TIME SERIES ANALYSIS OF WATER QUALITY DATA

b 36
y 1,.}{0 go,qé)

NAVIN KUMAR BHARGAVA

B.Sc. (Engg.), University of Delhi, Delhi, India, 1969

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1974

Approved by:

/Qﬂ%/o@

Major Professor




THIS BOOK
CONTAINS
NUMEROUS
PAGES WITH
THE ORIGINAL
PRINTING ON
THE PAGE BEING
CROOKED.

THIS IS THE
BEST IMAGE
AVAILABLE.



THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.



Document

ACKNOWLEDGEMENTS

I offer sincere appreciation to my major professor, Dr. E. Stanley Lee for
the guidance and inspiration throughout both this report and my graduate
studies. :

I also thank Dr. L. E. Grosh for his assistance in various aspects of this
project.

I am grateful to the faculty members of the Industrial Engineering Depart-
ment at Kansas State University who helped me in various ways during my
graduate program.

I would like to thank Mrs. M. T. Jirak for typing the report.



TABLE OF CONTENTS

ACKNOWLEDGEMENT
CHAPTER 1 INTRODUCTION
CHAPTER II SPECTRAL ANALYSIS

CHAPTER III

CHAPTER 1V

Introduction

Data Acquisition

Analysis of Data

Harmonic Analysis

Spectral Analysis

Prewhitening

Spectral Analysis of Ontario River Data
Development of Prediction—Mbdel
CROSS-SPECTRAL ANALYSIS

Introduction

Cross—-spectral Analysis

Analysis of Ontario River Data
PARAMETRIC TIME SERIES MODELING
Classification of Models

Stationarity and Invertibility Conditions
Identification of Models

Estimation of Parameters

Diagnostic checking

Forecasting

Analysis of Ontario River Data

page

ii

14
14
15

21

32

47

53
54

60

90
93
95

100

101

102

103

i1



CHAPTER V ANALYSIS OF POTOMAC RIVER DATA

Data Acquisition

Analysis of Data from Stations 1,2,3 and 4
Introduction
Harmonic Analysis
Spectral Analysis
Autoregressive-Moving Average Models
Cross-spectral Analysis

Analysis of Data from Great Falls Station
Introduction
Harmeonic Analysis
Spectral Analysis
Autoregressive-Moving Average Models
Cross—-spectral analysis

REFERENCES

114

page

142

146
155
165
184

209

233
233
242
257
257

270



CHAPTER I
INTRODUCTION

Great attention has been devoted in recent years to building water
quality models so as to gain greater understanding and insight of the
underlying phenomena of water pollution and for purposes of prediction
of future behaviour of the pollutants. The most common parameters
studied fﬁr water quality analysis are
a) Temperature
b) Dissolved Oxygen
¢) Biochemical Oxygen Demand
d) Chloride Contamination
e) Flow rate and others.

The purpose of water quality management system is to control the
aforesaid factors with a view to maintain the water quality within
certain acceptable standards. For any such system to be effective, it
is necessary to have knowledge of the pollution phenomenon and its future
behaviour.,

Various approaches have been suggested in the past years to build
mathematical models for these parameters. Among the important water
quality indicators, dissolved oxygen and biochemical oxygen demand re-
lationship has been studied most exten;ively. The dissolved oxygen (DO)
serves as a surrogate variable indicating the general 'health' of the
stream and its ébility to maintain and propagate a balanced ecological system

[28]. From an analytical point of view, the DO system is quite complex and



reflects interrelationships between the chemistry and biology of the stream,
together with the man imposed effects of waste discharge. The general
approach towards building a suitable model for DO system has been to con-
sider the relationship between the DO level and the discharges of oxi-
dizable organic matter. Various models differ in the complexity of the
assumptions lying behind them.

Streeter and Phelps [1], Dobbins [2], O'Connor [4], Thomann [3]
presented some of the models with varying degree of complexity in terms
of the sources and sinks of dissolved oxygen and flow type.

Streeter and Phelps [l] model was formulated considering that the
changes in the concentrations cf DO and BOD in a stream is affected by
two processes only (a) the source of DO is natural aeration (b) the
primary sink of DO is biodegradable organic matter which uses DO in its
stabilization. The system was assumed to be uniform and steady state.

Due to its apparent limitations as far as the sources and sinks of
oxygen are concerned, this model was modified by Dobbins [2] who extended
the Streeter's model to include more sources and sinks of oxygen. It
was pointed out that certain additional processes should be considered
as sources and sinks of oxygen such as removal of BOD by sedimentation
or absorption, removal of oxygen by respiration of acquatic plants etc.
0'Connor [16] proposed a model for the oxygen balance of an estuary wherein
it was assumed that the movement of the organic impurities is caused by tidal
action and a distributed source such as land runoff. The dissolved oxygen
profile depends on the concentration of the organic material, its rate of

oxidation and the resulting rate of reaeration. A set of differential



equations was obtained for steady state which were solved assuming con-
stant coefficients. This model was applied for analysis at the Delaware
Estuary and the Lower James River which are subjected to tidal action of
the Chesapeake Bay. The DO profiles were found to be consistent and in
better agreement with the experimental results than the BOD decay pro—
files.

Another approach by segmenting the whole estuary into a number of
sections, where each segment is considered to be completely mixed volume
and no gradients are permitted within the section, was proposed by Thomann
[3, .26]. The mass transport of material (waste discharge) across any
section by the net river flow over a tidal cycle is written as the re-
sultant of material brought in from the previous section and given out
to the next section. A solution was obtained for steady state conditionms.
Later on a solution for non-steady state was obtained by Pence, Jeglic
and Thomann [5]. In another publication, an approach for providing the
spatial and temporal distribution of dissolved oxygen was given by
0'Connor [4].

Since reaeration rate plays an important role in the study of dis-
solved oxygen behaviour, its value should be determined quite accurately.
A study [18] was conducted to ascertain the effect of water temperature
on stream reaeration rate. An experimental investigation was done
which showed that the rate of reaeration increases at the geometric
rate of 2.41%Z per °c throughout the range of temperature found in a
natural stream. This study pointed out a definite relationship between

DO and temperature. O'Connor and Dobbins [19] proposed two formulae



for the prediction of aeration coefficient. Some other formulations have
also been put forward to study the reaeration coefficient. |

Li [17] obtained a model for DO defecit at any cross section of a
polluted stream under the assumptions that (i) the stream discharge is
steady at any cross-section of the stream but may vary along the course
(11) the sewage is well mixed vertically and laterally (iii) the effect of
longitudinal turbulent diffusion is negligible. Three cases were solved
using this model (a) steady state BOD and DO loading (b) BOD discharge
loading fluctuations as a function of time (c) BOD and DO discharge
fluctations of one cycle/day.

Earlier models usually considered the DO - BOD System as a determin-
istic one. Information on the time variability of water quality parameters
is being generated at an ever increasing rate due primarily to the in-
stallation of continuous water quality monitoring stations. This pro-
vides basis to analyse the time varying properties of the water pol-
lutants,

A stochastic model to describe the behaviour of BOD/DO in streams
was given by Thayer and Krutchkoff [6]. This model is essentially based
on Dobbin's model [2] with the mechanisms affecting BOD and DO modified
so as to be random in nature. The changes in the levels of BOD and DO
were considered in intergal units according to a Poisson birth and
death process. An important result of the model was that the variance
of dissolved oxygen vs. time or distance increases with decreasing mean
DO. This brings out a serious shortcoming of the deterministic standards

of water quality as even if the mean DO is slightly above standards at



a point, it is the point where the DO has the maximum variability and
hence chances of violation. Later on this model was modifieﬂ for use
in estuaries by Custer and Krutehkoff [7]. They also considered both
temporal and spatial varlations in BOD and DO concentrations.

Thomman, O'Connor and Di'Tora [29] discussed the time varying as-
pects of water quality indicators. Using Fourier analysis and least
gsquares estimation method; certain periodicities, corresponding to
cyclic fluctuations in water quality indicators were incorporated in a
model. It was seen that DO shows several periodicities such as annual,
semiannual, triannual and semitriannual etc. These cyclic fluctations
could be given physical interprétation based on information about the
system. Further, a time varying model was formulated and used to study
the variation of DO, chloride contents of Potomac estuary.

Moving average analysis and linear regression analysis was used by
Anderson and Zogro.ski [30] to study the long term trends in water
quality parameters in Passaic river basin, New Jersey. Moving averages
were used as they tend to dampen the extremes of short term fluctuations.
Though moving average analysis can be used to indicate macroscopic
trends, they should not be used for microscopic variations or for pre-
diction purposes. Correlation analysis should be carried out along with
this to obtain an effective model.

A multiple regression analysis appfoach was used by Tirabassi [31]
to investigate within station and interstation relationships between
various water quality parameters. Predictive models were obtained for

18 water quality indicators for Passaic River which explained the data



satisfactorily. These models seem to provide a basis for obtaining
mathematical relationship between several water quality parameters using

statistical methods alone.

Another approach to analyse the hydrologic system is the use of
time series analysis which makes use of the feature that the hydrologic
events are not independently distributed in time i.e. the behaviour of
the system is governed according to laws of probability as well as the
sequential relationship between the events. Matalas [10], Julian [11],
Thomann [8,12], Gunnerson [22], Wastler [9], Wallace [14], DeMayo [15]
have initiated the use of this ﬁechnique in water pollution domain.

Gunnerson [22] applied spectral analysis technique to analyse dis-
solved oxygen data for the Potomac River and Raritan Bay at the mouth of Raritan
River in an effort to gain useful insight into various physical and chem-
ical processes in an estuary and to optimise the sampling interval for
data collection. Periodicities at 24 hr., 12 hr. and 14 days were ob-
served which were attributed to photosynthesis, semidurinal tides and
linear fortrightly, respectively. It was concluded that a sampling in-
terval of 2 hrs. was sufficient as no more useful information could be
extracted from a more frequent data. But a more frequent sampling may
be necessary near the dominant source of pollution in an estuary. With
increasing distance downstream, mixing and stabilization processes and
dilution from tributaries result increasing homogeneity which can be
described by less frequent sampling.

Thomann [8] analyzed temperature and dissolved oxygen data from



the Delaware Estuary using harmonic analysis in conjunction with spectral

analysis. It was concluded that temperature has a dominant énnual
cyclic variation while dissolved oxygen showed annual, semi-annual peaks.
Dinrnal variability in DO due to photosynthesis was also identified.
In another publication, Thomann [12] reported a study about the vari-
ability of waste treatment plants. Simple spectral analysis along with
cross spectral analysis was performed to study the relationship of flow,
influent BOD and effluent BOD from a waste treatment plant. The results
indicated a high degree of variability in secondary effluent BOD as
measured by the coefficient of variation. A low coherency coefficient
showed that the secondary effluent variability is not significantly in-
fluenced by the raw influent variability.

Wastler and Walter [9] studied the behaviour of the Charleston Harbor
as regards to the river flow and chloride concentration. The purpose
of the study was to predict the estuary's behaviour under conditions of
reduced inflow. Sampling at a frequency of 4 hrs. was done at 10 stations
both at the surface and at a depth of 20 - 25 ft. The total sampling
period was one month. Sampling at two depths was done to ascertain the
stratification of the river. Using cross spectral analysis, it was con-
cluded from the results of the surveys that below discharges oflabout
16000 cfs, the river would behave as completely unstratified.

Cross spectral analysis has been Qsed to study evaporation, rainfall
and run off by Yu (24) and Nordin [23].

Use of parameteric time series models for water quality purposes

has been suggested by Mimichael and Hunter [13]. Forecast functions



were developed for the Ohio River temperature and flow data.

The purpose of this report was to investigate the behaviour of water
quality parameters for the Potomac and the Ontario River using time series
analysis.

Spectral analysis was used for the identification of the causal
phenomena behind individual pollutant variation in Chapter II. Using
stepwise regression procedure in cbnjunction with these results, a fore-
cast model was formed.

The correlation among different pollutants in the Ontario River was
studied with the help of cross-spectral analysis in Chapter III. Chapter
IV of the report deals with the parametric modeling of Ontario river data
using autoregressive-moving average models.

Chapter V concermns the analysis of temperature, DO, BOD and Chloride
data at Potomac river using spectral analysis. Interpollutant and inter-
station correlational analysis among different pollutant records at dif-
ferent stations on Potomac river was conducted using cross spectral
analysis. Prediction models were formed for each pollutant using

parameter time series modeling.



CHAPTER I1
SPECTRAL ANALYSIS

2.1 Introduction

Water quality is described by the quantitative determination of
several phyéical, chemical and biological parameters such as temperature,
dissolved oxygen etc. Several models that have been proposed to deter-
mine and/or forecast the water quality parameters can be broadly clas-
gsified into two catagories. One class of models such as proposed by
Streeter and Phelps [1], Dobbins [2] etc. are based on the exact know-
ledge of the causal water polluting phenomena. The other class of models
is based on the statistical methods and requires only the general ideas
of the causal phenomena. Time series analysis of water quality data
falls in the second catatory of models. One of the principal advantages
of this technique is that useful quantitative results can be obtained
with only a general knowledge about the underlying causative phenomena
and their relationship to water quality parameters. This technique can
thus be used advantageously when the system under study is dominated by
highly variable and complex processes.

The ultimate quality of water is the result of interaction of several
physical, chemical and biological processes, either natural such as rain-
fall or man-made such as sewage disposal. Due to these interactions,
water quality of a stream shows a marked variation over time and space.

Temperature has a profound effect on the water quality. Seasonal

changes in stream temperature may be expected due to the seasonal changes
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in the air temperature. Kothandaraman [32] obtained a model for stream
temperatures by regressing it with air temperature. A model of the

form

AU cos 27i sin 27vi
TPy ==+As 7§ *+B~—x

+8) R+ By (R 5 +B83 Ry,

was obtained
where (Tw)i = predicted daily mean temperature on ith day.

h

(Ra)i = Air temperature for 1t day

Waste heat from the several industrial plants or electric power plants

also produces considerable effect on water thermal pollution. Variation

in temperature causes variability in dissolved oxygen accordingly. A
diurnal vaiiation in dissolved oxygen may be expected due to photosynthesis.
The stream flow rate and biochemical oxygen demand exert proportionate
influence on variation of dissolved oxygen. As a result of these inter-
actions, the variability of the pollution parameters may occur at con-
stant time intervals as well as randomly. One important aspect of time

series analysis is the spectral analysis, which is concerned with the re-

solving of the total variance of a time series record of a pollutant into

its component parts at different frequencies.
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In this chapter first the concept of spectral analysis will be in-
troduced and then this technique will be used for analyzing the temper-

ature, specific conductance and flow records for the Ontario River, Canada.

2.2 Data Acquisition

This set of data consists of the records of temperature, specific
conductance and flow rate obtained by sampling at station MA10-12 on the
Ontario River. Daily samples for a period of one year (from 9/1/1966
to 8/31/1967) were obtained. No missing observations were encountered in
the whole record. For the purpose of this study, this data was obtained

from a publication by DeMayo [16].

2.3 Analysis of Data

Figures 2.1, 2.2 and 2.3 show the plots of daily records of temper-
ature, specific conductance and flow rate respectively. Temperature
seems to fluctuate around a mean value of 22° with maximum temperature
of 25.6° in the beginning of September and minimum temperature of 18° in
January., The presence of some cyclic fluctuations is also indicated
though the entire variability does not seem to be due to only a single
cyclic fluctuation. Some short period fluctuations may be superimposed
on the large annual fluctuation.

The specific conductance plot (Fig. 2.2) also indicates the presence
of some compound cyclic fluctuations. No definite information can be
obtained by the visual inspection of flow rate data.

As the data indicate the presence of cyclic fluctuations, it would
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be desirable to remove them from the record and study the residuals
separately. Several filters are available which can remove a desired
band of frequencies from the data [33]. One type of analysis that can
be performed to extract information about a periodic component is the
Fourier or harmonic analysis. Prior to performing spectral analysis,
it is instructive to conduct harmonic analysis to get some information

about the behaviour of the observed data.

2.4 Harmonic analysis:

Harmonic analysis is a very effecient tool for the purposes of
analysis of deterministic data which indicates the presence of some
cyclic terms. Though it should not be used to analyze stochastic time
series yet it gives a useful amount of initial information to proceed
with spectral analysis. The time series data may be analyzed for the
harmonics of the dominant frequency; these harmonics may be removed and the
residuals may then be analyzed by spectral analysis. One of the reasons
prohibiting the use of Fourier analysis for stochastic time series is
that it is based on the assumption of fixed amplitudes, frequencies and
phases, whereas time series are subjected to random cﬁanges of fre-
quencies, amplitudes and phases [33].

The Fourier representation of a time series X(t) is given by

N/2
X(t) = XD + mil {Am cos mwt + Bm sin mwt} (2.1)

where,

XO = mean of the data
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N = total data points of the time series

w = 2rf, where f = 'l]i-_A is called the fundamental frequency of the
data and it corresponds to a period equal to the length of the
record.

m = mth integer muitiple (harmonic) of fundamental frequency.

A = sampling interval

In practice, however, all the harmonics are not of interest and hence
need not be calculated. If only M harmonics are to be calculated where
M < N/2, then the Fourier Irepresentation is given by |
H .
X(t) = X, + m’zl {Am cos mwt + B sin mwt}

+ Residual (2.2)

The coefficients Am and Bm can be calculated using the expressions,

N

2 27rm
Am =N 2 X cos “x (2.3)
r=1
N
2 27rm '
Bm =% E X sin N (2.4)
r=1

A equivalent expression for a Fourier representation of a time series is

N/2
X(t) = RO + é Rm cos (mwt - ¢m) (2.5)
m=1 :

where Rm = amplitude of mth harmonic

2 . 2
= Am+Bln
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Table 2.2 Harmonic analysis - specific conductance Ontario river

Mean = 576.05 Mho/Cmx10

Amplitude Phase Z contribution

Source (Hho/melO_z) {(in degrees) to total

variance
fundamental 28,56 5.97 21.28
2nd Harmonic 27.42 -5.73 19.60
3rd Harmonic 14,63 -83.79 5.59
4th Harmonic 21.65 -43.88 12.22
6th Harmonic 14.11 -83.85 5.19
7th Harmonic 10.81 -54.82 3.05
8th Harmonic 10.51 35.08 2.88



Table 2.3 Harmonic analysis - flow rate Ontario river

Mean = 5895.58 cfs

Amplitude Phase %4 contribution

Source (cfs) (in degrees) to total
variance

Mean 5895.58 0.0 33.55

fundamental  3544.91 65.25 36.51

2nd Harmonic 2967.2876 -56.33 25.58

3rd Harmonic 2189.25 -4,63 13.93

4th Harmonic 1657.12 42,73 7.98

5th Harmonic 1410.37 -84.96 5.78

6th Harmonic  802.20 -18.63 1.87
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and ¢m = phase of mth harmonic

Bm
= arctan < .

A
m

The expression for obtaining the variance contributed by each harmonic

is
2 &
o, = —%- m < N/2
(2.6)
2 _ 2
g = Rﬁ m= N/2

and if the total variance is available, the percentage variance due to
each harmonic may be obtained.

It may be noted here that the values of the estimators of Am and Bm
obtained by least squares estimation procedure are quite efficient and
this method was used in this study to remove these harmonics from the
data. But for purposes of identifying the important harmonics, expres-
sions (2.3) and (2.4) were used for estimating A and Bm‘

In the harmonic analysis of the Ontario River data, it was found that
the contribution to the mean square [33] by the mean alone accounts for
about 95-98% of the total mean square value. In order to study the im-
portance of individual harmonics more effectively, it was decided to use
the contribution of each harmonic towards total variance instead of total
mean square value. Variance (02) is the mean square value of the signal

(x(t)) about the mean (xo).

=4[

N
f.e. oo = I (x(t) - xo)2
t=1



£1

Tables (2.1), (2.2) and (2.3) show the results of harmonic analysis
for the temperature, specific conductance and flow rate data of Ontario
Riﬁer. It is seen that for temperature and specific conductance, the
mean accounts for 95-99% of total mean square value. The remainder of
the variance is accounted for by the first eight harmonics. The first
harmonic has a period of 365 days, second harmonic has 182 days and so on.
These harmonics may be expected since the temperature is known to have
annual cyclic fluctuations. Harmonic Analysis for flow data indicates
that mean accounts for about 33.5% of total mean square value. The re-
mainder of the variance is distributed in the first six harmonics. About
30% of the residual variance is due to the fundamental frequency of 1 cycle/
365 days. This indicates that flow has a strong tendency to follow annual
cyclic fluctuations. This is emphasized by the gradual reducing effects
of subsequent harmonics.

After having identified the harmonics in the data, these are then
femoved using a least squares procedure and spectral analysis is carried
out on the residuals. Spectral analysis would point out any additional

cyclic variations or random variations in the data.

2.5 Spectral Analysis:

Spectral analysis is a useful method for the analysis of a time
series, Water quality data collected sequentially over a period of
time constitutes a time series.

The theory of spectral analysis has been very well explained by
several authors [33], [34], [35], [36] and will not be covered in details
here. However, the basic concepts and the terms which shall be used in

the explanation of the data are described in the report.
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One of the properties of the spectral analysis is that it can be applied
only to stationary time series. It means that the statistical properties
of the time series are unaffected by the change of time origin. More
properties of the stationary time series will be examined in the later
part of this section. However, nonstationarity of the time series
does not present any special problems in its analysis as it can be re-
duced easily to a stationary series using filters.

The computation of the individual power spectrum involves several steps.
First step involves the estimation of autocovariance and auto-correlation
functions. These functions determine how one observation of the data is
related to any other cbservation of the data. The covariance between
two data points separated by k intervals of time is called the auto-

covariance at lag k.

¢, = cov [x(t), x(t+k)]

The stationarity property of the time series implies that the auto-
covarlance is a function of lag k only and does not depend upon the origin

of time

¢ = cov [x(t), x(t+u)]
= cov [x(t), x(t-u)]

It has been shown [33] that the most satisfactory estimate of auto-

covariance at th lag is given by
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N-k _ _
Z (x,~%) (x = %) k=1,2, ..., M (2.7)

1

FP
= l|I|---

k

where, M = maximum no. of lags
N
x
j=1 1
N

td
(1

In practice, instead of auto-covariance function, autocorrelation function

is generally used which is given by

= X (2.8)

pk co

where ¢, = auto-covariance at zero lag

variance of the whole record.

One useful property arising out of the stationarity assumption is that the
auto-covariance function and the autocorrelation function are both even

functions of lag k implying

P~ Pk

and hence these functions need be calculated only for posiEive lags.

One disadvantage of the auto-correlation function is that it considers only
the amplitude of fluctuation and disregards any phase difference between
them. Thus, all the periodic functions having the same harmonic ampli-
tudes but differing in initial phase angles will have the same auto-

correlation function.
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An equivalent description of a stationary stochastic process is
provided by the Fourier transform of the auto-covariance function which is

called a power spectrum. The theoretical power spectrum of a stationary

time series is defined as

e -j2m£k
r (6 = {m T (K) e dk (2.9)

where Yxx(k) is the theoretical auto-covariance at lag k.

Inverse transform of (2.9) provides

o j2rfk
Y (K = !w r () e df (2.10)
In particular for k = 0,
Y (O = {w r_ () df (2.11)

hence Pxx(f) shows the distribution of the variance over frequency.
The computational formula for the estimation of raw spectrum for a dis-
crete case is given by

M-1

S(f) = 2A{c(0) + 2 Z c(k) cos 2nfkA},
k=1

0<f<5 (2.12)

where At = sampling interval

f = 3%? is the Nyquist's frequency.
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c(k) = estimation of theoretical auto-covariance at lag k.

If the auto-correlation function is used instead of the auto—covariance

function, the corresponding spectral estimate is called the spectral density
function and is defined as
M-1

R(f) = 2A{1 + 2 Z P, cOS 2nfk} 0<fc=<
k=1

28 (2.13)
Although, the auto-correlation (auto-covariance) function gives
useful information about the time series, yet in actual practice its
fourier transform; the spectral density function is generally preferred.
One of the main reasons for this is that the neighbouring values of the
auto-correlations (auto-covariance) have strong correlation among them—
selves if the correlation in the original series is fairly strong. This
may lead to misinterpretation of these plots. On the other hand the
estimates of spectrum at neighbouring frequencies are approximately in-
dependent [33]. Secondly, the spectral function is in the frequency domain
and hence easier to interpret than the auto-correlation function which is
in the time domain.
The sample spectrum as given by expressions (2.12) or (2.13) is
not a consistent estimator of the true spectrum in the sense that its
distribution does not tend to cluster more closely about the true
spectrum as the sample size increases. Moreover, in practice it is not
possible to obtain a infinite sample size. To obtain spectral estimates

with lower variance, use of spectral windows is made. The purpose of
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smoothing by the spectral windows (or lag windows) is to modify the values
of c(k) differently for different lags. The windows that are generally
used are

(1) Bartlett window

{2) Parzen window

(3) Tukey Hanning window

(4) Hamming window

The requirements of a spectral window are two fold
(i) There should be negligible leakage from one frequency band to an-
other to reduce the possibility of distortion of the spectrum from remote
frequencies.

(11) The greatest weight should be given to the estimate at the principal
frequency.

Figure 2.4 shows typical behaviour of Parzen and Tukey Hanning
windows. To meet the first requirement mentioned above, the side lobes
should be as small as possible and for the second requirement, main lobe
should be as high as possible. It is seen the the main lobe can be made
high by increasing the number of lags. But this introduces another
problem that the variance of spectral estimates increases as the number of
lags increases. Table 2.4 shows the properties of some of the lag
windows [33].

A subjective judgement is often made for selection of the M value
depending upon the resolution needed and the variance arising out of it.
A process known as window closing can often be used for this purpose.

It consists of using a low M and increasing it in steps till a value is
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Fig. 2.4 Tukey- Hanning and Parzen windows (35).
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Table 2.4 Some lag windows and their properties

Description Lag window Variance Bandwidth
k M 1.5
Bartlett 1- 'LEL, || <M 0.667 X N
0, |x| > u
Parzen 1-6 (4]'5)2 + 6 (-llc-l-):s,
M M
M
Il =3 M 1.86
_ 0.537 N N
|k| 3
2(1 - 5
M
7 <]kl <u
0 |k|] > M
1 vk
Tukey 2 (1 + cos 'fn—) ; |k| <M
& 0.75M 1.333
Hamming N M
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reached beyond which no more significant detail is observed in the
spectrum. [33]

In this study the Tukey-Hanning lag window was used. Several values of
M were tried such as 45, 60, 75, 90 and 120 for a record of 365 data
points. It was found that 75 lags provided sufficient resolution of
frequencies.

Generally, the spectral estimates are plotted on a logarithmic
scale so that the variation in the spectrum can be accomodated. In this
report also, the natural logarithmic scale was used. It has another advantage
in that the confidence interval for the logarithm of the spectral esti-
mate can be given by two horizontal lines for all frequencies. It can
be shown that v§(f)/rxx(f) is distributed according to chi square dis-

tribution with v degrees of freedom,

_ 2
where v = i bl
b1 = standardized bandwidth (1.33 for Tucky Hanning window).
S(f) = smoothed spectral estimate.

A confidence interval for rxx(f) can be given by

v

(2.14)

tn S(f) + fn 3 , n S(f) + 2n _EE___

% =3 x, @)

where o = confidence level.

Some other considerations which should be borne in mind while doing

spectral analysis are as below:



)

(2)

(3)

4
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The choice of a suitable sampling interval is very important. As
shown earlier in expression (2.12), the Nyquist's frequency is given
by E%E‘where At is the sampling interval. Hence the longest fre-
quency that can be analyzed by this procedure is corresponding to

1 cycle/2 time units. The sampling interval should be such that

the highest frequency expected in the process is equal to or less
than Nyquist's frequency. As a thumb of rule, the sampling inter-
val should be about one third of the lowest expected period [37].
The resolution power and the longest periodicity indicated by the
spectrum are a functionof lags. Both increase as the number of lags
increase. But the increase in lags also increases the variance

thus reducing the precision of estimation. Thus a balance between
precision of estimation and resolving power is needed. Generally,
the number of lags are taken as 0.1N to 0.4N.

Due to a finite record length, appearance of a negative spectral
estimate is possible with a Tukey-Hanning lag window. This should
be interpreted as a very small power.

Any linear trend in the record or any periodic components which are

too long to be detected by this record length appear as a zero fre-

quency spectral estimate.

Prewhitening: It was seen in this study that in most cases, there
was a strong concentration of variance at low frequencies. As
discussed earlier, this may be due to the presence of a trend or

long cyclic fluctuatioms.
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It may occur that low frequency bands distort the spectrum at high
frequency bands due to leakage. To analyze the data more effectively
a high frequency bands, prewhitening of the data was carried out.
Prewhitening consists of filtering the original data to remove low fre-

quency components. In this analysis simple differencing filter was used.

Ve = % 79X g where 0 < a < 1 (2.15)
for this analysis o« = 0,99,
The spectral estimate of the filtered data and that of original data
are related as [35]

Ey(f) = (1 - 2& cos 2nf + dz) gx(f) - (2.16)

This relationship can also be used to recolor the estimate of Ex(f).

An estimate of the frequencies which this filter attenuates is given by

-1 =% ¢
f = 7= cos (af2) (2.17)

This simple differencing procedure can be extendgd to:nth order diffgrences.
By a judicious choice of ﬁ and n it.is possible to. flatten.the spectrum in
the low frequency range i.e. reduce the spectral power of all frgquencies
less than an arbitrary threshold and essentially not reduce the spectral
power of those frequencies above the threshold frequency. Another method
of removing trend from the data is to fit a least squares polynomial model.
This approach was carried out for the development of the predictive model.
In section 2,4, harmonic analysis was done for the temperature,
the specific conductance and the flow rate records of Ontario River.
After some general information about the behaviour of the pollutants has
been cbtained by harmonic analysis, we proceed to spectral analysis for a

more accurate investigation.
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2.7 Spectral analysis of Ontario river data:

(a) Temperature: As discussed earlier, 75 lags were used in all cal-
culations. Figure 2.5 shows the auto-correlation plot of temperature

data. High positive correlation exists for all lags upto 75. Such high
autocorrelation for larger lags may be taken as an indication of non-
stationarity in the time series. The spectral plot of the raw data indi-
cated a high variance at zero frequency. This indicates that either a trend
or a long range frequency is present in the data. To study the series

more effectively, prewhitening was carried out. A simple differencing
filter was used to remove the low frequencies.

As given by (2.17), it attenuates the frequencies upto

Fh
L]

1 -
S cos . (0.495) cycles/day

0.09 cycles/days

Figure 2.6 shows the prewhitened spectrum for the same data. Two points
may be noted about this spectrum. Firstiy,it effectively removes any
low range frequency from the series and secondly,no high frequency
fluctuation seems to be present. Recolored spectra was obtained from
this prewhitened spectra and is shown in Figure 2.7. This shows a high
variance at low range frequencies. It is known that the temperature of
a river exhibits an annual frequency. Hence it may be safe to assume
that a position of large concentration of variance at zero frequency is
due to annual cyclic fluctuation. In order to confirm this, more data -

is needed. As discussed earlier in section 2.4, harmonic analysis



33

“I9A]3 OXe3uQ - ¥Iep axnjeiadwsl o uoprelsrzodony S°Z 814

ov1 dNIL
ovl 02! 001 08 09 ot 0¢ 0
L [ 1 2 ' I 'l mboo
o~ O
080
2
e
m
-
-G8'0 —
(@)
2
O
060 O
m
-n
A
o
=3 g —l—l—
G6'0 >
-

-00°1



34

(pouazyymead) “°IIATI OFIBIUQ - sxnjexodwsy 103 9lewyys? AITSUSp rBIIDadS 9z *314

AVA/S3TIAD
¢e'0 0€’0 g0 020 G1'o o1'o ¢o0'0 o
L L L . 1 [ A N.nl

lm.Nl

-P'3-

; " >>>

| —
i

o

o
]

;\ |

L]
o
0

JIVWILS3 ALISN3IQ 1vHLI3dS 901



35

(P210710231) “IPATI OTIBIUY - sanjeaadusy 103 9jewrdss A3rsusp rexdads 2°7 ‘314
AVQ/S3T1IAD
- on..o mm..o om....o n_.o om.o g0'0 000

JIVNILST ALISN3IA TVHL03dS 901



36

o

SE0

(STenpIsax) °I9ATI OTIBJUQ - ainjexadwel Joj ojewylse L3Iysuop 1ex3deds g°z ‘314

AVQ/S3TOAD |
0g°0 ge¢'o 020 G1I'0 010 S00 000
1 'l 1 ] 1 1 —-ml..

- 6°1

ALYWILST ALISN3Q 1VH1D3dS 907



37

*Z3ATX OTJEIUQ - IIUBIONPUOD dT3Foads jo uorierarzodoIny 6°Z ‘3¥d

oVl 3NIL

obl 0zl 0Ol 08 09 ov 02 0
i 1 [] 1 [ ] [] '] mh.oo

o o
© @
o O

o
a
o
IN3ID144300 NOILV13HHO0D

- G6°0

.00l



38

Ge°0

(pouaatymazd) - edue3donpuod dy3yoads 103 93euT1se L3fsuap rex3deds or1°C ‘314

AVA/S31IAD
0g'0 €20 02'0 sI'0 01’0 §0°0 000
[ L 1 1 1 2 Q..VI

—

o

¢
]

¥
o
[

I

L]
w
]

<
o
P
JIVANILSI ALISN3Q TvdL103dS 907

®
o
|




39

Ge'o

(pa1o10od9x) -95uBIdNPUOd dT3T0ads Jo0F o3ewlIso A3ysusp rexydads tr°z t3v4

AVA/S3T0AD

0’0 geo 020 Sl'o o1'0 ¢goo . 000

JLYNILSI ALISN3Q Tvyldo3dS 901



40

Ge'0

(stenpysax) - adueidnpuod d33roads xoj oumsﬁuno L1ysuap texIdadg 2r°z ‘814

AVA/S3T10AD

0g’0

620

02’0

SI'0
1

oI'o

c0'0

000
o'v-

FN.ml

-9’2~

L 9| —

. 80—

00

JLVYWILS3 ALISN3Ad TvdHLO3dS 9071



41

indicates the presence of semi-annual, 120 days, 90 days and 30 days

period terms. All these terms were added in a regression model and the
residual thus obtained were subjected spectral analysis again. Figure 2.8
shows the spectral plot of the residuals. It is observed that the variance
at low frequencies has been reduced considerably as compared to the spectrum
of the raw data shown in Figure 2.7. No other peak is evident in the
spectrum. The confidence interval was drawn and it was found that almost

all the points on the plot were within the confidence level.

b) Specific Conductance:

Auto-correlation plot of raw specific conductance data is shown in
Figure 2.9. Again a very high positive correlation is observed for all
lags. High positive auto-correlation may either indicate that for all
lags up to 75, a high (low) value of specific conductance tends to follow
a high (low) value or it may again be taken a tendency of series to be
non-stationary. The spectral plot of the raw data consisted of high
power at zero frequency, hence it was decided to prewﬁiten the spectral
estimates. In this case also a simple difference filter was used.
Figure 2,10 shows the prewhitened spectra of the raw data. The plot
does not indicate the presence of any dominant high frequency component.
The corresponding recolored spectrum is shown in Figure 2.11. All the
variance is concentrated at the low frequency component indicating the
presence of either a trend or a long periodic fluctuation. The trend
can be explained being due to growth in the concentration of salts in

the water., An annual cycle may be correlated with the annual variation
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in flow rate. The dominant harmonics as indicated by harmonic analysis

were added in a regression model and removed from the series. Figure 2.12
shows the spectral plot after all the harmonics have been removed. Comparing
this plot with Figure 2.11 reveals that the variance at low frequencies

has been considerably reduced and no more cyclic fluctuation seems to be
present. A confidence bend for 95% confidence level was drawn and it

was found that most of the fluctuations in the spectrum were within this

band.

(¢) Flow: Auto-correlation plot of raw flow data is shown in Figure 2.13.
The auto-correlation function remains positive for all lags, though it
decreases gradually. It implies that a high (low) flow rate tends to be
followed by another high (low) flow rate even upto 75 days lag. As
before, the spectral plot of raw data indicated need for prewhitening.
Figure 2.14 shows the prewhitened spectra for the same data. This shows
the presence of some dominant low frequency cyclic fluctuations. In-
spite of attenuation at low frequencies, a peak corresponding to 120
days period is evident in the spectrum. The corresponding recolored
spectrum is shown in Figure 2.15. The recolor spectrum shows large
variance associated with low frequencies. This may be expected as the
flow is known to have an annual cycle and other seasonal variations.
Harmonic analysis (Table 2.3) had indicated the dominant effect of
fundamental frequency, second harmonic, third harmonics corresponding

to 365 days, 182 days, 120 days period. The first six harmonics were
added to a regression model and spectral analysis was carried out on

the residuals. The corresponding plot is shown in Figure 2.16. This plot
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shows that still some low frequency is present in the series but it could
not be detected by this analysis, though the magnitude of variance at low
frequencies has reduced considerably as compared to the raw data spectrum,
Figure 2.15.

The analysis of Ontario river data brings forth two main points
(i) Since all the three polutants are known to follow long period
cyclic fluctuations, hence a longer record is needed for obtaining more
reliable information.
(ii) Temperature is expected to follow a daily cycle but due to the
sampling interval of one day; this fluctuation can not be detected by

this analysis.

2.8 Development of a prediction model
A predictive model for each pollutant at a station was developed
through regression analysis using the least squares method. The general

form of a linear regression model is given by

Y=XB+e¢ (2.18)
where Y is a (nxl) vector representing dependent variable
X is a (nxp) matrix representing the independent variables
B is a (pxl) vector of parameters
e is a (nxl) vector of errors. It is assumed that the error "e"
is a random variable with zero mean and 02 variance, and €y and Ej are
uncorrelated, i # j. The purpose of the regression analysis is to ob-

tailn estimates b of the parameters which minimize the error sum of

squares.
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N ~
oy 2
) (¥, - Yi) where Y, is estimated value of Y,

i=1

In this analysis stepwise regression procedure was used to develop the
prediction model [38]. It's a process wherein variables are inserted
in turn until a satisfactory regression equation is obtained. Each time
a new variable is entered a check is also made for variables already in
equation to see whether they are still significant. It may happen
that the variable which was best in some earlier stage may become
superfluous because of its relationships with other variables now in
rregression. This is checked by performing partial F-test for each vari-
able in regression equation. This F-value is checked with a preselected
percentage point of the F-distribution. Any variable which fails this
test is removed from regression equation. This process is continued
until no more variables can be entered in or removed from the equation.
One important consideration in the use of stepwise regression is
the specification of F-values for the addition and the removal of a
variable from the model. In this study both values were taken as zero
so that all the variables may be entered in the model to account for
all cyclic fluctuations.

The square of the multiple correlation coefficient was used as the

criterion for the acceptance of a satisfactory model. It is defined as

R? _ Sum of squares due to regression corrected for mean
Total corrected sum of squares

N = 2
1£1 (¥, - Y)
N -
121 (¥, -9

(2.19)
2
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Fig. 2.17 R2 vs. No. of variables in regression equation
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where Y = mean of the dependent variable.
Its value lies between 0 and 1. A larger value of R2 shows that the
fitted equation explains the variation in the data satisfactorily.

In the stepwise regression procedure, RZ was calculated at each
step. It is seen that initially Rz increases rapidly but tends to
flatten afterwards indicating that not much improvement is made in the
predictive capability of the model by the addition of more variables.
A graph between Rz and the number of variables entered for temperature

data at Ontario river is shown in Figure 2.17.

2,8 Prediction models for Ontario river data:

Fitting a predictive model to Onterio River temperature data in-
volved the regression of 25 independent variables and one dependent var-
iable. The first indepéndent variable was a linear term to account for any
linear trend in the data. The other 24 terms corresponded to the cyclic
variations as suggested by the harmonic énalysis and the spectral analysis. R2
increases rapidly upto addition of 13 variables and no significant im-
provement is made by addition of other 12 variables. These variables
raise R2 from 0.918 to 0.942, Considering the computational effort in-
volved by using all 25 variables, it may be worth-while to use only

13 variables.

The model thus obtained is

2t 21t

Tt = 22,20 + 0.2989 sin =30 " 0.7935 cos 130
27t 2nt
+ 0.7605 cos 365 - 0.3204 sin 365
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Zwt
+ 0.9920 cos o1 + 0.5680 sin o1

Znt
4+ 0.7216 cos 5 + 0.2599 sin —= 17

27t 2rt
- 0.2734 cos =% " 0.6573 cos 73
+ 0.3813 sin 2TE 4 0.5195 sin —aat
. 31 182.5
+ 0.3121 sin.3%% (2.20)

with R® = 91.3%

F(13,351) = 135.6229.

Similar prediction models were obtained for specific conductance and flow

data.

Model for Specific Conductance:

= 576,25 + 56.89 cos 333 - 27.69 sin — & 120

2nt 2Tt
- 55.04 cos Iﬁf + 33.89 cos ~90

216 . 96,25 sin 21t

- 29.28 sin o5 90 50



2t

+ 20.96 sin 2% = 16.21 cos 22E

52

- 23.15 sin

with R® = 85.6%

F(11,353)

Model for Flow data

2nt
50

88.

37

- 17.70 cos

2

Ft = 5859.34 - 3212,.40 cos 4z

6351.24 sin

3275.62 cos

2168.54 cos

+ 2718.60 sin

with R% = 95.7%

F(9,355) = 435.

2rt
365

2nt

e
90

2rt
73

98

Tt
365
+ 4433.74
+ 5116.85

- 2411.54

+ 1603.75

45

28

cos

sin

sin

cos

2nt
120

2Tt
182

27t
90

2Tt
60

52
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CHAPTER III

CROSS-SPECTRAL ANALYSIS

Spectral analysis as discussed in Chapter 1II is applied only to a
individual record. But in certain cases, it may be desirable to study
the interaction of two time series. These may be input-output of a
system or two inputs to a system or two outputs from a system. Spectral
analysis can be extended to analyze a pair of time series; this extended
form being called cross-spectral analysis.

It is known that dissolved oxygen in a stream is affected by several
variables such as temperature, photosynthesis, biochemical oxygen demand
etc. Using individual spectral analysis for DO, it is not possible to
know the relative importance of each cause of variation. If the simul-
taneous records of temperature, sunlight intensity, biochemical oxygen
demand are known, cross spectral analysis can be applied to each pair
of records and certain characteristics such as coherence, phase, transfer
function etc. can be calculated to give some information about the relative
importance of each source of variation.

One of the important properties of stationary time series that enables
this technique to be applied is that not only the estimation of spectrum
at one frequency is independent of other frequencies of the same process
but it is also independent of other frequencies of the other processes.

It may or may not be correlated with the same frequency component of the
other processes [34]. This correlation of a particular frequency component
of one series with the same frequency component of the other series is

measured by a characteristic called coherency.
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Another important advantage of using cross spectral analysis is that
it permits to retain the phase relationship between the two series. Thus
the time lag after which a particular frequency component of one series
will follow the same frequency component of other series could be obtained.
This statistics is very useful for the analysis of water pollution data.

It is known that temperature and DO foran estuary follow a diumal
fluctuation. In this case, it would be desirable to have an estimate of
time difference between the peaks of two fluctuations. The phase dif-
ference between the two fluctuations is found to be about 180° i.e. when
the temperature rises, concentration of DO falls and vice versa.

This chapter deals with the application of cross-spectral analysis to tem-

perature, specific conductance and flow rate data at the Ontario River station.

3.1 Cross spectral analysis:

As in simple spectrum analysis, the auto-covariance function measures the

correlation of observations of a time series at different time spans,

the cross—-covariance function measures the correlation of two different

series, The cross-covariance function at lag k is defined as

le(k) = E [(xl(t) - Nl)(xz(t"'k) = 112)]

Yp1(k) = E[(x,(t) - u,) (%, (t+k) = u;)]

where le(k) cross—-covariance function at lag k with series 2 leading

series 1.

721(k} = cross covariance function at lag k with series 1 leading
series 2.

The corresponding estimates of ylz(k) and yzl(k) for a sampled discrete

time series are given by
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N-1
¥ . .
€ (k) = § :21 (%, X)X g %)y k20 (3.1)
N-k
1 < .
€ =y tzl Ko ~ %) Ky = %)» k20 (3.2)
N N
I oXy L %y
where, X, = = B - -
! N’ 2 N

It has the properties that

Clz(k) # Clz(_k) (3.3)
Cip(k) = €5y (k)
(3.4)
or CZl(k) = Clz(—k)

(3.4) shows that in general the cross covariance function is not an even
function of lag.

The corresponding cross correlation function 1s defined as

c,, (k) .
plz(k) i (3.5)
cll(O} 022(0)

with the properties that

’plz(k)! <1
Ppa(W) = pyy (=u).

It is interpreted in about the same manner as an auto-correlation function.
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A positive cross-correlation indicating that a high (low) observation in
one series tends to follow a high (low) observation in the other series. A
zero correlation at all lags indicates that the two processes are completely
uncorrelated.

As before, main use of the cross covariance function is as an inter-
mediate step in the calculation of its Fourier transform, the cross spectrum.

The sample cross spectrum estimator is defined as

N -iwk
S1(w) = {N ¢y, (k) e dk (3.6)

This sample cross spectrum is a complex quantity and can be written as

_ -i¢w
512(m) = Alz(m) e (3.7)
An alternative expression for (3.7) is

where cOlZ(m) is the real part called cospectrum

and le(m) is the imaginary part called Quadrative spectrum.

Aiz(m) o cDiz(w) + 2, w) (3.9)
d ¢,,(w) = arctan Elszl— (3.10)
nd 39 ¢ c0,,(w) '

Writing clz(k) as the sum of an even part and odd part gives,

2,00 = 3 (e () + e (<), 0 <k<Ml (3.11)

4,0 = 3 (e, () = e, (-K), 0 <k <Ml (3.12)
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the estimation of the sample cospectrum and quadrative spectrum is ob-

tained as
1 212(0) M
coutwj) - s { & + k£1 2, ,(k) cos mjk} (3.13)
1 M
™ o k 3.14
le(mj) 5s kzl q12( ) sin wjk (3.14)
=1 =
where wj M j 0, eeey M

These new estimates of the co-and quadrative spectra are then smoothed
by using a spectral window, as discussed in Chapter II.
In this study, a-He_!ﬁ;ﬁ_iﬁg window was used, According to this window,

the smoothed cospectrum is

c0,,(0) = 54c0,,(0) + .46c0,,(1)
€01,(uy) = .23 0y, (w, 1) + .56c0;,(w,)
+.23¢0;, 0 ) 0<i<m
€0y, (w ) = .54c0,,(u ) + 460, ,Cw ;) (3.15)

Similar expressions can be written for the quadrative spectrum.

The smoothed estimate for amplitudes of a cross spectrum is observed as

7

Klz(wj) = Eoiz(mj) + ﬁiz(m Y, 0<ji<m (3.16)

3

and the smoothed phase spectral estimate is obtained as
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Qy,(w,)
$12(m ) = arctan'-£2-i——— (3.17)

4 -
cﬂlz(mj)

As discussed earlier, the coherency function is a very useful in the

interpretation of the cross-spectrum and is defined as

-2, .. 2
c012(wj) + le(mj)

Sl(wj) L Sz(”j)

(3.18)

H{w,) =

b

where Sl(mj) and Sz(mj) are smoothed spectral estimates of

series 1 and 2 respectively at frequency mj.

H(w.,) <1

i

The distribution of the coherency function has been studied and the confidence
intervals for coherence estimates when the true coherency is zero have been
given by Granger and Hatanka in [34] for different levels of N/M and 50%,

90%Z, 95% significance level. Confidence bands for phase angle for

certain levels of N/M and coherency are also given in [34] and were used

in this study.

Another important characteristic to be determined is the response
function or transfer function. It gives an estimation of the output
spectra if the input record were the only parameter dominating it. The
relative importance of effect of each causal parameter on a single pol-
lutant may be compared by calculating transfer function of each
parameter with the given pollutant separately.

The amplitude of the transfer function is given by
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A (w,)
= Aol
G(mj) Sl(mj) (3.19)

The confidence interval for the transfer function is given by [33] for

100 (1-a¢)% confidence interval,

1l - le(cﬂ )

1, (3.20)

s - 2
G(mj) + G(wj) /;’:5 le\,_z (1-a) ¢ le(mj)

The phase of the transfer function isthe same as derived in (3.17).

The presence of trend in the time series distorts the estimation
of autospectra, and cospectra and may produce spurious coherencies. Thus,
the data should, initially, be inspected for trend and filtered ac-
cordingly. An indication of trend is given by the failure of the auto-
correlation function to die quickly. The filtering of the time series
does not affect the coherency, phase and transfer function spectra.

Also, large spurious cross covariances are generated between two time
series as a result of the large autocovariances within the time processes.
This may also necessitise a filtering operation on the two series before
computing cross—-covariances.

Another refinement which may be carried out to improve the ccherency
estimates is the alignment of the two series. In many cases, it is seen
that the cross-covariance function does not have the maximum absolute
value at zero lag. Alignment consists of centering the cross-covariance
function such that its largest absolute value occurs at zero lag. Let s
be the lag at which the maximum cross-covariance occurs, then for align-

ment,
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cgz(k) = °12(s + k) (3.12)

Further computation of cross-spectrum should be based on these cross-

covariances.

3.3 Analysis of Ontario River data:
Three cross-spectral studies were made for Ontario River data, viz.
(a) Temperature and specific conductance
(b) Flow rate and temperature

(c) Flow rate and specific conductance.

(a) Temperature and specific conductance:

The autocorrelation and power spectral plots of temperature and
specific conductance are shown in Figures 2.5, 2.7, 2.9 and 2.11 re-
spectively. Failure of the auto-correlation function to damp quickly along
with high peaks at zero frequency in the power spectral estimates of the
two pollutants indicate the presence of trend in the data. Figures 3.1
and 3.2 show the cross-correlation function for the original and differenced
data. The plot of the original data does not damp quickly whereas the cross-
correlation of the differenced data oscillétes about zero line. Maximum
cross-correlation is obtained at a lag of 67 days. This implies that there
is a time lag of 67 days between the responses of the two pollutants and
that the net direction of casuality is from temperature to specific con-
ductance which may be expected under natural circumstances. As the presence
of a trend is indicated by the above plots, it was decided to perform

further analysis using differenced data. The cross-correlation plot of
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differenced data shows maximum absolute value at -35 days lag. This
suggests that the cross-correlation be aligned for calculation of phase,
coherency, and transfer function spectra. Figures 3.3 and 3.4 show the co-
herency and the phase spectra before alignment and Figures 3.5 thru 3.9 show the
various spectra after alignment. It is seen that the coherency spectrum

is improved by alignment and the phase spectrum does not show any linear
trend, and hence further alignment was not considered necessary. The
confidence interval for coherency was read off from tables given by

Granger and Hatanka in [34].

In general, the coherency appears to be low at all frequencies, especially
at high ones, indicating that the variations in temperature and specific
conductance at high frequencies are independent of each other. Some
notable peaks in coherency are observed at zero frequency and at 13 day ,

4 day periods. High coherency at zero frequency is important in the

sense that the individual spectra for both pollutants have high peaks

at this frequency. But the exact nature of correlation at zero frequency
is difficult to be determined by this analysis due to lack of data. Data
for about 3 to 4 years should be available to obtain more meaningful in-
formation at low frequencies. A high transfer function from temperature to
specific conductance is shown at all frequencies. The transfer function

gives a relationship between the input and the output spectra of a process as
= 2
output spectra = ]G(wj)‘ Input spectra

A high value of transfer function indicates that a high variance at a
particular frequency in input data will cause a high variation

in output data. It may be noted here that two records may have low
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coherency at a given frequency even though the corresponding trasfer

function is high.

(b) Flow rate and specific conductance:

Figure 2.9 and 2.13 show the autocorrelation plot of the flow rate and the
specific conductance data respectively. Their failure to damp out

quickly indicates the presence of trend in the data and hence all further
analysis was done using the filtered data. As before, a simple difference
filter was used for both the series. Figure 3.10 shows the cross—correlation
function for the differenced data for 110 lags. It oscillates about zero
and has a maximum absolute value at a lag of 58 days. This indicates

a lag of 58 days between the responses of the two pollutants and the
direction of causality from flow rate to specific conductance. It also
suggests that the two series be aligned before computation of coherency
and phase spectra. Figures 3.11 and 3.12 show the coherency and phase
spectra before alignment and Figures 3.13 thru 3.17 show the various
spectra after alignment. The confidence limit on the coherency spectra have
been drawn for 90% significance level and N/M = 7. Low coherency is ob-
served at low frequencies and high correlation is obtained at frequencies
of .4057 cycles/day, .4151 cycles/day, .4245 cyclesfday. It implies that
the long period variations in specific conductance and flow rate are un-
correlated. No physical meaning can be attached to high coherencies at
high frequencies as these fluctuations are not dominant in the individual
power spectrum of each pollutant. The phase spectrum (Figure 3.14) shows
that the two responses have 180° phase difference at low frequencies. This

may be expected if the water flow in the river is mainly fresh water
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and there is a growth in the concentration of salts to account for

increase in specific conductance. A low transfer function from

flow rate to specific conductance is observed at all frequencies.

(¢) Flow rate and temperature:

The auto-correlation function of the two pollutants shown in
Figures 2.5 and 2.13 suggest the use of filtered data for a cross spectral
study. As before, a difference filter was used to remove the low fre-
quency components. The cross-correlation plot of the differenced data
is shown in Figure 3.18. It has a maximum absolute value at a lag of 30
days, indicating that there is a delay of 30 days between the two
processes. Again, alignment was necessary before computing the cross
spectral estimates. Figures 3.19 and 3.20 show the coherency and phase
spectra respectively before alignment and the various spectra after alignment
are shown in Figures 3.21 thru 3.25. Low coherencies are observed at all
the frequencies suggesting that there is no significant correlation
between temperature and flow rate. Fluctuations in both the pollutants
are in phase with each other at zero frequency and 0.0082 cycles/day
(120 days period).

The cross spectral analysis of Ontario data brings forth the following
points about the behaviour of the three pollutants:
(1) There is a strong correlation between the long range fluctuations of
temperature and specific conductance. This included all variations with
period more than 120 days. The exact nature of this relationship could

not be found due to lack of availability of longer data.
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(2) There is a low correlation between flow rate and specific conductance
at low frequencies. It means that long range fluctuations in specific
conductance are either due to thelr correlation with temperature vari-

ations or due to the growth in the concentration of salts in the water.

As before, a longer data record is necessary to arrive at a definite

conclusion.
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CHAPTER 1V
PARAMETRIC TIME SERIES MODELING

Chapter 2 dealt with the analysis of time series using spectral an-
alysis. Another important approach for building stochastic models for
discrete time series in the time domain is parametric modeling. One
useful characteristic of this technique is that good models can be built
using only a small number of parameters and efficient forecasting of
future values can be made using them. This chapter provides a brief

survey of parametric time series modeling and its application to the

Ontario River data.

4.1 Classification of Models: The various models can be broadly clas-

sified into the following catagories [39]

(a) Autoregressive Model, AR(p):
In this model, the current value of the data is expressed as a

weighted sum of the previous observations plus a random shock.

Let x cee Xy be the N observations of a process and

l’ Xz, s s g Ki

X =X " Uy Xy =X, — U etc. be the deviations of the observations from

their mean. Then the process at time 't' is defined as

-~ ~

x, = ¢1xt-l + ¢2xt_2 + ... + ¢pxt—p + a (4.1)

This is calledan autoregressive process of order p. a is the random
shock assumed to be independently normally distributed variable with

zero mean andvariance 02.
a

This model can be abbreviated in the form
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¢(B) x_ = a, (4.2)

= (1l - 6.B -6B% - ... - ¢ BP
where ¢(B) (1 ¢1B ¢ZB “ o ¢pB )

and B is the backward shift operator such that

Bx, = X3

P 'm
and B xt xt-p

As given in (4.1), this model contains p+l parameters which can be esti-
mated from the available data.
In practice, models of first or second order are sufficient to

explain most of the time series.

(b) Moving Average Model, MA(q):
This model expresses the current observation as the finite weighted
sum of the previous random shocks. A moving average model of order gq

can be written as

I O R S R L (%3)
or x = B(B)at (4.4)
- - - 2__ q)
where 6(B) = (1 eln 623 ces BqB

It has q+l unknown parameters to be estimated from the available data.

Of particular importance are the models of first and second order which
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generally suffice for all practical problems.

(c) Mixed Autoregressive Moving Average Models, ARMA (p,q):

Sometimes it becomes necessary to combine both autoregressive and
moving average models into one mixed model to obtain certain desired
characteristics. A general mixed model of order (p,q) may be written

as

-

or

$(B) it = 6(B) a. (4.6)

The models described above are applicable only to stationary time
series. In practice, however, a non-stationary series is not uncommon.
This is particularly true for water pollution problems. For use with
non-stationary series, a general Autoregressive Integrated Moving Average
model is used. It essentially consists of transforming a non-stationary

series into a stationary series using a difference filter.

(d) Autoregressive Integrated Moving Average Model, ARIMA (p,d,q)!
The general form of ARIMA (b,d,q) is given as

w_= ¢1; + ... + ¢

: " +a - 0.a - Bzat_z -0 a (4.7)

pwt-p t 17t-1 q t-q

where w,_ = de

t t

d = order of differencing necessary to produce a stationary series.

The indication of non-stationarity in the time series is given by the
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auto-correlation function. This property will be described later in
Section 4.3.

In general, first or second order differencing is sufficient to pro-
duce stationarity in the time seriles.

Another important class of models is the seasonal models which takes

into account any seasonal fluctuation in the time series.

(e) Seasonal Models:
Let S be the period of cyclic fluctuation and Bsxt =X, . Then

the seasonal model can be defined as

- D s
V¢P(B ) vsxt - GQ(B )ut

(4.8)
6,®) Vo, = 0 (),

The first part of the model links the terms 's' time intervals apart and
the second part links the consecutive terms.

This model can also be written in multiplicative form as
o 8 ¢ (857" Wx =0 (8) 6,(8%)a (4.9)
P P st q Q t

4.2 Stationarity and Invertibility Conditions

Certain limitations are imposed on the 6 and ¢ weights of a moving
average and autoregressive processes respectively to ensure stationarity
and invertibility conditions. It can be seen that an auto-regressive
model can be written as a moving average type and vice versa. e.g. AR(1)

model is written as
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X ¢1xt-1 + By

or ¢(B) ;t

]
]

or

R
rt
|
t~1
-
|
n
T
.

Let ¥(B) = (1 - ¢.B) " = [ ¢l & (4.10)

¥'s are called the pure moving average weights.

The variance of this process can be obtained as

Hence for the variance to be finite, y's must converge fast enough.
This can be achieved by taking ]¢l| < 1. This is the limitation on ¢
for a AR(1l) process to be stationary.

Considering a MA(l) process,

:":t = (1 - 8;B)a,
x
P - - =1 =
a =1 - 8,8) (1-6,B) = x;
Let 7(®) = (1 - o,®) "= ] o 8] (4.11)

3=0
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7's are called the pure auto-regressive weights.

It is desirable that w's form a convergent series in (4.11} other-
wise it would imply that current observation it depends on previous ob-
servations X, _1s Xp_gs sees xt—j’ with the weights increasing as j in-
creases. To ensure convergence of m's, it is necessary for MA(l) process
to have |61| < 1. This is called the invertibility condition for a moving
average process,

Similar limitations on the weights of higher order models can be ob-
tained.

The model building procedure consists essentially of three steps:

(i) Identification: It is the stage where the data is analyzed to obtain

information about the kind of model (e.g. AR(l), MA(l) or ARMA(1l,l) etc.)
to be selected for further investigation. A rough estimate of parameters
is also obtained.

(11) Estimation of Parameters: The parameters of the candidate model are

determined by least square methods using the rough estimate obtained in the
ldentification stage as starting points.

(iii) Diagnostic Checking: The residuals obtained by using the candidate

model are subjected to statistical testing to check if the model should be

accepted as satisfactory. In case of inadequate model, the procedure re-

turns to step 1 and a2 new candidate model is entertained for acceptance.
Next three sections deal with a brief discussion about each of the

three steps.

4.3 Identification:

It involves the selection of a particular model to be entertained as
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a candidate for acceptance. Two functions that are useful for identi-
fication purposes are the auto-correlation and (acf) and the partial
auto-correlation (pacf). The auto-correlation function has been defined

in Chapter 2. For an auto-regressive process, the auto-correlation

function satisfies the difference equation,

Py = ¢1pk_1 + ¢2pk_2 + ... + ¢ppk-p’ k>0 (4.12)

i.e. for first order auto-regressive process,

P = $1Pr-1 k=0

which has a solution,
SN '

It has already been shown that for an auto-regressive process to be
stationary, |¢1| < 0. This together with (4.13) implies that the auto-
correlation function of an auto-regressive process decays exponentially.

Similar results can be derived for higher order auto-regressive processes.

Unlike an auto-correlation function, the partial auto-correlation function
of an AR(p) process has a cut off after a lag of p.
A general recursive relationship to obtain partial auto-correlation

can be given as [40]

k
P41 ~ jzl pﬂ,j Pr+1-j
Prtl = % (4.14)
1- Py < P
481 Pl P



97

Peal, ~ Pk,g T Pkl kg T 1 2 e B ' (4.15)

[}
—

where p6

and p1

P

Intuitively, it can be seen that an AR(p) process means that the current
observation depends on p previous observations only, hence once these
are known, the partial auto-correlations with the earlier observations
should be zero. But for a moving average process, the partial auto-
correlations tail off due to the invertibility condition.

The auto-correlation function of a moving average process satisfies

the relationship,

=0, B0 i F wne F B .6
b, = k 12k+1 5 q-g g, fe w8 cuwy d (4.16)
1+e6;+6,+...+6 &
1 2 q
= 0 k>q

It implies that the auto-correlation function of an MA(q) process has a

cut off after lag q whereas its partial auto-correlation tails off.
These properties of AR(p) and MA(q) processes are extremely useful

for identification of a model. Table 4.1 summarizes these properties.
The relationships given by expressions (4.12) and (4.16) are also

used for obtaining initial estimates of the parameters of the candidate

model, Charts given in [39] and [40] provide good estimates for

MA(1), MA(2), AR(1l), AR(2), AR(3), ARMA(1,1), ARMA(2,1) and ARMA(1,2)

processes.



Table 4.1 Properties of MA(q), AR(p)

Model

MA(q)

AR(p)

ARMA(p,q)

Autocorrelation
function

cuts off after
q lags

tails off

tails off

and ARMA(p,q) processes.

Partial auto-
correlation function

tails off

cuts off after p-lags

tails off
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An indication of non stationarity in a time series is given by the
failure of the auto-correlation function to die off quickly. Differencing
of data is carried out to achieve stationarity and it is assumed that
the non-stationarity has been removed from the series when the auto-
correlation function of the differenced data dies off quickly. After
stationarity has been achieved, results shown in Table (1) #re appli-
cable for identification of a tentative model.

The identification of a seasonal model is done in a similar manner.
The presence of a seasonal component is indicated by a high auto-correlation
at lags corresponding to the seasonal period and its integral multiples.

In the earlier expressions, use of estimated auto-correlations has
been made whenever needed. But the theoretical auto-correlations differ
from estimated auto-correlations and an expression for estimation of the

variance of auto-correlations is given by [40],

k

Var (pk)=%—1—(1+2 Z o

o j) (4.17)

This can be used to find whether Py is effectively zero.
The estimation of variance of partial auto-correlation function on the

hypothesis that the process is AR(k-1) is given by [40].

Var G}) = 5%

After the candidate model has been identified using the procedure described

above, more accurate estimation of the model parameters is needed.
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4.4 Estimation

In the case of a moving #verage of ARMA (p,q) processes, the pardmeters.
occur in non linear forms. In this study, Marquardt's algorithm for
non linear least squares estimation of parameters was used.

A stationary ARMA(p,q) model can be written in the form,

- -

B =B~y B g T Ty B, T B By

+ 92 a _o + .00 + eq at—q (4.1?)

The sum of squares function of errors a, is given by

n
5(4,0) = [ [a/e,0,u1® (4.19)
t=1-Q

Marquardt'salgorithm is based on a compromise between the linearization
method and the steepest descent method. The linearization method uses the
initial guess values to start the process and then expands the function

in the vicinity of guess values as

k
(a1 = [a, o] - izl (By = 85 0 Xq,¢
=3[a ]
where X = -?rli*-
' "1 la=g,

or in Matrix form

[ag) = X ( 8 - 8y + [a] (4.20)
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where [a] and [aO] are column vectors with (ntQ) rows. The adjustments
B - BD’ which minimize 5(¢,8) = [a]'[a)] are obtained by least square
methods. The adjusted values of the parameters 'B' are then obtained which
are again used as new guess values and the whole process is repeated.

The steepest descent method uses an iterative approach to find
minimum error sum of squares by moving from an initial point [¢1,¢p,61,3q]

along the vector with components

-35($0) 35(¢,86) =35(¢,6)
3¢1 : B¢p e aaq

whose value changes continuously as the path is followed.

In Marquard's algorithm, both of these techniques have been combined

to provide quick convergence.

It may be pointed out here, that the initial guess values used

should be as reliable as possible to obtain quick convergence and reliable

solution.

4.5 Diagnostic checking

Having identified the model and the parameters estimated, diagnostic
checks are then applied to the model to test its adequacy.
Diagnostic checks are applied to the residuals in the form of an auto-
correlation check, lack of fit test, and cumulative periodogram check.
(a) Auto-correlation check: It has been shown by Anderson that the
estimated auto-correlations of the residuals would be uncorrelated and
distributed approximately normally with zero mean and variance n_l and

1
hence with a standard error — .
n
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It was shown later on by Box and Piere, that this estimate of
standard error would be satisfactory for high lags but would.be un-
satisfactory at low lags [39].

(b) A portmanteau lack of fit test: s

This test considers the effect of auto-correlations as a whole to
indicate the inadequacy of the model. Let T, be auto-correlations of
the residual, k = 1,2, ..., M. It can be shown that if the model is
adequate then

M

Q=n } ri(a) (4.20)
k=1

follows a chi-square distribution with v= (M- p - q - P'- Q) degrees
of freedom, where n = (N - d - D * IS). The Q-value can be calculated
from (4.20) and tested against the tabulated value of xi.

A cumulative periodogram test may be made for checking the presence of
some cyclic fluctuation in the residuals. In this study, spectral
analysis was used for testing the presence of cyclic fluctuation.
Theoretically, the spectrum of the residuals should be a horizontal

straight line.

4.6 Forecasting

After a model has been found statistically adequate, it is desirable
that it can be used for forecasting future values. Consider an ARMA(p,q)

model, observation X4 G0 be written as

X + se0 + X
¢P

e ™ Sl t+k-p

t A T 9% 4k-1 T 92%k-2 T Ytk
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Let xt(k) denote the expected value of X given observations through

time t, then we have
xt(k) = ¢lxt(k—l) + ¢2 xt(k—Z) + ... + ¢pxt(k-p)

-6 a

" 881 7 T %Ptq T %tk

To calculate the conditional expectations which occur in the above expression,

the following observations are noted. The x which have already happened

t-3

at time t are left unchanged, the xt+j which have not yet happened one replaced

by their forecast values at origin t'. The ay_j which have happened are

~

available from x

-~ Femg-1V

The at+j which have not yet happened are replaced by zeros.

Thus this equation can be used to forecast values one step ahead.

The 95% confidence interval for xt(k) can be given as

- 2 2. 2 2
x () +1.96 fo211 + 92 + 92 + oo+ 9l )

where y's are the pure moving average weights for ATMA(p,q) process.

This forecasting procedure may not be useful for predicting values in the
distant future as the future unknown values in the forecast equation are
replaced by their expected values instead of the actual observed values
which are unknown at the origin. This may be improved by updating the

forecast at every step in the future.

4.7 Analysis of Ontario River data

(a) Temperature: Figures 4.1, 4.2 show the autocorrelation and partial
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autocorrelation plot of raw temperature data. It is seen that the auto-
correlation function tails off gradually but the partial auto-correlation
function has a cut off afterone lag suggesting a tentative ARMA(1,0,0)
model. Corresponding plots for first differenced data are shown in
Figures 4.3 and 4.4. Here both the plots have an immediate cut off at lag ome
implying that the first differenced data behaves as white noise. A
tentative ARMA(0,1,1) model may be tried for this data. The plots for
second differenced data are shown in Figures 4.5 and 4.6. In this case
the auto-correlation plot has a cut off after one lag whereas the partial
auto-correlation function tails off rapidly. This suggests a tentative
ARMA(0,2,1) model.

Hence the plots of the auto-correlation and partial auto-correlation
function suggest three tentative models
(1) ARMA(1,0,0) (2) ARrMA(0,1,1) (3) ARMA(0,2,1).
Initial estimates of parameters for these models may be obtained using
either (4.12) and (4.16) or the charts given in [40].

In this case, estimates were obtained from charts given in [40]

and are given as

ARMA(1,0,0) ¢1 = 0.95
ARMA(0,1,1) 91 = 0.02
ARMA(0,2,1) el = 0,70

These values were then used as starting points for the nonlinear least
squares estimation procedure. The value of the parmeters obtained by

this procedure are



111

ARMA(1,0,0) ¢, = 0.9522
ARMA(0,1,1) 8, = -0.023
ARMA(0,2,1) 8, = 0.988

Diagnostic checks were then applied to the residuals of the sample data
for all these models.
Tables 4.2, 4.3, 4.4 show the autocorrelations for residuals together

with the ratio

pkls D.(p,)

It is seen that in all cases the estimated autocorrelations fall within
20 limits of true value (i.e. 0). Hence all the auto-correlations are
effectively zero.

Q values as given by (4.20) were calculated for chi square tests

2
Model Q d.f. Tabulated XO.QO
ARMA(1,0,0) 32.76 59 63.2
ARMA(0,1,1) 29.12 59 63.2
ARMA(0,2,1) 7.54 24 33.2

It is seen that in all cases the tabulated value is well above the cal-
culated Q value, hence there seems to be no reason to doubt the adequacy
of models.

Thus the models for temperature for the Ontario River can be given as

(1) %, =0.95" %, +a

(2) th = (1 + 0.023B)at
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Table 4.2 Autocorrelation of residuals for temperature. Model ARMA(1,0,0)

Lag Autocorrelation pk/S.D.(pk)
k Py
1 0.03276 0.62596
2 -0.02390 -0.45614
3 0.01842 0.35136
4 0.02616 0.49885
5 0.01434 0.27327
6 0.02100 0.40001
7 -0.00491 -0.09344
8 -0.00161 -0.03071
9 -0.00991 -0.18875
10 -0.02979 -0.56723
11 0.06805 1.29455
12 -0.05617 -1.06358
13 -0.01559 -0.36977
14 0.01846 0.34836
15 0,02732 0.51546
16 -0.06339 -1.19485
17 -0,03288 -0.61745
18 0.02150 0.40326
19 0.03442 0.64540
20 -0.00123 -0,02295
21 0.02060 0.38578
22 0.01159 0.21695
23 0.00288 0.05386
24 0.00631 0.11802
25 0.01324 0.24778
26 -0.01151 -0.21540
27 0.00785 0.14695
28 -0.05854 -1,09527
29 -0.04144 -0,77284
30 -0.08557 -1.59326
31 -0,07945 -1.46911
32 -0.00074 -0,01361
33 0.01423 0.26149
34 -0.01333 -0.24491
35 -0.01791 -0.32907
36 -0.02648 -0.48650
37 -0.03060 -0,.56174
38 -0.03646 -0.66884
39 0.00602 0,11025
40 -0.10626 -1.94673
41 -0.08865 -1,60735
42 -0.07970 -1,43506
43 -0.00132 -0,02370
44 -0.02777 -0.49720
45 -0.02738 -0,48989
46 0.01422 0,25434
47 0.02411 0.43103
48 -0.01619 -0.28929
49 -0.03526 -0.62986
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Table 4.2 Autocorrelation of residuals for temperature. Model ARMA(1,0,0)

{continued)

Lag Autocorrelation P/S:D. (P} )
k Py

50 0.05280 0.94216
51 0.05552 0.98830
52 -0.01434 -0,25452
53 0.02833 0.50297
54 -0.02657 -0.47131
55 0.005%93 0.10515
56 0.02498 0.44275
57 -0.02860 -0.50667
58 -0.04745 -0.84019
59 -0.05151 -0,91028
60 0.00090 0.01580
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Table 4.3 Autocorrelation of residuals for temperature Model ARMA (0,1,1)

Lag Autocorrelation pk/S.D.{ka
k Py
1 -0.00138 <0.02627
2 -0,03544 -0.67608
3 0.00880 0.16777
4 0.01715 0.32674
S 0.00542 0.10320
6 0.01381 0,26307
- 7 -0,01141 -0.21728
8 =0.00666 ~0,12687
9 -0.010A3 -0,20249
10 -0.03889 -0,74049
11 0.06428 1,22184
12 -0.06391 -1.20986
13 -0.02396 -0,45182
14 0.01415 0.26672
15 0,02457 0.46293
16 -0.06743 -1.26986
17 ~-0,03511 -0,65823
18 0.01930 0.36132
19 0.03305 0.61872
20 -0.00440 -0.08221
21 0.01903 0.35579
22 0.00991 0.18518
23 0.00241 0.04502
24 0.00537 0.10034
25 0.01388 0,.25940
26 -0.01089 -0.20357
27 0.01118 0.20881
28 -0,05677 -1.06064
29 -0.03600 -0.67054
30 -0,.08037 -1.49506
31 -0,07524 -1,.39116
32 0.00445 0.08184
33 0.01814 0.33356
34 -0.00936 -0.17206
35 -0,01249 -0,22062
36 -0,02045 -0,37587
37 -0.02489 -0.45728
38 -0,03107 -0.57054
39 0.01506 0.27638
40 -0,10021 -1,83817
41 ~-0.07954 -1.44571
42 -0,07188 -1,.29893
43 0.00730 0.13136
44 -0.02183 -0.39274
45 ~0,02115 -0,38028
46 0.01996 - 0,35881
47 0.02945 0.52012
48 ~0.01109 -0.19918
49 ~0.03246 -0.58265

.
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Table 4.3 Autocorrelation of residuals for temperature Model ARMA (0,1,1)

{continued)

Lag Autocorrelation pk/ §.D. (py)
k Px

S0 0.05733 1.02824
51 0.06034 1.07903
52 -0.01142 -0,20356
53 0.03405 0.60686
54 -0.02309 -0.41105
11 0.01149 0.20449
56 0.02974 0.52914
57 -0.02383 -0.42374
58 -0,04094 -0,72758
59 -0.04672 -0.82910
60 0.00767 0.13580
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Table 4.4 Autocorrelation of residuals for temperature

Model ARMA (0,2,1)

Lag Autocorrelation kaS.D.(pk)
k ]
k
1 0.02017 0.38431
2 -0.03661 -0.69721
3 0.00708 0.13458
4 0.01624 0.30882
5 0.00488 0.09271
6 0.01237 0.23527
7 -0.01254 =0.23830
8 -0,00844 -0.16042
9 -0.01232 -0.23414
10 -0.03843 -0.73035
11 0.06154 1.16754
12 -0.06337 -1.19802
13 -0.02541 -0.47853
14 0.01403 0.26394
15 0.02312 0.43504
16 -0.06798 -1.27842
17 -0.03650 -0.68332
18 0.01903 0.35578
19 0.03337 0.62372
20 -0.00327 -0.06112
21 0.01907 0.35610
22 0.01027 0.19167
23 0.00269 0.05024
24 0.00560 0.10449
25 0.01360 0.25373
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2

(3) v x, = 1- 0.988B)at.

b) Specific conductance:

Figures 4.7 and 4.8 show the auto-correlation and partial auto-
correlation plots of the raw data. The auto-correlation does not tail
off even upto 30 lags indicating the presence of some kind of non-
stationarity in the series. The partial auto-correlation function tails
off after 3 days implying that a ARMA(3,0,0) model may be entertained.
The data was differenced once and Figures 4.9 and 4.10 show the corres-
ponding auto-correlation andrpartial autocorrelation functions plots.

It is seen that the auto-correlation cuts off immediately after the

first lag as shown by the confidence limit drawn at 2c distance. The
partial auto-correlations tail off quickly. This indicates that a
ARMA(0,1,1) process should be entertained for this data. Another differ-
encing was tried and Figures 4.11 and 4.12 show the corresponding auto-
correlation and partial auto-correlation plots. Figure 4.1l shows that
the autocorrelation function cuts off immediately after the first lag
whereas the partial correlation tails off smoothly. Again an ARMA(0,2,1)
model is suggested.

Hence two tentative models are suggested by these plots

(1) ARMA(0,1,1), vz, = (1 - 6,B)a,
2..
(2) ARMA(0,2,1), vk, = (1 - 8B)a, .

The initial estimates of the parameters for model 1 and 2 are ob-

tained either using (4.16) or the charts in [40].
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Table 4.5 Autocorrelation of residuals for specific conductance.

Model ARMA (0,1,1)

Lag Autocorrelation pk/S.D.(pk)
k P
k
1 0.01917 0.36579
2 -0.02683 -0.51166
3 0.00095 0.01813
4 0.00150 0.02867
5 -0.03914 -0.74599
6 0.00232 0.04406
7 0.06876 1.30850
8 0.10102 1.91332
9 -0.07487 =1,40405
10 -0.12124 -2.26134%
11 0.05545 1.02000
12 -0.04225 -0.77506
13 -0.05854 1.07203
14 0.04344 0.79300
15 0.00017 0.00302
16 -0.11508 -2.09721
17 -0.04078 -0.73439
18 0.02700 0.48550
19 -0.03405 -0.61183
20 =0.03094 -0.55538
21 -0.00161 -0.02894
22 -0.01325 -0.23762
23 -0.00512 -0.09176
24 -0.03635 -0.65177
25 0.01408 0.25225

124
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Using (4.16),

estimates of Py is obtained from the auto-correlation plot. Putting the

value of Py in above expression,

-91
-0.36 i S (for model 1)
1+6
1
_91
and -0.62 = = (for model 2)
1+B1

First relation gives ﬁl = (0,312
Second relation doesn't yield any real roots, showing thereby that the
model is not feasible for this data. Hence only model ARMA (0,1,1) was enter-
tained for further investigation.

This initial estimate was used as starting value for least squares
estimation procedure. Thus a more accurate value of parameter 61 was

obtained

Bl = 0.4715.

Diagnostic checks:

Table 4.5 contains the correlation coefficients for the sample

residuals to 25 lags. Also the ratio,

pk/s.D. (py)
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indicates that all residual correlations are effectively zero.

A value of Q was calculated to use chi square test

Q = 23.8 d.f. = 25-1 = 24,

Tabulated chi square value for 24 d.f. and 907 confidence level is 34,382
which is well above the Q wvalue.
Hence there seems to be no reason to doubt the adequacy of the model.

Thus the model could be written as
th = (1 - 0.47153)at.

(c) Flow: Figures 4.13 thru 4.18 show the auto-correlation and partial
auto-correlation functions of the raw flow data, first differenced data

and twice differenced data. These plots were analyzed and the following
tentative models were suggested

(1) ARMA(1,20) (2) ARMA(1,1,1)

(3) amMA(1,2,1).

Following table lists the results obtained from these models.

Model Tnitial Final Estimate Q  x2(0.90) d.f.

ARMA Estimate of Parameters
of Parameters

(1,2,0) 6, = 0.24 -0.24 134.60 63.2 59
(1,1,1) ¢, = 0.85 0.86

8, = 0.19 0.157 126.40 63.2 59
(1,2,1) 8, = 0.15 -0.189

0, ==0.15" 0.538 130.7 63.2 59
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The tabulated Chi square value for 59d.f. and 0.90 significance level is
63.2, which is less than the Q values obtained above. This indicates
the inadequacy of these models in explaining the variation in this data.
Another approach for modeling flow data was made by transforming the
original data to a natural log scale. Figures 4.19. to 4.24 show the
auto-correlation and partion auto-correlation plots for the transformed
data. The following tentative models were suggested by these plots

(1) ARMA(2,1,0)

(2) ARMA(0,2,1)

(3) ARMA(1,1,1).

The following table lists the results obtained for these models:

Model Estimated Q-value A xﬁ(o.go)
Parameters

(2,1,00) ¢, = 0.328 25.48 59 63.2
¢, = 0.253

(0,2,1) 6, = 0.639 32.67 59 63.2

0,1,1) ¢, = 0.816 21.82 59 63.2
0, = 0.484

It is seen that for all 'the above three models, the tabulated x2 value
is greater than the Q - value. Hence there does not seem to be any
reason to doubt the adequacy of these models.

Thus, it can be concluded that the Onterior River flow rate can be

easily modeled by transforming it to a natural logarithmic scale.
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Table 4.6 Comparison of variance of raw series and residuals.

(A) Pollutant:

Model

Raw series

ARMA (1,0,0)
ARMA (0,1,1)
ARMA (0,2,1)

(B) Pollutant:

Model

Raw series
ARMA (0,1,1)

{c) Pollutant:

Model
(a) Original Data

Raw series

ARMA (1,2,0)
ARMA (1,2,1)
ARMA (1,1,1)

Temperature

Variance

°c)?

2.624
0.216
0.223
0.226

Specific Conductance

Variance
(MHO/Cm x 107%)2

7658, 33
1951.0

Flow rate

Variance
(cfs)?

68831760.0
204500.0
205100.0
191900.0

(b) After transforming to natural logarithmic scale.

Raw series

ARMA (0,1,1)
ARMA (2,1,0)
ARMA (0,2,1)

0.87166
0.0047
0.0047
0.0051



141

As seen above, several models seem to fit for each pollutant. One
way to decide the best model would be to see the amount of variance re-
duced by each model. Table 4.6 shows the variance of the raw data and
the variance of the residuals after fitting the particular model. It
is observed that each model reduces the variance considerably but the
difference in variance of residuals for each model seems to be insig-
nificant. The particular choice of use of any model is arbitrary for
these cases.

It may be noted here that though no model could be fitted ade-
quately for original flow data, yet the tentative models significantly

reduced the variance in the data.
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CHAPTER V
ANALYSIS OF POTOMAC RIVER DATA

This chapter deals with the analysis of temperatufe, dissclved oxygen,
biochemical oxygen demand and chloride data for Potomac river. Spectral
analysis was conducted for each individual pollutant and cross-spectral
analysis was performed to study the behaviour of a pollutant at different
points of a stream and also the relationship among different
pollutants at a station. Prediction models were developed using parametric

time series modeling.

5.1 Data Acquisition:

The data were obtaiged from two different sources. The first set of data
consists of four stations which cover the upper 30 miles of the Potomac Estuary.
The approximate location of these stations is shown in Figure 5.1. Sampling
was done at half hour interval for a period of one month .(from 6{20/67
to 7/20/1967) for the first station and for 15 days (from 7/6/67 to
7/20/67) for all other stations.

The principal sources of water pollution for the Potamac River in this
region are the effulents from the sewage treatment plants. The points
of effulent discharge and the relative organic loads in the various
discharges are shown in Figure 5.1 and Table 5.1 respectively. [41] Indus-
trial wastes do not contribute much to the water pollution in this area.
Cooling water from electric generating plants constitute the major thermal

pollution source.
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Table 5.1 Sources of Sewage Discharged to the Potomac River

Source

Discharge
Location

BOD lbs/day

Alexandria, Va.
Arlington Co., Va.

Fairfax Co., Va.
Westgate

Little Hunting Creek

Dogue Creek

District of Columbia

Hunting Creek

Four Mile Run

Hunting Creek

Little Hunting
Creek

Douge Creek

Potomac River

9500

3600

12600

1000
600

92000

144
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The second set of data consist of temperature, dissolved oxygen, bio-

chemical oxygen demand and chloride records for Great Falls station on
Potomac River. The approximate location of this station is shown in
Figure 5.2. Sampling was done on a weekly basis for the period from 1/4/65
to 12/28/71.

For this study, the first set of data was obtained from a publication

by the Environment Protection Agency [43], and the second set of data was

provided in a separate communication by the same agency [42].

5.2 Analysis of Data for Statioms 1,2,3, and 4

5.2.1 Introduction: The Potomac Estuary is a highly complex tidal
system. The waste discharges in the river remain in the vicinity of the
discharge point for some time before they are passed on to the sea.

The major consequences of the sewage discharges are

(i) high bacterial density

(ii) 1low dissolved oxygen.

(1ii) excessive algal growth.

The low dissolved oxygen concentration is caused mainly by the oxidation
of the organic wastes in the water; the oxygen for this purpose being
extracted from the water itself.

Figures 5.3 thru 5.10 show the temperature and dissolved oxygen
plots for statiomns 1,2,3, and 4 respectively. Visual inspection of these
plots does not indicate the presence of a definite periodicity, though
there is indication of small (12 hrs. and 24 hrs.) periodic fluctuations in dis-
solved oxygen and 24 hrs. periodicity in temperature data. Table 5.2

below shows the mean DO and temperature levels at each station.
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Table 5.2

Mean DO and temperature levels

Station DO Temperature
mg/1 op
1 6.19 80.31
2 2.90 80.87
3 1.45 81.00
4 4.25 78.87

The dissolved oxygen level falls sharply after the first station and shows a
rise at the fourth station. The sharp decline in DO level from station 1

to station 3 may be attributed to the oxidation of the sewage discharges

from Arlington County, Washington D.C., Alexandria County and Fairfax

County. The oxidation of these organic discharges nearly reaches completion
at station 4, thereby increasing the DO level. The temperature level does not

show a wide variation over the stations.

5.2.2 Harmonic Analysis: Tables 5.3 thru 5,10 summarize the results for
harmonic analysis of temperature and dissolved oxygen data for stationms
1, 2, 3 and 4. The results for station 1 are based on one month of data
and for other stations are based on 14 days data. It is observed that
mean alone accounts for about 70-90% of the total mean square value for
DO and about 98% of the total value for temperature. The decomposition

of contributions to the mean square due to each harmonic was done by taking



Table 5.3 Harmonic Analysis - Temperature Station 1

Mean = 80.31°F Total Variance = 2.63(°C)2

Amplitude Phase Percentage
Source o (in degrees) contribution to

C
total variance

Fundamental 0.678 31.6 29,68
2nd hamonic 0. 522 -30‘3 17. 55
3rd harmonic 0.672 -79.3 29.14
4th harmonic 0.495 -33.2 15.83
5th harmonic 0.164 -36.79 1.75

30th harmonic 0.221 48.30 3.15
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Table 5.4 Harmonic Analysis - Dissolved Oxygen Station 1

Mean = 6.19 mg/2 Total Variance = 0.656 (mg/!.)2
Ampljitude Phase Percentage contribution

Source (mg/2) (in degrees) to total variance
fundamental 0.061 51.1 1.14

2nd harmonic 0.361 73.8 40. 46

3rd harmonic 0.147 73.1 6.72

4th harmonic 0.076 60.7 1.83

5th harmonic 0.119 14.6 4.39

9th harmonic 0.085 -3.02 2.26

10th harmonic 0,110 -4.96 3.78

11th harmonic 0.108 -7.7 3.67

13th harmonic 0.089 78.46 2.49

30th harmonic 0.122 62.85 4.65

58th harmonic 0,0847 ~44,2 2.23
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Table 5.5 Harmonic Analysis - Temperature Station 2

Mean = 80.87°F Total Variance = 3.60 (°F)2

Percentage
Source Amplitude Phase contribution
°p (in degrees) to total
variance
fundamental 0.931 -86.6 67.39
2nd harmonic 0.613 -6.1 29.21
5th harmonic 0.168 -81.0 2.21

13th harmonic 0.054 -81.7 0.22




Mean = 81.0°F

Table 5.6 Harmonic Analysis - Temperature Station 3

Total Variance = 2.13 (OF)2

Percentage

Source Amplitude Phase contribution to

(OEl (in degrees) total variance
fundamental 0.643 -43.7 51.65
2nd harmonic 0.4477 =21.4 25.03
9th harmonic 0.094 3.8 1.10
13th harmonic 0.089 72.6 1.01
14th harmonic 0.221 69.6 6.07
16th harmonic 0.103 10.04 1.33

159
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Table 5.7 Harmonic Analysis - Temperature Station 4

Mean = 78.87°F  Total Variance = 1.01 (°F)?
Percentage

Source Amplitude Phase contribution to

op (in degrees) total variance
fundamental 0.543 24.5 48.66
2nd harmonic 0.163 -32.5 4.38
3rd harmonic
4th harmonic 0.284 -29.0 13.33
6th harmonic 0.143 -11.1 3.37
8th harmonic 0.112 -28.9 2.09
14th harmonic 0. 2277 63.6 8.57

27th harmonic 0.1008 57.7 1.68




Table 5.8 Harmonic Analysis - Dissolved Oxygen Station 2.

Mean = 2.90 mg/%

Total Variance = 2.15 (mg/2)2

Amplitude Phase Percentage
Source (mg/2) (in degrees) contribution to
total variance
fundamental 0.907 83.0 75.90
2nd harmonic 0.264 33.1 6.43
3rd harmonic 0.184 11.8 3.13
4th harmonic 0.122 78.9 1.39
5th harmonic 0.183 ~71.8 3.11
8th harmonic 0.120 -7.6 1.33
9th harmonic 0.149 -38.7 2.07
l4th harmonic 0.049 -78.7 0.23

lel



Table 5.9 Harmonic Analysis - Dissolved Oxygen Station 3

Mean = 1.45 mg/%

Total Variance = 1,18 (mg/!.)2

Amplitude Phase Percentage

Source mg/ 2 (in degrees) contribution to
total variance

fundamental 0.325 -89.5 17.92

2nd harmonic 0.245 -49.2 10.19

4th harmonic 0.233 -38.9 9.16

6th harmonic 0.134 87.9 3.03

7th harmonic 0.092 0.1 1.44

14th harmonic 0.280 32.1 13.26

27th harmonic 0.149 =-75.2 3.78
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Table 5.10 Harmonic Analysis - Dissolved Oxygen Station &

Mean = 4.25 mg/%

Total Variance = 3.05 (mg/!.)2

Amplitude Phase Percentage
Source (mg/L) (in degrees) contribution
to total
variance
fundamental 0.911 -30.3 53.83
2nd harmonic 0.446 7.78 12.93
3rd harmonic 0.181 -14.6 2.13
4th harmonic 0.311 12.7 6.31
5th harmonic 0.178 1.17 2.07
6th harmonic 0.183 36.81 2,17
13th harmonic 0.133 20.4 1.15
l4th harmonic 0.242 69.9 3.81
15th harmonic 0.172 48.2 1.92
27th harmonic 0.121 30.7 0.96

163
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mean square value of Xy about the mean i.e. variance. As the results

for harmonic analysis indicate, the major contribution to variance is made
by the first five harmonics. The cause of variability in temperature due
to these harmonics could not be determined in the absence of longer data.
Another significant variation is caused by the 30th harmonic for the

first station and the 13th harmonic for other stations. This 24 hr. cyclic
fluctuation is due to variable solar heating during day and night. For
dissolved oxygen data at station 1, the first harmonic (corresponding to 30
days period) is relatively non-significant. The variation in dissolved
oxygen due to the first five harmonics can be attributed to the non-linear
interaction of the solubility of dissolved oxygen with temperature, the
variability of photosynthesis with temperature and sunlight etc. The
dependence of the saturation value of dissolved oxygen on temperature can

be given by the empirical non-linear relation [28]

Cg = 14.652 - 0.41022T + 0.0079910T> - 0.00077774T

3 (5.1)

A 15 days periodicity (2nd harmonic for 1lst station and 1lst harmonic for
other stations) in dissolved oxygen shows the effect of lunar fortnightly
tide. Other harmonics responsible for significant variation in the dis-
solved oxygen are the 30th and the 58th for first station; the 13th and
the 27th for stations 3 and 4. These harmonics correspond to variations
due to diurnal variation in temperature, BOD and semidiurnal tides re-
spectively. Station 2 does not show any significant variation due to
semidiurnal tide.

After having performed the harmonic analysis to obtain initial infor-

mation about the behaviour of all pollutants, spectral analysis was carried out
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to obtain some more information about the system.

5.2.3 Spectral Analysis: Figures 5.11 thru 5.18 show the autocorrelation
plots for temperature and dissolved oxygen for stations 1,2,3 and 4.

Their failure to damp off quickly indicates the presence of trend in the
data. A pilot study of the spectral estimate of raw data resulted in
high peaks at zero frequency. It was decided to use prewhitening. In
this analysis, the factor a = 0.99 was used for prewhitening. A series

of spectral estimates were obtained using different value of lags and

it was found that 100 lags give satisfactory results, Figures 5.19 thru
5.26 show the recolored power spectral estimates for the eight series.

A high peak at zero frequency is observed in all power spectra. This

may be taken as an indication a trend being present, but in view of the
short data length, a long periodic fluctuation (annual or seasonal) may
also cause this peak. This assumption seems to be more realistic as

the temperature and dissolved oxygen are known to follow an annual cycle.
Additional data is warranted to obtain more reliable information about
the zero frequency component. The temperature power spectra at all
stations show a high peak at a 24 hour cycle. This fluctuation may

be attributed to variable solar heating. Another peak is observed at a
12 hour cycle. No physical significance could be attributed to this peak.
It could be a harmonic of the 24 hour cycle. Dissolved oxygen spectra
show two definite peaks at 24 hour and 12 hour cycle corresponding to
diurnal variation in temperature, photosynthesis and semidiurnal variation
due to tidal phenomena. Table 5.11 summarizes the important components
of power spectra for dissolved oxygen records at the four stations. It

is seen from the Table 5.11 that the maximum variance at 24 hour and
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Table 5.11. Some Components of Power Spectrum of Dissolved Oxygen

at Stations 1,2,3 and 4.

Station Feriad
Long 24 hrs. 12 hrs.
1 10.320 0.212 0.154
2 34.493 0.677 0.058
3 17.457 1.98 0.55

4 59.930 1.99 0.56
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12 hour period is associated with stations 3 and 4. Station 3 is the
point where the mean DO has a minimum value. Thus the maximum variance
in DO occurs where the mean DO is minimum. As station 2 is near to the
waste discharge point, hence its diurnal variation may be associated

with diurnal variation in stream BOD.,

As mentioned earlier, another approcach to remove trend is with
harmonic regression. This technique was used to remove harmonics from
the raw data and thus form a predictive model. The regression equation
for temperature at station 1 consisted of regressing 21 independent vari-
ables over one dependent variable. For this purpose, the half hourly data
for one month was averaged to provide 2 hourly data. Using all 21 vari-
ables gave multiple correlation coefficient R2 = .,974, It was seen

2=

that the addition of the first nine variables resulted in value of R .952.

Thus, the addition of 12 more variable does not yield any significant
2

improvement in R"; though it results in a considerable increase

of computational effort. The equation with first nine variables is

given as

27t
t 79.89 + 0.0051t + 0.5573 cos (361

27t 21t
+ 1.5231 sin (361) + 1.2894 sin (120)

+ 0.8312 cos (z“t) - 0.5344 sin (2’rt

+ 0.2483 cos (z“t) + 0.3005 sin (z“t)

2Tt

+ 1.4961 cos (Eia).

with R™ = ,952
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F(9,351) = 385.6644
Similar model was formed for dissolved oxygen for station 1 based on

2 hourly data. The model is

2nt
DOt 6.1970 + 0.1967 cos (180) = (0.6960 sin (180)
- 0.2600 sin (2ZL) - 0.2340 cos (Z“t)
120
2nt 2rt
- 0.1755 cos (= 40) - .2405 cos ( 30

Znt

+2192 cos (—= 33) + 0.2090 sin (

0.1503 sin (223)

with R® = .810

The power spectra for temperature and dissolved oxygen after removing
harmonics is shown in Figures 5.27 and 5.28 respectively.
As these models involve the use of too many parameters, the pollutants
at other stations 2,3, and 4 were not modeled using this procedure.
Autoreéressive moving average parametric modeling procedure was
used to obtain models for temperature and dissolved oxygen at all
stations.
5.2.4 Autoregressive Moving Average Models:
Parametric time series models were fitted to all eight series. In the
following discussion, temperature and dissolved oxygen models for station 1
will be described in details and the results for other stations will be

summarized.
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(a) Temperature: The autocorrelation and partial autocorrelation plots
for the raw, first differenced (Vx) and second differenced (Vi) data are
shown in Figures 5.29 thru 5.34 for 2 hour data interval. The autocor-
relations for the raw data are large and fail to die out at higher lags.
While simple differencing reduces the correlations in general, a very
heavy 12 lag periodic component remains as evidenced by large correlations
at lags 12 and 24. Second differencing reduces the correlations isgnifi-
cantly but periodic components remain large. Further differencing was
carried out to remove the ;2 lag periodic component, Figures 5.35 and
5.36 show the autocorrelation and partial autocorrelation obtained by
differencing for seasonal component i.e. Vvlzx. This differencing reduces
the correlations at all lags considerably. Thus the possible candidate

model is

12 24
wo = (1-6B)(1-8,,8B -0,,87) a

12 t

where ,w . = VW x

12 ©

Using 4.16, the rough estimates of the parameters were obtained as,

6 = -0.02
612= 0.56
624= -0.10

The least square estimates of these parameters are

8 = -0.099

912= 0.667
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.and 924 = -0.077

Figure 5.37 shows the autocorrelation plot for the residuals after fitting
the above model. All except 3 points are within the +2¢ limits.

An overall check on autocorrelation function is provided by the quantity

90 -
Q=n X ri(a) = 111.36, which is distributed as xz with 87 degrees of
k=1
freedom. The tabulated xg 95 value (113.14) is greater than Q = 111.36,
indicating thereby, that there is no reason to doubt the adequacy of this model.

A spectral analysis was done for the residuals which did not indicate
the presence of any dominant cyclic fluctuation,.

Thus the model is,

2

w = (1 + 0.099B)(1 - 0.667B%2 + 0.0778%%) a,

t

or w =a + 0.099at_1 - 0.667a 1, - 0.0660at_13

+0.077a__,, + 0.0076a _

24 25

A comparison of the original dates variance and the residuals variance is

given below which shows that a considerable reduction in variance has been
achieved.

Variance of original data = 3.53 (OF)2
0.092 (°F)?

Variance of residuals

2 _ 3.53-.092 _
3.53

(b) Dissolved oxygen: The autocorrelation and partial autocorrelation

R 971 = 971 : -

plots for the raw data. Vx, sz and vvlz are shown in Figures 5.38 thru

5.45. As before, these plots suggest a tentative model
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12
W, =(1-8B)1-0,8

24
128 7 8B )3,

where, g™ W].th

Initial estimates of the parameters are,

Bl = 0.30

612 = 0.50

824

0.16

Using least squares estimation, final values of the parameters were ob-

tained as
01 = (0.261
612 = (0.536
924 = 0.125

Figure $,46 shows the autocorrelation plot of the residuals. It is seen
that all except one value are within +20 limits.
60

An overall check on autocorrelation gives Q = n Z ri(a) = 66.12,
i=1

which is distributed as Chi square with 57 df. This value is

2
less than the tabulated value of X, ¢q(74.40) which shows that there is no

reason to doubt the adequacy of the model.

Thus the model is,

W, = (1 - 0.261B)(1 - 0.536812 - 0.025824)at

A comparison of the variance of the original data and the residuals is

given below:



208

Table 5.12 Summary of Autoregressive Moving average Models for

Station 2,3,4.

~

Series Model Parameters Variance Variance
of of
original residuals
series
(A) DO 1) ARMA(0,1,1) 91 = 0.312 0.065
Station 2 2) ARMA(0,2,2) al = 1.24 2,15 0.068
Temper- 1) ARMA(0,1,1) 61 = (0.372 0.015
(B) ature 3,60
Station 2 2) ARMA(0,2,2) Bl = 1.144 0.014
DO ARMA(0,1,1) 61 = 0.443 0.384
Station 3  ARMA(0,2,2) e1 = 1,25 1.18 0.40
Temper- .
(D) ature ARMA(0,2,2) gl - _1,6"22 2.13 0.27
Station 3 2 -
DO al = 0.365
Station 4 ARMA(1,2,2) 61 = 1,51 3.05 0.186
82 = =0.53
Temper- 91 = 1.47 1.01
(F) ature ARMA(0,2,2) 6, = -0.48 . 0.33

Starting
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Variance of original data = 0.55

Variance of residuals = 0.17

As discussed earlier in the spectral analysis of the dissolved oxygen data,
cyclic fluctuations corresponding to 24 hrs and 12 hrs period were found to be
dominant. Thus, an attempt was made to remove these periodicities by
harmonic regression and fit a parametric model to the residuals. The
autocorrelation plot of the residuals suggested a tentative ARMA(1,1,1)

model. The usual procedure of estimation of parameters resulted in the model
(1 + 0.092B)y — (- 0.9-’+3B)at

The residuals, thus obtained still had a high correlation among themselves
and hence this model was not considered for further investigation.

Table 5.12 summarizes the models for temperature and dissolved
oxygen for stations 2,3 and 4.
5.2.5 Cross-Spectral Analysis. Cross-spectral analysis was conducted
to study the behaviour of temperature and dissolved oxygen at different
stations in the stream and also the relationship between temperature and
dissolved oxygen at each station. This involved the study of sixteen
pairs of time series. Some of the results will now be discussed below:
(a) Temperature station 1 and dissolved oxygen station 1: As high auto-
correlations were observed for large lags for both the pollutants, dif-
ferenced data was used for further calculations. Figure 5,47 shows the
cross correlation function for the differenced data. It oscillates about
zero lag. The maximum value of crosscorrelation is observed at zero lag,

hence no alignment is necessary. Figures 5,48 thru 5,51 show the corresponding
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coherency, phase and transfer function spectra. High values of coherency
are seen at 0.04 cycles/hr., 0.09 cycles/hr, 0.24 cycles/hr-and 0.37 cycles/hr.
The first frequency refers to diurnai variation in temperature and dis-
solved oxygen. A high transfer function is observed at this frequency,
implying that high diurnal variation in temperature will cause high
variation in dissolved oxygen. High coherency at higher frequencies does
not have any particular significance, since these variations are not
domi?ant in the individual power spectrum. The phase spectrum seems to
oscillate sbout 180° and thus indicates a fixed angle lag relationship
between the two series with temperature leading dissolved oxygen.

(b) Temperature and dissolved oxygen at station 3: Figures 5.52 to 5.56
show the crosscorrelation function, coherency, phase and transfer function
spectra of the differenced data. High coherency is observed at low fre-
quencies meaning that the long range fluctuations in temperature and
dissolved oxygen are highly related. In particular, high values are

seen in the band 0.03 cycles/hr to 0.05 cycles/hr corresponding to

diurnal variation in each temperature. The transfer function is moderately
high in this reg-on suggesting that high variability in DO is caused by
high variability in temperéture; The phase diagram is again seen to
oscillate about 180° suggesting a fixed angle lag. This may be expected
as temperature and dissolved oxygen have a inverse relationship.

(c) Temperature station 4 and temperaﬁure station 3: Interstation cross-
spectral analysis is used to investigate the variation in pollution at
different points in a stream. As shown earlier in spectral analysis, the

autocorrelation plots of temperature at station 4 and 3 damped very slowly
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indicating the desirability of filtered data for further analysis. Again,
a simple difference filter was used. The crosscorrelation function,
coherency, phase and transfer function are shown in Figures 5;57 thru 5.61.
A high coherency is observed in the frequency band 0.040 cycles/hr -

0.046 cycles/hr, corresponding to 24 hrs period. The phase lag in this
frequency band is around zero indicating that the two peaks occur simul-
tanenously which may be expected for diurnal variation in temperature due
to solar heating. Another high coherency is observed at zero frequency.
This implies that the long range variations in temperature are also highly
correlated. Coherency at all other frequencies is low. The transfer
function is relatively low at all frequencies.

(d) DO station 1 and DO station 2:

Figures 5,62 thru 5.66 show the crosscorrelation, aligned coherency,
phase and transfer fﬁnction,Spectra of the differenced data. High co-
herence is observed at low frequencies implying thereby, the strong cor-
relation of long periodic fluctuations. Low correlation is observed at
0.04 cycles/hr. (24 hrs period) and 0.08 cycles/hr. (12 hrs period).

It was seen in the individual power spectral analysis that both the pol-
lutants have significant diurnal variations. Low coherency at this fre-
quency suggests that the causes of variation behind DO at station 1 and 2
are different. Since station 2 is near a waste discharge point, hence it
seems that diurnal variation in BOD is a prime cause of the diurmal variation
in DO at station 2 whereas diurnal variation in DO at station 1 is caused
primarily by temperature and photosynthesis. A high transfer function is

observed between station 1 and station 2 at low frequencles. It indicates
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that the varlance in DO at station 2 will be high at low frequencies if
the DO at station 1 were the only factor affecting it.
Similar cross spectral studies were conducted between other pairs

of series and the corresponding results are summarized in Table 5.13.
5.3 Analysis of Potamac River Data at the Great Falls Station:

5.3.1 Introduction: Temperature, dissolved oxygen, biochemical oxygen
demand and chloride records for this station were analyzed using spectral
analysis and cross-spectral analysis. Predictive models were obtained for
each pollutant using parametric modeling. About 2Z of the observations
were found missing in all the records. As suggested in [27], the mean for
each record was subtracted from the whole series and the missing values
were replaced by zero. Figures 5.67 to 5.70 show the records of the

four pollutants. Inspection of the records does not fevealrany obvious

trends. The presence of an annual frequency is indicated in the plots.

5.3.2 Harmonic Analysis: As the pollutants show a tendency to have an
annual cycle, it was decided to carry out harmonic analysis to investigate
more about these cyclic fluctuations. Tables 5.14 thru 5.17 show the
results of harmonic analysis. The annual component (7th harmonic) alone
accounts for about 75 - 85% of the total variance for temperature and
dissolved oxygen. In case of the chloride record, the annual component
accounts for 30%Z of the total variance. Another 17% of the variance is
caused by the 2nd harmonic corresponding to a 3 years cycle. Biochemical
oxygen demand does not show a dominant effect for any particular frequency.

It's variance is evenly distributed over the whole frequency range.
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Table 5.14 Harmonic Analysis - Temperature Great Falls Station

Mean = 13.49°¢ Total Variance = 77.58 (OC)2

Amplitude Phase Percentage
Source °c (in degrees) contribution to
total variance

2nd harmonic 1,002 71.8 2.59

7th harmonic 5.81 39,22 87.18
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Table 5.15 Harmonic Analysis - Dissolved Oxygen Great Falls Station

Mean = 9.53 mg/% Total Variance = 5.36 (mg/£)2

Amplitude Phase Percentage
Source mg/L (in degrees) contribution

to total variance

fundamental 0.192 16.1 1.38
3rd harmonic 0. 207 -54.4 1.60
7th harmonic 1.421 35.9 75.28
1l4th harmonic 0.125 62.7 0.58

27th harmonic 0.168 -60.1 1.05




Table 5.16 Harmonic Analysis - Biochemical Oxygen Demand Great Falls

Station.

Mean = 2.608 mg/%

Total Variance = 2.38 (mg/.%)2

Amplitude Phase Percentage
Source (mg/L) (in degrees) contribution to
total variance
fundamental 0.164 -55.5 2.28
2nd ﬁarmonic 0.302 49,7 7.71
5th harmonic 0.118 -84.9 1.17
6th harmonic 0,232 -16.7 4.54
7th harmonic 0.195 76.3 3.20
8th harmonic 0.161 -57.2 2.18
1l4th harmonic 0.124 34.5 1.30
15th harmonic 0.119 68.9 1.19
16th harmonic 0.173 -83.2 2.54
21st harmonic 0.172 10.9 2.49
23rd harmonic 0.135 9.1 L4055
25th harmonic 0.143 -1.9 1.72
27th harmonic 0.133 42.4 1.49
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Table 5.17 Harmonic Analysis = Chloride Great Falls Statiom.

Mean = 14.46 mg/2

Total Variance = 43.89 (mg/ﬂ)2

Amplitude Phase Pexrcentage
Source (mg/L) (in degrees) contribution to
total variance
fundamental 0.518 80.7 1.22
2nd harmonic 1,908 -74.9 16.60
3rd harmonic 1.070 10.7 5.22
4th harmonic 0.709 -29.3 2.30
5th harmonic 0.592 23.6 1.60
6th harmonic 0.587 26.5 1.57
7th harmonic 2.525 -83.3 29.06
8th harmonic 0.582 -37.3 1.54
9th harmonic 0.584 42,2 1.55
10th harmonic 0.953 -52.8 4.15
12th harmonic 0.746 -82.1 2.54
13th harmonic  0.742 8.9 2.51
15th harmonic  0.497 -50.9 1.13
17th harmonic 0.886 28.5 3.58
24th harmonic  0.579 72.5 1.53
39th harmonic 0.534 22,7 1.30
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After having obtained some idea about the behaviour of each pol-

lutant by harmonic analysis, we-pfocéedlﬁo'spectral ana;ysid.
5.3.3 Spectral Analysis:l-Figures 5.71 to 5.78 show the autocorrelation
and power spectral estimates of the temperature, dissolved oxygen, bio-
chemical oxygen demand and chloride respectively. In general, the auto-
cofrelation function dies off quickly for all pollutants. A high value
at 52 lags for DO, temperature and chloride indicates the presence of
an annual cycle. The power spectrum for temperature shows a high peak
at .011 cycles/week, corresponding to an annual cycle. Other less domin-
ant peaks are observed at periods of 26 weeks, and 16 weeks which may be
attributed to seasonal changes in temperature. Ah annual peak is also
evident in power spectrum for dissolved oxygen. This may be correlated
with the annual variation in temperature. Other dominant peaks are
seen at periods of 30 weeks and 14 weeks. These may also be linked with
the seasonal variation in temperature. The power spectrum for biochemical
oxygen demand shows dominant peaks at 52 weeks, 26 weeks, 16 weeks,
7 weeks and about 18 days. The exact cause of variation of BOD over
such a large frequency range is not known. As BOD is expected to follow
cyclic fluctuations with periods shorter than one week, hence effects
due to aliasing will be present. This may distort the spectrum,
especially, at high frequencies. The chloride power spectrum shows
dominant peaks at periods of 52 weeks, 12 weeks and 8 weeks. These
variations in chloride content may be correlated with the variations in
the flow rate in the river.

Harmonic regression was performed to remove the dominant harmonics

as indicated by the harmonic analysis. The residuals, thus obtained
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were again subjected to spectral analysis. Figures 5,79 thru 5,82
show the corresponding power spectrum estimates. A comparison of the
variances before and after removal of the harmonics as evidenced by the
magnitude of peaks in the spectral estimates shows that it has been re-
duced considerably throughout the whole frequency range for all pollutants.
The regression equation for each pollutant is given below. In each
equation the mean has been subtracted from the data.
(a) Temperature:
Annual frequency alone gives a high multiple correlation coefficient.

Thus, the model is

2t 2rt
Tt -0,0811 - 10.57 cos T3 4.98 sin 5y *

The mean of the temperature record should be added to it for obtaining
the actual temperature.

with R? = .936

and F(2,3 58) = 1275.0
(b) Dissolved oxygen:
In this case also, a sufficiently high multiple correlation coefficient

is obtained the annual frequency alone.

Thus, the model can be given as

_ 27t 2nt
DOt = 00,0205 + 2.64 cos 57 + 1,08 sin 57

with R® = .868

and F(2, 358) = 548.69
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(c) Biochemical oxygen demand:

The model is
BOD, = -0.3176 + 0.0018t - 0.1956 cos 21

~0.2664 sin ZL% - 0.2479 cos e
-0.2306 sin 2—% + 0.2514 cos %E‘
+0.0740 sin 22% - 0.0640 cos 2t
+0.2024 sin ZIE + 0.3922 cos e
40.5636 sin %%%-+ 0.1845 cos 2%%
-0.0727 sin 22%

with R® = .418

F(13, 347) = 5.68

This model is not efficient for prediction purposes as evidenced by a
low value of the multiple correlation coefficient.
(d) Chloride:
As indicated by harmonic analysis the regression equation consisted
of 14 independent and 1 dependent variable. But a sufficiently high multiple

correlation coefficient was obtained using only 6 terms. The model is

_ 2nt
C, = 0.0017 + 3.6680 sin Tg5
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2mt 27t
- 2.0997 cos 120 5.0503 sin 5%
2t 27t
= 1.2155 cos 36 + 1.6463 sin T
2nt
+ 1.6218 sin 51

with R? = 754

F(6, 354) = 77.68

5.3.4 Autoregressive Moving Average Models: Table 5.18 summarizes the

.

results obtained for the parametric models for each polluf;nt.

5.3.5 Cross-Spectral Analysis: A cross-spectral study was made to
study the behaviorival relationship of the pollutants. This involved
the study of six pairs of series,-viz.,

(i) Temperature and dissolved oxygen

(ii) Biochemical demand and dissolved oxygen

(iii) Temperature and chloride

(iv) Temperature and biochemical oxygen demand

(v) Dissolved oxygen and chloride

(vi) Biochemical oxygen demand and chloride.

Some of the important results of the cross-spectral analysis are
presented below:
(a) Temperature and dissolved oxygen:

Figures 5.83 thruS5.86 show the cross correlation, coherency,
phase and transfer function for temperature and DO series. The cross-

correlation function oscillates around zero lag and shows a high
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Table 5.18 Summary of Autoregressive Moving average Models for

Great Falls Station,

Series Model Parameters Variance Variance
of raw of
data residuals

(A) Temper- ARMA(0,2,2) 91 1.257 9.72

ature 02 -0.37

77.58
ARMA(1,2,1) ¢1 =0.20 10.07
e 0.88
1
27t
=10. 56 cos zo—
27t
-4.98 sin 55 + X,
x_: ARMA(2,0,0) ] 42 6.86
t 1
¢2 . 147
ARMA(0,1,1) 81 0.77 7.20
ARMA(1,1,1) ¢ 0.318 6.64
1
<] 0.92
1
(B) Dissolved ARMA(0,l1,1) 91 0. 445 1.59
oxygen 5.36
ARMA(0,2,2) el 1.43
62 -0.515 1.68
(C) Biochem- ARMA(1,1,1) ¢l 0.063 1.21

ical 91 0.869 2,38

oxygen

demand

(D) Chloride ARMA(0,1,1) Bl 0.20 12.7
43,89
ARMA(1,2,1) ¢1 -0.18
0 0.979 13.2
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correlationlat 52 lags. High coherency is observed i; the frequency
bands 0.011 cycles/week - 0.0333 cycles/week, 0.0444 cycles/week - 0.061
cycles/week, 0.1000 cycles/week - 0.111 cycles/week, 0.1389 cycles/week =
0.1611 cycles/week. These correspond to annual fluctuations, semi-annual
and other seasonal variations in temperature and dissolved oxygen. The
phase difference in these frequency bands is around 180° which is in ac-
cordance with the physical relationship between the two pollutants. In
general the phase spectra oscillates about 180°, A high transfer function
is observed from dissolved oxygen to temperautre. -

(b) Biochemical oxygen demand and dissolved oxygen:

The crosscorrelation, coherency, phase and transfer function spectra
of BOD and DO are shown in Figures 5.87 to 5.91. The crosscorrelation
has a oscillating behaviour. High coherence is observed at 0.038 cycles/
week and 0.0722 cycles/week corresponding to six monthly and sgaspual
changes in BOD and DO. The phase spectra shows a phase difference of
about 1 week at these frequencies.

Table -5,19 summarizes the results for the cross-spectral study of

this data.
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Station.

Table 5.19. Summary of Cross—Speétral Analysis at Great Falls
Series Series 7

1 2 Conclusions
Temperature BGD Low coherency throughout the frequency ramge
Temperature Chloride Low coherency throughout the frequency range
BOD Chloride Low coherency throughout the frequency range
Do Chloride Low coherency throughout the frequency range
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ABSTRACT

As water flows down a river basin, it undergoes many physical,
chemical and biological changes thereby varying its quality character-
istics. In this report mathematical models have been formulated using
Time Series Analysis to study the behaviour of various water quality
indicators such as temperature, dissolved oxygen, BOD etc. for some
stations on Ontario River and Potomac River.

Water pollution data have been known to exhibit cyclic variatioms
due to several factors like seasonal changes in surrounding weather,
photo sjnthesis, semidurinal tides etc. Spectral analysis was applied
to determine these cyclic variations. Using the information thus ob-
tained, regression analysis was performed to obtain the prediction
model for each pollutant. |

The interaction of one pollutant with another pollutant at the
same station and the relationship of the same pollutant at different
stations was studied using cross-spectral analysis. Coherency spectrum
was drawn for each case.

Another approach to model the time series data is through the use
of Autoregressive Moving Average methods. In this study, autocorrelation
function of each series was used to identify the models. The values of
the parameters of the suggested models were estimated and diagnostic

checks were made to ascertain the appropriateness of each model.



