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Abstract  

Gastrointestinal microbiota play a vital role in maintaining organismal health, through facilitating nutrient 

uptake, detoxification and interactions with the immune system. Shorebirds vary widely in life-history 

characteristics, such as habitat, migration and breeding system, but the dynamics of their gut microbial 

communities are unknown. In my dissertation, I investigated composition and dynamics of gut microbiota 

in migratory shorebirds from embryos to 10 day old chicks, and determined environment and host-related 

factors affecting gut microbial communities of adults. First, I tested whether precocial chicks from three 

species of arctic-breeding shorebirds acquire gut microbiota before or after hatching using next-

generation sequencing techniques. In addition, I documented the rate and compositional dynamics of gut 

microbial establishment. I showed that gut microbiota were absent in shorebird embryos before hatching, 

but that stable gut communities rapidly established within the first three days after hatching. In addition, 

gut microbiota of young shorebird chicks were more similar to the environmental microbiome than later 

in life, suggesting that the environment is a likely source for microbial recruitment. After reaching 

adulthood, shorebirds migrate long distances between breeding and non-breeding sites, potentially 

exposing them to a wide range of microorganisms. Host phylogeny and environmental factors have both 

been identified as drivers of gut microbiota composition in birds in previous studies. The second part of 

my project aimed to identify host and environmental factors that underlie variation in gut microbiota 

composition in eight species of migratory shorebirds sampled across the North American Arctic. I found 

that sampling site was the main driver of variation in gut microbiota of Arctic-breeding shorebirds, and 

that site-related variation in gut microbiota of shorebirds was a result of differences in core bacterial taxa. 

A relatively large influence of local environment on gut microbiota composition of migratory shorebird 

chicks and adults leads to the question: how are shorebirds affected by local pathogen communities? 

Migratory behavior has been hypothesized to have evolved as a response to variation in climatic 

conditions and food availability, to avoid predation, and to reduce risk of exposure to pathogens. The 

migratory escape hypothesis predicts avoidance of high disease prevalence areas through migration, and 

has been proposed as one of the main reasons that many bird species migrate to the Arctic for breeding. 



  

To test the migratory escape hypothesis in shorebirds, I screened for prevalence of seven known avian 

pathogens in shorebirds at different stages of migration. I did not detect the majority of pathogens we 

tested for, with the exception of Campylobacter jejuni and C. coli. Prevalence of C. jejuni in shorebirds 

was linked to sampling sites but not shorebird species. My dissertation is the first comprehensive study of 

the gut microbial characteristics of migratory shorebirds. Overall, local environment emerged as an 

important factor in shaping microbiota composition in Arctic-breeding shorebirds throughout my 

dissertation research. The role of local environment in shaping gut microbiota invites future investigations 

of the interactions among shorebirds and the microorganisms present in their environment, as well as the 

functions gut microbiota perform within their shorebird hosts.  
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chicks and adults leads to the question: how are shorebirds affected by local pathogen communities? 

Migratory behavior has been hypothesized to have evolved as a response to variation in climatic 

conditions and food availability, to avoid predation, and to reduce risk of exposure to pathogens. The 

migratory escape hypothesis predicts avoidance of high disease prevalence areas through migration, and 

has been proposed as one of the main reasons that many bird species migrate to the Arctic for breeding. 
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pathogens in shorebirds at different stages of migration. I did not detect the majority of pathogens we 

tested for, with the exception of Campylobacter jejuni and C. coli. Prevalence of C. jejuni in shorebirds 

was linked to sampling sites but not shorebird species. My dissertation is the first comprehensive study of 

the gut microbial characteristics of migratory shorebirds. Overall, local environment emerged as an 

important factor in shaping microbiota composition in Arctic-breeding shorebirds throughout my 

dissertation research. The role of local environment in shaping gut microbiota invites future investigations 

of the interactions among shorebirds and the microorganisms present in their environment, as well as the 
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Chapter 1 - INTRODUCTION 

“Alles is overal: maar, het milieu selecteert” 

“Everything is everywhere, but, the environment selects” 

Lourens G. M. Baas Becking (1895-1963) 

 

One of the most famous quotes in microbiology, Baas Becking’s hypothesis referred to the 

relationship between the geographic distribution of microorganisms over the earth and the metabolic 

functions they can perform (Baas Becking 1934; de Wit and Bouvier 2006). Almost a century later, the 

first part of the Baas-Becking hypothesis (“Everything is everywhere”) has been disputed widely due to a 

better understanding of limitations in dispersal abilities of microorganisms and the use of deep sequencing 

techniques to investigate whole microbial communities (Thurber 2009; Aguilar et al. 2014). However, the 

selective power of the environment on shaping microbial communities still holds, true and the general 

concept contributed to the foundation of the niche concept in ecology (de Wit and Bouvier 2006).  

 

Few environments pose a greater selective pressure on their microbial communities than the 

gastrointestinal tract. The intestinal environment is characterized by a narrow range in pH, absence of 

oxygen, and, in endotherms, a specific temperature range, which results in colonization by specialist 

microorganisms adapted to these conditions. Despite presenting a narrow and specific environment, the 

animal gut contains a large host-associated microbial community, and is essential for maintaining 

organismal health (Lin and Zhang 2017).  

Microbiology of the avian gastrointestinal tract is a relatively new field, and is still in its infancy 

compared to mammalian and human studies. The first use of sequence-based techniques to identify gut 

microbiota in birds emerged in the 1990’s, but were aimed at detection of single pathogens and did not 

address the gut microbiota on a community level. Whole community sequencing of avian microbiota did 
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not occur until 2010 (Day et al. 2010); almost a decade after next-generation sequencing techniques 

became publicly available. Since then, studies on avian gut microbiota have focused on domesticated 

species, such as poultry and pets, and have rarely been used to examine the role of gut microbiota in free-

living birds under natural conditions. 

 

The overarching goal of my PhD was to characterize bacterial communities of free-living 

shorebirds throughout their life-cycle. To summarize previous studies on wild birds, I first conducted an 

in-depth review of current knowledge on avian gut microbiota. In Chapter 2, I show that microbiome 

research is an emerging field in ecology and evolutionary biology, and wild birds are an interesting group 

to study due to their wide variation in phylogenetic history, physiology and life-history characteristics, 

and their global distributions. In my review, I investigated broad-scale patterns in gut microbial 

community and function in wild birds, and assessed genetic and environmental factors that shape gut 

microbiota of birds under natural conditions. In addition, I described gut microbiota composition in 

functionally distinct sections of the avian gastro-intestinal tract, and considered the functional ecology of 

host-microbiome interactions, including the microbial role in nutrient uptake, detoxification of chemicals, 

and interactions with the avian immune system. I identify a suite of gaps in our current knowledge in the 

field of avian gut microbiota research and suggest avenues for future research.  

One of the current assumptions in avian research is that the internal environment of developing 

egg is sterile within the chorion membrane, resulting in chicks hatching without gut microbiota (van der 

Wielen et al. 2002; Kohl 2012). The assumption of egg sterility has been reiterated widely, but has not 

been tested. In Chapter 3, I provide the first evidence that wild birds hatch without a gut microbiome in 

place. I also show that guts of chicks are colonized by bacteria within a day of hatching, and that gut 

microbial communities stabilize in abundance and composition after only three days of age for precocial 

chicks at an Arctic site.  

Arctic-breeding shorebirds migrate long distances between their breeding and non-breeding sites. 

As described in Chapter 2, gut microbiota interacts closely with host health, but factors that determine 
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gut microbial composition can differ widely among host taxa. In mammals, host phylogeny has been 

identified as the main driver of gut microbiota, which has been attributed to vertical transfer of microbiota 

during birth. Past studies of birds have found equivalent support for host phylogeny, but also 

environmental factors as drivers of gut microbiota composition. In Chapter 4, I aimed to identify host 

and environmental factors that underlie variation gut microbiota composition in eight species of migratory 

shorebird in the North American Arctic. I characterized bacterial communities from fecal samples 

collected from adult shorebirds at nine breeding sites across a wide geographic area of Alaska and 

Canada, and found that breeding site was the main driver of variation in gut microbiota of Arctic-breeding 

shorebirds instead of host species. Subsequently, the potential importance of local environment as a driver 

of major shifts in gut microbiota composition of Arctic-breeding shorebirds could have implications with 

respect to changes in the environmental microbiome resulting from climate change. that threatens the 

majority of shorebird species.  

In Chapter 5, I expanded my sampling efforts to include non-breeding sites in North and South 

America across the Western Hemisphere. Migratory shorebirds encounter different environments 

throughout their annual cycle. Different environments contain different pathogens, and risk of infection 

can differ among sites. The migratory escape hypothesis describes the avoidance of high disease 

prevalence areas through migration, and has been suggested as one of the mechanisms underlying 

migratory behavior. I tested the migratory escape hypothesis through assessing the prevalence of seven 

known avian pathogens in shorebirds at different stages of migration across North and South America.  

In Chapter 6, I conclude my dissertation with a synthesis of my review and discussion of my 

empirical results. I summarize the novel results of my dissertation research and identify useful areas for 

future research.  
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ABSTRACT 

Gastrointestinal microbiota play a vital role in maintaining organismal health, through facilitating nutrient 

uptake, detoxification and interactions with the immune system. The gastrointestinal microbiota of birds 

has been poorly studied, especially in wild species under natural conditions. Studies on avian gut 

microbiota are outnumbered ten to one by studies of mammals, and are dominated by research on 

domestic poultry. Unlike domestic poultry, wild birds vary widely in environmental conditions, 

physiology, and life-history characteristics, such as migration and mating strategy, resulting in a vast 

diversity in gut microbiota composition and function. Avian life-history characteristics pose different 

selection pressures on the gut microbiota, and ultimately affect health of the host. In this paper, we review 

current knowledge on gut microbiota of wild birds, including: partitioning of digestive function and 

microbiota among different gastrointestinal compartments, microbial diversity and function in the context 

of host diet, energetics and behavior, and the intrinsic and extrinsic factors impacting aspects of gut 

microbiota in free-living birds. The shared core microbiota of wild birds was dominated by members of 

the Phyla Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria. However, microbial community 

composition showed inter- and intra-specific variation within and among gastrointestinal tract sections. 

We conclude our review by identifying key research areas that require further investigation: 1) expanding 

the range of avian host taxa investigated, 2) identifying function of avian gut microbiota, and 3) 

complementing current exploratory studies with experimental manipulations to identify key determinants 

of gut microbiota composition.  

 

Keywords (5-10): 16S rRNA gene, bacteria, environment, gastrointestinal tract, metagenomics, microbial 

diversity 
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I. INTRODUCTION 

The microbiota of the gastrointestinal (GI) tract and interactions with host organisms are 

emerging topics in microbiology, ecology and medicine. Intestinal microbiota strongly influence an 

organism's health, and in humans consist of >109 bacterial cells per gram of intestinal content (Stevens & 

Hume, 1998). Rapid advances in molecular methodologies in the past decade, combined with the 

appreciation of the large impact gut microbiota have on health, have resulted in an exponential increase in 

studies, mainly targeting mammalian systems (Fig. 2.1a). Despite their great diversity and ecological 

significance, research on gut microbiota of birds has lagged behind. Studies on avian gut microbiota are 

outnumbered 10:1 by mammalian studies, and are dominated by studies of domestic poultry (Fig. 2.1b). 

Over 1,300 publications on microbiota of poultry have been published since 1948, and focus mainly on 

the influence of diet on microbiota, the role of microbiota in meat production, and the reaction of 

microbiota to antibiotics and probiotics. Wild birds remain understudied despite their relevance for 

pathogen transmission, and for understanding diet and environmental influences on GI microbial structure 

and function.  

Microbial gut communities of birds have received some attention because wild birds are a source 

of a number of human and animal diseases through direct transmission, or by acting as vectors for 

zoonotic pathogens (Tsiodras et al., 2008). Migratory bird species are especially suitable for long-distance 

pathogen transmission. Pathogen transmission through fecal pollution by wild birds has been studied 

widely, but has predominantly focused on one or several pathogens. Also, these studies have mainly 

focused on human health aspects. A large proportion of wild bird populations are declining (Vickery et 

al., 2014), but what role animal health plays in ongoing declines is unknown.  

Birds are an exciting group to investigate because the lineage comprises over 10,000 species, and 

are a diverse group of organisms that vary in life-history characteristics such as migratory behavior, the 

ability to fly, diet, mating systems, longevity and physiology, all of which may impact GI microbiota 

structure and function. Still, wild bird gut microbiota and its interactions with the host have received little 

attention. Kohl (2012) wrote an early review of the avian gut microbiota, and only identified eight studies 
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that had used 16S rRNA gene sequencing techniques to investigate gut microbial communities in wild 

birds. Since then, our knowledge of wild bird microbiota has increased through new applications of high-

throughput sequencing and first use of predictive metagenome function analysis (Waite & Taylor, 2014). 

Waite and Taylor pointed out that new molecular techniques have increased the number of studies 

focusing on diversity of gut microbiota. Identifying microbial diversity of the host gut is a necessary first 

step, but provides limited information on functional aspects of the community.  

Gut microbiota and microbial interactions with the animal host provide valuable information on 

organismal health. However, a majority of past studies have been conducted on humans or animal model 

systems, such as rodents and chickens. The aim of our review is to summarize current knowledge of gut 

microbiota of wild birds, identify current knowledge gaps, and suggest future research directions. We 

cover the topics of microbial diversity and function in different parts of the GI tract, and discuss intrinsic 

and extrinsic factors affecting gut microbial communities in wild birds. Gut microbiota are predominantly 

comprised of bacteria, although efforts to further our understanding of the importance of archaea and 

fungi are growing. We focus on the bacterial avian gut microbiota in this review, with the exception of 

sections discussing microbial function for which the presence or absence of individual genes are of 

importance. Our review focuses on wild bird microbiota, but we reference mammalian and poultry studies 

where information on wild birds is sparse or absent, if such information provides insights that can 

potentially be extrapolated to wild birds under natural conditions. The terms microbiota and microbiome 

are often used interchangeably, but have different meanings. Here, we use microbiota to refer to the 

collection of microbes within a given environment and microbiome to refer to all genomes of these 

microorganisms combined (Waite & Taylor, 2014).  

Gut microbiota of poultry and other domesticated birds have been recently reviewed in depth by 

Oakley et al. (2014) and Stanley, Hughes, & Moore (2014). Domestication and controlled environments 

likely change gut microbiota through inbreeding, non-natural and homogeneous diets, controlled high 

density living conditions and the use of antibiotics. Extrapolating results, such as composition and 

function of gut microbiota, from model organisms to wild animals should be done with caution. 
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Additionally, avian pathogens have been well studied (Reed et al., 2003; Benskin et al., 2009). We will 

not review this field, with the exception of a few examples of pathogens affecting gut microbial function.  

Understanding wild bird gut microbiota dynamics will provide us with novel insights into the 

interactions between free-living organisms and their environment, and will contribute to our interpretation 

of basic and applied aspects of microbial community structure and function.  

 

II. LITERATURE REVIEW 

To assess the current state of gut microbiota research, we compared publication records of studies 

on gut microbiota of all mammals, humans, all birds and wild birds, as recorded in the Web of Science 

database. We used search terms based on changing terminology over the search period, which covered 

1900-2016. The search terms used for mammals and humans were: gut microbiota/microbiome/gut 

bacteria/gastrointestinal microbiota + mammal/human. Search terms used for wild and domestic birds 

were: gut microbiota/microbiome/gut bacteria + wild bird/bird/chicken/broiler/poultry. Results of our 

search terms for mammalian and human studies were too abundant to assess individually. We sorted 

results by publication date and scanned abstracts of publications on the first 50 results. We assessed the 

proportion of publications that were on topic, and estimated the total number of relevant publications. Our 

publication numbers for mammals and humans are therefore estimates and do not reflect exact numbers. 

We found a total of ~19,300 and 7,400 publications for mammals and humans, and 32 and 1,246 

publications for wild and domestic birds from 1942-2015. Due to the low number of publications (0-2 per 

year) in the period 1900-1980, we present search results from 1980-2016 (Fig. 2.1).  

We include information from culture-based studies in our review, but we focus on sequence-

based studies for direct comparisons of the complete gut microbiota among wild birds. Culture-based 

studies are generally targeting specific microorganisms, whereas we aim to broadly understand the entire 

resident bacterial community of the gut.  
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III. METHODS FOR STUDYING GUT MICROBIOTA 

Which bacteria are identified in microbiota studies depends strongly on the choice of research 

methods and tools. Methods can be broadly divided into culture-dependent methods, which use selective 

culture media for detection, and culture-independent molecular methods, which often involve target gene 

sequencing of in situ microbial communities. Advantages and biases of both categories, and of different 

methods within these categories have been reviewed (Hirsch, Mauchline, & Clark, 2010; Stewart, 2012; 

Faure & Joly, 2015). Here, we provide only a short synopsis of the culture-dependent and independent 

methods.  

 

1. Culture-dependent methods 

Until the widespread availability of DNA sequencing techniques, gut microbial communities 

were mainly studied through use of culture-dependent techniques where microorganisms were grown in 

suitable media. As identification of microorganisms was only possible through use of selective and 

differential media, the majority of studies focused on or few microbial target taxa. The limitations of 

culturing are well understood, and include the inability to grow a majority of the earth’s microbes in pure 

culture. In the human gut, 80% of resident bacteria have not been cultured, or at present cannot be 

cultured at all (Turnbaugh et al., 2007). A particular disadvantage of using culture-based methods is the 

difficulty of culturing microorganisms in the domain Archaea. Archaea can have distinct functions within 

the GI tract, such as involvement in carbohydrate metabolism (Hoffmann et al., 2013). Omitting the 

Archaea means ignoring one of the three microbial domains and likely results in an incomplete picture of 

gut microbial communities and their function in host physiology. Also, generally, culturing can be a time-

consuming and therefore costly method.  

On the other hand, the ability to culture 20% of gut microbiota is high compared to other systems, 

such as soil or aquatic environments, and results from our accumulated knowledge on the gut 

environmental conditions and high culturing effort. One advantage of culture-dependent techniques is the 

ability to collect direct evidence of the physiological attributes and environmental tolerances of bacteria 
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under controlled conditions, which cannot be investigated with most culture-independent techniques. 

From taxonomic marker gene sequence data, functional characteristics such as preferred growth 

substrates and nutrient requirements can only be inferred from comparison to related taxa, or from 

previous culturing studies. Another advantage is continuity with historical studies, particularly on defined 

members of the GI tract microbiota. In avian studies, targeted approaches based on culturing have been 

used to identify known pathogens, such as Campylobacter spp. (Waldenström et al., 2002; Keller et al., 

2011).  

 

2. Culture-independent methods 

Molecular tools used for microbial community analysis and identification have undergone a rapid 

development over the past two decades, and have led to a more detailed dissection of the communities as 

well as an increase in publications on gut microbiota. 16S and 18S ribosomal RNA genes were first 

employed as bacterial identification markers as early as 1977, when they were used in a phylogenetic 

analysis of Eubacteria, Archaea and Eukarya (Woese & Fox, 1977). Early culture-independent avian 

microbiota studies were predominantly coarsely compared microbial communities, and, due to high 

sequencing costs, with lesser focus on identification of individual microorganisms. Several community 

fingerprinting techniques such as denaturing gradient gel electrophoresis (DGGE) and automated 

ribosomal intergenic spacer analysis (ARISA) were applied to describing communities in avian gut 

microbiota. Fingerprinting techniques provide a measure of how many variants of a gene, for example the 

16S rRNA gene, are present, but do not provide information on abundance or identity of the microbial 

community. Early sequencing mainly consisted of constructing clone libraries directly from PCR 

amplicons, or indirectly through cloning informative fragments extracted from gels used in fingerprinting 

techniques. Each cloned gene was subsequently sequenced individually using Sanger sequencing. Both 

fingerprinting and cloning-sequencing techniques are relatively time-consuming with low data yield 

compared to high-throughput sequencing (HTS) methods. A more taxonomically informative method 

with respect to community composition is the use of high-density oligonucleotide microarrays, like the 
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PhyloChip microarray. The microarray chip contains multiple probes for each of more than 59,000 known 

microbial 16S rRNA gene phylotypes (Brodie et al., 2006).  

Development of HTS techniques, such as 454 pyrosequencing and the Illumina sequencing 

platform, have provided us with the opportunity to profile microbial communities with a relatively low 

cost per base pair (Roesch et al., 2007; Faure & Joly, 2015). The rapid decrease in sequencing cost has 

allowed for these next-generation techniques to be used widely, although costs are still relatively high for 

small research facilities. Also, HTS techniques produce enormous data volumes that require 

computationally intensive analysis. Lowering sequencing costs and development of broadly applicable 

sequence library preparation methods and informatics tools have made these techniques widely accessible 

(Caporaso et al., 2012). A remaining challenge for interpreting large datasets is the relatively low 

coverage of phylogenetically well-resolved bacteria and archaea in the available gene reference databases 

(Pompanon & Samadi, 2015), resulting in an inability to reliably annotate many phylotypes from 

environmental microbial sequencing libraries.  

A powerful tool yet to be employed in the study of avian microbiota is metagenomic sequencing 

(Riesenfeld, Schloss, & Handelsman, 2004), which constitutes the complete interrogation of the gene 

content in the microbiome. Metagenomic sequencing relies on shotgun sequencing of all DNA fragments 

in the sample, and subsequently assigning the relevant sequences to known microorganisms and protein 

functional groups. Due to the high data coverage needed to identify many genes from these DNA 

fragments, greater sequencing depth is necessary for metagenomic analyses than for marker gene 

sequencing, which increases cost and computational challenges in the downstream analyses. Gut 

microbial function has been increasingly studied using metagenomics in humans and other mammals, and 

provides a substantial baseline of known microbial function for avian studies. However, functions may 

differ among mammalian and avian gut microbiota, and caution is required when extrapolating from 

mammalian to avian systems. Still, a growing literature illustrates that metagenomics approaches have a 

great potential to address functional aspects of avian gut microbiota, particularly for comparison among 

host taxa with different dietary, physiological and life-history characteristics.  
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IV. THE CORE MICROBIOTA 

Organisms can house thousands of microbial Operational Taxonomic Units (OTUs), an heuristic 

analog to "species", within their GI tract, with a large percentage of these microbes unique to the 

individual host. To assess the composition of commonly shared microbial OTUs among individuals in an 

environment or under defined circumstances (for example, within the GI tracts of all vertebrates, 

mammals, or wild birds), the concept of a core microbiota can be used. The definition of a ‘core’ 

microbiota depends strongly on the ecological question asked, and can include shared microbial presence, 

function, and lineages among two or more microbial communities of interest (Turnbaugh et al., 2009; 

Shade & Handelsman, 2012). Comparisons among core microbiota across studies generally occurs at 

deep phylogenetic levels such as Phylum, as the enormous diversity on shallower phylogenetic levels 

often results in incomplete coverage in host species or taxa. We determined core microbiota of wild birds 

based on shared microbial presence and function on a Phylum level (Fig. 2.2). We were interested in 

broad patterns across species, and limited data on shallower phylogenetic levels did not allow for more in 

depth comparisons.  

Phylum is a relatively coarse level of classification, and differences in gut microbiota 

communities between birds and mammals become more apparent at the finer Class, Genus and OTU 

levels. An OTU is a classification strategy widely used in the study of microbiota based on similarity of 

the taxonomic marker 16S rRNA gene, and is often set to define the finest ("species") level of bacterial 

taxonomic classification at 97% sequence similarity (Stackebrandt & Goebel, 1994). Due to large within-

host-taxon variation in microbiota composition, it is challenging to define a bird and mammal ‘core’ 

microbiota at a scale finer than that of a Phylum. Large within-host-taxon variation in microbiota 

composition can be attributed to many factors, both genetic and environmental (section VII).  

Several potential challenges arise with defining a "core microbiota" for comparison of host taxa. 

The number of different bacterial Phyla or, at the finest scale, OTUs detected in a sample is directly 
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proportional to research methods and effort. Higher sequencing depth increases the probability of 

detecting rare OTUs (Schloss & Handelsman, 2005), but may concurrently increase the number of 

artefactual OTUs included in the analyses. If sequencing depth is insufficient, the exclusion of rare taxa 

from analyses can miss clinically relevant minority bacterial populations, which is referred to as the 

‘Depth Bias’ (Lagier et al., 2012). The functional importance of rare OTUs may be high (Sogin et al., 

2006; Jones & Lennon, 2010), but is often poorly understood, and inclusion of rare taxa in a "core 

microbiota" definition may obscure the patterns in the more abundant and possibly functionally dominant 

OTUs. On the other hand, phylogenetically distantly related microorganisms may be functionally 

redundant, and fulfill similar physiological functions within the gut. Differences among gut microbiota at 

deep phylogenetic level such as Phylum do not necessarily imply differences in broad function. Martiny 

et al. (2015) conducted a meta-review summarizing the phylogenetic basis of microbial traits. The authors 

conclude that simple traits, such as nutrient acquisition, may be conserved at shallower phylogenetic 

levels but then display functional redundancy at a deeper Phylum level. Last, comparing core microbiota 

among individuals or host species derived from different studies presents the problem of biases generated 

by use of different pre-sequencing preparation methods, sequencing platforms, and/or analysis pipelines. 

Despite the caveats of interpreting gut microbiota composition at Phylum level, it does enable us 

to make broad inferences about microbial community and functional dynamics associated with the diverse 

set of life history characteristics found in wild birds.  

 

At a Phylum level, Firmicutes and Bacteroidetes dominate the mammalian gut microbiota (Leser 

& Mølbak, 2009). Our compilation of studies from 1980-present suggest some differences between the 

avian and mammalian microbiomes: the avian gut microbiota overall was dominated by Firmicutes, 

Proteobacteria, with lower Bacteriodetes and Actinobacteria abundances (Fig. 2.2). Firmicutes are 

predominantly gram-positive bacteria, and include the obligate or facultative anaerobe Classes of Bacilli, 

Clostridia and Mollicutes, each of which are commonly found in GI tracts. Firmicutes that inhabit the GI 

tract are involved in fermentation of organic molecules and have been positively linked to obesity in 
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humans, and to weight gain in mammalian and avian models (Turnbaugh et al., 2006; Angelakis & 

Raoult, 2010; Clemente et al., 2012).  

Birds carry a higher proportion of Proteobacteria in their GI tract compared to mammals. The 

Phylum Proteobacteria includes five classes (α, β, γ, δ, ε) that vary widely in occurrence and function 

within and outside the GI tract. Proteobacteria are gram-negative and represent 34% or all known 

bacteria. The Proteobacteria include functionally diverse bacteria including phototrophs, nitrifiers and 

enterics, and are found in most environments (Garrity, 2005). Proteobacteria also include a range of 

pathogens, such as Campylobacter, Escherichia, Helicobacter, Rickettsia, Salmonella and Vibrio, most of 

which have been isolated from birds (Keller et al., 2011; Wallménius et al., 2014; Ryu et al., 2014; 

Diakou et al., 2016).  

Bacteroidetes are gram-negative bacteria that vary from strict aerobes to obligate anaerobes and 

occur throughout the entire GI tract. These bacteria are believed to have a mutualistic relationship with 

their host, and are involved in biopolymer degradation, immune function, pathogen exclusion and GI tract 

development (Thomas et al. 2011). Outside the GI tract, Bacteroidetes are common micorbes of soils, and 

marine and freshwater environments.  

Actinobacteria are gram-positive bacteria inhabiting a wide range of environments, including 

soils, gastrointestinal tracts and freshwater and marine waters (Janssen, 2006; Barka et al., 2016). The 

Actinobacteria include pathogens, such as Corynebacterium, Mycobacterium and Nocardia species. 

Within gastrointestinal tracts, the Genus Bifidobacterium includes commensals (Barka et al., 2016), and 

has been used as probiotic (Kailasapathy & Chin, 2000).  

The Phyla discussed above are common in a wide range of habitats. However, it is important to 

keep in mind that Phylum is a broad category of classification. On shallower phylogenetic levels such as 

an OTU, microbial communities associated with different habitats will be comprised of different OTUs 

with potentially different functions. Comparison of microbiota on a Phylum level among different 

environments will therefore present interpretation challenges. However, despite the limitations of using 

core microbiota, it can be a useful tool for broad investigations of and comparisons among gut microbiota.  
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V. FUNCTION OF GUT MICROBES 

The core gut microbiota of wild birds predominantly consist of Firmicutes, Proteobacteria, 

Bacteroidetes and Actinobacteria (Fig. 2.2). Here, we discuss the general functions of gut microbiota in 

general, and functions of these four Phyla, and their potential role in the gut environment.  

 

1. General functions of gut microbiota  

 a. Nutritional uptake 

Gut microbiota are broadly involved in digestion of food products, facilitating the breakdown of 

dietary polymers to compounds that can be used by the host. The extent to which gut microbiota aid in 

nutritional uptake likely depends on host physiology and diet. For example, a well-developed crop as 

found in the hoatzin (Opisthocomus hoazin) aids digestion of the complex polymers found in the species’ 

folivorous diet. Foregut fermentation, as occurs in the Hoatzin crop, pre-digests food and allows the birds 

to use otherwise indigestible food sources.  

At another extreme are nectarivores, which rely largely on simple sugars for their metabolic 

energy. Nectarivores, such as hummingbirds, did not appear distinct in their microbiota at a Phylum level 

(Hird et al., 2015). However, Preest, Folk, & Beuchat (2003) identified potential involvement of the 

hummingbird gut microbiota in nitrogen recycling through the process of urate decomposition, which is 

advantageous due to the low-nitrogen content of nectar.  

 

 b. Detoxification 

The avian gut microbiota, and specifically microbiota associated with the crop and ceca, may be 

involved in detoxification of food compounds. Different dietary compounds, such as phenols, resins and 

saponins associated with plant defenses against herbivory, can be toxic to birds but are common in diets 

of herbivorous birds. Limited evidence suggests that bird species subjected to high concentrations of 

dietary toxins employ GI bacteria to detoxify these compounds. High tannin concentrations in the 
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folivorous diet of hoatzins are potentially remediated by a community of crop bacteria that also includes 

members of the known cellulose-degrading Classes Actinobacteria and Clostridia (Garcia-Amado et al., 

2007). 

Grouse (Family: Tetraonidae) have a winter diet of buds and catkins high in resins and phenolics, 

which are likely detoxified in the ceca. It has been suggested that grouse cecal bacteria undergo a gradual 

shift at the start of winter, to facilitate the change towards a higher resinous content in their winter diet 

(Bryant & Kuropat, 1980). The bacteria that may detoxify the resin compounds remain to be identified.  

The crop and ceca are currently the only regions of the GI tract presently known to contain 

detoxifying bacteria. The crop is the first GI structure encountered by incoming food compounds, and 

therefore a logical reservoir for detoxifying bacteria in foregut fermenters like the Hoatzin. The ceca are 

located at the end of the GI tract, which raises the question of how the birds are affected by toxic 

compounds before they reach the ceca. In the case of grouse, resins have strong antimicrobial properties 

(Himejima et al., 1992; Dığrak, İlçim, & Alma, 1999), and may thus impact the downstream microbiota. 

It is possible that mitigation of the anti-microbial effects of resins occur in the crops of grouse, but this 

has not yet been confirmed.  

As an alternative to detoxification by gut microbes, several bird species may seek dietary 

supplements. For example, South American parrot species regularly use clay licks to gain micronutrients, 

and as a hypothesized detoxification mechanism (Lee et al., 2014; Costa-Pereira et al., 2015). The extent 

to which ingestion of clay aids in detoxification, or replaces the role of GI microbiota has been debated 

(Lee et al., 2010).  

 

 c. Immune function 

Interactions among gut microbiota and the avian immune system are poorly understood and have 

not been investigated in wild birds. In contrast to mammals, the development of pathogen specific 

antibody-producing B-lymphocytes in young birds occurs in the Bursa of Fabricius (or “bursa”), which is 

an offshoot of the intestines located near the cloaca. The bursa is responsible for B-lymphocyte 
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production until sexual maturity, after which production occurs predominantly in the blood marrow 

(Madej et al., 2013). After reaching maturity the bursa atrophies and loses its function. Bacteria colonize 

the bursa immediately after hatch (Kimura, Yoshikane, & Kobayashi, 1986), and could potentially play a 

role in development of the adaptive immune response. 

The mammalian gut microbiota likely plays an important role in maintaining the balance among 

different pathogen-detecting T-lymphocytes (Mazmanian et al., 2005). The antigen recognition spectrum 

of T-lymphocytes narrows over time, which can likely be attributed to interactions with commensal 

microbiota. Immune reactions to desired host microbiota as well as to diet-associated microbiota have to 

be minimized, to avoid unnecessary investment and potential detrimental immune responses (Kohl, 

2012). Bacteroidetes have been associated with host health through involvement in T-lymphocyte 

response activation and competitive exclusion of pathogens in mammals (Thomas et al., 2011). In 

addition, Firmicutes could be involved in T-lymphocyte immunity. In chickens, antibiotic treatment early 

in life reduced the relative abundance of Firmicutes, but increased Proteobacteria (Simon et al., 2016). 

Also, lower T-lymphocytes dependent antibody titers were observed later in life in the antibiotic 

treatment group than in untreated chicks, which could indicate a role of these bacterial Phyla in adaptive 

immune function.  

 

 d. Competitive exclusion of pathogens 

Gut microbiota can play an important role in maintaining health of the host through interactions 

with pathogens (Servin, 2004). Commensal microbiota can interact indirectly with pathogens through 

stimulating or suppressing immune function, and directly through competitive exclusion and production 

of antimicrobial compounds, such as bacteriocins and other toxins (Hammami et al., 2013; Kamada et al., 

2013). Antimicrobial compounds are usually specific to the pathogenic or undesired bacterial taxon, and 

do not affect the commensal community itself. In humans, competitive exclusion can occur through 

competition for space and nutrients among commensal bacteria and pathogens (Kamada et al., 2013). No 
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one has investigated commensal-pathogen interactions in the avian GI tract, but the mechanisms of 

competitive exclusion and antimicrobial properties are likely similar in birds as in mammals.  

 

2. Functions of core Phyla 

 a. Firmicutes 

Firmicutes produce short-chain fatty acids as byproducts of fermentation, which can be directly 

absorbed by the host gut wall as an energy source (den Besten et al., 2013). Firmicutes in mammalian 

guts are associated with carbohydrate fermentation and degradation of polysaccharides (Flint et al., 2012). 

We found no studies attempting to infer Firmicutes function in wild birds, but in chickens, several studies 

show a positive relationship between Firmicutes abundance and mass gain and immune function, 

indicating similar roles of Firmicutes in mammals and birds (Liao et al., 2012; Zhang et al., 2015). 

Further, supplementing chicken diets with Firmicutes as probiotics, particularly Bacillus subtilis and 

Enterococcus faecium can increase nutrient uptake and general metabolic efficiency (Li et al., 2016; 

Zheng et al., 2016).  

 Relative abundance of Firmicutes is lower on average among wild birds compared to domestic 

chickens (Fig. 2.2). Differences in abundance are unsurprising as chickens are bred for optimized mass 

gain as fat, while wild birds generally maintain low body fat levels, except for the time preceding 

migration when some bird species can double their body mass. A rapid increase in lipid deposits that can 

occur in birds prior to migration raises the question whether Firmicutes abundance increases during this 

time period to facilitate weight gain. No field studies had investigated changes in gut microbial 

communities in relation to pre-migratory fattening.  

 

 b. Proteobacteria 

The function of Proteobacteria in the avian digestive tract has not been investigated. One 

difference among between animal host taxa is the high abundance of Proteobacteria in wild birds 

compared to mammals and domestic chickens. Within the Proteobacteria classes, α-Proteobacteria are 
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relatively abundant (45%) in wild birds, in contrast to only 15% relative abundance in mammalian hosts 

(Ley et al., 2008). α-Proteobacteria are abundant in marine bacterioplankton communities and soil 

rhizospheres (Cottrell & Kirchman, 2000; Fierer & Jackson, 2006). In the studies we summarized in this 

review, α-Proteobacteria appeared slightly more abundant in wild birds that are associated with marine 

environments (57.5%) than terrestrial environments (45.5%). Alternatively, α-Proteobacteria were found 

to be the most important group involved in degradation of an active acid herbicide (Liu et al., 2011), 

which could indicate a possible role for detoxification in the GI tract.  

 

 c. Bacteroidetes 

Bacteroidetes have a mutualistic relationship with their host, and their abundance in humans has 

been observed to be inversely related to abundance of Firmicutes (Turnbaugh et al., 2007). In mammals, 

Bacteroidetes degrade complex biopolymers, and one of their functions in the GI tract is the degradation 

of polysaccharides such as carbohydrates and plant cell wall components (Thomas et al., 2011). 

Bacteroidetes relative total abundance in birds is ~ 10%, which is lower than in non-human mammals 

(16%) and humans (46%). Lower average abundances of Bacteroidetes in birds compared to mammals 

can potentially be attributed to dietary differences, and the wide dietary range among different bird 

species allows for further investigation into this relationship. It is possible that the polymer degrading 

function of Bacteroidetes in birds is fulfilled by other microorganisms, or that these processes occur in 

defined sections of the GI tract. In birds, the ceca consist of two elongated, blind sacs extending into the 

body cavity from where the ileum and colon join, and are involved in fermentation of complex polymers 

(Section VII.4). Higher abundance of Bacteroidetes were found in the ceca of Japanese quail (Coturnix 

coturnix), emu (Dromaius novaehollandiae) and ostrich (Struthio camelus) (Fig. 2.3.; Matsui et al., 2010; 

Bennett et al., 2013; Kohl et al., 2014), which supports the hypothesis that Bacteroidetes are localized in 

abundance and function within the avian GI tract.  

 

c. Actinobacteria  
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The fourth most abundant Phylum of microorganisms in the avian GI tract is the Actinobacteria. 

Abundance of Actinobacteria in humans is positively correlated to fiber intake (Dominianni et al., 2015) 

and associated with carbohydrate breakdown in honey bees (Lee et al., 2015), indicating a potential 

commensal or mutualistic relationship with the animal host. No studies have investigated the function of 

Actinobacteria in wild or domestic birds.  

 

VI. GASTRO-INTESTINAL PHYSIOLOGY AND MICROBIOTA 

The avian gastrointestinal tract includes the oral cavity, esophagus, crop, proventriculus, gizzard, 

small intestine, ceca, large intestine, and the cloaca. These nine components of the GI tract represent 

discrete anatomical sections with specific digestive functions and putatively differentiated microbiota 

(Fig. 2.3). The cloaca does not have a digestive function, but receives products from both the digestive 

and urogenital systems. We included the cloaca in our review, as it was the most sampled environment 

within wild birds. The esophagus and crop are food storage structures in most bird species. The 

proventriculus chemically digests food, whereas the gizzard is a muscular stomach that degrades food 

physically. Different components of the GI tract vary in their biochemical properties such as oxygen 

content and pH, which can pose a selective pressure on the microbial community. The esophagus, crop 

and cloaca are considered semi-oxic environments, facilitating communities of aerobes, micro-aerobes 

and facultative anaerobes, including members of the α, β, and γ-Proteobacteria. The sections of the GI 

tract located between the crop and cloaca are dominated by obligate or facultative anaerobes, including 

members of the Firmicutes and Proteobacteria (Hird et al., 2015; Waite & Taylor, 2015).  

We focus on discussing microbiota of the crop, intestines, ceca and cloaca, and summarized our 

findings from the current literature (Fig. 2.3). We located no studies that addressed stomach or colon 

microbiota separately. Intestinal microbial communities have predominantly been inferred from analyzing 

fecal samples and cloacal swabs, two non-invasive techniques appropriate for sampling wild birds.  
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1. Crop & Esophagus 

The crop consists of a pouch below the esophagus at the beginning of the GI tract in the majority 

of bird species, and is used as a temporary holding structure for quick ingestion of food. Long-term 

retention of food in the crop allows birds to utilize food sources that are difficult to digest, such as high 

cellulosic plant material. Although the majority of bird species have crops, the only bird species known 

with a well-developed fermenting crop system is the hoatzin, a tropical bird with an exclusively 

folivorous diet (Godoy-Vitorino et al., 2008). The crop of the Hoatzin contains a microbial community 

functionally analogous to the bovine rumen, and includes methanogenic archaea, rumen bacteria and 

eukaryotic protozoa (Godoy-Vitorino et al., 2012). Waite, Deines, & Taylor (2012) collected crop 

samples from a flightless herbivorous parrot, the kakapo (Strigops habroptila), and observed dissimilar 

bacterial and archaeal communities compared to those collected using similar approaches from the 

hoatzin. The low OTU richness in the kakapo crop suggests that foregut fermentation is less important in 

this species (Fig. 2.3). Different subphyla of Proteobacteria, specifically α, and γ-Proteobacteria, 

dominate crops of the kakapo and hoatzin. A second study of Hoatzin showed the highest proportions 

belonging to bacteria from Classes Bacteroidia and Clostridia.  

 

2. Proventriculus and Gizzard 

The avian stomach consists of two parts: the proventriculus and the gizzard. The proventriculus, 

or stomach, is a small, glandular organ where food and enzymes are mixed before the food particles enter 

the gizzard. The gizzard is a muscular compartment with a textured (koilin) lining where food is 

mechanically ground up and digested. The proventriculus is usually acidic, likely biasing the resident 

microbiota towards acidophiles. Acidity of the proventriculus likely poses the first strong selection on 

microorganisms entering the digestive tract (Beasley et al., 2015). Stomach acidity varies among bird 

species, with carrion-eating birds such as vultures notably having most acidic stomachs, suggesting a 

possible role of diet in shaping acidity (Roggenbuck et al., 2014). No wild bird studies have investigated 

microbial communities and function in the proventriculus and gizzard, and even poultry research is 
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limited on this topic. Chicken gizzard microbiota were highly similar to crop microbiota (Sekelja et al., 

2012). Lactobacilli comprised 43% of the gizzard microbiota in the domestic chicken GI tract (Gong et 

al., 2007). Lactobacilli are expected in the gizzard because these bacteria tolerate acidic environments, 

and also produce acids.  

 

3. Small Intestine  

The small intestine consists of three sections that show little differentiation in the avian gut (the 

duodenum, jejunum and ileum) and is located between the gizzard and ceca. The functions of the avian 

small intestine are similar to the mammalian small intestine, and include nutrient absorption, and further 

processing of food using enzymes and bile excreted from the pancreas and liver. Identification of gut 

microbiota from the small intestine is especially challenging due to its location in the GI tract, which 

precludes non-lethal sampling. Limited data for the gut microbiota of the small intestine are available for 

domestic poultry and indicate that the different sections of the small intestine possess similar microbiota 

and are dominated by Lactobacilli and Clostridia (Amit-Romach, Sklan & Uni, 2004).  

 

4. Ceca 

The majority of bird species possess ceca as part of the digestive tract. The size and width of the 

ceca vary considerably among and within bird species, and are generally longer in herbivorous birds. In 

willow ptarmigan (Lagopus lagopus) and broiler chickens, different dietary components, such as fiber 

content or fermentable content of food, can result in morphological change of the ceca (Pulliainen & 

Tunkkari, 1983; Józefiak et al., 2006; Rehman et al., 2007). Morphological changes in the ceca as a result 

of shifts in diet indicate that the function of the ceca includes fermentation of dietary compounds (Svihus, 

Choct, & Classen, 2013). In addition, ceca play an important role in electrolyte and water reabsorption 

(Thomas, 1982). Ceca are emptied regularly, but at a slower rate than normal defecation occurs. 

Depending on the bird species, cecal material is generally retained 3-4 times longer than fecal material 

(Duke, 1986). 
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Microbial communities of the ceca are distinct from the rest of the GI tract (Waite, Eason, & 

Taylor, 2014; Han et al., 2016), and may vary based on host dietary status. In Japanese quail, cecal 

microbiota were relatively stable during a period of fasting (Kohl et al., 2014), with the exception of an 

increase in Verrucomicrobia and slight decrease in Bacteroidetes. Cecal microbiota of the northern 

bobwhite (Colinus virginianus) were dominated in abundance by Firmicutes, followed by Proteobacteria 

and Actinobacteria (Su et al., 2014), and these microbial profiles differed substantially between the 

microbiota of Japanese quail and capercaillie (Tetrao urogallus; Fig. 2.3). However, bobwhite samples 

were cultured opposed to the use of direct sequencing approaches, which may introduce a potential 

culture bias.  

Ceca are absent in most bird species with protein and sugar rich diets, such as carnivores, 

piscivores, nectarivores or frugivores, despite of these various diet preferences covering a broad range of 

fiber content (Clench & Mathias, 1995). Absence of ceca and cecal-affiliated microbiota implies that 

birds either have broader host and microbial functions in other areas of the GI tract to fill the role of the 

ceca, or that ceca and cecal microbiota specifically involved in digestion of food components are absent 

in the host diets. The absence of ceca in host species with large variation in diet suggests that the 

functions of cecal bacteria in these birds are fulfilled in other areas of the GI tract, which should be 

reflected in their microbial communities.  

Cecal bacterial classes shared among all bird species are Clostridia and Bacteroidia, followed by 

Actinobacteria. In one exception to the pattern, Actinobacteria were not detected in Ostriches which 

belong to a flightless, primitive group of ratite birds (Matsui et al., 2010). Despite harboring several well-

known pathogenic microorganisms, most members of the Class Clostridia are considered commensals 

and, in mammals, are involved in fermentation and maintaining gut homeostasis (Lopetuso et al., 2013). 

Functions of Clostridia in birds are likely similar to function in mammals. 
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5. Colon 

The large intestine of birds is relatively short and the avian colon is located between the ceca and 

the cloaca. In birds, its main function is water and electrolyte reabsorption. Unlike the fermentative role 

of the colon in mammals, fermentation in the avian digestive tract predominantly occurs in the ceca and, 

in the case of the hoatzin, the crop (Lei et al., 2012). The colon in domesticated Japanese quail was 

dominated by the Genera Lactobacillus, Bacteroides, Ruminococcus and Clostridium, although the 

majority of sequences remained unclassified (Wilkinson et al., 2016). Generally, fecal bacteria are 

assumed to reflect the colon microbiota. However, quail fecal microbiota consisted of microorganisms of 

both colon and cecal origin, indicating mixing of fecal microbiota from the different sections of the GI 

tract (Wilkinson et al., 2016).  

 

6. Cloaca 

The cloaca has no digestive function, but serves as the exit cavity for the digestive and urogenital 

systems, and may have a unique microbiome due to its selective semi-aerobic environment. The cloaca is 

exposed to fecal bacteria, sexually transmitted bacteria, and possibly environmental bacteria associated 

with the eggshell, nesting material or environmental components such as water and soil. Cloacal 

swabbing has been the most used method for studying gut microbial diversity in wild birds with 15 

published studies, although a majority of these studies relied on culturing and fingerprinting techniques. 

The cloacal microbial community in wild birds was dominated by Proteobacteria, Firmicutes, 

Bacteroidetes and Actinobacteria (Fig. 2.3). Firmicutes has highest relative abundance in three 

Procellariiform seabird species (Dewar et al., 2014a), three shorebird species (Santos et al., 2012), and 

two penguin species (Banks, Cary, & Hogg, 2009; Dewar et al., 2014b), followed by Proteobacteria. In 

contrast, in the insectivorous barn swallow (Hirundo rustica), showed the opposite pattern, with 

Proteobacteria outnumbering Firmicutes by a 2:1 ratio. Although the Phyla are the same as found in fecal 

microbiota, communities likely differ on shallower phylogenetic levels. 
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Cloacal samples may fail to detect low abundance bacteria, and consequently rare taxa might be 

overlooked. Cloacal samples are collected using sterile cotton swabs, which can result in low biomass 

samples. The cloacal microbiota is expected to reflect the microbiota associated with waste products from 

the avian digestive system. However, the semi-aerobic conditions in the cloacal area likely select against 

obligate anaerobes that make up part of the intestinal microbiota. While the cloacal microbiota is 

presumed to contain a representation of upstream microorganisms from other sections of the GI tract, how 

well cloacal microbiota reflect the gut microbiota of wild birds remains still untested, since the only 

comparative studies have been conducted in domestic poultry. 

Salmonella spp. were detected in 92% of fecal samples, but only in 4% of cloacal swabs collected 

from laying hens (García et al., 2011). Samples were not collected from the same individuals, but were 

obtained from the same production facility hall, and indicate that cloacal swabbing only seems to capture 

a fraction of the gut microbial community. Ingresa-Capaccioni et al. (2014) compared detection of 

Campylobacter spp. from fecal and cloacal samples collected from chickens in production facilities, and 

detected Campylobacter spp. in 61.9% of cloacal, and 69.1% of fecal samples. Campylobacter is a 

common genus in the avian GI tract (Waldenström et al., 2002, 2007; Keller et al., 2011), whereas 

Salmonella is comparatively rare. A discrepancy in detection rates between Salmonella and 

Campylobacter may therefore potentially be contributed to differences in abundance.  

 

7. Feces 

Fecal samples are advantageous as a noninvasive approach for sampling the microbial gut 

communities of wild birds. Fecal bacteria have been widely used as a proxy for intestinal microbiota, 

because many investigators consider the sacrifice of wild birds to investigate intestinal bacteria 

undesirable. One of the challenges of studying feces instead of the actual GI microbiota is that fecal 

microbiota may be comprised of a mixture of bacteria from different sections of the GI tract. Also, fecal 

sampling can be sensitive to environmental contamination, depending on collection method A study 

comparing microbial communities in different segments of the GI tract of domestic pigs showed that fecal 



 27 

microbiota was most similar to microbiota in the large intestine, with 75% similarity compared to 38% 

similarity with the small intestine (Zhao et al., 2015).  

In birds, the only study comparing fecal microbiota with microbiota of other GI components was 

conducted in domestic chickens. Fecal microbiota did not cluster with any of the components (crop, 

gizzard, ileum and colon) in particular, but rather consisted of a mixture of bacteria from all components 

(Sekelja et al., 2012). Short-term fluctuations in fecal microbial communities were attributed to 

differential representation of the different GI components over time. Fecal microbiota in mammals is 

considered relatively stable over time (Claesson et al., 2011; Newman et al., 2012; Martinez, Muller, & 

Walter, 2013; Becker et al., 2015). If fecal microbiota composition in wild birds is comparable to 

chickens, the variable contribution of microorganisms of different parts of the GI tract could obscure 

temporal relationships and internal turnover. 

Hird et al. (2015) described colon microbiota of 59 Neotropical bird species and found a core 

microbiota among all host species consisting of Proteobacteria, Firmicutes, Bacteroidetes and 

Actinobacteria. Host species was the most important factor for determining the finer-scale taxonomic 

composition of gut microbiota, suggesting some host specificity in the occurrence of unique microbial 

OTUs. Our literature search confirmed Firmicutes and Proteobacteria as the most abundant Phyla present 

in fecal microbiota of a wide range of wild bird species, although abundance and occurrence of additional 

Phyla were variable (Fig. 42.3.  

 

VII. FACTORS AFFECTING GUT MICROBIOTA 

Gut microbiota composition and dynamics are determined by a range of intrinsic and extrinsic 

factors (Fig. 2.4). Intrinsic factors are inherent to the host organism, and include genetic makeup, age, 

sex, and health, whereas extrinsic factors include host diet, social interactions, and the pool of 

environmental microbial inocula. Intrinsic and extrinsic factors are closely connected in their influence on 

gut microbial communities. For example, preferential diet of a bird may be species-specific and could be 

considered to be an intrinsic factor. However, food-associated microbial communities may vary by 
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location, and food quality can pose a differential selection pressure on the gut microbiota, both extrinsic 

factors. Foraging location during long-distance movements has an intrinsic component related to 

migratory behavior, but every foraging environment includes extrinsic pressures, such as variability in 

food choices based on availability and competition.  

Disentangling the different intrinsic and extrinsic factors that affect avian gut microbial 

composition is challenging because of the wide range of bird life-histories. Bird species range from strict 

diet and habitat specialists, like some species of hummingbirds, to generalists like gull species that have a 

broad dietary range and occupy a wide variety of environments. We consider intrinsic and extrinsic 

factors separately for organizational purposes, but recognize that these effects on gut microbiota are often 

interconnected and interactive.  

 

1. Extrinsic factors 

 a. Diet  

In a majority of studies, changes in diet have been identified as the underlying cause of change in 

gut microbial communities. Broad dietary preferences, such as frugivory or insectivory, are intrinsic 

factors, while the extrinsic component of diet includes the ingestion of microorganisms associated with 

dietary food sources. Different geographic locations provide different microbial environments, and birds 

in different locations may ingest different food-associated microorganisms. Ingestion of microorganisms 

with food is likely one of the major pathways of microbial colonization of the avian gastrointestinal tract 

because eggs of birds are hatched outside of the parent, unlike mammals which can be first inoculated 

through the birthing process. To what extent ingested microorganisms contribute to or affect the mature 

gut microbiota in wild birds is unknown. Studies of domestic chickens found effects of different diets on 

establishment of the gut microbiota composition (Wise & Siragusa, 2007; Stanley et al., 2012, 2014), but 

these studies cannot discern the selective effects of different dietary nutrient and fiber contents versus 

input of microbiota from different food-associated microbial communities.  
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Microbial communities of herbivorous bird guts are often dominated by members of the 

Bacteroidetes Phylum. Bacteroidetes are thought to assist with decomposition of polysaccharides, cell 

wall components, and other complex polymers (Thomas et al., 2011). Carnivorous bird species have 

broad diets, ranging from carrion to marine invertebrates and have gut microbiota dominated by 

Proteobacteria and Firmicutes (Grond et al., 2014; Ryu et al., 2014; Blanco, 2014). Vultures have unique 

adaptations to their carrion-based diet, including extreme stomach acidity and a gut microbiota dominated 

by toxin-producing Clostridia ((Roggenbuck et al., 2014).  

Some species of birds experience large seasonal shifts in diet. However, no studies investigating 

seasonal in bird gut microbiota variation in relation to dietary change exist as of present. Seasonal 

variation in gut microbiota is common and has been observed in humans (Zhang et al., 2014; Hisada, 

Endoh, & Kuriki, 2015), several primate species (Sun et al., 2016), wood mice (Apodemus sylvaticus; 

Maurice et al., 2015), American bison (Bison bison; Bergmann et al., 2015) and giant pandas (Ailuropoda 

melanoleuca; Xue et al., 2015). Migratory birds switch diets, and in addition to potentially different 

microbial requirements to aid digestion, these birds also likely ingest a wide variety of microorganisms 

associated with their different food sources. How these different microbial exposures affect nutrient 

uptake and bird health is remains unknown.  

 

 b. Environment  

Environmental microbial communities are extremely variable due to heterogeneity in biotic and 

abiotic factors. Birds are exposed to different microbes, all potential gut inocula, through shifts in 

environmental conditions, including diet, water, soil, nesting environments, and social interactions.  

Surprisingly, sampling location was not a major determinant in gut microbial composition in 

adults of 59 species of Neotropical birds (Hird et al., 2015). However, swainson’s thrushes (Catharus 

ustulatus) and gray catbirds (Dumetella carolinensis) shared similar shifts in gut microbiota composition 

between spring and fall stopover, indicating environmental influence (Lewis, Moore, & Wang, 2016). In 

addition, when investigating passerine gut microbiota, environmental factors such as location and diet 
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were the main factors affecting gut microbiota (Hird et al., 2014). Variation in importance of site may be 

due to the age of sampled individuals, as young birds may have not yet developed a stable gut microbiota. 

To determine influence of environmental microorganisms on avian gut microbiota, we need simultaneous 

sampling of both birds and their local environments, such as sediment and water at foraging or nesting 

sites, and nesting materials. In addition, we need to identify successional trajectories in gut microbiota of 

young birds to determine when birds acquire their mature and stable microbiota.  

 

 c. Behavior: migration & social interactions  

Resident birds may spend their whole lives in one geographical area. Compared to birds with 

large home ranges and migratory birds, residents are exposed to far less diverse inocula from which to 

recruit their gut microbiota. No studies have compared gut microbiota of resident and migratory 

individuals of the same or related species. However, somewhat counterintuitively, plumage microbiota 

were more diverse in resident birds than in migratory birds (Bisson et al., 2009). The authors attributed 

differences among birds to higher microbial exposure during ground-foraging behavior, the dominant 

foraging strategy among resident species. Migratory species predominantly foraged in the shrub and 

canopy layer, and had little exposure to the soil microbiome. To test whether microbial exposure differs 

between resident and migratory birds, as for any comparative experiment, controlling for similar non-

migratory behavior is needed.  

Actual environmental microbial exposure may not necessarily be greater in migratory than 

resident birds, depending on their site fidelity and patterns of space use. Many migratory shorebird 

species return to the same sites during the breeding and non-breeding seasons, which effectively results in 

the use of many small habitat patches over a geographical gradient (Leyrer et al., 2006; Merkel et al., 

2006; Johnson et al., 2010). Also, retention time of local microbiota in the avian gut is not known. 

Variation in gut microbiota turnover associated with different stages of the migratory cycle therefore may 

not reflect sampling time and location in gut microbiota.  
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Exposure to different microbial environments during migration may also be influenced by the 

formation of large, potentially mixed-species flocks in relatively small areas. Avian interactions can 

facilitate transfer of microorganisms through close contact and involuntary coprophagy, which has been 

identified as the potential mechanism for spread of gull fecal indicator bacteria, Catellicoccus 

marimammalium, to shorebirds (Grond et al., 2014; Ryu et al., 2014). Large aggregations of birds as 

found in colonial breeding species could also result in the spread of gut microbiota among conspecifics, 

and potentially play a role in inoculation of chicks and juveniles. 

 

2. Intrinsic factors 

 a. Phylogenetic history 

Host species and evolutionary history strongly determine the gut microbiota of mammals (Ley et 

al., 2008), with microbial gut communities more similar among closely related species. Coevolution in 

animals that have the potential for vertical transmission of whole microbial communities through the 

process of birth has been hypothesized as one of the reasons for the importance of phylogeny in 

microbiota structuring (Ley, Peterson, & Gordon, 2006). Several studies tested for similar patterns among 

birds, although these relationships appear less distinct. Hird et al. (2015) evaluated the influence of 18 

categorical variables including host species, diet and geographical location on wild bird gut microbiota, 

and found that variables associated with host taxonomy were the strongest determinant of gut microbial 

community. Waite & Taylor (2014) also observed phylogeny as the main determinant of gut microbiota in 

the meta-analysis they conducted on a suite of avian species.  

The gut microbiota of young of magpies (Pica pica) and parasitic young of great spotted cuckoos 

(Clamator glandarius) differed from that of their nest mates (Ruiz-Rodríguez et al., 2009), despite being 

raised in the same nest environment. On the other hand, gut microbiota were more similar between 

siblings of the great tit (Parus major) within the same nest than among conspecific young in other nests 

(Lucas & Heeb, 2005). Further work is needed to determine whether the genetic relatedness or the 

similarity in diet provided by the parents lead to these differences. For example, raising chicks from bird 
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species with varying phylogenetic relatedness under similar environmental and dietary conditions would 

allow us to isolate genetic effects on gut microbial composition.  

 

b. Age & Sex 

Microbial colonization of bird guts is hypothesized to occur after hatching of the egg (van der Wielen et 

al., 2002; Kohl, 2012). However, sampling of the microbiota during late incubation has documented the 

presence of several species of microbes at low abundance within the embryo gut (Kizerwetter-Świda & 

Binek, 2008). Infection of the reproductive tract in chickens can cause pathogenic bacteria to penetrate 

the egg shell from the outside environment, as well as to enter the egg during egg formation (Gantois et 

al., 2009; Martelli & Davies, 2012; Cox et al., 2012). If active transfer of maternal gut bacteria into the 

egg during egg formation was possible, chicks could hatch with gut microbiota present. Early recruitment 

could give the chicks a head start with respect to digestion and nutrient uptake, and ultimately could 

benefit growth. However, when GI tracts of wild birds are colonized, through whichever mechanisms, and 

by which microorganisms, remains unknown. Sampling wild bird embryos before hatch would help to 

elucidate the presence or absence of microbiota, and the potential for maternal control over her 

offspring’s gut microbiota.  

Microbial recruitment to young bird guts may occur through various routes. Altricial birds are 

dependent on their parents for food, which enables parents to influence their offspring’s gut microbiota 

through prey selection and transfer of saliva. Precocial young leave the nest soon after hatch and often 

forage independently, limiting a direct role for parental influence on gut microbiota. Precocial parents can 

potentially influence their chicks’ gut microbiota through leading them to foraging areas with beneficial 

prey, or brooding and preening of the chicks. In addition, coprophagy by chicks could accelerate the 

microbial recruitment and establishment processes.  

Gut bacterial communities during early life in altricial birds are highly variable in diversity and 

abundance (González-Braojos et al., 2011) and are markedly different from gut microbiota of conspecific 

adults (van Dongen et al., 2013; Waite et al., 2014). Once hosts reach maturity, their gut microbiota are 
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often assumed to be relatively stable (Faith et al., 2013), but long time-series with monitoring of adult 

bird microbiota are lacking. Waite et al. (2014) found that fecal microbial communities of adult kakapos 

that were collected one year apart were markedly different. However, whether the intra-individual 

variation in microbiota composition is a result of increasing age, or within the natural range of variation 

we cannot yet say, as only two samples were collected per individual. Long-term, repeated sampling of 

individual birds is needed to determine the natural variation in their gut microbiota and to identify 

consistent age effects. 

Males and females differ in reproductive physiology and behavior, which may manifest as 

different gut microbial profiles. Male and female northern bobwhites differed in three of the eight most 

common bacterial genera: Enterococcus, Rothia and Streptococcus (Su et al., 2014). Despite the well-

studied interactions between hormones and the human gut microbiota (summarized in Neuman et al., 

2015), little information is available for birds. Studies investigating hormones in birds have focused 

predominantly on the immunosuppressive effects of testosterone (Alonso-Alvarez et al., 2009), but 

connections to gut microbiota have not been investigated. The only study on hormone-microbiota 

interactions has been conducted in commercial broiler chicks: supplementation of melatonin in broiler 

food increased growth hormone levels in plasma, as well as Lactobacillus abundance, broiler health and 

growth (Akbarian et al., 2014).  

 

 c. Reproduction  

In addition to the innate physiological differences associated with sex, there are reproductive 

behaviors specific to each sex that would affect gut microbiota composition, such as mating system. 

Sexually monogamous bird species are exposed to fewer microorganisms during mating than species with 

multiple sexual partners. Studies that have investigated sexual transfer of microbiota in wild birds and 

other vertebrates have predominantly used the cloacal swabbing method to investigate the affected 

microbial community. Lizards with multiple partners were shown to have a more diverse cloacal 

microbiota than sexually monogamous species (White et al., 2011), a pattern that has yet to be 
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investigated in birds. The effects of mating on the cloacal microbiota in birds were shown to be transient 

(White et al., 2010), and perhaps unlikely to have a lasting effect on the avian microbiota. However, 

different mating systems could result in differential pathogen transfer which can affect the partners’ 

health.  

Breeding can affect gut microbiota directly through transfer of microorganisms during the mating 

process and indirectly through increased close contact between mates during incubation and chick 

provisioning. No differences were found in cloacal microbiota between male and female barn swallows 

(Hirundo rustica), when birds were sampled during the breeding season (Kreisinger et al., 2015). In 

addition, many bird species are known to geographically segregate by sex outside of the breeding season 

(Cristol, Baker, & Carbone, 1999; Alves et al., 2013), which would expose males and females to different 

diets and habitats. How differential migration affects microbial exposure for males and females is not 

known, but could be investigated using localized sampling efforts during the non-breeding season.  

 

 d. Physiology: GI-tract morphology  

Animal behavior can affect their microbiota and vice versa (Ezenwa et al., 2012). In birds, 

migration is one of the main behaviors that can influence gut microbial composition. In addition to the 

extrinsic effects of migration on gut microbiota, there may be intrinsic physiological effects due to 

plasticity in bird gut morphology and function during migration. Migratory shorebirds shrink their GI 

tract in anticipation of long-distance movements, resulting in an average 30% reduction in GI tract length 

(Battley et al., 2000). Effects of change in gut morphology on microbiota are unknown, but the lack of 

nutrient input during flight, combined with the microbial habitat alteration could lead to an impoverished 

microbiota. Many migratory birds frequent one or more staging sites during their migrations, which are 

usually food-rich locations that birds use as mid-migration fueling sites. Intensive foraging at staging sites 

results in ingestion of large quantities of local food-associated microorganisms, potentially inoculating 

impoverished communities with local microbes.  
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During spring migration at Delaware Bay (DE, USA), shorebirds use the same habitat and food 

source, consisting of eggs of horseshoe crabs (Limulus polyphemus; Clark, Niles, & Burger, 1993). Three 

shorebird species at this site, the red knot (Calidris canutus), ruddy turnstone (Arenaria interpres) and 

semipalmated sandpiper (C. pusilla), differed in their fecal microbial communities, despite experiencing a 

similar foraging environment (Grond et al., 2014; Ryu et al., 2014). Interspecific differences support the 

potential importance of phylogeny as a determinant of gut microbial communities. Similarly, shorebirds 

staging in the Tagus estuary in Portugal used the same habitat and resources, but showed distinct 

communities among species (Santos et al., 2012). One explanation for these results is that even in reduced 

form, the microbiota present in the GI tract can outcompete incoming food-associated microorganisms. 

Alternatively, retention time of food in shorebirds during stopover may be too short to allow settlement of 

food-associated bacteria. 

To investigate how migratory movements affect gut microbiota, it would be necessary to collect 

samples from birds prior to migration, immediately upon arrival at staging sites, and then during the 

staging period. Timing of migration and physiological adaptations to migration are intrinsic traits, which 

are expressed under captive conditions. Pre-migratory fattening and GI tract shrinkage can be observed in 

captive wild birds, which, in combination with wind tunnel experimental flights, could be valuable tools 

for assessing the effect of migration on gut microbiota.  

 

 e. Health & Fitness 

The influence of the gut microbiota on health has been studied intensively in humans and, to a 

lesser extent, in domestic poultry. How gut microbiota affects health in wild birds is unknown, due to the 

difficulties of determining health status for free-living birds and low recovery rates of dead animals.  

Gut microbiota can improve health through aiding nutrient uptake and through interactions with 

the immune system. A study investigating the effect of immune supplementation and challenge on the 

cloacal microbiota in homing pigeons revealed effects on evenness of the microbial community, but not 

on richness or diversity (Matson et al., 2015). The authors did not identify microbial communities, and 



 36 

we therefore do not know which bacteria specifically were affected by the experimental manipulations. 

To gain understanding of how gut communities interact with the immune system under normal and 

immunologically challenging conditions, will require extensive surveys combining health measurements, 

immunological assays and assessment of the gut microbiota in wild bird populations.  

Gut microbiota composition could positively affect host fitness through its involvement in host 

health. The hologenome theory argues that organisms evolve together with their microbiomes, and that 

the microbial community can increase fitness parameters, such as survival, phenotypic plasticity and 

reproductive performance, of hosts when environmentally stressed (Zilber-Rosenberg & Rosenberg, 

2008). Changes in gut microbiota in termites (Zootermopsis angusticollis & Reticulitermes flavipes) and 

the honey bee (Apis mellifera) decreased fecundity (Hamdi et al., 2011; Rosengaus et al., 2011). Water 

fleas (Daphnia magna) raised under sterile conditions showed severe decreases in fitness parameters. 

Fecundity in birds is a relatively easy parameter to monitor, especially in captive populations or in wild 

cavity nesting species. To understand how gut microbiota contribute to host fitness in birds, we need to 

manipulate gut microbial communities under field conditions, and then monitor fitness parameters, such 

as fecundity.  

 

VIII. DISCUSSION & FUTURE DIRECTIONS 

In our review, we have highlighted the many opportunities provided by wild bird GI tract 

microbiome research to learn how the environment and host interact to determine the composition and 

function of the gut microbiota. Two main topics require future extensive research effort: i) increase 

understanding of baseline, or "core", gut microbial diversity within and among avian taxa, ii) use 

controlled empirical experiments to identify the functional importance of gut microbiota to the host, and 

ii) identify function of avian gut microbiota using meta-omics tools.  

At present, we are limited in the broad inferences we can make from gut microbial diversity, as 

studies on wild birds are relatively new, and to date, have mainly focused on one or a few species. 

Expanding the range of avian species studied will increase our understanding of variation in inter-specific 
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gut microbial diversity, which is a necessary first step in addressing the knowledge gaps in the areas we 

identified.  

Sample collection from a large variety of bird species is challenging, but collaborations among 

different fields and research groups or organizations could offset some of the challenges. Hird et al. 

(2015) were able to investigate gut microbial communities in 59 neotropical bird species from 14 

different orders by collaborating with the Museum of Natural Science at Louisiana State University 

during specimen collection. Alternatively, international collaborations have the potential for sample 

collection over large geographical ranges. In addition to increasing the variety of species studied, it is 

important to investigate the within-individual variation in the microbiota in different parts of the GI tract. 

Collecting fecal and cloacal samples as proxies for gut microbiota is a common approach. It is not clear 

whether or not the microbiota in upstream sections of the GI tract are accurately reflected in these 

samples, which affects the relevance of these samples to understanding links with digestive function. 

However, investigating upstream sections of the avian GI tract requires sacrifice of the host, which may 

be undesirable for some populations of wild birds.  

Function of gut microbiota in birds remains poorly understood. Birds are fundamentally distinct 

from mammals. As a result, assigning functions to avian gut bacteria based on their equivalent function in 

the mammalian gut microbiota should be done with considerable caution. To assess broad functional 

patterns in gut microbial diversity, identifying a “core” microbiota of different hosts can be a good 

starting point. Identifying core taxa could aid in a better, targeted selection of focal taxa for physiological 

or genome studies. However, we also want to stress the importance of identifying the limitations 

associated with inference at coarse phylogenetic levels. Host-specificity of gut microbiota and their 

physiological function likely become more apparent at finer phylogenetic levels, and we encourage 

investigation at lower taxonomic levels than at the Phylum level.  

One challenge of studying wild birds under natural conditions is disentangling the large number 

of intrinsic and extrinsic factors that potentially influence host microbial communities. Statistical methods 

are available to disentangle the importance of different factors on gut microbial communities, but require 
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extensive sampling of a wide range of intrinsic and extrinsic factors. Capturing wild birds changes their 

direct environment, diet and social interactions from natural conditions thus complicating the 

interpretation of experimental results. In the future, controlled experimental studies between paired free-

living and captive populations should be used to address questions regarding microbial function, and 

responses to extrinsic and intrinsic factors. However, one must bear in mind the biases associated with 

studying captive, and especially captive-raised birds. Gut microbial communities differ between wild and 

domesticated birds and attempts to extrapolate from model to wild organisms requires considerable 

caution. That said, on a Phylum level we observed substantial similarity between domestic chickens and 

wild birds (Fig. 2.2), indicating that model organisms serve as an important tool and starting point to form 

hypotheses on the microbiota responses to changes, such as changes in diet and habitat.  

Metagenomic sequencing will help to elucidate the bacterial genes present in gut communities, 

but only has limited use for inferring bacterial function because it relies on known gene function for 

annotation. To address the function of the avian gut microbiota, it is essential to detect the genes that are 

expressed, and thus functionally active at the time of sampling. Metatranscriptomics is a deep sequencing 

approach that can provide information on realized function through relative expression quantitation and 

annotation of the transcribed functional genes present in the sample. Comparing microbiome gene 

transcription profiles among host species that differ in life-history characteristics, such as diet, sex or age, 

will provide valuable insights into the variation in gut microbiota function in birds. Both metagenomic 

and metatranscriptomic sequencing rely on existing data for gene and transcript annotation. Construction 

of a carefully annotated set of reference genomes from a variety of bird species would greatly improve the 

inferences we can draw from these sequencing methods.  

 

IX. CONCLUSIONS 

1) Gut microbial communities of wild birds are highly diverse and show large within and among species 

variation.  
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2) Sections of the gastrointestinal tract differ widely in their microbial communities, and commonly used 

sampling methods like cloaca or fecal samples may not reflect specific gut components.  

3) Phylogenetic history is a main determinant of gut microbial composition in birds. However, several 

studies show an influence of local environment on avian gut microbiota, indicating potential sensitivity to 

environmental change.  

4) We identified three important future research areas, including broadening the range of avian taxa 

investigated, identifying function of avian gut microbiota using meta-omics tools, and using experimental 

manipulations to identify key determinants of gut microbiota composition.  
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XII. FIGURES 

 

  

Figure 2.1 Studies on gut microbiota of birds and mammals (a), and wild and domestic birds (b) as indexed in Web of Science. Dashed vertical 

lines represent the first use of the respective sequencing technique in gut microbiota research. Data include studies using culture-dependent and 

culture-independent methods. 
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Figure 2.2 Core microbiota of mammals (domestic & wild; Ley et al. 2008), humans (Eckburg et al. 

2005), domestic chickens (Waite and Taylor 2015) and wild birds (This study). 
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Figure 2.3 Bacterial diversity in different sections of the avian gastrointestinal tract. Adapted from the 

Ruffed Grouse digestive tract by Stevens & Hume (1998). We only included studies that used methods to 

characterize gut microbial communities, to avoid potential selective bias of culture-dependent techniques. 

References: [1] Godoy-Vitorino et al. 2008, [2] Godoy-Vitorino et al. 2012, [3] Waite et al. 2014, [4] 

Kohl et al. 2014, [5] Wienemann et al. 2011, [6] Bennett et al. 2013, [7] Matsui et al. 2010, [8] Dewar et 

al. 2013, [9] Lu et al. 2009, [10] Ryu et al. 2014, [11] Grond et al. 2014, [12] Waite et al. 2014, [13] 

Roggenbuck et al. 2014, [15] Koskey et al. 2014, [15] Lu et al. 2008, Dewar et al. 2014, [17] Banks et al. 

2009, [18] van Dongen et al. 2013, [19] Dewar et al. 2014, [20] Santos et al. 2012, [21] Kreissinger et al. 

2015.  
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Figure 2.4 Extrinsic and intrinsic factors affecting the avian gut microbiota. Extrinsic factors are boxed in solid lines, and intrinsic factors in 

dashed lines. Numbers represent sections of this review describing the different factors. 
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ABSTRACT 

Gut microbiota play a key role in host health. Mammals acquire gut microbiota during birth, but timing of 

gut microbial recruitment in birds is unknown. We evaluated whether precocial chicks from three species 

of arctic-breeding shorebirds acquire gut microbiota before or after hatching, and then documented the 

rate and compositional dynamics of accumulation of gut microbiota. Contrary to earlier reports of 

microbial recruitment before hatching in chickens, quantitative PCR and Illumina sequence data indicated 

absent or negligible microbiota in the guts of shorebird embryos before hatching. Analyses of chick feces 

indicated an exponential increase in bacterial abundance of guts 0-2 days post-hatch, followed by 

stabilization. Gut communities were characterized by stochastic recruitment and convergence towards a 

community dominated by Clostridia and Gammaproteobacteria. We conclude that guts of shorebird 

chicks are void of microbiota prior to hatch, but that a stable gut microbiome establishes as early as 3 

days of age, probably from environmental inocula. 

 

Keywords: 16S rRNA gene, bacteria, Calidris, gut microbiota, qPCR, precocial young 
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INTRODUCTION 

Gut microbiota contribute to maintaining organismal health through nutrient uptake (Leser and 

Mølbak 2009), detoxification of digestive byproducts (Kohl 2012), energy and fat metabolism 

(Velagapudi et al. 2010), and interactions with the host immune system (Rescigno 2014). Environmental 

exposure early in life can shape the gut microbiota, and aid in defending against pathogens while the 

immune system is immature (Bar-Shira et al. 2003). In mammals, maternal vaginal and fecal microbe 

transmission are crucial in the recruitment and establishment of microbiota in the digestive tract of a 

neonate (Palmer et al. 2007). Thus, maternal effects strongly control the initial composition of gut 

microbiota in mammalian offspring (Stevens and Hume 1998). 

It remains unclear whether birds can acquire gut microbiota while inside the egg, and how 

microbial communities accumulates after initial recruitment. Bacterial colonization can theoretically 

occur before or after hatching, and we propose two alternative hypotheses to describe the process of 

microbial colonization: the head start and the sterile egg hypothesis. The head start hypothesis posits that 

microbes enter the gastrointestinal tract of avian embryos through transovarian transmission during 

oogenesis as a maternal effect, or possibly from the environment by penetration through eggshell pores 

and embryonic membranes after egg-laying (Gantois et al. 2009; Cox et al. 2012; Martelli and Davies 

2012). The sterile egg hypothesis predicts that microbiota recruitment in the avian gut occurs after hatch, 

because the chorion membrane maintains a sterile environment within the egg (van der Wielen et al. 

2002; Kohl 2012). The physiology of egg formation supports the latter hypothesis, but enteric bacteria 

have been cultured from the guts of embryos of domestic chicken (Gallus gallus domesticus; Kizerwetter-

Świda and Binek, 2008), and vertical transfer of pathogenic Salmonella enterica has been documented 

between mother and embryo in domestic chickens (Guard-Petter 2001; De Buck et al. 2004). The two 

hypotheses differ in the maternal contribution to gut microbiota of offspring, and in the source of 

inoculum. The head start hypothesis predicts that maternal or environmental inoculation occurs before 

hatching, possibly resulting in metabolic and immunological advantages at hatching. In contrast, if gut 
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microbiota are absent in embryos, as posited by the sterile egg hypothesis, chicks must recruit microbiota 

from the environment after hatch. 

Developmental strategies after hatching vary within birds and range from chicks hatching with 

complete dependence on their parent(s), like most altricial species, to superprecocial species that are 

independent of parental care after hatching. Altricial and precocial birds likely differ in the degree of 

maternal influence on microbial inoculation of their chicks. Altricial birds have undeveloped young that 

require parental feeding and brooding until fledging, whereas precocial chicks hatch fully developed with 

invaginated yolk sacs, leave the nest immediately, forage independently, but rely on parental brooding 

and defense until able to thermoregulate (Sibly et al. 2012). As a result, altricial birds have higher 

potential for parental influence on gut microbiota through salivary transfer and a longer period of nest 

occupation, whereas precocial parents have little direct influence on their offspring’s microbiota aside 

from exposure to bacteria on feathers during brooding, and leading young to brood-rearing areas. 

In addition to uncertainty about the timing of initial recruitment of microbiota, the early 

successional dynamics of the avian gut microbiota are unclear. For example, it remains unknown how 

rapidly chick guts are colonized, in what order bacterial taxa become established, and when convergence 

towards an adult gut microbiome occurs. Precocial young of most Arctic-breeding shorebirds are 

nidifugous, self-feeding and dependent on parents for thermoregulation, and could benefit from recruiting 

gut microbiota before hatching, because symbionts can promote nutritional uptake and growth 

immediately after hatch (Angelakis and Raoult 2010). Efficient use of nutrients may be particularly 

important in the Arctic because a short and synchronous breeding season requires rapid chick 

development (Schekkerman et al. 2003), favoring the recruitment of microbiota via the head start 

hypothesis.  

We investigated the ontogeny of the gut microbial community in three species of Arctic-breeding 

shorebirds. Our objectives were to: 1) test the head start and sterile egg hypotheses and determine if 

precocial chicks of arctic shorebirds recruit gut microbiota before or after hatching, and 2) assess 

successional trajectories in the gut microbiota of shorebird chicks after hatching. To address our two 
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objectives, we combined quantitative PCR (qPCR) and Illumina MiSeq techniques to analyze the gut 

microbiota of embryos prior to hatch and in fecal samples collected from shorebird chicks from hatch to 

up to 10 days of age.  

 

MATERIALS AND METHODS 

 

Ethics statement 

All animal work, including handling of birds, collection of viable eggs and chick transmitter 

application, was approved by the Institutional Animal Care and Use Committee at Kansas State 

University (Permit no. 3261). Field research with wildlife was conducted under the federal US Fish and 

Wildlife scientific collection permit (No. 778151-3) and the State of Alaska Department of Fish and 

Game scientific permit (No. 13-106) issued to KG, RBL and BKS. 

 

Sample collection and preparation 

We collected 27 eggs from seven clutches of dunlin (Calidris alpina) and 18 eggs from five 

clutches of semipalmated sandpipers (Calidris pusilla), at Utqiaġvik (formerly Barrow), Alaska 

(71º17’26”N, 156º47’19”W) in June-July 2013. We estimated incubation stage via changes in egg 

buoyancy that occur with embryonic development (Liebezeit et al. 2007) and collected eggs 1-3 days 

before the predicted hatch date to ensure near complete embryo development. After collection, embryos 

were removed from eggs, euthanized, and kept frozen at -20°C until dissection. Before dissection, 

embryos were washed in a weak solution of 0.006% sodium hypochlorite (10% bleach) to minimize 

contamination by external microorganisms. We aseptically removed the lower intestinal tract between the 

gizzard and cloaca and stored samples at –80°C. We also collected the invaginated yolk sacs from the 

embryos of five dunlin and four semipalmated sandpipers. 

To investigate gut microbiota of mobile broods after hatching, we selected dunlin and red 

phalaropes (Phalaropus fulicarius) as study species, because dunlin use mesic terrestrial habitat, whereas 
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red phalaropes use freshwater habitat (Cunningham et al. 2016). Different habitats and associated 

microbiomes could affect recruitment of gut microbiota in chicks. We fit the attending adults with 1.55 g 

VHF radios, and, for dunlin, one chick per brood with 0.26 g VHF radios (Holohil Systems Ltd., Carp, 

ON, Canada; Supplementary Figure 3.1). Red phalarope chicks were too small at hatch to apply 

transmitters so we located young by tracking the attending male. We attempted to locate mobile broods 

every three days, using radio telemetry and by searching areas where broods were last seen. Once broods 

were located, chicks were captured and feces were collected by placing the chicks in individual 

compartments in an insulated, thermally heated bag, lined with sterile wax paper. Chicks were held for < 

5 min to minimize stress and then released together. At several capture sites, we also collected a mix of 

water and soil in a 1.5ml Eppendorf tube using a flame-sterilized spatula. All samples were stored in 

100% ethanol at -20°C until further analyses. 

To remove ethanol from fecal samples, we centrifuged samples for 10 min at 10,000 rpm and 

discarded the supernatant. We repeated this step twice with 1 ml of RNase/DNA free molecular grade 

water to minimize ethanol contamination (Grond et al. 2014; Ryu et al. 2014). We shredded embryonic 

gastro-intestinal tissues, and extracted DNA from embryo and chick fecal samples using the MoBio 

Power Lyzer/Power Soil kit following the manufacturer’s instructions (Mo Bio Laboratory, Carlsbad, CA, 

USA), except for replacing the bead beating step with 15 min vortexing at high velocity for tissue 

homogenization. Yield of genomic DNA was determined using a spectrophotometer (NanoDrop 2000, 

Thermo Fisher Scientific, Waltham, MA).  

 

Conventional PCR 

 To test for the presence of bacteria in the embryonic gut, we PCR-amplified total bacterial 

communities using general bacterial primers 515F and 806R to generate 16S rRNA gene amplicons 

(Caporaso et al. 2012). Primer sequences are provided in the Supplemental Materials (Supplementary 

Table 3.1). PCR reactions were conducted in a 25 µl reaction volume, using AmpliTaq Gold DNA 

polymerase (Applied Biosystems, Waltham, MA, USA) and 5 µl of DNA template (5ng-DNA/µl). PCR 
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conditions consisted of 30 cycles of: 15s at 95°C, 30s at 55°C and 30s at 72°C, preceded by an initial 

denaturing step of 10 min at 95°C, and followed by a final extension step of 5 min at 72°C.  

 

To ensure that the bacterial DNA within the embryo lower GI tract was not degraded by our 

disinfection procedures, we amplified avian DNA from 24 random samples with primers 2550F and 

2718R designed for molecular sexing of non-ratite birds, following PCR conditions of Fridolfsson and 

Ellegren (1999). Had the sodium hypochlorite compromised the DNA, we should not have been able to 

acquire avian or bacterial amplicons. Validation tests confirmed the integrity of the lab procedure and our 

ability to amplify the bacterial DNA.  

 

Quantitative PCR 

We estimated 16S rRNA gene copy numbers in embryo gut, yolk, and fecal samples in triplicate 

qPCR reactions on a BioRad CFX96 Touch Real-Time PCR thermocycler (Bio-Rad Laboratories, Inc., 

Berkeley, CA, USA). We used a TaqMan® qPCR assay (5’–CTTGTACACACCGCCCGTC–3’; Applied 

Biosystems, Waltham, MA, USA) targeting the bacterial 16S rRNA gene. in combination with 2X 

TaqMan® Gene Expression Master Mix with two general bacterial primers at 100nM final concentrations 

(F_Bact1369 and R_Prok1492; Furet et al. 2009; primer sequences can be found in Supplementary Table 

3.1). Cocktails included 4 µl of DNA template (5ng-DNA/µl) and conditions consisted of 2 min at 50°C 

and an initial denaturing for 10 min at 95°C followed by 40 cycles of 15 s at 95°C and 1 min at 60°C. The 

negative control was RNase/DNA free molecular grade water and the positive control was Semipalmated 

Sandpiper fecal DNA at 5ng-DNA/µl. Standard curves were generated using 2 to 2 x 106 16S rRNA gene 

copies of Staphylococcus aureus subsp. aureus (efficiency = 105-116%, R2 = 0.984–0.990). To control 

for the possibility of PCR inhibition and to establish minimum detection levels, we spiked a subset of 

samples (n = 15) with a dilution series of the Staphylococcus aureus rRNA gene ranging from 100-106 

copies.  
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16S rRNA gene sequencing and sequence analyses 

We used general bacterial 515F and uniquely barcoded 806R primers to generate multiplexed 16S 

rRNA gene amplicons from embryo guts and fecal samples, following protocols of the Earth Microbiome 

Project (Caporaso et al. 2012). PCR reactions were performed in a 25 µl reaction volume, using 

AmpliTaq Gold DNA polymerase (Applied Biosystems, Waltham, MA, USA) and 5 µl of DNA template 

(5ng-DNA/µl), and were run using 25 cycles, opposed to the 35 cycles described in the EMP protocols. 

We removed primers from our PCR product using the Agencourt AMpure XP PCR purification system 

(Beckman Coulter, Brea, CA) following manufacturer’s instructions except AMpure volume ratio was 

adjusted to 1:1 and the ethanol washes were repeated three times instead of two. We sequenced the V4 

region in 2 x 250 bp paired-end runs using the Illumina MiSeq platform. Each Illumina run included a 

15% PhiX spike. Embryo samples, and fecal samples from chicks of 0-3 days old were sequenced twice, 

because of low sequence yields.  

Sequences of bacterial rRNA were quality filtered, contiged and demultiplexed using the QIIME 

Program (Caporaso et al. 2010), and aligned against the GreenGenes 16S rRNA gene reference database 

(v.13_8; DeSantis et al., 2006). We identified chimeras – artifacts that combine multiple different 

sequences – using CHIMERASLAYER (Haas et al. 2011). Chimeras, singletons and non-aligned 

sequences were removed from the dataset, and the remaining sequences were clustered to Operational 

Taxonomic Units (OTUs) at 97% sequence similarity, and assigned to taxa using the Naive Bayesian 

Classifier with an RDP reference (Wang et al. 2007). After taxonomy assignment, we identified and 

removed non-target sequences of Archaea, chloroplasts, and mitochondria. 

 Prior to subsequent analyses, we rarefied chick samples to 5,000 sequences per sample due to 

low sequence yields in samples of chicks from 0-2 days of age. All embryo samples yielded far fewer 

than 5,000 sequences, and were analyzed without rarefication.  
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Statistical analysis 

Statistical analyses were conducted in R (ver. 3.3.1, R Development Core Team, 2016). To test 

for differences in 16S rRNA gene copy numbers between embryos and chicks, we performed a one-way 

analysis of variance and assessed pairwise differences using a post-hoc Tukey HSD test with functions of 

the base Program R. To determine whether dunlin and red phalarope chicks differed in gut microbiota, or 

if samples could be pooled for further analyses, we analyzed homogeneity of variance using the 

betadisper function from the ‘vegan’ package (Oksanen et al. 2016). To test for pairwise differences in 

variance between young and old chicks, and environmental samples, we performed a permutation F test 

using the permutes function in the ‘vegan’ package.  

To look for natural breaks in bacterial abundance in our chick qPCR data, we used the segmented 

function from the ‘Segmented’ package (Muggeo 2008). Large changes in the slope represent changes in 

the accumulation of 16S rRNA copies in the chick gut and were used to determine whether we could pool 

our chick microbiota data into naturally occurring, broader age classes. To test for significant differences 

among slopes in bacterial abundance versus chick age, we ran a Davies test using the davies.test function 

from the ‘Segmented’ package.  

We calculated diversity indices (observed number of OTUs, Simpson’s (1-D) and Shannon’s H) 

using the QIIME alpha_diversity.py script. In addition, we calculated evenness (Pielou’s J) using the 

diversity result function in the ‘BiodiversityR’ package (Kindt and Coe 2005). We estimated beta 

diversity, to compare variance between age groups (0-2 days versus 3-10 days) and environment. We 

tested for pairwise differences among age groups, using post-hoc Tukey HSD tests. We determined 

shared OTUs among young and old chicks and environmental samples, and constructed a scaled Venn 

diagram using EulerAPE (Micallef and Rodgers 2014).  

To investigate potential differences among microbial communities in chicks and the environment, 

we applied non-metric multidimensional scaling (NMDS) of Bray-Curtis distance matrices using the 

metaMDS function in the ‘vegan’ package. We tested for treatment differences through an analysis of 

similarity using the anosim function in the ‘vegan’ package. Means are shown ± standard error.  
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Data accessibility  

The nucleotide sequences and metadata will be made available through Figshare.  

 

RESULTS 

1. Timing of Recruitment 

 

 Conventional and Quantitative PCR 

Conventional PCR assays yielded no visible 16S rRNA gene amplification from gut or yolk 

samples of shorebird embryos collected 1-3 days before hatching. Consistently, the high fidelity and high 

sensitivity TaqMan qPCR assays suggested extremely low copy numbers of 16S rRNA genes in the 

intestinal tract and yolk sac of embryos. The qPCR detected bacterial amplification in our positive control 

after 12.6 ± 1.1SE cycles, compared to 33.8 ± 0.2 and 33.2 ± 0.3 cycles for the guts of dunlin and 

semipalmated sandpiper embryos, 34.1 ± 0.2 and 33.7 ± 0.2 cycles for yolk samples, and 33.9 ± 0.5 

cycles for our negative control. We detected negligible copy numbers of the bacterial 16S rRNA gene in 

all embryo samples, and we pooled samples from semipalmated sandpipers and dunlin for statistical 

analyses. Our gut and yolk samples did not differ from the negative controls in either threshold cycle or 

copy numbers (Tukey HSD; p > 0.22; Fig. 3.1a), and all samples and negative controls had higher 

threshold cycle and lower copy numbers than our positive controls (Tukey HSD; p < 0.001).  

We successfully amplified a subset of samples spiked with 10 copies of S. aureus within 15 

cycles, confirming our ability to detect low copy numbers of bacterial 16S rRNA and demonstrating an 

absence of PCR inhibitors in our samples. Additionally, avian DNA from all 24 gut samples amplified 

strongly in conventional PCR, further confirming that disinfecting the embryo’s external surfaces did not 

compromise DNA within the GI tract of shorebird embryos. Thus, our conventional and qPCR assays 

indicate that fewer than 10 copies of bacterial rRNA copies - or fewer than one to five bacterial cells - 

were present in our embryo samples, which represented the entire gastrointestinal system from the gizzard 

to cloaca.  
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 Sequencing 

Illumina MiSeq libraries acquired from embryo samples contained an average of 108.6 ± 15.9 

sequences (range 0-427), whereas the positive control contained over 7 million sequences. A second 

sequence library generated from the gastro-intestinal tracts and yolk samples from shorebird embryos 

resulted in similarly low yields. Bacterial sequences detected in the embryo samples were 

indistinguishable from the negative controls (Tukey HSD; p > 0.99). The microbial communities in 

embryo gut samples did not differ from yolk samples (F2,38 = 101.6, p = 0.13). Overall, our sequence data 

indicated that minimal or no microbiota were present in the gastrointestinal systems or yolk sacs of 

shorebird embryos before hatching of the eggs.  

 

2. Establishment of the Microbiota 

We collected 45 fecal samples from 1-10 day old chicks of dunlin and red phalaropes at 

Utqiaġvik, AK, in 2013. Despite the different habitats used by dunlin and red phalaropes to rear their 

chicks, fecal samples of chicks did not differ in the abundance and variance of their microbiota (F2,27 = 

5.5, p = 0.16). We pooled samples for further analyses to increase sample sizes.  

 

 Abundance 

 We observed an increase in 16S rRNA gene copy numbers from age 0-2 days. After 3 days post-

hatch, copy numbers stabilized at on average 395,852 ± 98,048 per sample (Fig. 3.1b). Our broken-stick 

regression indicated a natural break at 3 days post-hatch, and the slopes between 0-2 and 3-10 days post-

hatch differed significantly (Davies’ test, p < 0.001; Supplementary Figure 3.2). The slope from day 3-10 

did not differ from 0, suggesting stability with no change in microbial abundance over this period (t = 

0.095, p = 0.925). As a result, we pooled our samples into a “young” (0-2 day age) and “old” (3-10 day 

age) group for further analyses.  
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 Richness and Diversity  

After quality filtering, we retained 1,826,091 high quality sequences for further analyses. After 

rarefaction, we included five samples of 0-2 day old chicks, 19 samples from 3-10 day old chicks, and six 

environmental samples.  

Overall, environmental samples were highest in bacterial richness, followed by young chicks, and 

old chicks. We identified a total of 36 different bacterial Phyla in our samples. Environmental samples 

had the highest number of Phyla (34), followed by young chicks (23), and old chicks (19). OTUs were 

distributed across a total of 723 bacterial genera. The environmental samples had the highest richness 

with 568 genera. Samples from young chicks were richer than samples from old chicks, with 432 genera 

compared to 379 genera. Similarly, total unique OTU numbers were highest in environmental samples, 

followed by young and old chicks (Fig. 3.2). The environmental samples contained 1,060.5 ± 122.7 OTUs 

per sample, young chick samples had 308.4 ± 80.1 OTUs, and old chick samples had 105.7 ± 7.7 OTUs 

(Supplementary Figure 3.3). Observed OTU richness was lower in samples from old chicks than in 

samples from young chicks (Tukey HSD, p = 0.03), consistent with environmental/habitat filtering 

occurring as chicks aged. In both young and old chicks, the observed OTU richness was lower than in the 

environmental samples (Tukey HSD, p < 0.001). Simpson's (1-D) and Shannon’s (H) diversity indices 

indicated that environmental samples had the highest diversity scores (0.98 ± 0.01; 8.10 ± 0.39), and old 

chicks the lowest (0.56 ± 0.04; 1.98 ± 0.14). In addition, evenness of bacterial communities in the gut was 

highest in environmental samples (0.81 ± 0.03), followed by young chicks (0.53 ± 0.11), and old chicks 

(0.30 ± 0.02; Supplementary Figure 3.3).  

At a community level, our NMDS (k = 3, stress = 0.083) distinguished environmental from chick 

samples (ANOSIM, R = 0.853, p = 0.003; Fig. 3.3), and young chick samples were more similar to 

environmental samples (ANOSIM, R = -0.052, p = 0.599), than old chick samples. The gut microbiota 

composition of chicks was dynamic over time. Relative abundance of Firmicutes increased from 37.7 ± 

14.2% in young to 73.4 ± 5.9% in old chicks (Fig. 3.4). The increase was mainly driven by increases in 

abundance of the Classes Clostridia and Bacilli (Fig. 3.5). Within the Genus Clostridia, Clostridium 
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colinum – an opportunistic avian pathogen - was responsible for 73.6 ± 8.6% of sequences among young 

chicks, and 88.1 ± 4.1% in old chicks. The second most abundant OTU within the Clostridia belonged to 

the Genus Candidatus Arthromitus with a relative abundance of 6.1 ± 2.7% in young, and 10.3 ± 4.1% in 

old chicks. In contrast to Firmicutes, Proteobacteria relative abundance decreased from 45.5 ± 14.4% in 

young to 22.3 ± 6.0% in old chicks. Within Proteobacteria, 43% of sequences belonged to the Genus 

Rickettsiella within the Gammaproteobacteria. The relative abundance of Actinobacteria and 

Bacteroidetes declined by 50-80% from young to old chicks (Actinobacteria: 4.1 ± 1.5% to 0.3 ± 0.1%; 

Bacteroidetes: 5.0 ± 2.2% to 0.1 ± 0.02%; Fig. 3.5).  

Beta diversity of bacterial OTUs was greater among old chicks than among the environmental 

samples (F2,27 = 3.347, p = 0.03), but did not differ between young chicks and the environment (F2,27 = 

3.347, p = 0.26), and only marginally between young and old chicks (F2,27 = 3.347, p = 0.07).  

 

 

DISCUSSION 

 

1. Timing of Recruitment 

Our data strongly supported the sterile egg hypothesis, which posits that embryos hatch from eggs 

with a sterile gut. Our conventional and qPCR assays consistently indicated low copy numbers of 16S 

rRNA genes in the embryo and yolk samples that were either below detection level (conventional PCR) or 

indistinguishable from negative controls to which no DNA template had been added. The low copy 

numbers detected in the negative controls likely represent primer dimers or other artifacts, as products 

appeared late in the amplification process after > 30 cycles (Arikawa et al. 2008). Further, samples spiked 

with as few as 10 copies of S. aureus amplified after 15 cycles or less, confirming our ability to detect low 

copy numbers if bacteria had been present.  

Similarly to the PCR assays, we documented little evidence of bacteria in our embryo samples or 

the negative controls in the Illumina MiSeq sequencing analyses. The detection of any sequences in our 
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negative controls might be attributed to several potential causes. Carlsen et al. (2012) demonstrated tag 

switching in 0.7-1.6% of sequences during pyrosequencing, resulting in erroneous assignment of 

sequences to samples. In fact, the total number of sequences in our embryos and negative controls 

comprised only 0.06% of all sequences, a proportion far below error rates estimated by Carlsen et al. 

(2012). Similarly, barcode switching in Illumina sequencing studies can present a substantial source of 

error. Sinclair et al. (2015) used both forward and reverse barcoded primers and estimated that barcode 

switching could represent up to 22% of sequences in the Illumina platform. We used only reverse-

barcoded primers and were unable to estimate or detect barcode switching. Sequences in negative controls 

(or samples without adequate template) may also originate earlier in the library preparation process. Last, 

DNA extraction kits and PCR reagents may contain some bacterial DNA, leading to false detections in 

low template samples like our embryos (Salter et al. 2014).  

The apparent absence of bacteria in the guts of shorebird embryos collected under natural 

conditions contrasts with past reports from domestic chickens. Kizerwetter-Świda and Binek (2008) 

cultured a variety of enteric bacteria from chicken embryos obtained from a local hatcher. However, if the 

gut microbiota recruitment and establishment were similar in shorebirds and chickens, we should have 

detected low levels of bacterial with our culture-independent methods that targeted the entire spectrum of 

gut bacteria. Differences in environmental conditions between domestic chickens in a commercial-scale 

production facility versus Arctic-breeding birds under field conditions might lead to different routes for 

bacterial transmission. For example, Salmonella enteritidis can infect chicken embryos via infection of 

the female chicken’s reproductive organs, resulting in incorporation of bacteria into the egg during 

oogenesis (Gantois et al. 2009). The likelihood of a similar infection in wild birds may be low and 

possibly the reason for no evidence of bacteria in our wild embryos. Overall, our field data indicate that 

gut microbiota become established after chicks hatch and are exposed to the environmental microbiome.  
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2. Establishment of the Microbiota 

Based on our qPCR data, the bacterial abundance increased exponentially in chick guts during the 

first three days after hatching. Precocial chicks of Arctic shorebirds leave the nest within a day of 

hatching and feed independently, and we have observed chicks feeding as early as 1 day of age (personal 

communication: D.E. Gerik). Since parents do not provision precocial chicks in Arctic-breeding 

shorebirds, chicks likely acquire gut microbiota from ingestion of prey-associated microbiota. An 

inoculation route via diet was supported by our ordination results which showed that the microbiota of 

young chicks were more similar to the environmental microbiota in community composition than old 

chicks.  

A rapid increase in the microbial abundance within the first three days after hatching may be 

enhanced by the supply of yolk to the chick gastro-intestinal tract. During the first 2-3 days after hatch, 

precocial chicks use an invaginated yolk sac for nutrients while they learn to forage (Forsythe 1973; 

Schekkerman and Boele 2009). The yolk mainly consists of fat, protein and carbohydrates, and contains 

vitamins and trace elements (Vieira 2007). Combined with the relatively high body temperature of the 

chick, yolk provides a rich substrate for bacterial growth, and is commonly used in bacterial pure culture 

media (Carter 1960; Westblom et al. 1991; Byrne et al. 2008).   

We observed higher richness at a Phylum, Genus and OTU level among gut microbes in young 

chicks than old chicks. OTU richness was three times higher in young chicks than old chicks for some 

bacterial Phyla, indicating either selective recruitment or host-controlled environmental filtering prior to 

microbiota stabilization at 3-10 days of age. Community filtering for specific, high abundance gut 

symbionts was supported by a decrease in evenness, which suggested a rapid increase in abundance of 

dominant bacterial taxa with age. Depletion of the yolk sac after 2-3 days and the associated decrease in 

available nutrients to the chick gut microbiota might also explain the decrease in diversity. After nutrients 

are depleted, only bacteria that use nutrients derived from the chick diet, or those produced by other 

gastro-intestinal bacteria, would be sustained. After 3 days post-hatch, we observed establishment of a 

stable abundance of gut microbiota. Bacterial abundance did not change over the rest of our sampling 
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period, but then differed by two orders of magnitude between 10-day-old chicks and adult birds. We were 

unable to sample young birds after ten days of age, because chick mortality and enhanced mobility made 

locating chicks challenging.  

As chicks aged from 0 to 10 days old, their gut microbiota became dominated by bacteria within 

the Phyla Firmicutes and Proteobacteria. Increasing abundance of Clostridia was the main driver of the 

rise in Firmicutes abundance. Clostridia also are early colonizers of the human infant gastro-intestinal 

tract and essential in maintaining gut homeostasis (Lopetuso et al. 2013). The prevalence and natural 

occurrence of Clostridia in the gastro-intestinal tract in other wild birds is unknown, but their high 

abundance in the guts of shorebird chicks suggests a role for commensalism or potentially mutualism. 

Within the Class Clostridia, Clostridium colinum was the most abundant species with a relative 

abundance of 70%. C. colinum is an opportunistic avian pathogen and can cause ulcerative enteritis in 

chickens and quail. C. colinum infects a variety of birds, including domestic poultry, northern bobwhites 

(Colinus virginianus), American robins (Turdus migratorius), western bluebirds (Sialia mexicana), and 

lories (Trichoglossus sp. and Eos sp.; Winterfield and Berkhoff 1977; Porter 1998; Bildfell et al. 2001; 

Pizarro et al. 2005; Beltran-Alcrudo et al. 2008). All previous detections of C. colinum have been 

associated with disease or death of the host, but the occurrence of C. colinum in shorebird chicks could 

present evidence of alternative functions in the avian gut. C. colinum was not detected in the 

environmental samples we sequenced, suggesting that chicks may acquire this bacterium from their diet 

or another source.  

Proteobacteria were the second most abundant Phylum within the chick gut; their relative 

abundance decreased from young to old chicks. Similar to Clostridia, human infants experience an early 

increase in the Class Gammaproteobacteria (La Rosa 2014). Gammaproteobacteria represent a variety of 

species, but their functions have not been identified in avian systems. Within the Proteobacteria, we 

observed a shift from an evenly structured community including all Classes of Proteobacteria to a 

community dominated by Gammaproteobacteria. Rickettsiella was the dominant Genus within the 

Gammaproteobacteria. Rickettsiella spp. are associated with microbiota of terrestrial arthropods 
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(Bouchon et al. 2016; Duron et al. 2016), including several pathogens and endosymbionts (Leclerque and 

Kleespies 2008; Tsuchida et al. 2010).  

Based on differences in gut microbiota of chicks and adults, it is likely that chicks continue to 

acquire more bacteria as they grow. Perhaps the largest expansion of the microbial community occurs 

when birds migrate for the first time and are exposed to new, diverse environments across a large 

geographic area. Exposure to new microbial communities in the environment during migration may 

increase gut microbial abundance, when bacteria occupy previously unused niches, but this question 

requires further study. 
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FIGURES 

 
Figure 3.1 Median (thick, black line), 25% and 75% quartiles (boxes), and 90% confidence intervals 

(whiskers) for the log10 16S rRNA gene copy numbers. (a) Samples included lower gastrointestinal tracts 

(gut) and yolk sacs from developed embryos of dunlin (DUNL) and semipalmated sandpipers (SESA) at 

Utqiaġvik, Alaska, 2013. The negative control was RNase/DNA free molecular grade water, whereas the 

positive control was a fecal sample from an adult SESA (Adult (+); 5 ng-DNA/µl). Dashed lines and 

letters above boxes represent significant differences in 16S rRNA copy number (Tukey HSD). We did not 

include the microbial community from our positive control in further analyses, but show it here for 

reference purposes. (b) 16S rRNA gene copy numbers in fecal samples from REPH and DUNL chicks 

from 0-10 days after hatch. 
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Figure 3.2 Scaled Venn diagram of the bacterial OTUs isolated from fecal samples of young (0-2 days) 

and old (3-10 days) dunlin and red phalarope chicks, as well as environmental samples of water and soil. 

Numbers represent numbers of unique or shared OTUs.  
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Figure 3.3 Non-metric multi-dimensional scaling (NMDS) of the OTUs in the fecal samples of young 

chicks (0-2 days, n = 5) and old chicks (3-10 days, n = 19) of dunlin and red phalaropes, and 

environmental samples (n = 6), at Utqiaġvik, Alaska, 2013. 
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Figure 3.4 Relative abundance of bacterial Phyla in environmental samples and fecal samples of young 

(0-2 days) and old (3-10 days) chicks of dunlin and red phalaropes at Utqiaġvik, Alaska, 2013. Day 0 

represents day of hatching.  
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Figure 3.5 Sequence abundance per bacterial Class for the four main Phyla found in environmental 

samples of water and soil, and young (0-2 days) and old (3-10 days) chick fecal samples collected from 

dunlin and red phalaropes at Utqiaġvik, Alaska, 2013. 



 93 

 

SUPPLEMENTARY TABLES & FIGURES 

Supplementary Table 3.1 Primers used for conventional and quantitative PCR. 

Primer Sequence Source 

515F 5’-GTGCCAGCMGCCGCGGTAA-3’ Caporaso et al., 2012 

806R 5’-GGACTACHVGGGTWTCTAAT-3’ Caporaso et al., 2012 

2550F 5’-GTTACTGATTCGTCTACGAGA-3’ Fridolfsson and Ellegren, 1999 

2718R 5’-ATTGAAATGATCCAGTGCTT-3’ Fridolfsson and Ellegren, 1999 

F_Bact1369 5’-CGGTGAATACGTTCCCGGTAC-3’ Furet et al., 2009 

R_Prok1492 5’-TACGGCTACCTTGTTACGACT T-3’ Furet et al., 2009 
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Supplementary Figure 3.1 Dunlin chick with transmitter with antenna glued onto its back. Photo: Kirsten 

Grond.  
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Supplementary Figure 3.2 Broken stick regression fitted to qPCR data of chicks of different ages.  

  



 96 

 

 

Supplementary Figure 3.3 Richness and evenness of gut microbial community in fecal samples collected 

from chicks of ages 0-2 days (Young), 3-10 days (Old), and environmental samples (Env). Significance is 

shown by italic letters above boxes (Tukey HSD).  
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Supplementary Figure 3.4 Phylum level bacterial diversity of fecal samples from young chicks (0-2 days), 

old chicks (3-10 days) and environmental samples (soil and water). Chick fecal samples were collected 

from red phalarope and dunlin chicks at Utqiaġvik, AK, in 2013.  
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ABSTRACT 

Gut microbiota interacts closely with host health, but factors that determine gut microbial composition 

can differ widely among host taxa. In mammals, host phylogeny has been identified as the main driver of 

gut microbiota, a result of vertical transfer of microbiota during birth. Past studies of birds have found 

equal support for host phylogeny, but also environmental factors as drivers of gut microbiota 

composition. In our field study, we aimed to identify host and environmental factors that underlie 

variation in gut microbiota composition in eight species of migratory shorebird in the North American 

Arctic. We characterized bacterial communities from 375 fecal samples collected from adult shorebirds at 

nine breeding sites in Alaska and Canada, by sequencing the V4 variable region of the bacterial 16S 

rRNA gene. The gut microbiota of shorebirds was dominated by Firmicutes (55.4%), Proteobacteria 

(13.8%), Fusobacteria (10.2%) and Bacteroidetes (8.1%), which was consistent with earlier studies. The 

relatively high abundance of Fusobacteria in the shorebird gut resulted from dominance of the genera 

Fusobacterium and Cetobacterium across all sampling sites. Site-related variation in gut microbiota of 

shorebirds was a result of differences in the common, high abundance (core) bacterial taxa, whereas 

variation related to host species was driven by differences in the rare, low-abundance taxa. Sampling site 

was the main driver of variation in gut microbiota of Arctic-breeding shorebirds (R2 = 11.6%), followed 

by host species (R2 = 1.8%), and sampling year (R2 = 0.9%). Our study is the first to highlight the 

potential importance of local environment as a driver gut microbiota composition in Arctic-breeding 

shorebirds.  

 

Keywords: 16S rRNA gene, host, environment, gut microbiome  
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INTRODUCTION 

The importance of gut microbiota in maintaining gut homeostasis, and its contributions to 

organismal health have received increasing attention over the past decades. Microorganisms in the gastro-

intestinal tract outnumber host cells by a ten-fold difference (Turnbaugh et al. 2007), and play a major 

role in nutrient uptake and immune function (Leser and Mølbak 2009; Hooper, Littman and Macpherson 

2012). Mammals acquire their gut microbiota at birth (Leser and Mølbak 2009), but bird gut microbiota 

establish from environmental inocula after hatch (Grond et al.). After gut microbial communities reach an 

adult microbial community, composition can be affected by a number of intrinsic and extrinsic factors, 

including host phylogeny, age and diet (Ley et al. 2008; Goodrich et al. 2014; Hird et al. 2015).  

Evolutionary history, or host phylogeny, is the dominant factor that contributes to gut microbiota 

in mammals, including humans (Ley et al. 2008; Goodrich et al. 2014). However, factors that shape the 

gut microbiota of birds are less clearly defined. In neotropical birds, factors associated with host 

phylogeny contributed most to shaping the gut microbiota, followed closely by several ecological 

variables such as sampling and foraging location (Hird et al. 2015). Similarly, host species was ranked 

above ecological factors as a driver of gut microbiota composition in a meta-analysis that included a 

range of phylogenetically distinct hosts, including the flightless Emu (Dromaius novaehollandiae) and 

Kakapo (Strigops habroptilus), the strictly folivorous Hoatzin (Opisthocomus hoazin), several penguin 

species and domestic chickens (Waite and Taylor 2014).  

In contrast, several other studies found ecological factors as the main contributing factors to gut 

microbiota (Hird et al. 2014; Barbosa et al. 2016; Lewis, Moore and Wang 2016). A study investigating 

factors affecting microbial communities in the gut of parasitic Brown-headed Cowbirds (Moluthrus ater) 

and its passerine hosts showed that environmental factors, such as sampling locality and diet, were 

stronger determinants than factors associated with host taxonomy (Waite and Taylor 2014). Staging 

environment was also important for gut microbial composition of several passerine species during 

migration (Lewis, Moore and Wang 2016), and nest environment influenced gut microbiota of chicks, but 

not adults in Chin-strap Penguin (Pygoscelis antarcticus; Barbosa et al. 2016).  
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A central challenge in the field of host-microbiome research is decoupling the multitude of 

different factors that may simultaneously affect gut microbiota composition and dynamics. To address 

phylogenetic and environmental influences, many conspecific or closely related individuals must be 

sampled at multiple sites, a task that may often be difficult or impossible. We attempted to investigate the 

influence of environment- and host-related factors on gut microbiota of shorebirds; a diverse family that 

include over 200 species and many that are long-distance migrants. The range of phylogenetic relatedness 

and the wide variety in life-history characteristics among shorebird species allow for identifying the 

predominant factors that contribute to community dynamics in gut microbiota. In addition, many 

shorebird species share breeding sites, thus allowing for simultaneous sampling of multiple species within 

a local environment.  

 

We investigated the contribution of site- and host-related factors to gut microbiota composition of 

migratory shorebirds at breeding sites across the North-American Arctic. Specifically, we were interested 

in 1) characterizing the bacterial community of the shorebird gut during the breeding season in the Arctic, 

2) testing which factors were the main drivers of shorebird gut microbiota composition, and 3) assessing 

the relative contribution of host and environmental factors among host-species or breeding sites. We 

collected fecal samples from eight shorebird species at nine Arctic breeding sites in Alaska and Canada, 

and used high-throughput sequencing to assess the contribution of seven site- and host-related factors to 

variation in gut microbiota in shorebirds.  

METHODS 

Sample collection 

Our field studies were conducted as part of the Arctic Shorebird Demographics Network 

(ASDN). The ASDN is a large, collaborative research network that consists of 17 Arctic field sites in 

Russia, Alaska, and Canada, and was established in 2010 with the goal to conduct standardized 

demographic analyses on Arctic-breeding shorebird species (Brown et al. 2013). Collaboration with 

ASDN partners enabled us to sample shorebirds across a large geographical area.  
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We collected fecal samples from eight species of shorebirds at nine sites in the Alaskan and 

Canadian Arctic from 2011-2013 (Table 4.1 & 4.2; Figure 4.1). Birds were trapped at their nest after day 

7 of incubation using walk-in traps and bow nets. After capture, birds were placed in a darkened, plastic 

box for up to 5 min. Prior to each new individual, boxes were sterilized with bleach wipes, and the bottom 

of the box was lined with a clean sheet of wax paper. After defecating, birds were banded and biometric 

measurements collected. Birds were released within 30 min of capture. Fecal samples were removed from 

the wax paper using a sterile tongue depressor to transfer samples to a 1.5 ml sterile Eppendorf tube. All 

handling of the wax paper was conducted while wearing sterilized latex gloves. All fecal samples were 

preserved in 100% ethanol at collection, and stored frozen at -20°C until further analyses.  

 

Molecular Analyses 

DNA extraction. – We removed ethanol from fecal samples, by centrifuging the fecal samples for 10 min 

at 10,000 rpm and removing supernatant. We repeated this cleaning step twice with 1 ml of RNase/DNA 

free molecular grade water to minimize ethanol in the sample (Grond et al. 2014; Ryu et al. 2014). We 

extracted DNA from fecal samples using the MoBio Power Lyzer/Power Soil kit as per the 

manufacturer’s instructions (Mo Bio Laboratory, Carlsbad, CA, USA), except for replacing the bead 

beating step with 15 min high velocity vortexing. Genomic DNA yields were determined using a 

spectrophotometer (NanoDrop 2000, Thermo Fisher Scientific, Waltham, MA).  

 

PCR. – We generated multiplexed 16S rRNA gene libraries from fecal samples using bacterial primers 

515F and 806R (Caporaso et al. 2012), latter of which was uniquely barcoded. We performed PCR 

reactions in triplicate in a 25 µl reaction volume, using TaqMan® Universal PCR Master Mix (Applied 

Biosystems, Waltham, MA, USA) and 5 µl of DNA template (5 ng DNA/µl). PCR conditions consisted of 

25 cycles of: 15 s at 95°C, 30 s at 55°C and 30 s at 72°C, preceded by an initial denaturing step of 10 min 

at 95°C, and followed by a final extension step of 5 min at 72°C. We removed residual primers from our 

PCR product using the Agencourt AMpure XP PCR purification system (Beckman Coulter, Brea, CA) 
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following manufacturer’s instructions with the following modifications: we adjusted the 

template:AMpure volume ratio to 1:1, and repeated the ethanol wash step three times instead of two. 

 

Sequence analyses. –We sequenced the V4 region of the 16S rRNA gene in 2 x 250bp paired-end runs 

using the Illumina MiSeq platform. Each Illumina run included a 15% PhiX spike as a control library. 

Sequence quality filtering, contiging and demultiplexing were performed using QIIME (Caporaso et al. 

2010). We aligned sequences with the GreenGenes 16S rRNA gene reference database (v.13_8) 

(DeSantis et al. 2006). We identified chimeras using CHIMERASLAYER (Haas et al. 2011), and we 

removed chimeric sequences, singletons and non-aligned sequences from our dataset. We assigned 

sequences to OTUs at 97% sequence similarity, and assigned them to taxon affinities using the RDP 

classifier (Wang et al. 2007). After assigning taxonomy, we identified non-target archaeal, chloroplast 

and mitochondrial sequences, and removed them from the dataset. Prior to downstream analyses, we 

rarefied our samples to 10,000 sequences per sample.  

 

Data Analyses 

Richness & Evenness. – We calculated alpha diversity indices of OTU composition of our samples 

(observed number of OTUs, Simpson’s (1-D), and equitability (evenness) using the QIIME 

alpha_diversity.py script . We compared richness and evenness indices using a one-way ANOVA and 

assessed pairwise differences using a post-hoc Tukey HSD test in R (ver. 3.3.1) (R Development Core 

Team 2016).  

 

Community & Distance relationships. – We generated weighted and unweighted UNIFRAC distance 

matrices (UDM) for microbial communities in fecal samples at an OTU level (Lozupone and Knight 

2005). Weighted UDMs take OTU abundance into account, whereas unweighted UDMs only account for 

presence/absence of OTUs within a sample. To assess whether community similarity decreased with 

distance between sampling sites, we used weighted UDMs to calculate Distance-Decay Relationships 
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(DDRs) through pair-wise community distances between fecal samples of five shorebird species that 

occurred at multiple sites: Semipalmated Sandpipers (Calidris pusilla), Dunlin (Calidris alpina), Western 

Sandpiper (Calidris mauri), Red Phalarope (Phalaropus fulicarius) and Red-necked Phalarope 

(Phalaropus lobatus). We log10 transformed the UDMs after adding 0.01 to all 0 values in the distance 

matrix. We calculated geographic distances (km) between pairs of sampling sites, and regressed similarity 

of gut microbial communities against geographic distance. We fit linear models for each host species, and 

estimated whether slopes significantly differed from 0. In addition, we regressed richness indices against 

sampling latitude and fitted linear models to test whether microbial richness of the shorebird gut 

microbiome declined with increasing latitude.  

 

Data sets. – To assess factors affecting gut microbiota composition in shorebirds at different environment 

and host-related levels, we selected subsets of our samples for further analyses: 

I. All fecal samples of Arctic-breeding shorebirds (n = 375) 

II. High-arctic sites (n = 249). Samples from sites situated on the North Slope in the high Arctic 

(Utqiaġvik (formerly known as Barrow), Ikpikpuk River, Colville River, Canning River, 

MacKenzie River Delta).  

III. Low-arctic sites (n = 126). Samples from sites situated in the subarctic (Cold Bay, Yukon 

Delta, Nome, Cape Krusenstern).  

IV. Calidrine sandpipers (n = 302). All samples from shorebird species from the Genus Calidris, 

which include Pectoral Sandpiper (n = 16), Dunlin (n = 110), Semipalmated Sandpiper (n = 

130) and Western Sandpiper (n = 43).  

V. Phalaropes (n = 50). All samples from species from the Genus Phalaropus, which included 

Red Phalarope (n = 18) and Red-necked Phalarope (n = 32). 

VI. Dunlin (n = 110). Our Dunlin samples included two subspecies: C. alpina arcticola (n = 61) 

and C. alpina pacific with different breeding areas and migratory strategies (n = 49). Dunlin 
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were sampled at six different sites (Utqiaġvik, Ikpikpuk River, Canning River, Cape 

Krusenstern, Cold Bay, Yukon Delta).  

VII. Semipalmated Sandpipers (n = 130). Semipalmated Sandpipers were widely distributed and 

sampled at six sites (Cape Krusenstern, Canning River, Colville River, Ikpikpuk River, 

MacKenzie River Delta, Nome). 

 

Variable selection. – We tested eight variables for significant contributions to variation in gut microbiota 

composition in our data subsets (Table 4.3). We selected three hierarchical variables associated with 

levels of host phylogeny (Family, Genus and Species), four variables associated with sampling site and 

habitat (Site, Biome, Habitat, Latitude), and sampling Year. We divided sampling sites into sub-Arctic 

and high-Arctic in our Biome variable. Bird species were assigned to one of four Habitat categories that 

they used during the breeding season: Terrestrial (T), Mesic (M), Terrestrial/Mesic (TM), and Aquatic 

(A) (Cunningham, Kesler and Lanctot 2016). 

 

Variable Significance and Contribution. – Statistical analyses were conducted in R and QIIME (Caporaso 

et al. 2010). We tested for significance of the selected variables using ANOSIM and Adonis in QIIME in 

weighted and unweighted UDMs. After determining which variables significantly contributed to the 

variation in our datasets, we determined the relative contributions of each variable with a multifactorial 

permutational multivariate analyses of variance (PERMANOVA), using the adonis function in the 

‘vegan’ package in R (Oksanen et al. 2016). We permuted the order of the variables in our multifactorial 

PERMANOVA, to test whether variable order affected significance and relative contribution.  

To investigate potential differences among microbial communities within our different datasets, 

we applied non-metric multidimensional scaling (NMDS) of Bray-Curtis distance matrices using the 

metaMDS function with k = 3 dimensions in the ‘vegan’ package. In addition, to assess contribution of 

our explanatory variables to the variation in the NMDS, we fitted the variables to the ordination using the 

envfit function in the ‘vegan’ package.  
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Data accessibility. – The nucleotide sequences and metadata will be made available through Figshare.  

 

RESULTS 

After rarefaction to 10,000 sequences per sample, our total dataset included microbial communities of 375 

fecal samples from nine shorebird species collected at eight arctic breeding sites (Table 4.4). Our analyses 

of gut microbial communities were based on these rarified datasets.  

 

Bacterial composition of the shorebird gut microbiota  

Richness and Evenness. – In our full dataset of 375 samples, we detected 34 bacterial Phyla, 

representing a total of 24,944 unique OTUs. On average, we detected 12.0 ± 0.18 Phyla, and 684.9 ± 16.1 

OTUs per sample. Richness and evenness indices differed among the nine field sites (Fig. 4.2; Observed 

OTUs: F8,366 = 10.4, p < 0.001; Simpson 1-D: F8,366 = 2.96, p = 0.003; Evenness J: F8,366 = 2.53, p = 

0.011). The differences were driven by a higher OTU richness at our Ikpikpuk River site (Tukey HSD, 

Observed OTUs: p = 0.007 ± 0.005 ) and lower richness and evenness at the MacKenzie River Delta 

(Tukey HSD, Simpsons 1-D: p = 0.013 ± 0.011; Evenness J: p = 0.001).  

 

Community & Distance relationships. – Overall, we did not detect strong Distance-Decay 

relationships in our data (Supplementary Figure 4.1). We found no evidence of DDRs in three of our five 

host species investigated (Semipalmated Sandpipers: F1,8383 = 2.40, adj. R2 = 0.0002, p = 0.121; Red 

Phalarope: F1,151 = 0.52, adj. R2 = -0.0031, p = 0.470; Red-necked Phalarope: F1,494 = 2.19, adj. R2 = 

0.0024, p = 0.141). Dunlin and Western Sandpiper linear models had slopes that significantly differed 

from zero, but explanatory power of models was low with coefficients of determination lower than 0.01 

(Dunlin: F1,5993 = 15.30, adj. R2 = 0.0024, p < 0.001; Western Sandpiper: F1,901 = 9.56, adj. R2 = 0.0094, p 

= 0.002).  
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We found no evidence for a decrease in bacterial richness with increasing latitude 

(Supplementary Figure 4.2). Richness indices did not significantly differ among samples collected at 

different latitudes (Observed OTUs: F1,373 = 0.01, adj. R2 = -0.0027, p = 0.966; Simpson: F1,373 = 0.21, adj. 

R2 = -0.0021, p = 0.640), and evenness was similar among latitudes (F1,373 = 1.09, adj. R2 = 0.0003, p = 

0.299).  

 

Taxon Diversity. – Firmicutes (55.4% ± 1.4), Proteobacteria (13.8% ± 0.9), Fusobacteria (10.2% 

± 0.9) and Bacteroidetes (8.1% ± 0.7) dominated in our samples at a phylum level. Fusobacteria were 

relatively abundant in shorebirds, resulting from the high occurrence of Fusobacteria in all samples 

collected at Cape Krusenstern (Fig. 4.1, 4.4a). Gut microbiota of shorebirds sampled at Cape Krusenstern 

(31.2 ± 3.6%) included two genera that comprised > 98% of all Fusobacteria: Fusobacterium spp. 

(60.5%) and Cetobacterium spp. (37.5%). The relative abundance of these genera within the Fusobacteria 

was similar among most sites, despite the overall higher Fusobacteria abundance at Cape Krusenstern 

(Supplementary Figure 4.4, 4.5). The most abundant Classes within the Firmicutes were the Bacilli 

(43.0%) and Clostridia (14.7%; Supplementary Figure 4.4). Bacilli were dominated by species within the 

Order Lactobacillales, and the genus Lactobacillus. The closest relative at a species level was 

Lactobacillus ruminis (99.3% sequence similarity), a common inhabitant of the gut environment and 

associated with the degradation of cellulose (Liu et al. 2016) 

 

Core microbiota. – We defined core microbiota as the community of OTUs that were present in > 

50% of our 375 samples. Core microbiota contained a total of 67 OTUs, which was 0.3% of the total 

number of OTUs detected.. Core OTUs differed among sites (envfit; R2 = 0.19, p < 0.001), but not among 

host species (envfit; R2 = 0.03, p = 0.074). The most abundant core OTUs belonged to the Phylum 

Firmicutes (66.3%), and specifically to the Order Lactobacillales (45.9%). The known avian pathogen 

Clostridium colinum comprised 4.5% of all sequences. After Firmicutes, Fusobacteria were most 

abundant with 14.1%, followed by Bacteroidetes (8.9%) and Proteobacteria (7.4%).  
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Drivers of the shorebird gut microbiota  

Site explained the most variation in the OTU composition of the gut microbiota in adult 

shorebirds during the breeding season (R2 = 12.4%, p < 0.001). The NMDS showed that microbial 

communities were less similar if grouped by sampling site than by species, and site explained more 

variation in than species (Fig. 4.3). Our multifactorial PERMANOVA showed Site as the dominant 

contributing variable in all our data sets (R2 = 7.0-13.1%, p < 0.001 ; Table 4.5). For our full dataset, 

Species and Year also contributed significantly to the variation in our data, but to a lesser extent than Site 

(R2 = 1.0-2.7, p = 0.001-0.006; Table 4.5). Permuting the order of the variables did not change our results. 

Weighted UDMs explained on average 0.5% more variation than the unweighted UDMs, which was due 

to the large number of low abundance OTUs being overrepresented in unweighted UDMs. In our single-

factor PERMANOVAs, Site was again the dominant explanatory factor in all datasets, with exception of 

the High Arctic (Supplementary Table 4.1). At our High Arctic sampling sites, Species and Genus both 

explained 6.8% of variation in gut microbial communities (p < 0.001) of the weighted UDM, opposed to 

5.5% for site (p < 0.001).  

In our two single-species datasets for Dunlin and Semipalmated Sandpipers, Site contributed 

12.7% and 12.1% to the overall variation in microbial community, respectively, which was over four 

times higher than the other significant variables: Biome (Dunlin) and Year (Semipalmated Sandpiper). 

Our Phalarope subset included two species: the Red Phalarope and the Red-necked Phalarope, and the 

two species did not differ in gut microbiota in any of our analyses. Phalarope samples collected in 

different years differed significantly from each other in our ANOSIM analyses (R = 0.496-0.792, p < 

0.001; Supplementary Table 4.1), and contributed 8.3-8.6% to the difference in OTU composition in our 

single variable PERMANOVA (weighted UDM; Supplementary Table 4.1). Year was a significant 

contributing variable in our multifactorial permanova (p < 0.001) but contributed only 0.9-2.6% to the 

variation in gut microbiota.  
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DISCUSSION  

Drivers of the shorebird gut microbiota  

Of the factors we tested, breeding site contributed most to variation in gut microbiota of Arctic-

breeding shorebirds, followed by host species. We did not find support for climate-associated variables, 

such as latitude and location within the low- or high-Arctic, indicating that environmental variables are 

likely important in explaining variation in the gut microbiota in shorebirds. Our findings contrast with 

results from several large-scale comparative studies of avian microbiomes (Waite and Taylor 2014; Hird 

et al. 2015), which identified host species as the main determinant of microbial community in the gut. 

Concurrent with other avian and mammalian studies (Waite and Taylor 2014; Hird et al. 2015; Avena et 

al. 2016), a large part of the variation in gut microbiota of Arctic-breeding shorebirds (87%) remained 

unexplained in our models. We detected ~ 25,000 unique OTUs in our 375 samples, but only detected 

684.9 ± 16.1  OTUs per sample. Variation in low-abundance OTUs among individuals likely contributed 

to the unexplained variation we observed.  

A majority of studies that identified host phylogeny as the main driver of microbial diversity 

focused on non-migratory species. In contrast, focusing on migratory passerines, Lewis et al. (2016) 

found evidence for a larger influence of environment on gut communities than host species. Migratory 

birds are exposed to many new environments during their annual cycle, potentially associated with 

turnover in gut microbiota throughout the year. Diet of migratory birds can vary widely throughout the 

year. For example, several of our study species switch from a diet of terrestrial arthropods during the 

breeding season to diets that consist of marine copepods, shellfish and even bacterial biofilm during the 

non-breeding season (Quinn and Hamilton 2012; Jardine et al. 2015). Two exceptions of species that 

maintain a terrestrial diets include American Golden Plovers and Pectoral Sandpipers, which forage in 

crop fields and freshwater marshes (Isacch, Darrieu and Martínez 2005; Smith et al. 2012). Changes in 

gut microbiota throughout the year could benefit migratory birds, as locally acquired microbiota could aid 

in digestion of these local prey items. In addition, migratory birds could benefit from greater flexibility in 

their gut microbial communities if encountering different pathogen communities along their migration. 
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Migratory birds can harbor a larger variety of pathogens, and have higher infection intensity (Koprivnikar 

and Leung 2015; Clark, Clegg and Klaassen 2016; Leung, Koprivnikar and Eizaguirre 2016). Acquisition 

of local microorganisms may result in gut microbiota that are better able to outcompete local pathogens, 

and thus indirectly aid the host.  

High latitude environments, such as the Arctic, often have lower microbial richness than low 

latitude sites (Fuhrman et al. 2008; Sul et al. 2013; Andam et al. 2016). However, available studies were 

conducted on soils, which are subjected to edaphic and climate influences year-round. We found no 

correlation between latitude and microbial richness in shorebird guts, nor did we find evidence for 

bacterial communities decreasing in similarity with increasing distance between sampling sites. The 

absence of a latitudinal effect on gut microbiota of shorebirds is unsurprising, as shorebirds are highly 

mobile throughout the year and their temporary stay at the breeding sites may be too short to establish 

latitudinal gradients in gut bacterial communities on the scale we examined. 

One of the remaining questions is what happens to gut microbiota composition of birds at a larger 

geographic scale, for example during their long-distance movements. Migrating to a richer microbial 

environment and exposure to local environmental microbiomes could increase the contribution of site to 

composition of the avian gut microbiota. Comparison of gut communities of shorebirds across a larger 

latitudinal range, for example between breeding and non-breeding sites, could elucidate these potential 

patterns.  

Diet is an important driver of gut microbial diversity in mammals (Ley et al. 2008), but is less 

important in birds (Waite and Taylor 2014; Hird et al. 2015). We did not include diet as a potential 

explanatory variable in our models, as all shorebird species we investigated forage on arthropods during 

the breeding season. Microorganisms associated with arthropod communities at different sampling sites 

could differentially shape the microbial community of the gut, but arthropod communities have not yet 

been sampled. Broadly, our shorebird species could be assigned to different habitats within the breeding 

sites, which allowed us to indirectly infer whether terrestrial and aquatic prey communities were of 

importance by including our habitat variable.  
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Site and species-specific effects  

Site remained a significant driver of gut microbiota composition at a core microbiota level, 

suggesting that differences among sites were driven by differences in high abundance taxa, opposed to the 

high number of peripheral, low abundance OTUs. Shifts in core microbiota during the breeding season 

could reflect functional shifts in microbiota caused by different nutrient requirements per site. However, it 

is more likely that shifts in core microbiota are associated with site-specific differences in prey-associated 

microbiomes, as shorebirds have similar diets and behaviors throughout their breeding range. Host 

species effects were not significant when investigating core microbiota only, suggesting that effects 

associated with host species are driven by rare OTUs.  

One interesting observation was the high relative abundance of Fusobacteria across all 

individuals sampled at the Cape Krusenstern site. Cape Krusenstern is located less than 200 miles of the 

Nome site, but the relative abundance of Fusobacteria in Nome was lower, and comparable to our other 

sampling sites. Fusobacteria are a common member of the gastro-intestinal microbiota in birds (Bennett et 

al. 2013; Dewar et al. 2014; Roggenbuck et al. 2014; Hird et al. 2015; Barbosa et al. 2016), and 

Cetobacterium spp. were previously detected in shorebirds (Grond et al. 2014; Ryu et al. 2014). In 

contrasts to other sites, shorebirds at Cape Krusenstern were observed to forage on saline and brackish 

mud flat areas (pers. comm. M. Boldenow). Although most commonly isolated from freshwater fishes 

(Tsuchiya, Sakata and Sugita 2008; Larsen, Mohammed and Arias 2014; Liu et al. 2016), Cetobacterium 

spp. have also been detected in guts of sea mammals (Foster et al. 1995), and a high abundance of 

Fusobacteria in shorebirds at Cape Krusenstern could result from differences in foraging site and diet-

associated microbiota.  

 

Conclusion 

We showed that of the variation explained by our models, breeding site was the dominant factor 

contributing to variation in gut microbiomes of migratory shorebirds. However, we still explained only a 
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relatively small fraction of the variability in gut microbiota with our selected variables, which suggests 

that either we did not include an important driver of shorebird microbiota, or that innate large variability 

in microbial communities exists within the shorebird gastro-intestinal tract. Also, to determine whether 

contributing factors and gut microbial composition are stable between breeding and non-breeding sites, 

we suggest extended sampling of migratory shorebirds throughout the annual cycle.  
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TABLES & FIGURES 

 

Table 4.1 Shorebird species investigated in our study. Habitat categories consist of Terrestrial (T), 

Terrestrial/Mesic (TM), Mesic (M), and Aquatic (A).  

Species Scientific name Abbreviation Habitat Status* 

American Golden Plover Pluvialis dominica AMGP T LC 

Long-billed Dowitcher Limnodromus scolopaceus LBDO M LC 

Pectoral Sandpiper Calidris melanotos PESA TM LC 

Dunlin Calidris alpina DUNL TM LC 

Semipalmated Sandpiper Calidris pusilla SESA TM NT 

Western Sandpiper Calidris mauri WESA T LC 

Red Phalarope Phalaropus fulicarius REPH A LC 

Red-necked Phalarope Phalaropus lobatus RNPH A LC 

 

*Population Status as listed on the IUCN Red List. Least Concern (LC) and Near Threatened (NT) 
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 Table 4.2 Locations and sampling years of field sites in the Arctic Shorebird Demographics Network.  

Site  Abbreviation Latitude (ºN) Longitude (ºW) Years sampled 

Cold Bay AK, USA COBA 55.204500 -162.718400 2011 

Yukon Delta AK, USA YUDE 61.368900 -163.716100 2011 

Nome AK, USA NOME 64.497934 -165.408204 2011, 2013, 2014 

Cape Krusenstern AK, USA CAKR 67.417246 -163.874238 2013, 2014 

Utqiaġvik AK, USA UTQI  71.292646 -156.782563 2011 

Ikpikpuk River AK, USA IKRI 70.814400 -154.405300 2011, 2013 

Colville River AK, USA CORI 70.384028 -150.806197 2011, 2013 

Canning River AK, USA CARI 69.945375 -145.098152 2011, 2013 

MacKenzie River NW Territories, Canada MARI 68.815927 -137.090836 2011 
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Table 4.3 Host and site variables used to test for contributions to variation in gut microbiota composition in fecal samples from Arctic-breeding 

shorebirds collected from 2011-2014.  

Variable Description Levels Used in data Subset 

Site Sampling site COBA, YUDE, NOME, CAKR, UTQI, IKRI, CORI, 

CARI, MARI*  
1-7 

Biome  Broad habitat category of sampling locations Sub-Arctic, High Arctic 1,4-7 

Habitat Local habitat used by host species Terrestrial (T), Terrestrial/Mesic (TM), Mesic (M), 

Aquatic (A) 
1-4 

Latitude  Continuous 1-7 

Family Host Family Charadriidae, Scolopacidae 1-3 

Genus Host Genus Pluvialis, Calidris, Limnodromus, Phalaropus 1-3 

Species Host species AMGP, LBDO, PESA, SESA, WESA, DUNL, 

RNPH, REPH** 
1-5 

Year Sampling year 2011, 2013, 2014 1-7 

* Full site names shown in Table 2.  

** Full species names shown in Table 1.  
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Table 4.4 Sample sizes per site per species after rarefaction. For species abbreviations see Table 1.  

Site AMGP LBDO PESA DUNL SESA WESA RNPH REPH Total 

Cold Bay    19     19 

Yukon Delta    16     16 

Nome     25 23 9  57 

Cape Krusenstern    13 6 14 1  34 

Utqiaġvik 5 21  23 2 5 1 1 58 

Ikpikpuk River    19 50  5 9 83 

Colville River   2 11 15 1 4 3 36 

Canning River   10 9 24  5 5 53 

MacKenzie River   4  8  7  19 

Total 5 21 16 110 130 43 32 18 375 
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Table 4.5 Multifactorial perMANOVA tests for significance and relative contribution of seven 

environmental and host-related factors to variation in weighted and unweighted UNIFRAC Distance 

Matrices constructed from shorebird fecal communities.  

  Weighted UDM Unweighted UDM 

Dataset Variable R2 p R2 p 

All samples Site  12.4 <0.001 8.7 <0.001 

Biome 0.3 0.229 0.4 0.028 

Habitat 1.4 <0.001 0.5 0.002 

 Latitude 0.4 0.151 0.4 0.029 

 Family 0.4 0.091 0.4 0.006 

 Genus 1.8 0.002 1.9 0.001 

 Species 2.7 0.006 1.7 <0.001 

 Year 1.0 <0.001 0.4 0.013 

High-arctic  Site 7.0 <0.001 6.1 <0.001 

Habitat 0.9 0.033 0.4 0.226 

 Family  0.7 0.109 0.7 0.009 

 Genus 2.9 0.004 2.5 0.001 

 Species 3.0 0.211 3.4 0.004 

 Year 0.2 0.809 0.4 0.274 
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Sub-arctic  Site 10.4 <0.001 6.3 <0.001 

 Habitat 0.9 0.232 1.0 0.108 

 Genus 3.3 0.006 2.0 <0.001 

 Species 2.7 0.215 3.1 0.012 

 Year 1.6 0.052 1.1 0.036 

Calidrids  Site 13.1 <0.001 9.4 <0.001 

Biome 0.5 0.078 0.6 0.003 

Habitat 0.3 0.367 0.4 0.108 

 Latitude 0.3 0.149 0.6 0.007 

 Species 1.2 0.111 1.1 0.040 

 Year 0.9 0.007 0.6 0.004 

Phalaropes  Site 15.9 0.098 14.5 0.016 

Biome 1.1 0.813 2.0 0.431 

 Latitude 2.3 0.300 1.6 0.833 

 Species 1.2 0.773 1.8 0.663 

 Year 0.9 0.831 2.6 0.069 

Dunlin  Site 12.7 0.003 11.7 <0.001 

Biome 1.9 0.034 1.7 0.003 

 Latitude 1.1 0.241 1.2 0.059 
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 Year 0.6 0.629 0.9 0.407 

Semipalmated Sandpiper  Site 12.1 0.002 10.6 <0.001 

Biome 5.0 <0.001 4.0 <0.001 

 Latitude 1.5 0.054 1.2 0.013 

 Year 2.5 0.007 0.8 0.189 
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Figure 4.1 Sampling sites with bacterial communities shown per shorebird species as isolated from fecal samples collected from 2011-2014 in 

Alaska and Canada (MacKenzie River Delta). N represents sample sizes, and bacterial composition is depicted on the Phylum level. Full species 

names can be found in  
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Figure 4.2 Bacterial OTU richness and evenness depicted per sampling site (a) and host species (b) of 

fecal samples collected from eight species of shorebird at eight arctic breeding sites. Letters represent 

pair-wise significance (TukeyHSD). Site and host species abbreviations can be found in Table 1 and 2 
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Figure 4.3 Non-metric Multidimensional Scaling of the contribution of: a) sampling site, and b) host 

species to fecal microbiota composition of Arctic-breeding shorebirds in 2011-2014. Squares represent 

centroids, and bars are standard error. Significance was set at a = 0.05.  
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Figure 4.4 Community composition of fecal microbiota collected from arctic shorebirds from 2011-2013 averaged per site (a) and per species (b). 

Site and species abbreviations can be found in Table 1 and 2. 
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SUPPLEMENTARY TABLES & FIGURES 

Supplementary Table 4.1 ANOSIM and adonis tests for significance and relative contribution of seven 

environmental and host-related factors to variation in weighted and unweighted UNIFRAC Distance 

Matrices constructed from shorebird fecal communities. Highest relative contributions per dataset and 

distance matrix are shown in bold. 

  ANOSIM ADONIS 

  weighted unweighted weighted unweighted 

Dataset Variable R p R p R2 p R2 p 

All (n=382) Site  0.164 <0.001 0.259 <0.001 13.5 <0.001 9.2 <0.001 

 Species 0.188 <0.001 0.120 <0.001 8.0 <0.001 5.3 <0.001 

 Biome 0.052 0.015 0.137 <0.001 1.6 <0.001 1.5 <0.001 

 Year 0.188 <0.001 0.290 <0.001 9.6 <0.001 4.1 <0.001 

 Family 0.083 0.003 0.083 0.161 0.8 0.012 0.4 0.002 

 Genus 0.211 <0.001 0.121 <0.001 5.5 <0.001 3.2 <0.001 

 Habitat 0.095 <0.001 0.086 <0.001 5.1 <0.001 3.3 <0.001 

 Latitude 0.165 <0.001 0.261 <0.001 0.7 0.016 0.9 <0.001 

High arctic 

(n=256) 

Site 0.141 <0.001 0.229 <0.001 5.5 <0.001 11.0 <0.001 

Species 0.276 <0.001 0.223 <0.001 6.8 <0.001 5.1 <0.001 

Genus 0.236 <0.001 0.156 <0.001 6.8 <0.001 4.4 <0.001 

 Latitude 0.140 <0.001 0.227 <0.001 1.5 0.004 1.5 <0.001 
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Low arctic 

(n=126) 

Site 0.243 <0.001 0.259 <0.001 24.6 <0.001 6.9 <0.001 

Species 0.099 <0.001 0.158 <0.001 7.1 0.002 2.8 0.046 

 Genus 0.289 0.003 0.240 0.002 4.1 0.003 1.7 0.003 

 Latitude 0.244 <0.001 0.260 <0.001 7.6 <0.001 3.5 <0.001 

Calidrids 

(n=302) 

Site 0.236 <0.001 0.334 <0.001 16.3 <0.001 10.7 <0.001 

Species 0.124 <0.001 0.077 <0.001 2.9 <0.001 2.2 <0.001 

Biome 0.071 <0.001 0.137 <0.001 2.1 <0.001 1.7 <0.001 

 Year 0.221 <0.001 0.314 <0.001 10.4 <0.001 4.4 <0.001 

 Habitat 0.024 0.122 0.030 0.040 0.6 0.067 0.7 0.002 

 Latitude 0.243 <0.001 0.337 <0.001 1.0 0.005 1.0 <0.001 

Phalaropes 

(n=50) 

Site 0.150 0.002 0.228 <0.001 17.1 <0.001 17.4 <0.001 

Species 0.000 0.918 0.000 0.813 2.4 0.287 2.7 0.051 

Biome 0.180 0.042 0.296 0.014 3.0 0.005 3.1 0.022 

 Year 0.496 <0.001 0.792 <0.001 8.6 <0.001 8.3 <0.001 

 Fat 0.074 0.067 0.046 0.212 3.4 0.102 2.2 0.273 

 Latitude 0.150 0.011 0.228 0.002 2.8 0.185 3.3 0.017 

Dunlin 

(n=109) 

Site  0.167 <0.001 0.352 <0.001 17.2 <0.001 13.5 <0.001 

Biome 0.032 0.059 0.106 <0.001 3.0 0.005 2.5 <0.001 

Year 0.217 0.003 0.266 <0.001 8.6 <0.001 4.2 <0.001 
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 Fat 0.102 0.006 0.083 0.004 8.2 0.003 6.6 <0.001 

 Latitude 0.168 <0.001 0.352 <0.001 3.3 0.003 2.4 <0.001 

Semipalmated

Sandpiper 

(n=132) 

Site 0.324 <0.001 0.488 <0.001 20.5 <0.001 13.9 <0.001 

Biome 0.246 0.002 0.454 <0.001 3.2 0.003 3.6 <0.001 

Year 0.263 <0.001 0.476 <0.001 8.5 <0.001 5.3 <0.001 

Fat -0.06 0.965 -0.02 0.779 3.9 0.960 6.6 0.054 

 Latitude 0.337 <0.001 0.487 <0.001 3.1 <0.001 4.4 <0.001 
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Supplementary Figure 4.1 Distance-decay plot of fecal community similarity and distance between 

sampling sites (km) of. Community similarity is represented as the log10 of the weighted Unifrac Distance 

Matrix of OTU table. Dashed lines represent the linear relationship between community similarity per 

species, and the distance between sampling sites.  
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Supplementary Figure 4.2 Richness indices of fecal samples collected from eight species of shorebirds at different latitudes in the North-American 

and Canadian Arctic. Lines represent linear models fitted to the indices.  
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Supplementary Figure 4.3 Relative abundance of bacterial Classes within the four major Phyla found in 

arctic breeding shorebirds: Firmicutes, Proteobacteria, Fusobacteria and Actinobacteria. For site name 

abbreviations, see Table 4.2. 
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Supplementary Figure 4.4 a) Relative abundance of bacterial Phyla found in fecal samples collected from eight shorebird species collected at nine 

arctic sites from 2011-2014. Species distribution per site is shown above the graph. Abbreviations of sites displayed on the x-axis are shown in 

Table 4.1. b) Figure 3b. Relative abundance of bacterial Phyla found in fecal samples collected from eight shorebird species collected at nine arctic 

sites from 2011-2014. Site distribution per species is shown above the graph. Abbreviations of species names displayed on the x-axis are shown in 

Table 1. 
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Supplementary Figure 4.5 Non-metric Multidimensional Scaling of the contribution of: a) sampling site, 

and b) host species to fecal microbiota composition of Arctic-breeding shorebirds in 2011-2014. Squares 

represent centroids, and bars are standard error. Significance was set at a = 0.05.  
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Supplementary Figure 4.6 Relative abundance of genera within the Fusobacteria Phylum in fecal samples 

collected from Dunlin, Semipalmated Sandpipers and Western Sandpipers at Cape Krusenstern, AK, from 

2011-2014. Error bars represent standard error.  
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ABSTRACT 

Migratory shorebirds encounter different environments during their annual cycle. Different environments 

contain different pathogens, and risk of infection may vary among sites. The migratory escape hypothesis 

argues that migratory animals avoid high disease prevalence areas through movements, and has been 

suggested as one of the mechanisms underlying migratory behavior. The goals of our study were to test 

the migratory escape hypothesis by assessing the prevalence of seven known avian pathogens in 

shorebirds at different stages of migration, and to explore potential patterns of pathogen co-occurrence in 

infected hosts. We collected 226 fecal samples from nine migratory and one resident shorebird species at 

four widely distributed sites in the Western Hemisphere, including one breeding site, two staging sites 

and one non-breeding site. We screened our samples for seven avian bacterial pathogens (Campylobacter 

jejuni, C. coli, C. lari, Pasteurella multocida, Clostridium perfringens, Salmonella typhymurium, and 

Eryspelothrix rhusopathia) in fecal samples of wild birds with targeted PCR assays. With the exception 

of Campylobacter jejuni and C. coli, we did not detect five of our seven pathogens in shorebird fecal 

samples. Prevalence of C. jejuni were highest among birds sampled in Argentina (99.0 ± 0.9%; n = 79 ) 

and Alaska (96.3 ± 2.2%; n = 51), followed by Washington (65.5%; n = 51) and Delaware (56.1 ± 3.9%; 

n = 62). We detected C. coli in 0.9% of samples, which did not allow us to address co-infection dynamics. 

We did not detect the majority of our avian pathogens in migratory shorebirds throughout the Western 

Hemisphere, and our data showed site but not species-related variation in prevalence of C. jejuni. 

 

Keywords: Campylobacter jejuni, Campylobacter coli, disease, migration, PCR, Scolopacidae  
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INTRODUCTION 

Migration is a common phenomenon across many animal taxa, including invertebrates, fish, birds and 

mammals. Migratory behavior has been hypothesized to have evolved as a response to variation in 

climatic conditions and food availability (Durant et al. 2007), to avoid predation (McKinnon et al. 2010), 

and to reduce risk of exposure to pathogens (Hall et al. 2014, Johns and Shaw 2016).  

The migratory escape hypothesis predicts avoidance of high disease prevalence areas through 

migration, and has been described in Monarch butterflies (Satterfield et al. 2015), fish (Poulin et al. 

2012), and Lesser Black-backed Gulls (Arriero et al. 2015). Migratory escape has been proposed as one 

of the main reasons that many bird species migrate to the high-Arctic for breeding, because pathogen 

exposure is hypothesized to decrease with increasing latitude (Piersma 1997). Indeed, shorebirds had a 

higher infection occurrence of avian influenza on their northbound than southbound migrations, 

suggesting higher exposure or susceptibility at their non-breeding sites at low latitudes (Krauss et al. 

2004). Also, non-breeding site was found to drive the prevalence of avian malaria in shorebirds in 

Australia (Clark et al. 2016), supporting the migratory escape hypothesis.  

However, migratory birds can have higher parasite prevalence and infection intensity than 

migratory birds (Leung et al. 2016), which does not support the mechanisms of pathogen avoidance 

hypothesized to underlie migration. A large-scale study comparing intestinal nematode richness between 

over 200 migratory and resident bird species showed a higher richness of nematode species in migratory 

birds (Koprivnikar and Leung 2015). In waterfowl, diversity and prevalence of haematozoan parasites 

were positively related to migration distance, suggesting that migratory birds could actually be exposed to 

a more diverse pathogen array (Figuerola and Green 2000). 

Wild birds are known vectors of a number of infectious diseases. Viral and protozoan pathogens 

distributed by wild birds include avian influenza virus (Krauss et al. 2004), West Nile virus (Dusek et al. 

2009), reovirus (Sandercock et al. 2008), and the causative agents of avian malaria (Yohannes et al. 

2008). Bacterial diseases, such as avian botulism and avian cholera, are generally studied after mass 
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mortality events associated with disease outbreaks (Friend et al. 2001, Adams et al. 2003, Włodarczyk et 

al. 2014). As a result, we know little about the natural dynamics of bacterial pathogens in wild birds.  

Shorebirds include over 200 species, many of which are migratory, and Arctic-breeding 

shorebirds have among the longest migrations found in birds and mammals. The majority of migratory 

shorebird species are rapidly declining in numbers, predominantly due to anthropogenic habitat loss 

(Kentie et al. 2015, Melville et al. 2016, Piersma et al. 2016). As migratory animals can experience an 

increase in pathogen pressure alongside population declines (Satterfield et al. 2015), it is necessary to 

understand dynamics in pathogen prevalence in shorebirds throughout their annual cycle.  

 

To test the migratory escape hypothesis for shorebirds, we investigated pathogen prevalence throughout 

the migratory cycle in the Western Hemisphere. The objectives of our study were to: 1) test the migratory 

escape hypothesis through assessing the prevalence of seven bacterial pathogens in shorebirds at different 

stages of migration, and 2) explore potential patterns in pathogen co-occurrence. We predict that pathogen 

prevalence is lower at higher latitudes, and prevalence will be lowest in birds sampled during the Arctic 

breeding season. To test our objectives, we collected fecal samples from ten shorebird species at four sites 

in North and South America, and used targeted PCR assays to determine pathogen prevalence.  

 

METHODS 

Sample collection. – We collected fecal samples from 10 species of shorebirds at one breeding 

site in Alaska (2013; Utqiaġvik, formerly Barrow), two spring-migration staging sites in Delaware (2015; 

Slaughter Beach) and Argentina (2015; Bahía San Antonio), and at two non-breeding site in Washington 

(2015; Ocean Park) and Argentina (2015; Bahía San Antonio; non-breeding site for Two-banded Plover) 

(Table 5.1; Figure 5.1). Birds were captured with nest traps during the breeding season, and with mist nets 

and cannon nets at staging and non-breeding sites. Immediately after capture, birds were placed in a 

darkened plastic box for up to 10 min. For each new individual, boxes were sterilized with bleach wipes, 

and the bottom of the box was lined with a clean sheet of wax paper. After defecating, birds were banded 
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and biometric measurements were collected. Fecal samples were transferred to 1.5ml sterile Eppendorf 

tubes. All handling of the wax paper was conducted while wearing sterile latex gloves. All fecal samples 

were preserved in 100% ethanol at collection, and stored frozen at -20°C for further analyses. Samples 

collected in Argentina were shipped at room temperature (3 days), due to logistical challenges for 

international shipments with dry ice. Samples were stored frozen at -20°C upon arrival in the USA.  

 

DNA extraction. – To remove ethanol from fecal samples, we centrifuged samples for 10 min at 

10,000 rpm and removed supernatant. We repeated the cleaning step twice with 1 ml of RNase/DNA free 

molecular grade water (Grond et al. 2014; Ryu et al. 2014). DNA was extracted from fecal samples using 

the MoBio Power Lyzer/Power Soil kit as per the manufacturer’s instructions (Mo Bio Laboratory, 

Carlsbad, CA, USA), except we used 15 min high velocity vortexing instead of a bead beating step. 

Genomic DNA yields were determined using a spectrophotometer (NanoDrop 2000, Thermo Fisher 

Scientific, Waltham, MA).  

 

PCR . – We used conventional PCR to test for prevalence of seven bacterial pathogens 

(Campylobacter jejuni, C. coli, C. lari, Pasteurella multocida, Clostridium perfringens, Salmonella 

typhymurium, and Eryspelothrix rhusopathia). To ensure that our assays were valid, we included positive 

controls in duplicate for each pathogen in our PCR runs. Positive controls consisted of DNA extracted 

from pure cultures of our selected pathogens, which we obtained from the Kansas State College of 

Veterinary Medicine. Controls were extracted using the same method and DNA was diluted to match the 

same concentration (5 ng/µl) as our samples. We also included negative controls consisting of 

RNase/DNA free molecular grade water in duplicate for each PCR run. Amplification reactions were 

performed in 25 µl reaction volumes, containing 25 ng (5 µl at 5 ng/µl) of template, 100 nM of primers, 

12.5 µl TaqMan™ Universal PCR Master Mix (Applied Biosystems, Foster City, CA, USA). Primers for 
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amplification of bacterial pathogens were obtained from literature (Table 5.2), and we followed cycling 

conditions from the referenced literature. 

 

RESULTS AND DISCUSSION 

To ensure broad taxonomic and geographic coverage, we selected a total of 226 fecal samples 

from ten shorebird species that were captured at four sites in North and South America (Table 5.1). We 

determined prevalence of seven known avian pathogens using targeted PCR assays (Table 5.2). With the 

exception of Campylobacter jejuni and C. coli, we did not detect any of the other five pathogens in 

shorebird fecal samples. One of the pathogens we screened for, Pasteurella multocida, is the causative 

agent for avian cholera and has been documented to have expanded into the Arctic in Common Eiders 

(Somateria mollisima) and various seabirds (Descamps et al. 2012, Bodenstein et al. 2015). However, we 

failed to detect P. multocida in shorebirds, possibly indicating the absence of an inter-species 

transmission route. Prevalence of C. jejuni was highest among shorebirds sampled in Argentina (99.0 ± 

0.9%) and Alaska (96.3 ± 2.2%), followed by Washington (65.5%) and Delaware (56.1 ± 3.9%; Figure 1). 

Prevalence of C. coli was low, with only one detection in a Ruddy Turnstone (Arenaria interpres) in 

Delaware (n = 20; 5.0%) and two detections in Two-banded Plovers (Charadrius falklandicus) in 

Argentina (n = 34; 6.1%).  

Prevalence of C. jejuni was similar among different species captured at the same site, but differed 

among sites (Figure 5.1). In Delaware Bay, prevalence of C. jejuni was the lowest of our sampling sites 

with a range of 41.7%-61.7% across shorebird species. Shorebirds have been implicated as vectors for 

avian influenza (Krauss et al. 2010), especially when migrating through the Delaware Bay in spring. 

Delaware Bay is thought to be a disease hotspot due to high densities of birds aggregating along the Bay 

coast during spring migration (Krauss et al. 2010). Shorebirds congregate to feed on the eggs of 

Horseshoe Crabs (Limulus polyphemus) and potential for pathogen transmission is high as shorebirds 

forage in large, mixed-species flocks. Although prevalence of C. jejuni in Delaware Bay was low 
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compared to our other sites, prevalence was still higher than has been reported in previous studies of wild 

birds (Keller et al. 2011; 7.2%, Keller and Shriver 2014; 8.1%, but see Pacha et al. 1987;5-81%). For 

example, Keller et al. (2014) used a combination of culturing, PCR and sequencing to evaluate prevalence 

of C. jejuni, C. lari and C. coli in 269 shorebirds from four species in Delaware Bay and detected C. 

jejuni in 24.2% of samples, which was two times lower than we detected.  

Shorebirds have the potential to spread pathogens over long distance. We found relatively high 

prevalence of C. jejuni, but otherwise we did not find evidence for shorebirds acting as potential disease 

vectors. Birds are considered natural reservoirs of C. jejuni (Pacha et al. 1988, Sahin et al. 2015). C. jejuni 

has been detected across a wide range of bird taxa (Waldenström et al. 2007, Lu et al. 2011, Hermans et 

al. 2012, Keller and Shriver 2014), but no cases of a C. jejuni infection resulting in Campylobacteriosis 

have been observed in wild birds. A potential absence of pathogenicity of C. jejuni to wild birds could 

explain the presence of C. jejuni in the majority of our samples, without any observations of clinical signs 

of disease in wild-caught birds.  

We detected C. coli in 1.3% of our samples and failed to detect C. lari in our study, which 

matched the absence of both pathogens in shorebirds sampled by Keller et al. (2011). Interestingly, C. lari 

was detected in 10.1-38.4% of fecal samples collected from Ruddy Turnstones, Red Knots, and 

Semipalmated Sandpipers collected in Delaware Bay for a previous cloning study in 2011 (Ryu et al. 

2014), but C. jejuni and C. coli were not detected. Differences in prevalence of the three Campylobacter 

spp. could indicate temporal variation in infection patterns, or could potentially result from use of 

different molecular methods.  

The pathogen species or genera we selected for our study were all isolated from wild birds in 

previous studies (Friend et al. 2001, Santos et al. 2012, D’Amico et al. 2014, Keller and Shriver 2014). 

Our failure to detect five of these pathogens in a large sample of >200 shorebird fecal samples across the 

Western Hemisphere might have one of three explanations. First, our negative results could have been 

artifacts of our choice of primers and detection ability. However, we successfully amplified our positive 
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controls at relatively low concentrations, supporting the validity of our methods. Moreover, we did not 

detect contamination in any of our negative controls.  

A second explanation could be that shorebirds might have low exposure to pathogens at our field 

sites, with low prevalence as a result. Low pathogen exposure at our sites would support the migratory 

escape hypothesis, if it was a result of pathogen avoidance due to migratory behavior. We were unable to 

test whether shorebirds had low exposure to pathogens, as we did not measure any indicators of infection 

such as pathogen-specific antibodies. Surveying antibody levels could inform us on exposure rates, 

because detection in healthy individuals would indicate successful recovery from infection.  

Last, it is possible that our sampling was biased towards healthy birds, despite sampling birds 

during different times of year using multiple capture techniques. Elsewhere, House Finches (Haemorhous 

mexicanus) infected with Mycoplasma gallisepticum had a lower encounter rate than healthy birds 

(Faustino et al. 2004), which was attributed to behavioral changes associated with infection. However, 

Mallards (Anas platyrhynchos) that were infected with Avian Influenza had higher recapture probabilities 

than uninfected Mallards (Avril et al. 2016). Other than behavioral changes, migratory culling could also 

result in sampling biased towards healthy individuals. Migratory culling constitutes the rapid disappearing 

of diseased individuals from the population, and has been confirmed in different taxa of migratory 

animals (Senar and Conroy 2004, Poulin et al. 2012, Satterfield et al. 2015). Linking behavioral 

differences to infection status is challenging in free-living birds. Observation and sampling of birds 

during disease outbreaks would allow testing for a capture bias, but where and when disease outbreaks 

occur is challenging to predict. Alternatively, experimentally infecting wild birds taken into captivity 

could elucidate potential changes in behavior of infected individuals.  

 

Overall, we did not detect the majority of pathogens we screened for, with the exception of C. 

jejuni and C. coli. Prevalence of C. jejuni in shorebirds was relatively high compared to literature 

estimates, and differed among sampling sites but not among species. Infection with C. jejuni did not 

appear to affect shorebird health, and investigating the possible interactions between C. jejuni and its wild 
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bird hosts, as well as expanding the range of pathogens tested, would be logical next steps in assessing 

disease risk in migratory shorebirds.  

 

ACKNOWLEDGMENTS 

We thank Dr. Sanjeev Narayanan and Tanya J. Purvis of the Kansas State University College of 

Veterinary Medicine for providing positive controls of bacterial pathogens for our study. We also thank 

Jenny Cunningham, Patrick Herzog, Brooke Hill, Emily Weiser, Anna Tucker, Alaina Thomas, Leah 

Rensel, Marcelo Bertellotti, and Patricia González for assisting in fecal sample collection at our sites. 

Last, we thank the Western Hemisphere Shorebird Group for providing a platform for international 

collaborations in North and South America. All animal work was approved by the Institutional Animal 

Care and Use Committee at Kansas State University (Permit no. 3261). Field research with wildlife was 

conducted under the federal US Fish and Wildlife scientific collection permit (Permit no. 778151-3), the 

State of Alaska Department of Fish and Game scientific permit (Permit no. 13-106), and the Delaware 

Division of Fish and Wildlife (Permit no. 2015-WSC-011�issued to KG, RBL and BKS. This study was 

funded by a US FWS Neotropical Migratory Bird Conservation Act grant (Grant no. F14AP01029 to KG, 

CG, VD and BKS).  

 

REFERENCES 

 

Abdulrahman, S., Enan, K., El Hussein, A. M., Atif, E., Yassin, M., Rahama, A. and Elkhidir, I. 2015. 

Multiplex PCR for direct identification of Campylobacter species in human stool. - J. Biomed. 

Pharm. Res. 4: 70–73. 

Adams, S., Conly, F., Gratto-Trevor, C., Cash, K. and Bollinger, T. 2003. Shorebird use and mortality at a 

large Canadian prairie lake impacted by botulism. - Waterbirds 26: 13–25. 

Arriero, E., Moller, I., Juvaste, R., Martinez, F. J. and Bertolero, A. 2015. Variation in immune 



 151 

parameters and disease prevalence among Lesser Black-backed Gulls (Larus fuscus sp.) with 

different migratory strategies. - PLoS One 10: e0118279. 

Avril, A., Grosbois, V., Latorre-Margalef, N., Gaidet, N., Tolf, C., Olsen, B., Waldenström, J. and Bauer, 

S. 2016. Capturing individual-level parameters of influenza A virus dynamics in wild ducks using 

multistate models. - J. Appl. Ecol. 53: 1289–1297. 

Bodenstein, B., Beckmen, K., Sheffield, G., Kuletz, K., Van Hemert, C., Berlowski, B. and Shearn-

Bochsler, V. 2015. Avian cholera causes marine bird mortality in the Bering Sea of Alaska. - J. 

Wildl. Dis. 51: 934–937. 

Clark, N. J., Clegg, S. M. and Klaassen, M. 2016. Migration strategy and pathogen risk: non-breeding 

distribution drives malaria prevalence in migratory waders. - Oikos 125: 1358–1368. 

D’Amico, V., Gonzalez, P., Baker, A., Buehler, D. and Bertellotti, M. 2014. Multi-year surveillance of 

selected avian pathogens in the migrant shorebird Red Knot (Calidris canutus rufa) at its main 

stopover site in Patagonia, Argentina. - J. Ornithol. 155: 555–559. 

Denis, M., Soumet, C., Rivoal, K., Ermel, G., Blivet, D., Salvat, G. and Colin, P. 1999. Development of a 

m-PCR assay for simultaneous identification of Campylobacter jejuni and C. coli. - Lett. Appl. 

Microbiol. 29: 406–10. 

Descamps, S., Jenouvrier, S., Gilchrist, H. G. and Forbes, M. R. 2012. Avian cholera, a threat to the 

viability of an Arctic seabird colony? - PLoS One 7: e29659. 

Durant, J. M., Hjermann, D., Ottersen, G. and Stenseth, N. C. 2007. Climate and the match or mismatch 

between predator requirements and resource availability. - Clim. Res. 33: 271–283. 

Dusek, R. J., McLean, R. G., Kramer, L. D., Ubico, S. R., Dupuis, A. P., Ebel, G. D. and Guptill, S. C. 

2009. Prevalence of West Nile virus in migratory birds during spring and fall migration. - Am. J. 

Trop. Med. Hyg. 81: 1151–1158. 

Faustino, C. R., Jennelle, C. S., Connolly, V., Andrew, K., Swarthout, E. C., Dhondt, A. A. and Cooch, E. 

G. 2004. Mycoplasma gallisepticum infection dynamics in a House Finch population: seasonal 

variation in survival, encounter and transmission rate. - J. Anim. Ecol. 73: 651–669. 



 152 

Figuerola, J. and Green, A. J. 2000. Haematozoan parasites and migratory behaviour in waterfowl. - Evol. 

Ecol. 14: 143–153. 

Friend, M., Mclean, R. G. and Dein, F. J. 2001. Disease emergence in birds: challenges for the twenty-

first century. - Auk 118: 290–303. 

Hall, R. J., Altizer, S. and Bartel, R. A. 2014. Greater migratory propensity in hosts lowers pathogen 

transmission and impacts. - J. Anim. Ecol. 83: 1068–1077. 

Hermans, D., Pasmans, F., Messens, W., Martel, A., Van Immerseel, F., Rasschaert, G., Heyndrickx, M., 

Van Deun, K. and Haesebrouck, F. 2012. Poultry as a host for the zoonotic pathogen Campylobacter 

jejuni. - Vector-Borne Zoonotic Dis. 12: 89–98. 

Johns, S. and Shaw, A. K. 2016. Theoretical insight into three disease-related benefits of migration. - 

Popul. Ecol. 58: 213–221. 

Keller, J. I. and Shriver, W. G. 2014. Prevalence of three Campylobacter species, C. jejuni, C. coli, and C. 

lari, using multilocus sequence typing in wild birds of the mid-Atlantic region, USA. - J. Wildl. Dis. 

50: 31–41. 

Keller, J. I., Shriver, W. G., Waldenström, J., Griekspoor, P. and Olsen, B. 2011. Prevalence of 

Campylobacter in wild birds of the mid-Atlantic region, USA. - J. Wildl. Dis. 47: 750–4. 

Kentie, R., Both, C., Hooijmeijer, J. C. E. W. and Piersma, T. 2015. Management of modern agricultural 

landscapes increases nest predation rates in Black-tailed Godwits Limosa limosa. - Ibis 157: 614–

625. 

Koprivnikar, J. and Leung, T. L. F. 2015. Flying with diverse passengers: Greater richness of parasitic 

nematodes in migratory birds. - Oikos 124: 399–405. 

Krauss, S., Walker, D., Pryor, S. P., Niles, L., Chenghong, L., Hinshaw, V. S. and Webster, R. G. 2004. 

Influenza A viruses of migrating wild aquatic birds in North America. - Vector Borne Zoonotic Dis. 

4: 177–189. 

Krauss, S., Stallknecht, D. E., Negovetich, N. J., Niles, L. J., Webby, R. J. and Webster, R. G. 2010. 

Coincident Ruddy Turnstone migration and Horseshoe Crab spawning creates an ecological “hot 



 153 

spot”for influenza viruses. - Proc. R. Soc. Lond. 277: 3373–3379. 

Leung, T. L. F., Koprivnikar, J. and Eizaguirre, C. 2016. Nematode parasite diversity in birds: the role of 

host ecology, life history and migration. - J. Anim. Ecol. 85: 1471–1480. 

Lu, J., Ryu, H., Domingo, J. W. S., Griffith, J. F. and Ashbolt, N. 2011. Molecular detection of 

Campylobacter spp. in California Gull (Larus californicus) excreta. - Appl. Environ. Microbiol. 77: 

5034–5039. 

Makino, S. I., Okada, Y., Maruyama, T., Ishikawa, K., Takahashi, T., Nakamura, M., Ezaki, T. and 

Morita, H. 1994. Direct and rapid detection of Erysipelothrix rhusiopathiae DNA in animals by 

PCR. - J. Clin. Microbiol. 32: 1526–1531. 

McKinnon, L., Smith, P., Nol, E. and Martin, J. 2010. Lower predation risk for migratory birds at high 

latitudes. - Science 327: 326–327. 

Melville, D. S., Chen, Y. and Ma, Z. 2016. Shorebirds along the Yellow Sea coast of China face an 

uncertain future - A review of threats. - Emu 116: 100–110. 

Nair, A., Rawool, D. B., Doijad, S., Poharkar, K., Mohan, V., Barbuddhe, S. B., Kolhe, R., Kurkure, N. 

V., Kumar, A., Malik, S. V. S. and Balasaravanan, T. 2015. Biofilm formation and genetic diversity 

of Salmonella isolates recovered from clinical, food, poultry and environmental sources. - Infect. 

Genet. Evol. 36: 424–433. 

Pacha, R., Clark, G., Williams, E. and Carter, A. 1988. Migratory birds of central Washington as 

reservoirs of Campylobacter jejuni. - Can. J. Microbiol. 34: 80–82. 

Park, J. Y., Kim, S., Oh, J. Y., Kim, H. R., Jang, I., Lee, H. S. and Kwon, Y. K. 2015. Characterization of 

Clostridium perfringens isolates obtained from 2010 to 2012 from chickens with necrotic enteritis in 

Korea. - Poult. Sci. 94: 1158–1164. 

Piersma, T. 1997. Do global patterns of habitat use and migration strategies co-evolve with relative 

investments in immunocompetence due to spatial variation in parasite pressure? - Oikos 80: 623–

631. 

Piersma, T., Lok, T., Chen, Y., Hassell, C. J., Yang, H. Y., Boyle, A., Slaymaker, M., Chan, Y. C., 



 154 

Melville, D. S., Zhang, Z. W. and Ma, Z. 2016. Simultaneous declines in summer survival of three 

shorebird species signals a flyway at risk. - J. Appl. Ecol. 53: 479–490. 

Poulin, R., Closs, G. P., Lill, A. W. T., Hicks, A. S., Herrmann, K. K. and Kelly, D. W. 2012. Migration 

as an escape from parasitism in New Zealand galaxiid fishes. - Oecologia 169: 955–963. 

Ryu, H., Grond, K., Verheijen, B., Elk, M., Buehler, D. M. and Santo Domingo, J. W. 2014. Intestinal 

microbiota and species diversity of Campylobacter and Helicobacter spp. in migrating shorebirds in 

Delaware Bay. - Appl. Environ. Microbiol. 80: 1838–1847. 

Sahin, O., Kassem, I. I., Shen, Z., Lin, J., Rajashekara, G. and Zhang, Q. 2015. Campylobacter in poultry: 

ecology and potential interventions. - Avian Dis. 59: 185–200. 

Sandercock, B., Casey, A., Green, D., SP, H. and Converse, K. 2008. Reovirus associated with mortality 

of an Upland Sandpiper. - Wader Study Gr. Bull. 115: 55–56. 

Santos, S. S., Pardal, S., Proença, D. N., Lopes, R. J., Ramos, J. A., Mendes, L. and Morais, P. V 2012. 

Diversity of cloacal microbial community in migratory shorebirds that use the Tagus estuary as 

stopover habitat and their potential to harbor and disperse pathogenic microorganisms. - FEMS 

Microbiology Ecol. 82: 63–74. 

Satterfield, D. A., Maerz, J. C. and Altizer, S. 2015. Loss of migratory behaviour increases infection risk 

for a butterfly host. - Proc. R. Soc. Lond. 282: 20141734. 

Senar, J. C. and Conroy, M. J. 2004. Multi-state analysis of the impacts of avian pox on a population of 

Serins (Serinus serinus): The importance of estimating recapture rates. - Anim. Biodivers. Conserv. 

27: 133–146. 

Varte, Z., Dutta, T. K., Roychoudhury, P., Begum, J. and Chandra, R. 2014. Isolation, identification, 

characterization and antibiogram of Pasteurella multocida isolated from pigs in Mizoram with 

special reference to progressive atrophic rhinitis. - Vet. World 7: 92–99. 

Waldenström, J., On, S. L. W., Ottvall, R., Hasselquist, D. and Olsen, B. 2007. Species diversity of 

campylobacteria in a wild bird community in Sweden. - J. Appl. Microbiol. 102: 424–32. 

Wijesinghe, R. U., Oster, R. J., Haack, S. K., Fogarty, L. R., Tucker, T. R. and Riley, S. C. 2015. Spatial, 



 155 

temporal and matrix variability of Clostridium botulinum type E toxin gene (bontE) distribution at 

beaches in the Great Lakes. - Appl. Environ. Microbiol. 81: 4306–4315. 

Włodarczyk, R., Minias, A. P., Elz, A. D., Grenda, B. T. and Krzysztof, B. S. 2014. The first case of a 

major avian type C botulism outbreak in Poland. - Avian Dis. 58: 488–490. 

Yohannes, E., Križanauskienė, A., Valcu, M., Bensch, S. and Kempenaers, B. 2008. Prevalence of 

malaria and related haemosporidian parasites in two shorebird species with different winter habitat 

distribution. - J. Ornithol. 150: 287–291. 

 

  



 156 

TABLES & FIGURES 

 

Table 5.1 Study species of migratory shorebirds and four sites where fecal samples were collected from. 

Sample sizes represent samples scanned for the presence of seven avian pathogens. Avian pathogens are 

described in Table 2.  

Species  Alaska Delaware Washington Argentina 

Two-banded Plover Charadrius falklandicus    33 

Ruddy Turnstone Arenaria interpres  21   

Red Knot Calidris canutus  20  30 

Sanderling Calidris alba   30 15 

Dunlin Calidris alpina 13 13   

Semipalmated Sandpiper Calidris pusilla 15 8   

Western Sandpiper Calidris mauri 12    

Short-billed Dowitcher Limnodromus griseus  4   

Red Phalarope Phalaropus fulicarius 12    
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Table 5.2 Primers used for seven avian pathogens that fecal samples were scanned for. Primers were obtained from literature, and cycling 

conditions from reference papers were applied.  

Pathogen Disease Primer Sequence(5’-3’) Source 

Campylobacter jejuni Gastroenteritis 10F 

804R 

AGAGTTTGATCCTGGCTNAG 

GACTACCNGGGTATCTAATCC 

 

Denis et al. 1999 

Campylobacter coli Gastroenteritis CcF 

CcR 

GTAAAACCAAAGCTTATCGTG 

TCCAGCAATGTGTGCAATG 

 

Abdulrahman et al. 2015 

Campylobacter lari Gastroenteritis ClF 

ClR 

TAGAGAGATAGCAAAAGAGA 

TACACATAATAATCCCACCC 

 

Abdulrahman et al. 2015 

Pasteurella multocida Avian cholera KMT1T7-F 

KMT1SP6-R 

ATCCGCTATTTACCCAGTGG 

GCTGTAAACGAACTCGCCAC 

 

Varte et al. 2014 

Clostridium perfringens Necrotic enteritis CPAlphaF 

CPAlphaR 

GCTAATGTTACTGCCGTTGA 

CCTCTGATACATCGTGTAAG 

 

Park et al. 2015 

Salmonella typhimurium Salmonellosis spyF 

spyR 

TTGTTCACTTTTTACCCCTGAA 

CCCTGACAGCCGTTAGATATT 

Nair et al. 2015 
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Eryspelithrix 

rhusopathiae 

Erysipelas MO101F 

MO101R 

AGATGCCATAGAAACTGGTA 

CTGTATCCGCCATAACTA 

 

Makino et al. 1994 
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Table 5.3 Sampling sites and prevalence of Campylobacter jejuni and C. coli in fecal samples of migratory shorebirds captured in 2013 at 

Utqiaġvik, and 2015 at Ocean Park, Slaughter Beach and Bahía San Antonio. 
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Chapter 6 - CONCLUSIONS AND FUTURE IMPLICATIONS 

 

Host-microbiome research has been rapidly expanding over the past decade due to and increasing 

recognition of links between gut microbiota and organismal health, and the increasing availability of 

high-throughput sequencing techniques. However, the dynamics and drivers of gut microbiota in birds 

have been poorly studied, especially in wild species under natural conditions. With my PhD research, I 

have made several new contributions to the emerging field of avian microbiome research.  

First, I reviewed the existing literature on gut microbiota of wild and domestic birds to determine 

the current state of knowledge of the field. I show that the number of publications on avian gut microbiota 

have increased over the past decade due to developments in molecular techniques, but that a majority of 

these studies have focused on domestic poultry. Gut communities of wild birds show large variation 

among different avian taxa, and differences were related to a number of intrinsic and extrinsic factors, 

such as diet, age, phylogeny and environment. My field study on migratory shorebirds contributes 

valuable new data to the relatively small number of studies that have been conducted on wild birds up to 

present.  

Second, I tested the assumption of embryo sterility in wild birds under field conditions, and found 

the first support that embryos of wild, precocial birds indeed not have gut microbiota until after hatching.  

Past research on gut microbiomes focused mainly on mammalian hosts and the role of birth in 

establishing of the gut microbiome, and our understanding of avian systems has lagged behind. My 

finding that embryos of shorebirds are sterile up until hatch combined with the independent, self-feeding 

lifestyle of precocial chicks limits the potential for maternal control over their offspring’s gut microbiota. 

In addition, my work is the first field study to document recruitment and establishment of the gut 

microbiota in free-living, precocial chicks under natural conditions. I showed that chicks acquire their 

microbiota rapidly, emphasizing the importance of the first few days of life and the environment they are 

exposed to for establishing a gut microbiota in chicks. 
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Third, I characterized the microbial communities for eight species of migratory shorebirds over a 

wide geographic range of the North American Arctic, which adds substantially to the growing body of 

literature on gut microbiota of wild birds that I reviewed in Chapter 2. To understand how gut microbiota 

and the environment affect shorebird health, a first step was to identify members of the gut community 

and document baseline microbial community composition across a range of bird shorebird species. 

Similar to chicks, local environment was an important driver of gut microbiota composition in 

adult shorebirds. The Arctic is one of the regions that is strongest affected by climate change, which has 

resulted in high relative temperature increases over the past decades (IPCC 2014). Increasing Arctic 

temperatures were shown to result in large shifts and reduced evenness in soil microbial communities 

(Deslippe et al. 2012) as well as resulted in northwards range shifts of avian malaria (Loiseau et al. 2012) 

and macro-parasites such as ticks and parasitic nematodes (Kutz et al. 2009).  

Last, a subset of avian gut microbes can be pathogenic and affect human health. I contributed to 

our knowledge of pathogen prevalence in shorebirds with my fifth chapter. Surveying pathogen 

occurrence in migratory shorebirds provided baseline data for future monitoring efforts and can help in 

predicting potential disease outbreaks. I did not detect the majority of pathogens I screened for, and future 

work needs to expand our range of pathogens to include viral, protozoan and a wider array of bacterial 

pathogens. I observed site, but not species-related differences in prevalence of C. jejuni at our four 

sampling sites. In the future, broader geographical monitoring could be used to identify hotspots for 

specific pathogens.  

A recurring finding throughout my dissertation was the importance of local environment in 

shaping gut microbiota of shorebirds at different stages of life. In chicks, gut microbiota was recruited 

from the environment after hatching, whereas in adults, breeding site was the main driver of variation in 

microbial communities, and pathogen prevalence differed among sampling sites. The potential 

importance of local environment as a driver of microbial composition of shorebird guts highlights the 

need for collecting baseline community data over a wide range of species and sites. In addition, a majority 

of shorebirds are affected by and habitat degradation (Melville, Chen and Ma 2016; Piersma et al. 2016), 
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which necessitates improving our understanding of the interactions between shorebirds and their 

microbial environment.  

 

Future directions 

The interpretation of gut microbial data can be challenging due to its enormous diversity and complexity 

(Shetty et al. 2017). To reveal patterns and test hypotheses using microbiome data, we need large sample 

sizes, which are often challenging or impossible to obtain under field conditions. International 

collaborations among organizations and field sites can provide a solution for meeting sample size 

requirements and provide infrastructure for large-scale sampling efforts in the future. In collaboration 

with the Arctic Shorebird Demographics Network in the US and Canada, the US Fish and Wildlife 

Service in Washington, and Delaware and CENPAT-CONICET in Argentina, I was able to investigate 

drivers of gut microbiota composition and pathogen distribution by using samples from shorebird species 

collected over a wide geographical range. As another example, Hird et al. (2015) collaborated with the 

Museum of Natural Science at Louisiana State University to investigate gut microbial communities in 59 

neotropical bird species from 14 different orders; an effort that would not have been achievable without 

logistical support from the museum collectors. Due to the large diversity we have observed in gut 

microbiota across bird taxa (Chapter 2), international collaborations will be a valuable approach for the 

advancement of our knowledge of wild bird microbiomes and what drives these communities. 

For my PhD research, I focused on characterizing members of the avian gut microbiota and broad 

drivers of community variation and diversity. A logical next step in avian microbial research is to expand 

our studies to investigating the functional ecology of microbiota in birds. Addressing microbial function 

in complex communities is challenging as it requires knowledge of gene function in a wide array of 

microorganisms. The gut is one of the best characterized systems with respect to gene function, due to a 

strong research focus on health implications of gut microbiota in humans (Rutayisire et al. 2016; Lin and 

Zhang 2017). Birds carry different microbial communities than mammals, but several studies have been 
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able to generate putative functional profiles of avian gut microbiota using gene function prediction 

programs (Langille et al. 2013; Oulas et al. 2015).  

One of the challenges of inferring gene function from 16S rRNA genes and metagenomic 

sequencing is that no distinction is made between expressed and non-expressed genes. Transcriptomics is 

a technique that sequences transcribed genes only, which means that only genes that are expressed at the 

time of sampling will be sequenced. Sequencing of the total gene pool versus the active gene community 

will provide us with more accurate functional profiles of the gut microbiota in birds under different 

ecological conditions (Abram 2015).  

Following function of gut microbiota, we need to investigate how changes in functional profiles 

affect the host itself. The link between gut microbiota composition and health has been well established in 

humans, but we are lacking knowledge on the host-microbiota interaction in birds. Studies on poultry 

have shown that dietary changes can result in shifts in gut microbiota, but whether the changes in gut 

microbial communities are beneficial for bird health is uncertain. As I discussed in Chapter 5, it is 

challenging to investigate avian health in wild populations as diseases can result in behavioral changes 

and rapid loss of diseased individuals from the population. In addition, there is no consensus on what 

physiological parameters constitute a healthy individual in wild birds.  

To quantify bird health, studies have generally focused on collecting either immune 

measurements, or microbiome data. The combination of microbiology and eco-immunology applied to 

wild birds could help establish baseline health parameters, but would require experimental manipulation 

of gut microbial communities to determine effect on the birds’ immune function, and vice versa. As it is 

challenging to perform experiments on free-living birds due to the large potential for confounding factors 

associated with the outside environment, future studies should investigate the microbiota-health 

relationship in wild birds temporarily brought into captivity and maintained in common garden or 

reciprocal transplant experiments.  
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Overall, my studies have shed light on dynamics and drivers of gut microbiota in shorebirds throughout 

their life, but many questions remain. Future studies investigating microbial function in the wild bird gut, 

as well as mapping the interactions between gut microbiota and avian health, will allow us to bridge the 

gap in knowledge that currently exists among avian and mammalian studies. 
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