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Abstract 

Agriculture is the largest (90%) consumer of all fresh water in the world. The 

consumptive use of water by vegetation represented by the process evapotranspiration (ET) has a 

vital role in the dynamics of water, carbon and energy fluxes of the biosphere. Consequently, 

mapping ET is essential for making water a sustainable resource and also for monitoring 

ecosystem response to water stress and changing climate. Over the past three decades, numerous 

thermal remote sensing based ET mapping algorithms were developed and these have brought a 

significant theoretical and technical advancement in the spatial modeling of ET. Though these 

algorithms provided a robust, economical, and efficient tool for ET estimations at field and 

regional scales, yet the uncertainties in flux estimations were large, making evaluation a difficult 

task. The main objective of this study was to evaluate and improve the performance of widely 

used remote sensing based energy balance models, namely: the Surface Energy Balance 

Algorithm for Land (SEBAL), Mapping Evapotranspiration at high Resolution and with 

Internalized Calibration (METRIC), and Surface Energy Balance System (SEBS). Data used in 

this study was collected as part of a multi-disciplinary and multi-institutional field campaign 

BEAREX (Bushland Evapotranspiration and Agricultural Remote Sensing Experiment) that was 

conducted during 2007 and 2008 summer cropping seasons at the USDA-ARS Conservation and 

Production Research Laboratory (CPRL) in Bushland, Texas. Seventeen high resolution remote 

sensing images taken from multispectral sensors onboard aircraft and field measurements of the 

agro-meteorological variables from the campaign were used for model evaluation and 

improvement. Overall relative error measured in terms of mean absolute percent difference 

(MAPD) for instantaneous ET (mm h
-1

) were 22.7%, 23.2%, and 12.6% for SEBAL, METRIC, 

and SEBS, respectively. SEBAL and METRIC performances for irrigated fields representing 

higher ET with limited or no water stress and complete ground cover surfaces were markedly 

better than that for dryland fields representing lesser ET and greater soil water deficits with 

sparser vegetation cover. SEBS algorithm performed equally well for both irrigated and dryland 

conditions but required accurate air temperature data. Overall, this study provides new insights 

into the performance of three widely used thermal remote sensing based algorithms for 

estimating ET and proposed modifications to improve the accuracy of estimated ET for efficient 

management of water resources.  
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Abstract 

Agriculture is the largest (90%) consumer of all fresh water in the world. The 

consumptive use of water by vegetation represented by the process evapotranspiration (ET) has a 

vital role in the dynamics of water, carbon and energy fluxes of the biosphere. Consequently, 

mapping ET is essential for making water a sustainable resource and also for monitoring 

ecosystem response to water stress and changing climate. Over the past three decades, numerous 

thermal remote sensing based ET mapping algorithms were developed and these have brought a 

significant theoretical and technical advancement in the spatial modeling of ET. Though these 

algorithms provided a robust, economical, and efficient tool for ET estimations at field and 

regional scales, yet the uncertainties in flux estimations were large, making evaluation a difficult 

task. The main objective of this study was to evaluate and improve the performance of widely 

used remote sensing based energy balance models, namely: the Surface Energy Balance 

Algorithm for Land (SEBAL), Mapping Evapotranspiration at high Resolution and with 

Internalized Calibration (METRIC), and Surface Energy Balance System (SEBS). Data used in 

this study was collected as part of a multi-disciplinary and multi-institutional field campaign 

BEAREX (Bushland Evapotranspiration and Agricultural Remote Sensing Experiment) that was 

conducted during 2007 and 2008 summer cropping seasons at the USDA-ARS Conservation and 

Production Research Laboratory (CPRL) in Bushland, Texas. Seventeen high resolution remote 

sensing images taken from multispectral sensors onboard aircraft and field measurements of the 

agro-meteorological variables from the campaign were used for model evaluation and 

improvement. Overall relative error measured in terms of mean absolute percent difference 

(MAPD) for instantaneous ET (mm h
-1

) were 22.7%, 23.2%, and 12.6% for SEBAL, METRIC, 

and SEBS, respectively. SEBAL and METRIC performances for irrigated fields representing 

higher ET with limited or no water stress and complete ground cover surfaces were markedly 

better than that for dryland fields representing lesser ET and greater soil water deficits with 

sparser vegetation cover. SEBS algorithm performed equally well for both irrigated and dryland 

conditions but required accurate air temperature data. Overall, this study provides new insights 

into the performance of three widely used thermal remote sensing based algorithms for 

estimating ET and proposed modifications to improve the accuracy of estimated ET for efficient 

management of water resources. 
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Chapter 1 - General Introduction 

1.1 Introduction 

The Ogallala Aquifer, also known as the High Plains Aquifer, covers approximately 

174,000 square miles from Texas High Plains to the southwestern South Dakota in the central 

United States, and is the major source of water for irrigated agriculture in the overlying region. 

More than 90% of the ground water withdrawals from the Ogallala aquifer is used to irrigate at 

least one fifth of all US cropland (Guru et al., 2000). Over exploitation of the Ogallala’s water 

resources for irrigated agriculture has resulted in withdrawals from the aquifer far exceeding the 

natural recharge. Once considered as an unlimited source of fresh water is now fast depleting and 

threatening the sustainability of agricultural and allied operations in the Ogallala Aquifer Region. 

Therefore, all water conservation efforts needs to be focused on irrigated agriculture as it is the 

largest consumer of groundwater in the region. Sustainable irrigated agriculture demands for 

safeguarding profitability, productivity, and food security which could only be achieved through 

development and implementation of innovative technologies. Irrigation application efficiency is 

reaching its attainable limits, however, the computation of crop water requirement still relies 

heavily on the traditional empirical ratio of actual crop evapotranspiration (ETa) to reference 

crop evapotranspiration (ETr). 

Irrigation scheduling using crop coefficient, Kc, values where ETa is determined as, 

ETa=Kc x ETr, was adopted widely owing to its simplistic two-step approach ( Payero and Irmak, 

2011). While ETr was a function of weather data alone, Kc values were constrained to unique 

crop managed under given climate and site specific crop management. Uncertainties in the 

generalized Kc values were too many as Kc values for the same crop showed significant variation 

between locations due to differences in crop variety, soil properties, irrigation method and 

frequency, climate, and crop management practices (Payero and Irmak, 2011). The ASCE-EWRI 

(Allen et al., 2005) or the FAO 56 (Allen at al., 1998) standardized Penman-Monteith equation 

was used to compute the ETr, however, requirement of large number of spatially variable 

meteorological parameters limits their usage to point scale applications.    

Remote sensing methods for calculating the actual ET based on the equilibrium between 

the radiation balance and energy balance at the surface of the earth is recognized as the only 

viable means to map regional- and meso-scale patterns of ET. At field scale, ET can be measured 
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over a homogenous surface using conventional techniques such as Bowen Ratio (BR), eddy 

covariance (EC), water balance, and lysimeter systems; however, these systems do not provide 

spatial trends at the regional scale, especially in heterogeneous landscapes. Over the past three 

decades, numerous remote sensing based ET mapping algorithms were developed. These 

algorithms provided a robust, economical, and efficient tool for ET estimations at field and 

regional scales. ET maps have large utility ranging from crop water management, climate change 

impact assessment, hydrological modeling, recharge prediction, irrigation performance and land 

use planning, to name a few applications. A detailed review of different remote sensing based ET 

algorithms is presented in Gowda et al. (2008). They reported that ET estimation accuracy varied 

from 67 to 97% for daily ET and above 94% for seasonal ET, indicating that remote sensing 

technology with appropriate algorithms has the potential to estimate ET at regional scale 

adequate for irrigation scheduling. 

Precision farming (PF) or site specific management is currently promoted by several 

sectors of agribusiness. High-resolution thermal imaging systems have been used to evaluate 

water status of cotton (Alchanatis et al., 2010), wheat (Tilling et al., 2007), vineyards (Grant et 

al., 2007) and olives (Berni et al., 2009). There is a growing interest to use energy balance 

algorithms to develop ET maps at field scale to support intelligent irrigation systems.  Airborne 

remote sensing provides high resolution visible and thermal spectral data which could be utilized 

towards irrigation, fertilizer applications and pest management strategies, thus providing 

opportunities to decrease input costs and potentially increase net income. 

Regional scale ET maps with daily and seasonal coverage would enhance water resources 

managers’ ability to plan and manage limited water resources. Remote sensing based methods 

applied to the estimation of ET over large areas provide water managers with new tools for the 

assessing crop water demand accurately. Numerous remote sensing based ET models have been 

developed in the last three decades to make use of the visible, near-infrared (NIR), shortwave 

infrared (SWIR), and most importantly, thermal infrared data acquired by sensors onboard 

satellite platforms. Some of the commonly used remote sensing based ET algorithms are:  

 Surface Energy Balance Algorithm for Land (SEBAL; Bastiaanssen et al., 1998a; 

1998b)  

 Mapping Evapotranspiration at High Resolution with Internalized Calibration 

(METRIC; Allen et al., 2007a,b)  
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 Surface Energy Balance System (SEBS; Su, 2002)  

 Two-Source Model (TSM; Norman et al., 1995)  

 Surface Energy Balance Index  (SEBI; Menenti and Choudhury 1993) 

 Simplified Surface Energy Balance (SSEB; Senay et al., 2007)  

 Trapezoid Interpolation Model (TIM;  Le Jiang and Shafiqul Islam, 2001) 

1.2 A brief history of remote sensing based evapotranspiration algorithms 

 In the last three decades, numerous remote sensing based ET algorithms have been 

developed. Among those methods, some are simple and use remote sensing data to calculate only 

the available radiation on the surface, and then apply conventional equations such as Priestley-

Taylor or P-M model to calculate ET. Complex methods include a detailed and lengthy 

procedure for calculating sensible heat flux. A brief review of literature for the three four major 

single source energy balance algorithms namely SEBAL, METRIC and SEBS is provided in the 

following paragraphs.   

Surface Energy Balance Algorithm for Land (SEBAL) is an energy-partitioning 

algorithm over the land surface, which estimates the actual evaporation using satellite images 

(Bastiaanssen et al., 1998a, Bastiaanssen et al., 1998b, ). SEBAL has been applied in more than 

30 countries worldwide, with 26 research studies and 17 application studies (Bastiaanssen et al., 

2005). SEBAL has been applied for ET estimation, calculation of crop coefficients and 

evaluation of basin wide irrigation performance under various agro-climatic conditions. Average 

deviation of SEBAL ET estimates using NOAA images compared with LAS for 10 day period 

was 17%, and decreased to 1% for monthly estimates (Hemakumara et al., 2003). MODIS level 

3 data, used to estimate regional ET over wheat growing region showed relative deviation of 

25% with respect to pan evaporation measurements (Patel et al., 2006). Comparison between a 

highly parameterized two source model (TSM) and SEBAL (single source model) over a range 

of environmental conditions showed similar agreements with tower observations. However, 

SEBAL performance over bare soil and dry sparsely vegetated areas were poor as compared to 

TSM (Timmermans et al., 2007). Using Landsat images, it was observed that the difference 

between SEBAL calculations and field measurements of accumulated actual ET was less than 

1% and 5% for irrigated mango orchard and natural vegetation,  respectively, when the equations 

are locally calibrated (Teixeira et al., 2009). Performance of Landsat  based SEBAL was 
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evaluated over Texas High Plains by comparing estimated ET with measured value from four 

large monolithic lysimeters. Results show good agreement for irrigated fields but poor prediction 

for fields under dryland management (Gowda et al., 2008). One of the main considerations in 

SEBAL, when evaluating pixel by pixel sensible and latent heat fluxes, is to establish the linear 

relationships between surface temperature (Ts) and the surface-air temperature difference (dT) 

on each pixel with the coefficients of the linear expressions determined from the extremely dry 

(hot) and wet (cold) points. This requires subjective specifications of representative hot/dry and 

wet/cool pixels within the scene to determine model parameters 'a' and 'b' (Li et al., 2009).     

Mapping Evapotranspiration at High Resolution with Internalized Calibration 

(METRIC) uses SEBAL as its foundation (Allen et al., 2007a). The main distinction between 

various single-source surface energy balance methods is in the estimation of sensible heat flux. 

METRIC utilizes the pioneering concept (dT calculated from extreme pixels) of SEBAL in the 

estimation of sensible heat. For this reason METRIC and SEBAL has been grouped under 

similar model class (Li et al., 2009). However, METRIC does come with certain additions and 

improvements over SEBAL and thus can rightly be called as an improved version of SEBAL. 

The developers of METRIC (Allen et al., 2007a) states that "the model is internally calibrated 

using ground-based reference ET to reduce computational biases inherent to remote sensing-

based energy balance and to provide congruency with traditional methods for ET".  METRIC 

uses alfalfa reference ET at two instances: (1) for the wet pixel, ET is set to 1.05 ETr, and (2) 

instantaneous ET to daily value is based on the alfalfa ETrF (defined as the ratio of instantaneous 

ET to the reference ETr) instead of the actual evaporative fraction. METRIC claims to account 

for regional advection effects through the use of reference ET. Consequently, METRIC requires 

computation of alfalfa reference ET for each image. Readily available high quality hourly 

agricultural weather data is required for calculation of ETr (Tasumi et al., 2005; Tasumi and 

Allen, 2007). The inclusion of water balance model for determination of residual moisture in the 

dry pixel again makes METRIC more data dependent and computationally complex than 

SEBAL. ET estimates from METRIC model, using Landsat 5 TM data for the Texas High 

Plains, were compared with derived ET from soil water balance model; results showed deviation 

of 8-10% for daily ET values (Gowda et al., 2008c). Daily ET values with good prediction 

indicated that METRIC performed well for the advective conditions of the Texas High Plains 

(Chávez et al., 2007 and Gowda et al., 2008c). Seasonal estimates of METRIC-ET used within 
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an irrigation scheme in southwest Spain helped to identify specific agricultural fields, 

experiencing problems in water management (Santos et al., 2008). A detailed evaluation of 

METRIC using Landsat TM data against lysimeter and other traditional methods showed an 

average standard deviation error between 13 to 20% (Allen et al., 2007b). Comparative study of 

METRIC, TSEB and TIM  algorithms yielded reasonable agreement with measured energy 

fluxes at tower locations, with root-mean-square errors  of 50-75 W/m
2
; however,  spatial inter-

comparison revealed significant discrepancies (Choi et al., 2009). 

Surface Energy Balance System (SEBS) was developed by Su (2002) for the estimation 

of atmospheric turbulent fluxes using satellite earth observation data. SEBS adopts the concept 

from the SEBI (Surface Energy Balance Index) scheme (Menenti and Choudhury, 1993). A 

better parameterization of turbulent heat transfer, bulk atmospheric similarity theory and 

algorithms to infer spectrally integrated hemispherical reflectance and brightness temperature has 

been integrated in SEBS (Menenti et al., 2003). At large spatial scales, SEBS requires reference 

potential temperature and humidity of air at an appropriate height above heterogeneous land (Jia 

et al., 2003). This requirement of reference height taken at the planetary boundary layer (PBL) 

and observation values of   potential temperature and humidity at this height can be seen as a 

bottleneck for application over heterogeneous land surfaces. Fields of wind, potential 

temperature and humidity of air generated by weather prediction model integrated over the 

planetary boundary layer has been used successfully to execute SEBS over large heterogeneous 

land (Jia et al., 2003). Validation using annual ET computed from simple water balance model 

suggested effective estimation of annual ET (Jin et al., 2009).   

1.3 Problem Statement 

Remote sensing based ET models are better suited for estimating crop water use at both 

field and regional scales (Allen et al., 2007a). Over the past four decades various intensive field 

campaigns were undertaken to understand the turbulent exchanges of mass and energy at the land 

surface. Many multidisciplinary, multi-institutional campaigns including EAGLE2006 (Su et al., 

2009), SGP97 (Menenti, et al., 2003), SPARC 2004 (Su, et al., 2008), SEN2FLEX 2005 

(Sobrino et al., 2008), SMACEX (French et al., 2005), and BEAREX (Chavez et al., 2009) were 

taken up for further understanding and improving the parameterization of land surface hydro-

meteorological processes.  
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To enhance the understanding of the land surface hydro-meteorological processes, the 

Bushland Evapotranspiration and Agricultural Remote Sensing Experiment (BEAREX) field 

campaign was conducted at the USDA-ARS Conservation and Production Research Laboratory. 

During this campaign high resolution data from the multispectral sensor onboard aircraft and 

ancillary ground data were acquired for summer cropping season of 2007 and 2008. 

 The goal of this research was to utilize the BEAREX dataset to evaluate single source 

remote sensing based algorithms for estimating ET over the semi-arid Texas High Plains (THP) 

region. The validation was carried out against measurements from 4 large precision weighing 

lysimeters installed in the center of two irrigated and two dryland fields of approximately 4.7 ha, 

this formed a unique and important aspect of the present study. 

Specific Objectives: 

1. Evaluate the variability in the 'a' and 'b' coefficients of the dT function due to the 

presence of multiple pixels fulfilling the hot and cold pixel selection criteria and how 

much influence this variability has on the final instantaneous ET (ETi) estimates.  

2. Compare SEBAL ETi estimates with lysimetric data.  

3. Incorporate a physically based parameterization for excess resistance (kB
-1

) into SEBAL 

and test its performance.  

4. Test the relationships to compute the various aerodynamic roughness parameters.  

5. Investigate the influence of four different zoh values on the flux estimations from SEBAL. 

The four zoh values used are as follows: 

(1) zoh= zom/exp(kB
-1

), where  kB
-1 

= 2.3 

(2) zoh (z1) = 0.1 m (spatial constant)  

(3) zoh (z1) = 0.01 m (spatial constant) and  

(4) zoh= zom/exp(kB
-1

), where kB
-1

 parameterization is used to get spatially varying 

zoh. 

6. Analyze the performance of a model that utilizes the hot and cold pixel concept 

(METRIC) and compares it against an algorithm (GSS) which utilizes the kB
-1

 parameter. 

7. Evaluate the Surface Energy Balance System (SEBS) to estimate hourly ET fluxes. 
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Chapter 2 - A comprehensive evaluation of SEBAL using high 

resolution airborne imagery from BEAREX08  

2.1 Abstract 

In this study, Surface Energy Balance Algorithm for Land (SEBAL) was evaluated for its 

ability to derive aerodynamic components and surface energy fluxes from very high resolution 

airborne remote sensing data acquired during the Bushland Evapotranspiration and Agricultural 

Remote Sensing Experiment 2008 (BEAREX08) in Texas, USA. Issues related to hot and cold 

pixel selection and the underlying assumptions of difference between air and surface temperature 

(dT) being linearly related to the surface temperature were also addressed. Estimated 

instantaneous evapotranspiration (ET) and other components of the surface energy balance were 

compared with measured data from four large precision weighing lysimeter fields, two each 

managed under irrigation and dryland conditions. Instantaneous ET was estimated with overall 

mean bias error  and root mean square error (RMSE) of 0.13 and 0.15 mm h
-1

 (23.8 and 28.2%) 

respectively, where relatively large RMSE was contributed by dryland field. Sensitivity analysis 

of the hot and cold pixel selection indicated that up to 20% of the variability in ET estimates 

could be attributed to differences in the surface energy balance and roughness properties of the 

anchor pixels. Adoption of an excess resistance to heat transfer (kB
-1

) model into SEBAL 

significantly improved the instantaneous ET estimates. 

2.2 Introduction 

Evapotranspiration (ET) mapping has many applications including crop water 

management, climate change impact assessment, hydrological modeling, groundwater recharge 

studies, irrigation performance, and land use planning (Bastiaanssen et al., 2005). At field scales, 

ET can be measured over a homogenous surface using conventional techniques such as the 

Bowen ratio (BR), eddy covariance (EC), water balance, and lysimeter systems; however, these 

systems do not provide spatial trends at the regional scale, especially in heterogeneous 

landscapes. Generally, large weighing lysimeters are considered the most accurate instrument for 

direct ET measurement in field (Allen et al., 2011; Howell et al., 1995), while the tower based 

measurements of EC and BR, and water balance methods are commonly employed; each differ 

in their achievable accuracy range and operational capabilities (Allen et al., 2011a, 2011b). With 
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the advent of earth observing satellites, numerous remote sensing based ET (RS-ET) algorithms 

were developed and validated. The need for spatial ET mapping was great and therefore it 

became imperative to keep developing, modifying, and improving these RS-ET algorithms. 

Surface Energy Balance Algorithm for Land (SEBAL) developed by Bastiaanssen (1995) in 

early 90's, is considered as one the important RS-ET algorithm, that has continuously evolved 

and received wide acceptance around the world. According to the developers, by 2005, SEBAL 

was applied in more than 30 countries for mapping ET (Bastiaanssen et al., 2005), indicating that 

SEBAL is one of the widely used RS-ET algorithms.  

Numerous validation studies of SEBAL have taken place involving: (a) satellite sensors 

with different spatial and spectral image resolutions such as MODIS (Moderate Resolution 

Imaging Spectroradiometer), AVHRR (Advanced Very High Resolution Radiometer), ASTER 

(Advanced Spaceborne Thermal Emission and Reflection) and ETM/TM (Enhanced Thematic 

Mapper); (b) ET measurement techniques with varying accuracy such as BR, EC, lysimeter, and 

scintillometer; (c) time integration such as instantaneous, daily, monthly, and annual; (d) space 

integration such as field to watershed scale; and (e) agroclimatic regions. A large number of 

unique combinations of validation scenarios remain unexplored. In a performance comparison 

between a two source model (TSM) and SEBAL using airborne sensors, yielded relatively large 

discrepancies over bare soil and dry/sparsely vegetated areas, where TSM was in better 

agreement with the observations (Timmermans et al., 2007). Another model intercomparison 

study (Gao and Long, 2008) concluded that SEBAL is highly sensitive to the parameter kB
-1

, 

leading to large errors for sparsely vegetated drier regions. A summary of SEBAL validation 

studies provided by Bastiaanssen et al. (2005) and numerous other recent studies (Singh et al., 

2008; Choi et al., 2009; Long and Singh, 2012) revealed that this algorithm has been extensively 

applied. However, the range of typical accuracy across these studies corroborated the reported 

range (67-97%) by review studies (Gowda et al., 2008; Kalma et al., 2008; Li et al., 2009). 

SEBAL has come a long way since its inception in 1995 (Bastiaanssen, 1995) with several 

variant algorithms' like METRIC (Mapping Evapotranspiration at high Resolution and with 

Internalized Calibration; Allen et al., 2005), SSEB (Simplified Surface Energy Balance; Senay et 

al., 2007), ReSET (Remote Sensing of Evapotranspiration; Elhaddad et al., 2008), M-SEBAL 

(Modified SEBAL; Long and Singh, 2012), SEBTA (Surface Energy Balance with Topography 

Algorithm; Gao et al. 2011) being developed over the years.  
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Evaluation of uncertainties in remote sensing based models for estimation of surface 

energy fluxes is not an easy task (Norman et al., 2006), while at the same time the need for 

validation studies across hydrological regimes and agroclimatological regions is advocated by  

review studies (Gowda et al., 2008; Kalma et al., 2008; Li et al., 2009). Single source models 

like SEBAL considers the exchange of heat and water in the soil-vegetation-atmosphere 

continuum as a lumped composite of the underlying surface. Studies have reported the biased 

performance of single source models in handling extremes in moisture/vegetation cover 

conditions (Gao and Long, 2008; Kustas and Anderson, 2009). The indigenous approach of 

SEBAL, in the determination of the temperature gradient using two extreme pixels representing 

the hydrological end members (wet and dry) has been found to be subjective to analyst decision 

and domain size (Timmermans et al., 2007; Long et al., 2011). While the approach of generating 

single linear temperature gradient function for the complete scene (study region) may be 

simplistic, however, the uncertainty in surface energy flux estimation resulting from this 

assumption is very large (Timmermans et al., 2007; Singh et al., 2008; Bastiaanssen et al., 2010). 

Testing and validation of RS-ET algorithms across a range of hydrometeorological and surface 

cover conditions is important to fill in the existing gap in the operationalization of these 

algorithms.                 

The Bushland Evapotranspiration and Agricultural Remote Sensing Experiment 2008 

(BEAREX08) conducted during the 2008 summer growing season in Bushland, Texas, provided 

a unique opportunity to evaluate the turbulent exchange of mass and energy at the land surface. 

In the past decade, numerous multi-disciplinary, multi-institutional, intensive field campaigns 

including, Southern Great Plains Hydrology Experiment (SGP97; Jackson et al., 1999), 

Exploitation of Angular effects in Land surface observations from satellite (EAGLE 2006; Su et 

al., 2009), Surface Processes and Ecosystem Changes Through Response Analysis SPECTRA 

Barrax Campaign (SPARC 2004; Su et al., 2008), SENtinel-2 and Fluorescence Experiment 

(SEN2FLEX 2005; Sobrino et al., 2008), Soil Moisture Atmosphere Coupling Experiment 

(SMACEX; Kustas et al. 2003), and BEAREX07 (Chavez et al., 2009), were undertaken to 

augment the understanding and improving the parameterization of land surface 

hydrometeorological processes. These campaigns provide datasets acquired over a diverse 

hydrological regimes, well suited for evaluating remote sensing based evapotranspiration 

models.  



15 

 

The main objective of this study was to assess the performance of SEBAL under both 

dryland and irrigated agricultural conditions in the Texas High Plains using high resolution 

airborne images. Specific objectives of this evaluation study were to: (a) evaluate the variability 

in the 'a' and 'b' coefficients of the dT function due to the presence of multiple pixels fulfilling 

the hot and cold pixel selection criteria and how much influence this variability has on the final 

instantaneous ET (ETi) estimates, (b) compare SEBAL ETi estimates with lysimetric data, (c) 

incorporate a physically based parameterization for excess resistance (kB
-1

) into SEBAL and test 

its performance, and (d) test the relationships to compute the various aerodynamic roughness 

parameters.  

2.3 Materials and Methods 

SEBAL was applied to five high resolution airborne images and validated against large 

precision weighing lysimeters. Validation points consisted of two irrigated and two dryland 

cotton fields situated in the semi-arid Texas High Plains region known for significant advection 

and nighttime ET (Tolk et al., 2006). Detailed information on the experimental set-up, algorithm 

description and evaluation process follows.  

2.3.1 Study area and data acquisition 

The BEAREX08 was conducted at the USDA-ARS Conservation and Production 

Research Laboratory (CPRL) during the 2008 summer cropping season. The CPRL is located in 

Bushland, TX (Fig. 2.1) with  geographic coordinates of 35
º 
11' N, 102

º 
06' W and elevation of 

1170 m above mean sea level. It is within the Texas High Plains, where semi-arid climatic 

conditions and strong advective currents prevail during the summer cropping season. The CPRL 

has four large weighing lysimeters (3 m long x 3 m wide x 2.4 m deep), each located in the 

middle of 4.3 ha fields arranged in a block pattern. The two lysimeter fields located on the east 

(NE and SE) were managed under irrigation and planted to cotton on 21 May, and the other two 

lysimeters on the west (NW and SW) were under dryland management and planted to cotton on 5 

June. Cotton (variety Delta Pine 117) was seeded at 15.8 plants/m
2
 on raised beds spaced at 0.76 

m. Each lysimeter field was equipped with an automated weather station that provided 

measurements for net radiation, radiometric surface temperature, soil heat flux, air temperature, 

relative humidity, and wind speed (refer Chávez et al., 2009 for details of field instrumentation). 

In addition, a grass reference ET weather station field (0.31 ha), which is a part of the Texas 
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High Plains ET Network was located on the eastern edge of the irrigated lysimeter fields (Marek 

et al., 2009) (Fig. 2.1). 

Flying expeditions during BEAREX08 were conducted to collect remotely sensed 

imagery using the Utah State University (USU) airborne digital multispectral system at high 

resolutions. The system acquired high resolution imagery in the green (0.545-0.555 μm), red 

(0.665-0.675 μm), near infrared (0.790-0.810 μm), and thermal infrared (8-12 μm) portions of 

the electromagnetic spectrum. Visible and near infrared images were acquired at 1 m spatial 

resolution, and the thermal images were acquired at 3 m. Five images were acquired  from early 

to mid-cropping season for dates June 26 (178), July 12 (194), July 20 (202), July 28 (210), and 

August 5 (218). All images were acquired close to 12 noon central standard time from an altitude 

of 2000 m agl (above ground level). Description of the post processing including geometric 

corrections, radiometric calibration and atmospheric correction can be found in Neale et al., 

2012. SEBAL was coded using Python programming language and executed in the Arc-GIS 

10.0. The five images provided conditions from a near bare soil situation to near complete 

canopy cover. Fig. 2.2 shows the digital picture of the field taken on 26 June and 5 August.  On 

26 June, only isolated seedlings are seen on both irrigated and dryland fields, and the surface is 

dominated by bare soil.  On 5 August, the crops in the irrigated field had attained a near 

complete canopy, whereas, the dryland fields exhibited high reflectance from soil. The lysimeter 

fields were considered homogeneous, and the centre of the field with the lysimeter and 

instrument cluster was used to validate all the estimates. A 12 x 12 (1 m) pixel grid covering the 

lysimeter location was marked (in the image) in all 4 lysimeter fields to extract average values of 

estimated ET, net radiation, soil heat flux, surface temperature and aerodynamic parameters. The 

performance statistics used for the evaluation of surface energy fluxes and instantaneous ET are 

provided in Table 2.1.     

2.4 SEBAL 

Two versions of SEBAL, SEBAL2000 and SEBAL2008 have been identified by the 

developers with claims of several unpublished advances incorporated into the later version 

(Bastiaanssen et al., 2010). In this study, we have used the published SEBAL (SEBAL2000 and 

SEBAL2008) versions and efforts were made to report the sub-models and approaches taken.  
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SEBAL utilizes the widely applied residual approaches of surface energy balance to 

estimate ET at different temporal and spatial scales. The energy coming from the sun and 

atmosphere in the form of short- and long-wave radiation is transformed and used for (a) heating 

the soil (soil heat flux into the ground), (b) heating the surface environment (sensible heat flux to 

the atmosphere), and (c) transforming water into vapor (latent heat flux from the crop/soil 

surfaces). All the energy involved in the soil-vegetation-atmosphere interface can be given as the 

Energy Balance (EB) equation: 

             (2.1) 

where, Rn is the net radiation, Go is the soil heat flux, H is the sensible heat flux, and LE is the 

latent heat flux, with all units expressed in W m
-2

. Latent heat was expressed as hourly ET (mm) 

(by dividing LE by the latent heat of vaporization and the density of water). Net radiation (Rn) 

expressed as an electromagnetic balance of all incoming and outgoing fluxes, which constitutes a 

key driver for heating the atmosphere and the ground, is given by:  

                                    
         

  (2.2) 

In Eq. (2.2), S denotes short-wave radiation (0.3 – 3 m) and L is the long-wave radiation (3-100 

m). The arrows show the direction of the flux entering () or leaving () the system. Each term 

in Eq. (2) can be either determined directly from models or obtained from the ground weather 

station. The incoming short-wave radiation (S) and the air temperature (Ta) are measured at 

weather stations. Ts is the surface radiometric temperature obtained from the inversion of Plank’s 

law in 10-12 μm band width.  Other terms in Eq. (2.2) are broadband surface albedo (αs), 

apparent emissivity of atmosphere (εa), surface emissivity (εs), and the Stefan-Bolzmann constant 

(σ = 5.67 E-08 W m
-2

 K
-4

).   

Broadband planetary albedo (αp) was calculated as the sum of the individual in-band 

planetary albedos with different weighing factors. The weighing factor for each band is 

proportional to its solar exoatmospheric irradiance (ESUNλ) which is an average solar irradiance 

weighted by the corresponding spectral band response function. The weight for each band was 

calculated and the equation for broadband planetary albedo (αp) was derived as: 

                                    (2.3) 

where green, red, and NIR are the reflectance of the respective bands. Because low flying 

airborne images were used with primary atmospheric corrections, the need for converting 
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planetary albedo into surface albedo was evaded and planetary broadband albedo (αp) was 

considered equivalent to the surface broadband albedo (αs).    

The apparent emissivity of the atmosphere was estimated from equations based on vapor 

pressure and air temperature at the standard meteorological stations. For clear skies, the Brutsaert 

(1975) formulation was used as:  

         
  

  
 

 
  

    (2.4) 

where ea is vapor pressure near the surface (actual vapor pressure) in kPa and Ta is in Kelvin. 

Actual vapor pressure (ea) can be calculated from relative humidity and air temperature at 

reference level as: 

   
  

       
       (2.5) 

where ea is in kPa and es is the saturation vapor pressure in kPa given by: 

              
         

         
      (2.6) 

Ta is the air temperature in degree Celsius [°C].  

The surface emissivity (εs) is calculated from NDVI (Normalized Difference Vegetation Index) 

as given by Van de Griend and Owe (1993):  

                                (2.7) 

The above relationship is valid only for NDVI values over 0.16. For NDVI values below 0.16 

(usually bare soils), emissivity was assumed to be 0.92 and for NDVI values below –0.1 (usually 

water), it was assumed to be 1.0.  

The mathematical formulation of H is based on the single source resistance scheme of 

mass transport of heat and momentum between the surface and the overlying atmosphere. H is 

directly related to the difference between the surface aerodynamic temperature (To) and above 

canopy air temperature (Ta): 

         

     

   
         (2.8) 

where ρa is the density of air (~1.17 kg m
-3

), Cp is the air specific heat at constant pressure 

(~1,005 J kg
-1 

K
-1

), and rah is the aerodynamic resistance to heat between the surface and the 

reference level (s m
-1

). Since To cannot be measured directly at source height, in single-source 
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models the radiometric surface temperature (Ts) measured by the remote sensing thermal sensors, 

is used as a surrogate. To accommodate this approximation, a dimensional parameter for excess 

resistance to heat transfer (kB
-1

) is incorporated into the calculation of rah. Studies (Kustas et al., 

1989; Stewart et al., 1994) have shown that if an appropriate value of kB
-1

 is determined, H can 

be estimated accurately using Ts. The SEBAL model has used an areal constant kB
-1

 value of 2.3 

for all surfaces and emphasized that the approach of hot and cold pixel for scaling thermal inertia 

would reduce the consequences of aerodynamic temperature inaccuracy on H estimation 

(Bastiaanssen et al., 1998).  The classical aerodynamic resistance to heat transfer (rah) equation is 

given by  

    
 

   

    
       

   
           (2.9) 

where u  is the friction velocity defined by 

   
   

   
     

   
    

                       
(2.10) 

The do is the zero plane displacement height, zom is the roughness length for momentum 

transport, zoh is the roughness length for heat transport, zref ( 2 m) is the reference level at which 

the wind speed (uref) and Ta are measured, k is the von Karman’s constant (~0.41), zb is the 

blending height (~100 m), ub is the wind speed at blending height, and ψh and ψm are the stability 

correction functions for heat and momentum as a function of Monin-Obukhov length (L). 

Equations developed by Paulson (1970) were used to determine ψh and ψm . Sensible heat flux 

(H) can be calculated from Eqs. (2.8), (2.9), and (2.10) by simultaneously solving for the 

stability functions through an iterative process. Soil heat flux was derived from the relationship 

developed by Bastiaanssen et al. (1998), given as: 

  

  
 

           

     

          
                        (2.11) 

where c1 and c2 are locally calibrated coefficients with values of 0.12 and 0.42, respectively.  

Other variables such as do, zom, ub, and kB
-1

 can be solved with empirical or physically based 

models. Appendix A lists the various parameterizations used in the intermediate steps.        
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2.5 The excess resistance parameter (kB
-1

) 

In equation 2.8, the aerodynamic temperature To, is defined as the extrapolation of air 

temperature down to an effective height within the canopy at which the vegetation component of 

H and LE fluxes arise given by do+zoh (Chehbouni et al., 1996). From the Monin-Obukhov (M-

O) similarity theory, the aerodynamic resistance, rah, is defined as the resistance from height 

zoh+do having an aerodynamic temperature, to the height zref. Eq. (2.9) can be written as: 

            
 

   
    

    

   
      

 

   
   

   

   
        (2.12) 

where, ra is the aerodynamic resistance between the air temperature at a height do+zom and the 

reference height (zref). The formulation of H using the definition of To requires an additional 

resistance called the excess resistance and denoted by rr in equation 2.12. Following many 

authors (Chehbouni et al., 1996; Kustas et al., 1989), the rah is greater than resistance to 

momentum transfer. Consequently, the roughness length for heat transfer (zoh) is lower than the 

roughness length for momentum transfer (zom). The excess resistance (rr) is an integral part of 

the aerodynamic resistance formulation (Eq.2.12) and takes into account the fundamental 

difference in the mechanism determining heat and momentum transfer. It is important to 

understand that the excess resistance is attached to the aerodynamic temperature, however, a 

practical problem arises when neither the To nor the zoh could be measured. An alternative is to 

use the radiometric surface temperature from the infrared sensors as a surrogate for To and to 

accommodate this substitution a correction is performed on the excess resistance term. Excess 

resistance (rr) formulation from Eq. (2.12) can be written as: 

    
 

   
   

   

   
     (2.13) 

Eq. (2.13) is commonly expressed as a function of the dimensionless bulk parameter B
-1

 

(Chamberlain, 1968):  

        
   

   
      (2.14) 

It must be emphasized here that kB
-1

 is the parameter describing the excess resistance and should 

not be confused with the excess resistance (rr). In context to heat transfer estimation from Ts, kB
-

1
 is a mere fitting parameter no longer connected to its theoretical background and largely an 

empirical parameter (Chamberlain, 1968; Lhomme et al., 2000).  
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In SEBAL, we see two different approaches for handling excess resistance accounting for 

the discrepancy between To and Ts: (i) use of an areal constant kB
-1

 value of 2.3 (Timmermans et 

al., 2007; Bastiaanssen et al., 1998; Bastiaanssen et al., 2000; Jacob et al., 2002) and (ii) use of 

scalar roughness length for heat transfer (zoh) value of 0.1 (Bastiaanssen et al., 2005; 

Bastiaanssen et al., 2002; Wang et al. 2009) or 0.01 (Singh et al., 2008; Gieske and Meijninger, 

2005; Chandrapala and Wimalasuriya, 2003; Allen et al., 2001). In a study by Long and Singh 

(2011), they concluded that specifying zoh as 0.1 or introducing a fixed kB
-1

 parameter of 2.3 had 

appreciable difference in the magnitude of resulting H fluxes. Numerous studies on kB
-1

 can be 

found in the literature; for more detail, readers can refer to Verhoef et al. (1997a), Su et al. 

(2001), and Lhomme et al. (2000). It has been categorically stated that for remote sensing based 

single source bulk transfer schemes, a kB
-1

 parameterization is required (Stewart et al., 1994; 

Verhoef et al., 1997a). Furthermore, a widely used kB
-1

 value of 2 has been found to be too low 

in most cases (Kustas et al., 1989; Stewart et al., 1994; Verhoef et al., 1997a). Under both sparse 

and full vegetation conditions, an appropriate value of kB
-1

 is required for accurate estimation of 

H using Ts (Kustas et al., 1989; Kustas et al., 2007; Jia et al., 2003).     

In SEBAL, the kB
-1

 value of 2.3 (Bastiaanssen et al., 1998) sets the value of roughness 

length for heat to 1/10 of roughness length for momentum. Several studies have shown that the 

value of kB
-1

 can range from 1 to 10 depending on the dominant surface cover (Kustas et al., 

1989; Beljaars and Holtslag 1991; Stewart et al., 1994; Su et al., 2001). A physically based 

model for zoh expressed in terms of kB
-1

 was incorporated into SEBAL to see its influence on the 

estimation of ET. The kB
-1

 model developed by Su et al. (2001) that consists of terms 

representing the contribution of the soil alone, the canopy and the canopy-soil interaction to 

resistance to heat transfer (Appendix B) was selected.        

2.6 Aerodynamic roughness parameters 

Roughness height for momentum (zom) greatly influences the turbulent characteristics 

near the surface where the heat fluxes originate. The zom depends on various factors such as wind 

speed and direction, vegetation height, canopy cover, vegetation type, and row spacing. 

Estimating these factors using an empirical equation as a function of NDVI might be an over 

simplification; however, such estimates are reasonably accurate for uniform cover and fairly flat 

terrains (Kustas et al., 1989). Although remote sensing observations provide vegetation 
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information, estimation of roughness height remains a challenge for regional modeling of 

turbulent transport because of highly variable topographic and canopy structures, and wind 

behaviors. There are numerous methods to retrieve this parameter including wind profile 

methods, vegetation height, lookup table based on the land use classification, and empirical 

relationship using NDVI. Calibrating the empirical relationship for the study region from the 

data collected during the campaign would be the best available option. The following 

exponential relationship derived using NDVI and crop height information (Bastiaanssen, 1995) 

was used to estimate zom. 

                        (2.15) 

where C1 and C2 are regression constants derived separately for each image from a plot of ln(zom) 

versus NDVI for pixels representing varied vegetation heights and extremes of NDVI (Fig. 2.3). 

For generating the relationship, zom was calculated from the height of vegetation (zom=0.13 h) 

(Brutsaert, 1982) recorded for different crops during the campaign. One single set of coefficients 

for all five images, C1 = -5.5 and C2 = 5.8, from (Bastiaanssen, 1995) was used to test the 

coefficient's sensitivity on the ET estimation. 

2.7 Selection of a dry (hot) and wet (cold) pixel 

A distinctive approach in SEBAL is the calculation of a single temperature gradient (dT; 

defined as the difference between To and Ta) function for the study region using two points 

denoting the hydrological contrast. The two pixels representing the hydrological contrast were 

termed as 'Hot' (dry) and 'Cold' (wet) pixels, was first introduced in SEBAL, and adopted into at 

least five other energy balance algorithms. Hot and cold pixel selection ('a' and 'b' coefficients of 

the linear relation) forms the backbone of SEBAL (Timmermans et al., 2007; Singh et al., 2008; 

Bastiaanssen et al., 2010) and other similar single-source algorithms; however, a very few 

studies have explored the sensitivity of 'a' and 'b' calculation (Norman et al., 2006) process in 

SEBAL and how errors are propagated into the ET estimation. SEBAL uses the extreme pixels 

of the image (dry and wet pixel), to develop a relationship between Ts and the difference between 

To and Ta given in the form of: 

                          (2.16) 

where 'a' and 'b' are the regression constants. The basic assumption behind this relationship is 

that the difference between To and Ta is linearly related to the Ts. A second assumption of the 
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existence of hydrological contrast (dry and wet area) in the study region must be implemented. 

Fig. 2.4 illustrates the process of deriving the coefficients from extreme dry and wet pixels. For 

the wet pixel, dT was considered zero while for the dry pixel, dT was iteratively determined by 

Eq. (2.8–2.10) adjusting for the stability functions. Physically, the wet pixel should be the 

surface transpiring at its potential limit (LE = LEmax and H = 0), and therefore dT=0. The ideal 

location of a wet pixel is a surface with full canopy vegetation growing under no soil moisture 

limitation. A dry pixel physically represents a surface with dry conditions and ET equal to zero. 

(LE= 0 or H = Hmax= Rn – Go). Ideally, bare soil with no residual moisture for evaporation 

should fit the dry pixel requirements. Selection of these two extreme pixels in the image causes a 

bottleneck in the implementation of SEBAL as it involves a subjective decision of the analyst. 

Generally, the wet pixel is selected on the criteria of low temperature and high NDVI, whereas 

the dry pixel is characterized by high temperature, low NDVI, and low albedo. Scatter plots of 

NDVI-Ts and albedo-Ts along with histograms have been used to identify the group of pixels 

fulfilling the extreme pixel criteria (Timmermans et al., 2007; Choi et al., 2009) however, these 

methods do not help in secluding a single set of pixels, which again largely depends on the 

analyst’s decision. Furthermore, different sets of pixels fulfilling the dry and wet pixel criteria 

may exhibit entirely different surface energy balance and roughness properties and lead to 

variations in the 'a' and 'b' coefficients. In the present study, we harnessed the capability of the 

GIS environment wherein classification, histogram generation, and overlaying of the surface 

temperature, NDVI, and albedo maps could be done easily, leading to identification of a group of 

pixels that fulfilled the criteria. The identification of the wet pixel was easier because of the 

presence of a grass reference ET weather station in the study region (Fig. 2.1) that typically 

exhibited the lowest surface temperature and greatest NDVI for all five images. Selection of the 

hot pixel was not easy because multiple pixels satisfied the conditions. We selected three sets of 

hot pixels well spread in the study domain to test the variations in the determination of 'a' and 'b' 

coefficients and further its influence on final ET estimation.    

2.8 Results and Discussion 

2.8.1 Net radiation, soil heat flux and surface temperature 

Performance statistics for Rn, Go, and Ts for the complete data set (n=20) are provided in 

Table 2.4. The Ts retrieved from the airborne thermal images was compared against the observed 
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IRT (infra-red thermometer) values with a small RMSE value of 1.16°C (3.36%). It is within the 

range of Ts values (1-1.5°C) reported in the literature for thermal imagery acquired from various 

airborne and satellite platforms (Sobrino et al., 2008). Net radiation was under predicted with a 

small RMSE of 17.98 W m
-2

 (3.1%) and an MBE of 6.61 W m
-2

 (1.14%), which was well within 

the typical error range of 5 to 10% (~ 30-60 W m
-2

) (Timmermans et al., 2007; Singh et al., 

2008; Choi et al., 2009) and most instrument measurement uncertainty (Field et al., 1992). The 

Rn estimates were comparable to those observed by Jacob et al. (2002), who attributed the low Rn 

estimation errors to use of relatively accurate albedo estimates derived from aircraft data. An 

overestimation error of 9.87 W m
-2

 (36.2%) and RMSE of 13.5 W m
-2

 (49.6%) was recorded for 

Go estimates. A large discrepancy was evident from the low R
2
 value, with negative NSE 

indicating the model’s unsatisfactory performance in estimating Go. Similar results with RMSE 

ranging from 20 to 40 W m
-2

 have been reported by various studies (Jacob et al., 2002; Singh et 

al., 2008) for the present parameterization (Eq. 2.11) using NDVI and Rn. Although Go estimates 

were not accurate, it was not a major concern because the magnitude of error was small (± 13 W 

m
-2

) and was expected to have negligible effect on the ET estimates. Moreover, the available 

energy (Rn – Go) for convective fluxes resulting from the underestimation of Rn and 

overestimation of Go was 16.5 W m
-2

 (MBE), which was a small underestimation. Nevertheless, 

several causes can explain the poor performance of Go estimates in the evaluation’s statistics 

including the spatial variability of Go, inaccuracies in the soil heat flux plate measurements and 

the limitations of NDVI based Go parameterization.  

2.8.2 ET flux variability due to selection of different dry and wet pixel end members 

Three sets of 'a' and 'b' coefficients generated per image with their temperature, NDVI, 

albedo, and roughness properties are presented in Table 2.2. It is evident from the Table 2.2 that 

end member pixels of  particular image exhibiting same temperature could still produce a 

different set of coefficients owing to their different surface energy balance and roughness 

properties. SEBAL was executed for each set of 'a' and 'b' coefficients, and the estimated 

instantaneous ET was analyzed using standard deviation and coefficient of variation (Table 2.3). 

The coefficient of variation (CV in %; SD x 100/Mean) for the irrigated lysimeter fields (SE and 

NE, Fig. 1) ranged from 0 to 22% while for the dryland lysimeter fields (NW and SW, Fig. 2.1),  

the CV ranged from 4 to 80%. Consistently larger deviations (CV) were associated with dryland 
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(sparse vegetation) ETi estimations compared with irrigated fields (more complete vegetative 

cover). The reason for this biased behavior of the algorithm for irrigated (full cover) and dryland 

(sparse cover) cropping systems lies in the fact Ts - To is minimal for full cover canopies 

(Chehbouni et al., 1996), and a nominal correction of 2.3 (kB
-1

) provide good ET estimates 

(Kustas et al., 1989). However, on sparse canopy cover, the Ts - To is always greater, and the 

correction applied (kB
-1

=2.3) could not account for the larger differences, thus providing 

unreliable ET estimates. This shows that the temperature gradient relationship cannot completely 

address the spatial variability of kB
-1

. Therefore, inherent assumption that hot and cold pixel for 

scaling thermal inertia (dT) accommodates the consequences of aerodynamic temperature 

inaccuracy on H estimation may not be true.  

2.8.3 Instantaneous ET by SEBAL 

For each image, the average ETi derived from the three set of 'a' and 'b' was compared 

against lysimeter values for the performance evaluation of SEBAL. Evaluation statistics for the 

complete data set as well as for the irrigated and dryland fields are presented separately in Table 

2.5a for thorough evaluation. An overall RMSE of 0.15 mm h
-1 

(28.1%) and MBE of 0.13 mm h
-

1 
(23.8%) were observed for ETi estimates from all four lysimeter fields. The positive bias 

indicated underestimation of ETi. This result is similar to the accuracy (27.1% RMSE) that 

Tasumi et al. (2005) reported for semi-arid Idaho conditions in their comparison of ETi versus 

lysimeter values using Landsat imagery. In a comprehensive evaluation study by the SEBAL 

developer, the overall accuracy of daily ET for scale of the order of 100 ha  has been reported as 

±15%, further stating that time and space integration would improve accuracy (Bastiaanssen et. 

al., 2005). SEBAL ETi estimates explained 86% of the variability in the observed lysimeter data 

with slope close to unity (0.98) and an intercept of -0.11 mm h
-1

, both significant at the 0.05 

probability  level (Fig. 2.5).  

The evaluation of SEBAL model for irrigated and dryland lysimeter fields with the high 

resolution imagery revealed an interesting bias in the model’s performance for the two 

agricultural water management regimes. The ETi from the irrigated fields showed an RMSE of 

0.14 mm h
-1

 contributing to 21.5% error, however, the dryland fields gave an RMSE of 0.15 mm 

h
-1

 which accounted for 39.5% error, nearly double the error as compared to the irrigated field. 

The NSE value for the dryland field ETi estimates was -0.81 and R
2
 was 0.35, as compared to 
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NSE of 0.55 and R
2
 of 0.95 from the irrigated field.  Clearly, the biased  performance of SEBAL 

for dryland conditions affected the overall performance. Similar gross under prediction results in 

relatively dry areas are reported by Timmermans et al. (2007), Gowda et al. (2008), and Gao and 

Long (Gao and Long, 2008). Timmermans et al. (2007) made unsuccessful attempt to fix this 

problem by adjusting the end-member temperatures and momentum roughness length. In their 

study, they articulated that errors in H estimation over sparsely vegetated surfaces in single 

source models can be reduced by adjusting the kB
-1

 parameter. 

2.8.4 SEBAL with kB
-1

 parameterization 

Overall underperformance of SEBAL with variable accuracies for irrigated and dryland 

crops could be attributed to one or a combination of reasons. In the present agriculture dominant 

landscape with no forest cover and flat topography, the empirical parameterization of zom could 

not be the reason for deviations in ET estimates. At the same time, the aircraft image covered a 

small area with a relatively less heterogeneous landscape, hence the assumption of linearity of 

dT versus Ts could be considered valid. However, there are no studies to prove that the dT versus 

Ts linearity assumption could adequately address the spatial variation of zoh (kB
-1

), or in other 

words address the differences between To and Ts; we believe that this could be a reason for the 

biased results.  

Results of SEBAL model estimates with kB
-1

 parameterization showed improvement in 

the ETi estimation (Fig. 2.6). Overall RMSE of 0.08 mm h
-1

 (16.3%) and MBE of -0.02 mm h
-1

 

(-3.6%) were observed for the complete dataset (Table 2.5b). A 1:1comparison of Table 2.5a and 

2.5b clearly indicates that the SEBAL with kB
-1

 parameterization substantially improved its 

performance in estimating ETi. The overall underestimation errors decreased considerably from 

24% to -3.6% (PBIAS). This can be seen clearly in plots of ETi for the irrigated and dryland field 

separately with and without the kB
-1

 modifications (Fig. 2.7). Underestimated ETi associated 

with partial canopy covers, moved closer to the observed values after the introduction of kB
-1

 

parameterization, while it did not affect the higher ETi estimates associated with near complete 

canopy cover in the irrigated fields. This could be explained from Fig. (2.2), where the images 

under analysis are from early crop stage to near complete canopy cover stage; hence, a sparse 

vegetation condition existed in most images. A nominal kB
-1

 value of 2.3 did not work well 

under sparse vegetation conditions and generated lower ETi estimates. SEBAL is known to have 
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problems estimating ET under dry and sparse vegetation conditions (Gao and Long, 2008; 

Timmermans et al., 2007). Under these conditions, the difference between Ts and To was 

relatively large, and this could not be adequately addressed by the nominal kB
-1

 value of 2.3, 

whereas the converse was true for complete canopies. Therefore, the improvement in the ETi 

estimates was solely due to an appropriate representation of spatially variable roughness length 

for heat transport (zoh). Table 2.6 gives a comprehensive list of aerodynamic roughness 

parameter estimates from the four fields. Marked difference in the zoh values with and without 

kB
-1

 parameterization was observed.               

 

2.8.5 Roughness length for momentum transport, excess resistance, and roughness 

length for heat transport 

Questions have been raised about the simplistic approach of determining the complex 

roughness length for momentum transport (zom) from the empirical relationship, Eq. (2.16), as a 

function of NDVI (Timmermans et al., 2007; Norman et al., 2006). SEBAL developers 

suggested deriving local coefficients for the zom relationship from the observed plant height over 

varied canopy structure. Although the requirements of plant height add to the inputs, our results 

show that the relationship generated realistic zom values under the present agricultural landscape 

setup (Table 2.6). Furthermore, applying a single pair of coefficients for the zom relationship 

(derived from the Tomelloso super site, Cas de Las Carascas, Spain; Bastiaanssen, 1995) for all 

the images did not result in any noticeable difference in the ETi estimation; however, we must 

caution that the Tomelloso super site was also an agricultural region, and these coefficients 

cannot be universally applied. The zom values compared well with the estimates obtained over an 

incomplete canopy cover of cotton using the profile method (Kustas et al., 1989). Also, the zom 

values were comparable with the Brutsaert (1982) relationship (zom = 0.13h) (Table 2.6).     

The kB
-1

 parameter representing the excess resistance to heat transfer has been a matter 

of controversy since its inception into the single source model. Nevertheless, the term cannot be 

avoided because it accounts for the fact that Ts is frequently greater than To (Lhomme et al., 

2000). In this study, the parameterized kB
-1

 values produced more accurate ETi estimates 

compared with the constant kB
-1

 value of 2.3 proposed by the SEBAL developers. The value for 

kB
-1

 for all four lysimeter fields is presented in Table 2.6. The value of kB
-1

 varied between 2 
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and 13 for most cases, with higher values associated with low canopy cover condit ions. On 26 

June, exceptionally high kB
-1

 values were found due to the fact that image was acquired early in 

the cropping season when the surface was bare soil with isolated cotton seedlings (see Fig. 2.2); 

such a surface is classified as bluff rough element with no consensus on appropriate kB
-1

 value 

(Verhoef et al., 1997a). The kB
-1

 value for the irrigated fields were always less than that in the 

dryland fields (Table 2.6).This is because, at any point during the cropping season, irrigated 

fields had larger canopy cover than the dryland fields. Consequently, the value of around 2.3 was 

suitable for irrigated fields when the crop attained near complete canopy cover conditions. The 

minimum value of kB
-1

 for the dryland fields was 5.3, which was estimated with the 5August 

image. These results corroborate the conclusions from numerous studies on the excess resistance 

parameter (kB
-1

), that: (i) over a sparsely vegetated surface, the difference between Ts and To can 

exceed 10°C (Chehbouni et al., 1997), so an adjustment is required (through kB
-1

), (ii) kB
-1

 value 

should range from 1 to 10, to obtain accurate estimates of H (Kustas et al., 1989; Stewart et al., 

1994), and (iii) H is more sensitive to kB
-1

 value of 2 than a value of about 6 (Verhoef et al., 

1997a).  

 Roughness length for heat transport, zoh, expressed in terms of kB
-1

      

               for four lysimeter fields over the five image acquisition dates are presented in 

Table 2.6. Comparison of zoh values obtained from kB
-1

 parameterization and a constant kB
-1

 (of 

2.3) reveals significant differences. To address the high kB
-1

 values obtained for the sparse 

vegetation conditions, we restricted the lower limit of zoh to 10
-5

 m. 

2.9 Conclusions 

The BEAREX08 provided the opportunity to evaluate SEBAL at very high spatial 

resolution with extensive crop and ET data from fields equipped with large weighing lysimeters 

provided new insight into the performance of the algorithm. The main distinguishing feature of 

this study was the simultaneous evaluation of SEBAL for both irrigated and dryland crops 

covering a range of conditions from sparse vegetation to near complete canopy cover. This study 

also examined the issues of subjective selection of extreme pixels, dealt with aerodynamic 

roughness parameters, and showed improvement in ET estimates through the introduction of kB
-

1
 parameterization into the SEBAL model. On an average 20% uncertainty in term of CV was 

observed as a result of subjectivity in the end member selection process.  The sensitivity to end 
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member pixel selection is crucial to the performance of SEBAL; hence, a clear methodology for 

the selection process is required to remove the subjective decision and make the process more 

robust. A rigorous sensitivity analysis of the 'a' and 'b' coefficients estimation in the temperature 

gradient relationship is necessary because this forms the backbone of SEBAL. SEBAL ETi 

estimates compared reasonably well against the lysimeter values with underestimation error and 

RMSE close to 0.15 mm h 1 (28%). Errors were relatively small for the irrigated fields as 

compared with the dryland fields. Modifying the SEBAL algorithm by introducing kB
-1

 

parameterization considerably improved the accuracy of ETi estimation, with an overall RMSE 

of 0.08 mm h
-1

 (16%). It can be concluded that the temperature gradient (dT) and (Ta-To) linear 

relationship does not have any component to consider for the differences arising due to use of T s 

for To and hence a realistic correction factor in the form of kB
-1

 has to be incorporated into 

SEBAL. Furthermore, a kB
-1

 value of 2.3 would grossly underestimate ET for sparse vegetation 

conditions. Locally calibrated coefficients for the aerodynamic roughness parameters are crucial 

to the performance of the algorithm. SEBAL is a physically based algorithm, but the numerous 

empirical sub-models and requirement for image specific calibrations, limits its operational 

capabilities. Nevertheless, results of the present study with the suggested improvements in the 

algorithm make it a viable tool for regional scale ET mapping. The temperature gradient 

approach (dT estimation) is a novel approach indigenous to the SEBAL algorithm, however, the 

underlying assumptions are many necessitating a detailed sensitivity study.      
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Figure 2.1 False color composite aircraft image of 5 August, 2008, showing the BEAREX08 

study region. (a) location of the study area in reference to the state of Texas, USA. (b) 

aircraft scene covering a region of close to 5km
2
 and (c) exploded view of the lysimeter 

field.  
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Figure 2.2 Canopy cover from the first image acquisition date to the last. A1–26 June 

irrigated field, A2–26 June dryland field, B1– 5 August irrigated field, and B2– 5 August 

dryland field.  
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Figure 2.3 Relationship for roughness length for momentum transport generated from 

plant height information for each image. 
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Figure 2.4 Solving for coefficients 'a' and 'b' using the wet and dry pixel concept. 
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Figure 2.5 SEBAL modeled versus observed instantaneous ET comparison for cotton fields 

under dryland and irrigation management. 
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Figure 2.6 SEBAL with kB-1 parameterization modeled ET versus observed instantaneous 

ET comparison for cotton fields under dryland and irrigation management. 
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Figure 2.7 Observed instantaneous ET comparison with (a) SEBAL ET for irrigated cotton 

field, (b) SEBAL ET for dryland cotton field, (c) SEBAL with kB-1 parameterization–ET 

for irrigated cotton field, and (d) SEBAL with kB-1 parameterization–ET for dryland 

cotton field. 
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Table 2.1 Performance statistics used for evaluating model performance. 

Statistical 

variable 
Description Equation Use and desired value 

n Number of 

observations 
- - 

R
2
 Coefficient of 

determination 

          
           

 

                     
   

 
   

 Degree of collinearity 

+1or -1 

m 

Slope of the 

best fit 

regression 

line 

     

     
 

Relative relationship 

between modeled and 

observed value 

~1 

y-intercept 

y-intercept of 

the best fit 

regression 

line 

- 
Lag or lead indicator 

~0 

 

MBE Mean bias 

error 

 

 
        

 

   
 

Error in the constituents unit 

with underestimation/ 

overestimation indication 

~0 

PBIAS Percentage 

bias 

        
 
   

   
     

Bias expressed as 

percentage error 

~0 

RMSE Root mean 

square error 
 

 

 
        

 
 

   
 

Indicates error in the 

constituents unit 

~0 

% RMSE 
Percentage 

root mean 

square error 

    

   
 
   

 

     
RMSE expressed as 

percentage deviation from 

mean 

~0 

NSE 
Nash-

Sutcliffe 

efficiency 

                  
  

   
 
   

         
 

Indicative of the strength of 

model to predict the 

observed 

~0-1 
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Table 2.2 Selection of hot and wet pixel and the variability in the 'a' and 'b' coefficient.   

Image 

acquisition 

date 

Cold/wet pixel Hot/dry pixel dT = a + b.Ts 

Twet NDVI Tdry NDVI Albedo zom a b 

26 June, 

2008 

301.09 0.704 315.42 0.143 0.162 0.012 -198.46 0.659 

301.09 0.704 315.42 0.122 0.180 0.010 -199.25 0.662 

301.09 0.704 315.98 0.153 0.185 0.013 -177.12 0.588 

12 July, 

2008 

295.36 0.805 310.14 0.165 0.168 0.013 -172.07 0.582 

295.36 0.805 310.50 0.162 0.151 0.013 -172.41 0.583 

295.36 0.805 311.74 0.206 0.220 0.016 -129.09 0.437 

20 July, 

2008 

297.47 0.790 317.42 0.232 0.178 0.012 -185.71 0.624 

297.47 0.790 316.94 0.138 0.172 0.007 -227.04 0.763 

297.47 0.790 316.99 0.176 0.166 0.009 -215.83 0.725 

28 July, 

2008 

299.08 0.799 317.37 0.152 0.185 0.010 -220.95 0.738 

299.08 0.799 317.28 0.197 0.181 0.012 -201.89 0.675 

299.08 0.799 317.37 0.155 0.188 0.009 -212.95 0.712 

05 August, 

2008 

300.50 0.800 334.35 0.152 0.161 0.012 -143.79 0.478 

300.50 0.800 334.59 0.150 0.146 0.012 -147.22 0.489 

300.50 0.800 335.45 0.157 0.149 0.013 -138.318 0.460 
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Table 2.3 Influence of 'a' and 'b' coefficients on the final ET (mm h-1) value. 

Image 

acquisition date 

Statistic

s 

Irrigated fields Dryland fields 

NE SE NW SW 

26 June, 2008 

σ 0.04 0.04 0.03 0.03 

%CV 
21.1

0 
18.22 14.11 

12.2

9 

12 July, 2008 

σ 0.08 0.08 0.11 0.11 

%CV 
21.0

2 
21.88 79.93 

68.5

2 

20 July, 2008 

σ 0.04 0.04 0.05 0.05 

%CV 6.70 8.59 21.25 
19.2

1 

28 July, 2008 
σ 0.01 0.01 0.02 0.02 

%CV 0.74 1.18 5.60 5.17 

05 August, 2008 
σ 0.00 0.00 0.01 0.01 

%CV 0.12 0.06 4.33 4.23 
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Table 2.4 Performance statistics for Ts, Rn, and Go (no. of observations = 20). 

Estimated  

parameter 
MBE PBIAS RMSE %RMSE NSE 

Regression 

R
2
 m y-intercept 

Ts (
o
C) 0.04 0.13 1.16 3.36 0.96 0.96 0.95 1.59 

RN (W m
-2

) 6.61 1.14 17.98 3.10 0.86 0.91 1.10 -65.04 

GS (W m
-2

) -9.87 -36.24 13.51 49.58 -3.96 0.02 0.18 32.19 

 

 

Table 2.5 Performance statistics for Instantaneous ET (mm h
-1

) computed from SEBAL. 

Observation 

points 
n MBE PBIAS RMSE %RMSE NSE 

Regression 

R
2
 m y-intercept 

All fields 20 0.13 23.82 0.15 28.15 0.55 0.88 0.98 -0.12 

Irrigated field 10 0.13 19.38 0.14 21.48 0.55 0.95 1.14 -0.23 

Dryland field  10 0.12 31.44 0.16 39.55 -0.80 0.35 0.41 0.11 

 

 

Table 2.6 Performance statistics for SEBAL Instantaneous ET (mm h
-1

) computed from 

SEBAL with kB
-1

 parameterization.  

Observation 

points 
n MBE PBIAS RMSE %RMSE NSE 

Regression 

R
2
 m y-intercept 

All fields 20 -0.02 -3.56 0.08 16.27 0.85 0.92 0.68 0.19 

Irrigated field 10 0.03 4.89 0.07 10.15 0.89 0.95 0.79 0.12 

Dryland field  10 -0.07 -18.11 0.10 25.97 0.22 0.68 0.45 0.29 
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Table 2.7 Aerodynamic roughness parameters for the four cotton fields under irrigation 

(NE and SE) and dryland (NW and SW) management.  

Date Field 
zom_D 

(m) 

zom_E 

(m) 

zoh_C 

(m) 

kB
-1 

(m) 

zoh_S  

(m) 

C_ht  

(m) 

C_ht_O 

(m) 

zom_B 

(m) 

26 Jun 

NE 0.011 0.009 0.0009 19.21 0.00001 0.084 0.152 0.020 

SE 0.010 0.008 0.0008 24.67 0.00001 0.076 0.178 0.023 

NW 0.008 0.007 0.0007 44.51 0.00001 0.063 0.089 0.012 

SW 0.008 0.007 0.0007 58.86 0.00001 0.060 0.114 0.015 

12 Jul 

NE 0.052 0.044 0.0044 5.39 0.00026 0.382 0.457 0.059 

SE 0.048 0.041 0.0041 5.55 0.00020 0.352 0.330 0.043 

NW 0.018 0.015 0.0015 8.54 0.00001 0.137 0.356 0.046 

SW 0.026 0.022 0.0022 6.99 0.00003 0.190 0.292 0.038 

20 Jul 

NE 0.082 0.102 0.0102 3.50 0.00268 0.602 0.559 0.073 

SE 0.073 0.092 0.0092 3.65 0.00213 0.540 0.406 0.053 

NW 0.009 0.011 0.0011 13.04 0.00001 0.066 0.432 0.056 

SW 0.019 0.025 0.0025 6.55 0.00008 0.142 0.356 0.046 

28 Jul 

NE 0.123 0.182 0.0182 2.78 0.00780 0.902 0.559 0.073 

SE 0.115 0.168 0.0168 2.86 0.00717 0.843 0.610 0.079 

NW 0.012 0.013 0.0013 11.87 0.00001 0.087 0.508 0.066 

SW 0.021 0.024 0.0024 6.78 0.00007 0.153 0.457 0.059 

05 Aug 

NE 0.146 0.265 0.0265 2.18 0.01662 1.073 0.635 0.083 

SE 0.199 0.401 0.0401 2.02 0.02684 1.468 0.559 0.073 

NW 0.017 0.016 0.0016 8.53 0.00003 0.126 0.533 0.069 

SW 0.028 0.030 0.0030 5.32 0.00023 0.207 0.432 0.056 

MEAN 0.051 0.074 0.0074 12.14 0.00321 0.378 0.401 0.052 

zom_D = Roughness length for momentum estimated from Eq.(16) using coefficients derived for each image as given 

in Figure 2.3  

zom_E = Roughness length for momentum estimated from Eq. (16) using constant coefficients  C1 = -5.5 and C2 = 

5.8, from (Bastiaanssen, 1995) 

zoh_C = Roughness length for heat estimated from Eq. (15) using constant kB-1 value of 2.3.  

kB-1 = Excess resistance parameter for heat transfer estimated from parameterization given by Su et. al (2001), 

Appendix B. 

zoh_S = Roughness length for heat estimated from Eq. (15) using kB-1 value from Su et. al (2001), Appendix B. 

C_ht = Canopy height from Eq. (A2) (= zom_D/0.13)  

C_ht_O = Field measurement of  canopy height  

zom_B = Roughness length for momentum estimated from Brutsaert relationship, Eq. (A2) (= 0.13*C_ht_O)   
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Appendix A - Various intermediate parameterizations used in the 

SEBAL algorithm   

Displacement height was computed from the model given by Verhoef et al. (1997b):  

       
             

        

    (2.17) 

where h is the canopy height and c1 is a free parameter with the value 20.6 

Roughness length for momentum transport as given by Brutsaert (1982):  

             (2.18) 

Leaf Area Index model developed specifically for the Texas High Plains region given by Gowda 

et al. (2007): 

                    (2.19) 

Fractional cover was derived from relationship taken from Jia et al. (2003):  

      
            

               
 
 

   (2.20) 

where K is taken as 0.4631 

Blending height  

        
                 

                    
           (2.21) 

Monin Obukhov Length (L) 

   
      

   

   
 (2.22) 

where density of air (ρa) = ~1.17 kg m
-3

, specific heat capacity of air (Cp) =~1,005 J kg
-1

 K
-1

, 

gravitational acceleration (g) = 9.81 m s
-2

. 

Momentum transfer correction factor under unstable condition from Paulson (1970): 

       
    

 
     

    
 

 
              

 

 
 (2.23) 

where xm is defined as: 

        
     

 
 
    

 (2.24) 
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Heat transfer correction factor under unstable condition from Paulson (1970): 

       
    

 

 
         (2.25) 

where xh is defined as: 

        
       

 
 

    

 

 

(2.26) 

Appendix B - Excess resistance to heat transfer formulation 

Excess resistance to heat transfer formulation as given by Su.et al. (2001) 

     
   

   
  

         
   
  

  
  

  
  

     
   

 

  
   

   
     

    
     (2.27) 

In Eq. (B1),    
   is the bare soil surface excess resistance computed as: 

   
            

 
          (2.28) 

In Eq. (B1), nec is within-canopy wind speed profile extinction coefficient given by: 

    
      

   
 

     

    
(2.29) 

In Eq. (B1) and (B3), the ratio         is parameterized as: 

  

    
        

             (2.30) 

where c1=0.320, c2=0.264 and c3=15.1 

In Eq. (B1),   
 

 
is heat transfer coefficient of the soil given as:  

  
    

 
 
 

   

 
 
  

(2.31) 

In Eq. (B2) and Eq. (B5),     is roughness Reynolds number calculated as: 

    
    

 
   (2.32) 

where hs is the roughness height for soil taken here as 0.009 m. 

In Eq. (B1), ν is kinematic viscosity of the given by: 
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    (2.33) 

where, p and Ta are ambient pressure and temperature and po=101.3 kPa and Tao=273.15 K. 

Other terms in Eqs. (B1) to (B7) are: Cd is the drag coefficient of the foliage elements taken as 

0.2, Ct is heat transfer coefficient of the leaf with value 0.01, Pr is Prandtl number with value 

0.71, u(h) is the horizontal wind speed at the canopy height, fc is the fractional canopy coverage 

and fs is its compliment, and k is von Karman’s constant taken as 0.41.   
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Chapter 3 - Investigating the influence of roughness length for heat 

transport (zoh) on the performance of SEBAL in semi-arid irrigated 

and dryland agricultural systems  

3.1 Abstract 

Satellite-based thermal infrared remote sensing has greatly contributed to the 

development and improvement of remote sensing–based evapotranspiration (RS-ET) mapping 

algorithms. Radiometric temperature (Ts) derived from thermal sensors is inherently different 

from the aerodynamic temperature (To) required for solving the bulk formulation of sensible heat 

(H) based on the Monin-Obukhov similarity (MOS) posing an ill-fated problem. The scalar 

roughness length zoh, representing heat transport mechanism and described by the dimensionless 

parameter kB
-1

, was used to account for the discrepancy between radiometric and aerodynamic 

temperatures. Surface Energy Balance Algorithm for Land (SEBAL) with its indigenous 

approach of linearly relating dT (near-surface temperature gradient) with Ts across the imagery, 

maintained that this approach would absorb the impacts of differences between Ts and To. 

SEBAL utilized a constant kB
-1

 value of 2.3 in its initial version, and later switched to a constant 

zoh (z1) value of 0.1. In this study, we investigated the influence of this change in SEBAL by 

testing four approaches: (i) zoh derived from a constant kB
-1

 of 2.3, (ii) constant zoh (z1) = 0.1, 

(iii) constant zoh (z1) = 0.01, and (iv) spatially variable zoh from kB
-1

 parameterization. SEBAL 

was applied on  10 high-resolution airborne images acquired during BEAREX07-08 (Bushland 

Evapotranspiration and Agricultural Remote Sensing Experiment) field campaigns and validated 

against measurements from four large precision weighing lysimeters installed on two irrigated 

and two dryland fields. The spatially variable kB
-1

 produced statistically different and improved 

ET estimates compared to that with constant kB
-1

 and constant z1 (zoh) approaches. SEBAL 

performance for irrigated fields representing high ET, limited soil water deficits, and complete 

ground cover surfaces was markedly different from the dryland fields representing less ET, 

greater soil water deficits with sparser vegetation cover. A variable kB
-1

 value derived from a 

physical model incorporated into SEBAL generated good overall estimates while delivering 

better performance for dryland agricultural systems. Overall, this study focused on the classical 

problem of estimating heat transfer from two contrasting hydrological regimes i.e. irrigated and 
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dryland agriculture and illustrated the existing need for a realistic consideration of excess 

resistance to heat transfer in single-source resistance modeling frameworks. 

3.2 Introduction 

There is an imminent need for a settlement and clarity on the usage of roughness length 

for heat transport (zoh) in the estimation of evapotranspiration (ET) using SEBAL (Surface 

Energy Balance Algorithm for Land). Before addressing the real issue, a brief history of SEBAL 

will provide helpful background for this problem. SEBAL was developed by Bastiaanssen 

(1995) in the early 90's, and soon it became one of the widely used algorithms around the world 

for estimating ET using thermal remote sensing data (Bastiaanssen et al., 2005). In its earlier 

version (Bastiaanssen, 1995), SEBAL derived zoh based on a constant excess resistance 

parameter to heat transfer (kB
-1

) value of 2.3 (Bastiaanssen et al., 1998; Bastiaanssen, 2000). In 

recent versions (Bastiaanssen et al., 2002; Bastiaanssen et al., 2005), it redefined the zoh into a 

purely empirical height and renamed it as z1 with a constant value of 0.1. Although the impact of 

this change on the final ET estimates were never investigated; there were still some studies 

where the zoh (z1) value was taken as 0.01 (Allen et al., 2001; Singh et al., 2008). With the 

variations in the usage of zoh values, one could conclude that zoh was not a sensitive parameter, 

and its influence on ET estimates as negligible. However, a study by Long et al. (2011) has 

shown that zoh was a sensitive parameter in the estimation of ET in SEBAL. In their study, they 

used both the original (derived from constant kB
-1

 of 2.3) and updated value of zoh (zoh=0.1 m), 

and found a significant influence on the final ET estimates; however, this study lacked 

validation. In another research study, the same authors (Long and Singh, 2012a), refuted their 

claim of variable zoh value by saying “this study (by Timmermans et al., 2007) mistakenly took 

kB
-1

 = 2.3 as a part of the SEBAL algorithm; in fact, SEBAL does not use a fixed kB
-1

 parameter, 

but rather takes the roughness length for heat transfer (zoh) as 0.1 m”.  SEBAL studies with zoh 

derived from constant kB
-1

 of 2.3 (Jacob et al., 2002; Timmermans et al., 2007; Gao and Long, 

2008; French et al., 2005), and those with zoh= 0.1 m (Allen et al., 2007; Wang et al., 2009), 

further the ones with zoh=0.01 m (Gieske and Meijninger, 2005; Chandrapala and Wimalasuriya, 

2003), and the more recent use of kB
-1

 parameterization (Paul et al., 2012; Wu et al., 2012), 

elucidate the need for a study that can be validated. Several studies using SEBAL were 

ambiguous on how the zoh was handled (Teixeira et al., 2009; Elhaddad and Garcia, 2011).  
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The radiometric surface temperature (Ts) derived from satellite and airborne sensors have 

brought forth a significant technical and theoretical advancement in the spatial modeling of ET. 

However, there remains some skepticism over the usage of remotely sensed Ts in ET algorithms 

(Hall et al., 1992; Cleugh et al., 2007; Mu et al., 2007, 2011). The reason for this criticism was 

the non-unique relationship between aerodynamic temperature (To) as defined in the bulk 

parameterization based on the Monin-Obukhov similarity (MOS) and Ts.  Since most remote 

sensing based algorithms used the MOS parameterization procedures (Su et al., 2001) and 

calculate ET as the residual of the surface energy balance, this criticism seems valid. However, 

there have been remarkable progresses made in the conceptualization and parameterization of the 

soil-canopy-air heat exchange mechanism addressing the issue arising from aerodynamic-

radiometric temperature differences (Lhomme et al., 2012, Gokmen et al., 2012). In general, the 

residual surface energy balance scheme utilizing the MOS formulation for ET estimation can be 

categorized into both a single-source model and a dual-source model, differing in their treatment 

of soil and vegetation source contribution as composite or distributed respectively. The single 

source and dual source approaches, both utilize Ts from the thermal sensors and have comparable 

computational complexities and input requirements (Kustas et al., 2007). Both approaches have 

demonstrated incredible capabilities in solving regional water resources problems by providing 

accurate and economical spatial ET information (Anderson et. al., 2012; Bastiaanssen et al., 

2005). Several intercomparison studies, of single-source and dual-source scheme (Tang et al., 

2012; Long and Singh, 2012b; Gonzalez-Dugo et al., 2009; Choi et al., 2009; Gao and Long, 

2008; Timmermans et al., 2007) has reported comparable accuracy of surface flux retrievals with 

mixed performances. Comprehensive reviews on the various remote sensing based ET (RS-ET) 

algorithms (Gowda et al., 2008; Kalma et al., 2008; Li et al., 2009) suggests that these methods 

have the potential to be developed as an operational tool in the planning, monitoring and decision 

support of water resource systems.   

Norman et al. (2006) stated that evaluating uncertainties in remote sensing based models 

for estimation of surface fluxes is not an easy task. One of the hurdles in advancing the RS-ET 

technology to an operational stage is the limited number of validation studies performed for 

limited numbers of test scenarios and locations. ET estimates generated by the RS-ET algorithms 

are usually validated against ground based measurements or SVAT (soil-vegetation-atmosphere 

transfer) models. Errors from these observational measurements (eddy covariance, Bowen ratio, 
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lysimeter, soil water balance, sap flow, scintillometer) can range from 5–15% (Allen et al., 

2011), and a similar magnitude of error is inherent in SVAT models. Review studies (Glenn et 

al., 2007; Gowda et al., 2008, Kalma et al., 2008, Li et al., 2009) have pointed out that this 

uncertainty in the validation dataset has plagued the performance evaluation of various RS-ET 

algorithms. Large weighing lysimeters are generally considered the most direct and accurate 

field measurement technique (Allen et al., 2011); however, most validation studies have been 

performed against tower observations of eddy covariance and/or Bowen ratio measurements 

which has an uncertainty or error bound of 20–30% (Kalma et al., 2008; Glenn et al., 2007) that 

is typically not random but systematically biased. Another limitation in the model validation 

studies is the inability to test the performances under varied agro-climatic conditions ranging 

from humid to arid regions with complex landscapes (Kustas et al., 2007). Norman et al. (2006) 

commented that most experimental sites used in validation studies reported in the literature do 

not contain both stressed (soil water deficits) and unstressed vegetation (limited soil water 

deficits) or significant differences in roughness within the scenes. The choice of the remote 

sensing data varying in spatial, spectral, temporal and radiometric resolutions has considerable 

influence on the final ET estimates (Batra et al., 2006; McCabe et al., 2006). Numerous testing 

scenarios remain unexplored. The validation of RS-ET algorithms under diverse testing scenarios 

is an important step in the continuous process of developing and improving, and making it more 

widely accessible.           

This study employs 10 high resolution airborne images, lysimetric observations and 

variable moisture regimes across two cropping seasons to investigate the influence of four 

different zoh values on the flux estimations from SEBAL. The four zoh values used are as follows: 

(1) zoh= zom/exp(kB
-1

), where  kB
-1 

= 2.3 

(2) zoh (z1) = 0.1 m (spatial constant)  

(3) zoh (z1) = 0.01 m (spatial constant) and  

(4) zoh= zom/exp(kB
-1

), where kB
-1

 parameterization is used to get spatially varying zoh. 

3.3 Theoretical basis 

What does zoh represent, and how was the value 0.1 (or derived from constant kB
-1 

= 2.3) 

assigned? To find the answer, we begin with the bulk formulation of sensible heat (H) based on 

the flux-gradient relation as:  
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   (3.1) 

 

 

where ρa is the density of air (kg m
-3

), Cp is the air specific heat at constant pressure (~1,004 J kg
-

1 
K

-1
), rah (s m

-1
) is the aerodynamic resistance to heat transfer between the surface and the 

reference level, and Ta is the air temperature (°C). In Eq.(1), To (°C) is defined as the 

extrapolation of Ta down to an effective height within the canopy at which the vegetation 

component of H and latent heat (LE) fluxes arise given by do+zoh (Chehbouni et al., 1996). From 

the Monin-Obukhov (M-O) similarity theory, the aerodynamic resistance rah, is defined as the 

resistance from height zoh+do having an aerodynamic temperature, to the height zref, given by:  

            
 

   

    
       

   
      

 

   
   

   

   
      (3.2) 

 

where, ra (s m
-1

) is the aerodynamic resistance to momentum transfer between height do+zom (do 

is zero plane displacement height, and zom (m) is roughness length for momentum transport), and 

zref (m) is the reference height. A distinction is required between zom and zoh due to the fact that 

heat transfer near the surface is mainly controlled by the molecular diffusion while momentum 

transfer is not only due to viscous shear but also due to pressure gradient (Brutsaert, 1982). 

Hence, following many authors (Owen and Thomson, 1963; Thom, 1972; Chebouni et al., 1996; 

Kustas et al., 1989), it is surmised that the aerodynamic resistance for heat transfer (rah) is greater 

than aerodynamic resistance for momentum transfer (ra). Thus, the formulation of H using the 

definition of To requires an additional resistance called the excess resistance denoted by rr in Eq. 

(2). This would also imply that the roughness length for heat transfer (zoh) would be less than the 

roughness length for momentum transfer (zom) (Troufleau et al., 1997; Kustas et al., 1989; Kalma 

and Jupp, 1990). The other terms in Eq. (2) are, von Karman’s constant (k ; ~0.41), the friction 

velocity (u*) and stability correction functions for heat (ψh) as a function of Monin-Obukhov 

length (L). Eq. (3.2) can be resolved and re-written in the more familiar way as: 

    
 

   

    
       

   
       (3.3) 

It is important to understand that the excess resistance (rr) is attached to the aerodynamic 

temperature and can be rightly called as aerodynamic excess resistance. Excess resistance (rr) 

formulation from Eq. (3.2) can be written as: 
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    (3.4) 

Eq. (3.4) is classically expressed as a function of the dimensionless bulk parameter B
-1

 (inverse 

Stanton number) introduced by Owen and Thomson (1963) and used by Chamberlain (1968) and 

Thom (1972), given by:  

   
   

  
   (3.5) 

The parameter kB
-1

 is related to roughness height for heat zoh, (Garratt and Hicks, 1973) as: 

        
   

   
    (3.6) 

It must be emphasized that the theoretical basis of kB
-1

 parameter is strictly aerodynamic; i.e., 

related to the aerodynamic surface temperature.  

Despite the simplistic formulation of H, problems arise in the absence of direct 

measurements of To and zoh. The Ts derived from the thermal sensors of various satellites was 

explored as a potential replacement for To. The lack of strong theoretical or experimental 

evidence linking Ts to To necessitated building strategies to address the inherent differences 

(Chehbouni et al., 1996; Troufleau et al., 1997). For partial canopies the difference between Ts 

and To was found to exceed 10°C (Chehbouni et al., 1996) leading to overestimation of H. For 

dense homogeneous crops, good agreement with H estimation was found implying that the 

differences between Ts and To was minimal (1–2°C) (Kustas et al., 1989). It was clear that both 

under sparse and full vegetation conditions, an appropriate value of kB
-1

 was required for 

accurate estimation of H using Ts (Stewart et al., 1994; Jia et al., 2003; Kustas et al., 2007). 

Replacing To with Ts in Eq. (3.1) requires a new definition for the excess resistance. The 

aerodynamic excess resistance defined by Eq.(3.4) would now have a radiometric component to 

relate H to radiometric surface temperature. In context to heat transfer estimation from 

radiometric surface temperature, kB
-1

 is now merely a fitting and largely empirical parameter no 

longer connected to its theoretical background (Lhomme et al., 2000). Consequently it would be 

more physically meaningful to define the excess resistance parameter kB
-1

 as radiometric kB
-1

 

(Colaizzi et al., 2004). Finally, kB
-1

 should be considered as a correction factor when radiometric 

temperature is used.       
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The scalar roughness length zoh represents the parameterization of heat transport and is 

described by the dimensionless parameter kB
-1

 and these could be again related to the excess 

resistance as formulated in Eqs. (3.4), (3.5) and (3.6). Several attempts were made in the last 

century to develop better understanding of the kB
-1

 parameter (Sverdrup, 1937; Verhoef et al., 

1996), followed by a recent revived interest by the remote sensing surface energy modeling 

community (Su et al., 2001; Gokmen et al., 2012). Obtaining an efficient parameterization for 

kB
-1

 applicable over a wide range of land cover has been a challenging task. Researchers have 

used analytical and experimental approaches to develop relationship based on environmental 

variables, vegetation structural characteristics, multi layer approach, and simulation results 

(Brutsaert and Sugita, 1996; Lhomme et al., 2000; Massman, 1999; Blumel, 1999). Numerous 

studies have shown that the value of kB
-1

 can typically range from 1 to 12, depending on the 

dominant surface cover (Su et al., 2001; Kustas et al., 1989; Stewart et al., 1994; Beljaars and 

Holtslag, 1991; Troufleau et al., 1997). Finally, with all the complexity and lack of clarity in the 

kB
-1

 formulation it remains an unavoidable parameter both because of its physical linkage to the 

bulk transfer formulation and also as a correction factor when using Ts. Hence, an appropriate 

value of spatially variable kB
-1

 is required for accurate estimation of H using Ts, (Kustas et al., 

1989; Stewart et al., 1994; Su et al., 2001; Kustas and Anderson, 2009).     

SEBAL adopts a conservative value of 2.3 for kB
-1

, which was derived for homogenous 

cropped surface, from Garrat and Hicks (1973). This value was found to be too low for most land 

covers (Kustas et al., 1989; Stewart et al., 1994; Verhoef et al., 1997; Su et al., 2001; Lhomme et 

al., 2000), and in general kB
-1

 values ranging from 4 to 8 were found more suitable. In the latter 

version, zoh has been redefined and renamed as z1, and its values were fixed at 0.1 m suggesting 

that this change would evade the problems originating from the definition of zoh (Bastiaanssen et 

al., 2005; Bastiaanssen et al., 2002). METRIC (Mapping evapotranspiration at high resolution 

with internalized calibration) a close variant of SEBAL, also replaces zoh with a height z1 (0.1). 

Allen et al. (2007) suggest,  “the aerodynamic resistance formulation support the use of a 

temperature gradient defined between two heights that are both above the surface; allowing one 

to estimate rah without having to estimate a second aerodynamic roughness for sensible heat 

transfer zoh, since height z1 is defined to be at an elevation above zoh”. They also added that this 

is an advantage because zoh can be difficult to estimate for sparse vegetation. It must be 

understood here, that z1 is replacing zoh in Eq.(3) and simultaneously z1 is being given a new 
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definition. Also, it should be noted that a constant z1 value of 0.1 could be frequently larger than 

the corresponding zom value, tending rr to be negative in Eq.(3.2). However, this is not a 

physically possible situation and hence the height z1 has no physical significance and remains a 

largely empirical parameter. The roughness length for heat transfer, zoh is different and should 

not be confused with the empirical height z1. However, since the literature on SEBAL has used 

zoh and z1 interchangeably (Long and Singh 2012a; Gieske and Meijninger, 2005), this precedent 

will be followed in the rest of the paper, although it is misleading if the theoretical background is 

considered .   

3.4 Materials and Methods  

 The Bushland Evapotranspiration and Agricultural Remote Sensing Experiment 2007 

and 2008 (BEAREX07 and BEAREX08) provided a unique opportunity to evaluate the turbulent 

exchange of mass and energy over agricultural landscape. SEBAL was executed for 10 high 

resolution airborne images acquired during the BEAREX07 and BEAREX08 field campaign and 

validated against large precision weighing lysimeters. Validation points consisted of two 

irrigated and two dryland fields located in the semi-arid Texas High Plains known for significant 

advection and nighttime ET (Tolk et al., 2006). Detailed information on the experimental set-up, 

algorithm description and evaluation process follows. 

3.4.1 Study Area and instrumentations 

The BEAREX07 and BEAREX08 field campaigns were conducted at the USDA-ARS 

Conservation and Production Research Laboratory (CPRL) during the 2007 and 2008 summer 

cropping season. The USDA-ARS Conservation and Production Research Laboratory is located 

in Bushland, TX (Fig. 1) with  geographic coordinates of 35
º 
11' N, 102

º 
06' W and elevation of 

1170 m above mean sea level. The area is within the Texas High Plains, where semi-arid climatic 

conditions and strong advective currents prevail during the summer cropping season. The CPRL 

has four large weighing lysimeters (3 m long x 3 m wide x 2.4 m deep), each located in the 

middle of 4.3 ha fields, arranged in a block pattern. The two lysimeter fields located on the east 

(NE and SE) were managed under irrigated conditions, and the other two lysimeters on the west 

(NW and SW) were under dryland management. Each lysimeter field was equipped with an 

automated weather station that provided measurements for net radiation (Rn), Ts, soil heat flux 

(Go), Ta, relative humidity, and wind speed (refer to Chávez et al., 2009 for details of field 
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instrumentation). In addition, a grass reference ET weather station field (0.31 ha), which is a part 

of the Texas High Plains ET Network, was located on the eastern edge of the irrigated lysimeter 

fields (Marek et al., 2009; Fig. 3.1). In 2007 (BEAREX07), the NE field was planted with forage 

sorghum (on May 30), the SE field was planted with corn (on May 17) both being grown for 

silage.  The NW field was planted with grain sorghum in rows (on June 6), and the SW field was 

planted with grain sorghum in clumps (on June 6). In 2008 (BEAREX08), the NE and SE fields 

were planted to cotton on May 21, and the NW and SW dryland lysimeters fields were planted to 

cotton on June 5. Cotton (variety Delta Pine 117) was seeded at 15.8 plants/m
2
 on raised beds 

spaced at 0.76 m. The warm-season tall crop , corn, and sorghum during BEAREX07 and warm-

season broadleaf short crop, cotton during BEAREX08, represented a diverse set of agricultural 

surface roughness with varied land surface energy balance systems. Regular measurements on 

the crop physiological parameters, leaf area index (LAI), crop height, and soil moisture content 

were recorded throughout the duration of the BEAREX campaign.   

3.4.2 Airborne Remote Sensing Data 

Flying expeditions were conducted during the field campaign to collect remotely sensed 

imagery using the Utah State University (USU) airborne digital multispectral system. The system 

acquired high resolution imagery in the green (0.545–0.555 μm), red (0.665–0.675 μm), near-

infrared (0.790–0.810 μm), and thermal infrared (8–12 μm) portions of the electromagnetic 

spectrum. Image information such as spatial resolution, acquisition date, and weather parameters 

at the time of acquisition is tabulated and provided in Table 1. Five images per year were 

acquired during early to mid-cropping season and used in this study to represent the varying 

canopy cover (or soil cover) conditions. Description of the post processing including geometric 

corrections, radiometric calibration and atmospheric correction can be found in Neale et al. 

(2012).  SEBAL was coded using Python programming language and executed in Arc-GIS 10.0. 

The five images analyzed in each year provided conditions from a near bare soil situation to near 

complete canopy cover. Crops in the irrigated field attained a near complete canopy by the last 

image acquisition date, whereas the dryland fields exhibited higher soil cover. Lysimeter fields 

were considered homogeneous, and the center of the field with the lysimeter and instrument 

cluster was used to validate all estimates. A 12 x 12 (1 m) pixel grid covering the lysimeter 
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location was marked (in the image) in all four lysimeter fields to extract average values of 

estimated ET, Rn, Go, Ts and aerodynamic parameters.  

3.4.3 Evaluation Statistics 

Validation studies in the past have used numerous performance evaluation statistics, 

however, there is some inconsistency and lack of clarity in usage of these statistics. For example, 

some studies report only the RMSE (root mean square error) values (Singh et al., 2008; Kustas 

and Anderson, 2009), others report only the MBE (mean bias error) values (Tasumi et al., 2005), 

and still others do not report the relative error (Gonzalez-Dugo et al., 2009). Apart from the 

standard and regression statistics (mean, slope, intercept and coefficient of determination), we 

recommend using three error index statistics, MBE, MAE (mean absolute error), and RMSE, as 

well as a dimensionless performance statistic, NSE (Nash-Sutcliffe efficiency; Moriasi et al., 

2007), for a detailed model evaluation. In MBE, the individual differences between the modeled 

and corresponding observed values are averaged while retaining the sign, with negative and 

positive sign indicating average under- or overestimation, respectively. MAE is a linear score 

whereby individual absolute differences are weighted equally in the average. RMSE is a 

quadratic scoring rule where the squared values of the differences are averaged over the sample. 

RMSE gives a relatively greater weight to larger errors, severely penalizing large deviations, and 

hence is most useful when large errors are particularly undesirable. Large differences between 

RMSE and MAE indicate high variance in the individual errors of the dataset. All three error 

indices provide errors in the constituent's unit and can also be expressed as relative error with 

respect to the mean. However, all three error indices serve unique purpose and should be used 

together to diagnose the performance of model. From the definition of these error indices, it 

follows that MBE≤MAE≤RMSE (Willmott and Matsuura, 2005). Willmott and Matsuura (2005), 

pointed out that RMSE is an inappropriate indicator of average error and that MAE is the most 

natural and unambiguous measure of average error magnitude, they recommended MAE for all 

dimensioned evaluations and inter-comparisons of average model performance. Reiterating, in 

this study MBE was used as the indicator of under/overestimation error, MAE was used as the 

primary indicator for average error and RMSE was reported as a conventional measure of error, 

and MAPD (mean absolute percent difference) was used as a relative error indicator expressed as 

percentage deviation. Nash-Sutcliffe efficiency (NSE) is a dimensionless model evaluation 
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statistics and indicates how well the plot of observed versus model estimated data fits the 1:1 

line. NSE ranges between −∞ and 1.0 (1 inclusive), with NSE=1 being the optimal value. Values 

between 0.0 and 1.0 are generally viewed as acceptable levels of performance, whereas values 

<0.0 indicates unacceptable model performance (Moriasi et al., 2007). The coefficient of 

determination (R
2
) describes the proportion of the variance in measured data explained by the 

model and ranges from 0 to 1 with the greater values indicating less error variance. Although R
2
 

has been widely used for model evaluation, it cannot be used to reach a conclusion on the 

performance of model; NSE should be used instead. Reporting these statistics would not only 

help in better interpretation of the results but also help in future comparative/review studies. 

Formulations of performance statistics used in this study are provided in the footnote in Table 2.     

Four sets of straight line regression fits would be derived from the four model runs, each 

with different zoh values. A two-sided t-test was formulated to test appropriate null hypotheses 

for comparing the slopes and intercepts (of two straight lines) derived from the regression fits. 

We tested for the coincidence of two straight line regression fits. Two straight lines are 

coincident if their slopes and their intercepts are equal. Statistical significance of the two straight 

lines was tested using the null hypothesis of equal slope and equal intercept.  If both null 

hypotheses are rejected, we would accept the alternative hypothesis. Coincidence would indicate 

failure to detect differences between model formulations. The statistical method used is known 

as comparing two straight lines using separate regression fits and is adapted from Kleinbaum 

(1988).    

3.4.4 SEBAL  

SEBAL utilizes the widely applied residual approach of surface energy balance to 

estimate ET at different temporal and spatial scales. The energy coming from the sun and 

atmosphere in the form of short- and long-wave radiation is transformed and used for (a) heating 

the soil (Go into the ground), (b) heating the surface environment (sensible heat flux to the 

atmosphere), and (c) transforming water into vapor (LE from the crop/soil surfaces). All the 

energy involved in the soil-vegetation-atmosphere interface can be given as the Energy Balance 

(EB) equation: 
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              (3.7) 

where all units expressed in W m
-2

. Latent heat flux can be expressed as hourly ET (mm) (by 

dividing LE by the latent heat of vaporization and the density of water). Net radiation (Rn) 

expressed as an electromagnetic balance of all incoming and outgoing fluxes, which constitutes a 

key driver for heating the atmosphere and the ground, is given by:  

                                    
         

  (3.8) 

In Eq. (3.8), S denotes short-wave radiation (0.3–3 m); L is long-wave radiation (3–100 m). 

The arrows show the direction of the flux entering () or leaving () the system. Each term in 

Eq. (8) either can be determined directly from models or obtained from the ground weather 

station. The incoming short-wave radiation (S) and the Ta are measured at weather stations. Ts 

is obtained from the inversion of Plank’s law in 10 to 12 μm band width.  Other terms in Eq. (8) 

are broadband surface albedo (αs), apparent emissivity of atmosphere (εa), surface emissivity (εs), 

and the Stefan-Bolzmann constant (σ = 5.67 E-08 W m
-2

 K
-4

).   

Broadband planetary albedo (αp) was calculated as the sum of the individual in-band 

planetary albedos with different weighing factors. The weighing factor for each band is 

proportional to the band-pass solar exoatmospheric irradiance (ESUNλ) which is an average solar 

irradiance weighted by the corresponding spectral band response function. The weight for each 

band was calculated and the equation for broadband planetary albedo (αp) was derived as: 

                                    (3.9) 

where green, red, and NIR are the reflectance of the respective bands. Because low flying 

airborne images were used with primary atmospheric corrections, the need for converting 

planetary albedo into surface albedo was evaluated by the planetary broadband albedo (αp) and 

considered equivalent to the surface broadband albedo (αs).    

The apparent emissivity of the atmosphere was estimated from equations based on vapor 

pressure and air temperature at the standard meteorological stations. For clear skies, the Brutsaert 

(1975) formulation was used as: 

         
  

  
 

 
  

    (3.10) 
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where ea is vapor pressure near the surface (actual vapor pressure) in kPa and Ta is in K. Actual 

vapor pressure (ea) can be calculated from relative humidity and air temperature at reference 

level as: 

   
  

       
  (3.11) 

where ea is in kPa and es is the saturation vapor pressure in kPa given by: 

              
         

         
       (3.12) 

Ta is the air temperature in °C.  

The surface emissivity (εs) was calculated from NDVI (Normalized Difference Vegetation 

Index) as given by Van de Griend and Owe (1993):  

                          (3.13) 

The above relationship is valid only for NDVI values over 0.16. For NDVI values below 0.16 

(usually bare soils), emissivity was assumed to be 0.92 and for NDVI values below –0.1 (usually 

water), it was assumed to be 1.0.  

Sensible heat flux (H) was calculated from Eqs. (3.1) and (3.3) by simultaneously solving 

for the stability functions through an iterative process. The friction velocity (u*) in Eq. (3.2) was 

defined by: 

   
   

   
     

   
    

     
(3.14) 

where the zero plane displacement height (do) was determined from the empirical relationship 

given by Brutsaert (1982) based on the crop height (h in m):  

   
 

 
    (3.15) 

The following exponential relationship was derived using NDVI and crop height (h) information 

(Bastiaanssen, 1995) and used to estimate zom. 

                    (3.16) 

where C1 and C2 are regression constants derived separately for each image from a plot of ln(zom) 

vs. NDVI for pixels representing varied vegetation heights and extremes of NDVI. For 

generating the relationship, zom was calculated from the height of vegetation (zom=0.13 h; 
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Brutsaert, 1982) recorded for the different crops during the campaigns. The blending height, zb, 

was taken as 100 m and the wind speed at blending height (ub) was given by the relation: 

        
                 

                    
   (3.17) 

The stability correction functions for heat and momentum transfer (ψh and ψm) were 

derived as a function of Monin-Obukhov length (L) using equations developed by Paulson 

(1970). Soil heat flux was computed using the relationship developed by Bastiaanssen et al. 

(1998), given as: 

  

  
 

           

     

          
                     (3.18) 

where c1 and c2 are locally calibrated coefficients with values of 0.12 and 0.42, respectively.   

3.4.5 Hot and Wet pixel selection 

A distinctive approach in SEBAL is the calculation of a single temperature gradient dT 

function (defined as the To - Ta) for the study region using two points denoting the hydrological 

contrast. The two pixels representing the hydrological contrast, termed Hot (dry) and Cold (wet) 

pixels, were first introduced in SEBAL and adopted into at least five other energy balance 

remote sensing algorithms. SEBAL uses the extreme pixels of the image (dry and wet pixel), to 

develop a relationship between Ts and the difference between To and Ta given in the form of: 

                 (3.19) 

where 'a' and 'b' are the regression constants. In later SEBAL version (Bastiaanssen et al., 2005; 

Bastiaanssen et al., 2002), dT was redefined as the vertical air temperature difference between 

heights z1 and z2, [dT = T(z1)-T(z2)], where z1 (zoh) is 0.1 m and z2 (zref) is 2 m, was fixed. The 

basic assumption behind this relationship is that To - Ta was linearly related to Ts. A second 

assumption of the existence of hydrological contrast (dry and wet area) in the study region must 

be implemented. For the wet pixel, dT was considered zero while for the dry pixel, dT was 

iteratively determined by adjusting for the stability functions. Physically, the wet pixel should be 

the surface transpiring at its potential limit (LE = LEmax and H = 0), and therefore, dT=0. The 

ideal location of a wet pixel is a surface with full canopy vegetation growing under no soil water 

limitation. A dry pixel physically represents a surface with dry conditions where ET equals zero 

(LE= 0 or H = Hmax= Rn – Go). Ideally, bare soil with no residual moisture for evaporation should 
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approximate the dry pixel characterization. Selection of these two extreme pixels in the image 

causes a bottleneck in the implementation of SEBAL, because it involves subjective decision of 

the analyst. Generally, the wet pixel is selected on the criteria of low temperature and high 

NDVI, whereas the dry pixel is characterized by high temperature, low NDVI, and low albedo. 

Scatter plots of NDVI-Ts and albedo-Ts along with histograms have been used to identify the 

group of pixels fulfilling the extreme pixel criteria (Timmermans et al., 2007); however, these 

methods do not help in secluding a single set of pixels, which again largely depends on the 

analyst’s decision. Furthermore, different sets of pixels fulfilling the dry and wet pixel criteria 

may exhibit entirely different surface energy balance and roughness properties and lead to 

variations in the 'a' and 'b' coefficients. In the present study, we harnessed the capability of the 

GIS environment wherein classification, histogram generation, and overlaying of Ts, NDVI, and 

αs maps can be done easily leading to identification of a group of pixels that fulfilled the criteria. 

The identification of the wet pixel in the agricultural landscape was relatively easier, but the 

identification of hot pixel was not easy because of the presence of multiple pixels that satisfied 

the selection criteria.  

3.4.6 kB
-1

 parameterization 

A physically based model for excess resistance to heat transfer parameter (kB
-1

), 

developed by Su et al. (2001), was incorporated into SEBAL. This model is based on Massman 

(1999) and consists of terms representing the contribution of the soil alone, the canopy and the 

canopy-soil interaction to resistance to heat transfer. This model has been incorporated into the 

SEBS (Surface Energy Balance System; Su, 2002) algorithm and further validated through 

several studies (Gokmen et al., 2012; Jia et al., 2003). The parameterized excess resistance to 

heat transfer formulation is given as: 

     
   

   
  

         
   
  

  
  

  
  

     
   

 

  
   

   
     

    
      (3.20) 

3.5 Results and discussion 

All the results presented in this section pertain to SEBAL model executions with four 

different zoh values. Model estimated H was compared against H derived as the residual of the 

observed components of the energy balance Eq. (3.7).  The SEBAL model evaluations with 
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different zoh values are expressed in the article as kB
-1

=2.3, zoh (z1) = 0.1 m, zoh (z1) = 0.01 m and 

use of kB
-1 

model.  

3.5.1 Net radiation, soil heat flux, and surface temperature 

Performance statistics for Ts, Rn, and Go for the complete data set (n = 40) are provided in 

Table 3.2. Comparison of Ts retrieved from the airborne thermal images was validated against 

the measured data, showed good agreement with an MAE of 1.1°C representing 3.18% (MAPD) 

relative error. The performance of the airborne retrieved temperature was within the typical error 

of 1 to 1.5°C reported for satellite and airborne sensors (Sobrino et al., 2008; Sobrino et al., 

2009). Net radiation was estimated with an average error of 23.55 W m
-2

 (MAE) and RMSE of 

29.55 W m
-2

. Evaluation statistics revealed good performance of the Rn model with a small 

relative error of 4% (MAPD), which was better than the reported range of 5 to 10% (~ 30–60 W 

m
-2

) (Timmermans et al., 2007; Choi et al., 2009; Singh et al., 2008) and most instrument 

measurement uncertainty (Field et al., 1992). The performance of Rn model in studies involving 

aircraft data has been good (Jacob et al., 2002; Kustas et al., 1994) and this could be attributed to 

the relatively accurate albedo input derived from the airborne imageries. Soil heat flux was 

smallest amongst the energy balance components in the present agricultural location, where the 

observed mean of Go was 36.2 W m
-2

 which was significantly smaller than the observed means 

of Rn (574.6 W m
-2

), H (170.1 W m
-2

) and LE (368.3 W m
-2

). Past studies have reported a large 

error range of 10–40 W m
-2

 (15–30%) (Jacob et al., 2002; Long and Singh, 2012a; Singh et al., 

2008) in the estimation of Go derived from the present parameterization involving fraction of Rn 

and a vegetative index formulation. Several reasons could explain the poor performance of the 

Go model, including inadequate calibration of the empirical models and the model's incapability 

in capturing the large spatial variability. Go was estimated with an overall error of 13.2 W m
-2

 

(MAD), RMSE of 16.8 W m
-2

 and relative error of 36.4 % (MAPD). NSE value of 0.21 indicated 

average performance of the soil heat flux model. However, we articulate that the overall 

underperformance of Go is not expected to influence the ET estimates because of the small 

magnitude of error.        

3.5.2 Statistical comparison of the four approaches 

The four different zoh values yielded different ET estimates (see Fig. 3.2, Table 3.4). 

Inspection of Fig. 3.2 indicates that out of the four linear regression fits, three (kB
-1 

= 2.3, zoh = 
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0.1 m, and zoh = 0.01 m) yielded similar trends, whereas the fourth regression (the variable kB
-1

 

model) was distinctly different. Results of statistical tests, intercomparing each model run are 

provided in Table 3.3. Intercomparison of the three model runs, kB
-1

=2.3, zoh (z1) =0.1 m, and zoh 

(z1)=0.01 m, reveals that the differences in the slope and intercept were not statistically 

significant; in other words statistical evidence was insufficient to reject the null hypothesis of 

equal slope and equal intercept. Thus, the three regression fits (kB
-1 

= 2.3, zoh = 0.1 m, and zoh = 

0.01 m) were considered coincident, implying that these models did not produce significantly 

different estimates. Statistical test, comparing the fourth approach (variable kB
-1

 model) with the 

other models, rejected the null hypothesis of a common slope and common intercept, suggesting 

that this approach yielded results that were significantly different from the other three 

approaches. By conventional criteria, the differences were statistically significant. To summarize 

with, a spatially constant zoh (z1) of 0.1 m or 0.01 m or a spatially constant kB
-1

 of 2.3, all yielded 

similar ET estimates, whereas a spatially variable zoh derived from the kB
-1

 model generated ET 

estimates that were significantly different from the other three approaches while improving the 

overall model performance in estimating ET.   

3.5.3 SEBAL performance evaluation 

The performance statistics of the four approaches for the complete data set (irrigated and 

dryland combined) for instantaneous ET estimates is provided in Table 3.4. A relative error of 

26.8% (MAPD) was observed for the model run with kB
-1 

= 2.3, followed by 21.4% and 21.9% 

for zoh(z1)=0.1 m and zoh(z1) =0.01 m, respectively, whereas the parameterized kB
-1

 model  

registered the smallest error of 16.5%. The negative value of y-intercept for kB
-1 

= 2.3, zoh=0.1 

m, and zoh=0.01 m, in the regression statistics indicated the presence of lag between the model 

prediction and measured data; the negative MBE values suggested underestimation error. The 

difference between the MAE and RMSE values for the kB
-1

 model was smallest compared with 

the other three approaches, indicating minimal variance in the individual errors. The performance 

of the kB
-1

 model was the best of the four approaches, with no significant under/overestimation 

bias and relatively small error variance. Although the approach of kB
-1 

= 2.3 showed similar 

error trend, compared with constant zoh = 0.1 m or zoh = 0.01 m, its performance was much lower 

and more severely biased. Interestingly, the two constant zoh (z1) approach produced similar 

results, and their performances were identical in the evaluation statistics. A comparison of the 



67 

 

present results with previous studies cannot be justified, primarily for two reasons. First, most 

previous studies are validated against EC/BR tower data, which has possible inherent errors in 

LE, in particular, ranging from 20–30% (Kalma et al. 2008; Twine et al., 2000; Allen et al., 

2011). Second, most studies lack replication in terms of number of images utilized, surface 

covers considered, and testing under variable soil water conditions. The evaluation statistics 

reported herein for instantaneous ET from the four approaches should be seen as a standalone 

results of SEBAL performance generated from specific set of diverse and stringent experimental 

conditions adopted in this study. However, the results obtained, corroborate the 15–30% range of 

error reported across techniques, measurement, and spatial-temporal aggregations (Gowda et al., 

2008; Kalma et al., 2008; Glenn et al., 2007) applied in RS-ET algorithms.             

The performance statistics for H and LE for the complete dataset form the four 

approaches is provided in Table 3.5. A large overestimation of  H led to underestimation of LE 

for the first three approaches with spatially constant values for zoh, or kB
-1

=2.3, whereas model 

run with the variable kB
-1

 parameterization did not show any significant bias. The constant zoh 

(z1) approach (of 0.1 m and 0.01 m) produced identical results and performed equally well in 

predicting H fluxes, compared with the kB
-1

 model except for the large biases. An interesting 

observation is the close comparison of relative errors in H estimates from zoh(z1) = 0.1 m and the 

kB
-1

 model, yet when it came to LE estimation, the performance of the variable kB
-1

 model far 

exceeded the constant zoh(z1) approaches.  

The observed magnitude of LE (mean: 356 W m
-2

) was found to be considerably greater 

than H (mean: 182 W m
-2

) for the  agricultural landscape considered in this study. The 

partitioning of the available energy between H and LE provides a crucial understanding of the 

existing hydrological regime. In the Texas High Plains, energy is usually not the limiting factor; 

instead, water availability becomes a limiting factor for ET. The large observed LE value, in the 

present case gives a picture that there is ample availability of soil water to meet ET demand; 

however, this is not completely or universally true. Separating the dryland and irrigated 

observations indicates that the mean value of LE from the irrigated fields was 437 W m
-2

, which 

was almost 3.5 times greater than the mean value of corresponding H (126 W m
-2

); in contrast, 

the mean value of LE from the dryland fields was 284 W m
-2

, which was similar to the 

corresponding mean value of H (232 W m
-2

). The existing hydrological testing regime has 

clearly taken into consideration the two contrasting cases often encountered in arid and semi-arid 
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agricultural regions: a water stressed condition and a “near” potential growth condition. Hence, 

the model performance should also be evaluated from the three prospective viewpoints, namely: 

(i) achievable accuracy under the water stressed condition (dryland), (ii) achievable accuracy 

under the non-water stressed condition (irrigated) and (iii) achievable accuracy derived from the 

combined dataset.  The MAE for LE ranged from 104 to 62 W m
-2

 for all four approaches, which 

in terms of relative error (MAPD) was consistent with the ET estimate errors given in Table 4. 

MAPD for LE ranged from 16.9 – 28.2%, but for H it ranged from 41.5 – 59.5% across the four 

approaches. Long and Singh (2012a) reported large MAPD of 70.6% for H (observed mean 86.8 

W m
-2

) and yet could estimate LE (observed mean 421.0 W m
-2

 ) with a 8.9% error, using 3 

Landsat TM/ETM imagery scenes and a modified SEBAL model validated with EC data. In 

another study (Yang et al., 2010) involving EC observation and MODIS imagery, over irrigated 

wheat and maize in the North China Plain had estimated LE with an error of 8–11% (observed 

mean range: 353–478 W m
-2

), whereas errors in estimated H ranged from 37–125% (observed 

mean range: 28–83 W m
-2

). In contrast, a more diverse hydrological regime was considered by 

Timmerman et al. (2007) that reported a MAPD of 26% for H (observed mean 148 W m
-2

) and 

23% for LE (observed mean 262 W m
-2

) using aircraft imagery data and SEBAL model applied 

over two large scale campaigns covering sub-humid grassland and semi-arid rangeland. Clearly, 

in these datasets with significantly greater transpiration (3 – 4 times) the value of observed LE as 

compared to H denote a hydrological regime where large errors in H may not influence the 

accuracy of LE. Furthermore, when the magnitude of H was small, LE seemed to be influenced 

by the available energy (Rn-Go). For this reason, datasets with significantly greater LE compared 

with H might not be desirable for testing RS-ET algorithms. RS-ET algorithms relying on that 

residual energy balance concept (LE=Rn-Go-H) differ from each other based on the approach at 

computing H, so evaluating these algorithms for their capacity to estimate H accurately is 

important.   

3.5.4 Performance evaluation for irrigated and dryland fields separately 

The performance statistics for H and LE were calculated separately for dryland and 

irrigated fields and presented in Table 3.6.  The tabulated results in conjunction with the 

regression fits of observed vs. modeled values for H and LE (Fig. 3.3 and 3.4), derived 
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separately for the irrigated and dryland fields, reveal several interesting features of the model, 

discussed point-wise herewith. 

Sensible heat (H) flux estimates for two irrigated lysimeter fields representing high 

fractional vegetation cover and greater ET, produced a relative error (MAPD) from 34–62%, 

indicating a large sensitivity involved across four approaches used in estimating ET or LE. Use 

of zoh(z1)=0.1 m gave the best statistical performance (MAPD = 34.8%), closely followed with 

zoh(z1)=0.01 m (Fig 3.3a). The constant kB
-1 

= 2.3 approach had a trend similar to the zoh = 0.1 m 

approach (Fig 3.3a), but it was strongly biased with large overestimation error and an MAPD of 

62.8%. The poor performance was observed with the constant kB
-1

=2.3 proving that this widely 

used kB
-1

 value was too low for most surfaces (Kustas et al., 1989; Stewart et al., 1994; Verhoef 

et al., 1997; Su et al., 2001; Lhomme et al., 2000). It must be noted here, that even though the 

irrigated fields are considered representative of greater canopy cover and larger ET rates, yet the 

surface condition during the initial days of image acquisition would be dominated by isolated 

seedlings forming a sparsely vegetated surface. Therefore, the large overestimation with kB
-1

 of 

2.3 was partially due to the inappropriate kB
-1

 value during the initial days and partially due to 

the insufficient (smaller) kB
-1

 value during the growing period. The performance of the kB
-1

 

model in the estimation of H for the irrigated fields (Table 3.6 and Fig 3.3a) was intermediate. 

Examining Fig 3.3a, we can see that the kB
-1

 approach produced differential treatment for the 

high and low H values. It was interesting to see that the empirical constant value of zoh (z1)=0.1 

m and zoh (z1)=0.01 m, not only outperformed the other two approaches, but also produced 

similar performances. These results necessitate speculation about why these empirical numbers 

worked and why a value with as diverse a magnitude as 0.1 m and 0.01 m produced similar 

results. Before explaining, we need to draw attention to two points concerning a surface 

predominantly vegetated, growing and transpiring at (presumed) potential rate: (i) dT is always 

smaller compared with a surface that is sparsely vegetated and/or water stressed; which is 

obvious from the current study and has been shown in other research (Wang et al., 2009; Crow 

and Kustas, 2005) (ii) the difference between To and Ts is small (1–2°C) compared with the more 

sparsely vegetated and/or water stressed surfaces (often exceeding 10°C) (Chehbouni et al.,1996, 

Lhomme et al., 2000). Accordingly, it follows that the errors attributed to dT would be small, 

because dT is not only small in magnitude, but also measured accurately (errors due the 

difference between To and Ts is small). The constant z1 (zoh) modifies the dT (Tz1-Tzref) and 
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proportionally modifies the rah, so the value of z1 = 0.1 m and z1 = 0.01 m produced similar H 

estimates. This was confirmed when we ran the model with z1=0.001 m and found that all the 

three (z1 = 0.1 m, z1 = 0.01 m, and z1 = 0.001m) values produced similar H estimates (results with 

z1=0.001 m are not shown here). Therefore, H was not sensitive to the empirical z1 (zoh) value. 

The empirical height z1 (zoh) does not have any property to correct for the inaccuracies between 

To and Ts which is supported by the fact that a constant overestimation error was always present. 

The height z1 does not have physical significance and should not be related or considered 

equivalent to roughness length for heat transport, zoh.  

Estimates of H fluxes from two dryland lysimeter fields produced a relative error 

(MAPD) from 37–57% (Table 3.6), indicating the large sensitivity involved across the four 

approaches as in case of irrigated lysimeter fields. All four approaches generated negative NSE 

and very low R
2
 values, indicating poor performances in predicting dryland H. SEBAL 

performance over dryland fields, representing a sparsely vegetated surface undergoing frequent 

water stress and small ET, was markedly less compared with the irrigated fields. Among the four 

approaches, the kB
-1

 model registered an insignificant underestimation error of 14 W m
-2

, 

whereas others produced large overestimation errors ranging from 80– 116 W m
-2

. Fig. 3.4a 

shows that the three approaches (kB
-1 

= 2.3, zoh = 0.1 m, and zoh = 0.01 m) had similar trends and 

identical performance, while only the kB
-1

 model generated distinct results. The performance of 

the kB
-1

 model in predicting dryland H was notably superior, as evidenced by the significantly 

smaller error indices compared with the other three approaches (Table 3.6). Although the 

regression statistics (R
2
) and the performance index (NSE) indicate poor performance, the 

magnitude of the errors were comparable to the irrigated fields suggesting the model’s predictive 

capability under  dryland conditions. The gross overestimation, high relative error, and large 

RMSE in the H estimates from SEBAL were comparable with several studies in the literature 

(Long and Singh, 2012a; Choi et al., 2009; French et al., 2005; Jacob et al., 2002). The drastic 

and significant improvement in the dryland H estimates from the kB
-1

 model compared with 

other three approaches clearly indicated that the majority of the errors in the H estimate was 

caused by the differences between To and Ts. As follows from the discussion of  irrigated H 

estimates, the converse is true in the case of dryland H estimates, where the role of dT becomes 

prominent and the inaccuracies associated with dT tended to be larger, resulting in less accuracy 

in predicting H fluxes. Errors in estimated H fluxes over sparsely vegetated surfaces when using 
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single source resistance model were attributed to the inappropriate correction applied in terms of 

kB
-1

 parameter to account for the large differences between To and Ts. (Kalma and Jupp, 1990; 

Kustas et al., 1989, Verhoef et al., 1997, Stewart et al., 1994).      

The underestimation error in the LE estimates for the irrigated fields has its origin traced 

back to the overestimation errors of corresponding H values across the four approaches (Table 

3.6 and Fig 3.3b). The error magnitudes (MBE, MAE, and RMSE) for H and LE were similar, 

yet the relative error (MAPD) for LE was small. The LE estimate from the kB
-1 

= 2.3 approach 

on the irrigated fields produced the highest RMSE of 88 W m
-2

 and a large MBE value of -63.7 

W m
-2

, yet the relative error was 17% (MAPD). The other three approaches produced identical 

results with excellent performance (11% MAPD). The magnitude of LE was significantly greater 

(3.5 times) compared with the H magnitude for the irrigated fields, which led to the small 

relative error of LE; in other words, H had a more limited role in the accuracy of LE. This is 

substantiated by the fact that the kB
-1

 model performance was noticeably inferior than that with 

zoh = 0.1 m (or zoh = 0.01 m) in the estimation of H, yet when it came to corresponding LE 

accuracy, the kB
-1

 model performed equally well, substantiating the limited role of H in LE 

estimates for the irrigated lysimeter fields with more complete canopy cover surfaces. 

Subsequently, the accuracy of LE was highly dependent on the accuracy of estimated available 

energy (Rn-Go). The combined overestimation of H with the underestimation of available energy 

(Rn-Go) improved the LE value; thus, in Fig. 3.3b we see the regression lines moving closer to 

the 1:1 line. Kalma and Jupp (1990) pointed out that LE estimates were not very sensitive to H 

estimate errors in studies where one-layer resistance models were applied to well-watered field 

crops.  

The large overestimation errors from dryland H translated into large underestimation 

error in LE estimates for the three approaches (kB
-1 

= 2.3 and zoh = 0.1 m, zoh = 0.01 m), whereas 

the kB
-1

 model remained unbiased (Table 3.6 and Fig 3.5b). The performance of these three 

approaches (kB
-1 

= 2.3 and zoh = 0.1 m, zoh = 0.01m ) in predicting dryland LE and subsequently 

ET was poor with negative NSE, large RMSE, and an MAPD ranging from 38–44%. The kB
-1

 

model performance was remarkably superior in the estimation of dryland LE, with no significant 

bias, positive NSE, and an MAPD of 25%. The importance of a variable kB
-1

 (from the kB
-1

 

Model) was established in the case of dryland sparse vegetated surfaces, where the difference 

between To and Ts is amplified and the results of correction applied gets eminent. As in this 
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study, SEBAL applied with kB
-1 

= 2.3 or zoh (z1) = 0.1 m has shown large discrepancy in 

predicting LE or ET from sparse vegetated surfaces with errors reaching up to 50% (Elhaddad 

and Garcia, 2011; Timmermans et al., 2007; Gao and Long, 2008).  

The performance statistics for instantaneous ET evaluated separately for dryland and 

irrigated fields and are provided in Table 3.7. Because ET is derived/converted from LE, its 

performance statistics are identical to the LE statistics.    

The performance statistics of H in Table 3.5 and Table 3.6, clearly shows that H was 

being overestimated for the three approaches (kB
-1 

= 2.3 and zoh = 0.1 m, zoh = 0.01 m), but only 

the kB
-1

 model was unbiased. This observation agreed with the many studies reporting 

overestimation of H in SEBAL (French et al., 2005; Long and Singh 2012a, Choi et al., 2009) 

and in general from those single source resistance models, which provide inadequate 

consideration for excess resistance (Stewart et al., 1994). The direct implication of 

overestimation of H could be seen as underestimation errors in LE flux, provided the available 

energy was computed accurately. Under unstable conditions, Ts is frequently greater than To, 

(Troufleau et al., 1997; Stewart et al., 1994) particularly over surfaces with sparse vegetation, 

subsequently replacing To with Ts in Eq.(3.1), would straight-away result in overestimation of H 

if excess resistance (or kB
-1

) is not adequately considered. In the present study , the 

overestimation of H from the three approaches (kB
-1 

= 2.3 and zoh = 0.1 m , zoh = 0.01 m) was a 

direct consequence of inadequate correction in terms of kB
-1

. A spatially variable kB
-1

 value 

from a physical based kB
-1

 model incorporated into SEBAL generated H and LE fluxes without 

any bias error, proving that a realistic kB
-1

 value was required to adequately account for the 

differences between To and Ts.  

3.6 Summary 

The formulation of H from the MOS theory has some constraints that cannot be 

overridden by assumptions. The dT is based on aerodynamic temperature (To), which is linked to 

the aerodynamic resistance to heat transfer and the aerodynamic excess resistance. The adoption 

of Ts in the single source model by replacing To, modifies the role of excess resistance into a 

more or less empirical correction factor. Hence, the liberty to use Ts comes with the bottleneck of 

deducing a reasonable correction factor. SEBAL has an indigenous method to compute dT; 

however, this cannot and does not evade the computation of an appropriate correction factor in 
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terms of kB
-1

 or zoh. We summarized below finding of this study where SEBAL was applied for 

irrigated and dryland conditions representing the two contrasting hydrological regimes using four 

different zoh values, namely: (i) zoh=zom/exp(kB
-1

), where kB
-1

 is constant 2.3; (ii) zoh = 0.1 m, 

where zoh is a spatial constant and redefined as z1; (iii) zoh = 0.01 m, where zoh is a spatial 

constant and redefined as z1; and (iv) zoh=zom/exp(kB
-1

), where kB
-1

 is parameterized and thus 

spatially varying.     

1. The kB
-1

 model produce distinctly and statistically different results than the constant 

kB
-1

 and constant z1 (zoh) approaches. Constant kB
-1

 (2.3) and constant z1 (0.1 m and 0.01 m) 

approaches had similar performance trends. 

2. Performance statistics from the pooled data (irrigated + dryland) reveals that the kB
-1

 

model was superior in predicting LE compared with the other three approaches. The constant kB
-

1
 (2.3) and constant z1 (0.1 m and 0.01 m) approaches produced large overestimation errors in H, 

leading to greater underestimation errors in LE estimates. 

3. SEBAL performance for irrigated fields (greater ET rates, limited soil water deficits, 

and complete ground cover) and dryland fields (lower ET rates, greater soil water deficits, and 

sparse ground cover) were markedly different.         

4. Performances of the four approaches were comparable and excellent for the irrigated 

fields representing the greater ET, limited soil water deficits, and more  complete ground cover. 

This conclusion derived for irrigated fields has several ramifications: (i) single source models 

like SEBAL generally produce good result for such surfaces, (ii) LE is significantly large for 

such surfaces, so H has a more limited role in LE accuracy (iii) H estimates are more accurate for 

such surfaces because dT is small and the errors in dT are small (since difference between To and 

Ts is small), and (iv) the need for a precise value of correction factor in terms of kB
-1

 or zoh still 

exists for such surfaces.  

5. The value of kB
-1

 (2.3) given by Garrat and Hicks (1973) and adopted in SEBAL was 

found to be too small for the irrigated fields. Instead, a kB
-1

 value of 7 given by Stewart et al. 

(1994) and used by Kustas et al. (1996) was found to be more suitable for the irrigated fields. As 

reported by other studies (Verhoef et al. 1997; Troufleau et al. 1997), we also found H to be 

more sensitive to a kB
-1

 value of 2.3 than a value of 7. 

6. All four approaches performed poorly for dryland conditions, however the kB
-1

 model 

performed distinctly differently and  significantly better compared to the other three approaches. 
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This result confirms that for sparse and greater soil water deficits conditions, the single-source 

resistance formulation have limited capability in predicting H and LE fluxes. Only the kB
-1

 

model produced a positive NSE value indicating that it had the potential to improve ET or LE 

estimated for dryland conditions.   

7. The absence of bias error in the kB
-1

 model runs for both dryland and irrigated fields, 

indicates that kB
-1

 parameter performed well as a correction factor and accounted for the 

difference between To and Ts. It also indicates that kB
-1

 model treated the smaller ET and greater 

ET crops surfaces appropriately. 

8. SEBAL claimed that the dT from the hot and cold pixel approach would automatically 

consider the differences between To and Ts (Bastiaanssen et al., 1998; Jacob et al., 2002; 

Timmermans et al., 2007; Norman et al., 2006); however, in our study H was consistently 

overestimated with the constant kB
-1

 (2.3) and constant z1 (0.1 m, 0.01 m) approaches, indicating 

that dT could not account for the differences between To and Ts. The hot and cold pixel selection 

approach governing the dT value had   no intrinsic characteristics to consider for the inaccuracies 

generated as a consequence of replacing To with Ts.   

9. The constant zoh (z1) values of 0.1 m, 0.01 m, and even 0.001 m produced similar 

results. The constant zoh (z1) redefines the dT and rah terms, and hence the constant zoh (z1) 

becomes merely an empirical term. Thus, the constant zoh (roughness length for heat transport) 

should not be referred to as zoh instead as z1, an empirical height with no physical significance.  

10. The limited role of H on the accuracy of LE for irrigated fields with complete ground 

cover (greater ET surface) negates the advantage received through the accurate estimation of H. 

On the contrary, under sparse vegetated (less ET crop surface), LE was sensitive to errors in H 

estimates, and apparently single resistance formulations like SEBAL performed poorly in 

estimating H for such surfaces.  

11. Finally, SEBAL was sensitive to the value of zoh or kB
-1

. The approach of evading zoh 

by adopting constant z1 appeared to be a good option under the greater ET rates, limited soil 

water deficits, and greater ground cover; however, under sparse ground covers this would 

completely fail. The performance of constant kB
-1 

(2.3) approach was relatively poor under both 

sparse and full canopy cover conditions. As noted by Verhoef et al. (1997), a variable kB
-1

 is 

better for most surfaces as compared to a constant value; this was observed in the present study. 
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An uncalibrated kB
-1

 model incorporated into SEBAL performed better for both dryland and 

irrigated lysimeter fields, compared with other approaches.  

3.7 Conclusion 

 SEBAL with all four approaches worked well for the irrigated fields with limited soil 

water deficits and greater ground cover. Agricultural systems are not always composed of 

irrigated system, and even if irrigation is provided, it is at some specific soil water deficit level, 

implying that crops would undergo soil water limiting conditions through their life cycle. If 

single-source algorithms such as SEBAL are to be applied to an agricultural system, it is 

necessary to modify these not only to provide good estimates for unstressed crops, but also to 

accommodate the water limiting conditions. The results of this study indicate an error range from 

11% to 45%, where the lower limit denotes unstressed crop ET and the upper limit refers to 

sparse/stressed crop ET; this is a large range. The lower limit of 11% error could be considered a 

good performance considering that this evaluation was performed against lysimeters and because 

the comparison was with the instantaneous value; improvement is possible as time aggregation 

from hourly to daily and further seasonal ET is applied. Attempts to reduce the upper limit error 

of 45% arising from the more realistic scenario of the incomplete canopy cover and stressed crop 

is needed. The errors from the dryland conditions were reduced from 45% to 25% through the 

use of a physically based excess resistance model incorporated into SEBAL. The foundation of 

this improvement is based on the principle of arriving at the right correction factor, which could 

reduce the consequences of the discrepancy between radiometric and aerodynamic temperature. 

Although, parameter kB
-1

 defining the excess resistance (rr) has a physical basis, with the 

adoption of the radiometric temperature, it (kB
-1

) transforms into an empirical term acting as a 

correction factor. The SEBAL approach with spatially constant kB
-1 

= 2.3, zoh (z1) = 0.1 or zoh 

(z1) = 0.01, could not account for the spatial variability of the discrepancy between To and Ts, 

and hence underperforms in a realistic agricultural setting or even performs poorly for dryland 

agriculture system. This study categorically proves that a spatially variable kB
-1

 value derived 

from a physical model incorporated into SEBAL could generate good overall estimates and 

simultaneously deliver better performance under dryland agriculture systems.  
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Table 3.1 Image Acquisition date and various weather parameters.  

Date 
Day of 

Year 
AGL 

MS 

Res. 

(m) 

TIR 

Res. 

(m) 

S 

(W m
-2

) 

Ta 

(°C) 

RH 

% 

BP 

(kPa) 

Wind 

Speed 

(m s
-1

) 

06/25/07 176 1000 0.5 1.8 897 27.9 51 88.6 4.9 

07/02/07 183 1000 0.5 1.8 789 25.7 51 88.8 2.6 

07/10/07 191 1000 0.5 1.8 794 31.8 29 88.6 4.9 

07/26/07 207 1000 0.5 1.8 901 28.6 43 88.6 4.8 

07/27/07 208 1000 0.5 1.8 799 29.7 37 88.6 2.0 

06/26/08 178 2000 1.0 3.0 827 29.8 34 88.4 7.8 

07/12/08 194 2000 1.0 3.0 897 21.6 44 88.9 9.1 

07/20/08 202 2000 1.0 3.0 805 27.5 44 89.0 4.5 

07/28/08 210 2000 1.0 3.0 844 31.0 50 88.1 5.3 

08/05/08 218 2000 1.0 3.0 834 31.9 28 88.9 2.4 

S is Solar irradiance , Ta is air Temperature, RH is relative humidity, BP is barometric pressure, MS is 
multispectral, TIR is thermal infrared, Res. is spatial resolution, AGL is above ground level     
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Table 3.2 Performance statistics for Ts (Obs. Mean: 34.59C), Rn (Obs. Mean:574.6), and Go 

(Obs. Mean:36.2); (no. of observations = 40).  

Estimated  

parameter 
Mean MBE

1
 MAE

2
 RMSE

3
 MAPD

4
 NSE

5
 

Regression 

R
2
 slope 

y-

intercept 

Ts (
o
C) 34.8 0.23 1.10 1.58 3.18 0.96 0.94 1.02 -0.58 

RN (W m
-2

) 571 -5.57 23.55 29.55 4.08 0.71 0.76 0.92 39.83 

Go (W m
-2

) 35 -1.97 13.16 16.82 35.38 0.21 0.23 0.28 24.69 

1 
Mean bias error;      

 

 
        

 
    ,  

2 
Mean absolute error;      

 

 
        

 
    ,  

3 
Root mean square error;

        
 

 
        

  
    , 

4
Mean absolute percent difference      

        
 
   

   
 
   

          

5
 Nash-Sutcliffe efficiency;     

                  
  

   
 
   

         
 

Where, Oi-observed value; Mi- Modeled value;    -mean of the observed,   - mean of the 

modeled 
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Table 3.3 Statistical significance testing for coincidence of the regression fits under the four 

model runs. The critical value for a two sided Student's t test with significance level α=0.05 

is given by t76,0.975=1.992.    

Model Runs 

zoh=0.1 m zoh=0.01 m kB
-1

 model 

Slope Intercept Slope Intercept Slope Intercept 

kB
-1

=2.3 

|T|=0.306 

P=0.763 

|T|=0.267 

P=0.789 

|T|=0.485 

P=0.629 

|T|=0.064 

P=0.949 

|T|=2.762 

P=0.008 

|T|=3.416 

P=0.001 

kB
-1

 model 

|T|=3.241 

P=0.002 

|T|=3.231 

P=0.002 

|T|=3.457 

P=0.0009 

|T|=3.472 

P=0.0009 

  

zoh=0.01 m 

|T|=0.188 

P=0.852 

|T|=0.209 

P=0.835 
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Table 3.4 Performance statistics for Instantaneous ET (mm h
-1

) for the complete dataset 

under four different zoh values. The observed mean was 0.55 mm h
-1

 and the no. of 

observations were 40  

Runs 
Mean 

(mm h-1) 

MBE 

(mm h-1) 

MAE 

(mm h-1) 

RMSE 

(mm h-1) 

MAPD 

(%) 
NSE 

Regression 

R
2
 slope y-interp. 

kB
-1

=2.3 0.42 -0.13 0.15 0.18 26.8 0.23 0.72 0.98* -0.12 

zoh=0.1 m 0.47 -0.08 0.12 0.14 21.4 0.50 0.74 1.00* -0.07 

zoh=0.01 m 0.47 -0.08 0.12 0.15 21.9 0.47 0.75 1.03* -0.10 

kB
-1

 model 0.55 0.00 0.09 0.10 16.5 0.72 0.74 0.63* 0.20 

*significant at p value 0.001 
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Table 3.5 Performance statistics for Sensible Heat  (Obs. Mean:170.11),  and Latent Heat 

(Obs. Mean: 368.29) under four different zoh values. 

Estimated  

parameter 

Mean 

(W m-2) 

MBE 

(W m-2) 

MAE 

(W m-2) 

RMSE 

(W m-2) 

MAPD 

(%) 
NSE 

Regression 

R
2
 slope y-intercept 

HkB
-1

=2.3 266 96.1 101.2 117.7 59.5 -0.29 0.61 0.85
*
 121 

Hzoh=0.1 228 57.6 72.2 88.7 42.4 0.26 0.64 0.87
*
 79 

Hzoh=0.01 234 63.4 75.3 91.6 44.2 0.21 0.65 0.89
*
 82 

HkB
-1

=model 173 2.9 70.7 77.8 41.5 0.43 0.45 0.37
*
 110 

LEkB
-1

=2.3 270 -97.8 104.0 124.2 28.2 0.20 0.73 0.95
*
 -80 

LEzoh=0.1 309 -59.4 82.1 99.0 22.3 0.49 0.73 0.97
*
 -49 

LEzoh=0.01 303 -65.2 83.6 101.9 22.7 0.46 0.75 1.00
*
 -66 

LEkB
-1

=model 364 -4.7 62.2 72.3 16.9 0.73 0.75 0.62
*
 136 

*significant at p value 0.05 
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Table 3.6 Performance statistics for H and LE presented separately for the two water 

regimes under four different zoh values. The observed mean of H for the irrigated fields and 

dryland field are 126.6 W m
-2

 and 232.2 W m
-2

 respectively. The observed mean of LE for 

the irrigated and dryland field are 437.1 W m
-2

 and 284.4 W m
-2

 respectively. 

 

Runs n 
Mean 

(W m-2) 

MBE 

(W m-2) 

MAE 

(W m-2) 

RMSE 

(W m-2) 

MAPD 

(%) 
NSE 

Regression 

R
2
 slope y-interp. 

HkB
-1

=2.3 
20

▲
 203 76.1 79.5 92.0 62.8 0.32 0.81 0.98 79 

20
■
 330 116.1 122.9 136.8 57.5 -2.21 0.10 0.26

ns
 274 

Hzoh=0.1 
20

▲
 161 34.5 44.0 50.5 34.8 0.79 0.89 0.98 37 

20
■
 294 80.7 100.4 112.5 47.0 -1.20 0.11 0.30

ns
 230 

Hzoh=0.01 
20

▲
 164 36.9 45.8 53.0 36.2 0.77 0.89 0.98 39 

20
■
 304 89.9 104.7 115.9 49.1 -1.30 0.13 0.29

ns
 240 

HkB
-1

=model 
20

▲
 147 20.1 62.5 71.7 49.4 0.58 0.67 0.48 86 

20
■
 199 -14.2 78.8 82.8 36.9 -0.18 0.01 0.03

ns
 192 

LEkB
-1

=2.3 
20

▲
 373 -63.7 74.2 88.7 16.9 0.61 0.85 1.04 -83 

20
■
 167 -132.0 133.9 149.1 44.7 -1.25 0.33 0.31 75 

LEzoh=0.1 
20

▲
 415 -22.2 50.7 59.7 11.6 0.82 0.87 1.04 -42 

20
■
 203 -96.7 113.5 124.2 37.9 -0.56 0.30 0.35 98 

LEzoh=0.01 
20

▲
 413 -24.6 51.3 60.9 11.5 0.82 0.88 1.06 -53 

20
■
 194 -105.9 115.9 128.1 38.7 -0.66 0.36 0.37 82 

LEkB
-1

=model 
20

▲
 429 -7.7 48.8 60.9 11.2 0.82 0.85 0.68 132 

20
■
 298 -1.69 75.5 81.3 25.2 0.33 0.48 0.21 235 

▲ Irrigated fields, ■Dryland fields, *significant at p value 0.05 
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Table 3.7 Performance statistics for Instantaneous ET (mm h
-1

) presented separately for 

the two water regimes under four different zoh values. The observed mean for the irrigated 

and dryland fields were 0.66 mm h
-1

 and 0.44 mm h
-1 

respectively.   

Runs n 
Mean 

(mm h-1) 

MBE 

(mm h-1) 

MAE 

(mm h-1) 

RMSE 

(mm h-1) 

MAPD 

(%) 
NSE 

Regression 

R
2
 slope 

y-

interp. 

kB
-1

=2.3 
20

▲
 0.58 -0.08 0.10 0.13 15.9 0.61 0.83 1.06* -0.12 

20
■
 0.25 -0.19 0.19 0.22 44.5 -1.23 0.33 0.30* 0.11 

zoh=0.1 
20

▲
 0.63 -0.02 0.07 0.09 11.5 0.81 0.86 1.05* -0.06 

20
■
 0.30 -0.14 0.17 0.18 37.8 -0.55 0.28 0.34* 0.15 

zoh=0.01 
20

▲
 0.63 -0.02 0.07 0.09 11.7 0.80 0.87 1.08* -0.08 

20
■
 0.29 -0.15 0.17 0.19 38.6 -0.64 0.35 0.36* 0.12 

kB
-1

 model 

20
▲

 0.65 -0.00 0.07 0.09 11.0 0.80 0.83 0.69* 0.20 

20
■
 0.44 -0.00 0.11 0.12 25.4 0.31 0.46 0.20* 0.35 

▲ Irrigated fields, ■Dryland fields, *significant at p value 0.05 
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Figure 3.1 False color composite aircraft image of 5 August, 2008, showing the BEAREX08 

study region. (a) location of the study area in reference to the state of Texas, USA. (b) 

aircraft scene covering a region of close to 5km
2
 and (c) exploded view of the lysimeter 

field.  
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Figure 3.2 Linear fitted relationship between the observed and estimated ET under four 

different zoh runs.   

 

  



92 

 

 

Figure 3.3 . Modeled versus observed (a) sensible heat and (b) latent heat for the irrigated 

fields. 
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Figure 3.4 Modeled versus observed (a) sensible heat and (b) latent heat for the dryland 

fields. 
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Figure 3.5 Modeled versus observed ET for (a) irrigated field and (b) dryland field 
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Chapter 4 - Role of hot and cold pixel concept in remote sensing 

based single source surface energy balance algorithms 

4.1 Abstract 

Evapotranspiration (ET) mapping with thermal remote sensing data garnered a renewed 

interest with the inception of SEBAL (Surface Energy Balance Algorithm for Land).  Since then, 

numerous models have been developed along similar concepts that derive near surface 

temperature gradient, dT, from a single linear function of surface temperature. The dT function 

was derived from two anchor pixels denoting the hydrological extremes, and coined as the hot 

(dry) and the cold (wet) pixels. Although this concept was revolutionizing, the effects of 

numerous assumptions and pitfalls associated with it were not well understood. In this study, 

eight high resolution airborne images acquired during the BEAREX07-08 (Bushland 

Evapotranspiration and Agricultural Remote Sensing Experiment) campaigns over irrigated and 

dryland agricultural fields equipped with large precision lysimeters was utilized to test the hot 

and cold pixel concept. METRIC
TM

 (Mapping Evapotranspiration at high Resolution and with 

Internalized Calibration), a variant of SEBAL was compared with a generic single source (GSS) 

algorithm which does not use the hot and cold pixel concept and only differed in its definition 

and computation of the dT parameter. METRIC derived ET flux generated an overall relative 

error of 24%, whereas the GSS produced an 18% relative error. For irrigated conditions, 

METRIC produced a relative error of 11% against 18% with GSS-ET estimates. However, 

relative error with METRIC was greater (45%) than that with GSS (20%) for dry land 

conditions. These results clearly indicated that the use of the dT function as opposed to the use of 

classical MOS (Monin-Obukhov similarity) theory while dropping the aerodynamic excess 

resistance may not perform well for estimating ET over sparse and water limited cropping 

conditions. 

4.2 Introduction and Theory 

Evapotranspiration (ET) is one of the major processes driving the water balance and 

surface energy balance of earth's hydrosphere, biosphere, and atmosphere. Surface Energy 

Balance Algorithm for Land (SEBAL) was developed in the early 90's (Bastiaanssen, 1995) for 

estimating ET using remotely sensed visible and thermal infrared spectral reflectance with 
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auxiliary ground measurements. SEBAL became a widely used algorithms with several variant 

models such as METRIC (Mapping Evapotranspiration at high Resolution and with Internalized 

Calibration; Allen et al., 2005), SSEB (Simplified Surface Energy Balance; Senay et al., 2007), 

ReSET (Remote Sensing of Evapotranspiration; Elhaddad and Garcia, 2008), SEBTA (Surface 

Energy Balance with Topography Algorithm; Gao et al., 2011), and M-SEBAL (Modified 

SEBAL; Long and Singh, 2012) built along similar philosophy. A common feature in these 

algorithms was the concept of deducing the near surface temperature gradient, dT, as a linear 

function of surface radiometric temperature. The dT function was derived from two anchor 

points (pixels) denoting the hydrological extremes, and coined as the hot (dry) and the cold (wet) 

pixels. This concept was floated as revolutionizing; however, numerous associated assumptions 

and pitfalls were never thoroughly examined. The issues related to the dT concept in SEBAL and 

it variants could be understood better by investigating the generic bulk parameterizations of 

sensible heat flux (H) based on the Monin and Obukhov (1954) similarity theory (MOST), 

         

     

   
 (4.1) 

 

    
 

   

    
       

   
      (4.2) 

where ρa is the density of air (kg m
-3

), Cp is the air specific heat at constant pressure (~1,004 J kg
-

1
 K

-1
), rah (s m

-1
) is the aerodynamic resistance to heat transfer, and Ta is the air temperature (°C). 

In Eq.(1), To (°C; aerodynamic temperature) is defined as the extrapolation of Ta down to an 

effective height within the canopy at which the vegetation component of H and latent heat (LE) 

fluxes arise given by do+zoh (Chehbouni et al., 1996), where do is zero plane displacement height 

and zoh (m) is roughness length for heat transport.  The other terms in Eq. (4.2) are von Karman’s 

constant (k ; ~0.41), the friction velocity (u* in m s
-1

) and stability correction function for heat 

(ψh) as a function of Monin-Obukhov length (L). In Eq. (4.1) the temperature gradient (dT) is 

defined as the difference between To and Ta. The absence of direct measurement and theoretical 

nature of To and zoh made the implementation of Eq. (4.1) a challenge. The only approach, as an 

alternative to this limitation was to adopt the radiometric temperature (Ts) derived from the 

thermal sensors and apply required correction to account for inherent differences between the 

two temperatures.   
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SEBAL defined dT as the near-surface temperature difference between level z1 and z2 

where z1 was taken as 0.1 m and z2 was the reference level (Ta measurement level usually 2 m) 

(Bastiaanssen et al., 2005; Allen et al., 2007). This is a serious deviation from the original 

definition where the position of effective heat source is given by zoh and not by any arbitrary 

value of z1. How an arbitrary value of 0.1 m for z1 was reached upon is never found in the 

SEBAL/METRIC literature. At the same time, numerous studies have reported that zoh is a 

highly sensitive parameter when using a MOST formulation (Steward et al., 1994; Liu et al., 

2007). The dT was computed in SEBAL through an indigenous method popularly known as the 

'hot and cold pixel' concept. Following Fig.4.1, dT is computed for two points marked as the hot 

and cold pixel by inverting Eq. (4.3) and the resulting linear relationship is applied over the study 

region. There are several assumptions and limitations to this concept which are listed here under 

two categories: (1) assumptions in the validity of dT vs Ts relationship across the landscape and 

(2) assumptions in the selection of hot and cold pixel used for developing the dT vs Ts 

relationship. The first category of assumptions builds the conceptual framework of SEBAL and 

has several sub-assumptions: (a) a prior existence of relationship between dT and Ts; (b) dT vs Ts 

relationship accounts for the spatial variability of zoh;  (c) the dT vs Ts relationship accounts for 

the spatial variability of Ta; and (d) the dT vs Ts relationship accounts for the atmospheric 

contamination of acquired remote sensing data. The second category of assumptions pertains to 

the implementation of the concept and has also several sub-assumptions: (a) there exists a hot 

and a cold pixel in the image; (b) there exists a criteria for the selection of hot and cold pixel; and 

(c) the selection of hot and cold pixel is invariant of the domain size.      

In SEBAL literature, several selection criterias could be found for the selection of hot and 

cold pixel, example (a) for hot pixel: dry sandy soil (Chandrapala and  Wimalasuriya, 2003), 

bare soil (Allen et al., 2007), maximum temperature (Jacob et al., 2002), scatter plot (Choi et al., 

2009, Long and Singh, 2012), and (b) for cold pixel: water body (Bastiaanssen et al., 2005), full 

vegetation (Allen et al., 2007), minimum temperature (Jacob et al., 2002), scatter plot (Choi et 

al., 2009, Long and Singh, 2012). Interestingly all these studies generated similar levels of ET 

accuracy. The METRIC algorithm may be considered as more conceptually evolved in the hot 

and cold pixel concept for its physical treatment of end members (Fig 4.1B), because the 

METRIC algorithm attempts to attach physical meaning to the hot and cold pixel by stating that 

at hot pixel some residual moisture is present (LE≠0) and at cold pixel, vegetation is transpiring 
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at 1.05 times the reference ET (H≠0).  These are deviations from SEBAL (Fig. 4.1). However, 

there is no study comparing SEBAL and METRIC to conclude that the physical treatment given 

to the end member pixels improved performance. Formulation for estimating sensible heat (H) 

flux in METRIC is given as follows:  

         

     

       
  (4.3) 

        
 

   
    

  

  
      

 

(4.4) 

where, rah,1-2 is aerodynamic resistance (s m
-1

) between two near-surface heights, z1 and z2 taken 

as 0.1 and 2 m, respectively, above the zero-plane displacement height. The dT1-2 parameter (K) 

represents the near-surface temperature difference between z1and z2. The dT1-2 parameter is 

computed for the study area using the linear function developed from the hot and cold pixel 

concept (Fig 4.1B). The METRIC approach is to fix the source/sink height (z1=0.1 m) and rely 

on the dT from the hot and cold pixel concept to accommodate for the differences between To 

and Ts. The rah,1-2 is computed using z1 (0.1 m) defined to be at an elevation above zoh, and thus it 

eliminates the use of zoh.   

A generic single source (GSS) model formulation is similar to Eq. 4.1 and 4.2, except To 

would be replaced by Ts and the source/sink height (zoh) would be defined as radiometric 

roughness length for heat.   

         

     

   
 

 

(4.5) 

    
 

   
    

       

   
      (4.6) 

METRIC and GSS differed only in their approach of defining and computing dT and 

corresponding rah, which would have direct influence on the estimation of H fluxes. The zoh in 

Eq. 4.6 is related to a radiometric excess resistance parameter, kB
-1

, (Garratt and Hicks, 1973) as:   

                   
 

(4.7) 

It needs to be clarified here that aerodynamic excess resistance parameter (k  
  ) is 

strictly an aerodynamic term related to the aerodynamic surface temperature. However, it 
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becomes merely a fitting parameter that is no longer connected to its theoretical background 

when To is replaced with Ts (Troufleau et al., 1997; Lhomme et al., 2000). Remote sensing 

algorithms that use the bulk transfer equations are required to use kB
-1

 (Verhoef et al., 1997; 

Lhomme et. al, 2000); however, the value of kB
-1

 can highly vary spatially and diurnally, and 

parameterization is not easy. Reported kB
-1

 values ranged between 1–12 (Su et al., 2001) and 

largerer values found to be less sensitive (Troufleau et al., 1997; Verhoef et al., 1997). A widely 

used constant kB
-1

 value of 2 proposed by Garrat and Hicks (1973) was too small for most 

surfaces (Kustas et al., 1989; Stewart et al., 1994; Verhoef et al., 1997; Su et al., 2001; Lhomme 

et al., 2000) and the fact that the overestimation of kB
-1

 has less consequence than 

underestimating it (Troufleau et al.,  1997; Verhoef et al., 1997), supports the usage of a value of 

around 6 (Steward et al., 1994 ). Recent developments in conceptualization and parameterization 

of kB
-1

 (Su et al., 2001) has proved to be promising in generating spatially variable kB
-1

 for 

accurate estimation of H using Ts (Kustas and Anderson, 2009). The objective of this study was 

to analyze the performance of a model that utilizes the hot and cold pixel concept (METRIC) and 

compares it against an algorithm (GSS) which utilizes the kB
-1

 parameter. 

4.3 Materials and Methods 

High resolution airborne imagery data from the Bushland Evapotranspiration and 

Agricultural Remote Sensing Experiments during 2007 and 2008 (BEAREX07 and BEAREX08) 

was used in this study.  Both METRIC and GSS were applied on eight high resolution airborne 

images acquired during two summer growing seasons for estimating hourly ET and validated 

against lysimeter data. 

4.3.1 Study area and instrumentations  

The BEAREX07 and BEAREX08 field campaigns were conducted at the USDA-ARS 

Conservation and Production Research Laboratory (CPRL) Bushland, Texas, during the 2007 

and 2008 summer growing seasons. This is a semi-arid region with geographic coordinates of 35º 

11' N, 102º 06' W and elevation of 1170 m above mean sea level. The CPRL has four large 

weighing lysimeters (3 m long x 3 m wide x 2.4 m deep) each located in the middle of 

approximately 4.7 ha fields arranged in a block pattern. The two lysimeter fields located in the 

east (NE and SE) were managed under irrigated conditions, and the other two lysimeter fields in 

the west (NW and SW) were under dryland management. Each lysimeter field was equipped 
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with an automated weather station that provided net radiation (Rn), Ts, soil heat flux (Go), Ta, 

relative humidity, and wind speed measurements (refer to Chávez et al., 2009 for details of field 

instrumentation). In addition, a grass reference ET weather station (0.31 ha), which is a part of 

the Texas High Plains ET Network, was located on the eastern edge of the SE irrigated lysimeter 

field (Marek et al., 2009). During the BEAREX07 (2007), the NE field was planted with forage 

sorghum (on 30 May), the SE field was planted to corn (on 17 May). The NW field was planted 

with grain sorghum in rows (on 6 June), and the SW field was planted with grain sorghum in 

clumps (on 6 June). During the BEAREX08 (2008), cotton was planted on all lysimeter fields. 

The planting was done on 21 May and 5 June on irrigated and dryland lysimeters, respectively.  

4.3.2 Airborne Remote Sensing Data  

Flying expeditions were conducted during the summer field campaign to acquire high 

resolution remotely sensed imagery using the Utah State University (USU) airborne digital 

multispectral system. It acquired high resolution imagery in the green (0.545–0.555 μm), red 

(0.665–0.675 μm), near-infrared (0.790–0.810 μm), and thermal infrared (8–12 μm) portions of 

the electromagnetic spectrum. Visible and near infrared images were acquired at 0.5–1 m spatial 

resolution, and the thermal images were acquired at 1–3 m. Eight images, four in each year, that 

were acquired close to 12 Noon CST during the mid-cropping season were used in this study. 

The acquisition dates were 2 July (183), 10 July (191), 26 July (207), 27 July (208) in 2007 and 

12 July (194), 20 July (202), 28 July (210), and 5 August (218) in 2008. Description of the post 

processing including geometric corrections, radiometric calibration, and atmospheric correction 

that can be found in Neale et al. (2012).  Crops in the irrigated field attained a near complete 

canopy by the last image acquisition date, whereas the dryland fields exhibited relatively less 

canopy cover. A 12 x 12 (m
2
) pixel grid covering the lysimeter location was used in all four 

lysimeter fields to extract average values of estimated ET, Rn, Go, Ts and aerodynamic 

parameters for evaluating the performances of METRIC and GSS algorithms.  

4.3.3 Evaluation Statistics 

Standard and regression statistics (mean, slope, intercept and coefficient of 

determination), error index statistics (MBE: mean bias error, MAE: mean absolute error and 

RMSE: root mean square error), and a dimensionless performance statistic (NSE: Nash-Sutcliffe 

efficiency) were used for model evaluation. All three error indices provide errors in the 
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constituent's unit and could also be expressed as relative error with respect to the mean. These 

three error indices served a unique purpose and were used in combination to diagnose the 

performances of the METRIC and GSS algorithms. The MBE was used as the indicator of 

under/overestimation error, the MAE was used as the primary indicator for average error, and the 

RMSE was reported as a conventional measure of error, and the MAPD (mean absolute percent 

difference) was used as a relative error indicator expressed as percentage deviation. Apart from 

these, the difference between RMSE and MAE was used as an indicator of variance in the 

individual errors of the dataset. The NSE indicated how well the plot of observed versus model 

estimated data fit the 1:1 line. Values between 0.0 and 1.0 are generally considered as acceptable 

levels of performance, whereas values <0.0 indicate unacceptable model performance (Moriasi et 

al., 2007). Formulations of performance statistics used in this study are provided as footnote in 

Table 4.1.     

4.3.4 Remote Sensing Based Surface Energy Balance Algorithm  

Most algorithms utilize the widely applied residual approach of surface energy balance to 

estimate ET at different temporal and spatial scales. The net energy coming from the sun and 

atmosphere in the form of short- and long-wave radiation is transformed and used for (a) heating 

the soil (Go; soil heat flux into the ground), (b) heating the surface environment (H; sensible heat 

flux to the atmosphere), and (c) transforming water into vapor (LE; latent heat from the crop/soil 

surfaces). All the energy involved in the soil-vegetation-atmosphere interface can be given as the 

Energy Balance (EB) equation: 

           
 

(4.8) 

where all units expressed in W m
-2

. Latent heat flux can be expressed as hourly ET (mm) (by 

dividing LE by the latent heat of vaporization and the density of water). In METRIC, net 

radiation (Rn) is expressed as an electromagnetic balance of all incoming and outgoing fluxes, 

and soil heat flux is computed using an empirical relationship developed by Bastiaanssen et al. 

(1998). Sensible heat flux is estimated as discussed in the previous section using the METRIC 

approach and the generic approach. METRIC algorithm with all sub-models and step-wise 

procedures was adopted as reported in published literature (Allen et al., 2005; Allen et al., 2007; 

and Allen et al., 2011). The algorithms were coded using Python programming language and 

executed in Arc-GIS 10.0.   
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4.4 Results and Discussion 

Performance statistics for estimating Ts, Rn and Go are given in Table 4.1. Estimated Rn 

and retrieved Ts, accuracies were within the typical error limits of instrument measurement 

uncertainty (5%). A RMSE of 16 W m
-2

 in estimating Go amounted to a high relative error of 

35% (MAPD); however, the positive NSE (0.12) indicated model's satisfactory performance. 

Soil heat flux was smallest and relatively low in magnitude as compared with the other 

components of the energy balance for the present study domain, hence any error in Go had 

minimal influence on the LE estimation.       

Modeled ET from METRIC algorithm plotted against observed instantaneous ET (Fig. 

4.2) showed a lag and large scatter along the regression line in the estimated values. However, a 

relatively small scatter and a small lag between the GSS-derived ET and observed data points 

were observed in the regression plot of the GSS model (Fig. 4.3). Comparison of the METRIC- 

and GSS-derived ET for irrigated and dryland lysimeter fields indicated a distinct difference in 

the performance of METRIC in estimating ET (Fig. 4.2). However, no such distinction could be 

made for GSS (Fig. 4.3). Statistical comparison of METRIC-estimated irrigated and dryland ET 

separately against observed data revealed the performance biases between the two water regimes 

with relative error of 11% and 45% respectively. The relative errors were 18% and 20% with 

GSS-estimated ET for irrigated and dryland fields, respectively. In dryland fields with sparsely 

vegetated surface undergoing frequent water stress, the difference between Ts and To could 

exceed 10°C (Chehbouni et al., 1996) whereas, in an irrigated field with well-watered dense 

homogeneous crops, the differences between Ts and To is minimal (1–2°C; Kustas et al., 1989). 

Accounting for the large difference between Ts and To in sparse vegetation water stressed 

condition is more critical for the model's performance than for the small difference arising under 

irrigated full canopy cover condition. Thus, dT is a more sensitive parameter for sparsely 

vegetated condition than for a dense non-water stressed vegetated condition.  

Overall performance of estimated H fluxes from METRIC and GSS were compared 

against H derived as the residual of the observed components of the energy balance Eq. (4.8) and 

tabulated in Table 4.2. The H estimated from METRIC is marked by a large overestimation error 

of 98 W m-2 (MBE), a high relative error of 75% (MAPD) and a NSE value of -0.19, indicating 

poor performance. The performance of GSS model in predicting H was significantly better with 

an underestimation error of -44 W m-2, relative error of 42.6% and a positive NSE value of 0.63. 
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The overestimation error in the METRIC-estimated H fluxes translated into same magnitude of 

underestimation error in the estimation of LE fluxes. Interestingly, the greater relative error of 

75% in the METRIC-estimated H fluxes corresponded to a nominal error of 24% in the 

estimated LE fluxes, and this is attributed to the unequal partitioning of the available energy into 

the H (mean: 144 W m-2) and LE (mean: 405 W m-2) fluxes under the energy non-limiting and 

water sufficient conditions. The GSS overestimated LE with a relative error of 18% which had 

its origin traced back to the underestimation in corresponding H estimates. (Table 4.2). The GSS-

LE estimates outperformed the METRIC-LE estimates in all the performance measures. The 

difference between RMSE and MAE (RMSE – MAE) was almost double in the case of the 

METRIC-estimated LE fluxes as compared with GSS estimates indicating a larger variance in 

the individual errors, substantiating the large scatter illustrated in Fig. 4.2. The LE or ET 

underestimation errors in SEBAL and SEBAL-like algorithms is reported by various studies 

(French et al., 2005; Long and Singh 2012, Choi et al., 2009) and is the direct consequence of 

overestimation of H fluxes. Transformation of overestimation errors in METRIC-H to 

underestimation error in GSS-H (evident from Figs. 4.1 and 4.2, and Table 4.2) provides an 

adequate reason to conclude that dT is the parameter responsible for this biased behavior. The 

performance statistics for instantaneous ET evaluated for METRIC and GSS are provided in 

Table 4.2. 

Table 4.3 gives the dT and rah values from METRIC and GSS approaches for two soil 

moisture regimes on two image acquisition dates. The H is a function of dT and rah as described 

by Eqs. 4.3 and 4.4 for METRIC and Eqs. 4.5 and 4.6 for GSS. Both dT and rah are intrinsically 

related, hence only a qualitative analysis is possible for the dT and rah values derived from the 

two approaches and reader may refer to Liu et al. (2007) for their ranges. Nevertheless, it could 

be concluded that GSS derived dT and rah are more accurate since it produced significantly better 

H estimates. Some of the critical observations inferred from Table 4.3 are: (a) negative dT for the 

irrigated field in the GSS model (b) dT for irrigated fields are always smaller than that for 

dryland field, (c) the differences in the magnitude of dT and rah between the two models and (d) 

relatively  small values of zoh in GSS model compared with a constant value of z1 (0.1) used in 

METRIC.   
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4.5 Summary   

The dT as defined in METRIC and computed from the hot and wet pixel concept may not 

represent and account for the non-unique relationship existing between To and Ts. The GSS 

model with an empirical correction in the form of excess resistance parameter, kB
-1

, accounts for 

the difference between To and Ts. Hence an improvement in the overall performance and 

negligible bias between irrigated and dryland fields can be achieved. 

The influence of dT cannot be seen under well-watered, densely cropped, energy non-

limiting conditions. Because under such a condition, the LE fluxes are much greater than H 

fluxes and errors in H fluxes would have limited influence on the LE estimation. In other words, 

H is relatively insensitive parameter for the estimation of LE flux in irrigated conditions.  

The overall relative error in METRIC-estimated ET was 24% whereas from GSS it was 

18%, while this difference might not seem large yet this difference is solely the attribute of the 

dT parameter and got modulated depending on the partitioning of available energy (between H 

and LE). For dryland fields, the relative error in ET from METRIC was 45% whereas from GSS 

it was 20%, once again indicating the uncertainty in using the hot and cold pixel based dT 

parameter. More profound and direct impact of dT is seen in the H flux estimation were 

METRIC performance was poor with negative NSE values.  

The dT is linked to rah physically; however, the non-availability of To and the theoretical 

nature of zoh forces adoption of empiricism. The accuracy of H fluxes depends on appropriate dT 

and corresponding rah. METRIC approach fails in producing appropriate dT/rah under 

heterogeneous, sparse and water limited vegetation conditions. Meanwhile, the GSS approach of 

adopting a constant radiometric excess resistance parameter (kB
-1

) not only produced 

significantly improved results but also reduced bias between irrigated and dryland fields proving 

that this approach accommodates for the discrepancy between To and Ts.  

The selection criteria of hot and cold pixel or even the physical treatment of the hot and 

cold pixels has limited and uncertain influence on the performance of METRIC and SEBAL-like 

models. However, the developers  have put great emphasis on this highly subjective selection 

process, adding that the algorithm should be executed by trained experts alone (Allen et al., 

2007; Batiaanssen et al., 2010; Allen et al., 2011), again a subjective requirement. The process of 

selection of the hot and cold pixel is highly uncertain and operator dependent, hence it becomes 
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difficult to ascertain any form of sensitivity for the dT parameter. Often a trial and error method 

is adopted to select the pixels to match the requirements. 

4.6 Conclusions 

The two algorithms (METRIC and GSS) examined in this study only differed in their 

approach of computing the dT value. Hence any inconsistency in model performance in 

estimating ET should solely be attributed to the approaches used in calculating this parameter. 

The GSS model outperformed METRIC in all the performance statistics. The claims that the dT 

parameter computed using the hot and cold pixel concept considers for the atmospheric 

attenuations, To–Ts difference, spatially variability of zoh, and spatial variability of Ta is 

implausible especially when the existence of dT versus Ts relationship is questionable and never 

been tested thoroughly. Too much is at stake from a regression equation developed from merely 

two subjective points. Numerous studies reported the high sensitivity of dT and termed it as the 

backbone of SEBAL and SEBAL-like models; however, the large subjectivity and uncertainty 

attached to dT computation cannot allow a fair sensitivity analysis. SEBAL-like models 

including the METRIC model never fully evaluated independently the validity of dT versus Ts 

relationship. The high degree of ambiguity in the selection of hot and cold pixel lead to large 

variations in the dT function, thus making the process a trial and error method. The approach of 

hot and cold pixel should only be considered as an empirical method for estimating the dT 

parameter over a relatively homogeneous and well managed landscape, and any physical 

treatment given to the end member pixel may not warrant performance augmentation. Finally,  

the approach of deducing dT from the hot and cold pixel concept has been exploited beyond its 

limited capacity and detail studies should be carried out to address the several drawbacks and 

uncertainties when applying over heterogeneous spatial domain. 
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Table 4.1 Performance statistics for retrieved Ts (Obs. Mean: 33.3°C), Rn (Obs. Mean: 576 

W m
-2

) and Go (Obs. Mean: 34 W m
-2

). Total number of observations - 32. 

Parameter 
Estimated 

Mean 
MBE1 MAE2 RMSE3 MAPD4 NSE5 

 

R2 slope y-

intercept 

Ts (
oC) 33.4 0.06 0.93 1.2 2.8 0.96 0.97 0.98 0.4 

Rn (W m-2) 580 3.3 24 29 4.1 0.73 0.75 0.86 81 

Go (W m-2) 33 1.5 12 16 35.2 0.12 0.17 0.25 24 
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Table 4.2 Performance statistics for H (Obs. Mean: 144 W m
-2

), LE (Obs. Mean: 405 W m
-

2
), and ET (Obs. Mean: 0.60 mm h

-1
) 

 

Estimated 

Fluxes 

Mean MBE MAE RMSE MAPD NSE 
 

R
2
 slope y-

intercept 

HMETRIC 242 98 108 125 75.1 -0.19 0.61 0.80 126 

LEMETRIC 313 -92 97 122 23.9 0.34 0.76 0.93 -65 

ETMETRIC 0.46 -0.14 0.14 0.18 23.9 0.34 0.76 0.93 -0.09 

HGSS 100 -44 61 70 42.6 0.63 0.85 1.1 -56 

LEGSS 459 53 75 87 18.5 0.67 0.85 1.08 18 

ETGSS 0.68 0.08 0.11 0.13 18.5 0.67 0.85 1.07 0.04 
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Table 4.3 Temperature gradient, dT, and aerodynamic resistance, rah, values from 

METRIC and GSS approach 

Date Field
†
 

METRIC GSS 

dT rah
*
              dT rah zoh 

July 28, 2008 

NE 
0.83 9.15 -3.54 34.85 0.00030 

SE 
1.06 9.47 -2.74 36.81 0.00025 

NW 
3.52 11.69 5.75 51.21 0.00003 

SW 
3.01 11.34 3.98 47.44 0.00005 

July 27, 2007 

NE 
1.30 11.05 -4.53 71.48 0.00067 

SE 
1.24 9.88 -4.68 67.91 0.00071 

NW 
3.40 13.85 1.31 70.94 0.00035 

SW 
3.68 14.25 2.10 71.53 0.00029 

*zoh in METRIC is replaced by empirical level z1 with a fixed value of  0.1 m.   
† 

NE & SE are irrigated fields and NW & SW are dryland fields 
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Figure 4.1 The dT formulation in SEBAL and METRIC for a July 28, 2008 image acquired 

over the USDA-ARS Conservation and Production Laboratory, Bushland, Texas. Note the 

change in the dT function from SEBAL to METRIC. 
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Figure 4.2 Observed versus METRIC-estimated instantaneous ET (mm h-1) 

 

  



113 

 

 

 

Figure 4.3 Observed versus GSS-estimated instantaneous ET (mm h-1) 
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Chapter 5 - Lysimetric evaluation of SEBS (Surface Energy Balance 

System) using high resolution airborne imagery  

5.1 Abstract 

Uses of spatial ET estimates are innumerable including hydrological modeling, irrigation 

scheduling, drought and flood monitoring and global climate change studies. The objective of 

this study was to evaluate the ability of the Surface Energy Balance System (SEBS) to estimate 

hourly ET fluxes using very high resolution (0.5-3 m) aircraft images acquired during the 

BEAREX07-08 (Bushland ET and Agricultural Remote Sensing Experiment 2007 and 2008). 

Accuracy of the predicted ET fluxes were investigated using observed data from 4 large 

weighing lysimeters, each located at the center of approximately 5 ha field in the USDA-ARS 

Conservation and Production Research Laboratory, Bushland, Texas.  The uniqueness and the 

strength of this study come from the fact that it evaluates the SEBS for irrigated and dryland 

conditions simultaneously with each lysimeter field planted to tall and short crops over the two 

year period. Seventeen images acquired from early to mid cropping formation period were used 

in the study. SEBS algorithm performed equally well for both irrigated and dryland conditions in 

estimating the hourly ET with overall relative error of 12.6% .  

5.2 Introduction 

Surface Energy Balance System (SEBS) was developed by Su (2002) for the estimation 

of atmospheric turbulent fluxes using satellite earth observation data. SEBS adopts the concept 

from the SEBI (Surface Energy Balance Index) scheme (Menenti and Choudhury 1993). A better 

parameterization of turbulent heat transfer, bulk atmospheric similarity theory and algorithms to 

infer spectrally integrated hemispherical reflectance and brightness temperature has been 

integrated in SEBS (Menenti et al., 2003). At large spatial scales SEBS requires reference 

potential temperature and humidity of air at an appropriate height above heterogeneous land (Jia 

et al., 2003). This requirement of reference height taken at the planetary boundary layer (PBL) 

and observation values of potential temperature and humidity at this height can be seen as a 

bottleneck for application over heterogeneous land surfaces. Fields of wind, potential 

temperature and humidity of air generated by weather prediction model integrated over the 

planetary boundary layer has been used successfully to execute SEBS over large heterogeneous 
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land (Jia et al., 2003). Remote Sensing ET algorithms provides instantaneous ET value which are 

converted into daily, monthly, seasonal and yearly values by applying some conversion 

formulae. Better fit of the observed values were seen for long term ET estimation, from the fact 

that either conversion has components of observed variables or averaging smoothens/cancels out 

the errors. Validation using annual ET computed from simple water balance model suggested 

effective estimation of annual ET (Jin et al., 2009).   

The aerodynamic resistance in a single source model is usually estimated on the basis of 

surface layer similarity theory. In single source models, the radiometric surface temperature, 

measured by the remote sensing thermal sensors, is assumed to be equivalent to the aerodynamic 

surface temperature. This approximation can be applied to heterogeneous land surfaces by 

adding an excess resistance term (kB
-1

) to the aerodynamic resistance (Jia et al., 2003). SEBS 

provides a new parameterization of aerodynamic resistance to heat transfer (in terms of kB
-1

) 

thus accounting for both aerodynamic excess resistance and radiometric excess resistance to 

relate sensible heat (H) to radiometric surface temperature.  

SEBS was found to be sensitive to meteorological parameters (air temperature, air 

pressure and wind speed) and surface temperature (van der Kwast et al., 2009). SEBS have been 

used to estimate ET from data acquired with multiple sensors (ETM, ASTER, and MODIS) and 

evaluated using eddy covariance flux tower measurements. However, researchers have reported 

difficulty in evaluating large scale remote sensing results over heterogeneous terrain (McCabe 

and Wood, 2006). Also, SEBS has never been evaluated for its ability to estimate hourly ET 

fluxes from very high resolution remote sensing data in the semi-arid, highly advective, Texas 

High Plains. Therefore, the main objective of this study was to evaluate the Surface Energy 

Balance System (SEBS) to estimate hourly ET fluxes using very high resolution images in the 

Texas High Plains. Remote sensing data acquired during the Bushland Evapotranspiration and 

Agricultural Remote Sensing Experiment 2007 and 2008 (BEAREX07-08) was used for this 

purpose. An important aspect of the present study was that the SEBS algorithm was evaluated 

against the ET rates measured using four large weighing lysimeters, each located at the center of 

4.7 ha field. The uniqueness and the strength of this study come from the fact that it evaluates 

SEBS algorithms for irrigated and dryland conditions simultaneously.  
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5.3 Materials and Methods 

The Bushland Evapotranspiration and Agricultural Remote Sensing Experiment 2007 and 

2008 (BEAREX07 and BEAREX08) provided a unique opportunity to evaluate the turbulent 

exchange of mass and energy over agricultural landscape. SEBS was executed for 17 high 

resolution airborne images acquired during the BEAREX07 and BEAREX08 (Table 5.1) field 

campaign and validated against large precision weighing lysimeters. Validation points consisted 

of two irrigated and two dryland fields located in the semi-arid Texas High Plains known for 

significant advection and nighttime ET (Tolk et al., 2006). Detailed information on the 

experimental set-up, algorithm description and evaluation process follows. 

5.3.1 Study area and data acquisition 

The BEAREX07 was conducted at the USDA-ARS Conservation and Production 

Research Laboratory during the 2007 summer cropping season to enhance understanding of land 

surface hydro-meteorological process in the semi-arid, highly advective, Texas High Plains and 

to develop a comprehensive dataset for rigorous testing of remote sensing based ET models. 

The CPRL has four large weighing lysimeters (3 m long x 3 m wide x 2.4 m deep) each 

located in the middle of a 4.7 ha fields arranged in a block pattern. Two lysimeters fields located 

on the east (NE and SE) were managed under irrigation conditions and two lysimeters on the 

west (NW and SW) were managed under dryland conditions. In 2007 (BEAREX07), the NE 

field was planted with forage sorghum (on May 30), the SE field was planted with corn (on May 

17) both being grown for silage.  The NW field was planted with grain sorghum in rows (on June 

6), and the SW field was planted with grain sorghum in clumps (on June 6). In 2008 

(BEAREX08), the NE and SE fields were planted to cotton on May 21, and the NW and SW 

dryland lysimeters fields were planted to cotton on June 5 (Table 5.1). Cotton (variety Delta Pine 

117) was seeded at 15.8 plants/m
2
 on raised beds spaced at 0.76 m. Each lysimeter field was 

equipped with net radiometer, infra-red thermometer, soil heat flux plates and for measuring net 

radiation, radiometric surface temperature, and soil heat fluxes, respectively. In addition a grass 

reference ET weather station field (0.31 ha), which is a part of the Texas High Plains ET 

Network (TXHPET, 2006) is located on the eastern edge of the irrigated lysimeter fields.   

Flying expeditions were carried out to collect remotely sensed imagery using the Utah 

State University (USU) airborne digital multispectral system. The system acquired high 
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resolution imagery in the visible, near infrared and thermal infrared portions of the 

electromagnetic spectrum. Visible and near infrared images were acquired at 0.5 m spatial 

resolution while the thermal images were acquired at 1.8 m. Seventeen images acquired during 

the early and mid cropping season were used to evaluate the SEBS algorithm in a GIS 

environment. Multiple images acquired during single day were included in the analyses to 

evaluate the capability of the algorithm in capturing the variations of energy fluxes and 

resistance terms. Image acquisition date and time, with various weather parameters at the time of 

image acquisition are presented in Table 5.2.  

5.3.2 Surface Energy Balance System (SEBS) 

Surface Energy Balance System (SEBS) is a single source land surface energy balance 

algorithm with a dynamic model for the thermal roughness and Monin-Obukhov Atmospheric 

Surface Layer (ASL) similarity for surface layer scaling. SEBS uses an excess resistance term 

that accounts for the fact that the roughness lengths for heat and momentum are different for 

canopy and soil surfaces. Primarily, three input data sets were utilized for executing the SEBS in 

this study: (1) albedo, emissivity, surface temperature and Normalized Difference Vegetation 

Index (NDVI) derived from remote sensing data (2) air pressure, air temperature, relative 

humidity, and wind speed measurements from weather stations, and (3) downward solar 

radiation.  

Surface energy balance governs the water exchange and partition of the surface turbulent 

fluxes into sensible and latent heat in the soil-vegetation-atmosphere continuum. The residual 

method of surface energy balance is one of the most widely applied approaches to mapping ET at 

different temporal and spatial scales. In its simplest form the surface energy balance equation can 

be written as: 

            (5.1) 

where, Rn is the net radiation, G0 is the soil heat flux into the soil, H is the sensible heat flux into 

the atmosphere,  and LE is the latent heat flux (L is the latent heat of vaporization and E is the 

actual evapotranspiration). 

Net radiation (Rn) is the dominant term in the energy balance equation as it represents the 

source of energy. It must be balanced by the thermodynamic equilibrium of other terms in the 

energy balance equation. The net radiation can also be expressed as an electromagnetic balance 
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of all incoming and outgoing fluxes reaching and leaving a flat horizontal and homogeneous 

surface as: 

                                    
         

  (5.2) 

where αo is the broadband surface albedo, S↓ is the incoming shortwave radiation, εa is the 

emissivity of air, Ta is the air temperature, εo is the surface emissivity, Ts is the surface 

temperature and σ is Stefan-Boltzmann constant. 

 SEBS requires accurate values of land surface albedo and land surface 

temperature (Jia et al., 2003). The broadband albedo was calculated as the total sum of the 

different in-band planetary albedos according to different weights for different bands. The band-

pass solar exoatmospheric irradiance (ESUNλ) is an average solar irradiance weighted by 

corresponding spectral band response function. It was computed from: 

 

      
                

          
 (5.3) 

where, S(λ) is the wavelength dependent radiance spectral response also known as spectral 

response function for the sensor in W m
-2

 μm
-1

,  Eo(λ) is the top of the atmosphere solar 

irradiance or the extraterrestrial solar irradiance in W m
-2

 μm
-1

. The integration interval is within 

the pass band of the sensor; ∆λ is the wavelength interval taken as 0.005μm.The weight for each 

band was calculated and equation for broadband albedo (αo) derived as : 

                                    (5.4) 

where green, red and NIR are the reflectance of the respective bands. 

The remote sensing based variables that best explain the soil heat transport behavior are 

albedo, surface temperature and land cover vegetation index. The evaluation of Go, usually 

presented as a ratio Go/Rn, was adopted from Bastiaanssen et al. (1998):  

  

  
 

           

     

          
                         (5.5) 

where c1 and c2 are locally calibrated coefficients with values of 0.12 and 0.42, respectively. 

The apparent emissivity of the atmosphere was estimated from equations based on vapor 

pressure and temperature at the standard meteorological stations. For clear skies, the Brutsaert 

(1975) formulation was used as: 
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(5.6) 

where Ta is the air temperature [K], ed is the vapor pressure [kPa] 

In SEBS, the sensible heat flux (H) is estimated considering energy balance at limiting 

cases. Under dry-limit, the latent heat (LEdry) becomes zero due to the limitation of soil moisture 

and the sensible heat flux (Hdry) is at maximum value. Therefore, 

                   (5.7) 

           (5.8) 

Under wet limit evaporation takes place at potential rate (LEwet) and the sensible heat flux (Hwet) 

value is at its minimum. Therefore, 

                                        (5.9) 

 

The sensible heat flux at wet limit is derived from an equation similar to the Penman-Monteith 

equation as: 

              
   

   
 
      

 
     

 

 
  

 

(5.10) 

The actual sensible heat flux (H) is given by the Equation 7.11 and is constrained in the range set 

by the sensible heat flux at wet (Hwet) and dry (Hdry) limits. 

     

  

   
 (5.11) 

where,  ρCp is the volumetric heat capacity, rah is the aerodynamic resistance to heat transport 

and ∆t is the difference between potential surface temperature and potential air temperature. 

5.3.3 The Monin-Obukhov Similarity (MOS) stability correction functions 

The MOS stability correction functions for momentum and sensible heat transfer Ѱm and 

Ѱh respectively are defined in the following integrated form 
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 (5.12) 

 

where y=-(z-d)/L. i equals m, or h  for momentum and sensible heat transfer respectively. 

     
       

 
  

 

(5.13) 

     
   

 
  

 

(5.14) 
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(5.19) 
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(5.21) 

On the basis of data reported by Högström (1988), and Kader and Yaglom (1990), Brutsaert 

(1999) assigned the constants in Equations (7.13–7.21) as  a=0.33, b=0.41, m=1.0, c=0.33, 

d=0.057 and n=0.78. 

5.3.4 Evaluation criterion   

Coefficient of determination (R
2
): It describes the proportion of the variance in 

measured data explained by the model; R
2
 ranges from 0 to 1, with higher values indicating less 

error variance.   

     
           

            
 

                       
   

 
   

     (5.22) 

Nash-Sutcliffe efficiency (NSE): It indicates how well the plot of observed versus 

simulated data fits the 1:1 line. NSE is computed as shown in Equation 5.23. NSE ranges 

between −∞ and 1.0 (1 inclusive), with NSE =1 being the optimal value. Values between 0.0 and 

1.0 are generally viewed as acceptable levels of performance, whereas values <0.0 indicates 

unacceptable performance (Moriasi et al., 2007).  

    
                  

  
   

 
   

         
  (5.23) 

Mean bias error (MBE) and Percent bias (PBIAS): These indicate error in the units of 

the constituent of interest and also as percentage error, which facilitates result analysis. A value 

of zero or close to zero indicates good performance of the model. The optimal value of PBIAS is 

0.0, with low-magnitude values indicating accurate model simulation. Positive values indicate 

model overestimation error, and negative values indicate model underestimation error. 

    
 

 
        

 

   

    (5.24) 

 

      
        

 
   

   
      (5.25) 
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Root mean square error (RMSE) and percentage root mean square error 

(%RMSE): These are commonly used error index statistics with lower value range indicating 

better model performance.  

      
 

 
          

 

 

   

            (5.26) 

             
    

   
 
   

 

      
(5.27) 

where in equations 20-25, n is the number of observations points, Oi and Mi are the observed and 

model predicted values at each comparison point i, and    and      are the arithmetic means of the 

observed and modeled values. 

Mean absolute error (MAE) and Mean absolute percent error (MAPD): MAE is the 

most natural and unambiguous measure of average error magnitude, and recommended for all 

dimensioned evaluations and inter-comparisons of average model performance. 

    
 

 
        

 

   

 (5.28) 

     
        

 
   

   
 
   

     (5.29) 

5.4 Results and Discussion 

SEBS algorithm was applied on 17 high resolution aircraft imagery acquired during the 

BEARX07-08. Performance statistics for Ts, Rn, and Go for the complete data set (n = 68) are 

provided in Table 5.3. Comparison of Ts retrieved from the airborne thermal images was 

validated against the measured data, showed good agreement with an MAE of 1.1°C representing 

2.4% (MAPD) relative error. The performance of the airborne retrieved temperature was within 

the typical error of 1 to 1.5°C reported for satellite and airborne sensors. Net radiation was 

estimated with an average error of 23.0 W m
-2

 (MAE) and RMSE of 28.8 W m
-2

. Evaluation 

statistics revealed good performance of the Rn model with a small relative error of 4% (MAPD), 

which was better than the reported range of 5 to 10% (~ 30–60 W m
-2

) and most instrument 

measurement uncertainty. Soil heat flux was smallest amongst the energy balance components in 

the present agricultural location, where the observed mean of Go was 38.7 W m
-2

 which was 
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significantly smaller than the observed means of Rn (577 W m
-2

), H (171 W m
-2

) and LE (374 W 

m
-2

). Past studies have reported a large error range of 10–40 W m
-2

 (15–30%) in the estimation 

of Go derived from the present parameterization involving fraction of Rn and a vegetative index 

formulation. Several reasons could explain the poor performance of the Go model, including 

inadequate calibration of the empirical models and the model's incapability in capturing the large 

spatial variability. Go was estimated with an overall error of 13.0 W m
-2

 (MAD), RMSE of 17 W 

m
-2

 and relative error of 33.6 % (MAPD). NSE value of 0.21 indicated average performance of 

the soil heat flux model. However, we articulate that the overall underperformance of Go is not 

expected to influence the ET estimates because of the small magnitude of error which is evident 

from the plot of the energy balance components in Figure 5.1.        

The hourly ET estimated by the SEBS algorithm showed strong correlation with the 

observed lysimeter data (Fig.5.2). Using all four lysimeter field data (68 data points), the overall 

error in SEBS-ET estimation was 0.01 mm h
-1

 (MBE), 0.10 mm h
-1

 (RMSE), 2.0% (PBIAS) and 

16.8% (%RMSE) (Table 5.4). These results are comparable to prediction accuracy reported in Su 

(2002). It is known that the error tends to decrease as the instantaneous ET is interpolated into 

daily to seasonal values. Therefore, the error statistics in this study show good results for the 

estimated hourly ET compared with the lysimeter data. The R
2
 and NSE values were 0.87 and 

0.84, respectively, indicated good linear relationship and model performance. Model evaluation 

for the irrigated and dryland lysimeter fields separately is presented in Table 5.5 and Table 5.6. 

SEBS performed equally well for irrigated (NE and SE) and dryland (NW and SW) fields. Figure 

5.3 shows the plot of observed versus estimated ET for the irrigated and dryland fields 

seperately. Evaluation statistics shows good performance in the prediction of sensible heat flux 

(Table 5.4–5.6). Stewart et al. (1994) reported that H can be estimated accurately using 

radiometric surface temperature when good estimation of kB
-1

 is available. The kB
-1

 

parameterization in the SEBS algorithm, involving canopy structure in terms of canopy height, 

LAI and fractional vegetation cover could rightly estimate the roughness length for heat transfer 

(zoh) for the dryland and irrigated fields thus providing good ET values for the dense and sparse 

vegetation conditions. Accurate radiometric surface temperature, estimation of roughness 

momentum transfer from canopy height measurements for each image and quality 

meteorological inputs, all contributed towards good estimation of hourly ET. Appendix A 
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provides the aerodynamic roughness parameters and temperature gradients estimated for the four 

fields.       

5.5 Summary 

SEBS algorithm was applied to eleven high-resolution airborne multispectral images 

acquired during early and mid summer cropping season of 2007 and 2008, and evaluated against 

lysimeter data. The performance of the algorithm was consistently good for irrigated (densely 

vegetated) and dryland (sparsely vegetated) conditions. 
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Table 5.1 Image acquisition date and information on crops in the lysimeter field 

No.  Year  
Acquisition  

Date (DOY)  

Time 

(CST) 

Lysimeter Field  

NE 

(Irrigated) 

SE 

(Irrigated) 

NW 

(Dryland) 

SW  

(Dryland) 

1  

2007  

June,24 (175)  10:20  

Forage 

Sorghum  

May 30  

Forage Corn  

May 17  

Grain 

Sorghum  

June 6  

Clumped 

Grain 

Sorghum  

June 6  

2  June,25 (176)  11:33  

3  July,02 (183)  03:27  

4  July,10 (191)  09:53  

5  July,10 (191)  11:15  

6  July,10 (191)  02:50  

7  July,11 (192)  12:40  

8  July,26 (207)  11:37  

9  July,27 (208)  09:55  

10  July,27 (208)  11:16  

11  July,27 (208)  01:33  

12  

2008  

June,26 (178)  10:52  

Cotton  

May 21  

Cotton  

May 21  

Cotton  

June 05  

Cotton  

June 05  

13  July,12 (194)  11:20  

14  July,20 (202)  11:06  

15  July,28 (210) 11:24 

16  Aug,05 (218) 11:43  

17  Aug, 13 (226)  11:25  
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Table 5.2 Weather station parameters required as input to the model 

Date 
Time 

(CST) 

Day of 

Year 

S 

(Wm
-2

) 

Ta 

(°C) 

RH 

(%) 

BP 

(kPa) 

Wind 

Speed 

(ms
-1

) 

06/26/08 10:52 AM 178 826.2 29.8 34 88.4 7.8 

07/12/08 11:20 AM 194 897.3 21.6 44 88.9 9.1 

07/20/08 11:06 AM 202 805.4 27.5 44 89.0 4.5 

07/28/08 11:24 AM 210 844.3 31.0 50 88.1 5.3 

08/05/08 11:43 AM 218 834.4 31.9 28 88.9 2.4 

08/13/08 11:25 AM 226 825.7 25.9 53 88.6 4.8 

06/24/07 10:20 AM 175 767.5 27.8 45 88.4 2.2 

06/25/07 11:33 AM 176 896.9 27.9 51 88.6 4.9 

07/02/07 03:27 PM 183 788.8 25.7 51 88.8 2.6 

07/10/07 09:53 AM 191 653.1 29.3 37 88.5 1.4 

07/10/07_1 11:15 AM 191 793.6 31.8 32 88.6 2.2 

07/10/07_2 02:50 PM 191 883.0 33.6 26 88.6 4.0 

07/11/07_3 12:40 PM 192 935.2 27.6 54 88.6 4.5 

07/26/07 11:37 AM 207 900.6 28.6 43 88.6 4.8 

07/27/07_1 09:55 AM 208 646.3 25.3 57 88.7 2.4 

07/27/07_2 11:16 AM 208 798.8 29.7 37 88.6 2.0 

07/27/07_3 01:33 PM 208 879.1 31.4 30 88.5 2.8 

S is Solar irradiance , Ta is air Temperature, RH is relative humidity, BP is barometric pressure 
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Table 5.3 Performance statistics for Ts (Obs. Mean: 33.5 °C), Rn (Obs. Mean:577), and Go 

(Obs. Mean:38.7); (no. of observations =68) 

Estimated 

parameter 

Mean MBE PBIAS 

% 

MAE MAPD 

% 

RMSE RMSE 

% 

NSE R
2
 

Ts (
o
C) 33.5 0.03 0.08 0.80 2.4 1.1 3.3 0.96 0.96 

RN (W m
-2

) 571 -5.6 -1.0 23.0 4.0 28.8 5.0 0.86 0.87 

Go (W m
-2

) 31.9 -6.6 -17.5 13.0 33.6 17.0 43.8 0.21 0.34 
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Table 5.4 Performance statistics for Sensible Heat  (Obs. Mean:171.2), Latent Heat (Obs. 

Mean: 374.6) and Evapotranspiration (Obs. Mean:0.56) for the complete data (N=68) 

Estimated 

parameter 

Mean MBE PBIAS 

(%) 

RMSE RMSE 

(%) 

MAE MAPD 

(%) 

NSE R
2
 

H 

(W m
-2

) 
170 -1.3 -0.8 64.7 37.8 50.8 29.7 0.69 0.75 

LE 

(W m
-2

) 
381 6.8 1.8 63.4 16.9 47.6 12.7 0.84 0.87 

ET 

(mm h
-1

) 
0.57 0.01 2.0 0.10 16.8 0.07 12.6 0.84 0.87 
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Table 5.5 Irrigated lysimeter field performance statistics for Sensible Heat  (Obs. 

Mean:125.5),  Latent Heat (Obs. Mean: 438.8) and Evapotranspiration (Obs. Mean:0.65) 

fluxes (N=38) 

Estimated 

parameter 

Mean MBE PBIAS 

(%) 

RMSE RMSE 

(%) 

MAE MAPD 

(%) 

NSE R
2
 

H 

(W m
-2

) 
131 5.9 4.7 74.6 59.4 56.3 44.8 0.63 0.74 

LE 

(W m
-2

) 
456 17.3 3.9 73.4 16.7 55.9 12.7 0.79 0.84 

ET 

(mm h
-1

) 
0.67 0.03 3.9 0.11 16.6 0.09 12.6 0.79 0.84 

 

 

 

 

Table 5.6 Dryland lysimeter field performance statistics for Sensible Heat  (Obs. 

Mean:208.8), Latent Heat (Obs. Mean: 310.4) and ET (Obs. Mean:0.46) (N=38) 

Estimated 

parameter 

Mean MBE PBIAS 

(%) 

RMSE RMSE 

(%) 

MAE MAPD 

(%) 

NSE R
2
 

H 

(W m
-2

) 
201 -7.4 -3.5 55.3 26.5 46.3 22.2 0.66 0.73 

LE 

(W m
-2

) 
307 -3.7 -1.2 51.6 16.6 39.3 12.7 0.84 0.86 

ET 

(mm h
-1

) 
0.46 -0.00 -0.73 0.08 16.6 0.06 12.6 0.84 0.86 
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Figure 5.1 Energy balance components 
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Figure 5.2 Observed versus estimated ET from SEBS for the complete data set (N=68) 
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Figure 5.3 Performance of the SEBS for (a) irrigated and (b) dryland lysimeter fields 

(N=34) 
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Figure 5.4 Observed versus estimated sensible heat flux for the complete data set (N=68) 
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Figure 5.5 Observed versus estimated sensible heat flux for Irrigated and dryland fields 

(N=34) 
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Appendix C - Aerodynamic Roughness Parameters 

Table 5.7 Aerodynamic roughness parameters and temperature gradient for the four fields 

under irrigation (NE and SE) and dryland (NW and SW) management. 

Date Field zom (m) kB
-1

 zoh (m) dT (°C) rah (m s
-1

) 

26 June, 2008 

NE 0.012 19.6 0.00001 9.1 33.3 

SE 0.010 26.5 0.00001 8.8 33.7 

NW 0.009 49.3 0.00001 8.2 34.6 

SW 0.008 60.0 0.00001 8.0 34.9 

12 July, 2008 

NE 0.052 5.4 0.00026 6.4 17.7 

SE 0.045 5.7 0.00017 7.0 19.0 

NW 0.018 8.7 0.00001 12.3 27.2 

SW 0.024 7.3 0.00002 11.1 25.1 

20 July, 2008 

NE 0.085 3.4 0.00284 1.7 21.4 

SE 0.065 3.8 0.00152 2.9 23.5 

NW 0.008 14.0 0.00001 11.4 50.7 

SW 0.017 6.9 0.00005 8.7 42.8 

28 July, 2008 

NE 0.124 2.6 0.00813 -2.3 39.8 

SE 0.104 2.9 0.00551 -1.5 34.9 

NW 0.011 12.6 0.00001 7.3 46.1 

SW 0.018 7.5 0.00004 5.5 40.4 

05 August, 2008 

NE 0.152 1.9 0.01753 -3.9 430.5 

SE 0.201 1.9 0.02665 -4.0 420.3 

NW 0.014 11.6 0.00001 16.8 66.9 

SW 0.020 6.7 0.00007 14.7 46.9 

13 Aug, 2008 

NE 0.227 2.0 0.02988 -1.4 28.2 

SE 0.256 2.0 0.03457 -1.4 26.3 

NW 0.029 5.6 0.00016 2.5 39.3 

SW 0.061 3.9 0.00145 1.8 25.2 

24 June, 2007 

NE 0.015 6.2 0.00003 18.5 66.0 

SE 0.064 3.9 0.00131 6.1 29.9 

NW 0.011 7.4 0.00001 15.6 80.1 

SW 0.011 7.8 0.00001 16.5 80.9 

25 June, 2007 

NE 0.014 15.1 0.00001 18.6 43.2 

SE 0.073 4.1 0.00142 5.2 20.7 

NW 0.009 130.3 0.00001 15.5 46.2 

SW 0.009 78.4 0.00001 16.1 45.7 
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Table 5.7 continued 

Date Field zom (m) kB
-1

 zoh (m) dT (°C) rah (m s
-1

) 

02 July, 2007 

NE 0.020 5.2 0.00012 14.09 46.6 

SE 0.157 2.3 0.01658 1.95 10.8 

NW 0.012 5.8 0.00003 17.30 58.4 

SW 0.013 5.7 0.00004 17.07 56.9 

10 July, 2007 

AM 

NE 0.103 3.1 0.00092 4.4 23.03 

SE 0.227 1.7 0.00231 1.3 49.50 

NW 0.071 4.3 0.00054 6.7 37.23 

SW 0.070 4.3 0.00053 7.0 37.30 

10 July, 2007 

PM1 

NE 0.114 2.8 0.00390 -1.7 46.6 

SE 0.178 1.7 0.02358 -4.1 10.8 

NW 0.067 5.5 0.00031 8.0 58.4 

SW 0.057 5.9 0.00014 8.7 56.9 

10 July, 2007 

PM2 

NE 0.127 3.1 0.00443 -1.9 68.64 

SE 0.199 1.8 0.02757 -3.4 83.69 

NW 0.060 6.3 0.00013 6.9 35.50 

SW 0.052 6.7 0.00006 7.9 38.36 

11 July, 2007 

PM2 

NE 0.157 3.4 0.00710 3.0 16.6 

SE 0.240 2.0 0.03121 0.4 12.2 

NW 0.088 6.4 0.00038 5.6 33.9 

SW 0.074 9.2 0.00008 5.6 42.4 

26 July, 2007 

NE 0.268 2.0 0.03436 -1.0 22.5 

SE 0.290 1.8 0.04339 -1.2 23.5 

NW 0.138 4.9 0.00159 2.4 22.2 

SW 0.116 5.7 0.00087 3.2 26.2 

27 July, 2007 
AM 

NE 0.268 2.0 0.03613 0.4 6.8 

SE 0.285 1.9 0.04210 0.4 4.0 

NW 0.143 3.8 0.00460 2.6 23.0 

SW 0.124 4.2 0.00306 2.9 28.5 

27 July, 2007 
PM1 

NE 0.270 1.6 0.04283 -4.7 1162.6 

SE 0.288 1.7 0.04619 -4.9 1207.8 

NW 0.141 3.6 0.00480 1.4 31.0 

SW 0.118 4.2 0.00253 2.2 35.4 

27 July, 2007 

PM2 

NE 0.269 1.8 0.03505 -1.2 85.6 

SE 0.292 1.7 0.04495 -1.4 94.0 

NW 0.145 3.9 0.00348 1.9 24.7 

SW 0.124 4.5 0.00203 2.4 29.5 
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Chapter 6 - Conclusions, Recommendations and Future Directions  

Algorithms utilizing remotely sensed data for estimating evapotranspiration (ET) was 

available from early 1980's and has since improved with enhanced capabilities of earth 

observation satellites and advances in parameterization of the soil-canopy-air heat exchange 

mechanism. ET is crucial as it links two fundamental processes; the surface energy balance 

budget and the water balance budget, both having highly and spatially variable attributes. 

Remote sensing based energy balance (EB) algorithms is one of the viable means for mapping 

ET at regional scale which has remarkable applications in agriculture, hydrology and climate 

studies. Enhancements to these algorithms are important to improve the accuracy of ET maps so 

that they can used as operational tools for managing water resources and understanding of carbon 

flux dynamics at regional and continental scales.    

The research conducted here is aimed at utilizing finer resolution, high quality data set 

from BEAREX to evaluate widely used remote sensing based single source EB models. Results 

from the present study suggested that remote sensing based EB algorithms has the potential to 

estimate regional ET with adequate accuracy required for assessing crop water demand. A major 

conclusion derived from the evaluation of three single source energy balance models was the 

requirement of a mechanism to account for the differences between radiometric (Ts) and 

aerodynamic (To) temperatures. Performance bias was observed for dryland fields with SEBAL 

and METRIC indicating its inadequacy to address large Ts–To differences. SEBS algorithm with 

an excess resistance parameter (kB
-1

) performed equally well for both irrigated and dryland 

conditions, which indicated that kB
-1

 parameter performed as a correction factor to account for 

the differences between To and Ts.  

Specific Conclusions  

Chapter 2 

1. On an average 20% uncertainty in term of CV was observed as a result of subjectivity in 

the end member selection process.  The sensitivity to end member pixel selection is 

crucial to the performance of SEBAL; hence, a clear methodology for the selection 

process is required to remove the subjective decision and make the process more robust. 

A rigorous sensitivity analysis of the 'a' and 'b' coefficients estimation in the temperature 

gradient relationship is necessary because this forms the backbone of SEBAL.  
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2. SEBAL ETi estimates compared reasonably well against the lysimeter values with 

underestimation error and RMSE close to 0.15 mm h 1 (28%). Errors were relatively 

small for the irrigated fields as compared with the dryland fields.  

3. Modifying the SEBAL algorithm by introducing kB
-1

 parameterization considerably 

improved the accuracy of ETi estimation, with an overall RMSE of 0.08 mm h
-1

 (16%). It 

can be concluded that the temperature gradient (dT) and (Ta-To) linear relationship does 

not have any component to consider for the differences arising due to use of Ts for To and 

hence a realistic correction factor in the form of kB
-1

 has to be incorporated into SEBAL.  

4. A kB
-1

 value of 2.3 would grossly underestimate ET for sparse vegetation conditions. 

Locally calibrated coefficients for the aerodynamic roughness parameters are crucial to 

the performance of the algorithm.  

Chapter 3 

1. The results of this study indicate an error range from 11% to 45%, where the lower limit 

denotes unstressed crop ET and the upper limit refers to sparse/stressed crop ET.  

2. The errors from the dryland conditions were reduced from 45% to 25% through the use 

of a physically based excess resistance model incorporated into SEBAL. The foundation 

of this improvement is based on the principle of arriving at the right correction factor, 

which could reduce the consequences of the discrepancy between radiometric and 

aerodynamic temperature.  

3. The SEBAL approach with spatially constant kB
-1 

= 2.3, zoh (z1) = 0.1 or zoh (z1) = 0.01, 

could not account for the spatial variability of the discrepancy between To and Ts, and 

hence underperforms in a realistic agricultural setting or even performs poorly for 

dryland agriculture system.  

4. The kB
-1

 model produce distinctly and statistically different results than the constant kB
-1

 

and constant z1 (zoh) approaches. Constant kB
-1

 (2.3) and constant z1 (0.1 m and 0.01 m) 

approaches had similar performance trends. 

5. SEBAL performance for irrigated fields (greater ET rates, limited soil water deficits, and 

complete ground cover) and dryland fields (lower ET rates, greater soil water deficits, 

and sparse ground cover) were markedly different.         
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6. The results confirm that for sparse and greater soil water deficits conditions, the single-

source resistance formulation have limited capability in predicting H and LE fluxes.  

7. The absence of bias error in the kB
-1

 model runs for both dryland and irrigated fields, 

indicates that kB
-1

 parameter performed well as a correction factor and accounted for the 

difference between To and Ts. It also indicates that kB
-1

 model treated the smaller ET and 

greater ET crops surfaces appropriately.  

8. The limited role of H on the accuracy of LE for irrigated fields with complete ground 

cover (greater ET surface) negates the advantage received through the accurate 

estimation of H. Under sparse vegetated conditions (less ET crop surface), LE was 

sensitive to errors in H estimates, and apparently single resistance formulations like 

SEBAL performed poorly in estimating H for such surfaces.  

9. An uncalibrated kB
-1

 model incorporated into SEBAL performed better for both dryland 

and irrigated lysimeter fields, compared with other approaches.  

Chapter 4 

1. The GSS model outperformed METRIC in all the performance statistics.  

2. The approach of hot and cold pixel should only be considered as an empirical method for 

estimating the dT parameter over a relatively homogeneous and well managed landscape, 

and any physical treatment given to the end member pixel may not warrant performance 

augmentation.  

3. The dT as defined in METRIC and computed from the hot and wet pixel concept may not 

represent and account for the non-unique relationship existing between To and Ts.  

4. The GSS model with an empirical correction in the form of excess resistance parameter, 

kB
-1

, accounts for the difference between To and Ts. Hence an improvement in the overall 

performance and negligible bias between irrigated and dryland fields can be achieved. 

5. The influence of dT cannot be seen under well-watered, densely cropped, energy non-

limiting conditions. Because under such a condition, the LE fluxes are much greater than 

H fluxes and errors in H fluxes would have limited influence on the LE estimation.  

6. The accuracy of H fluxes depends on appropriate dT and corresponding rah. METRIC 

approach fails in producing appropriate dT/rah under heterogeneous, sparse and water 

limited vegetation conditions. Meanwhile, the GSS approach of adopting a constant 
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radiometric excess resistance parameter (kB
-1

) not only produced significantly improved 

results but also reduced bias between irrigated and dryland fields proving that this 

approach accommodates for the discrepancy between To and Ts.  

7. The selection criteria of hot and cold pixel or even the physical treatment of the hot and 

cold pixels has limited and uncertain influence on the performance of METRIC and 

SEBAL-like models.  

Chapter 5 

1. SEBS algorithm performed equally well for both irrigated and dryland conditions in 

estimating the hourly ET with overall relative error of 12.6% .   

2. The excess resistance parameter values pooled across the irrigated and dryland fields for 

the 17 images generated an average value of 6.  The aerodynamic resistance value ranged 

from 17–81 m s
-1

 form the SEBS formulation for the agricultural landscape.  

 

Recommendations  

The capabilities and limitations of the various remote sensing based EB algorithms 

evaluated in this study has paved the way for development of these techniques into an 

operational ET remote sensing program for management of water resources and monitoring of 

ecosystem. Two specific recommendations are provided here, which could also form basis for 

future studies:    

1. SEBAL and METRIC: The temperature gradient (dT) derived from hot and cold pixel 

concept has several drawbacks and uncertainties when applied over heterogeneous landscape. 

One of the assumptions of this concept is that it accounts for the spatial variability of 

roughness length for heat transport (zoh). Adoption of a parameterized excess resistance into 

SEBAL would reduce the dependence on dT parameter, subsequently reducing the 

uncertainty in the hot and cold pixel selection process.    

2. SEBS: In the present study, SEBS was executed using the Monin-Obukhov Atmospheric 

Surface Layer (ASL) scaling utilizing ground weather station parameters. Accuracy of the 

weather station inputs especially air temperature value highly influence the performance of 

SEBS. Spatially interpolated fields of weather inputs should be used when applying SEBS on 

a regional scale.  
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Future direction  

 Future directions of remote sensing based ET mapping technique is driven by the 

challenges faced in crop production and climate change impacts on biosphere. Sporadic water 

availability being the major limiting factor for crop production across the globe, the emphasis is 

now on efficient water management. Prioritization of limited water could only be made through 

accurate estimation of crop water requirement (crop ET). Conventional irrigation scheduling 

based on reference ET and crop coefficient cannot cope with the new variety release brought 

through crop improvement programs. The use of ET maps for irrigation scheduling and in 

variable rate irrigation applications would bring a breakthrough to irrigation water management. 

The ratio between actual and potential evaporation, a measure of water deficits, has strong 

correlation with gross primary production (GPP). Spatially distributed ET incorporated into the 

carbon budget study would not only improve the understanding of ecosystem dynamics to water 

stress but also would enhance the capability of regional estimation of net ecosystem exchange 

(NEE). Hindrances in the operational development of this technique has almost remained the 

same over the past three decades and these could also be seen the prevailing bottlenecks of this 

technique. Satellite sensors provide only a snapshot, setting a limit to the potential accuracy of 

ET estimated by a single satellite overpass. Temporal scaling from instantaneous to daily and 

further to required resolution is a challenge, which is being worked upon by various research 

groups. The integration of course and fine spatial resolution imagery through appropriate 

downscaling technique and data assimilation protocols utilizing the numerous weather and flux 

tower observations is underway to generate seamless ET maps. 


