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Abstract 

The Unmix and Positive Matrix Factorization (PMF) models for source apportionment 

were applied to evaluate prescribed burning impacts on air quality, identify model advantages, and 

establish a relationship between visibility and PM2.5 sources. Speciated PM2.5 data were from the 

Flint Hills (FH) rural and the Kansas City (KC) urban sites. At the FH site, the Unmix model 

identified five sources: nitrate/agricultural, sulfate/industrial, crustal/soil, smoke, and secondary 

organic aerosol (SOA); while the PMF model identified the copper source in addition. The smoke 

source from PMF result includes both primary and secondary aerosols from prescribed burning 

when the smoke source in Unmix result only includes primary burning aerosols. The secondary 

smoke aerosols at the FH site were combined with secondary aerosols from other origins and 

formed the SOA source in Unmix result. Comparative analysis of the modeling results estimated 

the SOA to be 2.3 to 2.7 times of the primary aerosols in burning season. At the KC site, both 

receptor models derived seven-source solutions: nitrate/agricultural, sulfate/industrial, crustal/soil, 

smoke, traffic/SOA, heavy-duty diesel vehicle (HDDV), and calcium. The smoke source at the KC 

site carries an exceedingly organic carbon to elemental carbon (OC/EC) ratio, which is more than 

five times higher than in FH smoke source. The PMF results at KC site tend to classify more SOA 

from nitrate/agricultural and sulfate/industrial sources into traffic/SOA source. In the burning 

season, the smoke source from both sites showed a relatively high correlation when KC is under 

west and southwest wind, suggesting that part of the smoke originated PM2.5 at the urban site could 

be from the upwind burning activities. The Tobit modeling recognized the nitrate/agricultural as 

the leading visibility degradation impact factor at both sites.  

The latter chapter conducted a review of life cycle assessment (LCA) on carbon footprint 

(CF) of beef production. The objectives were to evaluate CF range in raising systems from different 



  

countries, identify the leading CF contributor and dominant source of uncertainty, and summarize 

LCA inventory defined in cattle production systems. Most existing beef LCA studies followed a 

“cradle to farm gate” approach. The CF in 3-phase systems ranged from 16 to 29.5 kg CO2e kg-1 

carcass weight. The 2-phase raising system reported a slightly lower CF than the 3-phase system 

(18.9 to 26.9 kg CO2e kg-1 carcass weight), but no significant differences were observed. The grass-

fed system in the US has the highest CF, but the CF of grass-fed systems in the European Union 

(EU) is 40% less than them in the US. This is because more than half of cattle farms in EU produce 

both beef and milk, and the CF burden was partaken by the dairy production. Cow-calf phase 

contributed the most CF in 3-phase raising system, while enteric fermentation was the major 

contributor. Feed production contributed the most in the feedlot phase if forages were applied 

rather than concentrates. The leading uncertainty sources reported was land use change and 

disparate dressing percentage. To improve the LCA accuracy, more research is needed in 

collecting reliable LCA inventory data such as raising period and feed intake efficiency.  
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Abstract 

The Unmix and PMF models were applied for source apportionment to evaluate prescribed 

burning impacts, identify model advantages, and establish a relationship between visibility and 

PM2.5 sources. Speciated PM2.5 data were from the Flint Hills (FH) rural site and the Kansas City 

(KC) urban site. At the FH site, Unmix identified five sources: nitrate/agricultural, 

sulfate/industrial, crustal/soil, smoke, and secondary organic aerosol (SOA); while the PMF result 

identified the copper source in addition. The smoke source from PMF result includes both primary 

and secondary aerosols from prescribed burning when the smoke source in Unmix result only 

includes primary burning aerosols. The secondary smoke aerosols at the FH site were combined 

with secondary aerosols from other origins and formed the SOA source in Unmix result. 

Comparative analysis of the modeling results estimated the SOA in burning season, which is about 

1.6 times higher than the primary aerosols. At the KC site, both receptor models derived seven-

source solutions: nitrate/agricultural, sulfate/industrial, crustal/soil, smoke, traffic/SOA, heavy-

duty diesel vehicle (HDDV), and calcium source. The smoke source at the KC site carries an 

exceedingly high OC/EC ratio, which is more than five times higher than in FH smoke source. The 

PMF results at KC site tend to classify more SOA from nitrate/agricultural and sulfate/industrial 

sources into traffic/SOA source. In burning season, the smoke source from both sites carried a 

relatively high correlation when KC is under west and southwest wind, suggesting that part of the 

smoke originated PM2.5 at the urban site could be from the upwind burning activities. The Tobit 

modeling recognized the nitrate/agricultural as the leading visibility degradation impact factor at 

both sites.  

The latter chapter conducted a review of life cycle assessment (LCA) on carbon footprint 

(CF) of beef production. The objectives were to evaluate CF range in raising systems from different 



  

countries, identify the leading CF contributor and dominant source of uncertainty, and summarize 

LCA inventory defined in cattle production systems. Most existing beef LCA studies followed a 

“cradle to farm gate” approach. The CF in 3-phase systems ranged from 16 to 29.5 kg CO2e kg-1 

carcass weight. The 2-phase raising system reported a slightly lower CF than the 3-phase system 

(18.9 to 26.9 kg CO2e kg-1 carcass weight), but no significant differences were observed. The grass-

fed system in the US has the highest CF, but the CF of grass-fed systems in the European Union 

(EU) is 40% less than them in the US. This is because more than half of cattle farms in EU produce 

both beef and milk, and the CF burden was partaken by the dairy production. Cow-calf phase 

contributed the most CF in 3-phase raising system, while enteric fermentation was the major 

contributor. Feed production contributed the most in the feedlot phase if forages were applied 

rather than concentrates. The leading uncertainty sources reported was land use change and 

disparate dressing percentage. To improve the LCA accuracy, more research is needed in 

collection reliable LCA inventory data such as raising period and feed intake efficiency. 
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Chapter 1 - Comparative analysis of Unmix/ PMF modeling for 

PM2.5 source apportionment in rural and urban Kansas  

 1.1 Introduction 

Particulate pollution or PM2.5 is a term for particles with an equivalent aerodynamic 

diameter equal or less than 2.5 micrometers. The rapid increasing ambient PM2.5 in recent decades 

has become a major public health concern. High concentration of  PM2.5 has been associated with 

atmospheric environmental influence and serious adverse health effects (National Research 

Council, 1999).  

The sources of ambient PM2.5 were considered from a regional scale due to its tendency 

for long-range transport. In Kansas, the prescribed pasture burning is considered a major source of 

PM2.5 in the region. The tallgrass prairie region covers 18 Kansas counties and roughly 7 million 

acres of rangeland, of which about 2 million acres are burned each year. There are many benefits 

of prescribed burning, such as controlling the growth of trees and weeds, releasing soil nutrients 

and helping revitalize the soil, eliminating pathogens that cause plant diseases, and preserving the 

high-quality grazing area for cattle. However, potential health hazards and environmental concerns 

are raised for both local and downwind regions.  

The small particulates are able to remain airborne for weeks and can be transported over 

long distances (Kansas Department of Health and Environment, 2010). PM2.5 that attach or absorb 

chemicals and toxins can penetrate the human respiratory system, and cause respiratory diseases 

or even fatal consequences. PM2.5 is the main cause of visibility degradation, which affects the 

safety of all forms of traffic. The environmental effects of PM2.5 are also related to soil 

acidification, eutrophication, etc. (Kansas Department of Health and Environment, 2010)   
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Prescribed burning in the Flint Hills region has been practiced for maintaining tallgrass 

prairie ecosystem for decades, it is usually conducted during a narrow window in late spring 

(Towne and Craine, 2014). In 2010, the Kansas Department of Health and Environment (KDHE) 

developed the Flint Hills Smoke Management Plan, which is the first step towards reducing the 

impacts of Flint Hills burning on air quality. Generally, the emissions and meteorological inputs 

were employed in the dispersion models to predict concentrations at selected downwind locations. 

Studies have attempted to quantifying the contributions of prescribed burning, however, the 

inadequacy of detailed local source profiles of burning has been a limitation for using dispersion 

modeling. Receptor models were recommended by the US EPA for identifying and quantifying 

the sources of air pollutants at a receptor location, without the use of meteorological data and 

chemical transformation mechanisms to estimate the contribution of sources to receptor 

concentrations (EPA, 2016). There are three commonly used receptor models: Chemical Mass 

Balance (CMB), Unmix, and Positive Matrix Factorization (PMF). This study employed the 

Unmix and PMF model in the source apportionment because these models do not require the 

external source profiles as inputs. 

Visibility is an excellent indicator of air quality. The visual range used to refer to the 

farthest point that can be seen by the human eye is a primary visibility attribute that can be 

quantitatively measured (EPA, 1979). Visibility degradation is optically attributed to the scattering 

and absorption of visible light by both particles and airborne pollutants in the atmosphere (Appel 

et al., 1985; Latha and Badarinath, 2003). Therefore, changes in visual range can be related to 

changes in the chemical and physical properties of the atmosphere. 
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 Objectives 

The objectives of this study were to evaluate the prescribed burning impacts on air quality 

at Flint Hills and Kansas City sites; identify the advantages of Unmix and PMF receptor models, 

and establish a relationship between visibility and PM2.5 sources. 

 1.2 Literature review 

During prescribed pasture burning event, measuring emission profiles and PM2.5 emission 

sources directly on site are scarce. In order to address burning impacts for both local and downwind 

regions, there is a need for knowing the PM2.5 emission sources and their contributions. The source 

apportionment study of multiple locations in Kansas could improve the understanding of the PM2.5 

origins under rural and urban environments, and further, reveal the source profile of smoke emitted 

from prescribed burning.  

 1.2.1 Unmix model applications 

The Unmix models have been successfully applied in numerous source apportionment 

studies, including PM2.5 (Anderson et al., 2006; Eatough et al., 2006; Engel-Cox and Weber, 2007; 

Hu et al., 2006; Ke et al., 2013; Kim et al., 2004; Lang et al., 2015; Lewis et al., 2003; Maykut et 

al., 2003), secondary pollutants (Anderson et al., 2006), and volatile organic compounds (VOCs) 

(Ethirajan and Mohan, 2012; Song et al., 2008). 

Unmix model assumes that data are linear combinations of an unknown number of sources 

with unknown chemical composition. For each source, there are samples at the receptors that 

contain little or no contribution from that source, and these samples produce edges in the measured 

data. These edges are then created in a multidimensional space. Unmix determines the number of 

sources and their respective species profiles based on these highly dimensional edges (Anderson 
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et al., 2006; Lewis et al., 2003). The mathematical and geometrical details are presented by Henry 

(2003). 

Maykut et al. (2003) applied the Interagency Monitoring of Protected Visual Environments 

(IMPROVE) data in the Unmix model and obtained a five-source solution consisting of gasoline, 

diesel, vegetative burning, fuel oil, soil, and marine sources. A seasonal effect of the vegetative 

burning and secondary sulfate sources were observed in Unmix derived results. They also 

suggested that Unmix was able to distinguish diesel emissions from other mobile sources when 

used temperature-resolved carbon fractions rather than the organic carbon (OC) and elemental 

carbon (EC) species.  

Lewis et al. (2003) derived a five-source solution using Unmix model; the apportioned 

sources were diesel, vegetative burning, secondary, gasoline, and crustal/soil. This was the first 

demonstration for an urban area of the capability of the Unmix receptor model. Although species’ 

uncertainty is not required input data, the Unmix model estimates the number of contributing 

sources and compositions with uncertainties. In identifying PM2.5 sources, Lewis et al. (2003) 

provided a wood burning tracer by using the potassium species without its soil contribution. This 

tracer element and the amount of OC and EC helped to identify the vegetative burning source from 

the ambient PM2.5.  

Mijic et al. (2012) used the Unmix model on PM10 pollution with a four-source solution: 

fossil fuel combustion, traffic exhaust/regional transport from industrial centers, traffic-related 

particles/site-specific sources and mineral/crustal matter. In their study, the Unmix results were 

coupled with surface wind direction data to provide identification of the locations of local emission 

sources affecting a receptor site.  
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 1.2.2 PMF model applications 

The PMF model is a newer model than Unmix. Both Unmix and PMF are multivariate 

models with non-negativity constraints, but they are based on completely different algorithms. 

After identifying the sources using Unmix, using the PMF model or other individual component 

analysis to confirm the results is recommended (Eatough et al., 2006).  

The PMF model is more complex and time-consuming compare to Unmix (Song et al., 

2006a). The PMF model has been used in PM2.5, PM10, and VOC studies under different scenarios, 

(Brown et al., 2015; Eatough et al., 2006; Ke et al., 2013; Kim et al., 2004; Lang et al., 2015; Lee 

et al., 1999; Paatero and Tapper, 1994; Pandolfi et al., 2011; Pekney et al., 2006a; Pekney et al., 

2006b; Rai et al., 2016; Song et al., 2006a).  

The PMF model uses alternative least squares to decompose a matrix of speciated data into 

source profiles and source contribution matrixes. The PMF model accounts for uncertainties in the 

input data. Therefore, the error estimates for each data point are utilized as point-by-point weights 

and the inclusion of uncertainty data in the analysis is given lower weights. Moreover, the PMF 

solution is not as sensitive to the input species. Maykut et al. (2003) suggested the Unmix model 

solution could be used to guide the choice of the number of sources used in PMF, and the PMF 

model can guide the choice of species used in Unmix.  

Using the PMF model, Maykut et al. (2003) obtained an eight-source solution (gasoline, 

diesel, vegetative, fuel oil, soil, marine, Na-rich and secondary). Compare to the Unmix model, 

the PMF is not greatly sensitive to its input species. Therefore, the PMF derived solutions then 

contain more species then Unmix solutions, and some of these species are considered tracer 

elements of a certain source. In this case, the PMF result predicts an enrichment of arsenic in the 

vegetative burning profile, which was not accepted as input species in Unmix. A high correlation 
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coefficient (r=0.84) was later found between Unmix derived primary combustion source 

(vegetative burning) and arsenic. 

 1.2.3 Studies focused on the comparison of receptor model results 

Applying the same dataset into multiple receptor models is more convincing in model 

comparison. Song et al. (2006b) conducted source apportionment in PMF using speciated PM2.5 

data from Beijing; and eight sources were identified: biomass burning, secondary sulfates, 

secondary nitrates, coal combustion, industry, motor vehicles, road dust, and crustal dust. They 

reported the improved results based on the original inorganic data from the same set of samples 

analyzed in the CMB model by Zheng et al. (2005). Maykut et al. (2003) reported that the PMF 

model was also able to resolve various combustion sources without additional temperature-

resolved carbon fractions. 

Several studies conducted the source apportionment comparison between Unmix and PMF 

models (Ethirajan and Mohan, 2012; Kim et al., 2004; Lang et al., 2015; Poirot et al., 2001; Rai et 

al., 2016). Using multiple receptor models in source apportionment simultaneous is a common 

agreement in resulting more reliable and interpretable results. However, a drawback of using 

receptor models was the limitation in quantifying low-strength sources (Lewis et al., 2003; Maykut 

et al., 2003).  

In summary, Unmix and PMF models are currently an efficient way of addressing source 

apportionment without external source profiles. The potential concerns could remain on result 

validation and secondary aerosols. The approach of using multiple receptor models can take 

advantage of the additional resolving power obtained from the different algorithms and may be 

generally applicable to PM2.5 apportionment applications in an area with limited external source 
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profiles. The secondary organic aerosols (SOA) are the major component in PM2.5, which cannot 

be measured directly with its complicated formation mechanism.  

 1.2.4 Existing visibility impairment studies 

Numerous studies have investigated the aerosol influence on visibility impairment (Chan 

et al., 1999; Zhang et al., 2004). Impairment of visibility is not just an aesthetic problem, it has 

aroused public attention on air pollution and health concerns (Watson, 2002). The London smog 

caused by industrial coal combustion and the Los Angeles smog caused by automobile emission 

combined with photochemical reactions are famous visibility deteriorating events (Brimblecombe, 

1981; Tiao et al., 1975). Visibility also affects all forms of traffic, including road, sailing, and 

aviation safety. An accurate understanding of the visibility impairment is indispensable in public 

safety and pollutant control strategies, however, the influence of PM2.5 sources on visibility was 

not well understood. Receptor model derived PM2.5 sources can provide a more detailed 

understanding of optical properties of fine particulate matter. To develop a practical control 

strategy for visibility impairment, both climatological and anthropogenic impacts must be well 

estimated. 

 1.3 Methods 

 1.3.1 Sampling locations and data sources 

The two sampling sites in this study were Flint Hills rural site and Kansas City urban site. 

The Flint Hills site is located near Strong City, KS (38⸰N, 97⸰W), with an elevation of 390 m. It is 

positioned at the center of the Tallgrass Prairie National Preserve, which is favorable for 

determining fire smoke emissions under all wind directions. The Kansas City monitoring site is 

positioned at the John F. Kennedy Community Center (JFK Center was renamed Beatrice Lee 

Community Center in September 2017) in downtown Kansas City (39⸰N, 94⸰W), 256 m above sea 
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level. Figure 1 is a satellite image from NASA showing the burning activities in 2014 with the 

marked sampling locations in this study.  

 

Figure 1 NASA satellite image of burning activities in 2014 and locations of the 

speciated PM2.5 sampling sites 

Data acquired for this project includes the speciated PM2.5 data (values, uncertainties, and 

detection limits) and meteorological data (wind direction, wind speed, temperature, relative 

humidity, visibility) from both sites. The speciated PM2.5 data contained the chemical composition 

of PM2.5 in the monitored environment. The Interagency Monitoring of Protected Visual 

Environments (IMPROVE) sampling network supported the Visibility and Regional Haze 

Regulation Programs and provided multiple years of quality assured speciated PM2.5 data for the 

Flint Hills sampling site (Solomon et al., 2014). The PM2.5 from IMPROVE site was measured by 

modules with Teflon, nylon and quartz filters. The Chemical Speciation Network (CSN) was 

housed in the EPA Air Quality System (AQS) database 

(http://views.cira.colostate.edu/fed/DataWizard), which provided the speciated PM2.5 data for 

Kansas City site. PM2.5 was collected on the teflon and nylon filters of the MetOne sampler 

(Solomon et al., 2014). Both data network can be found on the Federal Land Manager 

Environmental Database website (http://views.cira.colostate.edu/fed/DataWizard/). At both sites, 

http://views.cira.colostate.edu/fed/DataWizard
http://views.cira.colostate.edu/fed/DataWizard/
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filters with 24-h duration measurements were collected every three days. A 24-h averaged PM2.5 

level was recorded as one data point. The Flint Hills site had 1575 valid data points from September 

26, 2002 to December 29, 2015, and the Kansas City site had 767 valid data points from June 6, 

2001 to October 7, 2009.  

The basic meteorological data such as air temperature, relative humidity, precipitation, and 

solar radiation were from the KSU Mesonet. Stations in Manhattan and Olathe were the closest 

Mesonet weather stations to PM2.5 sampling site and then selected to represent the FH rural and 

KC urban site. Wind speed, wind direction, and visibility data were provided by the NOAA Surface 

Data Hourly Global (DS3505) network from the Emporia municipal airport and the Johnson 

county executive airport, respectively. Note that the wind direction data was calculated using the 

vector average method from the GSOD hourly wind speed and direction.  

 1.3.2 Speciated PM2.5 data sorting  

Both IMPROVE and CSN provided more than 50 speciated PM2.5 species, model data 

preparation was then conducted based on the amount of missing data and minimum detection limit. 

A species was excluded from the sorted data if that species has more than two-thirds missing data, 

or data values in this species have more than two-thirds under the minimum detection limit. 

Missing data in the included species was represented by the missing data symbol “-999”. Data 

under detection limit in the included species were replaced with a ½ detection limit of this species 

(Norris et al., 2007). Fine potassium is one of the included PM2.5 species. It is mainly emitted from 

soil dust and biomass burning (Park et al., 2007). To provide a tracer associated with vegetative 

burning, a calculated parameter non-soil potassium (Knon) was introduced. This study used the 

speciated iron (Fe) concentration as a surrogate for K from the soil to separate the soil K from the 
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total K concentration (Kreidenweis et al., 2001; Ma et al., 2003). The relationship of Knon versus 

Fe was derived from aerosol concentration’s scatter plots for both sites (Equation 1):  

Knon=K-0.34×Fe  (1) 

where Knon is the non-soil potassium, K is the total fine potassium, and Fe is the total iron in the 

datasets. Meteorological data was then coupled with pre-sorted speciated PM2.5 datasets for both 

sites. 

 1.3.3 Receptor model implementation 

The two receptor models have different principles to select input species. In the Unmix 

model, users make important decisions on species selection prior to the mostly automated 

procedure (Lewis et al., 2003). The initiation of Unmix begins with maximizing the number of 

input species and resultant sources while producing physically realistic and interpretable result 

(Poirot et al., 2001). The initial input were species with a mean mass concentration greater than 

1µg/m3. Other species in the suggested species list were then tested for Unmix selection by adding 

in or removing from the selected species in seeking the most suitable solution. Species that can 

obtain a minimal solution whose diagnostic indicators are acceptable are selected. Diagnostic 

indicators include R2 and the signal-to-noise ratio (S/N ratio). A feasible solution of contributing 

sources should assure at least 80% of the variance of each species could be explained by these 

sources (R2 > 0.8) and the signal-to-noise ratio greater than 1.5. PM2.5 was assigned as the total 

species. The Unmix model utilizes the self-modeling curve resolution technique to resolve 

meaningful source factors (Miller et al., 2002). Edge plots are scatter-plots of one species versus 

another; it is used for identifying species with good edges. Edges that are dependent on many data 

points rather than a few points will be less likely affected by errors. (Norris et al., 2007) 

Uncertainties in the solutions of source contributions to PM2.5 were estimated by a bootstrap 
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procedure (Efron and Tibshirani, 1993), in which the data are resampled more than 100 times with 

replacement and the standard deviation of these resampled results give an estimate of the 1-sigma 

uncertainty.  

PMF requires both speciated PM2.5 data and their uncertainties. Uncertainties allow each 

data point to be individually weighted in the PMF solution (Norris et al., 2009). Compared to the 

Unmix model, the PMF solutions are not as sensitive to the choice of input species (Maykut et al., 

2003). First of all, the imported species were categorized into “Bad”, “Weak”, and “Strong” classes 

based on their S/N ratio (López et al., 2011). PM2.5 was assigned as a total variable, which is default 

to be “Weak” category. The number of the source in the PMF model was given by the user prior 

to running the model. The Unmix model has the ability to suggest the solution by self-modeling, 

which provided the number of sources and source profiles. The number of sources derived from 

Unmix result was used as a reference to start the PMF modeling. In the PMF model, the solution 

with the lowest Q (Robust) value was used as the optimal solution for future analysis. The ultimate 

solution was considered only when the Q(true) is less than 1.5 times of Q (robust), indicating the 

PMF solution is not influenced by peak events (Gupta et al., 2012).   

PM2.5 source solutions derived from the Unmix and PMF models from both sites were then 

compared and analyzed. Radar charts were used to illustrate how source categories identified by 

the receptor models varied with wind directions. 

 1.3.4 Visibility measurement and processing method  

To evaluate the source-oriented visibility influence, the historical meteorological data and 

visibility data were employed. Visibility was measured in miles by a forward scatter visibility 

sensor. Ten miles or greater visibility was recorded as ten miles. The air and dew point 

temperatures were measured in Fahrenheit by a modern version of the fully automated “HO-83” 
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hygro-thermometer. The hourly RH was calculated from the measured air temperature and dew 

point temperature using the Clausius-Clapeyron equation. Daily wind direction was determined in 

vector calculation with hourly wind direction and wind speed. The Tobit analysis in QLIM 

procedures of SAS (SAS for Windows, version 9.4, SAS Institute, Cary, NC, USA) was used, 

significant effects were declared at p<0.05. 

 1.3.5 Temporal visibility variation analysis method 

Seasonal visibility variation was investigated because the diurnal variation is related to 

boundary layers, solar radiation, and temperature (Zhao et al., 2013). Seasons were classified by 

month based on the climate normal in order to find seasonal visibility variation. With January 

being the coldest month, and July the hottest month in Kansas; winter was to describe December 

of the previous year, January, and February, and summer includes June, July, and August.  

Mornings are considered with high RH (Doyle and Dorling, 2002; Ghim et al., 2005) and low 

mixing heights (United States Bureau of Land Management, 2008). Studies often use winter 

morning as an observation period since the high RH and low mixing heights condition is enhanced 

in winter. Afternoon mixing heights are generally higher, especially during summer time due to 

more heat and less latent heat requirement. A visibility observed during summer afternoon could 

show the effect of photochemically produced particles (Ghim et al., 2005; Watson, 2002). 

 1.4 Results and discussion 

 1.4.1 The Flint Hills rural site 

 The Unmix model result 

The Unmix model resulted in a five-source solution using 10 species (PM2.5, aluminum 

(Al), elemental carbon (EC), organic carbon (OC), iron (Fe), nitrate (NO3
−), silicon (Si), sulfate 

(SO4
2−), sulfur (S), and Knon) (Liu et al., 2016). The estimated minimum signal-to-noise (S/N) ratio 
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was 6.02, and the R2 = 0.91. Source contribution and composition are shown in Table 1. Table 2 

listed the Pearson correlation coefficient of Flint Hills Unmix sources and species that were not 

selected as the model input but associated with the model result. Monthly source contribution and 

time series plots are shown in figures 2 and 3. 

Table 1 Flint Hills (FH) site Unmix model results-Source contribution and 

composition (µg/m3) 

Source Nitrate/agricultural Sulfate/industrial Crustal/soil Smoke *SOA 

Code FH-U1 FH-U2 FH-U3 FH-U4 FH-U5 

Contribution 21% 31% 13% 7% 28% 

PM2.5 1.61 2.31 1 0.49 2.07 

OC 0.064 0.03 0.085 0.185 0.519 

EC 0.021 0.02 0.005 0.121 0.062 

NO3
- 0.675 0.002 0.027 0.029 0.022 

SO4
- 0.106 0.552 0.16 0.098 0.078 

Si 0 0.012 0.112 0.028 0.003 

Knon 0.002 0.001 0.001 0.044 0.004 

Al 0 0 0.054 0.016 0 

Fe 0.001 0.003 0.031 0.005 0.001 

S 0.029 0.203 0.059 0.037 0.03 

*SOA: secondary organic aerosols   

FH-U1: Nitrate/Agricultural 

The nitrate/agricultural source was identified with the conspicuous agreement with nitrate. 

This source accounted for 21% of PM2.5 mass at the Flint Hills site with a regular seasonal pattern. 

High loadings were observed in winter months and low loadings found in summer months (Figure 

2). Ammonium nitrate is produced by neutralizing nitric acid (HNO3) with ammonia (NH3) (EPA, 

1995). Kansas nitrate/agricultural source provided sufficient precursor ammonia (NH3), the 

ambient nitrate is expected to be fully neutralized ammonium nitrate. Composite source profile 

estimated the contribution from ammonium nitrate and ammonium sulfate occupied 48% PM2.5 in 

this source. Ammonium nitrate formation is a reversible reaction influenced by ambient 

temperature. Therefore, the low temperature in winter months favors more particulate ammonium 
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nitrate (Pitchford et al., 2009). In the winter months (December to February), the average monthly 

temperature is 0⸰C (NOAA, Strong City, KS), and the nitrate/agricultural source contributed 53% 

to 56% of ambient PM2.5; while from June to September, the average monthly temperature is 23◦C 

and the nitrate/agricultural source contribution is 1.7% to 3.4%. Previous studies have 

characterized the episodic nitrate pollution in the Midwest U.S (Katzman et al., 2010; Kim et al., 

2014; Pitchford et al., 2009). Besides the sufficient agricultural originated NH3, the secondary 

nitrate formation is also susceptible to inversions. Winter months with low surface temperatures, 

low turbulent mixing, and high-pressure systems hasten the stagnant conditions, which is the 

meteorological driver of high loadings of nitrate/agricultural source during this time.   

FH-U2: Sulfate/Industrial 

The sulfate/industrial source is the major mass contributor to the ambient PM2.5. The high 

loading of sulfate is a characteristic of this source. In most cases, the sulfate is fully neutralized 

and in the form of ammonium sulfate. Secondary sulfate in this source may represent origins from 

coal-fired power plants, vehicle emissions, and other industrial operations. Selenium is believed 

associated with coal combustion in source apportionment (Pekney et al., 2006b). As seen in Table 

2, a 0.6 Pearson correlation found with this source indicating the coal-fired power plant could be 

a major contributor to the sulfate/industrial source. However, the PM2.5 contributed by the coal-

fired power plants cannot be recognized as a single source yet in the receptor model; sources like 

this were called low strength sources. Without other unique tracer elements and lacking featured 

emission patterns brought difficulties in partitioning sulfate/industrial source into further low 

strength sources. A periodic pattern with high loadings in summer and low loadings in winter is 

apparent (figure 2), which is compatible with the effect of photochemical reaction and the presence 

of oxidants for the secondary sulfate formation. Time series plots have shown a decreasing trend 
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since 2005, which may due to the long-term stringent SO2 regulation such as the Clean Air Non-

road Diesel Rule and the Acid Rain Program for utilities. Studies reported the similar atmospheric 

sulfate decreasing correspond with controls implemented in the U.S. (Henneman et al., 2015; 

Hubbell et al., 2010). 

Table 2 Pearson correlation coefficient of the Flint Hills Unmix sources and some species. 

    FH-U1  FH-U2  FH-U3  FH-U4  FH-U5  Ca      Cu      Pb    Mn  Se  Ti  Zn 

 FH-U1  1.00                       

 FH-U2  -0.06  1.00                     

 FH-U3  -0.17  -0.13  1.00                   

 FH-U4  0.03  -0.03  0.00  1.00                 

 FH-U5  0.03  0.02  -0.05  0.52  1.00               

 Ca      -0.11  -0.05  0.50  0.21  0.18  1.00             

 Cu      0.07  0.13  0.08  0.49  0.06  0.16  1.00           

 Pb      0.36  0.22  -0.03  0.27  0.36  0.13  0.29  1.00         

 Mn      -0.12  -0.03  0.86  0.21  0.12  0.73  0.21  0.12  1.00       

 Se      0.02  0.62  0.05  0.18  0.33  0.09  0.24  0.38  0.16  1.00     

 Ti      -0.16  -0.05  0.97  0.10  -0.01  0.44  0.17  0.02  0.85  0.12  1.00   

 Zn      0.43  0.12  -0.06  0.47  0.53  0.19  0.26  0.65  0.16  0.34  0.00  1.00 

 

 

*FH-U1: Nitrate/Agricultural; FU-U2: Sulfate/Industrial; FH-U3: Crustal/Soil, FH-U4: Smoke; FH-U5: SOA 

Figure 2 Monthly source contribution from Unmix model result at the Flint Hills site 
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Figure 3 Time series of Flint Hills Unmix source contributions on PM2.5 (dates are in m/d/y) 

FH-U3: Crustal/soil 
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The crustal source often consists of oxides of aluminum, silicon, iron, and other metal 

oxides. Other geological material elements such as Ti, Ca, and Mn also correlated well with this 

source as shown in table 2, although they were not selected as the input species in the Unmix 

modeling. High source loadings were observed occasionally in summer with high wind speed. In 

these days the suspended dust was agitated and enhanced by the wind.  Meanwhile, strong wind 

expedited the dispersion of secondary aerosols, which explains the negative relationship found 

between crustal/soil source and nitrate/agricultural, sulfate/industrial, secondary organic aerosol 

(SOA) sources. The crustal/soil source contributed 13% of the total PM2.5, which is agreed with 

reported 5-15% range of a typical geological material contribution in PM2.5 (Watson et al., 1994).   

FH-U4: Smoke 

This category was featured by non-soil potassium since Potassium is a good marker for 

vegetative burning (Watson et al., 2001), and supported by outstanding contribution in burning 

season and episodes high EC content. EC is reported to associate with biomass burning (Pekney 

et al., 2006a), about 53% EC contributed to this source. Smoke source also includes crustal 

elements of Al, Fe, and Si, indicated partially suspended smoke dust could be crustal/soil 

originated.  The annual average from this source contributes 0.49 µg/m3 to ambient PM2.5, while 

in April this contribution reaches the peak monthly-average 1.69 µg/m3. Time series also showed 

the consistent spikes in April, which the intensive prescribed burning usually occurs in the Flint 

Hills region. Spikes in Aprils are found corresponded with each year’s burning area. From 2002 

to 2015, an average of 2.1 million acres field was burned each year, while in 2013 only 0.2 million 

acres were burned due to the unfavorable meteorological conditions. Correspondingly, there are 

no smoke-originated high loadings of PM2.5 observed during the burning season in 2013. The 

second high loading of this source was observed in July, leading by several extreme events in early 
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July. The fireworks in July 4th celebration could be the cause for such spikes in this source. Table 

3 listed some dates with high smoke source contribution to the ambient PM2.5. Moreover, EC is a 

primary pollutant emitted directly from combustion, while OC has both primary and secondary 

components. Compare to the OC/EC ratio in FH-U5 (8.4), the smoke source carries a much smaller 

OC/EC ratio (1.5). All of the above provide evidence for identifying this category as smoke 

primary aerosols from vegetative burning.  

Table 3 Example of early July smoke source contributions to ambient PM2.5 (µg/m3) 

Date FH-U4 PM2.5 Percentage 

7/5/2008 11.14 12.17 91.48% 

7/5/2007 5.13 6.39 80.29% 

7/5/2015 11.46 14.65 78.25% 

7/5/2011 5.66 9.57 59.16% 

7/6/2005 2.02 6.38 31.59% 

7/5/2003 4.68 15.03 31.17% 

FH-U5: Secondary organic aerosols (SOA) 

This category was characterized by the great amount of OC components and lack of tracer 

elements in classifying specific source. OC is the leading element in mass percentage (25%) 

compared to other sources, and the OC/EC ratio is 8.4, indicating the secondary aerosol formation 

in this source. Sulfate is the second mass percentage contributor in this source, it could be from 

distance sources that allow secondary sulfate formation during transport, such as sulfate/industrial 

source. The time series plot shows repeated elevations in April, implying the prescribed burning 

was a major contributor to the SOA. Peak values observed in SOA source did not always occur on 

the same day with high loading of the smoke source; in some cases, peaks in SOA source were 

observed a few days after the peak found in the smoke source. The delayed timescales in SOA is 

likely caused by the different formation pathway with the primary smoke particles (Ng et al., 

2006). The SOA source is positively related with the smoke source with a Pearson correlation of 

0.52 (Table 2), upholding the precursor contribution from prescribed burning. The ultimate high 
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SOA was in summer months, could be explained by the seasonal elevation in sulfate/industrial 

source. The SOA contained in this source was not only from smoke aerosols but also from another 

source like industrial origin.  

The previous study used April and all other months’ average contribution in estimating the 

amount of aerosol contributed by prescribed burning. There are approximately 1.05 µg/m3 primary 

aerosols and 4.03 µg/m3 secondary aerosols, and the secondary aerosol was about four times higher 

than the primary smoke aerosols, which demonstrated the large impact of rangeland burning on 

SOA formation (Liu et al., 2016). 

 The PMF model result 

The PMF model in the Flint Hills site resulted in a six-source solution using 14 species 

(PM2.5, Al, calcium (Ca), EC, OC, Cu, Fe, manganese (Mn), nitrate, potassium (K), Si, S, 

titanium (Ti), and Knon). The model result can explain 96% variability of the ambient PM2.5 data. 

Source contribution and composition are shown in table 4.  

 

Figure 4 Monthly average source contribution from the PMF model result at the Flint 

Hills site 
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Table 4 The FlintHills site PMF model results- Source contribution and composition 

(µg/m3) 

Source 
Nitrate 

/agricultural 

Sulfate 

/industrial 

Crustal 

/soil 
Smoke 

Traffic 

/SOA* 
Ca 

Code FH-P1 FH-P2 FH-P3 FH-P4 FH-P5 FH-P6 

Contribution 15% 34% 10% 19% 20% 2% 

PM2.5 1.060 2.440 0.680 1.380 1.450 0.150 

OC 0.000 0.159 0.054 0.607 0.388 0.000 

EC 0.013 0.038 0.000 0.097 0.085 0.000 

NO3
- 1.042 0.022 0.034 0.052 0.027 0.000 

SO4
- 0.086 1.425 0.082 0.000 0.204 0.000 

Si 0.000 0.019 0.113 0.003 0.000 0.026 

Knon 0.001 0.000 0.000 0.027 0.000 0.003 

Ca 0.000 0.000 0.005 0.000 0.017 0.067 

Al 0.000 0.002 0.041 0.003 0.004 0.004 

Cu 0.000 0.000 0.000 0.000 0.000 0.000 

Fe 0.000 0.000 0.027 0.000 0.014 0.002 

Mn 0.000 0.000 0.000 0.000 0.000 0.000 

K 0.001 0.000 0.010 0.027 0.005 0.005 

Ti 0.000 0.000 0.002 0.000 0.001 0.000 

*SOA: secondary organic aerosols  

Table 5 Pearson correlation coefficient matrix of the Flint Hills PMF sources and 

some species. 

 FH-P1 FH-P2 FH-P3 FH-P4 FH-P5 FH-P6 Pb Ni Se Zn 

FH-P1 1.00          

FH-P2 0.02 1.00         

FH-P3 -0.19 0.02 1.00        

FH-P4 0.10 0.22 0.02 1.00       

FH-P5 -0.04 0.18 0.06 0.19 1.00      

FH-P6 -0.16 -0.08 0.39 0.11 0.51 1.00     

Pb 0.36 0.30 -0.02 0.39 0.29 0.10 1.00    

Se 0.00 0.66 0.11 0.29 0.33 0.05 0.38 0.00 1.00  

Zn 0.43 0.23 -0.04 0.57 0.36 0.17 0.65 -0.01 0.34 1.00 
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*SOA: secondary organic aerosols 

Figure 5 Time series of the Flint Hills PMF source contributions on PM2.5 (dates are in m/d/y) 
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FH-P1: Nitrate/Agricultural 

Nitrate/agricultural source in PMF result at Flint Hills site was also identified by nitrate 

(1.04 µg/m3).  This source accounted for 15% of PM2.5 mass with an identical seasonal pattern as 

in Unmix result. As discussed in FH-U1, secondary nitrate formation in winter months was 

enhanced by meteorological condition, as well as longer night time (Alexander et al., 2009; Stanier 

et al., 2012). The FH-P1 and FH-U1 agree well on this source with an R2=0.99 (as in figure 8), the 

difference is the absolute value of nitrate is higher in the FH-P1 (1.04 µg/m3) compare to FH-U1 

(0.68 µg/m3).  

FH-P2: Sulfate/Industrial 

As the leading contributor to the ambient PM2.5, the sulfate/industrial source is featured 

with high loadings of sulfate. This source accounted for 34% (2.44 µg/m3) mass percentage of 

ambient PM2.5, with 1.43 µg/m3 was devoted by sulfate. This source also displays high loadings in 

warmer months as in FH-U2. Although Selenium (Se) was not selected species in PMF input data, 

a positive correlation with Se was found with a 0.7 Pearson correlation coefficient (Table 5), 

upholding the contribution from coal-fired power plants to this source (Khodeir et al., 2012). Time 

series plot shows a decreasing trend since 2005, possibly associated with regulation in stringent 

SO2 emission. The FH-U2 and FH-P2 source contributions agreed well with R2=0.93 (Figure 8).  

FH-P3: Crustal/soil 

The crustal/soil source was characterized by geological material elements. The PMF model 

included more geological elements such as Ca, K, and Ti compare to the Unmix model. Crustal/soil 

source appeared an elevation in July which agreed with FH-U3. Source contribution is harmonized 

with an R2=0.96 between FH-U3 and FH-P3. 

FH-P4: Smoke 
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The smoke source was identified by Knon in the PMF as well. Carbonaceous species (EC 

and OC) are the dominant PM2.5 component in this source, occupied 51% mass fraction. Si and Al 

were also a presence in this source, likely due to smoke dust from the soil. The annual average 

from this source contributes 1.4 µg/m3 to ambient PM2.5, while the peak month contributed 4.43 

µg/m3 PM2.5 in April. In April, the FH-P4 source category had the PM2.5 contribution about 2.6 

times than FH-U4 (1.69 µg/m3). The OC/EC ratio in annual contribution from FH-P4 (6.3) is also 

more than 4 times higher than FH-U4 category (1.5). It is believed that FH-P4 source category 

included both primary and secondary smoke aerosols.  

FH-P5: Traffic/SOA 

This category was identified by both mass fraction of nitrate and sulfate, and OC/EC ratio. 

The OC/EC ratio in the FH-P5 source was 4.6, which was the second high category in the PMF 

model derived sources. These indicated the presence of SOA. The amount of EC in this group is 

probably from tailpipe exhaust of motor vehicles. The presence of Ti, Fe, Si, and Ca were implying 

gasoline and diesel profile (Lewtas et al., 2002). Typical crustal elements could also suggest its 

soil originated peculiarity as found in road dust sources in another study (Song et al., 2006b). The 

lack of Knon in FH-P5 eliminate the root in smoke, and then it was considered as SOA from non-

smoke sources. Accounting for soil and road dust related features, this source category was labeled 

as traffic/SOA. A positive relationship between FU-P5 and FH-P6 was revealed with a Pearson 

correlation coefficient of 0.5, possibly due to suspended road dust (Table 5). 

By comparing smoke related source from the two receptor models, the FH-U4 was 

composed of mainly primary aerosols from smoke, while FH-U5 possibly contained SOA from 

both smoke and other sources. FH-P4 likely includes both primary and secondary smoke originate 

aerosols, and FH-P5 was presumably contained SOA from non-smoke sources such as engine 
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combustion, mobile, etc. To embody the differences between model results and to demonstrate the 

previous assumptions, a comparison of smoke-related categories is illustrated in figure 6 on a 

monthly basis. The FH-P4 level was about 2 to 4.5 times than FH-U4, and the combined level of 

FH-U4 and FH-U5 was continuously higher than FH-P4. It has confirmed the prior assumption of 

different SOA allocation between categories in different models. The smoke aerosols including 

primary and secondary aerosols at the Flint Hills site could be estimated as U4+U5, which carries 

a high regression coefficient (R2 = 0.92) with PMF resolved smoke category (P4). When the 

intensive prescribed burning taken place in April months, the primary PM2.5 emitted by prescribed 

burning can be estimated as 1.69 g/m3 (in FH-U4), and the total PM2.5 from burning smoke can 

be estimated as 4.43 g/m3 (in FH-P4). The approximate amount of SOA from prescribed burning 

was computed as 2.74 g/m3 (FH-P4 subtract FH-U4), which occupied 62% of the entire smoke 

source aerosols. Figure 6 also indicated a seasonal elevation in PM2.5 in July and August, possibly 

associated with open burning in the summer, such as campfires.  

 

Figure 6 Monthly-averaged contributions of smoke-related sources from both models at the 

Flint Hills site 
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Using both model results, the ratio between FH-P4 and FH-U4 was introduced as PM2.5 

expansion in addition to the primary aerosols in smoke, namely P4/U4 ratio. Figure 7 shows the 

monthly P4/U4 ratio at the Flint Hills site.  

 

Figure 7 Monthly P4/U4 ratio at the Flint Hills site 
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SOA is about 2.6 times higher than the primary aerosols during the burning season in the month 

of April. The minimum value of P4/U4 at the Flint Hills site was observed in July, where the P4/U4 

ratio is 2. It is reasonable to assume the smoke originated sources in this month carried relatively 

high primary aerosols, such as campfires. As concluded by other researches (Huang et al., 2016; 

Wang et al., 2016), the elevation of the P4/U4 ratio also found in warmer months when the 
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This source was only categorized in the PMF model at the Flint Hills site, with a high 

loading of calcium. Ca (0.067 g/m3) was the leading contributor to this source, occupied 45% 

mass fraction of this category. The crustal properties were expressed with a moderate positive 

correlation (Pearson correlation coefficient = 0.4) between FH-P6 and FH-P3. Across model 

results, the crustal-related categories of Unmix model (i.e., FH-U3) and PMF model (i.e., the sum 

of FH-P3 and FH-P6) have a high agreement with the R2=0.96. A positive correlation between 

FH-P6 and FH-U5 (SOA source from Unmix model) was also noticed with a Pearson correlation 

of 0.5. The monthly concentration of Ca dominated source was found slightly higher in warmer 

months, but no apparent seasonal pattern was observed. After all, the Ca dominated source only 

has limited impacts to the ambient PM2.5, due to its small contribution.  

 Comparison of the Unmix and PMF modeling results at the Flint Hills site 

In summary, the Unmix and PMF models resolved a different number of sources at the 

Flint Hills site, with similar contributions in the nitrate/agricultural, sulfate/industrial, and 

crustal/soil source categories. The different number of sources was because the different 

interpretation of primary and secondary smoke originated PM2.5. 

In the nitrate/agricultural, sulfate/ industrial and crustal/soil categories, the Unmix and 

PMF modeling results were in good agreement. Modeling results from the sulfate/industrial source 

were in high agreement, while PM2.5 level from the nitrate/agricultural and crustal/soil source in 

the Unmix was slightly higher than that in the PMF model result (Figure 8). This could be 

explained by the source profile of FH-P5 (Traffic/SOA), which was featured by high loadings of 

nitrate, sulfate, OC, and EC. It is reasonable to assume that the FH-P5 included SOA from 

agricultural and industrial origins. The smoke category has wider dispersed distribution and 
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presented a higher loading in the PMF result which enclosed both primary and secondary burning 

related aerosols under the smoke source. 

 

Figure 8 Comparison of the Unmix and PMF results at the Flint Hills site 

To further analyze the secondary organic aerosols from the different model derived 
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The (OC/EC)pri is the reference OC/EC ratio in primary aerosols. In the current study, receptor 

models indicated FH-U4 is a primary smoke source in FH site. The (OC/EC)pri =1.5 is then adopted 

from FH=U4 for Flint Hills site. The computed POC and SOC are 0.927 µg/m3 and 2.496 µg/m3 

for FH site in burning season, respectively. It is saying the burning originated secondary aerosol 

is about 2.7 times than the primary aerosols. The burning related source profiles from both receptor 

models also provided a similar outcome. Using OC/EC ratios from FH-U4 (Smoke), FH-U5 (SOA), 

and FH-P4 (Smoke) in April, the estimated ratio of burning related secondary aerosols over 

primary aerosols is 2.3. These findings agreed well with the previous study (Liu et al., 2016), 

where the smoke source secondary aerosols were three times than the primary aerosols in the 

burning season. 

 1.4.2 The Kansas City urban site 

 The Unmix model result 

The Unmix model at the Kansas City site resulted in a seven-source solution with 12 

species (PM2.5, Al, NH4
+, EC, OC, Cu, Fe, Mn, nitrate, Si, sulfate, and Knon). The estimated 

minimum S/N ratio was 2.01, and R2=0.92. Source contribution and composition are shown in 

Table 6. Table 7 listed the Pearson correlation coefficient of Kansas City Unmix sources and some 

species that were not included in the Unmix input. Figures 9 and 10 show the monthly averaged 

source contribution and time series plot of model-derived sources. 

KC-U1: Nitrate/ Agricultural 

The nitrate/agricultural source was featured by nitrate. This source contributed 25% mass 

to the ambient PM2.5 slightly more than it at the Flint Hills site, but the absolute PM2.5 level was 

more than two times as at the Flint Hills site. Approximately 0.52 µg/m3 nitrate and 0.19 µg/m3 

ammonium in this source occupied 20% mass percentage. In the role of agriculture, ammonium 
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and ammonium nitrate are an important source of nitrogen in the soil and contribute to plant 

growth. The nitrate and ammonium species has a similar seasonal variation and are well correlated 

(Pearson coefficient=0.72). Higher PM2.5 were recorded in winter months and lower in summer 

months because the ammonium nitrate evaporates at a warmer temperature. Studies also pointed 

out the reduction in NOx emissions would have limited effects on the production of ammonium 

nitrate due to the chemical mechanism equilibriums that result information (Lawson, 1998). The 

OC/EC ratio was 15 in this source, upholding the presence of secondary ammonium nitrate.  

Table 6 The Kansas City site Unmix model results-Source contribution and 

composition (µg/m3) 

Source 
Nitrate 

/agricultural 

Sulfate 

/industrial 

Crustal 

/soil 
Smoke 

Traffic 

/SOA* 
HDDV** Cu 

Code KC-U1 KC-U2 KC-U3 KC-U4 KC-U5 KC-U6 KC-U7 

Contribution 25% 34% 3% 9% 22% 3% 4% 

PM2.5 3.540 4.810 0.420 1.260 3.100 0.464 0.575 

Al 0.001 0.000 0.083 0.000 0.000 0.000 0.001 

NH4
+ 0.190 0.137 0.060 0.004 0.000 0.000 0.030 

EC 0.008 0.014 0.000 0.000 0.131 0.078 0.185 

OC 0.128 0.214 0.000 0.303 0.858 0.714 0.576 

Cu 0.000 0.000 0.000 0.000 0.000 0.000 0.018 

Fe 0.000 0.002 0.035 0.000 0.009 0.052 0.018 

Mn 0.000 0.000 0.000 0.000 0.000 0.006 0.000 

NO3 0.522 0.010 0.000 0.020 0.019 0.003 0.019 

Si 0.000 0.003 0.138 0.000 0.012 0.019 0.003 

SO4 0.121 0.391 0.349 0.077 0.007 0.032 0.097 

Knon 0.001 0.000 0.010 0.070 0.001 0.000 0.005 

*SOA: secondary organic aerosols   **HDDV: heavy-duty diesel vehicle 
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Figure 9 Monthly source contribution from the Unmix model result at the Kansas 

City site 

Table 7 Pearson correlation coefficient matrix of the Kansas City Unmix sources and 

some species. 
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*SOA: secondary organic aerosols   **HDDV: heavy-duty diesel vehicle 

Figure 10 Time series plots of selected Kansas City Unmix source contributions on 

PM2.5 (dates are in m/d/y)   

KC-U2: Sulfate/ Industrial 

Sulfate was used to trace industrial source, which is the leading contributor (0.39 µg/m3, 

34%) to ambient PM2.5. OC is the second leading contributor in this source, and the OC/EC ratio 

was 16, which is supporting the presence of the secondary aerosol formation. The average monthly 

sulfate/industrial level is 4.75 µg/m3; the highest value was recorded in warmer months especially 

in August (7.8 µg/m3) and September (8.1 µg/m3), it is almost double strength than it in winter 
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months (October to January). The time series indicated a decreasing tendency since 2005, 

corresponding with the stringent SO2 regulations. Although sulfate/industrial source contributed a 

similar mass percentage to total PM2.5 as at the Flint Hills site, the absolute value of PM2.5 level 

doubled in Kansas City site; likely due to more anthropogenic emissions in the urban area.   

KC-U3: Crustal/ Soil 

This crustal source was featured by geological elements such as Al, Fe, and Si. 81% (0.14 

µg/m3) Si was contributed to this source. Table 7 indicated a positive correlation between elements 

Ca (Pearson R=0.34), Ti (Pearson R=0.66) and this source. OC and EC were absent, while sulfate 

occupied 83% mass fraction in this source. The monthly contribution from crustal/soil is about 

0.43 µg/m3, a remarkable elevation was observed in July with 1.38 µg/m3 level of PM2.5. Wind-

blown soil crust and road dust could be one of the reasons. Secondary sulfate is developed via the 

chemical reaction of ozone and organic gases, which could be enhanced by high temperature in 

summer. Moreover, a small portion of ammonium was observed in the crustal/soil source along 

with sulfate, which could also be explained by gypsum materials. 

KC-U4: Smoke 

Smoke was traced by Knon at the Kansas City site, 78% (0.07 µg/m3) Knon contributed to 

this source. The monthly averaged level is 1.29 µg/m3, annually contributed 9% to the ambient 

PM2.5. The major contributors are ammonium nitrate and ammonium sulfate (NH4
+, NO3

-
, and SO4

-

). OC is a leading donor in this source, 0.3 µg/m3 OC occupied 24% PM2.5 mass fraction, endorsing 

the composition of secondary aerosols. Monthly average PM2.5 showed a significant elevation in 

July. The absolute PM2.5 level was 3.78 µg/m3 in July, almost three times than the annual averaged 

level. Time series plot laid out several data points with PM2.5 higher than 10 µg/m3, and all excess 

dates were around 4th of July (June 30th, 2001; July 2nd, 2003; July 5th, 2004; July 3rd, 2005; July 
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6th, 2005; July 4th, 2006; and July 5th, 2008). Therefore, the 4th of July celebration could be a major 

contribution to this source. Unlike the smoke source in Flint Hills site, no significant peak was 

observed in burning season at Kansas City site. 

KC-U5 Traffic/SOA 

A notable high OC/EC ratio (OC/EC=6.5) of this source stood out along with a major mass 

fraction (32%) of the carbonaceous species. Si, Fe, and Cu were also included in this source, 

unveiling the characteristic of fugitive dust, such as unpaved road, traffic suspended dust, and wind 

erosion from bare soil. A high positive correlation with Ca and Zn was found, with a Pearson 

correlation coefficient of 0.46 and 0.41 respectively; Pb carries a 0.22 Pearson coefficient with this 

source. As mentioned in the previous record, Zn could be emitted from lubricant oil, brake linings, 

and tires, which makes it an indicator of motor vehicle exhaust in the source apportionment; Pb 

and Zn elements are found in gasoline profile; Fe, Zn, Si, and Ca are found in diesel profile (Lewtas 

et al., 2002). No obvious seasonal pattern was demonstrated in this source, however, the highest 

loading month was July (4.12 µg/m3), while the monthly average was 3.10 µg/m3.  

KC-U6: Heavy-duty Diesel Vehicle (HDDV) 

This source is the second small contributor to the ambient PM2.5, annually contributed 3% 

mass percentage. The OC/EC ratio is 9.15 in this source, even higher than that in KC-U5. The 

slightly higher EC/OC ratio may be due to the influence of diesel engine emissions (Hu et al., 

2006). This category also positively related to Ca and Zn with 0.35 and 0.38 Pearson correlation 

coefficient, upholding the diesel profile. Seasonal variation was not disciplinary from this source, 

contrarily it had a relative sustainable contribution to ambient PM2.5 through sampling years. The 

Fairfax Traffic way is located about two miles east of the JFK Center sampling site, this train 

traffic way was presumably the main contributor to the HDDV source category. 
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KC-U7: Cu dominated 

Copper was the leading species in this source, with a 4% contribution to ambient PM2.5. 

The inclusion of OC, EC, ammonium, nitrate, and sulfate demonstrated the secondary feature of 

this source. Monthly PM2.5 elevated in July to about 60% compared to the average, and this source 

also carried a 0.3 Pearson correlation coefficient with the smoke source (KC-U4).  

 The PMF model result 

The PMF model at the Kansas City site derived a seven-source solution with 15 species 

(PM2.5, Al, NH4
+, Ca, EC, OC, Cu, Fe, Mn, nitrate, potassium (K), Si, sulfate, zinc (Zn), and Knon). 

The model result can explain 90% variability of the ambient PM2.5 data. Table 8 shows the source 

contribution and composition from the PMF model in Kansas City site. Figure 11 shows the 

monthly source contribution from the PMF model result at the Kansas City site. 

Table 8 The Kansas City PMF results - Source contribution and composition (µg/m3)) 

Source 
Nitrate 

/Agricultural 

Sulfate 

/Industrial 

Crustal 

/Soil 
Smoke 

Traffic 

/SOA* 
**HDDV Cu 

Code KC-P1 KC-P2 KC-P3 KC-P4 KC-P5 KC-P6 KC-P7 

Contribution 15% 32% 9% 9% 25% 9% 1% 

PM2.5 2.010 4.370 1.220 1.160 3.330 1.240 0.130 

OC 0.110 0.716 0.409 0.439 2.180 0.874 0.054 

EC 0.008 0.068 0.020 0.012 0.302 0.118 0.045 

NO3 1.562 0.000 0.060 0.000 0.338 0.000 0.000 

SO4 0.059 1.996 0.161 0.095 0.340 0.000 0.000 

Si 0.004 0.000 0.091 0.002 0.000 0.010 0.000 

Knon 0.001 0.004 0.005 0.089 0.000 0.001 0.000 

Ca 0.002 0.000 0.020 0.002 0.007 0.074 0.000 

Al 0.001 0.000 0.016 0.001 0.000 0.000 0.002 

NH4 0.495 0.707 0.042 0.000 0.000 0.037 0.014 

Cu 0.000 0.000 0.000 0.000 0.000 0.000 0.009 

Fe 0.000 0.004 0.016 0.000 0.023 0.021 0.003 

Mn 0.000 0.000 0.000 0.000 0.001 0.001 0.000 

K 0.001 0.004 0.012 0.088 0.013 0.008 0.001 

Zn 0.001 0.001 0.000 0.000 0.005 0.002 0.000 

*SOA: secondary organic aerosols   **HDDV: heavy-duty diesel vehicle 
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Figure 11 Monthly source contribution from the PMF model result at the Kansas City 

site 

KC-P1: Nitrate/Agricultural 

The nitrate/agricultural source contributed 15% mass percentage of ambient PM2.5 and was 

identified by high loadings of nitrate. About 1.56 µg/m3 nitrate contributed to this source and 

occupied 77% mass fraction. Regular elevations in winter months demonstrated a similar trend as 

in KC-U1, and the lowest level was found in summer months (figure 11, 12). The OC/EC ratio of 

this source is 13.5, slightly higher than that in KC-U1. Although the regression coefficient between 

KC-U1 and KC-P1 is 0.98 (Figure 14), their contributions to the total PM2.5 varies. The monthly 

PM2.5 of KC-P1 was 2.05 µg/m3, which was 46% less than them at KC-U1. The source profile 

indicated less OC contribution in this source compares to KC-U1, consider the slightly lower 

OC/EC ratio, it is reasonable to assume that KC-P1 included less secondary aerosols than KC-U1. 
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Figure 12 Monthly nitrate/agricultural PM2.5 (in µg/m3) comparison at the Kansas 

City site. 

KC-P2: Sulfate/Industrial 

Sulfate/industrial source is the leading contributor to ambient PM2.5, identified by high 

loadings of sulfate. About 2.0 µg/m3 sulfate contributed to this source, occupied 46% mass fraction 

in sulfate/industrial source. OC is the second major species in this source, 0.72 µg/m3 occupied 

20% mass fraction of sulfate/industrial source. And the OC/EC ratio is 10.6 in KC-P2, which is 

lower than that in KC-U2. Monthly PM2.5 showed a stable increasing trend from January and 

reaches the highest level in September. A rapid cutback was seen in October, with the lowest level 

in October as well. Compare the monthly PM2.5 with KC-U2, sulfate/industrial PM2.5 from PMF 

model is slightly lower than that in the Unmix model from April to November. As mentioned 

before, the formation of secondary ammonium sulfate is enhanced during warm months, it is 

believed that the KC-U2 accounted for more secondary aerosols than the KC-P2 (figure 13). The 

similar analogies were also seen in KC-U1 and KC-P1. Times series data shows a decreasing trend 

after 2005, comparable with both model results from the Flint Hills site, and KC-U2. Overall, the 

KC-U2 and KC-P2 carried a 0.93 regression coefficient in source contributions (figure 14).  
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Figure 13 Monthly sulfate/industrial PM2.5 (in µg/m3) comparison at the Kansas City 

site 

KC-P3: Crustal/Soil 

Crustal source contributed 9% ambient PM2.5 at Kansas City site, almost three times than 

it in Unmix model result. This source gathered more than four-fifths Si (0.1 µg/m3) and Al (0.02 

µg/m3), and about a quarter Fe (0.02 µg/m3). Time series and monthly PM2.5 level showed a similar 

trend with KC-U3. A rapid increase was found in July, where the monthly contribution was over 

two times higher than the contribution of any other month. The combination of OC and EC 

occupied 35% mass fraction of this source. Since the suspended crustal dust was considered a 

potential source of secondary organic aerosol (Jeong et al., 2016), it is possible that KC-P3 

accounted suspended dust as crustal/soil source, while KC-U3 include the dust into other SOA 

featured categories.  

KC-P4: Smoke 

Smoke tracer Knon was again used in identifying the smoke source, with 89% (0.09 µg/m3) 

Knon contribution. OC was the leading contributor that occupied 38% (0.44 µg/m3) mass fraction 

in the smoke source. The time series plot and a monthly contribution of this source were almost 
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identical with KC-U4, supported by the regression coefficient of R2=0.99 (figure 14). Peak values 

all appeared to be around the 4th of July. The averaged PM2.5 contribution in July was 3.4 µg/m3 

in KC-P4 and 3.8µg/m3 in KC-U4, which were both more than two times higher than any other 

months. The OC/EC ratio was exceedingly high, indicating the existence of large amount SOA. 

Unlike the Flint Hills site, the prescribed burning did not bring an intensive rising in Kansas City 

smoke source. 

KC-P5: Traffic/SOA 

Traffic/SOA source contributed 25% ambient PM2.5 in the PMF model. The carbonaceous 

species (OC and EC) has taken 75% mass fraction in this source, in which OC is more than seven 

times than EC. This was then identified as SOA originated source due to the high OC/EC ratio. 

The enriched Zn (51%), Mn (61%), Fe (35%), and Ca (6%) were elements implying the effect 

from diesel profile. Due to the EPA requirement of phasing-out of lead in all grades of gasoline, 

lead (Pb) was absent in this source. No regular pattern was recorded in time series plot. The 

monthly contributions of KC-U5 and KC-P5 were not quite harmonized as other sources. The 

greatest separation was observed in July, which was also the high loading month of crustal/soil 

source. Recall KC-P3, the PM2.5 level in July had a 1.89 µg/m3 surplus than KC-U3, while the 

averaged surplus (monthly average of KC-P3 subtract KC-U3) was 0.81 µg/m3. Due to the above 

evidence, it is possible the two models handle SOA in July differently between crustal/soil and 

traffic/SOA sources. 

KC-P6: HDDV 

The heavy-duty diesel vehicle source contributed 9% mass percentage of PM2.5 at the 

Kansas City site and was determined based on multiple clues. The leading species revealed the 

combustion properties were carbonaceous species, especially OC; 0.87 µg/m3 OC weighted 70% 
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of the mass fraction of this source. High loadings of Fe and Mn could be from diesel additions. No 

obvious pattern was observed in either time series plot or monthly contributions.  

KC-P7: Cu dominated 

Cupper dominated source was identified by Cu, 89% Cu was included in this source. The 

highest record of KC-P7 was found in July, same as in KC-U7. The absolute PM2.5 level in this 

source was slightly lower than the KC-U7, but the overall tendency agrees well each other 

(R2=0.99).   

 Comparison of Unmix and PMF modeling results at the Kansas City site 

The Unmix and PMF resolved a same number of factors at the Kansas City site, source 

contribution and composition are in accordance with nitrate/agricultural, sulfate/industrial, smoke, 

and Cu dominated categories. However, the two models tend to treat SOA in divergent ways. 

Secondary aerosols from the traffic originated source are often formed from the oxidation of SOx, 

NOx, and the neutralization of NH3 (Seinfeld and Pandis, 2016), and possibly be broken down and 

concluded in various categories. The regression coefficient of crustal/soil between two model 

results was 0.6978, it is likely due to different SOA processing between models. For instance, 

source composition of KC-U5 (traffic/SOA) and KC-P5 were in low agreement (P=0.18), the 

combination of soil, traffic/SOA, and Cu sources from Unmix (KC-U3, U5, and U7) and PMF 

(KC-P3, P5, P7) carried a high correlation coefficient (P=0.46). The comparison analysis between 

model-derived PM2.5 sources would be a progressive approach in quantifying SOA. Furthermore, 

the Unmix and PMF models resolved a highly consistent solution in categories with unique tracer 

element, e.g. Knon in the smoke category.   
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Figure 14 Comparison between Unmix and PMF results at the Kansas City site 

 1.4.3 Site comparison 

Both receptor models revealed interpretable results in the two sites, with the annual 

averaged ambient PM2.5 at the Kansas City site higher than the one at the Flint Hills site. The 

source apportionment demonstrated more complicated source categories at the Kansas City site 

than that at the Flint Hills site. The common sources shared by the two sites were 

nitrate/agricultural, sulfate/industrial, crustal/soil, smoke and traffic/SOA.  

As leading species, OC level at the Kansas City site was more than three times higher than 

that at the Flint Hills site, which suggested more SOA precursors in the urban area. In 

nitrate/agricultural and sulfate/industrial categories, the OC/EC ratios were much higher than at 
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the Kansas City site, and the mass fraction of carbonaceous species (EC and OC) at the Kansas 

City site were about two times higher than in Flint Hills rural site. The crustal/soil and traffic/SOA 

source categories also had a higher OC taking up at the Kansas City site, indicating more SOA 

formation. The smoke source category FH-P4 contributed about 20% of the total PM2.5, while KC-

P4 only accounted for 9% ambient PM2.5. Peaks of FH-U4 and FH-P4 were in the month of April 

when the prescribed burning was taking place, while peaks of KC-U4 and KC-P4 were observed 

in the month of July, potentially due to campfires or the fireworks around the 4th of July 

celebration. The previous study also addressed the enhanced biomass burning contribution in rural 

than in urban locations (Kundu and Stone, 2014). Moreover, the smoke category at the Flint Hills 

site contained more EC, which are likely emitted directly from combustion (FH-P4: EC/total=7%; 

KC-P4: EC/total=1%). In contrast, the smoke category at the Kansas City sites contained more OC 

and sulfate, indicating more secondary aerosol formations. 

Radar charts were used to illustrate the average source contributions of selected source 

categories under various wind directions at both sites based on the PMF modeling results (figure 

15).  The nitrate/agricultural source category had a notable higher contribution under the north 

wind. Higher contributions in the sulfate/industrial (P2) and crustal/soil (P3) source categories 

were observed under the south wind at both sites; this could due to coal-fired power plants, such 

as the La Cygne Station (Linn County) and the Empire District Electric Co. (Cherokee County), 

located in the south of the Kansas City sampling sites. Higher contributions were observed at the 

Kansas City site in the nitrate/agricultural, sulfate/industrial, crustal/soil, and traffic/SOA 

categories (P1, P2, P3, and P5) under every wind directions, except the smoke source category 

(P4). FH-P4 had higher contributions under southeast and south wind directions, while KC-P4 had 

higher contributions under southwest and west wind direction.  
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Figure 15 Average contributions of selected categories (in µg/m3) by wind directions. 

 

Figure 16 Smoke originated PM2.5 (in µg/m3) distributed by wind direction during the 

burning seasons. 

Figure 16 is a radar chart illustrating contributions of the smoke source categories under 

various wind directions at both sites using multi-year data during the burning seasons (from March 

15 to May 14). During this period, a relatively high correlation (Pearson coefficient = 0.6) was 

found between FH-P4 and KC-P4 when Kansas City was under the influence of west and 
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southwest wind (wind direction: 202.5°-292.5°). The KC-P4 showed a prominent high 

contribution under the southwest wind, suggesting that part of the smoke originated PM2.5 in the 

urban site could have come from the upwind burning activities.  

 1.4.4 PM2.5 source impacts on visibility degradation in rural and urban Kansas 

 Temporal variation of visibility 

Annual visibility variations from 2001 to 2016 are compared with those in different 

seasons, as shown in Figure 17. Seasonal visibility variations were also demonstrated using winter 

morning and summer afternoon frames. A winter morning was defined as 0600 to 0900 CST in 

December of the previous year, January, and February. Summer afternoon was denoted as 1500 to 

1800 CST in June, July, and August.  

 

*FH VSB: Flint Hills annual averaged visibility. KC VSB: Kansas City annual averaged visibility. FH-SA: 

Flint Hills summer afternoon visibility. FH-WM: Flint Hills winter morning visibility. KC-SA: Kansas City summer 

afternoon visibility. KC-WM: Kansas City winter morning visibility.   

Figure 17 Annual and diurnal visibility variation in Flint Hills and Kansas City 

Visibility in Flint Hills and Kansas City was compared in the histogram (figure 17), with a 

higher averaged value at the rural site. The multi-year visibility average is 9.03 miles at the Flint 
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Hills site compared to 8.7 miles at the Kansas City site. In both locations, 2005 carries the lowest 

annual average visibility, while the best annual visibility was in 2016. 

Overall, an increasing trend in visibility was found throughout these years, with the rate of 

increase higher in Kansas City than in Flint Hills site. An obvious degradation occurred in 2005 

(Figure 17), where the annual visibility was down to 8.76 miles, and 7.82 miles at the Flint Hills 

and Kansas City sites, respectively. One possible explanation might be the prescribed burning 

event in 2005. From the satellite imagery analysis, there were 3.5 million acres pasture burned in 

2005, while the average annual (2003-2014) burning area is around 2.2 million acres. Differences 

of the annual extreme values at the Kansas City site (1.45 miles) is more than two times than it at 

the Flint Hills (0.62 miles), demonstrating a greater disparity and implicating a more complex air 

pollutants composition. 

The summer afternoon visibility from both locations as shown in Figure 17 in solid lines, 

with the majority of values are higher than the annually averaged visibility. On the other hand, the 

winter morning visibility is usually lower than the annual average values for most of the year. A 

special case was observed in 2006, likely due to the low averaged RH in winter of that year. 

Typically, a higher particle level in winter morning is devoted of low mixing height, high RH 

(Ghim et al., 2005; United States Bureau of Land Management, 2008), and frontal passages (Davis, 

1991), which led to visibility impairment during this time. Photochemical reactions formed 

secondary aerosols in summer afternoons potentially affected visibility, while the high mixing 

height improves visibility at the same time. The higher mixing height in summer afternoons is 

more effective than the secondary particle formation in photochemical reaction, therefore, 

maintained the visibility higher in summer afternoons than in winter mornings. The summer-

afternoon visibility distribution at the Kansas City site spanned a wider range along the y-axis 
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compared to the Flint Hills site. This is likely due to the high density of anthropogenic emissions 

contribute to a greater visibility variation. Tsai and Cheng (1999) reported visibility differences 

between weekdays and weekends in an urban area. No similar discrepancy was found in either 

urban or suburban region from this work.   

 Effects of meteorological parameters on visibility  

The study revealed the visibility is under the influence of local liquid and solid 

precipitation, especially when the air temperature is low (Gultepe and Isaac, 2006). The current 

data set indicated a significant difference in both locations with or without precipitation. The 

visibility range is 0.5 miles shorter on rainy or snowy days in Flint Hills, while in Kansas City, the 

difference developed to 0.86 miles. Theoretical calculations of the relationship between 

precipitation and visibility have been performed in several studies (Gultepe and Isaac, 2006; 

Rasmussen et al., 1999), but the result has shown a large variation. Detailed weather conditions, 

such as rain intensity, droplet sizes, and precipitation duration could help quantify the relationship 

with visibility.   

Relative humidity is one of the key factors of visibility variations, with a large range from 

14% to 100% in the datasets. Segmented RH was used to coordinate with the visibility data. A 

cutoff RH value was observed in the dataset. When RH is lower than 50%, no significant influence 

on visibility was observed, while when RH is higher than 50%, a significant negative association 

was found between RH and visibility. This is because the PM2.5 particulates absorb moisture and 

causing light scattering (Lee and Cheng, 1996; Malm and Day, 2001). It is understood that a high 

RH weather condition could keep more suspended particles, and benefit light scattering. Consider 

non-precipitation days with RH greater than 50%, the correlation coefficient between RH and 

visibility is -0.3 in Flint Hills and -0.4 in Kansas City. Visibility at both locations reveals an 



46 

obvious decline in 2005. The comparatively high RH in this year could be one of the reasons. Note 

that RH is not the only contributor to visibility degradation, other causes such as population 

density, traffic emissions are also a notable source of pollutants (Tsai and Cheng, 1999). To look 

at the entirety RH through multiple years, a coincided relationship between all range RH and 

visibility are appeared in the Flint Hills data, with correlation coefficients of -0.6. The correlation 

coefficient between RH and visibility in Kansas City during the same period was only -0.2, 

indicating the RH variation in an urban area is not as influential as in suburban. 

Although temporal and meteorological parameters have been illustrated powerful effect of 

visibility, the vital influence from particulate matter cannot be left out.  

 Tobit model and effects of PM2.5 sources 

For both locations, the Unmix modeling results have less negative values than the PMF 

modeling results. Thus, the Unmix resultant sources were used to coupling with visibility and other 

climatological parameters. Hourly visibility data were averaged in each day to correlate with the 

24-hour speciated PM2.5 level.  

Scatter plots were employed first to investigate the PM2.5 impacts. Figure 18 displayed the 

correlation between ambient PM2.5 and daily averaged visibility on both sites. Low visibility 

(visibility < 3 miles) values are often corresponding with high RH (>70%) winter days, which 

could be explained by the seasonal and RH effects. Meanwhile, days with PM2.5 concentration 

more than 40µg/m3 were always coupled with relatively low visibility values. This is implying the 

importance of PM effects on visibility degradation. 

Visibility in figure 18 was not equally distributed along the y-axis, but more centered by 

10 miles mark. This is due to the measuring method, which records visibility more than 10 miles 

as 10 miles. As such, the input data was right censored. In order to analyze the impact factors of 
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visibility, the entire data set needs to break down into two parts, values recorded as true and values 

over the upper limit 10. Tobit model was introduced in dealing with the piecewise function of 

visibility.  

𝑦𝑖 = {
𝑦𝑖     𝑖𝑓 𝑦𝑖 < 𝑦𝐿

𝑦𝐿    𝑖𝑓 𝑦𝑖 ≥ 𝑦𝐿

 

 

(3) 

As in Equation 3, the Tobit model was designed to estimate the linear relationships between 

variable when there is a left or right censoring in the dependent variable, which is visibility in this 

case. The historical weather data and receptor model derived PM2.5 sources were used in the Tobit 

model analysis. Table 9 listed significant visibility impact factors from two locations, and their 

parameter estimations. 

 

Figure 18 Scatter plots between ambient PM2.5 and visibility from Flint Hills rural 

and Kansas City urban sites. 

Both locations demonstrated nitrate/agricultural originated PM2.5 as the greatest impact 

factor that negatively correlated with visibility range. When agricultural PM2.5 reached 10 µg/m3, 

the negative relation enhanced with correlation coefficient equals to -0.4 in Flint Hills and -0.43 

in Kansas City. The agriculturally generated fine particles are mainly secondary aerosol. The 

precursor particles emitted from this source have a far-reaching effect under the influence of 
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photochemical reaction in the troposphere. A regular seasonal pattern of agricultural originated 

PM2.5 was seen in the time series with ceiling values in winter (Dec. to Feb.) and minimum values 

in summer (Jun. to Aug.). The regional agricultural ammonia emission supported the secondary 

nitrate formation; meanwhile, the weather condition such as low wind speed, low temperature, and 

stagnant condition act as drivers of this episodic pollution. In Flint Hills site, industrial, smoke and 

SOA were PM2.5 sources identified as visibility impact factors. The only influentially 

meteorological parameter was RH. At the Kansas City site, wind speed and maximum air 

temperature were considered influentially meteorological factors, but less PM2.5 sources were 

included in the table. The different visibility impact factor could be explained by the urban area 

features. The urban environment is kept warmer because of more paved surfaces and more CO2 

emitted from anthropogenic sources, which is in favor of SOA formation. The stagnant conditions 

in an urban area are also persistent during the day because of larger-scale wind patterns (Chen et 

al., 2011). The parameter estimation in Table 9 was provided by the Tobit model analysis, 

indicating the magnitude of each factor’s influence (in the range of 0-1) to visibility impairment. 

 Table 9 Visibility impact factor and parameter estimations in the Tobit model. 

Flint Hills Parameter estimation Kansas City Parameter estimation 

Nitrate/ 

Agricultural 
-0.29 

Nitrate/ 

Agricultural 
-0.31 

Sulfate/ 

Industrial 
-0.24 Wind speed 0.21 

Smoke -0.18 
Sulfate/ 

Industrial 
-0.15 

RH -0.06 Max air temp. -0.03 

SOA -0.05 RH -0.01 

 

 1.5 Conclusions, limitation, and future work  

The application of both Unmix and PMF models at the Kansas City site resulted in 7-source 

solution (nitrate/agricultural, sulfate/industrial, crustal/soil, smoke, traffic/secondary organic 
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aerosol (SOA), diesel/heavy-duty diesel vehicles (HDDV), and Cu dominated source) that 

contribute to ambient PM2.5. 

Comparative analysis at the Flint Hills site provided more hints on the relative contribution 

and characterization of primary and secondary smoke aerosols. Smoke sources in the Flint Hills 

performed various features in Unmix and PMF model. The primary and secondary aerosols from 

the smoke source were identified as separate sources in Unmix result, and SOA from other origins 

was also mixed in the burning-related SOA category. However, the PMF model was more 

preponderant in identifying the smoke-related category as an entire body. Both primary and SOA 

from burning were accounted into one source, while SOA from other cause was indexed into 

separate categories. In April, the burning originated secondary aerosols is estimated 2.3 to 2.7 

times of the primary aerosols. By computing source contributions in FH-U4 and FH-P4, smoke 

from prescribed burning accounted for 40% of total ambient PM2.5 in the months of April.  

In comparison with the Flint Hills site, the Kansas City site carried a more complex source 

component. As the SOA precursor, the OC in urban site almost doubled its contribution. More 

paved road and gypsum materials in the urban environment led to a different source composition 

in crustal/soil, and traffic/SOA sources. The PMF results at the Kansas City site tend to classify 

more SOA from nitrate/agricultural and sulfate/industrial sources into traffic/SOA source. 

Although smoke sources were carried in both site, the peak value and major donor were dissimilar. 

The smoke source at the Kansas City site elevated in July, and can be explained by fireworks on 

the Independent Day celebration, and possible campfires. The smoke source at the Kansas City 

site also carries an exceedingly high OC/EC ratio, which is more than five times higher than it in 

Flint Hills site. Traffic/SOA PM2.5 source (KC-U5, KC-P5) found more trace of mobile origins, 

some traffic originated SOA were even observed in crustal/soil source (KC-P3).  
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The two receptor models provided a more comprehensive information on source profiles 

and source contributions. Because the Unmix model separate source based on time sequence, it is 

in favor of identifying the later formed SOA from burning event. Moreover, during the burning 

season, the smoke source from both sites carried a relatively high correlation when KC is under 

west and southwest wind, suggesting that part of the smoke originated PM2.5 at the urban site could 

be from the upwind burning activities. Multiple power plants in southern Kansas might have 

effects in the PM2.5 industrial source to both sites. Source profiles derived in this work may provide 

a reference in applying the emission-based model in the future. Tobit modeling was used in 

identifying visibility impact sources. Both climatological parameters and particle sources were 

employed in the Tobit model analysis, with nitrate/agricultural source being the leading 

degradation contributor in both sites.  

This study provided a more reliable source apportionment study by using multiple receptor 

models. However, the receptor model is not the best practice in partitioning low strength sources, 

more detailed sources could be derived from sulfate/industrial, and traffic/SOA categories. In 

addition, the hourly visibility data were found associated with ozone concentration; data in this 

study could be used to analysis weekend effect.  

There are opportunities for future work emerging from this research: a more accurate 

prescribed burning details could be monitored in daily satellite images. These field details will 

help in explaining and validating the apportioned smoke source contributions. SOA management 

strategies are under pressing need in order to reduce air quality impact from prescribed burning. 

And the complete meteorological predictor can be included, such as mixing height to show the 

atmosphere stability.   
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Chapter 2 - A review of life cycle assessment on the carbon footprint 

of beef production in the U.S.  

 2.1 Introduction 

Greenhouse gas (GHG) emissions from agriculture, forestry, and fisheries have roughly 

doubled over the past fifty years based on estimations from the Food and Agriculture Organization 

(FAO, 2014). The agricultural GHG emissions in the US are about 563 million metric tons (MMT) 

of CO2 equivalent in 2016, and accounting for 8.6% of the total GHG emissions (EPA, 2018). 

Agriculture is responsible for a significant portion of anthropogenic GHG emissions, there is also 

an opportunity for some mitigation to be achieved by conducting better agricultural management. 

The agricultural GHGs include CO2, CH4, and N2O, and their leading sources are N2O released 

from soil related to N fertilizer usage (38%), CH4 from livestock enteric fermentation, N2O from 

manure management (38%) (Scheehle et al., 2006). In particular animal production systems in the 

US, beef cattle are by far the largest CH4 emitter. The beef cattle emitted 121 MMT CO2 equivalent 

in 2016, accounting for more than 71% of the total anthropogenic CH4 emissions in that year (EPA, 

2018).  

The complexity of livestock operation systems and differences of ecological systems, 

presence challenge in keeping accurate and precise emission records of each GHG component. To 

evaluate GHG emissions from livestock production, it is essential to use a whole system modeling 

approach (Stewart et al., 2009). Life cycle assessment (LCA) in livestock production system is 

widely accepted in assessing the environmental impacts throughout the entire production’s life 

(cradle-to-grave) (ISO, 1997). By using the LCA procedure in animal production systems, 

researchers could identify the system components and key leverage points for reducing 

environmental impacts in the production system, also quantify life cycle emissions for comparison 
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between different aspects (Dudley et al., 2014). There are two types of LCA studies commonly 

used in a beef production system: attributional LCA (aLCA) and consequential LCA (cLCA). The 

aLCA describes the average environmental impacts representing a given production system; while 

the cLCA aimed at quantifying the environmental consequences of a change in demand for a 

product (Thomassen et al., 2008). Carbon footprint (CF) is an indicator of environmental impacts 

in LCA studies (Röös et al., 2013) such as GHG emissions, energy consumed and land usage. In 

this study, the CF estimates both direct and indirect GHG emissions in the production process 

(Desjardins et al., 2012). Direct comparison among studies’ results is almost impossible since LCA 

studies employed different system boundaries and the analytical context.  

 Objectives 

The objectives of this study were to evaluate carbon footprint range in beef production 

from different LCA studies, identify the leading CF contributor and dominant source of 

uncertainty, and summarize the LCA inventory defined in cattle production systems. 

 2.2 Database selection and literature search 

The number of journal articles addressing LCA of beef has increased considerably over the 

last twenty years. The initial literature search was conducted among three commonly endorsed 

database: Scopus, Web of Science, and CABI. The literature search with the keywords “life cycle 

assessment”, “carbon footprint” and “beef” in title, abstract and keywords were applied in this 

database. As shown in table 10, the Web of Science database carries the most number of articles, 

which is more than three times than the CABI database. In order to eliminate counting the 

duplicated articles, the following study will focus on articles found in the Web of Science database.  
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Table 10 Number of articles published each year in the databases, citing "Life Cycle 

Assessment", "carbon footprint", and "beef" in title, keywords or abstract. 

Publication year Web of Science Scopus CABI 

2010 1 1 1 

2011 4 2 3 

2012 8 6 3 

2013 4 3 1 

2014 5 2 1 

2015 6 7 3 

2016 9 4 1 

2017 13 9 3 

2018 7 4 0 

Total 57 38 16 

The leading journal representing beef LCA studies was the Journal of Cleaner Production, 

with 15 publications (26%). The European Union had the highest number of publications in the 

beef LCA field, but the U.S. is accounted for 13 (23%) publications acted as the leading country. 

A literature search using earlier terms of LCA such as environment profile analysis, environmental 

profiling and cradle-to-grave assessment (Roy et al., 2009) was also applied, the searching result 

was combined in the following analysis.  

To further identify suitable studies, an abstract filtering was carried through within the 

publications found in Web of Science. The literature inclusion criteria were: the study must have 

simulated or measured CF data which can be expressed in the LCA function unit, and the study 

must be a peer-reviewed journal article in English. The US LCA studies covered farms from 30 

states, which are highlighted in figure 19. A data extraction sheet was developed for consistency. 
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The LCA study inventory was recorded in categories like geographic region, cattle raising system, 

system boundaries, CF method, CF range, function unit, dressing percentage, etc. 

 

Figure 19 Geographic locations of LCA studies in the U.S. 

 2.3 Review of LCA inventory 

 2.3.1 LCA goal and scope 

The goal and scope, namely the frame and foundation, describe the specific interest and 

the depth of an LCA study. In some cases, they are established in LCA model assumptions. The 

LCA goal defines whether it is an attributional LCA or a consequential LCA. The study objectives 

are the most important component of an LCA because the entire project was carried out according 

to its statement. The study objective of an attributional LCA is to quantify environmental impacts 

from the production system; while the objective of a consequential LCA is to evaluate the expected 

consequences of a change in the production system (ISO, 2006). Only attributional LCA studies 

were considered in this project. The scope defines details of the study to sufficiently meet the 

stated goal, such as system boundary, function unit, and allocation method.  
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The selected LCA publications in present work address the carbon footprint of beef 

production systems all over the world aiming at systematic GHG emission, CF uncertainties, 

allocation methods etc. More than half of the literature included in this review were aiming at 

comparing environmental impacts between various beef production system. This various features 

in raising system, feeding component, locations, and cattle types. In addition, LCA applications 

are also focusing on other environmental impacts, such as energy consumption, acidification, 

eutrophication potentials, and land occupation (Bragaglio et al., 2018; Nguyen et al., 2010; Röös 

et al., 2013; Subak, 1999). 

 2.3.2 System boundaries and beef raising system 

The system boundary defines which elements in the beef production system are included 

in the LCA. Ideally, every stage of the production system should be included, from raising a beef 

calf to food waste estimation. However, the limited resources should be devoted to significantly 

influential aspects. System boundary in the research is usually a reflection of goal and scope and 

is decisive for the results. To determine the significance of a process in the system prior to LCA 

analysis is difficult, once a process is well studied, there is no point to leaving this process out. In 

most cases, the initially defined system boundary would need to be refined subsequently (ISO, 

2006). Most of the included studies followed a cradle to farm gate LCA. Few of them include 

activities beyond farm-gate. Roop et al. (2014) used a cradle to processing gate system boundary 

and estimated the contribution of the post-farm process to overall CF was less than 10%. The 

inclusive US studies often neglect GHG emission related to capital goods and machinery, only a 

few studies from European accounted for emissions related to capital goods, buildings, and 

machinery (Williams et al., 2006).  A typical beef production system in LCA has primary inputs 

in the beef production systems such as feed, water, energy usage (electricity and fuel), and 
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secondary inputs such as crop growing essentials (fertilizer, pesticides, irrigation water, and crop 

energy consume),and transportations (feed and animal) (Capper, 2011).  

 

Figure 20 Beef raising system and system boundaries from inclusive LCA studies. 

In 2016, the US was the greatest beef producer in the world with 92 million head of cattle 

and calves (USDA-NASS Census of Agriculture). Figure 20 displayed the concept of beef raising 

system and system boundaries seen in the inclusive LCA studies. Beef cattle are present in every 

state in the US, but the numbers, farm scale, and raising the system highly depend on regions. 

Two-phase and three-phase (namely conventional) beef production systems were the 

preponderance in the US beef operations. The conventional beef production systems usually 

consisted of cow-calf phase, backgrounding/stocking phase, and feedlot finishing phase (Capper, 

2011); while in a two-phase system, the weaned calf from the cow-calf facility was sent to feedlot 
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finishing directly. Grass-fed cattle were referred to beef production based on pasture or organic 

systems, which comprise only 3% of today’s beef production (Johnson, 2010). Although farms 

may apply the same production phases in raising cattle, the growing period and feed composition 

of each phase could vary, and then led to dissimilar CF result.  

 2.3.3 Method of allocation 

In the beef production systems, there are both products and co-products, such as beef, veal, 

and milk on a dairy farm. The process of appropriately assigning environmental impacts, the CF 

in this case, to each product is called allocation. By extending the system boundaries, allocation 

could be avoided, but to study a specific product, beef, for instance, a constant and reliable 

allocation method should be determined. 

The allocation method could be biophysical based or economic value. A biophysical based 

allocation uses energy, or nutrition content associated with products to assign the environmental 

impact; while an economic value based allocation is usually weighted by mass (Environmental 

Working Group, 2011). The mass-weighted economic value has proved to be a reliable allocation 

method. Stackhouse at al. (2012) used this procedure in determining CF of calves when leaving 

the dairy farm. Other inclusive studies that applied the mass-based allocation method are Roop 

and Rotz (2014; 2010). Pelletier et al. (2010) chose the biophysical allocation method using gross 

chemical energy content in appointing environmental footprint into different beef operations. A 

similar allocation method was also used by Rotz and Lupo’s (2013; 2015).   

In summary, the greater part of the CF study was designed on comparing different beef 

production systems. There are only a limited number of LCAs that are focused on a specific whole 

farm-level CF with itemized breakdowns. Because of the abounding specifics mentioned in the 

LCA inventory, CF value from original study results cannot be compared without considering 
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these fine points. Comparison between production systems can be helpful in identifying a better 

agricultural practice, in finding a more efficient feeding plan, or in ensuring the cattle genetic 

selection. However, in order to increase the standardization of LCA inventory specifics and make 

the CF results directly comparable, a great number of whole-farm analysis with itemized emission 

breakdowns of a specific region are required.  

 2.3.4 Greenhouse gas emission assessment in LCA studies 

The method for calculating carbon footprint is sophisticated because the GHG emitted and 

embodied from each stage in the LCA need to be taken into consideration. A standard calculation 

method of CF is still evolving (Pandey et al., 2011), the current LCA studies estimate the GHG 

emissions by using the Intergovernmental Panel on Climate Change GHG emission algorithms 

(Desjardins et al., 2012; Intergovernmental Panel On Climate Change, 2007).  

The gaseous emissions included in LCA carbon footprint studies were CO2, CH4, and N2O. 

CO2 worked as input in plant photosynthesis, while excreted as a product of animals metabolism. 

CO2 emitted directly from cattle can be considered as emission neutrality. GHG emission 

neutrality indicates the net zero GHG emission from all sectors. For instance, the carbon 

sequestration into soil has the potential to offset agricultural emissions (Crosson et al., 2011). 

Enteric fermentation in cattle rumen is the major source of CH4 emission in beef production. 

Manure management is another source of agricultural CH4 emission, especially in liquid manure 

storage systems under high temperature (Crosson et al., 2011; Mogensen et al., 2015). Although it 

is not directly associated with cattle, the CH4 emissions can be considerably high, especially when 

excreta are stored under anaerobic conditions (Flachowsky et al., 2018; Montes et al., 2013). There 

is no direct N2O emission from animals, but N2O could be associated with manure storage and the 
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following land application (Flachowsky et al., 2018). The N2O emissions were often seen in other 

environmental impacts, such as acidification and eutrophication. 

Greenhouse gases were expressed in the CO2 equivalent in the LCA studies when 

addressing global warming potential. And the equivalent heating potential of CH4 and N2O oxide 

were slightly different in IPCC editions. Table 11 lists these changes and studies based on different 

global warming potential weighting factors. The variations in CF result due to different GWP 

factors are not expected to be significant; Nguyen suggested a minor change (3.7%-5.5%) in the 

CF result due to this reason (2010).   

Table 11 IPCC editions of greenhouse gases conversion to CO2 equivalent 

IPCC standard 

Methane 

(CO2 eq.) 

Nitrous Oxide 

(CO2 eq.) 

References 

1996 21 310 (Casey and Holden, 2006) 

2001 23 296 

(Beauchemin et al., 2011; de Vries and de 

Boer, 2010; Nguyen et al., 2010) 

2007 25 298 

(Bragaglio et al., 2018; Cerri et al., 2016; 

Heller and Keoleian, 2011; Nguyen et al., 

2012) 

2013 28 265 (Andreini and Place, 2014) 

Field-level GHG emissions were often estimated by using equations and emission factors. 

Carbon footprint estimation has also been commercialized in all the areas of LCA. LCA software 

has been used to make the CF estimation more practical and precise. Studies included employed 

several LCA tools, such as SimaPRo, Gabi, and OpenLCA. The most commonly used software is 

SimaPro. (Desjardins et al., 2012; Dick et al., 2015; Heller and Keoleian, 2011; Lupo et al., 2013; 

Ogino et al., 2007; Pelletier et al., 2010; Ridoutt et al., 2011; Roop et al., 2013) The literature has 
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shown the advantage in the graphical representation of SimaPro, compare to the graphical output 

of Gabi (Rice et al., 1997). Consider SimaPro is not flowed diagram based, the details of system 

boundary in the flow diagram may vary. The drawbacks of SimaPro being the price, which 

explains the recent popularity of an open-source software OpenLCA. In brief, comparisons 

between LCA studies on beef production should be made with caution, because of differences in 

system boundaries, allocation procedures, and other methodological nuances. 

 2.4 Review and analysis of the Carbon footprint  

 2.4.1 Function unit and dressing percentage 

LCA studies used various function units to evaluate the greenhouse gas emissions. 

Although the global warming potential of methane and nitrous oxide were converted to CO2 

equivalent, the mass unit of beef production was quite different depends on different studies. For 

the carbon footprint of beef production, common units used are live weight (LW) and hot carcass 

weight (HCW, CW). Saleable meat weight was also used occasionally (Cederberg and Stadig, 

2003; Peters et al., 2010). The weight of live animal that ends up as the carcass is expressed by 

LW. Generally, the carcass weight is taken immediately after skinning and evisceration, also 

known as hot carcass weight. Saleable meat weight highly depends on cutting specifications, such 

as bone-in or boneless etc. The existence of co-products in the beef production brought discussion 

in using CF function unit based on live weight, therefore, the function unit used in this work is kg 

CO2e kg-1 carcass weight.  

To prepare different functional units in the CF comparison, dressing percentage and carcass 

cutting yield were introduced. Dressing percentage describes the relationship between cattle live 

weight to carcass weight. Dressing percentage can be affected by factors like cattle bred, fatness, 

whether include hides, head, feet etc. An averaged dressing percentage for cattle is about 50% to 
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62% (Cornell University, 2012; Peters et al., 2010; Wulf et al., 1999). Carcass cutting yield is the 

percentage of the carcass that actually ends up as saleable meat, usually about 65-75% (Peters et 

al., 2010), and about 55%-60% for boneless meat (Wulf et al., 1999). The following Equation 4 

demonstrated dressing percentage and carcass cutting yield conversions. 

Dressing Percentage = (carcass weight ÷ live weight) × 100               

Carcass Cutting Yield = (meat weight ÷ carcass weight) × 100 
(4) 

Dressing percentage and carcass cutting yield could be quite different depending on the 

region, cattle type, and raising systems. Table 12 lists several published studies that include their 

dressing percentage in the discussion.  

Table 12 Beef dressing percentage used in published carbon footprint studies 

Study Dressing percentage Country 

(Tsutsumi et al., 2018) 56% Japan 

(Desjardins et al., 2012) 60% Canada 

(Rotz et al., 2015) 50% (cull cattle); 62% U.S. 

(Capper, 2011) 62% U.S. 

(Dudley et al., 2014) 63% U.S. 

(Tichenor et al., 2016) 

59% (dairy beef); 54% (grass-fed); 50% (cull 

cattle) 

U.S. 

(Lupo et al., 2013) 51% U.S. 

For consistency, carbon footprint included in the present study were converted to kg CO2e 

kg-1  carcass weight using 55% dressing rate, and 70% carcass cutting yield rate.  
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 2.4.3 Carbon Footprint range and breakdowns 

Table 13 Overview of carbon footprint range in published beef LCA studies outside U.S. 

Study Country Raising system LCA inventorya 
Carbon 

Footprint b 

(Beauchemin 

et al., 2010) 
Canada 

Crop-livestock 

farm finishing (as 

in 2-phase) 

Direct on farm, purchased inputs 

and indirect nitrous oxide. 

Excludes capital and machinery. 

21.7 

(Williams et 

al., 2006) 
UK 

cNon-organic; 

100% suckler; 

Lowland; 

Hill& upland; 

Organic. 

Simulated direct emissions, 

purchased inputs and indirect 

nitrous oxide emissions. Include 

buildings and machinery 

15.8; 

25.3; 

15.6; 

16.4; 

18.2 

(Casey and 

Holden, 

2006) 

Ireland 
Conventional; 

Organic system. 

Direct on farm, purchased inputs 

emissions. Excludes capital, 

machinery, and chemicals. 

23.2; 

19.9 

(Cederberg 

and Stadig, 

2003) 

Swedish 
Cow-calf farm 

finishing all cattle 

Direct on-farm, purchased inputs 

and indirect nitrous oxide 

emissions. Excludes capital and 

machinery. 

d15.6 

 

(Nguyen et 

al., 2010) 
eEU 

Suckler cow-calf 

system 

Direct on-farm, purchased inputs 

and indirect nitrous oxide 

emissions 

27.3 

(Ogino et al., 

2007) 
Japan 

Cow-calf and 

fattening 

(as in 2-phase) 

Direct on farm, emissions from 

energy consumption and animal 

feed 

d25.5 

(Ogino et al., 

2004) 
Japan 

Cow-calf to feedlot 

finishing 

Direct on farm, emissions from 

energy consumption and 

imported animal feed. 

22.6 

(Peters et al., 

2010) 
Australia 

Grain-finished; 

Grass-fed 

Simulated direct emissions 

purchased inputs, and emissions 

at the processing plant. Excludes 

capital goods. 

9.9; 

12.0 

(Veysset et 

al., 2010) 
France 

Cow-calf; 

2-phase 

2-phase (beef 

steers) 

(Survey data) Direct emission, 

purchased inputs and capital. 

Does not include indirect N2O. 

30.5; 

26.6; 

27.1 

a: partial of this column was derived from (Crosson et al., 2011) b. Function unit in kg CO2e kg-1 

carcass weight. Results in italics indicate CF range converted to the carcass-based unit. c: intensive cereal 

beef finishing d: 70% carcass cutting yield e: EU: European Union 
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Table 14 Overview of carbon footprint range in published beef LCA studies in the U.S. 

Study Raising system aLCA inventory 
Carbon 

Footprint b 

(Pelletier et 

al., 2010) 

2-phase; 

Conventional; 

Grass-fed 

Simulated direct emissions, purchased 

inputs and indirect nitrous oxide emissions. 

Excludes capital and machinery. 

c26.9; 
c29.5; 
c34.9 

(Phetteplace et 

al., 2001) 
Conventional 

Direct on-farm, purchased inputs and 

indirect nitrous oxide emissions. Excludes 

capital and machinery. 

c28.2 

(Dudley et al., 

2014) 

Conventional 

*backgrounding CF not 

include 

Direct on-farm, feed production, indirect 

N2O, and indirect land use. 
d14.8 

(Stackhouse et 

al., 2012) 

Angus without growth-

promoting; 

Angus with growth-

promoting; 

Angus with growth-

promoting and hormones 

Model simulated direct emissions and 

secondary nitrous oxide emissions. 

Excludes capital goods. 

24.2; 

22.6; 

22.0 

(Stackhouse-

Lawson et al., 

2012) 

Conventional; 

2-phase 

Simulated direct emission, purchased input 

and indirect N2O 

22.6; 

21.2 

(Capper, 2012) 

Conventional; 
e Natural system; 

Grass-fed 

Simulated direct emission, purchased input, 

and indirect N2O. 

16.0; 

18.8; 

26.8 

(White and 

Capper, 2013) 

Conventional; 

Increased ADG f; 

Increased finishing weight. 

Simulated direct emissions, purchased 

inputs and indirect N2O. 

20.1; 

18.5; 

17.8 

(Tichenor et 

al., 2016) 
Grass-fed 

Simulated direct emissions, purchased 

inputs, and land use. Exclude capital goods. 
33.7 

(Lupo et al., 

2013) 

Conventional; 

Early weaning; 

Fast backgrounding; 

Grass-fed 

Simulated direct emission, purchased inputs 

and indirect N2O. 

23.0; 

24.1; 

22.9; 

31.6 

(Roop et al., 

2014) 

2 phase  

(average from 6 farms) 

Direct farm GHG emissions, utility and 

transportation from cradle to farm gate. 
c18.9 

(Rotz et al., 

2013) 
Conventional 

Simulated direct emissions and pre-chain 

sources (gas, electricity, fertilizer, 

purchased feed, machinery etc.). 

c19.85 

(Capper, 2011) 
1977 conventional; 

2007 conventional 

Simulated direct emissions, crop production 

input, fuel and electricity. 

21.45; 

17.95 

(Rotz et al., 

2015) 
Integrated 3-phase 

Simulated direct emissions, net GHG 

emission, energy use, and water use. 
20.2 

(Roop et al., 

2013) 

Grass-fed on small farms 

with early slaughtering 

Direct farm GHG emissions and purchased 

inputs. 
25.05 

a: partial of this column was derived from (Crosson et al., 2011); b. Function unit in kg CO2e kg-1 

carcass weight. Results in italics indicate CF range converted to the carcass-based unit; c: 55% dressing 

percentage; d: backgrounding phase is not included; e: a conventional system without growth-enhancing 

technology during feedlot finishing f: ADG: average daily gain;  
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Carbon footprint was mostly reported as environmental impacts in the LCA studies. A 

substantial range in CF is listed (Table 13 and Table 14) in the unit of kg CO2e kg-1 carcass weight. 

Studies without a complete LCA analysis were excluded. Several LCA studies used different 

function unit, which was converted using a dressing percentage of 55%, and carcass cutting yield 

of 70%.  

Due to various model assumptions, environmental condition, and methodological 

differences, conclusions cannot be drawn among beef LCA studies across global regions. For 

instance, a longer finishing time and higher cattle body weight approach was adopted in western 

Canadian beef production, which would lead to a relatively higher environmental impact (Lupo et 

al., 2013). A more typical example of different finishing timescale was seen in the Brazil case, 

where the CF reported to be more than 50% higher than it in the conventional US system (Cerri et 

al., 2016).  

The carbon footprint of beef production ranged from 9.9 to 34.9 kg CO2e kg-1 carcass 

weight from studies depending on the production system, location, cattle type, allocation, and 

system boundaries. To make the comparison, the CF values need to be categorized under the 

similar raising systems. 

The 2-phase production system consisted of cow-calf and stocking/backgrounding phases 

referred to as grain-finished cattle in some cases. The CF for 2-phase systems were in the range of 

18.9 to 26.9 kg CO2e kg-1 carcass weight, with a median of 21.2 ± 4.12. An exceedingly low CF 

was reported by an Australia study of grain-finished cattle as in Peters et al., but note the cow-calf 

stage was excluded in this estimation (Peters et al., 2010). Conventional beef production is the 

most commonly used system in the US, some studies from outside the US also adapted their CF 

estimation based on the 3-phase system. The CF from 3-phase conventional production system 
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ranged from 16 to 29.5 kg CO2e kg-1 carcass weight, with a median of 21.4 ± 4.29 kg CO2e kg-1 

carcass weight. The stocking period slightly raised the GHG emission compare to the 2-phase 

system, but no significant differences were found. CF estimation from US grass-fed cattle system 

ranges from 25.05 to 34.9 kg CO2e kg-1 carcass weight, with a median of 31.6 kg CO2e kg-1 carcass 

weight. The CF from grass-fed cattle production in the US is significantly greater than both 2-

phase production (P<0.05) and conventional production (P=0.01), it is roughly 42% and 45% 

higher than CF in 2-phase and 3-phase cattle production systems. Studies also indicated that the 

feedlot finished cattle carried a lower CF compare to grass-fed cattle (Capper, 2012; Lupo et al., 

2013; Pelletier et al., 2010; Peters et al., 2010). Because the concentrated diet provided more 

digestible nutrients, which increase the weight-gaining speed. The shorter lifetime would then lead 

to less enteric methane emission. However, CF could be very dissimilar in feedlot finishing cattle 

based on the average age at which cows gave birth to their first calf (Ridoutt et al., 2011). A study 

based on Northern Great Plains farms (Lupo et al., 2013) used a shorter finishing time when 

estimate CF, the GHG emissions were 31.5 kg CO2e kg-1 hot carcass weight. Yet the shorter 

finishing time for grass-fed cattle implies a lighter finishing weight and a higher dressing 

percentage. Consequently, for the same amount of beef produced, the shorter finishing time on 

grass may not be the most sustainable strategy.  

The EU studies often based on grass-fed or organic beef system which produce both beef 

and milk, while the US studies usually involve multiple operating systems. Grass-fed cattle system 

in EU has a CF lined from 15.6 to 19.9 kg CO2e kg-1 carcass weight, with a median of 18.2 ± 2.17 

kg CO2e kg-1 carcass weight. It is highly relevant to mention farm types in explaining this CF 

elevation. More than half of the beef production farms in the EU were conjugated milk and beef 

production system (Cederberg and Stadig, 2003). When comparing with US farms, a great portion 
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of CF burden in the EU farms was ascribed to the milk system. Figure 21 indicated the carbon 

footprint of the beef product under different raising system in EU and US. As mentioned, the 2-

phase and 3-phase systems in the US presented a similar CF estimate, and grass-fed system in EU 

carries a notable low CF compare to it in the US. 

 

Figure 21 Beef production carbon footprint under different raising systems in EU and 

US 

Commonly seen CF variations across literature may cause by disparate dressing percentage 

and beef yield convention rate. For instance, Ogino et al. (2007) reported environmental impacts 

of 36.4 kg CO2e kg-1 beef from the cow-calf and fattening system, while the CF is 22.3 kg CO2e 

kg-1 beef reported by Cederberg’s et al. (2003). If GHG emissions from both studies converted to 

live weight based function unit, the figures become quite similar: 14.6 and 15.6 kg CO2e kg-1 live 

weight, respectively. Therefore, the conversion rate in LCA studies should be clearly noted, and 

the original function unit should be reported.  

LCA analysis has been used to evaluate the environmental impact of GHGs in recent years, 

an interesting tendency was observed based on the LCA study’s timeline. For study focused on 
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conventional beef production systems in the US, the latest study tended to have a lower CF value. 

Due to the limited number of studies, this tendency was only based on graphic observation. There 

are studies focused on environmental impact comparison between historical and modern 

operations. For example, Capper’s (2011) project was targeting comparison between 1977 and 

2007 beef production systems and concluded the sustainable agriculture improvements in a 

modern beef production system is crucial in order to meet the increasing population demand.   

The LCA analysis also provided a breakdown of carbon footprint and identified the leading 

contributor under different scenarios. For the conventional beef production system, the cow-calf 

category is the well-defined leading impact because maintaining a cow is the most emission-

intensive aspect in cattle production. Considering a cow could only produce one calf per year, the 

low fecundity raises the GHG emissions in this stage. In the 2-phase beef productions, cow-calf is 

still the largest contributor of the total GHG emissions. Enteric methane emission and manure 

management were the second leading contributors (Roop et al., 2014).  

Table 15 CF breakdown from the literature based on beef production system 

Production 

phases 

(Rotz et al., 2015) (Rotz et al., 

2013) 

(Pelletier et 

al., 2010)b 

(Pelletier et 

al., 2010) 

(Lupo et 

al., 2013) 

Cow-calf 67.3% 71% 63% c 63% c 58% 

Stocking 17.8% ―a ― 15.4% ― 

Feedlot 14.9% 19% 23.5% 12.5% ― 

Total CFd 22.2 19.84 26.9 29.5 23 

a: not reported in the literature; b: 2-phase production system; c: averaged contribution between two 

production systems; d: Carbon footprint function unit: kg CO2e kg-1 CW, Dressing percentage: 55% 

Table 15 listed several studies with CF breakdown based on the production system. On 

average, about 64.5% of GHG emissions was contributed from the cow-calf phase, the CF 
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contribution from stocking/backgrounding and feedlot was indistinct. This could be explained by 

individual growing period, feeding, and cattle breed etc.  

The enteric methane fermentation was the major unit process contributor. It was held 

responsible for 39-41% CF within the cow-calf stage, and 73-88% in the feedlot stage (Nguyen et 

al., 2012).  Published research suggested that the enteric methane emission was accounting for 

31% to 66% of the total GHG emission from the system (Nguyen et al., 2012; Pelletier et al., 2010; 

Rotz et al., 2013; Rowntree et al., 2016; Veysset et al., 2010). This figure was even higher in the 

Japanese study, which 46-75% CF was due to enteric fermentation (Tsutsumi et al., 2018). And an 

Italian study raised the enteric methane contribution up to 75-85% of the total CF in a production 

similar to the conventional system in the US (Bragaglio et al., 2018). The high methane emission, 

in this case, was due to the use of forages rather than concentrates on feeding.  

There are other major CF components reported in the LCA studies, such as feed production 

and manure management. In a conventional system with the CF 18.9 kg CO2e kg-1 CW, feed 

production was the main contributor in feedlot phase, which accounted for 60-79% of the total CF 

(Roop et al., 2014). A study based on Italian beef operation reported a similar ratio. The fattening 

phase in Bragaglio’s research is analog to the feedlot operations in the US system, and the feeding 

supplementation related GHG emission was accounting for 57% of the emission from the fattening 

stage. (Bragaglio et al., 2018). Dudley categorized the average GHG emission in the US beef 

production were found to be from pasture (43%), indirect land use change (25%), feedlot (20%), 

and crop production for feed (11%). (Dudley et al., 2014) 

The grass-fed beef production revealed enteric methane as the leading GHG. Enteric 

methane was accounted for 57% of the total CF (33.7 kg CO2e kg-1 CW); following by the 24% 

contribution of direct N2O emission from grazed pastures (Tichenor et al., 2016).  
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 2.4.4 Sensitivity analysis and uncertainty analysis 

Sensitivity analysis was used to determine how different input variable impact the 

dependent CF value under a given assumption. Some studies also introduced sensitivity index, 

which is the ratio of the percent change in output over the percent change in input. For different 

system boundaries, Nguyen (2010) conducted the sensitivity analysis in the EU study to estimate 

the CF change if land opportunity cost and land use change related to grazing and feed crop 

production were taken into account. The CF would increase 3.1-3.9 per kg beef (CW) if both 

factors were included. Researchers believed this results highlighted the importance of considering 

land use impacts in assessing the environmental impacts of livestock production, and promoting 

sustainable land use is under urgent need. A research in the US also confirmed the land use change 

was the highest degree of uncertainty associated with beef production. Dudley et al. (2014) 

employed the change percentage in the sensitivity analysis and found indirect land use change was 

the most sensitive parameter in GHG emissions, which could change 500% carbon footprint in 

LCA studies. Other factors impact CF in the beef production system encompass pasture soil 

emissions (fertilizer, cattle backgrounding, grazing intensity etc.), manure management, and 

enteric fermentation. Dudley reported the N-excretion rate in manure management from the feedlot 

phase has the greatest influence on final emission, and the methane conversion factor (MCF) is 

most sensitive parameter within feedlot manure methane emissions (Dudley et al., 2014). In a 

regional scale, CF was moderately sensitive to enteric methane and slightly sensitive to emissions 

from purchased inputs and N2O from pasture and crop (Rotz et al., 2015).  

The Monte Carlo simulation is a technique converts uncertainties in input variables into 

probability distributions over output variables (Park, 2008). Uncertainty analysis quantifies the 
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confidence in the predicted carbon footprints and was constructed using the Monte Carlo method 

in several LCA studies (Dudley et al., 2014; Lupo et al., 2013; Ruviaro et al., 2015).  

 2.5 Conclusions, limitation, and future work  

Most existing beef LCA studies followed a “cradle to farm gate” approach and they 

reported CF from three typical raising systems: 2-phase, 3-phase, and grass-fed. Literature 

included in the present study used function unit of kg CO2e kg-1 carcass weight. Emission factor 

calculations and LCA software were used in estimating carbon footprints. The most commonly 

used software is SimaPro and OpenLCA. SimaPro offers a great graphical representation, and 

OpenLCA brought cost-friendly access for researchers. 

The CF from 2-phase production range from 18.9 to 26.9 kg CO2e kg-1 carcass weight, with 

a median of 21.2 ± 4.12 kg CO2e kg-1 carcass weight. The 3-phase raising system was the most-

studied type, with CF range from 16 to 29.5 kg CO2e kg-1 carcass weight, and a median of 21.4 ± 

4.29 kg CO2e kg-1 carcass weight. The highest CF was reported from grass-fed cattle systems in 

the U.S., due to methane production from pasture-based beef production. However, the CF from 

grass-fed cattle in EU was quite low, it ranged from 15.6 to 19.9 kg CO2e kg-1 carcass weight, with 

a median of 18.2 ± 2.17 kg CO2e kg-1 carcass weight. It could be explained by the agricultural type 

in the EU. There are more than 50% of farms produce both beef and milk, and the CF burden was 

then partaken by the dairy production. 

Identifying the leading source of GHG emission from the beef production could indicate 

the mitigation priorities. The literature reported CF breakdowns based on raising system and unit 

produce factors. CF from the cow-calf stage is about three to four times higher than it from 

stocking/backgrounding and feedlot due to the low fecundity. The feedlot stage is the most 

intensive raising system, it carried the least GHG emissions. In another word, feedlot finished beef 
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is less emission-intensive. Due to the high demand for food, feed production contributed the most 

in the feedlot phase if forages were applied rather than concentrates. Moreover, the methane 

conversion factor (MCF) is most sensitive in this stage. 

The reported leading uncertainty source was land use change, which explained the 

suggestion from the literature of intensifying beef production system in mitigating GHG emissions. 

Moving towards intensive raising system and increase the efficiency of feed usage could reduce 

GHG emission from cradle to farm gate stage. In addition, combining dairy production with beef 

production also suggested a sustainable way of reducing CF.  

Details about the cattle breed were not well defined in most published studies. Therefore, 

the cattle breed was neglected in categorizing cattle systems. Although beef CF after the farm gate 

occupied a smaller portion of the life cycle GHG emissions, it is quite helpful to include the CF 

from transportation and food waste into consideration. In addition, as a result of variations in cattle 

farm operations (raising period) and geographic conditions, developing a regional CF range is 

recommended.   
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