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Abstract 

Mechanical signals within contracting skeletal muscles contribute to the generation of the 

exercise pressor reflex; an important autonomic and cardiovascular control mechanism. In 

decerebrate rats, GsMTx4, a mechanically–activated channel inhibitor that is partially selective 

for piezo channels, was found recently to reduce the pressor response during static hindlimb 

muscle stretch; a maneuver used to investigate the mechanical component of the exercise pressor 

reflex (i.e., the mechanoreflex). However, the effect was found only during the very initial phase 

of the stretch when muscle length was changing which may have reflected the inhibition of 

rapidly-deactivating piezo 2 channels and the fact that different mechanically-activated channels 

with slower deactivation kinetics evoked the pressor response during the static phase of the 

maneuver. We tested the hypothesis that in decerebrate, unanesthetized rats, GsMTx4 would 

reduce the pressor response throughout the duration of a 30 second, 1 Hz dynamic hindlimb 

muscle stretch protocol. We found that the injection of 10 µg of GsMTx4 into the arterial supply 

of a hindlimb reduced the peak pressor response (control: 15±4, GsMTx4: 5±2 mmHg, p<0.05, 

n=8) and the pressor response at multiple time points throughout the duration of the stretch. 

GsMTx4, however, had no effect on the pressor response to the hindlimb arterial injection of 

lactic acid. Moreover, the injection of GsMTx4 into the jugular vein (a systemic control, n=5) or 

the injection of saline into the hindlimb arterial supply (a vehicle control, n=4) had no effect on 

the pressor response during dynamic stretch. We conclude that GsMTx4 reduced the pressor 

response throughout the duration of a 1 Hz dynamic stretch protocol which may have reflected 

the inhibition of piezo 2 channels throughout the dynamic stretch maneuver. 
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Preface 

Mechanotransduction is the process by which cells translate mechanical signals into 

electrochemical signals. This process is conserved across cell types and species, from plants to 

animals, and is responsible for many facets of biological function. In humans and animals, 

mechanotransduction is foundational for the senses of touch, proprioception, balance, and 

hearing. Beyond conscious sensation however, mechanotransduction also plays a vital role in 

intrinsic sensation, including sensation of vascular shear stress and bladder distension. 

There are many processes that mediate mechanotransduction including conformational 

changes in epithelial cell membranes and disruption of integrins or cadherins; however, one of 

the primary methods of mechanotransduction is the opening of mechanically-activated channels. 

When mechanical deformation of a cell occurs, mechanically-activated ion channels change 

configuration to allow ion flux across the cell membrane, thus changing the membrane potential 

of the cell. This is the method by which mechanical signals from within contracting skeletal 

muscles are converted into neural impulses that travel to the brainstem to promote the autonomic 

and cardiovascular adjustments to exercise (i.e., the mechanoreflex). 

In 2010, a new class of mechanically-activated channel was discovered and named piezo 

(from the Greek “πίεση” (piesi), meaning pressure) (11). In the years since their discovery, piezo 

channels have been implicated as foundational in many physiological mechanotransduction 

processes. Piezo 2 channels specifically, which are highly expressed in sensory neurons, appear 

to be essential for the transduction of mechanical signals from contracting skeletal muscles into 

the afferent neural signals of the mechanoreflex. It is this prospect that serves as the foundation 

of this thesis. 
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Chapter 1 - Introduction 

The exercise pressor reflex is activated when mechanical and metabolic signals arising 

from within contracting skeletal muscles stimulate the sensory endings of group III and group IV 

muscle afferents (36). These feedback signals contribute to increases in sympathetic nervous 

system activity, heart rate, and blood pressure which facilitates increased perfusion of 

contracting skeletal muscle. This reflex was classically considered an ischemically-activated 

reflex that increased perfusion pressure when oxygen supply could not meet contracting skeletal 

muscle oxygen demand (43). Based on this conventionally-held notion, the molecular basis of 

the metabolically-sensitive component of the reflex (i.e., the metaboreflex) has long been the 

focus of significant research efforts. More recently, there has been an increased focus on the 

mechanically-sensitive component of the reflex (i.e., the mechanoreflex) (2, 9, 12, 15, 17, 21, 

25). This has been driven, in large part, by findings that mechanoreflex alterations contribute to 

the exaggerated pressor response during exercise present in multiple forms of cardiovascular 

disease (10, 26, 28-30, 33, 34, 38, 45, 46). 

Coste et al. (11) recently identified and described a ubiquitously expressed class of 

mechanically-activated channel they named “piezo” along with the specific subclasses piezo 1 

and piezo 2. That report, in conjunction with the finding that the tarantula venom peptide 

GsMTx4 inhibited piezo channels with at least some degree of selectivity over other classes of 

mechanically-activated channels (4), prompted recent investigation of the mechanistic 

underpinnings of the mechanoreflex activation. Specifically, Copp et al. (9) found that in 

decerebrate, unanesthetized rats GsMTx4 reduced the pressor response during static hindlimb 

skeletal muscle stretch (a model of selective activation of the mechanoreflex during static 

exercise) and dynamic hindlimb muscle contractions. Moreover, piezo1 and piezo2 channel 
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expression were confirmed in L4 and L5 rat dorsal root ganglia (DRG) tissue (9). Together, those 

findings supported the possibility that piezo channels contributed to the activation of the 

mechanoreflex and the exercise pressor reflex in the rat. A nuanced finding of that investigation 

was that GsMTx4 reduced the pressor response during the first ~five seconds of the 30 second 

static stretch protocol when muscle length was changing rapidly whereas there was no effect on 

the pressor response during the later phases when muscle length was relatively constant. In 

contrast, GsMTx4 reduced the pressor response throughout the duration of the 30 second 

dynamic contraction protocol (9). In discussion of those findings, the speculation was raised that 

different classes of mechanically-activated channels mediated the pressor response during the 

different phases of static stretch and that GsMTx4 acted primarily on the channels that mediated 

the pressor response during the initial phase when muscle length was changing. This is at least 

plausible given the partial selectivity of GsMTx4 for piezo channels (4) and the rapid 

deactivation kinetics of piezo channels, especially piezo 2 channels (11).  

The purpose of this investigation was to further explore the above speculation by testing 

the hypothesis that GsMTx4 would reduce the pressor response throughout the duration of a 1 

Hz dynamic hindlimb skeletal muscle stretch protocol in decerebrate rats. Our laboratory 

recently used such a protocol, a maneuver which produces repeated changes in muscle length in 

the absence of contraction-induced metabolite production, as an experimental tool to investigate 

the activation of the mechanoreflex during dynamic muscle contractions (26).  
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Chapter 2 - Methods 

All experimental procedures were approved by the Institutional Animal Care and Use 

Committee of Kansas State University and were conducted in accordance with the National 

Institutes of Health Guide for the Care and Use of Laboratory Animals. Experiments were 

performed on young adult male Sprague-Dawley rats (n=17, average body weight = 385±10 g). 

The rats were housed two per cage in temperature (maintained at ~22 degrees C) and light (12/12 

hour light/dark cycle running from 7am to 7pm) controlled accredited facilities with standard rat 

chow and water provided ad libitum. At the end of each experiment, the decerebrated rats (see 

below) were euthanized with an intravenous injection of saturated (>3 mg/kg) potassium 

chloride. 

Surgical Procedures. All rats were anesthetized initially with 5% isoflurane (balance O2). 

Depth of anesthesia was confirmed by an absent toe-pinch reflex. A tracheostomy was 

performed, and rats’ lungs were mechanically ventilated (Harvard Apparatus) with gaseous 

anesthetic (2% isoflurane balance O2). The right jugular vein and both common carotid arteries 

were cannulated with PE-50 catheters for administration of drugs, measurement of arterial blood 

pressure (Physiological Pressure Transducer, AD Instruments), and sampling of arterial blood 

gases. In 12 rats, a reversible snare (2-0 suture) was placed around the left common iliac artery 

and vein just distal to the descending aorta/inferior vena cava. The left superficial epigastric 

artery was cannulated with a PE-8 catheter for administration of drugs. In all rats, the left 

calcaneus bone was severed and the triceps surae (gastrocnemius, soleus, and plantaris) muscles 

were exposed. The triceps surae muscles were then connected by string to a force transducer 

(Grass FT03) attached to a rack and pinion.  
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Upon completion of the initial surgical procedures, all rats were secured in a Kopf 

stereotaxic frame. After administering dexamethasone (0.2 mg i.v.) to minimize swelling of the 

brainstem, a decerebration was performed in which all brain tissue rostral to the superior colliculi 

was removed. Following decerebration, anesthesia was terminated, and the rats’ lungs were 

ventilated with room air. All rats were allowed a minimum of 60 minutes to recover from 

anesthesia before initiation of any experimental protocol. Body core temperature was measured 

via rectal probe and maintained at ~37-38 degrees Celsius by an automated heating system 

(Harvard Apparatus) and heat lamp. Arterial pH and blood gases were analyzed periodically 

throughout the experiment from small blood samples (~75 uL) and maintained within 

physiological ranges (pH: 7.35-7.45; pCO2: ~38-40 mmHg; PO2: ~100 mmHg) by administration 

of sodium bicarbonate and/or adjusting ventilation. 

Experimental protocols: In eight rats, we compared the increase in blood pressure during 

a 1 Hz dynamic stretch protocol of the triceps surae muscles and following injection of 24 mM 

lactic acid before and after intra-arterial injection of GsMTx4 into the hindlimb circulation. Prior 

to the experimental protocol, all rats were paralyzed with injection of pancuronium bromide (~1 

mg/kg i.v.). Baseline muscle tension was set at ~100 g of tension and blood pressure and heart 

rate were collected for ~30 seconds. The triceps surae muscles were then stretched for 30 

seconds by manually turning the rack and pinion at a 1 Hz frequency by an experienced 

investigator who followed the cadence of a metronome. Approximately five minutes following 

the completion of the stretch protocol and ensuring that blood pressure had returned to its pre-

stretch baseline value, we injected lactic acid (0.2 mL of 24 mM concentration in saline) into the 

arterial supply of the hindlimb via the superficial epigastric artery catheter. After another 

approximately five minute waiting period and after ensuring blood pressure once again returned 
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to baseline, we tightened the iliac snare to occlude flow to and from the hindlimb and injected 

GsMTx4 (10 ug dissolved in 0.2 mL of saline) into the arterial supply of the hindlimb via the 

superficial epigastric artery catheter. The drug remained snared in the hindlimb circulation for 10 

minutes, at which time the iliac snare was released and the leg was allowed to reperfuse for 20 

minutes. After reperfusion, the dynamic stretch and lactic acid injection protocols were repeated 

exactly as described above with care being taken to develop similar tension during the post-

GsMTx4 stretch to that produced during the control stretch. Evan’s blue dye was then injected 

into the arterial supply of the hindlimb in the same manner that GsMTx4 was injected to ensure 

that the peptide had access to the triceps surae muscle circulation in all experiments. The triceps 

surae muscles were observed to stain blue in all experiments. 

In an additional group of five rats, we compared the pressor response during dynamic 

stretch before and after i.v. administration of GsMTx4. We performed the same stretch protocol 

as described above, except that 10 ug of GsMTx4 was injected into the jugular vein. In another 

group of four rats, we compared the pressor response during dynamic stretch before and after 

intra-arterial administration of saline (0.2 ml) with snare, the vehicle for GsMTx4, via the 

superficial epigastric artery catheter. 

Data and statistical analysis: Arterial blood pressure and muscle tension were measured 

(PowerLab and LabChart data acquisition; AD Instruments) and mean arterial pressure (MAP) 

and heart rate (HR) were calculated in real time and recorded for offline analysis. Baseline MAP 

and HR were determined for the 30 second baseline periods that preceded each stretch maneuver 

(stretch or lactic acid injection). The peak increase in MAP (peak Δ MAP) and HR (peak Δ HR) 

during dynamic stretch or lactic acid injection was calculated as the difference between the peak 

values wherever they occurred during the maneuvers and the corresponding baseline value. The 
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time course of the increase in MAP was plotted as the Δ MAP from baseline over the course of 

the 30 second stretch protocols. The change in the tension time integral (Δ TTI) during stretch 

above baseline was calculated by integrating the area under the tension signal and subtracting the 

integrated area during the baseline period. 

Data are expressed as mean±SE. Data were compared with paired Student’s t-tests or 

repeated measures ANOVAs with Holm-Sidak post-hoc tests as appropriate. Statistical 

significance was defined as p<0.05. 
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Chapter 3 - Results 

Thirty seconds of 1 Hz dynamic hindlimb muscle stretch markedly increased MAP and 

HR. The peak increase in MAP occurred, on average, nine seconds following the onset of stretch 

and MAP remained elevated above baseline for the duration of the maneuver. In eight rats, the 

injection of GsMTx4 into the arterial supply of the hindlimb significantly reduced the pressor 

response during dynamic stretch; an effect that was evident at multiple time points throughout 

the duration of the maneuver (Figure 1A). Moreover, compared to control, GsMTx4 significantly 

reduced the peak pressor response during dynamic stretch (Figure 1B) whereas the effect on peak 

HR did not reach statistical significance (control: 11±2, GsMTx4: 6±2 bpm, p=0.07). There were 

no differences in the Δ TTI between control and GsMTx4 conditions (Figure 1C). In these same 

rats in which we performed dynamic stretch protocols, we also injected lactic acid into the 

arterial supply of the hindlimb before and after the injection of GsMTx4. We found that GsMTx4 

had no effect on the peak pressor response or the time course of the pressor response that 

resulted from the injection of lactic acid (Figure 2) which is consistent with the notion that 

GsMTx4 did not have off-target effects on skeletal muscle sensory neurons such as the inhibition 

of voltage-gated sodium (NaV) channels (42). 

In an additional group of five rats, we compared the pressor response during dynamic 

stretch before and after the injection of 10 µg of GsMTx4 into the jugular vein to determine if 

the effects observed when injected into the hindlimb arterial supply could be attributed to 

systemic effects elsewhere in the mechanoreflex arc such as the spinal cord or the medulla of the 

brainstem, for example. The injection of GsMTx4 into the jugular vein had no effect on the time 

course of the pressor response, the peak pressor response (Figure 3A and 3B), or the peak HR 

response (control: 12±6, GsMTx4: 10±3 bpm, p=0.79) during dynamic stretch. Likewise, in four 
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additional rats, the injection of saline (the vehicle for GsMTx4) into the arterial supply of the 

hindlimb had no effect on the time course of the pressor response, the peak pressor response 

(Figure 4A and 4B), or the peak HR response (control: 13±5, GsMTx4: 9±3 bpm, p=0.17) during 

dynamic stretch. There were no differences in the Δ TTI or the average peak Δ tension of the 

stretches between conditions for either the i.v. injection (Figure 3C) or saline (Figure 4C) control 

experiments.  
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Figure 1. The effect of hindlimb intra-arterial (i.a.) GsMTx4 injection on blood pressure 

during dynamic stretch 

Injection of 10 µg of GsMTx4 into the arterial supply of the hindlimb (n=8) significantly reduced 

the pressor response at multiple time points throughout the duration of dynamic hindlimb muscle 

stretch. Baseline blood pressure values, indicated at the base of the bars in panel B, were not 

significantly different between conditions. TTI=tension time integral, *p<0.05  
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Figure 2. The effect of hindlimb intra-arterial (i.a.) GsMTx4 injection on blood pressure 

following lactic acid injection  

Injection of 10 µg of GsMTx4 into the arterial supply of the hindlimb (n=8) had no effect on the 

pressor response to lactic acid injection (0.2 mL, 24 mM), indicating that GsMTx4 did not exert 

off-target effects. Baseline blood pressures, indicated at the base of the bars in panel B, were not 

significantly different between conditions.  
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Figure 3. The effect of intravenous (i.v.) GsMTx4 injection on blood pressure during 

dynamic stretch 

Injection of 10 µg of GsMTx4 into the jugular vein (n=5) had no effect on the pressor response 

during dynamic hindlimb muscle stretch, indicating that GsMTx4 exerted its effects locally in 

the experimental group. Baseline blood pressures, indicated at the base of the bars in panel B, 

were not significantly different between conditions. TTI=tension time integral  
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Figure 4. The effect of hindlimb intra-arterial (i.a.) saline injection on blood pressure 

during dynamic stretch 

Injection of saline into the arterial supply of the hindlimb (n=4) had no effect on the pressor 

response during dynamic hindlimb muscle stretch, indicating no vehicle effects. Baseline blood 

pressures, indicated at the base of the bars in panel B, were not significantly different between 

conditions. TTI=tension time integral 
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Chapter 4 - Discussion 

We tested the effects of GsMTx4, a mechano-gated channel inhibitor that is relatively 

selective for piezo channels, on the pressor response during 1 Hz dynamic hindlimb muscle 

stretch. In confirmation of our hypothesis, we found that the hindlimb arterial injection of 

GsMTx4 reduced the pressor response throughout the duration of a dynamic stretch protocol in a 

similar fashion to the reductions seen in dynamic contraction (9). However, GsMTx4 had no 

effect on the pressor response to intra-arterial injection of 24 mM lactic acid, which indicates that 

GsMTx4 did not exert non-specific effects such as blockade of NaV1.7 channels and therefore 

inhibit the transmission of the mechanoreflex signals along the axons of the mechanically-

sensitive muscle afferents. Furthermore, i.v. injection of GsMTx4 did not affect the pressor 

response during dynamic stretch, indicating that the toxin did not exert systemic effects 

elsewhere in the mechanoreflex arc. Finally, intra-arterial injection of saline as a vehicle control 

had no effect on the pressor response during dynamic stretch. Collectively, therefore, our 

experimental controls indicate that the reduction of the pressor response during dynamic stretch 

found following the injection of GsMTx4 into the arterial supply of the hindlimb was due to the 

peptide’s effect on the sensory endings of the mechanically-sensitive muscle afferents and not 

local or systemic off-target effects or an effect of time such as the deterioration of the 

experimental preparations. 

The mechanoreflex has long been understudied. Initially, this was due to the belief that 

the mechanoreflex did not contribute importantly to exercise pressor reflex activation. More 

recently, the mechanoreflex has been found to play a very important role in exercise pressor 

reflex activation (16), leading to an increased realization of the need to study it. However, the 

tools available for mechanoreflex study were limiting. Gadolinium, a mechanically-activated 
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channel inhibitor, was the primary tool used to study the mechanoreflex. It was first used in 1988 

by Millet and Pickard (35) as a blocker of mechanically-activated channels in plants. Its utility in 

mammalian physiology was quickly recognized, making it one of the leading ways to study 

mechanotransduction. However, its experimental applications come with some serious 

considerations (8). Difficulty arises in using gadolinium to isolate the physiological response 

from mechanically-activated channels. False negatives may arise due the insensitivity of certain 

channels to gadolinium (44, 49) or to the presence of certain anions that readily bind to 

gadolinium ions and render them functionally inactive (14, 32). This latter consideration makes it 

particularly difficult to determine the amount of the drug that is active within a given experiment. 

Further, false positives may arise due to the non-specific nature of gadolinium (18). At similar 

concentrations used to block mechanically-gated channels, gadolinium has been shown to also 

block a host of other channels including TREK-1 (31), TRAAK (31), ASIC (3), Ca2+-activated 

Cl- (48), Na+ (13), K+ (23), P2X (39), L-type (44), N-type (6), and T-type Ca2+ channels (5). 

Thus, using gadolinium alone, it is difficult to draw definitive conclusions about the contribution 

of mechanically-activated channels. However, GsMTx4 has recently been identified as a potent 

inhibitor of mechanically-activated channels. In contrast to the blanket actions of gadolinium, 

GsMTx4 shows relative selectivity for piezo channels (4). Despite its ability to block certain 

other mechanically-activated channels, the concentrations required to block these channels do 

not appear to overlap with experimental doses for piezo inhibition (1, 7, 27). Thus, GsMTx4 

serves as a more powerful and refined tool to examine the molecular basis of mechanoreflex 

activation. 

Data on the effect of gadolinium on the time course of the pressor response during stretch 

and/or contraction in is relatively absent from the literature, with one notable exception. 
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Specifically, Hayes at al. (19) reported that gadolinium significantly reduced the pressor 

response throughout the duration of both a dynamic contraction and static stretch maneuver in 

decerebrate cats. Because gadolinium is a non-selective blocker of mechanically-activated 

channels, it most likely blocked both rapidly- and slowly-deactivating channels during both of 

the maneuvers (19). Other studies only report that gadolinium reduced the peak pressor response 

during static contraction and static stretch (37, 46) but do not report pressor time course data. 

We were intrigued by the marked differences in the effect of GsMTx4 on the time course 

of the pressor response during dynamic (present investigation) compared to static (9) hindlimb 

skeletal muscle stretch (Figure 5). During dynamic stretch, the effect of GsMTx4 was significant 

throughout the duration of the maneuver (Figure 5C). In contrast, during static stretch, GsMTx4 

initially showed a large effect; however, as the stretch progressed beyond the first five seconds, 

the effect was largely diminished and no longer reached statistical significance (Figure 5D). We 

speculate that this is due to differential stimulation of mechanically-activated channels between 

static and dynamic stretch. Interestingly, piezo 2 channels have been observed to exhibit rapid 

deactivation kinetics. In 2010, Coste et al. (11) found that DRG neurons transfected with piezo 2 

siRNA showed a 75% reduction in currents with inactivation kinetics (τinac) less than 10ms 

compared to control DRG neurons; whereas currents with 10ms<τinac<30ms and τinac>30ms were 

unaffected in cells transfected with piezo 2 siRNA. Further, following siRNA transfection, the 

proportion of non-responding neurons increased, corroborating the idea that rapidly deactivating 

neurons rely on piezo 2 channels for their response. Another study (40) used gene deletion to 

eliminate piezo 2 expression, leading to near elimination of rapidly-deactivating currents. Based 

on these rapid deactivation kinetics, we believe that the repetitive mechanical stimulus present 

during the dynamic stretch protocol likewise results in repetitive activation of piezo2 channels, 
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whereas static stretch provides only an initial stimulus to piezo 2 channels. In short, piezo 2 

channels likely mediate the pressor response throughout the duration of a dynamic stretch 

protocol, whereas during a static stretch protocol, they mediate the early but not the sustained 

pressor response. 

Future directions for this research may include investigation of channels with slowly-

deactivating currents. The possibility exists that channels with slow kinetics may play a larger 

role in evoking the response to static stretch compared to dynamic stretch simply because their 

response does not necessitate repetitive mechanical stimulus. This research may focus on 

channels such as tentonin 3, which was recently identified as essential for slowly-adapting 

currents in DRG neurons (22). Further, annexin A6, a membrane-associated calcium binding 

protein, was recently shown to be involved in regulation of slowly-deactivating currents in 

sensory neurons (41). In contrast to the actions of GsMTx4, it is possible that blockade of 

slowly-deactivating channels, such as those previously mentioned, may block the sustained 

pressor response, but not the early response during static stretch. 

There are three potential limitations to our current study. First, because GsMTx4 is only 

partially selective for piezo 2 channels, we are unable to make statements about piezo 2 

activation with definite certainty. GsMTx4 is also known to block various other molecular 

channels including TRPC1, TRPC6, and TRPV4; however, the concentrations of GsMTx4 

required to block those channels is 8 to 10 times higher than the calculated concentration of 

GsMTx4 within the hindlimb circulation in our experiments (1, 7, 10, 27). Further, GsMTx4 

does not differentiate between blocking piezo 1 and piezo 2 channels; however, piezo 2 channels 

are present to a much greater extent on sensory neurons (9) and have a much more defined 

somatosensory role. Although GsMTx4 is a large, lipophilic molecule, Hotta et al. demonstrated 
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that molecules ≤10 kDa extravasate rapidly from the skeletal muscle microcirculation (24). This 

suggests that GsMTx4 was able to diffuse out of the circulation into the skeletal muscle 

interstitial space where it could act on the sensory endings of the muscle afferents. Based on 

these data, our experimental results were likely due to the blockade of piezo 2 channels. Second, 

while our data is consistent with the assumption that dynamic stretch did not produce any 

metabolites which stimulated the muscle afferents, the possibility remains that dynamic stretch 

may produce a substance which sensitizes muscle afferents. Third, previously reported data in 

cats indicates that only 40-50% of the afferents that respond to tendon stretch also respond to 

contraction and vice versa (20). If this had occurred in our experiments, there would be limited 

application of our data as an isolation of the mechanical stimulus present during exercise. 

However, Stone et al. (47) reported in freely perfused rats that 87% of the afferents that 

responded to tendon stretch also responded to contraction. Based on this data, muscle stretch 

appears to activate a very similar population of afferents compared to contraction. Thus, in rats, 

using stretch provides valuable insight into the mechanical stimulus present during contraction. 

In conclusion, we found that GsMTx4 reduced the pressor response throughout the 

duration of a 30 second dynamic stretch protocol. This finding stands in contrast to its actions 

during static stretch, which were primarily confined to the initial five seconds of the maneuver 

(9). Differential stimulation of metaboreceptors between static and dynamic contraction has long 

been established; however, our current findings present a corollary to this. Much like static and 

dynamic contraction produce metabolic signals that stimulate different metabolically-activated 

receptors, static and dynamic stretch appear to stimulate different mechanically- activated 

channels. Because the mechanoreflex is often exaggerated in disease conditions (10, 28, 29, 33, 
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34, 45, 46), the present study yields valuable insight into the mechanism of mechanoreflex 

activation, which may be used in the development of future therapeutic modalities. 

  



19 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. Comparison of the effect of GsMTx4 on the MAP response during dynamic and 

static hindlimb muscle stretch 

Representative tension tracings of dynamic (A) and static (B) stretch compared with their 

respective mean pressor responses (C, D). Pressor responses are plotted as a percent of the 

maximum change in MAP during the control condition. Panel D is a reanalysis of data 

previously published by Copp et al. (9). Note that the effect of GsMTx4 on the pressor response 

to static stretch is confined to the first ~5 seconds of the maneuver whereas GsMTx4 reduced the 

pressor response throughout the duration of a dynamic stretch maneuver. 

 

  

0 1 0 2 0 3 0

0

5 0

1 0 0

T im e  (s )

P
e

rc
e

n
t 

o
f 

C
o

n
tr

o
l

P
e

a
k


 M
A

P

C )

0 1 0 2 0 3 0

0

5 0

1 0 0

T im e  (s )

P
e

rc
e

n
t 

o
f 

C
o

n
tr

o
l

P
e

a
k


 M
A

P

D )

A) B) 

P
e

rc
e

n
t 

o
f 

M
a

x
 T

e
n

s
io

n
 

P
e

rc
e

n
t 

o
f 

M
a

x
 T

e
n

s
io

n
 



20 

References 

1. Anderson M, Kim EY, Hagmann H, Benzing T, and Dryer SE. Opposing effects of 

podocin on the gating of podocyte TRPC6 channels evoked by membrane stretch or 

diacylglycerol. Am J Physiol Cell Physiol 305: C276-289, 2013. 

2. Antunes-Correa LM, Nobre TS, Groehs RV, Alves MJ, Fernandes T, Couto GK, 

Rondon MU, Oliveira P, Lima M, Mathias W, Brum PC, Mady C, Almeida DR, 

Rossoni LV, Oliveira EM, Middlekauff HR, and Negrao CE. Molecular basis for the 

improvement in muscle metaboreflex and mechanoreflex control in exercise-trained 

humans with chronic heart failure. Am J Physiol Heart Circ Physiol 307: H1655-1666, 

2014. 

3. Babinski K, Catarsi S, Biagini G, and Seguela P. Mammalian ASIC2a and ASIC3 

subunits co-assemble into heteromeric proton-gated channels sensitive to Gd3+. J Biol 

Chem 275: 28519-28525, 2000. 

4. Bae C, Sachs F, and Gottlieb PA. The mechanosensitive ion channel Piezo1 is inhibited 

by the peptide GsMTx4. Biochemistry 50: 6295-6300, 2011. 

5. Biagi BA, and Enyeart JJ. Gadolinium blocks low- and high-threshold calcium currents 

in pituitary cells. Am J Physiol 259: C515-520, 1990. 

6. Boland LM, Brown TA, and Dingledine R. Gadolinium block of calcium channels: 

influence of bicarbonate. Brain Res 563: 142-150, 1991. 

7. Bowman CL, Gottlieb PA, Suchyna TM, Murphy YK, and Sachs F. 

Mechanosensitive ion channels and the peptide inhibitor GsMTx-4: history, properties, 

mechanisms and pharmacology. Toxicon 49: 249-270, 2007. 



21 

8. Caldwell RA, Clemo HF, and Baumgarten CM. Using gadolinium to identify stretch-

activated channels: technical considerations. Am J Physiol 275: C619-621, 1998. 

9. Copp SW, Kim JS, Ruiz-Velasco V, and Kaufman MP. The mechano-gated channel 

inhibitor GsMTx4 reduces the exercise pressor reflex in decerebrate rats. J Physiol 594: 

641-655, 2016. 

10. Copp SW, Kim JS, Ruiz-Velasco V, and Kaufman MP. The mechano-gated channel 

inhibitor GsMTx4 reduces the exercise pressor reflex in rats with ligated femoral arteries. 

Am J Physiol Heart Circ Physiol 310: H1233-1241, 2016. 

11. Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, Dubin AE, and 

Patapoutian A. Piezo1 and Piezo2 are essential components of distinct mechanically 

activated cation channels. Science 330: 55-60, 2010. 

12. Cui J, Moradkhan R, Mascarenhas V, Momen A, and Sinoway LI. Cyclooxygenase 

inhibition attenuates sympathetic responses to muscle stretch in humans. Am J Physiol 

Heart Circ Physiol 294: H2693-2700, 2008. 

13. Elinder F, and Arhem P. Effects of gadolinium on ion channels in the myelinated axon 

of Xenopus laevis: four sites of action. Biophys J 67: 71-83, 1994. 

14. Evans CH. Biochemistry of the Lanthanides. New York: Plenum, 1990. 

15. Fisher JP, Bell MP, and White MJ. Cardiovascular responses to human calf muscle 

stretch during varying levels of muscle metaboreflex activation. Exp Physiol 90: 773-781, 

2005. 

16. Gallagher KM, Fadel PJ, Smith SA, Norton KH, Querry RG, Olivencia-Yurvati A, 

and Raven PB. Increases in intramuscular pressure raise arterial blood pressure during 

dynamic exercise. J Appl Physiol (1985) 91: 2351-2358, 2001. 



22 

17. Gladwell VF, and Coote JH. Heart rate at the onset of muscle contraction and during 

passive muscle stretch in humans: a role for mechanoreceptors. J Physiol 540: 1095-

1102, 2002. 

18. Hamill OP, and McBride DW, Jr. The pharmacology of mechanogated membrane ion 

channels. Pharmacol Rev 48: 231-252, 1996. 

19. Hayes SG, and Kaufman MP. Gadolinium attenuates exercise pressor reflex in cats. Am 

J Physiol Heart Circ Physiol 280: H2153-2161, 2001. 

20. Hayes SG, Kindig AE, and Kaufman MP. Comparison between the effect of static 

contraction and tendon stretch on the discharge of group III and IV muscle afferents. J 

Appl Physiol 99: 1891-1896, 2005. 

21. Herr MD, Imadojemu V, Kunselman AR, and Sinoway LI. Characteristics of the 

muscle mechanoreflex during quadriceps contraction in humans. J Appl Physiol 86: 767-

772, 1999. 

22. Hong GS, Lee B, Wee J, Chun H, Kim H, Jung J, Cha JY, Riew TR, Kim GH, Kim 

IB, and Oh U. Tentonin 3/TMEM150c Confers Distinct Mechanosensitive Currents in 

Dorsal-Root Ganglion Neurons with Proprioceptive Function. Neuron 91: 708-710, 2016. 

23. Hongo K, Pascarel C, Cazorla O, Gannier F, Le Guennec JY, and White E. 

Gadolinium blocks the delayed rectifier potassium current in isolated guinea-pig 

ventricular myocytes. Exp Physiol 82: 647-656, 1997. 

24. Hotta K, Behnke BJ, Masamoto K, Shimotsu R, Onodera N, Yamaguchi A, Poole 

DC, and Kano Y. Microvascular permeability of skeletal muscle after eccentric 

contraction-induced muscle injury: in vivo imaging using two-photon laser scanning 

microscopy. J Appl Physiol (1985) 125: 369-380, 2018. 



23 

25. Ives SJ, McDaniel J, Witman MA, and Richardson RS. Passive limb movement: 

evidence of mechanoreflex sex specificity. Am J Physiol Heart Circ Physiol 304: H154-

161, 2013. 

26. Kempf EA, Rollins KS, Hopkins TD, Butenas AL, Santin JM, Smith JR, and Copp 

SW. Chronic femoral artery ligation exaggerates the pressor and sympathetic nerve 

responses during dynamic skeletal muscle stretch in decerebrate rats. Am J Physiol Heart 

Circ Physiol 314: H246-H254, 2018. 

27. Kesselring CSJ, Krautwald M, Zhang YX, and Brinkmeier H. The Spider Toxin 

GsMTx-4 Blocks TRPV4 Cation Channels Expressed in HEK-293 Cells. Biophys J 108: 

126a-126a, 2015. 

28. Leal AK, Williams MA, Garry MG, Mitchell JH, and Smith SA. Evidence for 

functional alterations in the skeletal muscle mechanoreflex and metaboreflex in 

hypertensive rats. Am J Physiol Heart Circ Physiol 295: H1429-H1438, 2008. 

29. Li J, Sinoway AN, Gao Z, Maile MD, Pu M, and Sinoway LI. Muscle mechanoreflex 

and metaboreflex responses after myocardial infarction in rats. Circulation 110: 3049-

3054, 2004. 

30. Lu J, Xing J, and Li J. Bradykinin B2 receptor contributes to the exaggerated muscle 

mechanoreflex in rats with femoral artery occlusion. Am J Physiol Heart Circ Physiol 

304: H1166-H1174, 2013. 

31. Maingret F, Patel AJ, Lesage F, Lazdunski M, and Honore E. Lysophospholipids 

open the two-pore domain mechano-gated K(+) channels TREK-1 and TRAAK. J Biol 

Chem 275: 10128-10133, 2000. 



24 

32. Martell AE, and R. E. Smith. Critical Stability Constants: Inorganic Complexes. New 

York: Plenum, 1974. 

33. McClain J, Hardy C, Enders B, Smith M, and Sinoway L. Limb congestion and 

sympathoexcitation during exercise. J Clin Invest 92: 2353-2359, 1993. 

34. Middlekauff HR, Niztsche EU, Hoh CK, Hamilton MA, Fonarow GC, Hage A, and 

Moriguchi JD. Exaggerated muscle mechanoreflex control of reflex renal 

vasoconstriction in heart failure. J Appl Physiol 90: 1714-1719, 2001. 

35. Millet B, and Pickard BG. Gadolinium Ion Is an Inhibitor Suitable for Testing the 

Putative Role of Stretch-Activated Ion Channels in Geotropism and Thigmotropism. 

Biophys J 53: A155-A155, 1988. 

36. Mitchell JH, Kaufman MP, and Iwamoto GA. The exercise pressor reflex: Its 

cardiovascular effects, afferent mechanisms, and central pathways. Ann Rev Physiol 45: 

229-242, 1983. 

37. Mizuno M, Murphy MN, Mitchell JH, and Smith SA. Skeletal muscle reflex-mediated 

changes in sympathetic nerve activity are abnormal in spontaneously hypertensive rats. 

Am J Physiol Heart Circ Physiol 300: H968-977, 2011. 

38. Morales A, Gao W, Lu J, Xing J, and Li J. Muscle cyclo-oxygenase-2 pathway 

contributes to the exaggerated muscle mechanoreflex in rats with congestive heart failure. 

Exp Physiol 97: 943-954, 2012. 

39. Nakazawa K, Liu M, Inoue K, and Ohno Y. Potent inhibition by trivalent cations of 

ATP-gated channels. Eur J Pharmacol 325: 237-243, 1997. 

40. Ranade SS, Woo SH, Dubin AE, Moshourab RA, Wetzel C, Petrus M, Mathur J, 

Begay V, Coste B, Mainquist J, Wilson AJ, Francisco AG, Reddy K, Qiu Z, Wood 



25 

JN, Lewin GR, and Patapoutian A. Piezo2 is the major transducer of mechanical forces 

for touch sensation in mice. Nature 516: 121-125, 2014. 

41. Raouf R, Lolignier S, Sexton JE, Millet Q, Santana-Varela S, Biller A, Fuller AM, 

Pereira V, Choudhary JS, Collins MO, Moss SE, Lewis R, Tordo J, Henckaerts E, 

Linden M, and Wood JN. Inhibition of somatosensory mechanotransduction by annexin 

A6. Sci Signal 11: 2018. 

42. Redaelli E, Cassulini RR, Silva DF, Clement H, Schiavon E, Zamudio FZ, Odell G, 

Arcangeli A, Clare JJ, Alagon A, de la Vega RC, Possani LD, and Wanke E. Target 

promiscuity and heterogeneous effects of tarantula venom peptides affecting Na+ and K+ 

ion channels. J Biol Chem 285: 4130-4142, 2010. 

43. Rowell LB. Human Cardiovascular Control. Oxford: Oxford University Press, 1993. 

44. Small DL, and Morris CE. Pharmacology of stretch-activated K channels in Lymnaea 

neurones. Br J Pharmacol 114: 180-186, 1995. 

45. Smith SA, Mammen PP, Mitchell JH, and Garry MG. Role of the exercise pressor 

reflex in rats with dilated cardiomyopathy. Circulation 108: 1126-1132, 2003. 

46. Smith SA, Mitchell JH, Naseem RH, and Garry MG. Mechanoreflex mediates the 

exaggerated exercise pressor reflex in heart failure. Circulation 112: 2293-2300, 2005. 

47. Stone AJ, Copp SW, McCord JL, and Kaufman MP. Femoral artery ligation increases 

the responses of thin-fiber muscle afferents to contraction. J Neurophysiol 113: 3961-

3966, 2015. 

48. Tokimasa T, and North RA. Effects of barium, lanthanum and gadolinium on 

endogenous chloride and potassium currents in Xenopus oocytes. J Physiol 496 ( Pt 3): 

677-686, 1996. 



26 

49. Yang XC, and Sachs F. Block of stretch-activated ion channels in Xenopus oocytes by 

gadolinium and calcium ions. Science 243: 1068-1071, 1989. 

 


