or indices composed of red and NIR wavelengths will be required for optimal burned area 

mapping in tallgrass prairie because they represent the best compromise in spatial and temporal 

resolution.  Testing these hypotheses involved classifying several bands and indices both 

individually and in combination with two different classification techniques with both TM and 

MODIS.   

6.2 Methods 

6.2.1 Data Collection and Processing 

6.2.1.1 Imagery 

All 2008 TM scenes from path 28-row 33 and path 28-row 34, and all 2010 TM scenes 

from path 27-row 33, path 28-row 33, path 27-row 34, and path 28-row 34, that were captured 
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between April 1 and August 30 were downloaded through GloVis as TIFF files.  They were then 

calibrated to top of atmosphere reflectance using the method of Chandler and Markham (2003).  

Only two path/row combinations from 2008 were needed because all ground-truth data (the 

procurement of this data is explained in section 6.2.1.2 below) were located in the footprint of 

these two scenes, whereas ground truth data for 2010 ranged across four scenes.  Only scenes 

that clearly showed at least one of the aforementioned ground-truth areas in each year were 

retained for classification. 

Also acquired were all 2008 and 2010 MODIS scenes captured between April 1 and 

August 30.  As was the case in the previous chapter, these were downloaded through NASA 

WIST for both the Terra and Aqua satellites, and at spatial resolutions of both 250 m 

(MOD09GQ, MYD09GQ) and 500 m (MOD09GA, MYD09GA).  All data were processed as in 

Chapter 5 using the MRT, and were subset to roughly the area covered by the TM imagery 

mentioned in the previous paragraph.  For each year, only scenes that clearly showed all ground-

truth samples that had been burned to that point were kept.  Again, the image in which the 

ground-truth area appeared closest to nadir was used. 

6.2.1.2 Ground-Truth Data 

In addition to standard accuracy measures based on error matrices, the accuracy of each 

classification was evaluated with regard to several single, specific burned areas.  In 2008, these 

included six burned areas in Geary and Morris Counties, Kansas, which were interpreted from 

oblique aerial photographs taken on April 12, 2008 by matching landmarks and burn edges to 1-

meter National Aerial Imagery Program (NAIP) aerial photography.  They ranged in size from 

approximately 46 ha to 744 ha (Figure 6.1; Table 6.1).  In 2010, ground-truth areas consisted of 

13 burns that were digitized in situ with a handheld Global Positioning System (GPS) field 

computer in Greenwood and Chase Counties, Kansas, between April 23 and May 5, 2010.  They 

ranged in size from 8 ha to 958 ha (Figure 6.1; Table 6.1). 
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Figure 6.1: Map of the 19 ground-truth burned areas that were used to evaluate 

classification accuracy.  The number next to each burned area identifies it according to its 

name in Table 6.1. 
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Table 6.1: Characteristics of the 19 ground-truth burned areas used in this study.  Date 

burned was estimated based on the first confirmation of the burned area with MODIS 

imagery, or is known from fieldwork.  The last three columns indicate how many pixels 

occupy an area the size of each ground-truth burned area at the given spatial resolution. 
2008 Burn Date Size (ha) 30 m 250 m 500 m
Burn #1 4/2 89 989 14 4
Burn #2 4/2 88 978 14 4 
Burn #3 4/2 224 2489 36 9 
Burn #4 4/1 633 7033 101 25 
Burn #5 4/1 744 8267 119 30 
Burn #6 4/2 46 511 7 2 
      
2010 Burn Date Size (ha) 30 m 250 m 500 m
Burn #1 4/10-4/11 958 10644 153 38
Burn #2 4/11 128 1422 20 5 
Burn #3 4/10 182 2022 29 7 
Burn #4 4/9 126 1400 20 5 
Burn #5 4/9 120 1333 19 5 
Burn #6 4/17 76 844 12 3 
Burn #7 4/14 128 1422 20 5 
Burn #8 4/9 125 1389 20 5 
Burn #9 3/31 45 500 7 2 
Burn #10 4/9 128 1422 20 5 
Burn #11 4/9 45 500 7 2 
Burn #12 4/9 8 89 1 0 
Burn #13 4/9 31 344 5 1 
 

 

6.2.1.3 Mask Layers 

The final piece of data required was a mask layer for each of the three spatial resolutions 

used here (30 m, 250 m, and 500 m).  These mask layers permitted the majority of each non-

grassland land cover type to be excluded from consideration during the classification process, 

which allowed the classification to focus on differentiating burned from unburned tallgrass 

prairie, rather than trying to distinguish burned areas from several land-cover classes.  Masking 

is often used prior to classification (e.g., Stroppiana et al. 2003), where it is useful for 

eliminating interclass variability that often causes classification problems.  This is particularly 

true when an unburned class is composed of all land cover types other than burned areas (Pereira 

1999).  Additionally, some of the cover types most commonly confused with burned areas, such 

as water, urban, and other sparsely vegetated areas (Chuvieco and Congalton 1988, Tanaka et al. 
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1983), can be easily masked when the correct bands are used to develop the masks.  Masking is 

also sometimes used in post-classification burned area mapping (e.g., Shao and Duncan 2007). 

The images used to produce the land cover mask for the TM imagery were 11 scenes 

taken between March 1 and August 28 in the years from 2006 to 2010.  These were from the four 

path/row combinations mentioned at the beginning of this section (Table 6.2).  All scenes were 

acquired and processed in the same manner as described above for the other TM imagery used in 

this chapter.  For each of the four TM path/row combinations, a March image was first masked 

in order to eliminate all land cover classes that were not grassland.  First, low NIR values were 

masked in order to block areas of water and fallow crop.  Next, low red values were masked to 

block areas of actively growing vegetation, such as crops and evergreen trees.  A combination of 

low values in both NIR and green was used to mask deciduous trees (it was still too early in the 

year for them to have leaves) and additional areas of fallow crop.  Finally, areas that had a 

combination of high NIR values and low green values were masked to block additional areas of 

active cropland.  The masking of active cropland with high NIR values and low green values was 

then repeated for each path/row combination using three more images from April, July/August, 

and August/late August.  Additionally, in areas were clouds were not present in an image, urban 

areas were masked using high green values.   

MODIS masks were generated in a similar manner as the TM masks, except that only one 

mask was required for each spatial resolution (250m or 500m) due to the larger footprint of 

MODIS.  Generation of all masks was performed so that an absolute minimum of grassland 

pixels were blocked, even at the expense of including non-grassland pixels in future 

classifications.  In a few cases where grassland burning had occurred prior to the March image 

(and grassland was masked as a result), the mask was edited so that these pixels were not masked 

in the final product.  All masks were generated from multiple image dates within the growing 

season because this allowed better masking of non-grassland cover types than would be possible 

with one or even two scenes.  This is true because most cover types that appear similar to 

grasslands for part of the year have different temporal reflectance curves in other parts of the 

year.  Images and criteria used to generate all masks are given in Table 6.2. 
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Table 6.2: Criteria used to generate each mask.  Values are reflectance.  Purpose denotes 

the primary ground cover type masked by each step, although additional masking benefits 

were likely realized. 

TM 27-33 Purpose TM 27-34 Purpose 
3/10/2008  3/10/2008  
NIR < 0.14 Water, Fallow Crop NIR < 0.14 Water, Fallow Crop
Red < 0.092 Trees, Active Crop Red < 0.092 Trees, Active Crop
NIR < 0.20, Green < 0.105 Trees, Fallow Crop NIR < 0.20, Green < 0.095 Trees, Fallow Crop
NIR > 0.20, Green < 0.11 Active Crop NIR > 0.20, Green < 0.11, Red < 0.12 Active Crop 
4/14/2009   4/14/2009   
NIR > 0.26, Red < 0.07 Active Crop NIR > 0.25, Red < 0.07 Active Crop 
7/22/2010   7/22/2010   
NIR > 0.31, Green < 0.04 Active Crop NIR > 0.3, Green < 0.04 Active Crop 
Green > 0.07 Urban/Built 8/28/2006   
8/23/2010   NIR > 0.33, Green < 0.045 Active Crop 
NIR > 0.33, Green < 0.045 Active Crop  
  TM 28-34 Purpose 
TM 28-33 Purpose 3/1/2008  
3/1/2008  NIR < 0.14 Water/Fallow Crop
NIR < 0.14 Water/Fallow Crop Red < 0.092 Trees, Active Crop
Red < 0.092 Trees, Active Crop NIR < 0.20, Green < 0.095 Trees, Fallow Crop
NIR < 0.20, Green < 0.095 Trees, Fallow Crop NIR > 0.21, Green < 0.11 Active Crop 
NIR > 0.20, Green < 0.11 Active Crop 4/21/2009   
4/2/2008   NIR > 0.22, Red < 0.04 Active Crop 
NIR > 0.23, Red < 0.13 Active Crop 7/23/2008   
8/8/2008   NIR > 0.33, Green < 0.09 Active Crop 
NIR > 0.43, Green < 0.09 Active Crop Green > 0.14 Urban/Built 
8/6/2007   8/6/2007   
NIR > 0.32, Green < 0.04 Active Crop NIR > 0.32, Green < 0.04 Active Crop 
   
MODIS 250m and 500m Purpose  
3/1/2008   
NIR < 0.18 Water  
Red < 0.11 Active Crop  
7/14/2008    
Red > 0.10 Fallow Crop  
NIR < 0.28 Water  
NIR > 0.48, Red < 0.045 Active Crop  

 

 

6.2.2 Band/Index Selection 

The next step in meeting the third objective of this study was to select the datasets that 

would be classified.  In this case, the inputs would be single bands and indices as well as 

combinations of bands and indices.  These are referred to as classification “scenarios” throughout 
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the rest of this chapter.  The composition of these scenarios was ultimately based on the 

performance of their component band(s) and/or index in the in situ and normalized distance 

analyses performed in the preceding chapters.  For example, bands or indices that demonstrated 

poor utility for differentiating burned from unburned grassland were not included in any 

scenario.  Another consideration for the makeup of the scenarios was spatial resolution.  For 

example, if three of the four bands or indices used in a scenario were available at 250 m 

resolution, and the fourth was available at only 500 m resolution, a 3-band version of that 

scenario (made up of only the 250 m spatial resolution bands) was tested as well.  Finally, two 

scenarios were formed from all the bands from TM or MODIS.  Scenarios like this are often used 

in burned area mapping literature, and including them here facilitates comparisons of their 

burned area mapping efficacy in tallgrass prairie to their efficacy in other cover types.  

6.2.2.1 Single-Band/Index Scenarios 

The first scenarios used were single bands and indices.  Single band/index classification 

inputs are used here because of the simple burned/unburned nature of the classification type.  If 

multiple land cover classes were sought, single band/index scenarios would likely be less 

accurate, as it is unlikely that a single band or index could discriminate between all classes well 

(Shao and Duncan 2007).  In this study, a single band or index that performed well in both 

previous analyses was used if it possessed a trait that was not duplicated in another band or 

index, in which case only the best-performing band or index was used.  NIR (Scenario #1) was 

the first single-band scenario used in this analysis.  Although the performance of NIR was 

similar to BAI in the preceding two chapters, it is easier to compute, making the use of BAI 

unnecessary.  Red (Scenario #2) was also used because it performed extremely well in both 

preceding chapters, and did so independently of whether or not an area was grazed.  LNIR 

(Scenario #3) was also included based on a strong performance in Chapters 4 and 5, though it is 

only available from the MODIS sensor and only at 500m spatial resolution.  Finally, the lone 

index used was MIRBI (Scenario #4), which was included on the strength of its ability to 

differentiate burned from unburned areas regardless of grazing intensity (Chapter 4), and because 

it can be calculated from both TM and MODIS. 
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6.2.2.2 Multiple-Band/Index Scenarios 

  Although single-band/index scenarios might adequately map burned areas in cases such 

as this (where only two classes are to be identified), multiple band/index scenarios were also 

tested because a mixture of bands and indices might better account for within-class variation.  

The first multiple-band/index scenario, Scenario #5, used all of the bands/indices that performed 

well in previous analysis, except for BAI.  Again, BAI was not included given the similar 

performance of NIR.  This scenario, therefore, was composed of MIRBI, LNIR, red, and NIR.  

Because LNIR could not be calculated from TM, a version of this scenario that was limited to 

MIRBI, red, and NIR was also tested (Scenario #6).  Additionally, a scenario using only red and 

NIR was used (Scenario #7), as these are the only 250 m spatial resolution MODIS bands.  

Finally, two scenarios that included all bands from each of the two sensors were constructed.  

The first (Scenario #8) used all TM bands except the thermal band (band 6), giving it a spatial 

resolution of 30 m.  The second (Scenario #9) used the first seven MODIS bands, giving it a 

spatial resolution of 500 m.  Table 6.3 shows selected traits of all scenarios. 

 

Table 6.3: Selected traits of the scenarios used as classification inputs in this chapter.   
Name Components TM Spatial Res. MODIS Spatial Res.
1 NIR 30 250
2 Red 30 250
3 LNIR NA 500
4 MIRBI 30 500
5 MIRBI, LNIR, red, NIR NA 500
6 MIRBI, red, NIR 30 500
7 red, NIR 30 250
8 TM 1-5, 7 30 NA
9 MODIS 1-7 NA 500

   

 

6.2.2.3 Scenario Generation 

For each date in 2008 that a clear TM image was available from April 2 through July 23, 

an image representing each scenario was generated.  A preliminary minimum distance 

classification of the scenarios from this date range showed that classification quality quickly 

became poor by the end of May (approximately two months after burning had taken place).  

Consequently, imagery after June 1 was not classified except for that already done in 2008 for 

TM.  The results from this initial minimum distance classification of 2008 TM data is given in 
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this chapter to demonstrate the futility of trying to detect burned areas later in the burn season, 

and to justify the exclusion of this time period in all classifications except this one.  However, in 

two of the other three cases, a final image after this cutoff date is used in order to provide an 

example at the end of the sample where the classification quality become poor.  For example, 

with the MODIS imagery from 2010 the last clear image date prior to the cutoff was on May 11, 

on which date classification quality could still be relatively high.  Therefore, a date on which the 

classification became poor could not be recorded unless the first clear image after the cutoff 

(June 22 in this case, though the classification quality would obviously be poor) was classified as 

well.  Tables 6.4 (TM) and 6.5 (MODIS) show all imagery dates for which the scenarios were 

generated. 

 

Table 6.4: Dates for which a clear TM scene was available for each of the ground-truth 

burned areas.  Numbers in the body of the table are the path and row of the useable scene.  

Total is number of scenes in which a particular burned area is clearly visible. 
2008 4/2 4/27 5/4 5/20 6/14 6/21 6/30 7/7 7/23 Total
Burn #1 28-33  28-33 28-33 28-33 28-33 28-33 6
Burn #2 28-33 27-33 28-33 28-33 27-33 28-33 27-33 28-33 28-33 9
Burn #3 28-33  28-33 28-33 28-33 27-33 28-33 28-33 7
Burn #4 28-33  28-33 28-33 27-33 28-33 27-33 28-33 28-33 8
Burn #5 28-33  28-33 28-33 27-33 28-33 27-33 28-33 28-33 8
Burn #6 28-33  28-33 28-33 28-33 28-33 28-33 6
     
2010 4/8 4/17 5/3 5/26 6/4 Total
Burn #1   27-34 28-34 27-34 3
Burn #2   27-34 28-34 27-34 3
Burn #3  27-33 27-33 28-33 27-33 4
Burn #4   27-34 28-34 27-34 3
Burn #5   27-34 28-34 27-34 3
Burn #6   27-34  27-34 2
Burn #7   27-34 28-34 27-34 3
Burn #8   27-34 28-34 27-34 3
Burn #9 28-33 27-33 27-33 28-33 27-33 5
Burn #10  27-33 27-33 28-33 27-33 4
Burn #11  27-33 27-33 28-33 27-33 4
Burn #12  27-33 27-33 28-33 27-33 4
Burn #13  27-33  28-33 2
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Table 6.5: Dates of MODIS imagery used in this study.  The body of the table denotes 

which satellite provided the scene that was used. 
2008 4/2 4/6 4/13 4/15 4/19 4/22 4/28 4/29 5/4 5/11 5/17 5/20 Total
Burn #1 Aqua Aqua Aqua Aqua Terra Aqua Terra Aqua Aqua Aqua Terra Aqua 12
Burn #2 Aqua Aqua Aqua Aqua Terra Aqua Terra Aqua Aqua Aqua Terra Aqua 12
Burn #3 Aqua Aqua Aqua Aqua Terra Aqua Terra Aqua Aqua Aqua Terra Aqua 12
Burn #4 Aqua Aqua Aqua Aqua Terra Aqua Terra Aqua Aqua Aqua Terra Aqua 12
Burn #5 Aqua Aqua Aqua Aqua Terra Aqua Terra Aqua Aqua Aqua Terra Aqua 12
Burn #6 Aqua Aqua Aqua Aqua Terra Aqua Terra Aqua Aqua Aqua Terra Aqua 12
      
2010 3/31 4/9 4/14 4/17 4/19 4/29 5/4 5/5 5/6 5/7 5/11 6/22 Total
Burn #1   Aqua Aqua Aqua Terra Terra Aqua Terra Aqua Terra Aqua 10
Burn #2   Aqua Aqua Aqua Terra Terra Aqua Terra Aqua Terra Aqua 10
Burn #3   Aqua Aqua Aqua Terra Terra Aqua Terra Aqua Terra Aqua 10
Burn #4  Terra Aqua Aqua Aqua Terra Terra Aqua Terra Aqua Terra Aqua 11
Burn #5  Terra Aqua Aqua Aqua Terra Terra Aqua Terra Aqua Terra Aqua 11
Burn #6    Aqua Aqua Terra Terra Aqua Terra Aqua Terra Aqua 9
Burn #7   Aqua Aqua Aqua Terra Terra Aqua Terra Aqua Terra Aqua 10
Burn #8  Terra Aqua Aqua Aqua Terra Terra Aqua Terra Aqua Terra Aqua 11
Burn #9 Aqua Terra Aqua Aqua Aqua Terra Terra Aqua Terra Aqua Terra Aqua 12
Burn #10  Terra Aqua Aqua Aqua Terra Terra Aqua Terra Aqua Terra Aqua 11
Burn #11  Terra Aqua Aqua Aqua Terra Terra Aqua Terra Aqua Terra Aqua 11
Burn #12  Terra Aqua Aqua Aqua Terra Terra Aqua Terra Aqua Terra Aqua 11
Burn #13  Terra Aqua Aqua Aqua Terra Terra Aqua Terra Aqua Terra Aqua 11
 

 

6.2.3 Image Classification 

6.2.3.1 Minimum Distance Supervised Classification 

A pixel-based, supervised, minimum distance classification technique was used because 

this technique works based on the “distance” (in feature space) of each pixel to the mean of each 

cover type’s training data.  This does not involve probability, as is the case with maximum 

likelihood, and so does not assume a Gaussian distribution.  In this work, because the classes are 

very broad and possibly bimodal (e.g., both older and newer burned areas in the same class), the 

assumptions of the maximum likelihood classification would most likely be violated.  

Because minimum distance is a supervised classification technique, training data for the 

two classes, burned areas and unburned areas, were needed.  Burned area training data for 2008 

and 2010 were usually selected separately for each image date, though they were reused 

whenever possible.  Although selecting the same training data for all dates would have provided 

consistency, the fact that only a small portion of the respective scenes from each path 
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overlapped, and the fact that clouds on some dates obscured burned areas that were used in other 

dates rendered this approach impossible.  Both recent and older burned areas were included in 

the sample when possible.  The same burned areas used to train the TM classifications were also 

used to train the MODIS classifications when possible, though cloud cover sometimes dictated 

that new training areas be selected in these cases as well. 

Training data for unburned areas in both years and for both sensors were selected in a 

manner similar to the burned area data, with known unburned areas used to classify other images 

(from either sensor) when clouds permitted.  In all cases, every scenario from a given scene and 

date was classified with the same training data whether burned or unburned.  One minimum 

distance classification result was generated for each scenario for each TM or MODIS image date 

for each of the two years (Tables 6.4 and 6.5).  Non-grassland areas were masked using the 

masks generated previously (section 6.2.1.3). 

6.2.3.2 Object-Based Classification 

Object-based classification is useful because it allows for groups of similar, adjacent 

pixels to be treated as whole objects, rather than as an unrelated group of individual pixels (Hay 

et al. 2001).  This allows for the use of geometric information that is inherent in all remotely 

sensed imagery.  Burned areas in an image can also be thought of as discreet objects, and, 

consequently, object-based classification has been used extensively for mapping them, though 

this research is usually performed in forests (e.g., Gitas et al. 2004, 2008, Mitri and Gitas 2004a, 

2004b, 2006, 2008).  Object-based classification works by generating image objects through the 

process of segmentation, then classifying these objects based on various spectral and geometric 

properties.  In this work, segmentation was performed with a Fractal Net Evolution Approach 

(FNEA), which builds objects using a bottom-up technique that begins with individual pixels and 

merges them pairwise until the resulting objects meet a user-specified threshold (Baatz et al. 

2004, Benz et al. 2004).  eCognition 4.0 software was used for all object-based image 

segmentation and classification.   

Because masks cannot be applied during the classification process in eCognition, all 

scenarios to be classified were first saved as separate, masked, image files.  For the TM images, 

the masked area was given a value of –5 to better separate it from the actual reflectance values 

contained in the rest of the image.  This was not necessary for MODIS, as reflectance values 

were multiplied by 10,000, and would not be confused with the original mask value of zero.  In 
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the three MODIS scenarios that used MIRBI, the single-digit index values were multiplied by 

1,000.  This made the radiometric range of the MIRBI values more comparable to that of the 

inflated MODIS reflectance values, and allowed for the use of the same segmentation parameters 

across all MODIS images of 500 m spatial resolution.  This is necessary because segmentation of 

images with different radiometric resolutions (despite equal spatial resolutions and segmentation 

parameter values) results in different-sized objects between the two images (Baatz et al. 2004).   

The segmentation parameters for this analysis were chosen so that the smallest burned 

areas could remain as separate objects (rather than be merged with other cover types—possibly 

unburned areas), while preventing as much as possible the division of larger individual burned 

areas into multiple objects.  This was consistent with a primary rule of object-based 

classification—to produce image objects that are as large as possible but as small as necessary to 

preserve important details (Baatz et al. 2004).  In cases where one or the other was unavoidable, 

the retention of smaller burned areas was deemed more important than keeping larger burned 

areas whole, as no information is actually lost by dividing larger objects into multiple parts.  It 

should also be noted that all parameters were developed using the red and NIR image bands.  

The parameters which provided an optimal segmentation were different for each image type, 

given the different spatial and radiometric resolutions of the sensors (Table 6.6). 

 

Table 6.6: Segmentation parameters for all three types of imagery used in this chapter. 
  TM MODIS 250m MODIS 500m
Scale Parameter 2 60 25
Shape Factor 0.2 0.1 0.1
Compactness/Smoothness 0/1 0.5/0.5 0.5/0.5
 

 

Once segmented, the image objects were classified into one of three classes: burned, 

unburned, or masked.  Training data were identified in the same manner as with the minimum 

distance classification, including reusing areas where possible and using both older and newer 

burned areas in the burned area training set.  Typically, one major advantage of object-based 

classification is the ability to use geometric properties of the objects in the classification.  

However, burned areas (particularly later in the burn season) do not exhibit any particular 

geometric property that would differentiate them from unburned grassland.  Consequently, the 

object-based technique was used here as a tool with which to avoid the misclassification of 
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individual pixels and small groups of pixels.  That is, the advantages of object-based 

classification were, in this case, realized from the segmentation rather than from the 

classification of the resultant objects.  Because a standard nearest neighbor scheme takes into 

account only the spectral properties of the image objects, it was used to perform the 

classification.  Finally, it should be noted that given the futility of trying to accurately detect 

burned areas later in the burn season (as evidence by the pixel-based classification with the 2008 

TM imagery) the imagery from this year and sensor was not classified past the June 14 image 

date using object-based classification.  

6.2.4 Accuracy Assessment 

The most reliable method for assessing the accuracy of burned area mapping results is to 

compare those results to results from higher-resolution imagery (Eva and Lambin 1998).  In the 

case of both TM and MODIS, higher resolution imagery that showed burned areas was not 

available, and/or was not available at sufficient temporal resolution to match each image date 

that was classified.  Consequently, two other accuracy assessment techniques were initially used 

to evaluate the ability of each classification scenario to detect burned areas.  Once these two 

techniques revealed the best method for mapping burned areas, the classifications produced by 

this method were further evaluated for accuracy using a more objective, mainstream approach. 

6.2.4.1 Error Matrix Data  

A simple error matrix was constructed for each scenario for each sensor in each of the 

two years.  The error matrix had four possibilities: correctly identified burned areas, correctly 

identified unburned areas, false positive burned areas, and false negative burned areas.  The error 

matrix used between 103 and 158 ground-truth reference points to evaluate the TM data, with the 

number of points varying by scene.  These were assigned a value of either burned or unburned 

based on visual interpretation of the TM images.   

Because unburned areas were often burned later in the time series, some unburned points 

had to be manually moved from burned to unburned areas in later image dates, though most 

unburned area points did not have to be moved.  Burned points, on the other hand, were selected 

and kept throughout he sampling period for the obvious reason that once an area is burned, it 

remains burned throughout the sampling period.  Clouds obscured reference points in some 

images, in which case these points were simply moved to a burned or unburned area depending 



 69

on which was appropriate for that point.  All points developed using the four TM scenes were 

merged into a composite dataset and used to evaluate the MODIS scenarios (174 points in 2008 

and 227 in 2010).  Again, relocating the problem points to matching cover areas (burned or 

unburned) solved cloud problems.  Because the points in this initial analysis had to be moved to 

accommodate changing burn patterns and cloud cover, they could not be treated as a random 

sample.  Consequently, all interpretations should be adjusted accordingly.  It is for this reason 

that the more objective error matrix analysis described in section 6.2.4.3 was later performed on 

selected image dates from the most accurate method.     

From the error matrix, producer’s accuracy was calculated by dividing the correctly 

identified number of points for each of the two cover classes by the total points assigned to that 

cover class by the reference data, while user’s accuracy was calculated by dividing the number of 

correct points in each cover class by the total points assigned to that cover class by the 

classification scenario.  Overall accuracy was calculated by dividing the number of correctly 

identified points in both classes by the total number of points sampled.  Finally, Kappa was 

estimated according to Congalton et al. (1983) 
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where KHAT is the estimate of Kappa, k is the number of rows in the error matrix, xii is the number 

of observations in row i and column i, xi+ and x+i are the marginal totals for row i and column i, 

respectively, and N is the total number of observations.  Kappa (and its estimate; KHAT) is similar 

to the overall accuracy in that it is a measure of agreement between the classification result and 

the reference data, except that it is standardized to account for any chance agreement that may be 

present.  Ideal classifications have high Kappa values, high overall accuracy, and similar 

producer’s and user’s accuracies (Shao and Duncan 2007). 

6.2.4.2 Areal Extents 

Although error matrices provide a good global measure of classification accuracy, they 

cannot address local variation in how accurately burned areas are classified.  This information 

would be valuable not only in its own right, but also for identifying the underlying causes of any 

accuracy problems exposed by the error matrix assessment, particularly errors of omission, 

which would result in underestimation of burned area.   
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The area of each of the six (2008) or thirteen (2010) ground-truth burned areas as 

computed from the field or aerial photography data was compared to their area as classified by 

each scenario.  Because this was done for consecutive image dates, a temporal trend in the ability 

of each scenario to detect burned area size was generated.  It should be noted that, because no 

data outside of the burned ground truth areas were evaluated, local overestimation of burned 

areas could not be diagnosed by this technique. 

6.2.4.3 Second Error Matrix Assessment 

     Results from the accuracy assessment performed in the previous two sections revealed 

that the spatial resolution of the 500 m MODIS data was too coarse for burned area mapping in 

tallgrass prairie.  Furthermore, the temporal resolution of the TM imagery was not sufficient for 

this task either.  This suggests that burned area mapping in tallgrass prairie must use the 250 m 

MODIS bands, which are limited to the red and NIR spectral ranges.  Consequently, the second 

accuracy assessment was performed only on the three scenarios that are comprised of the 250 m 

MODIS bands (Scenarios #1, #2, and #7).  A more detailed discussion of the performance of all 

scenarios is presented beginning with section 6.3.1. 

To construct these error matrices, 300 ground-truth points were randomly generated 

within the boundary of each 250 m MODIS image date.  All points for each image date were 

assigned a value of either burned or unburned based on a TM scene from approximately the same 

date as the MODIS image date.  In total, four TM dates in 2008 and three dates in 2010 

corresponded to MODIS scenarios dates, give or take one day (Table 6.7).  All points located in 

cover types other than grasslands in the TM image, including masked areas, cloudy areas, cloud 

shadows, border areas with no data values, forest areas, and cropland areas were deleted.  

Additionally, any remaining points that corresponded to clouds or their shadows in the MODIS 

imagery were deleted as well.  In the three cases where the TM image was acquired on the day 

before the MODIS image, unburned area ground-truth points were examined in the MODIS 

image to make sure they had not been burned in the time between when the two images were 

taken.  If so, they points were deleted.  Culling unsuitable points left between 103 and 125 points 

depending on image date.   

All accuracy measurements were calculated in the same manner as in section 6.2.4.1 

above.  Because no ground-truth points were manually moved, and because ground-truth data did 

not come from the image being classified, this accuracy assessment is more robust and reliable 
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than the exploratory one outlined in section 6.2.4.1, and is considered the definitive assessment 

of classification accuracy with 250 m MODIS data in tallgrass prairie. 

 

Table 6.7: Dates of TM and MODIS imagery used in the error matrix. 
TM Image MODIS Image 
4/2/2008 4/2/2008 (Aqua) 

4/27/2008 4/28/2008 (Terra) 
5/4/2008 5/4/2008 (Aqua) 

5/20/2008 5/20/2008 (Aqua) 
  

4/8/2010 4/9/2010 (Terra) 
4/17/2010 4/17/2010 (Aqua) 
5/3/2010 5/4/2010 (Terra) 

 

 

6.3 Results and Discussion 

6.3.1 Error Matrices 

6.3.1.1 Scenario #1 (NIR) 

Minimum distance classification of Scenario #1 from TM in both 2008 and 2010 yielded 

KHAT values greater than 80% through the first two image dates (80% or greater accuracy was 

considered good accuracy and was used as a baseline for discussing KHAT values throughout this 

paper).  In both years, however, these values fell on the third sampling date (early May) to 50% 

(2008) and 74/77% (2010), from whence they fell further throughout the rest of the study period 

in both years (Table 6.8).  Two KHAT values are sometimes be given for 2010, as the May 3 and 

26 sampling dates included two TM scenes.  The declining performance after the first two dates 

is explained by a rapid decrease in producer’s accuracy values, which indicates underestimation 

of burned areas due to regeneration of grass on the burn scars.  In the 2008 and 2010 MODIS 

minimum distance classifications, KHAT values were also above 80% for the first two sampling 

dates, before dropping to 69% (2008) and 77% (2010) by the third sampling date (Table 6.8).  

Again, this is due to declining Producer’s accuracies from fading burn scars. 

In the case of TM minimum distance, KHAT values for this scenario remained above 80% 

for at least 26 days in 2008, and for at least 10 days in 2010.  The time period over which KHAT 

values are greater than 80% is likely longer than cited, as it includes only the time between when 
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the area was first known to be burned and last image with a KHAT value greater than 80%.  The 

true length of time during which KHAT values were greater than 80% could actually extend much 

longer, given a more temporally dense imagery sample.  This is more likely with TM data due to 

its poorer temporal resolution than with MODIS, and is particularly true in 2008 here, as the first 

overpass in which many of the sample burned areas are visible is immediately after burning 

(April 2), after which a clear image is not available until April 27.  This trend occurs with all 

scenarios analyzed, and should be kept in mind as the results from this chapter are interpreted. 

The analysis of the Scenario #1 minimum distance classifications suggests that, with 

NIR, TM imagery can accurately detect burned areas longer than MODIS, as the MODIS KHAT 

values remained high for only at least 5 days in 2008 and 10 days in 2010.  Furthermore, unlike 

with TM, subsequent images mean that these periods of good KHAT values could not have 

exceeded 10 days in the case of 2008, or 14 days in the case of 2010, meaning that timing of the 

imagery cannot explain this difference.  Most likely, the higher spatial resolution of TM is 

responsible for its longer period of burned area detection accuracy, as the rapidly decreasing 

spectral signature of burned areas creates confusion with unburned areas when the larger MODIS 

pixels are used.   Nonetheless, reliable detection for 10 days with MODIS could be adequate, as 

the disadvantages previously discussed can be offset by its greater temporal resolution.  

Furthermore, the MODIS KHAT values do not necessarily reach poor levels (50-60 % range) until 

early to mid May, which is similar to when TM values reach this level.  Finally, this scenario is 

very resistant to classifying non-grassland cover types as burned areas, which is more useful in 

cases where masking non-grassland cover types might not be feasible. 
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Table 6.8: Error matrix accuracy assessment of Scenario #1 (NIR) minimum distance 

classifications.  In this chapter, producer’s and user’s accuracies always measure the ability 

of the classification to detect burned areas only, while overall accuracy and the Kappa 

estimate always refer to the accuracy of the whole classification. 
TM 2008      TM 2010     
Date Producer User Overall Kappa  Date Producer User Overall Kappa
4/2 96 100 98 96 4/8 96 100 98 96
4/27 91 100 96 92  4/17 87 100 94 88 
5/4 48 100 76 50  5/3 (27-33) 72 100 87 74 
5/20 30 63 59 15  5/3 (27-34) 83 93 89 77 
6/14 39 59 62 19  5/26 (28-33) 53 60 62 24 
6/21 45 50 54 6  5/26 (28-34) 76 76 73 45 
6/30 64 51 58 17  6/4 63 50 54 10 
7/7 48 48 52 3       
7/23 51 41 44 -11       
           
MODIS 2008      MODIS 2010     
Date Producer User Overall Kappa  Date Producer User Overall Kappa
4/2 81 100 91 82 3/31 92 100 96 91
4/6 86 96 92 84  4/9 92 100 95 90 
4/13 68 98 85 69  4/14 81 99 89 77 
4/15 65 93 82 63  4/17 81 100 89 78 
4/19 68 82 79 56  4/19 76 100 86 73 
4/22 77 88 85 69  4/29 71 93 80 61 
4/28 81 89 87 73  5/4 76 93 83 67 
4/29 77 80 81 62  5/5 69 96 81 62 
5/4 65 80 77 53  5/6 61 91 74 50 
5/11 71 79 78 55  5/7 69 93 79 59 
5/17 55 51 56 11  5/11 86 93 88 75 
5/20 15 67 59 10  6/22 54 69 59 20 
 

 

In both 2008 and 2010, TM object-based KHAT values for Scenario #1 were greater than 

80% for the first two sampling dates (through April 27 and 17, respectively), and then dropped 

below this threshold for the third sampling date.  Again, it should be noted that the 2010 range 

could be longer depending on image dates, especially considering that one of the two May 3 KHAT 

values is 73% (Table 6.9), which is close to the 80% threshold.  In the case of 2008, low KHAT 

values are due initially to burn underestimation on May 5, then to both overestimation and 

underestimation beginning on May 20.  In 2010, both overestimation and underestimation are 

responsible beginning on May 3.  In the case of the 2008 MODIS object-based classifications, 

KHAT values were above 80% for the first two dates, from at least April 2 to April 6, then dropped 

to 75% on April 13.  In 2010, however, values remained above 80% through April 19 (Table 
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6.9).  For both MODIS years, the reduction in KHAT values begins with underestimation of burned 

areas. 

The duration over which the KHAT values were viable for object-based classification was 

nearly the same as with the minimum distance classification.  In fact, TM 2008 and 2010 were 

identical at 26 and 10 days, respectively.  The 2008 MODIS duration was four days, which is 

comparable to five days for the minimum distance classification.  In 2010, the object-based 

classification improved this value to 20 days, whereas for minimum distance it was only 10.  In 

the case of both minimum distance and object-based classification techniques, NIR demonstrated 

great utility for identifying burned areas in tallgrass prairie, though it is most effective when 

burned areas are less than two weeks old. 

 

Table 6.9: Error matrix accuracy assessment of Scenario #1 (NIR) object-based 

classifications.     
TM 2008      TM 2010     
Date Producer User Overall Kappa  Date Producer User Overall Kappa
4/2 99 100 99 99 4/8 99 100 99 99
4/27 98 100 99 98  4/17 96 91 94 87 
5/4 60 100 82 62  5/3 (27-33) 85 86 87 73 
5/20 58 59 62 23  5/3 (27-34) 97 71 79 59 
6/14 36 67 65 24  5/26 (28-33) 67 51 55 12 
      5/26 (28-34) 97 58 59 7 
      6/4 61 54 58 17 
           
MODIS 2008      MODIS 2010     
Date Producer User Overall Kappa  Date Producer User Overall Kappa
4/2 87 100 94 88 3/31 100 100 100 100
4/6 83 96 91 81  4/9 95 100 97 95 
4/13 76 97 88 75  4/14 96 98 96 93 
4/15 82 88 87 73  4/17 93 98 95 89 
4/19 81 62 70 40  4/19 91 98 93 87 
4/22 86 64 72 46  4/29 79 83 79 57 
4/28 78 59 66 32  5/4 83 81 79 58 
4/29 74 67 72 45  5/5 80 86 81 62 
5/4 82 63 70 41  5/6 68 83 74 48 
5/11 78 57 64 34  5/7 82 88 83 65 
5/17 47 53 57 13  5/11 77 98 86 72 
5/20 47 49 54 7  6/22 72 67 63 24 
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6.3.1.2 Scenario #2 (red) 

For the 2008 TM minimum distance classifications, Scenario #2 (red) KHAT values 

remained above 80% through the first three sampling dates.  This lasted until May 20, on which 

KHAT values were still relatively high at 75%.  2010 TM KHAT values were similar, and did not 

drop below 80% until May 26 (Table 6.10).  In the case of 2008, lower KHAT values are explained 

by both overestimation and underestimation of burned areas on the May 20 sampling date.  In 

2010, lower KHAT values are explained by severe underestimation of burned areas (poor 

producer’s accuracies for burned areas) on the May 26 sampling date.  The 2008 MODIS 

minimum distance KHAT values remained above 80% for the first three sampling dates, before 

decreasing to 78% on April 15.  As was the case with TM, this was due to underestimation of 

burned areas beginning with this date.  2010 KHAT values, however, remained above 80% through 

May 6 (Table 6.10). 

Overall, Scenario #2 outperformed Scenario #1 (NIR) in terms of how long it could 

accurately detect burned areas with minimum distance classification.  Unlike with Scenario #1, 

however, TM and MODIS performed almost equally, with TM having KHAT values above 80% 

for 33 or 25 days, and MODIS for 12 or 37 days, depending on year.  Despite its seemingly 

stellar performance, it should be noted that that Scenario #2 consistently confuses burned areas 

with patches of actively growing vegetation, as both of these cover types reflect very little in the 

red spectral range.  This led to major overestimation of burned areas, particularly with active 

cropland, because not all of these areas were masked.  This trend is not reflected in the accuracy 

assessment figures, however, because growing vegetation was not included in the ground truth 

points for unburned area.  Because of its tendency to confuse green vegetation with burned areas, 

the red spectral range should not be used to identify burned areas unless all but target land cover 

types are sufficiently masked in order to prevent this overestimation.  Additionally, the 

background unburned cover type (in this case dead vegetation) must not be green, or it will 

appear similar to its burned counterpart.  It should be noted that this is not a problem with a dead 

vegetation canopy, and so is not a problem in the tallgrass prairies of the Flint Hills until later in 

the growing season. 
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Table 6.10: Error matrix accuracy assessment of Scenario #2 (red) minimum distance 

classifications. 
TM 2008      TM 2010     
Date Producer User Overall Kappa  Date Producer User Overall Kappa
4/2 99 100 99 99 4/8 100 100 100 100
4/27 98 100 99 98  4/17 89 100 95 90 
5/4 88 97 93 86  5/3 (27-33) 92 96 94 88 
5/20 88 85 87 75  5/3 (27-34) 85 100 92 85 
6/14 89 76 83 67  5/26 (28-33) 54 81 73 45 
6/21 37 66 62 21  5/26 (28-34) 68 94 79 60 
6/30 75 69 75 49  6/4 59 64 66 31 
7/7 71 54 59 19       
7/23 67 48 51 5       
           
MODIS 2008      MODIS 2010     
Date Producer User Overall Kappa  Date Producer User Overall Kappa
4/2 88 100 95 89 3/31 95 99 97 94
4/6 91 96 94 88  4/9 95 100 97 95 
4/13 83 96 91 81  4/14 94 98 96 91 
4/15 81 94 89 78  4/17 95 98 96 92 
4/19 79 78 81 62  4/19 93 98 95 89 
4/22 94 91 93 86  4/29 98 93 95 89 
4/28 95 94 95 90  5/4 94 93 93 85 
4/29 92 88 91 81  5/5 95 92 93 85 
5/4 92 88 91 81  5/6 98 88 91 81 
5/11 96 93 95 90  5/7 95 87 89 77 
5/17 91 85 89 77  5/11 99 90 93 86 
5/20 94 72 80 62  6/22 72 60 56 8 

 

 

KHAT values from the object-based classification of Scenario #2 remained above 80% 

through May 4 in 2008, and through May 3 in 2010, which is comparable to the minimum 

distance results (Table 6.11).  The 2008 and 2010 MODIS results were much different than with 

minimum distance classification, however, as KHAT values never rose above 80% for more than 

one consecutive sampling date (Table 6.11).  For the 2008 TM classification, underestimation of 

burned areas is the primary cause of low KHAT values.  For 2010 TM, both overestimation and 

underestimation beginning on the May 26 image date cause low KHAT values.  For both years of 

MODIS, low KHAT values values were cause by underestimation of burned areas. 

Although the number of consecutive days with TM KHAT values above 80% was 

approximately equal to that of the minimum distance classification, this date range was reduced 

with MODIS (no consecutive values above 80%).  This suggests that MODIS performs more 

poorly when object-based classification is used than when minimum distance classification is 
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used.  Because producer’s accuracy for the burned area class is low, this means that this 

technique is failing to find many burned areas.  Likely, this results from smaller burned areas 

being included into objects with unburned pixels, and therefore being classified as unburned, 

whereas pixel-based classification techniques would classify these separately as burned pixels.  

Therefore, the smoothing effects of object-based classification, particularly when used with 

larger pixels such as MODIS, might miss smaller burned areas, which would be a major 

drawback of object-based classification for mapping burned areas in tallgrass prairie.  This does 

not necessarily matter in this case, as Scenario #2 showed the same problems with object-based 

classification as it did with minimum distance, such as classifying all green vegetation as burned, 

and so is of limited use with either classification technique unless a very complete mask of all 

other cover types is constructed.  Nonetheless, it is something that should be considered when 

using larger pixels not only in general, but particularly with object-based classification methods. 

 

Table 6.11: Error matrix accuracy assessment of Scenario #2 (red) object-based 

classifications. 
TM 2008      TM 2010     
Date Producer User Overall Kappa  Date Producer User Overall Kappa
4/2 100 100 100 100 4/8 99 100 99 99
4/27 95 100 98 96  4/17 94 100 97 95 
5/4 89 92 91 82  5/3 (27-33) 86 100 94 87 
5/20 81 95 89 78  5/3 (27-34) 95 91 93 86 
6/14 84 54 62 28  5/26 (28-33) 56 47 51 3 
      5/26 (28-34) 58 55 50 -2 
      6/4 79 48 52 8 
           
MODIS 2008      MODIS 2010     
Date Producer User Overall Kappa  Date Producer User Overall Kappa
4/2 88 99 94 88 3/31 70 100 83 67
4/6 79 95 89 78  4/9 89 100 94 88 
4/13 79 95 89 78  4/14 63 98 78 58 
4/15 72 89 83 66  4/17 90 91 89 78 
4/19 51 69 68 33  4/19 65 100 80 62 
4/22 71 89 83 64  4/29 78 98 86 73 
4/28 56 98 80 58  5/4 68 94 79 60 
4/29 72 71 74 48  5/5 85 76 76 50 
5/4 60 63 66 31  5/6 85 67 67 29 
5/11 87 92 91 81  5/7 78 75 72 43 
5/17 83 67 74 49  5/11 88 77 78 53 
5/20 59 64 67 32  6/22 67 59 54 4 
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6.3.1.3 Scenario #3 (LNIR) 

In both 2008 and 2010, Scenario #3 (LNIR) minimum distance KHAT values failed to reach 

80% in either initial image date.  This alone does not necessarily disqualify Scenario #3 from 

usefulness in differentiating burned and unburned areas.  However, KHAT values begin at only 

70% in 2008 and never climb above this value.  In 2010, this initial KHAT value is only 72%, and 

those few values that improve upon it come later in the sample, with lower values in between 

(Table 6.12).   

Object-based KHAT values were poor in both years as well, and only reached 80% once—

on April 19, 2010 (Table 6.13).  In the case of both classification types in both years, poor 

performance was due to underestimation of burned areas.  Striping of the MODIS LNIR band on 

the Terra satellite caused the extremely low KHAT values, such as those on May 4 and May 6, 

2010.  Considering that the performance of this scenario was poor, that striping exists on its sole 

band when one of two satellites are used (roughly half of the sample), that it is not comparable 

with a band on TM or many other sensors, and that it is available at a maximum spatial 

resolution of only 500m, it cannot be considered a viable option for burned area mapping in 

tallgrass prairie with either classification technique. 

 

Table 6.12: Error matrix accuracy assessment of Scenario #3 (LNIR) minimum distance 

classifications. 
MODIS 2008      MODIS 2010     
Date Producer User Overall Kappa  Date Producer User Overall Kappa
4/2 69 98 86 70 3/31 75 100 85 72
4/6 71 90 83 66  4/9 39 91 63 31 
4/13 69 92 83 66  4/14 77 93 83 67 
4/15 58 83 76 50  4/17 78 94 85 69 
4/19 53 71 69 36  4/19 82 94 86 73 
4/22 60 70 71 40  4/29 70 87 77 54 
4/28 73 74 76 52  5/4 3 40 42 -3 
4/29 71 67 71 42  5/5 89 94 90 80 
5/4 64 70 72 43  5/6 4 45 42 -2 
5/11 69 76 76 52  5/7 90 89 88 75 
5/17 62 57 62 24  5/11 79 93 85 69 
5/20 49 67 66 30  6/22 85 80 79 56 
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Table 6.13: Error matrix accuracy assessment of Scenario #3 (LNIR) object-based 

classifications. 
MODIS 2008      MODIS 2010     
Date Producer User Overall Kappa  Date Producer User Overall Kappa
4/2 77 100 90 79 3/31 68 99 81 64
4/6 73 88 83 66  4/9 78 95 85 71 
4/13 82 88 87 73  4/14 89 89 88 75 
4/15 77 69 74 48  4/17 91 89 89 77 
4/19 55 69 69 36  4/19 96 88 90 80 
4/22 86 64 72 45  4/29 68 86 76 52 
4/28 72 75 76 52  5/4 86 82 81 62 
4/29 37 49 55 6  5/5 82 95 87 74 
5/4 60 58 63 25  5/6 84 78 77 53 
5/11 78 63 70 40  5/7 88 83 83 65 
5/17 42 70 66 29  5/11 53 97 72 47 
5/20 64 65 68 36  6/22 85 67 67 29 

 

 

6.3.1.4 Scenario #4 (MIRBI) 

The 2008 TM Scenario #4 (MIRBI) minimum distance classifications yielded KHAT values 

that were above 80% through the first three sampling dates before falling to 74% on May 20.  

2010 KHAT values were greater than 80% through May 3 in the case of the row 34 scenes, and 

through May 26 in the case of the row 33 scenes.  However, the path 34 scene KHAT values did 

reach 78% on May 26, which is close to the 80% threshold, and could be considered as having 

acceptable accuracy (Table 6.14).  In the case of both years, decreasing KHAT values were due to 

increases in both overestimation and underestimation of burned areas.  MODIS minimum 

distance KHAT values in either year did not reach 80% except once in 2010, and were not even 

above 70% for any image date in 2008 (Table 6.14).  The reason for this was major 

underestimation of burned areas in the earliest image dates, and both over and underestimation 

beginning around the middle of April. 

With minimum distance classification of Scenario #4, results obtained from TM were 

clearly superior to those obtained from MODIS, with periods of KHAT values greater than 80% for 

at least 33 days in 2008 and either 25 or 49 days in 2010, depending on which TM path is cited.  

For MODIS, only one KHAT value greater than 80% was observed, and this on May 5, 2010, 

which is nowhere near the beginning of the sample.  As was the case with Scenario #1, the 

poorer spatial resolution of MODIS seems to prevent accurate burned area detection, as burned 
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areas are being overlooked by the classification.  Scenario #4 also had a tendency to confuse 

urban/built environments and roads (particularly with TM where even smaller roads were 

discernable) with burned areas, as both have similar MIRBI index values.  This led to 

overestimation of burned areas, but was not a major problem due to the limited presence of this 

land cover class in the study area.  Nonetheless, these cover types should be masked if MIRBI 

alone is used for classifying burned areas.  Furthermore, the limited ability of Scenario #4 to 

detect burned areas when calculated with MODIS suggests that it should be used for burned area 

detection in tallgrass prairie only with TM imagery (if at all), which could be problematic given 

the relatively poor temporal resolution of the TM sensor. 

 

Table 6.14: Error matrix accuracy assessment of Scenario #4 (MIRBI) minimum distance 

classifications.   
TM 2008      TM 2010     
Date Producer User Overall Kappa  Date Producer User Overall Kappa
4/2 99 97 98 96 4/8 93 100 97 94
4/27 84 100 93 86  4/17 97 95 96 92 
5/4 88 98 94 87  5/3 (27-33) 97 93 96 91 
5/20 84 88 87 74  5/3 (27-34) 95 90 92 85 
6/14 84 71 79 57  5/26 (28-33) 86 93 90 81 
6/21 73 85 82 63  5/26 (28-34) 89 91 89 78 
6/30 59 74 74 45  6/4 90 82 87 73 
7/7 60 80 75 48       
7/23 75 72 75 50       
           
MODIS 2008      MODIS 2010     
Date Producer User Overall Kappa  Date Producer User Overall Kappa
4/2 60 100 78 53 3/31 70 95 81 62
4/6 68 87 81 61  4/9 90 98 93 87 
4/13 76 87 84 67  4/14 75 84 77 54 
4/15 82 76 80 61  4/17 81 93 85 71 
4/19 81 89 87 73  4/19 91 91 90 79 
4/22 78 68 74 47  4/29 88 84 83 66 
4/28 81 82 83 66  5/4 95 87 89 78 
4/29 79 76 79 58  5/5 90 86 86 71 
5/4 78 73 77 54  5/6 93 85 87 73 
5/11 62 56 61 23  5/7 88 80 81 61 
5/17 76 86 83 66  5/11 97 89 92 83 
5/20 65 68 71 41  6/22 78 77 74 48 
 

 

In 2008, object-based KHAT values for Scenario #4 (MIRBI) were above 80% only for the 

first image date on April 2.  In 2010, however, this length of time extended throughout the entire 
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sample to June 4 (Table 6.15).  In 2008, low producer’s accuracy values, indicative of burned 

area underestimation, were responsible.  In the case of MODIS, object-based KHAT values were 

not above 80% for consecutive image dates (Table 6.15) due to underestimation of burned areas, 

particularly early in the sample. 

 2010 Scenario #4 object-based KHAT values remained above 80% for the entire length of 

the study—at least 58 days—which is longer than any other period in the study, regardless of 

sensor, scenario, or year.  However, 2008 TM object-based KHAT values did not remain above 

80% for consecutive image dates, and MODIS object-based KHAT values were lower than 80% 

from the beginning of sampling in both years.  This means that Scenario #4 was inconsistent 

between sensors, between years, and between classification types.  No other scenario showed this 

much inconsistency, and this, combined with its overall poor performance with MODIS imagery, 

suggests that MIRBI alone is of limited use in classifying burned areas in tallgrass prairie, unless 

it is used in a limited capacity with the minimum distance classification of TM data, in which 

case the main problem with using TM data—inadequate temporal resolution—applies. 
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Table 6.15: Error matrix accuracy assessment of Scenario #4 (MIRBI) object-based 

classifications. 
TM 2008      TM 2010     
Date Producer User Overall Kappa  Date Producer User Overall Kappa
4/2 100 100 100 100 4/8 99 93 96 92
4/27 61 100 83 65  4/17 100 88 94 87 
5/4 86 100 94 87  5/3 (27-33) 100 95 97 95 
5/20 82 92 89 77  5/3 (27-34) 98 93 95 91 
6/14 77 74 79 57  5/26 (28-33) 100 90 95 90 
      5/26 (28-34) 100 88 92 84 
      6/4 97 88 93 86 
           
MODIS 2008      MODIS 2010     
Date Producer User Overall Kappa  Date Producer User Overall Kappa
4/2 54 88 76 49 3/31 72 95 81 64
4/6 68 85 80 60  4/9 85 98 90 81 
4/13 88 79 84 69  4/14 84 83 81 60 
4/15 78 80 82 63  4/17 76 93 83 66 
4/19 74 89 84 68  4/19 88 89 87 74 
4/22 60 69 70 39  4/29 82 85 81 62 
4/28 71 89 83 64  5/4 78 94 84 69 
4/29 59 72 71 41  5/5 84 82 80 59 
5/4 60 73 72 43  5/6 82 86 82 63 
5/11 45 54 58 14  5/7 88 78 79 56 
5/17 37 88 70 35  5/11 64 92 76 54 
5/20 35 75 66 27  6/22 53 68 59 18 
 

 

6.3.1.5 Scenario #5 (MIRBI, LNIR, red, NIR) 

 In both 2008 and 2010, minimum distance KHAT values for Scenario #5 (MIRBI, LNIR, 

red, NIR) failed to reach 80% in every case except on one date in 2010 (Table 6.16).  As was the 

case with Scenario #4 (LNIR), underestimation of burned areas caused the low KHAT values, 

particularly during the first part of the sample in each year.  With object-based classification, 

Scenario #5 (MIRBI, LNIR, red, and NIR) yielded KHAT values that were greater than 80% for 

only the initial date in 2008, and for two consecutive dates in 2010 (Table 6.17).  As with 

minimum distance, underestimation of burned areas was responsible for KHAT values below 80%. 

Interestingly, this scenario performed slightly better with object-based classification than 

with minimum distance classification.  Nonetheless, this performance was not good enough to 

overcome the other shortcomings of the scenario that stem from its LNIR component band.  
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Consequently, it is of very little use for burned area mapping in tallgrass prairie regardless of 

classification technique.   

 

Table 6.16: Error matrix accuracy assessment of Scenario #5 (MIRBI, LNIR, red, NIR) 

minimum distance classifications. 
MODIS 2008      MODIS 2010     
Date Producer User Overall Kappa  Date Producer User Overall Kappa
4/2 73 100 88 75 3/31 78 100 88 76
4/6 73 90 84 68  4/9 67 93 78 57 
4/13 74 95 87 73  4/14 77 95 85 69 
4/15 63 86 79 56  4/17 81 97 88 76 
4/19 50 80 72 41  4/19 79 94 85 71 
4/22 62 72 72 42  4/29 79 87 81 62 
4/28 76 78 79 58  5/4 5 54 43 -1 
4/29 78 73 77 54  5/5 88 95 90 80 
5/4 64 77 75 49  5/6 5 54 43 -1 
5/11 65 82 78 55  5/7 88 88 86 71 
5/17 58 62 65 29  5/11 82 93 86 73 
5/20 47 67 66 30  6/22 84 80 79 56 
  

 

Table 6.17: Error matrix accuracy assessment of Scenario #5 (MIRBI, LNIR, red, NIR) 

object-based classifications. 
MODIS 2008      MODIS 2010     
Date Producer User Overall Kappa  Date Producer User Overall Kappa
4/2 82 96 90 80 3/31 93 96 94 87
4/6 79 87 86 71  4/9 88 95 91 81 
4/13 65 86 80 58  4/14 82 91 85 69 
4/15 71 85 81 61  4/17 88 93 89 78 
4/19 87 82 86 71  4/19 93 88 89 77 
4/22 87 66 74 49  4/29 82 83 80 60 
4/28 85 83 85 70  5/4 89 83 83 65 
4/29 62 77 75 48  5/5 91 89 88 76 
5/4 87 73 80 60  5/6 72 88 78 57 
5/11 77 72 76 53  5/7 87 83 82 64 
5/17 40 82 69 34  5/11 92 90 89 78 
5/20 76 73 76 53  6/22 67 70 64 28 
 

 

6.3.1.6 Scenario #6 (MIRBI, red, NIR) 

 2008 and 2010 TM minimum distance KHAT values for Scenario #6 (MIRBI, red, NIR) 

closely resembled those from Scenario #4 (MIRBI alone), as they remained above 80% through 
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May 4 in 2008, and through May 3 or 26 in 2010,depending on which scene is cited (Table 6.18).  

As was the case with Scenario #4, decreases in KHAT values were due to increases in both 

overestimation and underestimation of burned areas.  Also similar to Scenario #4, MODIS 

minimum distance KHAT values in 2008 for Scenario #6 did not climb above 80% at any point in 

the study.  However, unlike with Scenario #4, 2010 values were above 80% for the first two 

sampling dates (Table 6.18).  Again, early underestimation of burned areas, and both 

overestimation and underestimation beginning in middle and late April, led to the low KHAT 

values. 

 Along with similar accuracy values, this scenario shared other problems with Scenario 

#4, including a tendency to confuse burned areas with urban areas and roads, and poor 

performance with MODIS imagery.  Nonetheless, consistency problems associated with using 

MIRBI alone might create a niche for this scenario if used with the TM sensor, and if used where 

an adequate mask can be created for non-target cover types.  However, as with any scenario that 

works well only when used with TM, it is likely to be of limited use in tallgrass prairie, where 

sensor return times must be relatively high. 
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Table 6.18: Error matrix accuracy assessment of Scenario #6 (MIRBI, red, NIR) minimum 

distance classifications. 
TM 2008      TM 2010     
Date Producer User Overall Kappa  Date Producer User Overall Kappa
4/2 99 97 98 96 4/8 93 100 97 94
4/27 84 100 93 86  4/17 97 96 97 94 
5/4 88 98 94 87  5/3 (27-33) 97 93 96 91 
5/20 84 88 87 74  5/3 (27-34) 95 90 92 85 
6/14 89 74 82 63  5/26 (28-33) 86 93 90 81 
6/21 73 84 81 61  5/26 (28-34) 89 91 89 78 
6/30 59 74 74 45  6/4 90 82 87 73 
7/7 62 80 75 50       
7/23 78 72 76 52       
           
MODIS 2008      MODIS 2010     
Date Producer User Overall Kappa  Date Producer User Overall Kappa
4/2 77 100 90 79 3/31 84 100 91 82
4/6 72 95 86 70  4/9 85 97 90 80 
4/13 73 93 86 70  4/14 75 96 84 69 
4/15 64 83 78 55  4/17 78 96 86 72 
4/19 53 85 75 47  4/19 80 96 87 74 
4/22 71 77 78 54  4/29 78 86 80 60 
4/28 83 81 84 68  5/4 84 89 85 70 
4/29 86 77 82 64  5/5 85 97 90 80 
5/4 63 75 74 48  5/6 76 88 81 61 
5/11 67 91 82 63  5/7 80 88 82 65 
5/17 53 60 63 25  5/11 85 93 88 76 
5/20 49 75 70 36  6/22 70 79 72 44 
 

 

In 2008, Scenario #6 (MIRBI, red, NIR) TM object-based KHAT values remained above 

80% for four of the five image dates, including the first three (through May 4).  In 2010, this was 

the case through May 3 for one TM row, and through May 26 for the other, as well as for the last 

image date on June 4.  In fact, the May 26, 2010 value that did not reach 80% was close, at 75% 

(Table 6.19).  In 2008, dates with lower KHAT values were caused by underestimation of burned 

areas.  In 2010, the opposite was true, and overestimation was responsible.  For MODIS, only the 

initial KHAT value in 2008 (April 2) was greater than 80%, and was followed by a value of 71% on 

April 6.  In 2010, the two initial KHAT values on March 31 and April 9 were greater than 80% 

(Table 6.19).  In both years, both overestimation and underestimation, dependent on which 

image was examined, were responsible for low KHAT values. 

 The performance of this scenario using object-based classification resembles its 

performance when used with minimum distance classification.  If only the minimum distance 
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classification findings are considered, Scenario #6 would not provide any advantage over 

Scenario #4 (MIRBI alone).  Furthermore, because it is more computationally intensive due to 

more components, it would not be needed when MIRBI alone is available.  However, given the 

inconsistency of MIRBI alone, this scenario could have a niche because it performs slightly 

better, and is more consistent and predictable across different sensors, classification techniques, 

and years.  Even if it does show some utility with TM data, however, MIRBI’s 500 m maximum 

spatial resolution with MODIS is a major disadvantage, and likely renders is of little use for 

burned area mapping in tallgrass prairie. 

 

Table 6.19: Error matrix accuracy assessment of Scenario #6 (MIRBI, red, NIR) object-

based classifications. 
TM 2008      TM 2010     
Date Producer User Overall Kappa  Date Producer User Overall Kappa
4/2 100 99 99 99 4/8 97 100 99 97
4/27 91 100 96 92  4/17 100 92 96 92 
5/4 95 97 96 92  5/3 (27-33) 100 96 98 96 
5/20 70 91 83 65  5/3 (27-34) 100 94 97 94 
6/14 95 86 91 82  5/26 (28-33) 100 87 93 86 
      5/26 (28-34) 100 83 88 75 
      6/4 100 85 92 83 
           
MODIS 2008      MODIS 2010     
Date Producer User Overall Kappa  Date Producer User Overall Kappa
4/2 81 98 91 81 3/31 86 100 92 84
4/6 73 92 85 69  4/9 89 97 92 84 
4/13 72 93 85 69  4/14 85 86 83 66 
4/15 74 85 83 65  4/17 88 92 89 78 
4/19 90 83 87 75  4/19 92 94 93 85 
4/22 82 70 76 52  4/29 81 86 81 63 
4/28 88 82 86 72  5/4 84 92 87 73 
4/29 69 67 71 41  5/5 88 88 86 72 
5/4 86 71 78 56  5/6 65 85 74 48 
5/11 82 73 78 56  5/7 88 85 84 67 
5/17 83 75 80 60  5/11 80 74 73 43 
5/20 71 69 72 44  6/22 72 66 63 22 
 

 

6.3.1.7 Scenario #7 (red, NIR) 

 The 2008 TM minimum distance KHAT values for Scenario #7 (red, NIR) remained above 

80% for the first two sampling dates, after which they dropped to 59% by May 5.  In 2010, these 
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values remained significant through the third sampling date on May 3, though one scene on this 

date had a value of 79% (Table 6.20).  2008 MODIS minimum distance KHAT values for Scenario 

#7 were above 80% for the first two sampling dates, after which they dropped to 77% on April 

13, and only reached 80% on May 11 after several image dates with lower values.  In 2010, KHAT 

values were greater than 80% through April 17, and, with the exception of a value of 78% on 

April 19, remained above 80% through May 5 (Table 6.20).  For both sensors in both years, 

lower KHAT values were caused mostly by underestimation of burned areas. 

 Using TM, this scenario performed similar to Scenario #1 in 2008 (at least 26 days 

between dates with KHAT values above 80% of for both scenarios) and outperformed Scenario #1 

in 2010 (25 days compared to 10).  However, it did not perform as well as Scenario #2.  For 

MODIS, performance was also better than Scenario #1 and not as good as Scenario #2 in both 

years.  However, unlike Scenario #2, the mix of red and NIR does not overestimate burned areas 

due to actively growing vegetation in the study area.  At the same time, it improves upon the 

abilities of NIR by detecting burned areas longer.  Consequently, Scenario #7 shows great 

promise for burned area mapping in tallgrass prairie, exhibiting the advantages of both red and 

NIR, while minimizing the disadvantages of both as well.  Additionally, it can be calculated from 

a wide range of sensors and from MODIS at 250 m spatial resolution. 

 

Table 6.20: Error matrix accuracy assessment of Scenario #7 (red, NIR) minimum distance 

classifications. 
TM 2008      TM 2010     
Date Producer User Overall Kappa  Date Producer User Overall Kappa
4/2 99 100 99 99 4/8 97 100 99 97
4/27 98 100 99 98  4/17 89 100 95 90 
5/4 58 100 80 59  5/3 (27-33) 83 100 92 84 
5/20 55 80 73 44  5/3 (27-34) 82 96 89 79 
6/14 39 59 62 19  5/26 (28-33) 56 69 68 35 
6/21 44 51 54 28  5/26 (28-34) 80 81 79 57 
6/30 66 53 60 21  6/4 65 62 66 32 
7/7 48 49 53 4       
7/23 52 41 44 -11       
           
MODIS 2008      MODIS 2010     
Date Producer User Overall Kappa  Date Producer User Overall Kappa
4/2 82 100 92 83 3/31 93 100 96 92
4/6 87 96 93 85  4/9 94 100 96 93 
4/13 77 98 89 77  4/14 87 99 92 84 
4/15 68 93 83 65  4/17 86 100 92 84 
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4/22 82 89 87 74  4/29 88 96 91 81 
4/28 87 89 90 79  5/4 88 95 90 80 
4/29 87 84 87 73  5/5 87 98 92 83 
5/4 81 91 88 75  5/6 83 97 89 78 
5/11 94 91 93 86  5/7 85 96 89 78 
5/17 91 80 86 71  5/11 90 95 92 83 
5/20 35 82 67 30  6/22 55 69 60 22 
 

 

 In 2008, TM object-based KHAT values for Scenario #7 (red, NIR) were greater than 80% 

for the first two sampling dates (through April 27) before dropping to 79% on May 4.  In 2010, 

values were above 80% for the first three sampling dates, through May 3 (Table 6.21).  In 2008, 

reduced KHAT values were the product of burned area underestimation.  In 2010, however, lower 

values were the product of overestimation of burned areas.  In the case of MODIS, 2008 object-

based KHAT values were greater than 80% for the first two sampling dates, before falling to 78% 

on April 13.  2010 values remained above 80% for five sampling dates, finally falling to 77% on 

April 29 (Table 6.21).  In both MODIS cases, reduced KHAT values were caused by 

underestimation of burned areas. 

 This scenario performed very well with both classification types, and the duration over 

which KHAT values remained greater than 80% with the object-based technique was similar to the 

minimum distance duration in all four cases.  For the these reasons, the performance of this 

scenario suggests that it is very useful for burned area mapping in tallgrass prairie with either 

classification type.  In fact, this scenario might represent a way to extend (temporally) the burn 

mapping capabilities of Scenario #1 (NIR), while preventing some of the overestimation 

problems of Scenario #2 (red).   
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Table 6.21: Error matrix accuracy assessment of Scenario #7 (red, NIR) object-based 

classifications. 
TM 2008      TM 2010     
Date Producer User Overall Kappa  Date Producer User Overall Kappa
4/2 100 100 100 100 4/8 100 99 99 99
4/27 98 100 99 98  4/17 92 100 96 92 
5/4 84 94 90 79  5/3 (27-33) 99 100 99 99 
5/20 75 90 85 69  5/3 (27-34) 89 100 95 89 
6/14 75 70 76 51  5/26 (28-33) 79 54 59 21 
      5/26 (28-34) 87 82 82 63 
      6/4 75 60 65 32 
           
MODIS 2008      MODIS 2010     
Date Producer User Overall Kappa  Date Producer User Overall Kappa
4/2 82 100 92 83 3/31 97 100 98 96
4/6 85 96 91 82  4/9 95 99 97 94 
4/13 81 94 89 78  4/14 95 99 97 94 
4/15 86 77 82 64  4/17 92 98 95 89 
4/19 77 72 76 53  4/19 88 96 91 82 
4/22 82 82 84 67  4/29 85 94 89 77 
4/28 85 86 87 73  5/4 85 94 88 76 
4/29 74 69 74 47  5/5 81 95 87 74 
5/4 83 60 68 37  5/6 92 90 89 78 
5/11 82 76 80 61  5/7 97 82 86 70 
5/17 72 62 67 35  5/11 96 93 93 86 
5/20 59 66 68 34  6/22 46 50 43 -14 
 

 

6.3.1.8 Scenario #8 (TM 1-5, 7) and Scenario #9 (MODIS 1-7) 

Using Scenario #8 (TM bands 1-5, 7) yielded minimum distance KHAT values that 

remained above 80% through April 27 in 2008, and through May 3 in 2010 (Table 6.22).  The 

reduction in TM KHAT values in both 2008 and 2010 is due to underestimation of burned areas.  

Minimum distance KHAT values for Scenario #9 (MODIS bands 1-7) did not reach 80% in either 

2008 or 2010, except for the May 5 image date in 2010 (Table 6.22).  As was the case with TM, 

underestimation of burned areas is responsible. 

Scenario #9, like other 500 m spatial resolution MODIS scenarios, failed to match the 

accuracy of its TM counterpart (Scenario #8), though it should be noted that in this case their 

component wavelength ranges differed more than did the component ranges of other scenarios.  

The usefulness of Scenario #9, therefore, can be ruled out immediately for burned area mapping 

in tallgrass prairie with minimum distance techniques, as it performed poorly and is available at a 
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maximum spatial resolution of only 500 m.  However, even the better performance of Scenario 

#8 is not as good as some other scenarios, such as Scenarios #1 and #7, which are less 

computationally intensive due to fewer components.  Furthermore, Scenarios #8 and #9 tend to 

overestimate burned areas for the same reason as red, though not to the same extent, which 

makes extensive masking of other cover types necessary.   

 

Table 6.22: Error matrix accuracy assessment of Scenario #8 (TM 1-5, 7) and Scenario #9 

(MODIS 1-7) minimum distance classifications. 
TM 2008      TM 2010     
Date Producer User Overall Kappa  Date Producer User Overall Kappa
4/2 96 100 98 96 4/8 96 100 99 96
4/27 95 100 98 96  4/17 87 97 93 86 
5/4 71 100 87 73  5/3 (27-33) 100 96 95 90 
5/20 81 91 87 74  5/3 (27-34) 82 98 90 80 
6/14 55 71 71 39  5/26 (28-33) 46 92 73 44 
6/21 48 69 66 30  5/26 (28-34) 80 98 88 76 
6/30 82 67 75 50  6/4 73 67 71 42 
7/7 55 51 54 9       
7/23 63 46 49 -1       
           
MODIS 2008      MODIS 2010     
Date Producer User Overall Kappa  Date Producer User Overall Kappa
4/2 68 98 85 69 3/31 79 100 88 77
4/6 69 89 82 63  4/9 72 92 80 61 
4/13 73 95 86 71  4/14 75 93 83 66 
4/15 63 86 79 56  4/17 81 96 87 75 
4/19 51 78 72 41  4/19 85 92 87 74 
4/22 65 66 70 38  4/29 89 87 86 71 
4/28 81 78 81 62  5/4 10 68 46 3 
4/29 87 74 80 61  5/5 92 92 91 81 
5/4 65 77 76 50  5/6 26 79 54 15 
5/11 81 78 81 62  5/7 92 83 85 68 
5/17 83 64 71 44  5/11 89 91 89 78 
5/20 50 74 70 37  6/22 88 71 73 43 
 

 

In 2008, TM Scenario #8 (TM 1-5, 7) object-based KHAT values were greater than 80% for 

all but the last image date on June 14.  In 2010, these values remained above 80% through the 

May 3 sampling date, but dropped below this threshold for the May 26 date (Table 6.23).  In 

2008, the lower KHAT values on the last date were due to underestimation of burned areas.  In 

2010, these low values were caused by both overestimation and underestimation of burned areas.  

For Scenario #9 (MODIS 1-7), a single object-based KHAT value was above 80% for the first date 
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in 2008, and two values were above this threshold in 2010 (Table 6.23).  In both years, 

underestimation of burned areas was initially responsible for the low KHAT values, though both 

overestimation and underestimation are responsible later in the sample. 

 In all four cases, the number of days with KHAT values above 80% was greater for object-

based classification than for minimum distance classification, with 2008 TM posting the largest 

difference (23 days).  Additionally, 2010 MODIS KHAT values were above 80% for at least 10 

consecutive days, whereas with minimum distance, this number was zero.  These figures clearly 

suggest that object-based classification is better than minimum distance classification for 

mapping burned areas of tallgrass prairie when all bands of a sensor are used.  However, it 

should be noted that this scenario shares one disadvantage with Scenario #1 (red)—that it 

overestimates burned areas due to green vegetation.  Nonetheless, if used with object-based 

classification methods and other cover types are masked, it holds some promise for burned area 

mapping in tallgrass prairie, though other, higher-resolution options exist when using MODIS.   

 

Table 6.23: Error matrix accuracy assessment of Scenario #8 (TM 1-5, 7) and Scenario #9 

(MODIS 1-7) object-based classifications. 
TM 2008      TM 2010     
Date Producer User Overall Kappa  Date Producer User Overall Kappa
4/2 100 100 100 100 4/8 99 99 99 97
4/27 98 100 99 98  4/17 100 95 97 95 
5/4 90 100 96 91  5/3 (27-33) 97 95 96 92 
5/20 90 94 93 86  5/3 (27-34) 100 97 98 97 
6/14 75 92 86 72  5/26 (28-33) 90 70 78 56 
      5/26 (28-34) 86 90 87 73 
      6/4 75 58 63 28 
           
MODIS 2008      MODIS 2010     
Date Producer User Overall Kappa  Date Producer User Overall Kappa
4/2 82 100 92 83 3/31 86 100 92 84
4/6 78 90 86 72  4/9 88 95 90 80 
4/13 76 83 82 64  4/14 82 93 86 73 
4/15 63 82 77 52  4/17 88 90 88 75 
4/19 81 79 82 63  4/19 93 89 89 78 
4/22 83 66 73 47  4/29 78 88 81 62 
4/28 85 78 82 64  5/4 83 87 83 66 
4/29 73 48 53 9  5/5 87 88 86 71 
5/4 83 71 77 54  5/6 75 84 78 55 
5/11 85 61 69 39  5/7 80 81 78 54 
5/17 82 60 67 36  5/11 80 93 85 70 
5/20 50 70 68 33  6/22 79 69 67 32 
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6.3.1.9 Summary of Scenarios’ Utility Based on Error Matrices 

Because of their poor performance, three of the scenarios tested should not be used for 

burned area mapping in tallgrass prairie, regardless of which sensor or technique is used.  Two of 

these, Scenario #3 (LNIR) and Scenario #5 (MIRBI, LNIR, red, NIR), performed poorly due to 

their use of the LNIR band, with its myriad problems, including striping, poor resolution, and 

limited availability.  Scenario #4 (MIRBI), was of limited use because it showed inconsistency 

between years, sensors, and classifications techniques.    

Three other scenarios in this study were accurate only when the TM sensor was used, 

including Scenario #6 (MIRBI, red, NIR), Scenario #8 (TM 1-5, 7), and Scenario #2 (red).  In 

the case of Scenario #2, this relationship was true only with object-based classification, as its 

minimum distance performance was good with both sensors.  Another drawback of these three 

sensors is that they require a detailed mask of non-grassland cover types, though this problem is 

most evident with Scenario #2.  Perhaps most important to grassland burned area mapping, 

however, is that, because of their poor performance with MODIS, all of these scenarios (red only 

with object-based classification) must rely only on the 16-day temporal resolution of TM to 

accurately map burned areas in tallgrass prairie throughout the year.  Considering this relatively 

long return time and the high likelihood of cloud cover during the spring burn season, identifying 

all or even most burned areas with TM is usually not possible in the Flint Hills.  Therefore, the 

matrix accuracy results suggest that MODIS imagery is more reliable for burned area mapping in 

tallgrass prairie due to its greater temporal resolution. 

Although Scenario #9 (MODIS 1-7) showed some promise for burned area mapping in 

tallgrass prairie, it had several problems, including that it is only available from the MODIS 

sensor, that it is only available at 500 m resolution, and that it requires masking of other cover 

types.  Consequently, other scenarios would be better suited for burned area mapping in tallgrass 

prairie. 

The final two scenarios, #1 (NIR) and #7 (red, NIR) performed better overall than any 

other scenario.  Furthermore, they performed consistently well regardless of sensor, year, or 

technique.  Although periods of good performance were longer with TM than with MODIS (a 

trend that persisted throughout the study), this was expected.  The performance of these two 

scenarios allows them to be used with either or both sensors, creating the most temporally dense 

sample possible for burned area mapping.  Additionally, these scenarios are available on both 
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sensors, and are available at the highest possible resolution of 250 m from MODIS.  

Additionally, they do not require masking of actively growing vegetation (as is the case with red 

wavelengths alone) or urban areas (in the case of MIRBI and its associated scenarios).  

Therefore, according to the accuracy data gleaned from the error matrices, burned area mapping 

in tallgrass prairie should concentrate on these two scenarios, regardless of which technique or 

sensor is used.  Tables 6.24 and 6.25 contain the criteria used to evaluate the different scenarios. 

 

Table 6.24: Comparison of results for both classification types.  Columns indicate 

consecutive days (at least) from the beginning of the sample during which KHAT values were 

greater than 80%. 
 Minimum Distance Classification  Object-Based Classification 
 TM MODIS  TM MODIS 
Scenario (components) 2008 2010 2008 2010   2008 2010 2008 2010 
1 (NIR) 26 10 5 10 26 10 4 20
2 (red) 33 25 12 37  33 26 1 0 
3 (LNIR) NA NA 0 0  NA NA 0 0 
4 (MIRBI) 33 49 0 0  1 58 0 0 
5 (MIRBI, LNIR, red, NIR) NA NA 0 0  NA NA 1 10 
6 (MIRBI, red, NIR) 33 49 0 10  33 49 1 10 
7 (red, NIR) 26 25 5 18  26 26 4 20 
8 (TM 1-5, 7) 26 25 NA NA  49 26 NA NA 
9 (MODIS 1-7) NA NA 0 0  NA NA 1 10 
 

 

Table 6.25: Summary of each scenario’s usefulness for burned area mapping in tallgrass 

prairie based on error matrices.  “Sensor” denotes which sensor a given scenario can be 

used with; while “technique” denotes which classification type is best suited for the 

scenario.  A yes in the “mask” column denotes a scenario that should only be used with a 

mask that eliminates other cover types. 
Scenario (components) TM Res. (m) MODIS Res. (m) Sensor Technique Mask 
1 (NIR) 30 250 Both  Both  No
2 (red) 30 250 Both   Min. Dist.* Yes 
3 (LNIR) NA 500 Not Useful NA NA 
4 (MIRBI) 30 500 Not Useful NA NA 
5 (MIRBI, LNIR, red, NIR) NA 500 Not Useful NA NA 
6 (MIRBI, red, NIR) 30 500 TM Both  Yes 
7 (red, NIR) 30 250 Both  Both  No 
8 (TM 1-5, 7) 30 NA TM Both  Yes 
9 (MODIS 1-7) NA 500 Not Useful Object Yes 
* Red wavelengths performed well with object-based classification, but only when used with TM data 
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6.3.2 Areal Extents 

6.3.2.1 Scenario #1 (NIR) 

The performance of TM Scenario #1 (NIR) with minimum distance classification varied 

between years, as it was only able to detect greater than 80% of all sample burned areas for one 

image date in 2008, but was able to do so for more than a month in the case of most 2010 sample 

burns.  It should be noted, however, that the 2008 time periods might be longer (nearly a month) 

if suitable imagery had been available to prove this was the case.  Nonetheless, this does not 

account for the difference between years, and this issue remains beyond explanation.  The 

performance of MODIS Scenario #1 with minimum distance was similar to that of TM, in that it 

was able to detect most burned areas for at least 1-2 weeks.  In most cases in 2010, however, it 

was not able to detect burned areas for as long as TM did (Table 6.26).  Although MODIS 

seemed to outperform TM in 2008, this could be a product of poor temporal density on the part 

of the 2008 TM imagery. 

One major issue that exists with both sensors in both years is that smaller burned areas 

are either not detect at all, or are able to be detected for less time than larger burned areas.  This 

is not surprising with MODIS, as the four smaller burned areas only contain from one to seven of 

these larger pixels.  However, several burned areas are missed with TM as well, including Burn 

#6 in 2008, which is the size of 511 TM pixels.  This seems to show that quantifying the area of 

smaller burned areas is much more difficult than doing so for larger burned areas regardless of 

sensor—at least where NIR is concerned.  For the most part, the findings of this accuracy 

assessment method match the findings of the matrix data, though the utility of NIR using TM is 

more inconsistent between years.  However, considering that the 2008 TM performance would 

likely be better with more suitably dated imagery, nothing can be deduced from this analysis that 

suggests NIR is unfit for burned area mapping in tallgrass prairie, other than the fact that smaller 

burned areas might be missed.  Most likely, the extremely short duration over which these areas 

can be detected speaks to the rapid degradation in the effectiveness of NIR—it appears that the 

usefulness of NIR extends only for about two weeks after an area is burned.  
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Table 6.26: Consecutive days (at least) where Scenario #1 (NIR) detected at least 80% of 

the burned area with the minimum distance technique.  In this section the "max" column 

indicates the length of time from burning to the date when < 80% of a burned area was 

detected.  Question marks indicate that > 80% was detected through the end of the 

sampling period, while an asterisk indicates that one date with a value close to 80% 

interrupted an otherwise long period where > 80% of the burned area was detected. 
2008 Date Burned Size (ha) TM TM (max) MODIS MODIS (max)
Burn #1 4/2 89 1 32 12 13
Burn #2 4/2 88 1 25 0 0 
Burn #3 4/2 224 1 32 5* 11*
Burn #4 4/1 633 2 33 29 33
Burn #5 4/1 744 2 33 29 33
Burn #6 4/2 46 0 0 0 0 
2010    
Burn #1 4/11 958 46 ? 31 72
Burn #2 4/11 128 46 ? 73 ? 
Burn #3 4/10 182 56 ? 25* 25*
Burn #4 4/9 126 25 47 1 5 
Burn #5 4/9 120 25 47 9 10
Burn #6 4/17 76 17 39 0 0 
Burn #7 4/14 128 43 ? 70 ? 
Burn #8 4/9 125 48 ? 75 ? 
Burn #9 3/31 45 9 17 0 0 
Burn #10 4/9 128 25 47 1 5 
Burn #11 4/9 45 9 24 6 8 
Burn #12 4/9 8 0 8 0 0 
Burn #13 4/9 31 0 8 11 20
 

 

The performance of Scenario #1 (NIR) with object-based classification was excellent in 

both years and with both sensors.  Even in 2008 with TM, where the analysis showed only one- 

and two-day ranges over which at least 80% of the burned areas could be detected, the real 

values are likely much longer than this—possibly up to one month—for the same reasons 

mentioned in section 6.3.1.1 (Table 6.27).  Because performance was good across the board, no 

trend could be detected regarding burned area size.  The areal accuracy assessment results from 

both classification types suggest that NIR is very useful for burned are mapping in tallgrass 

prairie regardless of classification technique, as long as it is done relatively quickly after an area 

is burned (within two weeks). 
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Table 6.27: Consecutive days (at least) where Scenario #1 (NIR) detected at least 80% of 

the burned area with the object-based technique. 
2008 Date Burned Size (ha) TM TM (max) MODIS MODIS (max)
Burn #1 4/2 89 1 32 5 11
Burn #2 4/2 88 26 32 5 11
Burn #3 4/2 224 1 32 32 39
Burn #4 4/1 633 2 33 33 40
Burn #5 4/1 744 2 33 33 40
Burn #6 4/2 46 0 0 0 0 
2010    
Burn #1 4/11 958 46 ? 31 72
Burn #2 4/11 128 46 ? 25 25
Burn #3 4/10 182 56 ? 10 19
Burn #4 4/9 126 25 47 9 10
Burn #5 4/9 120 25 47 11 20
Burn #6 4/17 76 17 ? 1 2 
Burn #7 4/14 128 43 ? 70 ? 
Burn #8 4/9 125 48 ? 75 ? 
Burn #9 3/31 45 18 33 0 0 
Burn #10 4/9 128 48 56 1 5 
Burn #11 4/9 45 9 24 26 26
Burn #12 4/9 8 9 24 0 0 
Burn #13 4/9 31 0 8 11 20
 

 

6.3.2.2 Scenario #2 (red) 

 Scenario #2 (red), when derived from either sensor and classified using minimum 

distance classification, was able to detect at least 80% of each sample burn for a longer period of 

time than did Scenario #1 (NIR).  In fact, it performed better than any other scenario in this 

analysis, regardless of year.  Furthermore, the size of the sample burn had much less of an affect 

than with Scenario #1, though some smaller burns were still missed (Table 6.28).  However, 

given the tendency of this scenario to overestimate burned areas (as identified with the error 

matrix data), this performance was most likely achieved at the expense of burned area 

overestimation, though this cannot be proven by this accuracy analysis technique.   

The suspiciously high values for Scenario #2 suggest that, as was the case with the error 

matrix data, it is of limited utility to burned area mapping in tallgrass prairie.  Its advantages, 

including availability on a wide variety of sensors, and 250 m MODIS spatial resolution, can be 

achieved by using Scenario #1 or Scenario #7, neither of which have overestimation problems, 

and therefore do not require extensive masking. 
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Table 6.28: Consecutive days (at least) where Scenario #2 (red) detected at least 80% of the 

burned area with the minimum distance technique. 
2008 Date Burned Size (ha) TM TM (max) MODIS MODIS (max)
Burn #1 4/2 89 49 80 49 ? 
Burn #2 4/2 88 49 73 5 11
Burn #3 4/2 224 49 80 49 ? 
Burn #4 4/1 633 50 74 49 ? 
Burn #5 4/1 744 50 74 49 ? 
Burn #6 4/2 46 49 80 0 0 
2010    
Burn #1 4/11 958 46 ? 31 72
Burn #2 4/11 128 46 ? 73 ? 
Burn #3 4/10 182 24 46 32 73
Burn #4 4/9 126 25 47 33 74
Burn #5 4/9 120 25 47 33 74
Burn #6 4/17 76 17 39 3 12
Burn #7 4/14 128 19 42 28 69
Burn #8 4/9 125 25 47 33 74
Burn #9 3/31 45 66 ? 0* 0*
Burn #10 4/9 128 57 ? 75 ? 
Burn #11 4/9 45 25 47 75 ? 
Burn #12 4/9 8 0 8 0 0 
Burn #13 4/9 31 9 47 75 ? 
 

 

The performance of Scenario #2 was poorer with object-based classification than with 

minimum distance classification, and this difference existed regardless of year or sensor (Table 

6.29).  Furthermore, though the three largest burned areas were still detectable for at least a week 

with the object-based classification, they were not detectable as long as with the minimum 

distance technique, so this problem does not appear to be related to burn size.  Due to its 

persistent overestimation, the utility of the red wavelength is limited, regardless of classification 

technique, unless an accurate and comprehensive mask is used during classification.  For this 

reason, its lower accuracy when used in conjunction with object-based classification is ultimately 

inconsequential, as Scenario #1 and Scenario #7 (red, NIR) perform nearly as well with little 

need for masking.   
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Table 6.29: Consecutive days (at least) where Scenario #2 (red) detected at least 80% of the 

burned area with the object-based technique. 
2008 Date Burned Size (ha) TM TM (max) MODIS MODIS (max)
Burn #1 4/2 89 33 48 14 17
Burn #2 4/2 88 26 32 1 4 
Burn #3 4/2 224 33 48 14 17
Burn #4 4/1 633 50 74 50 ? 
Burn #5 4/1 744 50 74 19 21
Burn #6 4/2 46 49 ? 1 4 
2010    
Burn #1 4/11 958 23 45 9 18
Burn #2 4/11 128 46 ? 73 ? 
Burn #3 4/10 182 24 46 0 4 
Burn #4 4/9 126 25 47 6 8 
Burn #5 4/9 120 25 47 21 25
Burn #6 4/17 76 17 ? 3 12
Burn #7 4/14 128 43 ? 16 20
Burn #8 4/9 125 25 47 1 5 
Burn #9 3/31 45 34 56 0 0 
Burn #10 4/9 128 48 56 1 5 
Burn #11 4/9 45 25 47 1 5 
Burn #12 4/9 8 0 8 0 0 
Burn #13 4/9 31 48 ? 1 5 
 

 

6.3.2.3 Scenario #3 (LNIR) 

As was the case with the error matrix assessment, Scenario #3 (LNIR) performed poorly 

regardless of year or classification technique (Tables 6.30, 6.31), and is not suitable for burned 

area mapping in tallgrass prairie. 
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Table 6.30: Consecutive days (at least) where Scenario #3 (LNIR) detected at least 80% of 

the burned area with the minimum distance technique. 
2008 Date Burned Size (ha) MODIS MODIS (max)
Burn #1 4/2 89 0 0
Burn #2 4/2 88 0 0
Burn #3 4/2 224 0 0
Burn #4 4/1 633 2 5
Burn #5 4/1 744 6 12
Burn #6 4/2 46 0 0
2010   
Burn #1 4/11 958 9 18
Burn #2 4/11 128 0 3
Burn #3 4/10 182 0 4
Burn #4 4/9 126 0 0
Burn #5 4/9 120 0 0
Burn #6 4/17 76 3 12
Burn #7 4/14 128 16 20
Burn #8 4/9 125 0 0
Burn #9 3/31 45 0 0
Burn #10 4/9 128 0 0
Burn #11 4/9 45 21 25
Burn #12 4/9 8 NA NA
Burn #13 4/9 31 11 20
 

 

Table 6.31: Consecutive days (at least) where Scenario #3 (LNIR) detected at least 80% of 

the burned area with the object-based technique. 
2008 Date Burned Size (ha) MODIS MODIS (max)
Burn #1 4/2 89 1 4
Burn #2 4/2 88 0 0
Burn #3 4/2 224 0 0
Burn #4 4/1 633 2 5
Burn #5 4/1 744 0* 0*
Burn #6 4/2 46 1* 4*
2010   
Burn #1 4/11 958 9* 18
Burn #2 4/11 128 0 3
Burn #3 4/10 182 0 4
Burn #4 4/9 126 0 0
Burn #5 4/9 120 0 0
Burn #6 4/17 76 3 12
Burn #7 4/14 128 70 ?
Burn #8 4/9 125 0 0
Burn #9 3/31 45 0 0
Burn #10 4/9 128 0 0
Burn #11 4/9 45 29 32
Burn #12 4/9 8 NA NA
Burn #13 4/9 31 11 20
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6.3.2.4 Scenario #4 (MIRBI) 

For both TM years, Scenario #4 (MIRBI) was very good at identifying at least 80% of the 

sample burned areas when the minimum distance classification technique was used.  In 2008, 

these values were less consistent than in 2010, though they were able to detect burned areas at 

least as well as Scenario #1 (NIR) did in this year, and usually outperformed that scenario.  In 

2010, the performance of Scenario #4 was similar to that of both Scenario #1 and Scenario #2 

(red).  When the minimum distance technique was used with the MODIS sensor, however, 

performance in both years was very poor compared to that of either Scenario #1 or Scenario #2, 

with only 7 of the 19 total burned areas having at least 80% of their area accounted for in the first 

image date.  Furthermore, this performance was inconsistent across burned area sizes, with one 

of the largest burned areas, as well as some smaller areas, going undetected (Table 6.32). 

The contrasting performance of Scenario #4 depending on sensor is similar to the 

inconsistency suggested by the error matrix accuracy analysis.  This finding suggests that MIRBI 

alone should not be trusted for burned area mapping in tallgrass prairie.  Furthermore, the 

inconsistency between sensors illustrates the effect that spatial resolution plays in burned area 

mapping accuracy, which was also demonstrated with the error matrix data.  Specifically, it 

shows that classifications of coarser spatial resolution data are less accurate—in some cases even 

when burned areas are large and should be less vulnerable to scale changes.  This adds further 

credibility to the idea that 500 m spatial resolution is too coarse for burned area mapping in 

tallgrass prairie.    
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Table 6.32: Consecutive days (at least) where Scenario #4 (MIRBI) detected at least 80% of 

the burned area with the minimum distance technique. 
2008 Date Burned Size (ha) TM TM (max) MODIS MODIS (max)
Burn #1 4/2 89 1 32 0 0 
Burn #2 4/2 88 1 25 18 20
Burn #3 4/2 224 113 ? 0 0 
Burn #4 4/1 633 2 33 28 28
Burn #5 4/1 744 34 49 0 1 
Burn #6 4/2 46 0 0 0 0 
2010    
Burn #1 4/11 958 46 ? 9* 18*
Burn #2 4/11 128 46 ? 0 3 
Burn #3 4/10 182 56 ? 0* 4*
Burn #4 4/9 126 25 47 0 0 
Burn #5 4/9 120 25 47 0 0 
Burn #6 4/17 76 17 39 1 2 
Burn #7 4/14 128 43 ? 70 ? 
Burn #8 4/9 125 48 ? 0 0 
Burn #9 3/31 45 0 8 0 0 
Burn #10 4/9 128 57 ? 0 0 
Burn #11 4/9 45 57 ? 6 8 
Burn #12 4/9 8 57 ? NA NA
Burn #13 4/9 31 9 47 6 8 
 

 

Similar to when classified with the minimum distance technique, Scenario #4 (MIRBI) 

performed better with TM than with MODIS (Table 6.33).  Consequently, this scenario is not 

useful for burned area mapping in tallgrass prairie with either classification technique, as other 

scenarios perform much better, and do so without the drawback of poor MODIS resolution. 
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Table 6.33: Consecutive days (at least) where Scenario #4 (MIRBI) detected at least 80% of 

the burned area with the object-based technique. 
2008 Date Burned Size (ha) TM TM (max) MODIS MODIS (max)
Burn #1 4/2 89 1 32 0 0 
Burn #2 4/2 88 1* 25* 1 4 
Burn #3 4/2 224 49 ? 0 0 
Burn #4 4/1 633 2 33 20 21
Burn #5 4/1 744 34 48 0 0 
Burn #6 4/2 46 0 0 0 0 
2010    
Burn #1 4/11 958 46 ? 9 18
Burn #2 4/11 128 46 ? 0 3 
Burn #3 4/10 182 56 ? 0 4 
Burn #4 4/9 126 25 47 0 0 
Burn #5 4/9 120 25 47 0 0 
Burn #6 4/17 76 17 ? 1 2 
Burn #7 4/14 128 43 ? 24 27
Burn #8 4/9 125 48 ? 0 0 
Burn #9 3/31 45 57 65 0 0 
Burn #10 4/9 128 57 ? 0 0 
Burn #11 4/9 45 57 ? 6 8 
Burn #12 4/9 8 57 ? NA NA
Burn #13 4/9 31 48 ? 6 8 
 

 

6.3.2.5 Scenario #5 (MIRBI, LNIR, red, NIR) 

For similar reasons as Scenario #3, Scenario #5 is not useful for burned area mapping in 

tallgrass prairie (Tables 6.34, 6.35). 
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Table 6.34: Consecutive days (at least) where Scenario #5 (MIRBI, LNIR, red, NIR) 

detected at least 80% of the burned area with the minimum distance technique. 
2008 Date Burned Size (ha) MODIS MODIS (max)
Burn #1 4/2 89 1 4
Burn #2 4/2 88 0 0
Burn #3 4/2 224 0 0
Burn #4 4/1 633 15* 18*
Burn #5 4/1 744 47 49
Burn #6 4/2 46 0 0
2010   
Burn #1 4/11 958 9* 18*
Burn #2 4/11 128 0 3
Burn #3 4/10 182 0* 4*
Burn #4 4/9 126 0 0
Burn #5 4/9 120 0 0
Burn #6 4/17 76 3 12
Burn #7 4/14 128 16 20
Burn #8 4/9 125 0 0
Burn #9 3/31 45 0 0
Burn #10 4/9 128 0 0
Burn #11 4/9 45 21 25
Burn #12 4/9 8 NA NA
Burn #13 4/9 31 11 20
 

 

Table 6.35: Consecutive days (at least) where Scenario #5 (MIRBI, LNIR, red, NIR) 

detected at least 80% of the burned area with the object-based technique. 
2008 Date Burned Size (ha) MODIS MODIS (max)
Burn #1 4/2 89 1 4
Burn #2 4/2 88 1 4
Burn #3 4/2 224 0 0
Burn #4 4/1 633 41 46
Burn #5 4/1 744 41 46
Burn #6 4/2 46 1 4
2010   
Burn #1 4/11 958 9 18
Burn #2 4/11 128 0 3
Burn #3 4/10 182 5* 7*
Burn #4 4/9 126 0 0
Burn #5 4/9 120 0 0
Burn #6 4/17 76 3 12
Burn #7 4/14 128 70 ?
Burn #8 4/9 125 0 0
Burn #9 3/31 45 0 0
Burn #10 4/9 128 1* 5*
Burn #11 4/9 45 33 74
Burn #12 4/9 8 NA NA
Burn #13 4/9 31 11 20
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6.3.2.6 Scenario #6 (MIRBI, red, NIR) 

In both years with TM, the performance of Scenario #6 (MIRBI, red, NIR) with 

minimum distance was the same as that of Scenario #4 (MIRBI), which was relatively good.  

With the MODIS sensor, however, performance was better than with Scenario #4.  Also, unlike 

with Scenario #4, the three sample burned areas larger than 500 ha were all classified accurately 

for several weeks (Table 6.36).  Performance with object-based classification was similar (Table 

6.37). 

As was the case with most scenarios (particularly when 500 m MODIS bands are used), 

TM outperformed MODIS in both years.  Along with the findings from the error matrix analysis, 

this accuracy assessment suggests that Scenario #6 is more suitable for mapping burned areas 

than MIRBI alone, and could prove useful when used with the TM sensor, or with MODIS if 

only larger burned areas are sought, though this renders this scenario effectively useless in the 

tallgrass prairie of the Flint Hills, regardless of which classification technique is employed. 

 

Table 6.36: Consecutive days (at least) where Scenario #6 (MIRBI, red, NIR) detected at 

least 80% of the burned area with the minimum distance technique. 
2008 Date Burned Size (ha) TM TM (max) MODIS MODIS (max)
Burn #1 4/2 89 1 32 1 4 
Burn #2 4/2 88 1 25 0 0 
Burn #3 4/2 224 113 ? 0 0 
Burn #4 4/1 633 2 33 29 33
Burn #5 4/1 744 34 49 34 40
Burn #6 4/2 46 0 0 0 0 
2010    
Burn #1 4/11 958 46 ? 24 24
Burn #2 4/11 128 46 ? 0 3 
Burn #3 4/10 182 56 ? 74 ? 
Burn #4 4/9 126 25 47 1 5 
Burn #5 4/9 120 25 47 0 0 
Burn #6 4/17 76 17 39 3 12
Burn #7 4/14 128 43 ? 70 ? 
Burn #8 4/9 125 48 ? 0 0 
Burn #9 3/31 45 0 8 0 0 
Burn #10 4/9 128 57 ? 0 0 
Burn #11 4/9 45 57 ? 29 32
Burn #12 4/9 8 57 ? NA NA
Burn #13 4/9 31 9 47 27 27
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Table 6.37: Consecutive days (at least) where Scenario #6 (MIRBI, red, NIR) detected at 

least 80% of the burned area with the object-based technique. 
2008 Date Burned Size (ha) TM TM (max) MODIS MODIS (max)
Burn #1 4/2 89 1 32 1 4 
Burn #2 4/2 88 74 ? 1 4 
Burn #3 4/2 224 49 ? 0 0 
Burn #4 4/1 633 33 49 50 ? 
Burn #5 4/1 744 33 49 50 ? 
Burn #6 4/2 46 0 0 1 4 
2010    
Burn #1 4/11 958 46 ? 7 8 
Burn #2 4/11 128 46 ? 0 3 
Burn #3 4/10 182 56 ? 5* 7*
Burn #4 4/9 126 25 47 0 0 
Burn #5 4/9 120 25 47 0 0 
Burn #6 4/17 76 17 ? 3 12
Burn #7 4/14 128 43 ? 70 ? 
Burn #8 4/9 125 48 ? 0 0 
Burn #9 3/31 45 66 ? 0 0 
Burn #10 4/9 128 57 ? 1 5 
Burn #11 4/9 45 8* 24 27 27
Burn #12 4/9 8 25 47 NA NA
Burn #13 4/9 31 48 ? 26 26
 

 

6.3.2.7 Scenario #7 (red, NIR) 

The performance of Scenario #7 (red, NIR) with minimum distance was similar to that of 

Scenario #1 (NIR) in both years when TM was used, and was better than Scenario #1 in both 

years when MODIS was used.  Furthermore, this performance was consistent regardless of burn 

size (Table 6.38).  The utility of Scenario #7 for burned area mapping in tallgrass prairie is high, 

as it can identify a large percentage of each burned area like Scenario #2 (red), but without the 

overestimation problems associated with that scenario.  As was the case with the error matrix 

analysis, this analysis suggests that Scenario #7 is among the best in this study for burned area 

mapping in tallgrass prairie.  Furthermore, the fact that it can be calculated from many sensors, 

and from MODIS at 250 m spatial resolution, are added advantages. 
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Table 6.38: Consecutive days (at least) where Scenario #7 (red, NIR) detected at least 80% 

of the burned area with the minimum distance technique. 
2008 Date Burned Size (ha) TM TM (max) MODIS MODIS (max)
Burn #1 4/2 89 1 32 12 13
Burn #2 4/2 88 1 25 1 4 
Burn #3 4/2 224 1 32 33 39
Burn #4 4/1 633 2 33 47 49
Burn #5 4/1 744 2 33 47 49
Burn #6 4/2 46 0 0 0 0 
2010    
Burn #1 4/11 958 46 ? 31 72
Burn #2 4/11 128 46 ? 73 ? 
Burn #3 4/10 182 56 ? 74 ? 
Burn #4 4/9 126 25 47 9 10
Burn #5 4/9 120 25 47 9 10
Burn #6 4/17 76 17 39 0 0 
Burn #7 4/14 128 43 ? 70 ? 
Burn #8 4/9 125 47 ? 75 ? 
Burn #9 3/31 45 9 17 0 0 
Burn #10 4/9 128 25 47 11 20
Burn #11 4/9 45 9 24 6 8 
Burn #12 4/9 8 0 8 1 5 
Burn #13 4/9 31 0 8 21 25
 

 

As was the case with minimum distance, Scenario #7 (red, NIR) performed well with 

object-based classification regardless of sensor, year, burn size, or accuracy assessment 

technique (Table 6.39).  However, a very important trend is present in this data.  Specifically, the 

MODIS data performed best when subjected to a minimum distance classification, while the TM 

sensor performed best when subjected to an object-based classification.  This further illustrates 

the trend that has been shown throughout this chapter—that the reliability of object-based 

classification becomes poorer as the spatial resolution becomes coarser.  This has major 

implications for burned area mapping in tallgrass prairie, as the analysis contained in this chapter 

suggest that only MODIS can provide an imagery record that is temporally dense enough to 

account for all burned areas.  Under these circumstances, it appears that the use of object-based 

techniques is unnecessary at best, and likely hurts classification accuracy. 
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Table 6.39: Consecutive days (at least) where Scenario #7 (red, NIR) detected at least 80% 

of the burned area with the object-based technique. 
2008 Date Burned Size (ha) TM TM (max) MODIS MODIS (max)
Burn #1 4/2 89 1 32 5 11
Burn #2 4/2 88 26 32 1 4 
Burn #3 4/2 224 49 ? 14 17
Burn #4 4/1 633 50 74 1* 1*
Burn #5 4/1 744 50 74 47 49
Burn #6 4/2 46 1 32 0 0 
2010    
Burn #1 4/11 958 46 ? 31 72
Burn #2 4/11 128 46 ? 73 ? 
Burn #3 4/10 182 56 ? 74 ? 
Burn #4 4/9 126 25 47 33 74
Burn #5 4/9 120 25 47 0 0 
Burn #6 4/17 76 17 ? 1 2 
Burn #7 4/14 128 43 ? 28 69
Burn #8 4/9 125 48 ? 32 74
Burn #9 3/31 45 18 33 18 19
Burn #10 4/9 128 48 56 0 0 
Burn #11 4/9 45 48 56 27 27
Burn #12 4/9 8 9 24 NA NA
Burn #13 4/9 31 9 47 21 25
 

 

6.3.2.8 Scenario #8 (TM 1-5, 7) and Scenario #9 (MODIS 1-7) 

The performance of Scenario #8 (TM 1-5, 7) with minimum distance classification was 

better in 2008 than in 2010, though this could be due to the lack of temporal resolution in 2008 

as noted earlier.  Scenario #9 (MODIS 1-7), however, did not perform well in either year, mainly 

because it missed many burned areas.  Although the performance of the TM scenario was not 

affected by burn size, the MODIS scenario was, as the largest three burned areas were identified 

more accurately than many smaller burned areas (Table 6.40). 

This analysis, like the error matrix analysis, showed that other scenarios such as Scenario 

#1 (NIR) and Scenario #7 (red, NIR) easily outperform Scenarios #8 and #9.  Therefore, it is 

unlikely that scenarios made up of all bands in a given sensor have much utility for burned area 

mapping in tallgrass prairie.   
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Table 6.40: Consecutive days (at least) where Scenario #8 (TM 1-5, 7) and Scenario #9 

(MODIS 1-7) detected at least 80% of the burned area with the minimum distance 

technique. 
2008 Date Burned Size (ha) TM TM (max) MODIS MODIS (max)
Burn #1 4/2 89 1 32 1 4 
Burn #2 4/2 88 26 32 0 0 
Burn #3 4/2 224 1 32 0 0 
Burn #4 4/1 633 2 33 29 33
Burn #5 4/1 744 2 33 47 49
Burn #6 4/2 46 1 32 0 0 
2010    
Burn #1 4/11 958 46 ? 9 24
Burn #2 4/11 128 46 ? 0 3 
Burn #3 4/10 182 47 55 0 4 
Burn #4 4/9 126 25 47 11 20
Burn #5 4/9 120 25 47 0 0 
Burn #6 4/17 76 17 39 3 12
Burn #7 4/14 128 43 ? 16 20
Burn #8 4/9 125 47 ? 0 0 
Burn #9 3/31 45 9 17 0 0 
Burn #10 4/9 128 57 ? 0 0 
Burn #11 4/9 45 25 47 21 25
Burn #12 4/9 8 25 47 NA NA
Burn #13 4/9 31 9 47 21 25

 

 

Using object-based classification, the performances of Scenario #8 (TM 1-5, 7) and 

Scenario #9 (MODIS 1-7) were similar to Scenario #7 (red, NIR) in that TM was more accurate.  

This is particularly true in 2008 (Table 6.41).  However, like its performance with minimum 

distance classification, MODIS performed more poorly than TM regardless of year, and this 

performance was affected by burn size.  Unlike its assessment with the error matrix data 

suggested, however, Scenario #9 (MODIS 1-7) showed no promise for burned area mapping in 

tallgrass prairie with either classification technique, and regardless of whether or not a mask is 

used. 

 

 

 

 

 

 



 109

Table 6.41: Consecutive days (at least) where Scenario #8 (TM 1-5, 7) and Scenario #9 

(MODIS 1-7) detected at least 80% of the burned area with the object-based technique. 
2008 Date Burned Size (ha) TM TM (max) MODIS MODIS (max)
Burn #1 4/2 89 1 32 1 4 
Burn #2 4/2 88 49 73 1 4 
Burn #3 4/2 224 49 ? 0 0 
Burn #4 4/1 633 75 ? 2 5 
Burn #5 4/1 744 50 74 22 27
Burn #6 4/2 46 1 32 5 11
2010    
Burn #1 4/11 958 46 ? 9 18
Burn #2 4/11 128 46 ? 0 3 
Burn #3 4/10 182 56 ? 0* 4*
Burn #4 4/9 126 25 47 1 5 
Burn #5 4/9 120 25 47 0 0 
Burn #6 4/17 76 17 ? 3 12
Burn #7 4/14 128 43 ? 70 ? 
Burn #8 4/9 125 48 ? 0 0 
Burn #9 3/31 45 18 33 0 0 
Burn #10 4/9 128 48 56 1 5 
Burn #11 4/9 45 57 ? 75 ? 
Burn #12 4/9 8 57 ? NA NA
Burn #13 4/9 31 48 ? 75 ? 

 

 

6.3.2.9 Summary of Scenarios’ Utility Based on Areal Extents 

As was the case with the error matrices, the areal extent accuracy assessment showed that 

some scenarios would not be useful for mapping burned areas in tallgrass prairie.  These 

included Scenario #3 (LNIR), Scenario #4 (MIRBI), Scenario #5 (MIRBI, LNIR, red, and NIR), 

and Scenario #9 (MODIS 1-7).  All of these scenarios not only performed poorly, but also 

possessed other traits that limited their usefulness.  For example, all four scenarios mentioned 

above are available at a maximum resolution of 500 m when calculated from the MODIS sensor.  

Additionally, the two scenarios that contain LNIR are not even available on the TM sensor, and 

have striping problems with the MODIS instrument aboard the Terra satellite.  It is likely that 

these additional problems were largely responsible for the poor performance of all but Scenario 

#4. 

Similar to what was revealed with the error matrix data, three of the remaining scenarios 

appear to be useful only under certain circumstances.  Scenario #6 (MIRBI, red, NIR) and 

Scenario #8 (TM 1-5, 7) are only useful when taken from the TM sensor.  However, they are 
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effectively rendered useless by the fact that the temporal density of the TM sensor is not great 

enough to map all burned areas during a typical burn season.  Furthermore, these sensors have 

other problems, such as the 500 m maximum MODIS spatial resolution in the case of Scenario 

#6, the limitation of Scenario #8 to the TM sensor, and the need to mask non-grassland cover 

types when using either sensor.  Although it appears to perform well on first examination, the 

overestimation problems associated with Scenario #2 (red), and its subsequent need for extensive 

masking, limit its usefulness to certain circumstances as well. 

The final two scenarios, Scenario #1 (NIR) and Scenario #7 (red, NIR), performed well 

regardless of year, sensor, classification technique, or accuracy assessment technique.  They also 

do not require extensive masking like other scenarios, and are available from a wide range of 

sensors, and at the maximum spatial resolution of 250 m from MODIS.  For this reason, these 

two scenarios show the most promise for burned area mapping in tallgrass prairie.  Finally, it is 

worth noting that the two accuracy assessment techniques were consistent with each other, as 

shown in the similarities between Tables 6.25 and 6.42. 

 

Table 6.42: Usefulness of each scenario for burned area mapping in tallgrass prairie based 

on the areal accuracy assessment technique.  Column headings retain the same meaning as 

in Table 6.25. 
Scenario (components) TM Res. (m) MODIS Res. (m) Sensor Technique Mask 
1 (NIR) 30 250 Both  Both  No
2 (red) 30 250 Both   Min. Dist.* Yes 
3 (LNIR) NA 500 Not Useful NA NA 
4 (MIRBI) 30 500 Not Useful NA NA 
5 (MIRBI, LNIR, red, NIR) NA 500 Not Useful NA NA 
6 (MIRBI, red, NIR) 30 500 TM Both  Yes 
7 (red, NIR) 30 250 Both  Both  No 
8 (TM 1-5, 7) 30 NA TM Both  Yes 
9 (MODIS 1-7) NA 500 Not Useful NA NA 
* Red wavelengths performed well with object-based classification, but only when used with TM data 
 

 

6.3.3 Second Error Matrix Assessment 

When the minimum distance classification technique was used, all three 250 m MODIS 

scenarios from 2008 had KHAT values greater than 80% through April 27 (and through May 4 in 

the case of Scenarios #2 and #6).  This is in contrast to the KHAT values from the object-based 
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classification, which were only greater than 80% for the first sampling date on April 2.  The 

difference between the two classification types was not as pronounced in 2010 except in the case 

of Scenario #2, which had low KHAT values for all image dates.  As was the case with the other 

two accuracy assessment methods, this one suggests that object-based classification is not 

necessary, and possibly less accurate than pixel-based methods, for burned area mapping in 

tallgrass prairie.   

It is worth noting here that the actual KHAT values for the first image date in each year 

(April 2, 2008 and April 8, 2010) would almost certainly be higher than indicated if only 

relatively recent burned areas were used as ground truth.  However, the random sample created 

some ground-truth points that fell in areas that had been burned for as long as one month prior to 

the earliest image date.  Because these older burned areas made up a disproportionately high 

percentage of the relatively few burned ground-truth areas in the early images, and because these 

older burned areas are much harder to identify as burned, it can be safely assumed that more 

recent burned areas would be detected at a much higher rate than indicated by KHAT values in the 

mid to low 80% range.  The evidence for this is relatively low producer’s accuracy values for 

these dates.  In fact, a visual examination of these false negative ground-truth points for Scenario 

#7 in 2008 reveals that two of the four are located in areas that were clearly burned on, or prior 

to, March 1, according to another TM image.  Removing these two points raises KHAT values in 

2008 from 84% to 90%, to say nothing of the other two points, for which a burn estimate date 

cannot be assumed due to insufficient TM imagery.  In 2010, this adjustment would raise the 

KHAT value from 81% to 89% based on three similar ground truth points (of a total of six false 

negatives) that were present within burned areas that already appeared to be a few weeks old on 

a March 23, 2010 image.  Although these new, higher KHAT values represent a deviation from 

those indicated by the purely random sample, they are more likely representative of true burn 

mapping accuracy, as it is unlikely that month-long gaps between subsequent clear images exist 

with twice-daily MODIS imagery, meaning that older burned areas, such as those that were 

removed from this accuracy assessment, would have already been mapped with a previous 

image.  

Whether old or new values area cited for the first two image dates, Scenario #7 (red, 

NIR) maintains higher KHAT values than the other two scenarios throughout the time period of 

burn recovery (or at least until KHAT values for all scenarios drop too far to be useful for burned 
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area mapping).  These results suggest that using MODIS bands 1 (red) and 2 (NIR) in 

combination provides the most accurate results, though performance drops dramatically after 

several weeks.  In fact (assuming the adjustments to two initial imagery dates in each year are 

correct), approximately 90% accuracy can be expected when classifying burned areas up to two 

weeks old (Table 6.43), with most of the inaccuracy due to underestimation of burned areas.  

This lends further support to the findings of the two previous accuracy assessment techniques: 

that a combination of red and NIR provides the most utility for burned area mapping in tallgrass 

prairie. 

  

Table 6.43: Unmodified KHAT estimates for all image dates for all three 250 m scenarios. 
2008 Minimum Distance   
Date Scenario #1 (NIR) Scenario #2 (red) Scenario #7 (red, NIR)
4/2 84 88 84
4/27 80 84 90
5/4 79 83 89
5/20 11 53 23
   
2008 Object-Based  
Date Scenario #1 (NIR) Scenario #2 (red) Scenario #7 (red, NIR)
4/2 88 81 84
4/27 42 54 76
5/4 60 22 52
5/20 18 25 45
   
2010 Minimum Distance  
Date Scenario #1 (NIR) Scenario #2 (red) Scenario #7 (red, NIR)
4/8 81 82 81
4/17 83 86 91
5/3 60 46 72
   
2010 Object-Based  
Date Scenario #1 (NIR) Scenario #2 (red) Scenario #7 (red, NIR)
4/8 82 57 84
4/17 84 57 93
5/3 48 30 73
 

6.4 Conclusions 
The results of this chapter revealed many things about the utility of various sensors, 

scenarios, and classification techniques for mapping burned areas in tallgrass prairie.  First, they 

revealed that poorer spatial resolution results in a loss of classification accuracy, as TM 

consistently outperformed MODIS with most scenarios.  Furthermore, those MODIS scenarios 
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that were calculated at 250 m spatial resolution performed much better than those calculated at 

500 m spatial resolution.  This supports that hypothesis proposed at the beginning of this chapter, 

that TM will allow for more accurate burned area mapping in tallgrass prairie than MODIS due 

to its superior spatial resolution.  In fact, these findings take this a step further and suggest that 

500 m spatial resolution MODIS data is too coarse for burned area mapping in tallgrass prairie.   

The main problem with coarser spatial resolution was underestimation of burned areas. 

This was illustrated by the error matrix analysis, which showed that shrinking KHAT values later in 

the sampling period occurred when underestimation of burned areas increased.  Most likely, this 

is due to the regrowth of vegetation on both burned and unburned areas, which makes these two 

areas appear more similar and prevents mixed edge pixels from being classified as burned.  The 

other problem with coarse resolution was that it missed smaller burned areas, most likely due to 

edge effects, which are well documented when they lead to overestimation of burned areas (Al 

Rawi et al. 2001, Loboda et al. 2007) and so are somewhat surprising here only because 

underestimation of burned areas was the problem, rather than overestimation.  However, it is 

likely that a conservative classification of burned areas such as this one could cause these edge 

effects to trend toward underestimation instead of overestimation—particularly when amplified 

by the heterogeneity of many burned areas (Loboda et al. 2007).  In this case, within-burn 

heterogeneity is caused by unburned or lightly burned inclusions, as well as rocky soil surface 

inclusions in burned areas.   

The lesson to be taken from these two characteristics is obvious—that burned area 

mapping in tallgrass prairie should not use 500 m MODIS data, and should use the more accurate 

TM data.  However, even if burned areas were detectable for months at a time, as was the case 

with some scenarios, this only allows for a few TM passes.  Combined with the high likelihood 

of cloud cover (particularly during the spring burn season), this means that TM cannot be relied 

upon to produce enough useable images during the burn season, which not only has the obvious 

effect of many burned areas going undetected, but also prevents any precise identification of 

when an area was burned.  Consequently, this need for higher temporal resolution dictates that a 

250 m MODIS scenario must be used.  This supports another hypothesis stated at the beginning 

of this chapter—that due to cloud cover, MODIS must be used in order to achieve a sample that 

is temporally dense enough for burned area mapping in tallgrass prairie. 
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Aside from dictating which sensor and resolution would perform best for mapping burned 

areas in tallgrass prairie, the analysis in this chapter also showed that minimum distance 

classification is better than object-based classification, and this was especially true with coarser 

resolution imagery.  Consequently, since 250 m resolution MODIS imagery must be used in 

order to get a sample of sufficient temporal density, minimum distance classification should be 

used rather than object-based classification.  This does not support the hypothesis given at the 

beginning of this chapter—that object-based classification techniques will map burned tallgrass 

prairie more accurately than pixel-based techniques. 

The final major piece of information provided by this chapter is which scenario would 

perform best for classifying burned areas in tallgrass prairie.  Because the scenario must be 

available from MODIS at 250 m spatial resolution, only Scenarios #1 (NIR), #2 (red), and #7 

(red, NIR) were viable options, which supports the hypothesis that bands and/or indices 

composed of red and NIR wavelengths will be required for optimal burned area mapping in 

tallgrass prairie because they represent the best compromise in spatial and temporal resolution.  

Scenario #2, however, has the overestimation problems mentioned in previous sections, which 

requires extensive and accurate masking of cover types other than grasslands.  Of the remaining 

two, Scenario #1 is not able to detect burned areas for as long as Scenario #7.  Therefore, burned 

area mapping in tallgrass prairie should use both the red and NIR bands taken from the MODIS 

sensor (possibly with additional dates taken from the TM sensor where possible), and should 

employ a minimum distance classification technique, or at lease a pixel-based classification 

technique.  This combination gives the best balance of temporal resolution, spatial resolution, 

and classification accuracy for burned area mapping in tallgrass prairie, and it can achieve 

approximately 90% accuracy if burned areas are two weeks old or less. 
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CHAPTER 7 - Flint Hills Burn History (2000-2010) 

7.1 Introduction 
The fourth objective of this paper was to reconstruct the spatio-temporal fire history of 

the Flint Hills as far into the past as suitable imagery was available.  This objective was 

accomplished by applying the method suggested by the analysis in chapter 6, including using the 

250 m spatial resolution red and NIR MODIS bands, using minimum distance classification, and 

masking non-grassland land cover types.  Analysis was performed back to and including the year 

2000 (the first from which MODIS imagery was available).  Using these methods resulted in 

maps with accuracies that consistently reach 90%.  Furthermore, these values were greater than 

90% in most cases, and increased as the time between successive clear images decreased.  

Accuracy was less when larger gaps between successive images existed, and likely fell below 

90% after 2-3 weeks, and fell rapidly thereafter as well.  Most inaccuracy resulted from 

underestimation of burned areas.   

7.2 Methods 

7.2.1 Image Acquisition and Processing 

The first step in accomplishing this chapter’s objective was downloading the necessary 

MODIS imagery.  For each of the 11 years (2000 to 2010), all 250 m red and NIR Terra 

(MOD09GQ) and Aqua (MYD09GQ) images between March 1 and May 10 (though an image 

from February 28, 2002 was also used) were downloaded and processed using the same 

procedure described in section 5.2.2 of Chapter 5.  Unlike in Chapter 5, all images were subset to 

the 18-county study area shown in Figure 3.1.  Images in which cloud cover obscured the entire 

study area were not used.  It should be noted that in 2000, 2001, and 2002, only scenes from 

Terra were available, as the Aqua satellite was not launched until May 4, 2002.  When a clear 

image from both sensors was available on the same date, the one in which the study area was 

closest to nadir was kept.  On the rare occasions that both satellites produced an image with 

approximately the same resolution, the Aqua image was chosen because it is taken later in the 

day, and therefore captures more burned areas from that day.  In the case of three dates, all in 

2005, burned areas that were obscured by clouds in one image (from either Aqua or Terra) were 
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visible in the other image.  Consequently, both images were used in these three cases.  Table 7.1 

shows the date and satellite of origin for all scenes used in this burned area reconstruction. 

 

Table 7.1: List of MODIS scenes classified in this reconstruction.  Letters beside each scene 

denote whether it was from Aqua (A) or Terra (T), or both (B).  All scenes from 2000-2002 

are from Terra. 
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 
3/5 3/8 2/28 3/2 A 3/7 T 3/1 T 3/2 T 3/3 A 3/1 A 3/1 T 3/2 A

3/25 3/13 3/9 3/6 A 3/9 T 3/4 A 3/3 A 3/4 T 3/4 T 3/8 A 3/3 T
3/28 3/20 3/29 3/9 T 3/11 A 3/5 T 3/16 A 3/8 A 3/8 A 3/16 T 3/4 A
3/30 3/22 4/1 3/13 A 3/12 A 3/11 A 3/24 T 3/9 T 3/10 A 3/17 A 3/18 A
4/2 3/31 4/3 3/15 A 3/14 T 3/12 T 3/27 T 3/16 T 3/11 T 3/19 A 3/25 A
4/4 4/7 4/5 3/23 T 3/18 T 3/13 A 3/28 A 3/17 A 3/15 A 3/21 T 3/26 T
4/7 4/9 4/9 3/24 A 3/21 T 3/19 T 3/31 T 3/18 T 3/19 A 3/24 A 3/29 T
4/8 4/11 4/10 3/26 A 3/23 T 3/20 T 4/2 A 4/1 T 3/20 T 3/30 T 3/31 T

4/10 4/12 4/17 3/29 A 3/28 A 3/27 A 4/9 A 4/2 A 3/21 A 3/31 A 4/1 A
4/11 4/13 4/22 3/30 T 3/31 A 4/1 A 4/10 A 4/3 T 3/23 T 4/3 A 4/2 T
4/14 4/18 4/23 3/31 A 4/1 T 4/2 T 4/12 T 4/4 A 3/25 A 4/4 T 4/3 A
4/17 4/21 4/24 4/1 T 4/2 A 4/4 T 4/13 A 4/7 A 3/27 T 4/7 A 4/4 T
4/18 4/25 4/25 4/2 A 4/4 A 4/7 B 4/16 T 4/8 T 4/1 A 4/8 T 4/5 A
4/19 4/27 4/28 4/7 A 4/8 T 4/14 A 4/17 A 4/15 T 4/2 A 4/10 A 4/6 A
4/22 5/9 5/5 4/9 T 4/11 A 4/16 A 4/18 T 4/16 A 4/4 A 4/11 T 4/9 T
5/10  5/9 4/10 A 4/16 A 4/17 B 4/19 T 4/19 T 4/5 T 4/14 A 4/10 A

   4/11 T 4/17 T 4/23 A 4/21 T 4/20 A 4/6 A 4/20 T 4/14 A
   4/12 A 4/19 T 4/24 T 4/22 A 4/21 A 4/13 A 4/21 A 4/17 A
   4/14 A 4/27 A 4/27 T 4/23 T 4/28 T 4/14 T 4/22 T 4/19 A
   4/18 A   5/1 T 4/27 A 4/29 A 4/15 A 4/23 A 4/23 A
   4/21 A   5/2 B     4/19 T 4/24 T 4/27 T
   4/22 T   5/4 T     4/22 A 4/28 A 4/29 T
   4/26 T         4/25 A 5/8 T   
   5/5 A         4/28 T     
             4/29 A     
             5/3 T     

 

7.2.2 Masking 

Prior to classification, a mask was built in manner similar to that described in section 

6.2.1.3.  Pixels with red reflectance values less than 0.11 were excluded from a March 1, 2008 

image.  This mask eliminated some actively growing crops and water bodies, but its primary 

purpose was to mask evergreen vegetation.  NIR reflectance values less than 0.16 were then 

masked in a March 5, 2000 image.  This allowed masking of water areas and darker areas of 

fallow cropland.  Next, pixels with NIR reflectance values greater than 0.25 and red reflectance 
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values less than 0.09 were masked from a March 28, 2000 image.  This allowed active crops and 

cool-season grasses to be masked without excluding native, warm-season grasses (which were 

not actively growing at the time).  Water areas were further masked from a later, June 14, 2008 

image that showed no recently burned areas, thereby allowing all NIR pixels with reflectance 

values less than 0.235 to be masked (in earlier images, burned areas could fall below this 

threshold, thereby incidentally allowing grasslands to be masked).  Additionally, this late June 

image allowed masking of fallow cropland.  During this time, fallow croplands and harvested 

winter wheat fields have spectral properties similar to non-vegetated areas, while grasslands are 

actively growing, thereby allowing differentiation.  These principles were also applied to a July 

14, 2008 image to further mask fallow cropland and water, as well as to mask additional areas of 

active cropland.  Finally, a mask was generated that excluded all areas outside of the 18-county 

study area described in Chapter 3.  All masks were meticulously checked to ensure that grassland 

areas were not masked, or, if they were, that this was kept to an absolute minimum.  In rare cases 

where burned grasslands were masked, they were manually removed from the mask.  Finally, all 

masks were combined in order to create a single mask that eliminated all of the areas mentioned 

above, and this mask was used in the classification. 

 

Table 7.2: Image dates used to mask non-grassland areas and the rationale for using each. 
Masking Element Feature Masked
Study area shapefile everything but the study area
3/1/2008 (Aqua) 

Red < 0.11 active crop, water, evergreen trees
3/5/2000 (Terra) 

NIR < 0.16 fallow crop, water
3/28/2000 (Terra) 

NIR > 0.25, Red < 0.09 active crop
6/14/2008 (Aqua) 

NIR < 0.235 water
NIR < 0.4, Red > 0.1 fallow crop

7/14/2008 (Aqua) 
Red > 0.1 fallow crop
NIR < 0.28 water
NIR > 0.48, Red < 0.045 active crop

 

7.2.3 Classification 

A supervised, minimum distance classification was performed on each bi-spectral (red 

and NIR) scene in each year.  Burned area training data were selected only from the most recent 
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burned areas in each image so that burned area estimates would be conservative.  This minimized 

false positives, since unburned areas and older burned areas sometimes share spectral 

similarities, and assured that accuracies would be 90% or greater.  The application of this 

technique relied on the assumption that older burned areas did not need to be classified in the 

current image, as they would already have been accounted for by the previous image.  Burned 

areas that were identified in consecutive images were given credit for being burned only in the 

earliest image.   

In many cases, clouds covered a portion of the image, though burned areas could still be 

seen in cloudless areas of the image.  In these cases, all burned areas that were located in areas 

with cloud cover were deleted. This prevented cloud shadows from accidentally being classified 

as burned areas.  The drawback to this, however, is that those burned areas located next to, or 

mixed in with, cloud shadows must be detected in the next scene, which makes assigning a 

precise burn date to these burned areas even more difficult.  That is, just because a burned area is 

first identified in an image does not necessarily mean that it did not exist by the previous image 

date, only that it could not be detected yet.  Nonetheless, the main purpose of this exercise was to 

map total burned areas in a given year.  Identifying when an area was burned was a secondary 

priority.  Deleting cloudy areas also meant that some sections of the study area might escape the 

mapping procedure for longer than the 2-3 week threshold of reliable burned area detection, even 

though this would not always be immediately apparent by looking only at the dates of imagery 

used.  This is because the fact that each date was used does not necessarily mean all sections of 

the study area were free of clouds on that date. 

7.3 Results and Discussion 

7.3.1 Study Area Results 

7.3.1.1 Total Area Burned 

Total annual area burned varied from as few as 414,456 ha in 2007 to as many as 

1,320,556 ha in 2005 (Table 7.3).  Interestingly, high or low values were not clustered in any 

particular part of the range of years, but were distributed relatively evenly throughout.  This 

shows that burning in the Flint Hills is neither decreasing nor increasing through time, though it 

is highly variable from year to year.   
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In addition to this year-to-year variability in total area burned, year-to-year spatial 

variability is present in the data as well.  In 2006 and 2007, for example, more burning took 

place in the northern half of the study area than in the southern half.  This stands in contrast to 

many other years, where burning was more evenly distributed north and south throughout the 

study area.  It is worth noting here that in 2006 and 2007, cloudy imagery did not allow burned 

areas to be detected past April 27 and April 29, respectively.  This might partially account for the 

low total burned area detected in these years, but likely does not account for all of it. 

 

Table 7.3: Total burned area, percent of total study area that was burned, and percent of 

grassland within the study area that was burned for each of the 11 years in the study. 
Year Total (ha) % Total % Grassland
2000 1,064,994 25 70
2001 760,769 18 50 
2002 543,119 13 36 
2003 1,077,588 26 71 
2004 696,594 17 46 
2005 1,320,556 31 87 
2006 755,813 18 50 
2007 414,456 10 27 
2008 1,074,944 26 70 
2009 1,212,281 29 79 
2010 905,738 22 59 
 

 

7.3.1.2 Percentage of Total Area and of Grassland Area Burned 

When total burned area is normalized by the size of the study area, annual percentages of 

the study area that were burned range from 10% to 31% (2007 and 2005, respectively).  When 

total burned area is divided by the total amount of grassland in the study area, the percentages 

burned range from a low of 27% in 2007 to a high of 87% in 2005 (Table 7.3, Figure 7.1).  This 

serves to further illustrate the high year-to-year variability in area burned.  It should be noted that 

deducing the percentage of grassland burned by dividing total hectares burned by total grassland 

might provide inflated estimates of total grassland burned, as cover types other than grassland 

are burned within the study area.  However, no effective means by which to exclude all non-

grassland burned areas exists, meaning that neither a reliable estimate of this problem’s extent, 

nor a method by which to correct it, are addressed in this paper. 
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Figure 7.1: Percent of total grassland in the study area that was burned in each year.  Note 

that high and low values are not clustered together in any part of the sample. 

 
 

7.3.1.3 Burn Frequency 

Examining the frequency with which the study area is burned reveals several interesting 

patterns.  First, approximately 45% of the entire 18-county study area was not burned in any of 

the eleven years of the study.  The remaining 55% is distributed according to a negative 

relationship with number of years burned, and ranges from 10% of the study area being burned 

once to only 1% of the study area being burned the maximum of eleven times (Table 7.4, Figure 

7.2).  Given the predominant philosophy that burning annually or at least every two years 

increases productivity (see Chapter 1), these findings are surprising, and indicate that much 

burning takes place at intervals that are much longer than this.  When this frequency is applied 

only to grassland areas within the study area, these percentages rise, as grasslands are more 

likely to be burned than other cover types (especially given that other cover types were mostly 

masked during classification).  Once again, caution should be used when interpreting the 

percentage of grassland burned, as these values are produced with the assumption that all burned 
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areas were grasslands, even though other cover types are often burned.  Furthermore, this 

problem is likely to be worse than with the annual calculations above, since non-grassland 

burned areas are reflected here in total for all eleven years, rather than being spread among them.   

 

Table 7.4: Cumulative burning statistics for all 11 years of the study.  Total percent of 

grassland burned equals more than 100% because land cover types other than grassland 

were sometimes burned. 
Years Burned Total (ha) % Total %Grassland 
0 1,905,949 45 NA
1 419,738 10 28 
2 347,031 8 23 
3 305,219 7 20 
4 260,356 6 17 
5 228,906 5 15 
6 202,813 5 13 
7 172,006 4 11 
8 153,838 4 10 
9 119,913 3 8 
10 61,200 1 4 
11 24,419 1 2 
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Figure 7.2: Cumulative burning totals throughout the study area for the study period.  

Value in the legend indicates the number of years out of 11 that an area was burned.  
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7.3.1.4 Temporal Distribution of Burned Areas 

When the temporal distribution of burned areas within each year is examined, it becomes 

immediately apparent that most burning takes place in April (Figure 7.3).  Burning increases 

steadily but slowly until April when it begins to increase very rapidly.  Furthermore, the plateau 

shown at the end of April on the graph shows that burning is nearly complete before the first of 

May.  Other years of the study showed a similar trend, with the vast majority of burns in all years 

detected in April (Table 7.5).  2008 was used as an example here because it had the most 

temporally dense sample of any year, and its images were distributed relatively evenly 

throughout the study period with no large data gaps. 

  

Figure 7.3: Temporal distribution of cumulative and absolute burned areas detected in 

2008. 
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Table 7.5: Temporal distribution of all burned areas detected for each year.  Date indicates 

the date in which the burned areas were detected.  Value beside each date indicates the 

percentage of the total burned area for a given year that was detected on that date. 
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 

3/5 1 3/8 2 2/28 3 3/2 1 3/7 1 3/1 1 3/2 3 3/3 2 3/1 2 3/1 1 3/2 1
3/25 4 3/13 3 3/9 2 3/6 1 3/9 1 3/4 1 3/3 1 3/4 3 3/4 3 3/8 3 3/3 0
3/28 10 3/20 2 3/29 7 3/9 3 3/11 2 3/5 0 3/16 6 3/8 1 3/8 1 3/16 1 3/4 1
3/30 3 3/22 1 4/1 4 3/13 1 3/12 1 3/11 1 3/24 2 3/9 1 3/10 0 3/17 1 3/18 2
4/2 8 3/31 3 4/3 3 3/15 1 3/14 1 3/12 0 3/27 2 3/16 2 3/11 0 3/19 1 3/25 1
4/4 7 4/7 22 4/5 2 3/23 1 3/18 2 3/13 1 3/28 2 3/17 1 3/15 1 3/21 1 3/26 0
4/7 15 4/9 11 4/9 5 3/24 1 3/21 3 3/19 2 3/31 4 3/18 1 3/19 2 3/24 4 3/29 1
4/8 11 4/11 27 4/10 5 3/26 3 3/23 3 3/20 1 4/2 2 4/1 4 3/20 1 3/30 2 3/31 6

4/10 1 4/12 2 4/17 6 3/29 3 3/28 2 3/27 2 4/9 15 4/2 8 3/21 0 3/31 1 4/1 1
4/11 10 4/13 6 4/22 20 3/30 2 3/31 6 4/1 4 4/10 3 4/3 3 3/23 1 4/3 4 4/2 1
4/14 11 4/18 10 4/23 3 3/31 3 4/1 6 4/2 7 4/12 12 4/4 8 3/25 2 4/4 2 4/3 4
4/17 4 4/21 5 4/24 11 4/1 4 4/2 9 4/4 16 4/13 15 4/7 9 3/27 1 4/7 6 4/4 3
4/18 6 4/25 3 4/25 6 4/2 2 4/4 13 4/7 6 4/16 9 4/8 4 4/1 2 4/8 8 4/5 1
4/19 6 4/27 1 4/28 14 4/7 8 4/8 19 4/14 28 4/17 4 4/15 18 4/2 7 4/10 11 4/6 1
4/22 2 5/9 1 5/5 2 4/9 11 4/11 8 4/16 3 4/18 3 4/16 4 4/4 6 4/11 6 4/9 19
5/10 1   5/9 9 4/10 10 4/16 13 4/17 7 4/19 3 4/19 9 4/5 7 4/14 13 4/10 12

      4/11 8 4/17 2 4/23 11 4/21 4 4/20 3 4/6 7 4/20 14 4/14 15
      4/12 9 4/19 3 4/24 3 4/22 2 4/21 4 4/13 9 4/21 5 4/17 16
      4/14 7 4/27 5 4/27 1 4/23 2 4/28 13 4/14 3 4/22 4 4/19 8
      4/18 7   5/1 1 4/27 5 4/29 1 4/15 16 4/23 5 4/23 4
      4/21 5   5/2 2     4/19 8 4/24 1 4/27 2
      4/22 2   5/4 1     4/22 12 4/28 1 4/29 1
      4/26 6         4/25 1 5/8 5   
      5/5 1         4/28 4     
                4/29 1     
                5/3 1     

 

 

7.3.2 County Level Results 

7.3.2.1 Total Area Burned 

 As expected, the total amount of burned area in a county usually depended on the amount 

of grassland available for burning in that county, and on county size (Table 7.6).  Chase County, 

because it is made up largely of tallgrass prairie, often had nearly as many acres burned per year 

as much larger counties, such as Greenwood, Butler, and Osage.  Conversely, Marshall County, 

though a relatively large county, had much less grassland area than most counties in the study 

area, and so consistently displayed relatively low burned area values. 
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Table 7.6: Total burned area (in hectares) by county for each of the 11 sampling years. 
County 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
Marshall 16,694 32,344 11,706 5,975 8,919 18,863 11,931 8,925 13,525 19,156 9,075
Riley 36,725 31,450 28,900 25,525 28,763 51,819 39,313 28,513 37,425 47,150 35,088
Pottawatomie 43,569 53,275 28,519 17,088 41,938 68,750 37,556 23,675 50,281 51,063 48,475
Geary 18,750 16,738 12,188 12,338 17,950 41,863 23,944 9,350 27,594 30,694 25,056
Wabaunsee 79,094 52,100 55,306 70,250 63,681 113,906 110,756 37,119 97,481 105,963 74,269
Morris 54,375 31,113 32,800 43,194 27,825 69,444 55,869 7,500 50,669 45,300 51,231
Lyon 66,888 34,144 58,438 76,431 42,094 86,719 89,488 25,025 64,188 82,306 49,250
Marion 26,288 10,650 4,856 21,825 10,794 32,738 6,469 4,200 21,363 25,144 24,544
Chase 128,981 74,600 68,206 112,700 75,619 137,906 79,913 22,025 115,988 125,650 113,363
Coffey 27,781 11,419 38,444 35,825 16,869 45,488 40,906 24,800 30,538 49,719 17,100
Greenwood 122,413 61,063 72,231 135,094 61,625 144,181 73,938 55,544 124,313 143,156 110,019
Butler 120,456 71,788 30,144 104,819 51,056 125,438 36,900 49,306 108,469 118,881 97,606
Woodson 29,881 29,650 19,581 34,550 25,131 40,081 21,313 22,250 34,925 39,506 24,263
Elk 52,175 46,481 23,700 63,744 42,513 64,563 26,950 24,419 59,919 71,956 51,281
Cowley 69,450 44,856 8,869 80,713 45,663 78,575 25,794 26,313 76,538 60,350 51,481
Chautauqua 37,031 19,288 10,869 49,963 30,400 46,619 26,350 8,731 34,556 49,794 15,750
Osage (OK) 122,900 128,900 35,669 164,838 97,556 140,238 41,519 31,800 110,988 135,150 96,231
Kay (OK) 11,581 10,950 2,719 22,763 8,231 13,438 6,950 4,969 16,250 11,388 11,694
 

 

7.3.2.2 Percentage Burned of Total Area and Grassland Area 

The pattern displayed by total burned area is also apparent in the percentage of each 

county that was burned in each year (Table 7.7).  In this case, Chase County displayed 

percentages of total area burned that averaged 49%, which was the highest value of any county 

in the study, while counties with less grassland, such as Marshall, Marion, and Kay (all larger 

than Chase), averaged only 6%, 7%, and 5% of total area burned, respectively.   

It is interesting that this difference is also apparent when only the percentages of each 

county’s grassland acres that were burned are compared.  One could reasonably expect that 

percentages of grassland burned would be similar among the different counties, as any piece of 

grassland throughout the Flint Hills might be as likely to be burned as the next.  However, the 

value for Chase County is again the highest in the study at 56%, while the values for Marshall, 

Marion, and Kay Counties are again the lowest in the study, at 18%, 15%, and 11%, respectively 

(Table 7.8).  This is illustrated graphically in Figure 7.4.  This phenomenon is linked to burn 

frequency, which will be discussed further in section 7.3.2.3. 

Although it is beyond the scope of this study to identify the reason for this discrepancy, 

several plausible explanations follow.  First, counties with lower grassland percentages tend to 
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exist on the periphery of the Flint Hills proper, which also leads to smaller, fractured grasslands 

(since they are interspersed with croplands) in which case the risk and time required for 

consistent burning might mitigate any positive effects.  Another possibility is that many of these 

grasslands might be enrolled in the Conservation Reserve Program (CRP), in which case the 

landowner does not need to burn for cattle production, and so burns only as often as stipulated in 

the CRP contract.  Yet another possibility is that burned areas in these counties might be from 

cover types other than grasslands, such as crop residue, which might not be burned as frequently 

as grasslands.  A final possibility might be that land ownership/tenure affects burning 

frequencies. 

 

Table 7.7: Percentage of total county area burned in each year of the study. 
County Area (ha) 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Mean
Marshall 232,721 7 14 5 3 4 8 5 4 6 8 4 6
Riley 159,443 23 20 18 16 18 32 25 18 23 30 22 22 
Pottawatomie 221,865 20 24 13 8 19 31 17 11 23 23 22 19 
Geary 106,740 18 16 11 12 17 39 22 9 26 29 23 20 
Wabaunsee 206,796 38 25 27 34 31 55 54 18 47 51 36 38 
Morris 181,102 30 17 18 24 15 38 31 4 28 25 28 24 
Lyon 222,711 30 15 26 34 19 39 40 11 29 37 22 28 
Marion 243,462 11 4 2 9 4 13 3 2 9 10 10 7 
Chase 197,692 65 38 35 57 38 70 40 11 59 64 57 49 
Coffey 170,580 16 7 23 21 10 27 24 15 18 29 10 18 
Greenwood 296,191 41 21 24 46 21 49 25 19 42 48 37 34 
Butler 376,394 32 19 8 28 14 33 10 13 29 32 26 22 
Woodson 131,777 23 23 15 26 19 30 16 17 27 30 18 22 
Elk 167,261 31 28 14 38 25 39 16 15 36 43 31 29 
Cowley 291,020 24 15 3 28 16 27 9 9 26 21 18 18 
Chautauqua 163,096 23 12 7 31 19 29 16 5 21 31 10 18 
Osage (OK) 588,530 21 22 6 28 17 24 7 5 19 23 16 17 
Kay (OK) 242,427 5 5 1 9 3 6 3 2 7 5 5 5 
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Table 7.8: Percentage of county grassland area burned in each year of the study. 
County Grass (ha) % Grass 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Mean
Marshall 77,514 33 22 42 15 8 12 24 15 12 17 25 12 18
Riley 101,515 64 36 31 28 25 28 51 39 28 37 46 35 35 
Pottawatomie 154,836 70 28 34 18 11 27 44 24 15 32 33 31 27 
Geary 71,259 67 26 23 17 17 25 59 34 13 39 43 35 30 
Wabaunsee 165,161 80 48 32 33 43 39 69 67 22 59 64 45 47 
Morris 132,198 73 41 24 25 33 21 53 42 6 38 34 39 32 
Lyon 149,519 67 45 23 39 51 28 58 60 17 43 55 33 41 
Marion 116,515 48 23 9 4 19 9 28 6 4 18 22 21 15 
Chase 172,128 87 75 43 40 65 44 80 46 13 67 73 66 56 
Coffey 96,821 57 29 12 40 37 17 47 42 26 32 51 18 32 
Greenwood 252,354 85 49 24 29 54 24 57 29 22 49 57 44 40 
Butler 269,743 72 45 27 11 39 19 47 14 18 40 44 36 31 
Woodson 85,772 65 35 35 23 40 29 47 25 26 41 46 28 34 
Elk 138,170 83 38 34 17 46 31 47 20 18 43 52 37 35 
Cowley 193,548 67 36 23 5 42 24 41 13 14 40 31 27 27 
Chautauqua 132,105 81 28 15 8 38 23 35 20 7 26 38 12 23 
Osage (OK) 369,597 63 33 35 10 45 26 38 11 9 30 37 26 27 
Kay (OK) 96,340 40 12 11 3 24 9 14 7 5 17 12 12 11 
 

 

Figure 7.4: Comparison of percentage of total grassland burned in Marshall and Chase 

counties. 
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7.3.2.3 Burn Frequency 

When the frequency of burning (in the context of total county area) is tabulated and 

examined for all counties in the study area, several patterns emerge (Table 7.9).  First, the 

majority of the area in some counties, such as Marshall, Marion and Kay, often remains 

unburned in a given year.  Additionally, burned areas in these counties are burned less 

frequently, with most being burned only one to three years out of eleven.  As discussed in section 

7.3.2.2 above, this is likely due to the existence of these counties on the periphery of the Flint 

Hills, and the associated characteristics of their grasslands.  In contrast to this, counties with 

larger percentages of their area in grassland (which also have larger grassland tracts) show 

relatively little area that is burned between one and three years out of eleven, compared to area 

that is burned between four and nine years out of eleven.  In fact, the number of hectares that 

went unburned during the entire eleven-year study (31,138) in Chase county is only slightly 

larger than the number of hectares burned exactly eight of the eleven years of the study (25,444) 

in that county.  Additionally, more than 20,000 hectares are also burned at a frequencies of six, 

seven, and nine years. 

 

Table 7.9: Total hectares burned by burn frequency for all 18 counties. 
County 0 1 2 3 4 5 6 7 8 9 10 11 
Marshall 163,306 29,356 17,238 10,550 6,188 3,081 1,594 706 381 144 138 75
Riley 73,169 14,225 11,481 11,138 9,788 8,438 8,600 7,219 5,675 4,194 4,019 1,350 
Pottawatomie 87,881 33,475 25,638 20,144 15,863 12,706 8,506 6,956 5,850 3,131 1,238 444 
Geary 45,631 10,894 10,619 10,506 9,331 6,313 4,250 2,775 2,063 1,931 1,656 788 
Wabaunsee 52,525 14,706 13,744 13,831 15,363 17,819 18,569 18,069 15,244 11,269 8,856 6,838 
Morris 78,813 19,831 14,300 11,288 9,569 8,913 8,494 7,138 8,169 9,013 4,375 1,269 
Lyon 84,013 17,050 18,088 17,569 16,925 15,031 13,081 11,644 10,900 8,688 6,563 2,963 
Marion 178,994 21,313 12,919 10,075 6,806 5,169 3,800 2,031 1,575 419 306 69 
Chase 31,138 6,513 8,506 10,806 13,556 18,081 22,100 24,869 25,444 22,931 9,675 4,119 
Coffey 85,631 15,994 13,969 12,394 10,744 9,450 7,200 6,050 4,275 3,056 1,238 663 
Greenwood 68,594 27,775 27,575 27,706 26,538 24,594 25,694 22,344 20,306 15,656 6,763 2,700 
Butler 152,419 39,325 36,744 33,269 28,075 23,919 17,238 17,506 13,394 9,031 4,738 744 
Woodson 55,531 14,050 12,863 10,838 8,344 6,575 5,238 4,881 4,950 7,156 1,069 294 
Elk 54,244 17,269 15,894 13,956 12,356 11,225 11,163 8,938 8,275 7,138 5,856 994 
Cowley 141,763 31,500 24,881 20,206 18,306 17,856 13,806 8,938 7,506 5,194 731 363 
Chautauqua 70,231 18,894 17,038 15,450 12,756 10,838 8,275 5,131 2,888 1,000 425 200 
Osage (OK) 283,738 70,394 55,819 48,244 35,281 25,769 22,731 16,013 16,938 9,913 3,306 325 
Kay (OK) 197,594 16,431 9,331 6,956 4,644 3,044 2,394 1,006 519 181 231 113 
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It was noted in section 7.3.2.2 that counties with lower grassland percentages typically 

have a lower percentage of that grassland burned each year than do counties with high grassland 

percentages.  This trend is related to the frequency with which grasslands are burned in a given 

county.  Specifically, grassland areas in counties with high grassland percentages are burned 

much more frequently than are grasslands in counties with low grassland percentages.  This 

supports an obvious conclusion: in any given year, grasslands are more likely to be burned in a 

county where they are more plentiful, and less likely to be burned where they are less plentiful.  

This means that, in areas where grasslands are not plentiful, a relatively small percentage of total 

grassland is burned each year, and areas that are burned are likely to be different from year to 

year.  Additionally, it is possible that this phenomenon causes the lower than expected overall 

(study area-wide) burn frequency that was described in section 7.3.1.3, as counties with low 

percentages of grassland lower the average over the entire study area. 

   

Table 7.10: Percent of grassland burned by burn frequency (years) for all 18 counties.  

Grass % column is the 11-year average percent of each county’s grassland area that was 

burned. 
County Grass (ha) Grass % 1 2 3 4 5 6 7 8 9 10 11 
Marshall 77,514 18 38 22 14 8 4 2 1 0 0 0 0 
Riley 101,515 35 14 11 11 10 8 8 7 6 4 4 1 
Pottawatomie 154,836 27 22 17 13 10 8 5 4 4 2 1 0 
Geary 71,259 30 15 15 15 13 9 6 4 3 3 2 1 
Wabaunsee 165,161 47 9 8 8 9 11 11 11 9 7 5 4 
Morris 132,198 32 15 11 9 7 7 6 5 6 7 3 1 
Lyon 149,519 41 11 12 12 11 10 9 8 7 6 4 2 
Marion 116,515 15 18 11 9 6 4 3 2 1 0 0 0 
Chase 172,128 56 4 5 6 8 11 13 14 15 13 6 2 
Coffey 96,821 32 17 14 13 11 10 7 6 4 3 1 1 
Greenwood 252,354 40 11 11 11 11 10 10 9 8 6 3 1 
Butler 269,743 31 15 14 12 10 9 6 6 5 3 2 0 
Woodson 85,772 34 16 15 13 10 8 6 6 6 8 1 0 
Elk 138,170 35 12 12 10 9 8 8 6 6 5 4 1 
Cowley 193,548 27 16 13 10 9 9 7 5 4 3 0 0 
Chautauqua 132,105 23 14 13 12 10 8 6 4 2 1 0 0 
Osage (OK) 369,597 27 19 15 13 10 7 6 4 5 3 1 0 
Kay (OK) 96,340 11 17 10 7 5 3 2 1 1 0 0 0 
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Figure 7.5: Comparison of burn frequencies for Marshall and Chase Counties. 

 
 

7.4 Conclusions 
This chapter described the reconstruction of the spatio-temporal fire history of the Flint 

Hills from 2000 through 2010, which was done by classifying MODIS 250 m resolution red and 

NIR data with a supervised minimum distance technique.  Results showed that the total amount 

of burned area in the Flint Hills was highly variable from year-to-year, but that no increase or 

decrease in area burned existed over the period of study.  They also showed spatial variation in 

burned areas across the Flint Hills.  This was particularly true in 2006 and 2007, where the 

majority of burning activity took place in the northern half of the study area.  The results also 

showed that most burning takes place in April, though some additional burning taking place in 

March and May.  With regard to burn frequency, most pixels that were burned at all were burned 

in only one to three years of the total eleven.  This trend is somewhat surprising, considering the 

benefits of frequent burning to livestock production outlined in Chapter 1.  However, this trend 

varied across the study area, with some counties showing a decidedly opposite trend. 
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County-level analysis showed that counties with high percentages of burned areas were 

most often counties with high percentages of grassland, which is not at all surprising.  What was 

somewhat surprising was that a high percentage of grassland within a county correlated with 

high percentages of grassland being burned.  Therefore, counties with more grass are more likely 

to burn a higher percentage of it.  This is related to burn frequency, as areas with more grassland 

are burned more often, thereby accounting for their higher likelihood of being burned in a given 

year.  Finally, the tendency of counties with little grassland to burn it less often than counties 

with more grassland might be responsible for lower than expected burn frequencies over the 

entire study area. 
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CHAPTER 8 -  Assessment of Burned Area and Active Fire Product 

Quality 

8.1 Introduction 
The fifth and final objective of this study was to compare the burned area maps of the 

Flint Hills produced in the previous chapter to MODIS active fire product and to MODIS burned 

area product.  In order to accomplish this objective, two hypotheses would be tested.  First, that 

the locally produced burned area maps will depict burned areas more accurately than active fire 

product.  This hypothesis is based on the fact that active fire product does not account for total 

area burned, and is calculated at a much coarser spatial resolution of 500 m.  The second 

hypothesis is that locally produced burned area maps will depict burned areas more accurately 

than the monthly burned area product.  This hypothesis is based on the fact that monthly burned 

area maps are calculated at a much coarser spatial resolution of 1 km.  Both of these hypotheses 

were tested using both a simple comparison of supposed burned area as well as a chi-square test. 

The active fire product used in this chapter is produced by detecting and recording 

thermal anomaly pixels, then placing these pixels into one of three categories based the level of 

confidence in that particular pixel actually being a fire.  Additionally, cloudy and unknown 

pixels are recorded as well (Giglio 2010).  Because active fire products rely on thermal bands, 

they are available at a maximum resolution of 1 km.  A more detailed description of thermal 

anomaly/active fire data can be found in Giglio (2010).  

The burned area product evaluated in this chapter uses a burn detection algorithm 

whereby changes in the surface are recorded on a daily basis.  Specifically, drops in reflectance 

are mapped, then burned areas are separated from other causes of reduced albedo through 

temporal analysis (e.g., clouds should be only temporary) and through spectral properties (e.g., 

burned areas behave differently in MODIS band 7 than do cloud shadows (Boschetti et al. 2009).  

These criteria are used to produce a product that depicts burned areas globally.  Because these 

products use MODIS bands besides red and NIR, they are available at a maximum spatial 

resolution of only 500 m.  A more detailed description of the MODIS monthly burned area 

product, including its detection algorithms, can be found in Boschetti et al. (2009). 

8.2 Methods 
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8.2.1 Product Acquisition and Processing 

Monthly burned area products (MCD45A1) for all years from 2001 through 2010 (except 

2006) were downloaded through WIST and processed with the MRT in the same manner as all 

other MODIS imagery, including being subset to the study area.  Monthly burned area product 

from 2000 was not used in this analysis because the data for this year, being the first year of 

MODIS, were of poor quality.  Furthermore, product for 2006 was not available, and so this year 

was not used either.  Four months covered the entire study period in each year: February, March, 

April, and May.  In the case of some years, no burned areas were present within the study area 

for certain months, and these were not included in the analysis (Table 8.1).  For each month in 

each year, the band that showed on which Julian date an area was burned was reclassified so that 

burned areas were depicted as 1 and unburned areas were depicted as 0, resulting in a burned/not 

burned binary image.  All months in a given year were summed and resampled so that burned 

and unburned areas were represented by values of 1 and 0, respectively.  This yielded a 

percentage of burned and unburned area within the study area for each year. 

 

Table 8.1: Monthly burned area product used for each year.  All months used in a given 

year were summed to get total burned area for that year. 
Year Months used 
2001 February, March, April 
2002 March, April, May 
2003 February, March, April 
2004 February, March, April, May 
2005 February, March, April, May 
2006 NA 
2007 February, March, April, May 
2008 February, March, April, May 
2009 February, March, April, May 
2010 February, March, April, May 
 

 

Two versions of the active fire product were downloaded through WIST and processed in 

the same manner as were the burned area products.  Again, 2000 was not used due to quality 

issues, though active fire product for 2006 was available.  The first product was an 8-day 

composite (MOD14A2 and MYD14A2 for Terra and Aqua, respectively) that showed all pixels 

classified as being thermal anomalies (which is taken to mean active fires) during that 8-day 

period.  The second product was the daily version (MOD14A1 and MYD14A1 for Terra and 
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Aqua, respectively) of the 8-day product.  This version was used to fill in beginning and end 

dates not covered by the 8-day composites (covering these dates with 8-day composites could 

lead to overestimation because active fires outside of the study period could be counted). 

Each daily and 8-day scene for each year for each sensor (Table 8.2) was reclassified to a 

binary classification, where 1 represented fire pixels and 0 represented all other pixels.  Although 

the original data classified fire pixels into three types, low-confidence fire, nominal-confidence 

fire, and high-confidence fire, all fire types were combined here into the same class.  All scenes 

for a given year were then summed and reclassified, which yielded a binary image for each year 

that depicted all fire pixels with a value of 1, and all non-fire pixels with a value of 0.  This scene 

yielded the percentage of fire and non-fire pixels within the study area for each year. 

 

Table 8.2: Dates of fire product used in each year to produce a composite of active fire 

pixels for each of the study years. 
Year Study Period 8-Day (range) Daily Aqua Daily Terra
2001 Mar. 8-May 9 Mar. 14-Apr. 30 NA Mar. 9, 10, 13 
2002 Feb. 28-May 9 Mar. 6-May 8 NA None
2003 Mar. 2-May 5 Mar. 6-Apr. 30 May 2, 4 May 2, 4 
2004 Mar. 7-Apr.27 Mar. 13-Apr. 21 Mar. 9-12, Apr. 25, 27 Mar. 8-12, Apr. 25-27 
2005 Mar. 1-May 4 Mar. 6-Apr. 30 Mar. 1-5, May 2-4 Mar. 2-5, May 3 
2006 Mar. 2-Apr. 27 Mar. 6-Apr. 22 Apr. 23, 26, 27 Mar. 3, Apr. 26, 27 
2007 Mar. 3-Apr. 29 Mar. 6-Apr. 22 Mar. 5, Apr. 23, 28, 29 Mar. 4, 5, Apr. 23, 28, 29 
2008 Mar. 1-May 3 Mar. 5-Apr. 29 Feb. 27, 29, Mar. 1, May 2, 3 Feb. 27, 29, May 3 
2009 Mar. 1-May 8 Mar. 6-May 8 Mar. 5 Mar. 4
2010 Mar. 2-Apr. 29 Mar. 6-Apr. 22 Mar. 2-4, Apr. 23, 27, 29 Mar. 2-5, Apr. 26 
 

 

8.2.2 Method of Comparison 

Burned areas were compared to active fire and burned areas products in two ways.  First, 

the percentage of the total area that was burned as estimated from each of the two products for 

each year was compared to the same percentages as estimated from the burned area maps 

developed in Chapter 7.   

Additionally, the similarity of the burned area estimates from the two products was also 

compared statistically to the estimates from the Chapter 7 maps using a goodness-of-fit chi-

square test.  In this case, the burned area estimates from Chapter 7 represented the theoretical 

burned area amounts, while the burned area estimates from the two products were evaluated for 
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their fit to this theoretical estimate.  The hypothesis stated that burned area frequency distribution 

for each year from either the active fire or burned area product did differed significantly from the 

distribution indicated by the Chapter 7 maps of burned area for the same year.   

To perform the chi-square test, 200 pixels were selected at random from each product in 

each year.  The status of these (burned or unburned) was recorded and formed the observed 

frequency distribution for the two products that was used in the chi-square analysis.  The 

theoretical frequency distribution was the proportion of total pixels burned in each year as 

indicated by Chapter 7 burned area classifications.  Chi-square was calculated as 

∑
=

−=
n

i
iii EEOX

1

22 /)                                                    (8.1) 

where X2 is the chi-square test statistic, O is the observed frequency, E is the expected frequency, 

n is the number of cells in the table, and i denotes the cell in question.  The hypothesis was 

accepted if X2 fell within the range 0.004 to 3.841, as these are the upper and lower critical 

values with one degree of freedom at the 95% confidence interval.     

8.3 Results and Discussion 
  The comparison of total burned area percentages as calculated from both the active fire 

and burned area products to those from the Chapter 7 burned area maps showed that neither 

product could not detect all or even most of the burned area within the study area.  This was 

especially true in 2001 and 2002, where only one MODIS sensor was in operation (on board the 

Terra satellite).  Even in the best case in 2009, only 63 and 60 percent of the total burned area 

was found by the active fire and burned area products, respectively.  In all years, the active fire 

product performed better than the burned area product did.  This is somewhat surprising, given 

its coarser spatial resolution, but the performance of either product is still far poorer than the 

method developed in Chapter 6 and applied in Chapter 7 of this paper. 
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Table 8.3: Total burned area and percent of burned area found by each product in each of 

the 11 years of the study. 
Year Burn maps (ha) Active fire (ha) % found Burned area (ha) % found
2001 760,769 117,500 15 12,500 2
2002 543,119 39,800 7 125 0
2003 1,077,588 639,600 59 344,450 32
2004 696,594 279,700 40 165,700 24
2005 1,320,556 619,800 47 375,250 28
2006 755,813 346,200 46
2007 414,456 188,200 45 23,275 6
2008 1,074,944 614,200 57 477,025 44
2009 1,212,281 762,700 63 728,125 60
2010 905,738 529,600 58 292,100 32
 

  

Chi-square analysis supported the conclusions suggested by the comparison of burned 

area percentages.  Specifically, the frequency of detected burned areas from both the active fire 

and burned area products was not statistically similar to the theoretical distribution provided by 

the burned area maps produced in Chapter 7.  In only one case, using active fire data in 2008, 

was the hypothesis close to being rejected (X2 = 4.39, p = 0.036).  This analysis also supports 

two other findings of the simple percentage burned comparison between the classifications and 

the products.  First, that burn detection was poor when only one MODIS image per day was 

available.  Second, that active fire product was better able to detect burned areas than burned 

area product, though the performance of both was generally very poor.  All X2 statistics and 

probabilities are given in Table 8.4. 

   

Table 8.4: Chi-square and p-values for each product and each year used in the study.  
 Expected Active Fire Burned Area 

Year Burned Unburned Burned Unburned X2 p Burned Unburned X2 p 
2001 18 82 4 196 34.69 < 0.001 2 198 39.16 < 0.001
2002 13 87 0 200 29.89 < 0.001 0 200 29.89 < 0.001
2003 26 74 26 174 17.57 < 0.001 14 186 37.53 < 0.001
2004 17 83 11 189 18.75 < 0.001 6 194 27.78 < 0.001
2005 31 69 27 173 28.64 < 0.001 16 184 49.46 < 0.001
2006 18 82 18 182 10.98 <0.001   
2007 10 90 7 193 9.39 0.0022 0 200 22.22 < 0.001
2008 26 74 39 161 4.39 0.036 23 177 21.86 < 0.001
2009 29 71 29 171 2042 < 0.001 31 169 17.70 < 0.001
2010 22 78 23 177 12.85 < 0.001 13 187 28.00 < 0. 001
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8.4 Conclusions 
Comparison of burned area estimates from burned area products and active fire products 

to estimates from the burned area maps produced in Chapter 7 shows that the two products could 

not detect many of the burned areas depicted in by the classification technique.  In fact, the 

active fire product was never able to detect more than 63% of the burned area indicated by the 

classification technique from Chapter 7.  The burned product performed even poorer, as it was 

only able to detect 60% of burned area in the best case, and failed to detect even 1% of total 

burned area in 2002.  These results were supported by a chi-square goodness-of-fit test, where 

the hypothesis was consistently accepted regardless of which product was compared to the 

Chapter 7 classifications.  This indicated that the frequency distribution of burned areas in all 

years with both products was not statistically similar to the theoretical distribution provided by 

the classifications.  Given that the estimated accuracy of the burned areas classifications 

produced in Chapter 7 were 90% or better, these findings support the hypotheses outlined at the 

beginning of this chapter, which stated that neither product would be able to map burned areas as 

accurately than the technique developed in Chapter 6 of this study.  Specifically, the high rate of 

Type II error in both products is far greater than the maximum 10% error that could be expected 

based on the Chapter 7 classifications. 

The poor performance of the two products was likely caused by two factors.  First, the 

two products were available at 500 m and 1 km spatial resolution, compared to the 250 m spatial 

resolution of the classification technique used in Chapter 7.  Performance of the two products 

was also likely poor due to the fact that these products are calibrated to account for fires and burn 

scars in a variety of land cover types, and do not take into account the specific requirements of 

burned area mapping in tallgrass prairie.  Consequently, the use of these products in tallgrass 

prairie or similar cover types should be done with caution, and with the realization that many 

burned areas have likely gone undetected.  This finding supports the ideas of discussed in section 

2.2.2, where many published works have cautioned about the accuracy of these products.  
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CHAPTER 9 - Summary of Major Findings and Future Work 

9.1 Summary of Major Findings 

9.1.1 Study Background 

Prescribed burning in tallgrass prairie is important for several reasons.  First, it preserves 

the tallgrass prairie ecosystem by limiting the growth of woody vegetation and non-native grass 

species, which affects the heterogeneity of the prairie plant communities, and increases 

productivity of matrix species.  Both plant community dynamics and productivity are related 

closely to grazing.  Fire in tallgrass prairies also affects wildlife, and these effects can be both 

positive and negative, depending on the scale at which burning takes place.  Finally, prescribed 

burning can affect human health by releasing particulates and combustion chemicals into the air. 

This study developed a process for creating accurate burned area maps in tallgrass prairie, 

as this was a critical step toward managing tallgrass prairie ecosystems using sound scientific 

principals, and with the interests of all stakeholders in mind.  This goal was reached by 

completing several separate objectives, such as identifying suitable spectral ranges and indices 

for burned area mapping in tallgrass prairie though in situ hyperspectral analysis and satellite-

based remote sensing, developing a technique that used suitable spectral ranges and indices to 

classify burned areas and assessing its accuracy, classifying historical burned areas in the Flint 

Hills using this technique, and comparing this technique to available burned area and active fire 

products. 

9.1.2 Chapter 4: In Situ Hyperspectral Analysis 

Various bands and indices were simulated from hyperspectral radiometer data taken in 

situ from both burned and unburned tallgrass prairie.  These bands and indices were tested for 

their ability to differentiate between burned and unburned areas through the burning season and 

during subsequent vegetation regrowth.  Because they were unable to differentiate between 

burned and unburned areas for an adequate length of time, the GEMI, GEMI-B, and NBR 

indices, as well as the LMIR band, were deemed unsuitable for burned area mapping in tallgrass 

prairie.  Another interesting finding is that, when measured with NDVI, the relationship between 

burned and unburned areas differs depending on the state of vegetation regrowth.  This renders 

NDVI impractical for burned area mapping in tallgrass prairie, as a priori knowledge must be 
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available for all burned areas in an image, and this is unlikely to be the case.  Simulated bands 

such as NIR, LNIR, and SMIR, as well as simulated indices such as BAI and MIRBI, were able 

to differentiate burned from unburned areas for a sufficient length of time to be deemed useful 

for burned area mapping in tallgrass prairie.  Consequently, they were retained for analysis in 

subsequent chapters.   

9.1.3 Chapter 5: Normalized Distance Analysis 

Those bands and indices that were effective at differentiating burned from unburned areas 

with the in situ hyperspectral data were tested for their ability to do the same at the wider, 

satellite image scale.  This allowed comparison between the utility of each band or index for 

burned area mapping at the field level with its utility at the satellite level.  Each band or index 

was evaluated using two pairs of burned and unburned areas and a normalized distance 

technique.  Those bands and indices that were able to differentiate between burned and unburned 

areas well with the field level analysis excelled at doing the same at the satellite scale.  The 

exception to this was SMIR, which performed very poorly at the satellite scale, despite its 

excellent performance when simulated with radiometer data.  Overall, testing at the satellite-

scale resulted in shorter time periods over which bands or indices were able to effectively 

differentiate burned from unburned areas, and this was likely due to the differences in the two 

sampling and evaluation techniques.  Finally, no appreciable difference existed between the TM 

and MODIS sensors.  All band and indices tested, with the exception of SMIR, were retained for 

analysis in the next chapter. 

9.1.4 Chapter 6: Image Classification and Accuracy Assessment 

Using those bands and indices that were able to differentiate burned from unburned areas 

in the preceding two chapters, several classification scenarios were created using both single-

band and multiple-band/index images from TM and MODIS.  These were classified using both 

an object-based and a minimum distance pixel-based classification technique.  The results of this 

procedure identified the most suitable bands and/or index (singly or in combination), the best 

classification technique, and the best sensor, for burned area mapping in tallgrass prairie.  

Classification results were evaluated using both error matrices and by comparing specific burned 

areas to their area as measured in situ.  This comparison suggested that classifying MODIS 250 

m spatial resolution data provides the best mix of temporal and spatial resolution, and that using 
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the red and NIR band in combination can detect burned areas at 90% accuracy as long as those 

burned areas are less than 2-3 weeks old, with more recent burned areas being more accurately 

represented.  Additionally, classification should be done with pixel-based methods, as object-

based methods did not improve accuracy significantly in any case, and actually reduced accuracy 

in some instances. 

9.1.5 Chapter 7: Flint Hills Burn History 

The fire history of the Flint Hills was reconstructed from 2000 to 2010 using the method 

that was most likely to yield the most accurate results (based on previous chapters).  Burned area 

maps were expected to have an accuracy of 90% or better.  Total area burned and total grassland 

burned varied greatly from year to year, though no overall trend existed throughout the study 

period.  Burning varied spatially from year to year as well, particularly in the southern half of the 

study area.  Burn frequency showed that approximately 55% of the study area was burned at 

least once during the 11-year study period.  However, most area that was burned was not burned 

at a frequency of at least 2-3 years, as is in line with accepted best management practices.  

Additionally, the areas that were burned most frequently were in areas with greater percentages 

of grasslands.  This was demonstrated by county-level data, where counties with more grassland 

tended to burn that grassland more often than counties with less grassland.  Therefore, counties 

with less grassland tended to burn different patches from year to year.  Finally, this historical 

burned area reconstruction showed that most burning is distributed temporally throughout the 

month of April, with a small percentage of prescribed burning occurring in March and May. 

9.1.6 Chapter 8: Burned Area and Active Fire Product Quality Assessment 

Comparison of both burned area and active fire products to results from the burned area 

maps produced in Chapter 7 showed that neither of these products could accurately detect many 

burned areas in tallgrass prairie.  This was likely due in part to the coarser resolution of these two 

products, and to the fact the products are calibrated to perform well in a variety of land cover 

types, but do not specialize in any cover type; especially cover types such as tallgrass prairie 

where burn scar recovery is rapid.  As a result, the use of these products in tallgrass prairie, or 

other specific cover types, should be done with caution, and with the realization that significant 

underestimation is certain. 
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9.2 Future Work 
Although this work was intended to be a relatively definitive guide to burned area 

mapping in tallgrass prairie, it raises several additional questions and provides several 

opportunities for related research.  With regard to the hyperspectral analysis performed in 

Chapter 4, future work should strive to understand the effects of topography and the position of 

grasslands on the performance of the various bands and indices tested.  Whereas this work 

sought to control these variables in order to characterize the effect of others (burn duration, 

grazing presence, etc.), future work that addresses the effects of these variables would contribute 

to a more thorough understanding of how burned areas change spectrally through time, and how 

these changes affect their ease of detection. 

The possibility of using the existing hyperspectral data to seek out additional 

relationships between burned and unburned areas should be given attention in the future as well.  

Specifically, where only currently published spectral regions and indices were tested in this 

work, other spectral regions and indices that have not been used to map burned areas should be 

tested in the future.  Doing this would require little additional investment in time, as the data 

have already been collected.  Furthermore, exposing the merits of previously untested spectral 

regions might lead to new methods of mapping burned areas in a variety of other cover types, in 

addition to tallgrass prairie. 

Additional work should also better establish the link between the ability of bands and 

indices to differentiate burned from unburned areas at the field-scale and their ability to do so at 

the satellite-level scale.  This was illustrated in Chapter 5, where the better-performing bands and 

indices were able to differentiate burned from unburned areas for less time than in the field-level 

analysis of Chapter 4.  Although this could be due to differences between the two evaluation 

techniques, it is almost certainly related to within-burn variation, and so is also tied to the issues 

mentioned in the first paragraph of this section.  This work would also help to identify links 

between the burn detection capabilities of different sensors, which would be important if one or 

both of the MODIS sensors failed, and another sensor had to take its place. 

Related to the above issues is the slight rebound in the normalized distance values in 

Chapter 5 near the end of the sampling period in August.  This occurred only for sample pair #2, 

and occurred only with BAI, Red, and NIR.  The fact that these particular indices are involved is 

not surprising, as the latter two are components of the first.  This phenomenon provides several 
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avenues for future work.  First, the record could be extended further into the fall to see if the 

trend continues.  Additionally, other bands and indices could be evaluated with regard to this 

trend.  Addressing both of these issues might help solve the overarching question of exactly what 

causes the trend, and why is it present in one sample pair and not the other. 

Another important question raised by this work is whether coarser resolution imagery, 

such as the 500 m resolution imagery used in this study, could better estimate burned areas if 

pixels that represented a mixture of burned and unburned areas could be classified as such.  This 

might allow detection of smaller, previously undetected burned areas with 500 m resolution 

imagery, as well as prevent the loss of information from pixels on the edge of burned areas.  If 

this is true, a much larger selection of bands and indices can be used for burned area mapping in 

tallgrass prairie.  Furthermore, the advantages that come with those bands, such as the ability to 

identify burned areas through light smoke and clouds, could be used as well.  Minimizing the 

effect of smoke is especially important for this work, as smoke is very likely to be present in the 

imagery for obvious reasons.  One way to calibrate the mechanism for separating the 

components of mixed pixels is to use existing, higher-resolution data, such as a concurrent 

classification from TM, or ground-cover data such as the National Land Cover Data (NLCD). 

Future work should also focus on fine-tuning the classification technique used in this 

study.  Although it is apparent that object-based classification shows little promise for burned 

area classification in tallgrass prairie, other pixel-based classification techniques might.  For 

example, minimum distance classification was used in this work because within-class variation 

was expected to be great, and because this technique allowed consistency between single and 

multi-band scenarios.  However, focusing on the detection of recent burned areas, as well as 

masking cover types other than burned and unburned grassland, might reduce within-class 

variation enough to allow a maximum likelihood technique to be used.  Furthermore, this is 

especially true since the best-performing classification scenario contained multiple bands. 

Additional work should also focus on identifying why the percentage of grassland burned 

is greater in counties with a larger percent of their total area in grassland.  This could be done by 

searching for traits in counties with low grassland percentages that might contribute to this 

phenomenon.  As mentioned in section 7.3.2.2, these traits could include, but are certainly not 

limited to, high rates of CRP occurrence, increased cropland burning, the fractured nature of 

these grasslands, safety and insurance/liability reasons, land ownership/tenure reasons, and 
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possible burning moratoriums.  Further analysis should search for links between these and other 

factors and low rates of grassland burning.  Additionally, this phenomenon should be examined 

in the context of burn frequencies across the entire study area being much lower on average than 

the accepted best management practices. 

The burned area mapping techniques developed in this work should be used and applied 

to studies in other fields.  Many of these are mentioned in Chapter 2, and include air quality 

analysis, biological analysis, human health, and range management, as well as many others.  In 

using these techniques and burned area maps, the spatial nature of burning in the Flint Hills 

could also be examined.  For example features such as patch homogeneity, patch pattern, and 

patch size could be examined in the context of species affected. 

The final focus of future work that warrants mentioning is the need to automate the 

classification technique that was applied in Chapter 7.  Not only could this provide timely burned 

area maps and reduce human labor costs, but it might also eliminate some of the subjectivity of 

the process.  It should be noted that automating this technique, because of the need to select 

training data and the need to avoid areas of cloud cover, would be extremely difficult, though 

automating even portions of the technique would prove worthwhile.
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