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Abstract 

The transition into lactation is a period of primary concern to dairy producers because of 

the tremendous incidence of health disorders observed during this time.  Two common disorders 

that lead to decreases in production and retention within the herd include fatty liver disorder (FL) 

and ketosis.  These two disorders have been commonly associated with negative energy balance, 

yet recently it has been hypothesized that inflammation is a contributor to the etiology of these 

disorders.  Three individual projects were completed for this dissertation, all involving 

inflammation.  The role of endogenous inflammation was determined by administration of 

sodium salicylate (SS) to cows for 7 d after parturition, and metabolites and production 

responses were evaluated.  Overall it appears that SS induced hypoglycemic conditions and 

increased triglyceride accumulation in the liver (while administered), increased lipid 

mobilization and ketones (2 weeks after administration ended), and increased whole lactation 

milk production in older cows.  A sensitive, specific sandwich ELISA for bovine tumor necrosis 

factor-α was developed, which provided the ability to measure “normal” circulating levels of this 

cytokine.  The final study involved inducing inflammation by daily injections of the TNFα to the 

early lactation dairy cow.  In this model, cows receiving TNFα had a reduction in dry matter 

intake, water intake, and decreases in milk production and milk components.  Overall, it appears 

that inflammation is involved in the normal biology of the transition dairy cow and disrupting 

this can lead to interesting negative effects and some improvements of production; however, 

when inflammation is much greater it can lead to negative production effects.   
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Chapter 1 - Literature Review 

The dairy industry in the United States is a large, multi-faceted sector with a direct 

economic impact of approximately $31.5 billion in 2010 (U.S. Census Bureau, 2012).  From the 

latest annual review (2010), the US dairy industry has been showing tremendous improvement in 

milk yields with less cows in production (USDA Agricultural Marketing Service, 2010).  This 

increase in productivity has occurred due to improvements in nutrition, management, and 

genetics, yet overall disease incidences have been increasing (summarized by Goff, 2010).  

According to the National Animal Health Monitoring Systems (NAHMS) surveys from the last 

decade, the percentage of cattle affected with mastitis, lameness, and abomasal displacement 

were increased by 2, 3.5 and 0.7% respectively (National Animal Health Monitoring System, 

1996; National Animal Health Monitoring System, 2007).  The only disease that had a 

decreasing incidence was milk fever, which is probably explained by the nutritional 

modifications that have occurred over the past decade.  It has been hypothesized that the increase 

in milk yield by individual cows is a driving force in the increase in health disorders; however 

this has not been proven to be the case.  When comparing the average of 61 high-yielding U.S. 

herds to other “normal-yielding” herds, there was no difference in health disorders, although 

there was a much larger variation in disorder incidences within the high-yielding herds 

(Ingvartsen, 2006).  This large variation might possibly explain why some studies have identified 

a correlation between milk yield and mastitis, ketosis, and foot/leg disorders (Ingvartsen et al., 

2003). 

The transition period is the time when the greatest incidences of diseases are observed on 

a dairy operation.  The first several weeks after parturition accounts for the majority of 

morbidities observed on dairy operations (Ingvartsen, 2006).  Typically, these disorders can be 

classified as being related to feeding- and management-related or infection-related disorders.  

The most commonly observed feeding- and management-related transition disorders include 

fatty liver, ketosis, ruminal acidosis, milk fever, and displaced abomasum (DA) (Ingvartsen, 

2006).   Mastitis and metritis are also commonly observed during the transition period and are 

infection-related disorders.  Transition disorders cause negative impacts on the whole lactation 

and cost the producer revenue.  Cows suffering from one transition disorder are at greater risk for 

contracting other health issues (Bobe et al., 2004).  Seemingly unrelated conditions like mastitis 
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and ketosis often occur simultaneously (Goff, 2006).  This observation has caused several 

investigators to study how a disease that is caused by bacterial infection can trigger a metabolic 

disorder.  Several diseases build on each other to generate a complex of metabolic and infectious 

problems that can impact the longevity and fertility of a cow.  Poor fertility, in turn, is the 

primary reason for involuntary culling of animals in the dairy industry (National Animal Health 

Monitoring System, 2007). 

This review will focus on two key transition disorders that are related, fatty liver and 

ketosis, including their symptoms, metabolic effects and causes.  The two putative causes that 

will be addressed at length are negative energy balance and inflammation.  Finally, this review 

will discuss the possibility of managing these disorders with the use of non-steroidal anti-

inflammatory drugs (NSAIDs).    

 Overview of fatty liver and ketosis and their effects on reproduction. 

 Fatty liver disorder 

Fatty liver disorder is defined as an abnormal accumulation of lipid in the liver.  Fatty 

liver is diagnosed in the live animal by measurement of triacylglycerol (TAG) content of liver 

biopsies or histological examination of tissue cross-sections.  The gross pathology of fatty liver 

includes an enlarged, swollen, yellowish liver with rounded edges (Morrow, 1976; Kapp et al., 

1979; Bobe et al., 2004).  The histological findings include fatty cysts in liver parenchyma, 

increased volume of hepatocytes, mitochondrial damage, compression and decreased volume and 

number of organelles (Kapp et al., 1979; Reid and Collins, 1980; Johannsen et al., 1993; Bobe et 

al., 2004).   

It has been estimated that 5-10% of dairy cows have severe fatty liver (>10% TAG in 

liver) and between 30 and 40% have moderate fatty liver (5-10% TAG) in the first month of 

lactation (Bobe et al., 2004).  Clinical symptoms of fatty liver include lack of appetite and weight 

loss, and weak and apathetic cows (Radostits et al., 2000).  Fatty liver is highly associated with 

other transition disorders such as DA, ketosis, laminitis, mastitis, metritis, milk fever, and 

retained placenta, with the two that have the highest association with fatty liver disorder being 

DA and ketosis (Bobe et al., 2004).  As Bobe et al. (2004) summarized, the severity of fatty liver 

has a very strong positive relationship with urinary ketone concentration and large negative 
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associations with feed intake, milk production, health status, and reproductive performance.  The 

monetary cost of fatty liver has been estimated to be $145/case (Guard, 1994).    Fatty liver is 

often reversible, yet it predisposes cows to other conditions and impairs liver function (Bruss, 

1993; Grummer, 1993; Drackley, 1999; Rukkwamsuk et al., 1999; Drackley et al., 2001). 

Metabolic changes that are seen with fatty liver include elevated blood concentrations of 

non-esterified fatty acids (NEFA), β-hydroxybutyric acid (BHBA), and acetoacetate (Bobe et al., 

2004).  Cows with fatty liver also exhibit suppression in lipid transport from the liver.  Some 

specific lipoproteins that are decreased in ketotic cows compared to healthy lactating cows 

include apolipoproteins B, A-I, A-IV, and C-III (İleri-Büyükoğlu et al., 2009).   

Elevated concentrations of NEFA increase lipogenesis and ketogenesis in the liver, while 

high concentrations of BHBA and acetoacetate decrease rates of β-oxidation, gluconeogenesis, 

and the citric acid cycle (Bobe et al., 2004).  Additionally, some enzyme activity is decreased in 

the liver with cows that have fatty liver.  Two specific enzymes include protein kinase C and 

carnitine palymitoyltransferase which further impact lipid metabolism in cows with fatty liver 

(Mizutani et al., 1999; Katoh, 2002; Bobe et al., 2004).  These enzymes are involved in post-

translational modification of apoprotein A-I, β-oxidation, and ketogenesis (Mizutani et al., 1999; 

Katoh, 2002).  Fatty liver is commonly associated with changes in carbohydrate, lipid, and 

protein metabolism in the liver, while lipolysis occurs in the adipocyte (Bobe et al., 2004).   

Bobe et al. (2004) summarized in a review on fatty liver that there are three categories of 

risks factors for fatty liver:  nutritional, managerial, and genetic.  One nutritional risk factor is 

negative energy balance and the changes in nutrient requirements associated with lactation.  

However, not all risk factors can be classified into one specific category; for example, 

overconditioning in the dry period can be caused by overfeeding energy or by allowing the dry 

period to be too long. 

Nutritional risks for fatty liver. The transition from gestation to lactation dramatically 

increases requirements for energy while a depression in intake simultaneously occurs, which 

initiates a negative energy balance.  Negative energy balance is when intake of energy (i.e. 

calories) is less than the output of energy.  In the dairy cow some of the outputs include milk 

production and maintenance requirements.  Feed intake of healthy cows in early lactation has 

been reported to be deficient of requirements by 26 and 25% for NEL and metabolizable protein, 

respectively (Bell, 1995).  The mammary gland is the organ that takes up the largest percentage 
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of the energy that is consumed, accounting for up to 97% of the NEL intake (summarized by 

Drackley, 1999 as recreated from Bell, 1995).  Obesity further compounds negative energy 

balance as obese cows (BCS ≥ 4.0 on scale of 1-5) have a greater magnitude of feed intake 

depression and subsequently more lipolysis (Rukkwamsuk et al., 1998; Stockdale, 2001).  

Increased adipose tissue mass in obese cows is a result of either greater adipocyte size or 

increased adipocyte number.  Adipocytes are able to secrete hormones and cytokines including 

leptin and TNF, both of which depress feed intake and insulin sensitivity and increase hepatic 

lipogenesis, peripheral tissue catabolism, and inflammation (Drackley, 1999; Ohtsuka et al., 

2001; Kushibiki et al., 2003). Therefore, increased adipose tissue mass in the obese cow may 

contribute to increased cytokine secretion and subsequent impairment in systemic metabolism.  

However, not all obese cows experience fatty liver disorder, especially if they are able to avoid 

other disorders and adapt their intake to match milk production (Smith et al., 1997).  This 

alteration in the hypothesis that cows that are obese will have fatty liver indicates that fatty liver 

disorder must be very complex and multi-factorial in its etiology. 

The adaptation of the diet for the transition cow is an important nutritional factor to 

consider in regards to fatty liver.  During the dry period, diets fed to cows are lower in energy 

and cows must be able to adapt quickly to a higher energy diet intended to offset the depression 

in intake after parturition.  This transition must be done correctly to avoid acidosis, which causes 

further issues for the transition dairy cow.  Another nutritional component that must be 

accounted for after parturition is calcium.  Calcium is in tremendous demand after parturition for 

synthesis of milk and if its concentration in plasma drops too low, milk fever can result 

(summarized by Bobe et al., 2004).  Milk fever is one of the transition disorders that is associated 

with fatty liver and as such, managing calcium will be important to managing fatty liver disorder.  

Additionally, both vitamin A and E (as retinol and α-tocopherol, respectively) are decreased 

around parturition by 38 to 47%, respectively (Goff and Stabel, 1990).    All the above 

mentioned nutrients are needed to maintain a healthy animal and as such they need to be 

provided in a correct balance. 

Management risks for fatty liver.  Management risks include feed issues, incorrect diet 

management, and facility issues.  Certain feeds can promote development of fatty liver.  Silage 

with elevated levels of butyrate could play a role in fatty liver disorder because of a suppression 

in feed intake and an increase in BHBA production (Stober and Scholz, 1991).   
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A strong correlation between the amount of concentrate fed and the occurrence of 

acidosis, fatty liver, ketosis, left DA, and laminitis has been identified through several 

epidemiological studies (Coppock, 1972; Dougherty et al., 1975; Nagaraja et al., 1978).  

Acidosis can be a risk factor for fatty liver because it increases ketogenesis and concentrations of 

endotoxins and proinflammatory cytokines (Nikov et al., 1981; Goff and Horst, 1997; Furll and 

Leidel, 2002; Kushibiki et al., 2003).   

Over-conditioning in the dry period is another management issue that has effects on fatty 

liver.  Cows that are over-conditioned have higher TG content in their liver in the first week of 

lactation which could be directly caused by elevated NEFA compared to cows that were fed 

maintenance diets (Rukkwamsuk et al., 1998).  Obese cows lose more body weight during the 

first 14 DIM than normal cows, although in this study the incidence of ketonemia and clinical 

ketosis was similar regardless of body fat (Smith et al., 1997).  Overconditioning in the 

prepartum period can increase total lipids and triglycerides in the liver while significantly 

increasing the triglyceride to phospholipid ratio postcalving (Fronk et al., 1980).  Total health 

disorders were numerically higher for cows that were overconditioned, in which the 3 most 

common disorders were mastitis, milk fever, and ketosis (Fronk et al., 1980) .  Similarly, in a 

smaller trial, Reid et al. (1979) observed that fat cows have a higher incidence of disorders at 

parturition. 

Older cows are at a higher risk of developing fatty liver disorder (Reid, 1980; Woltow et 

al., 1991) as well as most other common transition disorders.  This could be due to a multitude of 

different risk factors that have been observed in older cows.  These include excessive adipose 

tissue at calving that could be related to longer calving intervals, higher milk production, weaker 

immune responses, or a lower antioxidant status (Stober and Scholz, 1991; Gilbert et al., 1993; 

Jorritsma et al., 2000; Mehrzad et al., 2002).   

Other management issues that can increase the risk of fatty liver in cows include issues 

such as inadequate space, lack of exercise, poor sanitary conditions, high environmental 

temperatures, high humidity, and poor air circulation (Stober and Scholz, 1991; Gerloff, 2000).  

Goff and Horst (1997) suggested that these management issues increase release of 

catecholamines which increase NEFA mobilization from adipose tissue, decrease feed intake, 

and increase risk for infections.  Catecholamines are hormones produced by the adrenal glands 

and released during periods of stress.  Some major catecholamines involved with the transition 
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dairy cow include norepinephrine and epinephrine.  These hormones coordinate to maintain 

homeostasis and homeorhesis.  Homeorhesis is defined as “the orchestrated or coordinated 

changes in the metabolism necessary to support a physiological state” (Bauman and Currie, 

1980).  As summarized by Ingvartsen (2007), responses to catecholamines are highly tissue 

specific and have a high tissue responsiveness in late pregnancy and early lactation indicating 

that these hormones, if stimulated, can lead to lipid mobilization.  Additionally, grouping 

changes after parturition are another source of potential stress as cows have to reestablish a 

hierarchical order that could possibly induce the release of catecholamines which impact the 

normal homeorhesis of lactation for the transition dairy cow.  

Genetic risk factors for fatty liver.  There have not been any genetic factors directly 

associated with fatty liver, however, there is some heritability that has been associated with other 

health disorders related to fatty liver.  For example, heritability estimates for ketosis are between 

0.07 and 0.32 (Duffield, 2000).  Displaced abomasum has also been identified as having a 

heritability of 0.24 (summarized by Bobe et al., 2004).  Since ketosis and DA are the two 

transition health disorders that have the closest association to fatty liver, it is possible that genetic 

selection against these two issues might be a management decision that will help minimize fatty 

liver. 

 Ketosis 

Ketosis and fatty liver have been extensively researched and found to correlate strongly 

with each other (summarized by Ingvartsen, 2006).  Ketosis has been defined as high plasma 

levels of ketones, such as acetoacetate, BHBA, and acetone (Ingvartsen, 2006).  Ketosis 

incidence in the United States has been reported to be between 2 and 20% (summarized by 

Ingvartsen, 2006).  There are several different ways to determine ketotic cows, such as ratios of 

milk fat to protein (Gantner et al., 2008), urine ketones (Campos et al., 2005), with the gold 

standard being measured in plasma ketones.  There are four classifications of ketosis: primary 

ketosis (spontaneous or production ketosis), secondary ketosis, butyric acid ketosis, and under-

feeding ketosis (Lean et al., 1992).   

Primary ketosis typically occurs 3-6 weeks after calving, when lipid mobilization is 

stimulated because glucose demands exceed the gluconeogenic output of the liver.  Because 

glucogenic substrates are low, it causes an increase in ketogenesis, and as such, there are high 
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concentrations of ketone bodies in blood, milk, and urine.  This disorder is mainly seen in fat 

cows and cows that have long dry periods (Markusfeld et al., 1997).  Secondary ketosis is 

defined as ketosis that results from another disease.  It has been hypothesized that this occurs 

principally because of depressed feed intake and increased lipid mobilization.  Secondary ketosis 

is also identified by a reduction in plasma glucose concentration and an increase in NEFA and 

ketone bodies (summarized by Ingvartsen, 2006).  Butyric acid ketosis, like the name implies, is 

caused by large amounts of butyrate in the feed.  High butyrate concentrations can suppress feed 

intake and increase blood concentrations of BHBA (Adler et al., 1958; Andersson and 

Lundstrom, 1985; Tveit et al., 1987; Tveit et al., 1992).  Some sources of butyric acid and 

ketogenic feeds include silage with high butyrate, sugar beets, and molasses, because they 

increase rumen butyrate concentration (Aaes, 1988).  Underfeeding ketosis occurs when 

insufficient nutrients are fed, or the ration has a high fill-value.  This type of ketosis appears to 

have similar causes and symptoms as primary and secondary ketosis.  

Type I ketosis.  Type I ketosis has been named this due to its similarities to Type I 

diabetes because there are several similarities in metabolites.  Type I ketosis occurs due to a 

shortage of glucose precursors such as propionate and amino acids.  Additionally, low plasma 

concentrations of insulin and a low insulin to glucagon ratio are found in ketotic cows (Xia et al., 

2012).  Type I ketosis is identified as hypoglycaemic-hypoinsulinaemic and generally occurs 3-6 

weeks after parturition (Holtenius and Holtenius, 1996).  In this type of ketosis plasma levels of 

glucose and insulin are very low, ketone bodies are high, and there are small risks for fat 

accumulation in the liver.  In this type of ketosis glucagon injections cause very limited 

responses in glucose and insulin (Holtenius, 1992). 

Type II ketosis.  Characteristics of Type II ketosis includes hyperglycaemia-

hyperinsulinaemia that occurs earlier in lactation.  One primary cause of this type of ketosis is 

overfeeding leading to over-conditioning in the dry period.  This can lead to disturbances in 

hormonal adaptation to metabolism at parturition, which can result in increased lipolysis from 

adipose depots, hepatic lipid synthesis, and development of fatty liver (Holtenius and Holtenius, 

1996). 

Subclinical ketosis.  Subclinical ketosis (SCK) is defined as elevated concentrations of 

ketones in the absence of clinical signs of ketosis.  One issue with this is that many times it 

remains undetected and can have serious effects on productivity.  It has been approximated that 
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nearly 30% of dairy cows have SCK in the first two weeks after parturition (Duffield et al., 1998; 

Duffield, 2000).  Potential indicators of cows that will be subclinically ketotic during the first 

week after calving include lower DMI, fewer visits to the feeder, and less time spent at the feeder 

than healthy animals (Goldhawk et al., 2009).  According to these authors, decrease in DMI 

before parturition predicts the risk of cows having subclinical ketosis in early lactation.  

Determination of SCK is based on blood levels of BHBA, yet specific thresholds for SCK have 

not been agreed upon (Goldhawk et al., 2009).   

Risk factors for ketosis. Parity has impacts on ketosis in which older cows are at a higher 

risk of developing any type of ketosis (Kauppinen, 1983; Gröhn et al., 1984).  Ketosis in 

previous lactation increases the risk of ketosis in the following lactation as well as BCS > 3.5 at 

calving (Andersson and Lundstrom, 1985; Markusfeld and Adler, 1986; Bendixen et al., 1987; 

Gillund et al., 2001).  Over-conditioning at parturition, poor feed quality, and diminished 

appetite will increase ketogenesis as the plasma concentration of NEFA are elevated.  In the 

ruminant, the endogenous source of ketogenic substrate is primarily long-chained fatty acids 

(Ingvartsen, 2006). 

Production impacts of ketosis.  Using a fitted lactation model to analyze the lactation 

curve shape and magnitude, authors observed that cows that ketosis, mastitis, milk fever, and 

retained placenta negatively impacted the lactation curve mainly when multiple disorders were 

combined (Hostens et al., 2012).  Milk yield can be significantly decreased in ketotic cows 

(Miettinen and Setala, 1993; Gantner et al., 2008; Duffield, 2010; Xia et al., 2012).  In contrast to 

results observed in clinical ketosis, SCK sometimes has no effect on milk production (Goldhawk 

et al., 2009). 

 Reproductive issues caused by transition disorders 

Pregnancy rates are decreased in cows with fatty liver which could potentially be 

explained by a couple of factors.  Triacylglycerol concentration in the liver is positively 

associated with the time to first heat and time to conception, possibly indicating that negative 

energy balance, fatty liver, and ketosis have effects on reproductive success (Kruip et al., 1998; 

Rukkwamsuk et al., 1999; Jorritsma et al., 2000; Royal et al., 2000; Jorritsma et al., 2003).  First, 

uterine involution may be delayed in cattle that have transition health disorders, particularly with 

metritis and retained placenta (Haraszti et al., 1982; Higgins and Anderson, 1983; Heinonen et 
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al., 1987; Sheldon et al., 2002).  Uterine involution is impaired by metritis and leads to a 

reduction in ovarian activity.  Metritis usually occurs within 7 d post-partum and can adversely 

affect fertility in cows (Morrow, 1976; Fonseca et al., 1983; Hussain and Daniel, 1991).  Second, 

ovarian activity can be negatively impacted by transition disorders, potentially via negative 

energy balance and delayed synthesis of steroidogenic hormones (progesterone and luteinizing 

hormone) (Herdt, 1991; Zhou et al., 1997).  Ovarian function is also impaired by low levels of 

IGF-I, insulin, and lipoproteins, or by high concentrations of ammonia, NEFA, and urea, all 

changes which occur in the weeks immediately post-partum (Herdt, 1991; Comin et al., 2002; 

Jorritsma et al., 2003).  Low insulin levels, in particular, negatively affect follicle development 

and ovulation (Landau et al., 2000; Gong et al., 2002).  It has been indicated that a low energy 

intake in early lactation is associated with a prolonged interval to first ovulation (Butler et al., 

1981; El-Din Zain et al., 1995; Opsomer et al., 2000).  Liver triglyceride accumulation decreases 

fertility in dairy cows regardless of milk production, leading to the conclusion that it is the level 

of TAG in the liver that impacts reproduction more so than negative energy balance (Jorritsma et 

al., 2000).  A large field trial evaluated fertility, diseases, and liver TAG content during early 

lactation (6 to 17 DIM) and around breeding time (38 to 50 DIM).  Overall the probability of 

pregnancy was 30% lower for cows with high TAG, the probability of estrus was 35% lower, 

and as such, the parturition to first heat and parturition to pregnancy intervals were longer 

(Jorritsma et al., 2000). 

 Negative energy balance leads to lipid mobilization 

Negative energy balance (NEB) has traditionally been identified as the cause of fatty 

liver and ketosis.  While cows are in NEB they mobilize large quantities of fatty acids from 

adipose tissue deposits which increases plasma concentration of NEFA (Herdt, 1988).    During 

the transition period plasma concentration of insulin is low and induces an increase in NEFA 

release from adipose tissue (Mashek et al., 2001).  Some of the fatty acids can be used as a 

energy source to yield ATP (Sordillo et al., 2009).  Non-esterified fatty acids are primarily used 

in the mammary gland or in the liver.  Non-esterified fatty acids can undergo several different 

processing procedures in the liver to yield new products.  The possibilities are that NEFA can be 

completely oxidized to carbon dioxide, partially oxidized to produce ketone bodies, or 

reconverted to triglycerides (TG).  Energy is provided to the animal by complete oxidation or 
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ketones that are released into the blood to be used as fuel for other tissues.  A portion of the fatty 

acids taken up by the liver are oxidized either in the mitochondria or peroxisomes.  In the bovine 

liver it has been found in vitro that there is a considerable capacity for β-oxidation in the 

peroxisomes (Grum et al., 1994; Grum et al., 1996; Drackley et al., 2001).  The TAG are then 

either stored in the liver or incorporated into VLDL and released into the blood.  When uptake of 

fatty acids by the liver is greater than the ability of the liver to oxidize them, TAG accumulate in 

the liver and fatty liver develops.  Very low density lipoprotein secretion from the liver is very 

limited in ruminants compared with other species (Kleppe et al., 1988; Rayssiguier et al., 1988; 

Pullen et al., 1990) and cows with the highest lipid in the liver have the lowest concentration of 

lipoprotein in plasma (Rayssiguier et al., 1988; Marcos et al., 1990).  Uptake of NEFA by the 

liver increases around calving, possibly because of increased blood flow to the liver (Emery et 

al., 1992; Ingvartsen, 2006).  Additionally, blood flow through the liver is proportional to energy 

intake and is higher in early lactation than in the dry period, further increasing the hepatic 

delivery of NEFA (Lomax and Baird, 1983).   

 Inflammation in metabolic syndromes 

Inflammation has been hypothesized to be a contributing factor for fatty liver, because in 

other species inflammation induces symptoms similar to those observed in fatty liver.  Chronic 

low-grade inflammation has been identified to play a role in metabolic disorders.  Cytokines can 

increase body temperature, induce anorexia, promote lipolysis in adipose tissue, stimulate muscle 

breakdown, and direct several endocrine and metabolic changes (Elsasser et al., 1995).  

Hotamisligil et al. (1993) found that adipose tissue is capable of producing inflammatory 

cytokines such as TNFα, and low-grade adipose tissue inflammation can be induced by obesity 

(Hotamisligil et al., 1993).  In obese sheep circulating TNFα is increased versus control animals 

(Daniel et al., 2003a).  Pro-inflammatory cytokines are released due to the physical activity of 

parturition itself (Simpson et al., 1998) or in the placenta as observed in women (Hauguel-de 

Mouzon and Guerre-Millo, 2006).  Amniotic fluid contains multiple cytokines such as 

interleukin 1 (IL-1), TNF-α, as well as inhibitory cytokines such as an IL-1 receptor antagonist 

and interleukin-10 (IL-10) and the chemokine interleukin-8 (IL-8) (Tamatani et al., 1988; 

Romero et al., 1989; Heyborne et al., 1994; Kelly, 1996; Simpson et al., 1998).  Cytokines that 
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are released from activated liver macrophages stimulate liver hepatocytes to release serum 

amyloid A (SAA) and haptoglobin (Hp).   

Endotoxin has been proposed by several investigators to play a role in fatty liver, DA, 

and laminitis (Dougherty et al., 1975; Aiumlamai et al., 1992; Anderson et al., 1994).  However, 

the precise role of endotoxin in these important disorders of dairy cattle has not been determined.  

Inflammation was summarized by Ametaj (2005) to be caused by endotoxin being released from 

the rumen, due to the rumen microbial population shifting from cellulytic microbes to starch-

digesting microbes.  These starch digesting microbes are primarily gram negative bacteria in 

which the lipopolysaccharide wall has endotoxin which induces an immune response.  This 

immune response has been hypothesized to be localized to the liver in which the resident 

macrophages take up the endoxin, stimulating cytokine production.  The primary pro-

inflammatory cytokines produced are TNFα, IL-1, and IL-6.  Endotoxin can induce a TNFα 

response, and research shows that TNFα administration decreases appetite and feed intake while 

increasing blood NEFA concentration (Kushibiki et al., 2000).  The three cytokines 

aforementioned also play roles in production of Hp and SAA in the liver (Kushner, 1988; 

Edbrooke et al., 1993; Ametaj, 2005).  Haptoglobin is also generated in an endotoxin-induced 

immune response.  This compound is released for two reasons in this instance.  One function is 

its antibacterial capabilities and the other is that Hp binds hemoglobin which binds iron (Wassell, 

2000).  Iron is needed for bacterial growth and function so decreasing this mineral suppresses 

bacterial growth.  One potential issue with elevated levels of haptoglobin is that it can bind 

apolipoprotein A-I which interferes with high density lipoprotein (HDL) receptor binding 

(Katoh, 2002).  Serum amyloid A is also produced in the liver during an endotoxin-induced 

immune response.  In this process SAA associates with HDL and endotoxin and this complex is 

then removed from circulation by liver cells (Hoffman and Benditt, 1982; Harris et al., 2002).   

The acute phase response has been associated with changes in lipid and glucose 

metabolism which include increased lipolysis and plasma NEFA concentration (Hardardottir et 

al., 1994).  From a glucose metabolism standpoint, during the early stage of the acute phase 

response there is an increase in plasma glucose which is then followed by hypoglycemia 

(Kushibiki et al., 2000).  Several of the effects observed with acute phase proteins are observed 

in the early lactation cow and it has been reported that Hp and SAA are significantly increased 
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during the early postpartum period compared with cows in later postparturient periods (Kovac et 

al., 2009).   

Total lipids in the liver have been shown to positively correlate with plasma SAA 

(Ametaj et al., 2005b).  After parturition liver TG was correlated positively with plasma SAA, 

Hp, and negatively with plasma prostaglandin E2, total cholesterol, and glucose (Ametaj et al., 

2005b).  Another way that lipids can enhance the immune and inflammatory response is through 

biosynthesis of lipid mediators such as eicosanoids, lysophospholipids, phosphatidic acid, and 

ceramide (Serhan et al., 2008).  The eicosanoid family has been recognized as a key regulator of 

both chronic and acute inflammatory reactions and depending on the timing and magnitude of 

expression, can be either an enhancer or a resolver of the inflammatory response (summarized by 

Sordillo et al., 2009). 

Nuclear factor κB (NFκB) is an important transcription factor for inflammatory 

processes.  Activation of NFκB leads to expression of genes that mediate cell proliferation and 

release of antimicrobial molecules and cytokines that activate the immune response (Hayden and 

Ghosh, 2008).  This signaling pathway has been demonstrated to be involved in metabolic 

diseases in the liver, adipose tissue, and central nervous system (Baker et al., 2011).  Nuclear 

factor kappa-B is found in the cytoplasm of cells in the inactive form, associated with IκB-α.  

When IκB-α is phosphorylated, ubiquitinated, and degraded by a proteosome-dependent 

pathway, NFκB is release to translocate to the nucleus (summarized from Pierce et al., 1996).  

NFκB can be activated by cytokines and pathogen-associated molecular patterns (PAMP) on the 

cell surface.  The NFκB pathway is one potential unifying pathway between inflammation and 

metabolic diseases, and as such can be a source of novel treatment strategies (Baker et al., 2011).  

Salicylates have been found to directly target IKKβ within the NFκB pathway and were shown to 

inhibit fat-induced insulin resistance in skeletal muscle (Yin et al., 1998; Kim et al., 2001; Yuan 

et al., 2001).   

Several cell-intrinsic and cell-extrinsic mechanisms work in coordination to regulate the 

inflammatory response. Some examples include a short half-life of pro-inflammatory cytokines, 

counteractive anti-inflammatory cytokines such as IL-10, and removal of dead cells to prevent 

tissue necrosis (Baker et al., 2011).  During periods of chronic inflammation these cell-extrinsic 

and –intrinsic mechanisms are dysfunctional, leading to continuous increases in inflammatory 
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cytokines.  Chronic inflammation in rodent and human models has roles in the metabolic 

disorders of obesity, insulin resistance, and atherosclerosis (summarized by Baker et al., 2011). 

 Immune system changes at the time of parturition 

The transition from gestation to lactation impacts the immune system, changing the 

killing and infiltration abilities of immune cells.  The week prior to and immediately following 

parturition is associated with neutrophilia, eosinopenia, lymphonopenia, and monocytosis 

(Meglia et al., 2001; Meglia et al., 2005).  Even with the increase in some white blood cells, 

there is actually a decrease in phagocytosis and oxidative burst activity (Meglia et al., 2001; 

Meglia et al., 2005).  Neutrophil and lymphocyte function, as measured by iodination and 

blastogenesis, is impaired during the weeks immediately before and after parturition (Goff and 

Horst, 1997).  This suppression in activity may be what is leading to chronic infections such as 

mastitis that recur through the entire lactation.  Cows with fatty liver have lower cellular 

cytotoxicity and reactive oxygen species generated by polymorphonuclear cells potentially 

indicating a suppression in phagocytic ability (Zerbe et al., 2000).   Body condition score at 

parturition can impact the haematological profile.  Specifically, white cell count was found to be 

lower in fat cows (BCS ≈ 4.0) versus thin cows (BCS ≈ 2.5) in the first week of lactation (Reid et 

al., 1986).     

Leukopenia has been associated with ketosis and fatty liver and provides justification for 

interactions between the immune system and various metabolites that are characteristic of ketosis 

(Morrow, 1976; Morrow et al., 1979; Reid et al., 1984; Reid et al., 1986; Franklin et al., 1991).  

In an in vitro study where cultured bovine lymphocytes were incubated with different 

metabolites found in ketosis, it was observed that butyrate concentrations greater than that seen 

in bovine plasma and acetate at normal levels inhibited proliferation of lymphocytes (Franklin et 

al., 1991).  Depending on the type of activation for lymphocyte proliferation, low glucose media 

had differing results.  In one activation scenario lymphocyte proliferation was increased in low 

glucose media, however when adding acetate to the low glucose media it inhibited lymphocyte 

proliferation (Franklin et al., 1991).  In another instance, low glucose suppressed lymphocyte 

proliferation with acetate, β-hydroxybutyrate, and acetoacetate (Franklin et al., 1991).  However, 

in this study these authors concluded that at concentrations that are found in normal/healthy cows 

in vivo, ketones, butyrate, and glucose have minimal effects on lymphocyte proliferation, but at 
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concentrations of acetate typically found in ketotic cows suppress lymphocyte function (Franklin 

et al., 1991).  In a skin allotransplant model on cows with either fatty liver or not, it was found 

that in “normal cows” that there was a greater number of invading lymphocytes than those that 

had fatty liver (Wentink et al., 1999).  Bovine leukocytes cultured with BHBA show a 

suppression in respiratory burst activity, and the authors suggest the mode of action for this is a 

reduction in generation of superoxide anions (Hoeben et al., 1997).  As summarized by 

Suriyasathaporn et al. (2000), killing capacity of leukocytes is impaired in vitro and in vivo by 

ketones. 

Signaling molecules are released by activated macrophages and mast cells.  Some of the 

molecules promote local inflammation and increased blood flow.  Inflammatory cytokines play a 

key role in stimulating systemic inflammatory responses, including increased body temperature, 

increased heart rate, and decreased feed intake (Dantzer and Kelley, 2007).  Mammary and 

uterine infections result in both local and systemic inflammation.  Coliform mastitis releases 

endotoxin into the bloodstream and increased plasma concentrations of cytokines and acute 

phase proteins (Hoeben et al., 2000).  Plasma HP is elevated prior to clinical signs of metritis in 

transition dairy cows (Huzzey et al., 2009).  Primiparous cows have been shown to have a higher 

viability of blood and milk polymorphonuclear leukocytes (PMN) one month before and 

immediately following parturition, and even though a depression in total PMN was identified 

around parturition, primiparous cows had a quicker recovery rate than their pluriparous 

counterparts (Mehrzad et al., 2002).  

Metabolic disorders in transition dairy cows could be attributed to circulating cytokines.  

Certain cytokines facilitate the breakdown of fat stores through decreased feed intake (Kushibiki 

et al., 2003), decreased insulin sensitivity, and direct stimulation of lipolysis (Kushibiki et al., 

2001a; Kushibiki et al., 2001b).  Lipid mobilization and impaired insulin sensitivity is associated 

with ketosis and fatty liver in dairy cattle (Ingvartsen, 2006).  Cytokines have further been 

confirmed in the peripartum period to induce effects that relate to fatty liver, including anorexia, 

catabolic conditions, fever (with an increase of energy wastage), adipose mobilization, and 

altered liver synthesis activity (Klasing and Leshchinsky, 2000).  One specific cytokine, TNFα 

has been demonstrated to decrease liver glucose production (Kettelhut et al., 1987b) and 

promotes triglyceride accumulation once mobilized NEFA reach the liver (Garcia-Ruiz et al., 

2006).  Serum TNFα activity is increased in cows that have moderate to severe fatty liver 
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(Ohtsuka et al., 2001).  Monocytes become more responsive to inflammatory cytokines during 

the transition period resulting in a greater secretion of inflammatory cytokines (Sordillo et al., 

1995).  Fatty liver could further be induced by endotoxin-induced mastitis which alters 

expression of metabolic genes in the liver, including decreased expression of genes that are 

important in glucose production (Jiang et al., 2008).  

Controlled studies with tumor necrosis factor alpha in the bovine show similar results 

as that in the transition period.  Tumor necrosis factor-α is a cytokine that has been researched 

extensively in rodents and humans and has been the focus of some bovine models to determine 

this cytokine’s effects on metabolism and inflammation.  In an ovine model, obesity was found 

to increase levels of circulating TNFα and a very strong positive correlation was observed 

between TNFα and fat thickness (Daniel et al., 2003a).  In another study where recombinant 

bovine TNFα (rbTNFα;  2.5 µg/kg/d) was injected s.c. for seven days, DMI was suppressed, Hp 

was elevated, NEFA was increased, and cortisol levels were increased (Kushibiki et al., 2003).  

Milk yield was decreased, milk fat percentage was increased, and milk protein was decreased 

while rbTNFα was injected (Kushibiki et al., 2003).  In a long term scenario where rbTNFα (2.5 

µg/kg/d) was administered for 12 days in steers, it induced insulin resistance without 

hypoglycemia (Kushibiki et al., 2001a).  Daily administration of rbTNFα for 9 days caused 

metabolic changes such as hyperglycemia, hyperlipidemia, hyperinsulinemia, and 

hypoglucagonemia (Kushibiki et al., 2001b).  All these results indicate in the ruminant model 

that insulin resistance occurs with TNFα but other results are not as consistent as those observed 

in other species. 

 Treatment of Inflammation 

Inflammation is a key component of the immune system’s attempt to fight an invading 

pathogen.  Modulating the inflammatory response is beneficial because if it is uncontrolled it can 

lead to coliform mastitis and septic shock (Hill, 1981; Burvenich et al., 2007).  On the other 

hand, if inflammation is suppressed too much, it might increase the risk of infectious disorders 

by blunting the immune response.  Five NSAIDs tested in vitro suppressed phagocytosis by 

neutrophils isolated from milk (Paape et al., 1991; Bas et al., 1998).  However, not all NSAIDs 

have the same suppressive effects on immune response.  For example, aspirin was found to 

increase phagocytosis by bovine neutrophils in vitro (Paape et al., 1991).  The NSAIDs that 
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caused a suppression in phagocytosis include ibuprofen, benzydamine, acetaminophen, 

indomethacin, and phenylbutazone (Paape et al., 1991).  Bas and coworkers (1998) also observed 

an increase in microbicidal activity in response to low levels of aspirin.  If a compound such as 

salicylate can inhibit metabolic inflammation without suppressing immune responses, short-term 

NSAID treatment may provide an effective means to prevent metabolic disorders in the 

transition period. 

Non-steroidal anti-inflammatory drugs are classified into 5 broad subclasses: (1) salicylic 

acid and its derivatives, (2) propionic acid and derivatives, (3) pyrazole derivatives, (4) aniline 

derivatives, and (5) oxicam derivatives (Gallo et al., 2008).  Each class functions slightly 

differently.  The drugs discussed in this review are classified as followed: carprofen and 

ketoprofen (propionic acid), meloxicam (oxicam), flunixin (aniline), and salicylate (salicylic 

acid).  Since each subclass has a slightly different mode of action, they likely offer different 

potencies for combating acute and chronic inflammation.  Not surprisingly, different results have 

been observed in regard to transition disorders. 

Several NSAIDs in the propionic acid and oxicam subclasses have been used effectively 

in treating mastitis.  In one study, carprofen had limited ability to suppress inflammation, but was 

shown to partially alleviate the decrease in ruminal contractions during mastitis (Vangroenweghe 

et al., 2005), which could help prevent a subsequent displaced abomasum.  Ketoprofen, a similar 

compound, promoted ruminal contractions and was also effective at decreasing inflammatory 

responses to mastitis (Banting et al., 2008).  Meloxicam treatment lowered somatic cell count 

and a reduced the number of cows removed (culled) from the herd after mastitis (McDougall et 

al., 2009).   

Flunixin meglumine in dairy cows.  One of the most common NSAIDs that has been 

tested on the transition dairy cow is flunixin meglumine, with varying results.  One study 

indicated that uterine involution was accelerated by flunixin meglumine treatment for metritis 

(Amiridis et al., 2001b), but another showed no beneficial effects, either systemically or in the 

reproductive tract (Drillich et al., 2007b).  Shwartz and colleagues (2009) showed no benefit to 

administration of flunixin meglumine for the first 3 days of lactation.  In fact, flunixin 

meglumine administered in the first 3 days of lactation depressed feed intake and milk yield over 

the first week of lactation (Shwartz et al., 2009), and a in separate study a significant increase in 

risk of retained placenta and metritis was observed (Duffield et al., 2009).  This negative finding 
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may be due to the importance of inflammatory pathways for expulsion of the placenta; 

regardless, at this point it appears that flunixin is not a promising candidate for treatment of 

transition cows.  In contrast, one study from Greece showed that flunixin actually shortened the 

mean calving-to-first-detected-estrus interval and increased the percentage of cows with 

complete uterine involution in both an acute and subacute metritis incidence (Amiridis et al., 

2001a).  Metritis incidences in this study were identified on days 5-8 of lactation and had a red to 

brownish, watery or purulent fetid uterine discharge, fever, reduced appetite, reduced ruminal 

movements and reduced milk production.  Acute metritis was defined as animals that were 

febrile (40.5-41.5°C), completely off-feed, with similar symptoms as previously described.  

Subacute metritis was identified as cows that were moderately pyrexic (39.5-40.4°C) with 

reduced appetite, ruminal movements, and milk production (Amiridis et al., 2001a). 

Salicylates and their modes of action.  Salicylic acids have been utilized for therapeutic 

purposes for almost 2000 years (extracts of willow bark) and purified salicylic acid was first 

used as a therapeutic in rheumatic disease nearly 120 years ago (Amann and Peskar, 2002).  It 

has been well documented that this class of NSAID can alleviate pain and inflammation in 

humans and several times has been identified as having anti-diabetic and insulin sensitizing 

effects.  An improvement in glucose tolerance was a by-product of administration of aspirin and 

other salicylates when given to patients with rheumatic disease (Williamson, 1901).  When 

aspirin (acetylsalicylic acid) is taken orally, about 50% is de-acetylated to salicylate during and 

immediately after absorption.  Plasma half-life of aspirin is about 15 minutes, whereas salicylate 

half-life is between 2 and 30 hours depending on concentration (Amann and Peskar, 2002).  

Nearly 80% of the circulating salicylate is bound to plasma proteins (Needs and Brooks, 1985).   

One salicylate derivative, salsalate, was administered to adults with a body mass index 

greater than 30 kg/m
2
 and insulin action was analyzed as rate of glucose disposal in a 

euglycemic-hyperinsulinemic clamp and a glucose tolerance test.  Salsalate had a glucose-

lowering effect which the authors attributed to insulin concentration, rather than an improvement 

in insulin action (Koska et al., 2009).  In humans acetylsalicylate decreases concentrations of 

plasma free fatty acids (Carlson and Ostman, 1965; Vane, 1971).   

Salicylate is an NSAID that inhibits both cyclooxygenase (COX) isoforms and can inhibit 

nuclear factor kB (NFκB) and subsequently decrease new synthesis of inflammatory cytokines 

like TNFα and IL-1 (Kutuk and Basaga, 2004; Kim et al., 2005; Mortaz et al., 2005).  Vane in 
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1971 demonstrated the “inhibition of prostaglandin synthesis as a mechanism of action for 

aspirin-like drugs”.  Inhibition of prostaglandin formation by aspirin-like drugs occurs through 

inhibition of cyclooxygenase that converts arachidonic acid to prostaglandin H2.  There are two 

isoforms of the cyclooxygenase enzyme.  Cyclooxygenase-1 (COX-1) is considered the 

constitutive isoform (Mitchell et al., 1993), while cyclooxygenase-2 (COX-2) is the major 

isoform responsible for prostaglandin biosynthesis in inflamed tissue (Herschman, 1996; Smith 

and Dewitt, 1996) and can be activated by some cytokines, mitogens, and endotoxin (Mitchell et 

al., 1993).  However, COX-2 has been found to be constitutively expressed in several tissues 

including the central nervous system, kidney, and possibly arterial endothelial cells (Yamagata et 

al., 1993; Harris et al., 1994; Topper et al., 1996; Amann and Peskar, 2002).  Since aspirin is 

readily converted to salicylate in the body, it is of interest to understand how salicylate operates 

within the body.  Some reports claim that there is moderate COX-1 sensitivity to salicylate, 

whereas other studies suggest that salicylate has preferential COX-2 inhibition (Mitchell et al., 

1993).  Additionally, in intact cells salicylates appears to inhibit prostaglandin biosynthesis by a 

mechanism that is separate from COX activity (Whitehouse and Graham, 1996; Hinz et al., 

2000).   

When looking at using an NSAID to manage inflammation, understanding what organs 

and/or organ systems can be affected is important.  For example, prostaglandin production is 

important in the uterus for maintaining the fetus and subsequent expulsion of the fetus at 

parturition.  The prostaglandins are also important in the estrus cycle to initiate reproductive 

success.  For example, prostaglandins -F2α (PGF2α) and –E2 (PGE2) are generated by COX-2 

(Parent et al., 2003), which is often a target of NSAIDs, and as such, knowing the inhibited 

pathways is of importance.  Long-term NSAID administration can lead to suppression in gut 

mobility and in turn can lead to ulcers and other gastric disorders.  One issue that is associated 

with COX-1 selectivity by NSAIDs is that it can lead to gastrointestinal issues as evidenced in 

humans (Warner et al., 1999).  However, in experimental models, sodium salicylate does not 

cause ulcerogenicity and can prevent gastric mucosal damage by drugs such as indomethacin, 

aspirin, and ethanol (Ezer et al., 1976; Glenn et al., 1979; Whittle et al., 1980; Robert, 1981; Ezer 

et al., 1984). 

Some prostaglandins are anti-inflammatory and are involved in resolving inflammatory 

issues.  Some specific fatty acid metabolites include the prostaglandins 15 deoxy-Δ
12-14
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prostaglandin J2 (15d-PGJ2) which has been found to inhibit NFκB by reacting with IκB kinase 

and the DNA-binding domain of p65 (Straus et al., 2000; Ghisletti et al., 2007).  15d-PGJ2 has 

also been identified as a ligand for PPARγ (Forman et al., 1995).  PPARγ is a member of the 

nuclear receptor superfamily that binds to cis-acting elements and provides a promoter for its 

target genes.  Other classes of anti-inflammatory fatty acid metabolites include resolvins and 

protectins, which have been found to directly correlate with the resolution phase of the 

inflammatory response (Ariel and Serhan, 2007).  They have been found to exert anti-

inflammatory effects, but according to one source, their cellular action remains unclear (Olefsky 

and Glass, 2010).    Omega 3 fatty acids such as docosahexaenoic acid (DHA) and 

eicosapentaenoic acid (EPA) inhibit effects of LPS and TNFα (Lee et al., 2001; Lee et al., 2003; 

Song et al., 2006; Solinas et al., 2007) and inhibit proinflammatory effects of saturated fatty 

acids (Solinas et al., 2007). 

Another inhibitory mode of action of salicylate is its ability to interfere with kinases.  

Aspirin and sodium salicylate disrupt signal transduction by inhibiting the inhibitor of NFκB 

(IκB) kinase β, preventing translocation of NFκB to the nucleus (summarized by Cronstein et al., 

1999).  Put simply, the transcription factor NFκB is inhibited by salicylate (Amann and Peskar, 

2002).  Nuclear factor kappa-B is regarded as one of the primary elements involved in 

inflammatory stimuli.  Kopp and Ghosh (1994) inhibited the NFκB pathway with aspirin and 

salicylate in the human Jurkat T cell line and the mouse pre-B cell line, PD31.  The 

concentrations used in this study were relatively high, especially in relation to normal in vivo 

levels (Kopp and Ghosh, 1994).  In mice that are deficient in p105 (precursor of the p50 

component of NFκB), aspirin and sodium salicylate retained their anti-inflammatory efficacy 

(Cronstein et al., 1999).  Lipolysis in fat cells is regulated by cyclic 3’,5’-AMP (Robison et al., 

1968) and sodium salicylate may potentially have antilipolytic effects through effects on the 

adenyl cyclase system (Schonhofer et al., 1973).  Specifically, changes observed in response to 

sodium salicylate in fat cells include a reduction in ATP levels, a reduction in the accumulation 

of cyclic 3’,5’-AMP, inhibition of phosphodiesterase, and a reduction in binding of cyclic 3’,5’-

AMP to cyclic 3’,5’-AMP-dependent protein kinase, all of which might lead to inhibition of 

lipolysis (Schonhofer et al., 1973).  Cyclic AMP (cAMP) is involved in multiple cellular 

processes that can be activated or deactivated by several different metabolic processes, including 

those associated with glucose metabolism, ketogenesis, lipolysis, and protein metabolism 
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(Robison et al., 1968).  Another mode of action for salicylates is the uncoupling of oxidative 

phosphorylation, leading to ATP catabolism (Cronstein et al., 1994; Cronstein et al., 1999). 

Aspirin (acetylsalicylic acid) effects in cattle. Aspirin is an antiprostaglandin agent used 

as an analgesic, antipyretic, and anti-inflammatory.  Prostaglandins mediate inflammation, fever, 

pain, anaphylaxis, and platelet aggregation.  Cyclooxygenase forms prostaglandin from 

arachadonic acid derived from activated cellular lipases or cell-membrane phospholipases.  Oral 

administration of acetylsalicylic acid results in a slow absorption time (half-life of absorption 

2.91 hrs) and a rapid elimination with a biologic half-life of 32 minutes for salicylates (Gingerich 

et al., 1975).  However, even with a short half-life it has been found that an oral dosage of 100 

mg/kg every 12 hours was enough to maintain serum salicylate concentrations above 30 µg/mL 

which is the therapeutic dosage (Gingerich et al., 1975). Literature states that the bioavailability 

of salicylate in commercial aspirin (acetylsalicylate: ASA) tablet is 70% (Gingerich et al., 1975). 

Salicylates have been evaluated for use in the treatment of mastitis, and in general they 

are effective at reducing body temperatures, but do not appear to decrease the severity of the 

infection (Morkoc et al., 1993a).  However, this class of NSAIDs shows some promise in regard 

to metabolic inflammation.  Cows treated with lysine acetyl-salicylate (LAS) for the first 5 days 

of lactation had significantly lower plasma concentrations of acute phase proteins and tended to 

have greater peak milk production than controls (Bertoni et al., 2004).  They also had improved 

fertility traits; more cows pregnant after 1
st
 insemination, fewer services per conception, a slight 

reduction in days open, and fewer cows culled for infertility.  Additionally, LAS had favorable 

effects on inflammatory status: higher blood Zn and lower plasma HP, ceruloplasmin, total 

proteins and globulins.  Improvement in liver protein synthesis (albumin, lipoproteins, total 

cholesterol, and retinol-binding protein) was also seen with cows that received LAS.  Some of 

the negative effects observed with LAS treatment were a more pronounced energy deficiency, as 

supported by higher levels of NEFA and a marked and prolonged reduction of BCS.  

Additionally, plasma glucose concentrations were reduced on day 3 of injections with LAS.  

Metritis was also increased with cows that were given LAS i.m. (Bertoni et al., 2004). 

In a separate but similar study, aspirin treatment for 5 days postpartum improved milk 

yield in the first 2 months of lactation and improved first service conception rates (Trevisi and 

Bertoni, 2008).  A relatively small number of cows was included in the study (23/treatment); 

however, ketosis incidence appeared to decrease with aspirin treatment (4.4% vs. 22.7%) while 
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metritis incidence appeared to increase (30.4% vs. 13.6%).  Trevisi and Bertoni (2008) 

concluded that utilizing a five day intramuscular injection of aspirin immediately after calving 

accelerates the recovery from the inflammatory consequences of calving.   

Feeding Brahman cows aspirin every 12 hours at a rate of 100 mg/kg of body weight 

between 7 and 14 d postpartum led to a lower pregnancy rate, increased incidence of abnormal 

estrous cycles, and a decline in the presence of corpora lutea (Stahringer et al., 1999).  However, 

these results were not the same between pluriparous and primiparous cows (Stahringer et al., 

1999), indicating that the number of lactations or age of cows impact either the metabolism of 

aspirin or the ability of the drug to have impacts on the cow. 

Sodium salicylate in dairy cows.  An early trial by Anderson et al. (1979) utilizing 

sodium salicylate (SS) looked at the different biochemical effects of oral SS in healthy non-

lactating adult Holstein cows.  Three cows were given twice daily doses of SS for 2 days at a 

dose of 124 mg/kg body weight.  Serum and urine salicylate levels, urine and rumen pH, and 

hemotologic and biochemical profiles were determined periodically for 84 hours.  At this dosage, 

therapeutic serum levels were achieved 3 hours after the first dose and remained above the level 

until 14 hours after the last dose.  The cows receiving SS had high concentrations of salicylates 

in the urine and both urine and rumen pH were lower in SS cows versus control cows. 

Even though SS is rapidly removed from the blood, the twice a day dosing technique 

allowed the cows to maintain therapeutic levels (Anderson et al., 1979).  Sodium salicylate has a 

pKa of 3.5, affecting its ionizing ability.  The nonionized form of SS is what is absorbed from 

the gastrointestinal tract.  At low rumen pH, more SS is in the ionized form, thus it should reduce 

the diffusible SS concentration.  Anderson et al. (1979) suggested that cows that have a lower 

rumen pH and alkaline urine would require more salicylate to maintain therapeutic levels in the 

bloodstream.  In a different study using both goats and cattle, SS was administered in an i.v. dose 

of 44 mg/kg of body weight; 51.77% was found to be excreted in the urine and nearly 90% of the 

drug was excreted within 12 hours after dosing (Short et al., 1990).  However, the amount 

excreted in urine was much lower after an oral dose, at the same concentration as i.v. (6.72% vs 

51.77%) although again, nearly 90% was excreted by 24 hours (Short et al., 1990).  Salicylate is 

cleared through conversion to several different metabolites such as salicyuric acid and 

salicylglycyronide, which can be measured in urine (Davis and Westfall, 1972).  
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 Conclusion 

Given that transition cow management is of tremendous importance to the dairy 

producer, coming up with ways to manage this complex situation will provide areas of research 

for many years.  Fatty liver disorder and ketosis are common in transition dairy cows and 

affected cows have depression in production and length of time retained in the herd.  If 

inflammation is involved in fatty liver disorder, then modulating this by use of an NSAID like 

sodium salicylate should be less damaging to the animal and might help with the transition into 

lactation.  Understanding the different modes of action for the different classes of NSAIDs is 

also very important as some may contribute to metabolic disorders.  However, to be the best 

stewards, one should be cognizant of dietary, reproduction, and facility management practices to 

best minimize issues associated with the transition period.   
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Chapter 2 - Sodium salicylate in early lactation increases milk yield 

and fat yield through the lactation in dairy cows 

J. K. Farney, L. K. Mamedova, J. F. Coetzee, B. KuKanich, J. E. Minton, L.C.  Hollis, and B. J. 

Bradford 

 ABSTRACT 

Inflammation has been proposed as a contributor to fatty liver disease, and this disorder has 

negative impacts on milk production in dairy cattle.  Our objective was to determine if 

administration of sodium salicylate (SS), a non-steroidal anti-inflammatory drug (NSAID), in the 

first week of lactation changes whole-lactation productivity and retention in the herd.  At 

calving, 78 cows (n = 39 primiparous [1P]; n = 24 2
nd

 lactation [2P]; n = 15 ≥3 lactations [3P]) 

were alternately assigned to either control (CON) or SS treatment for 7 d postpartum.  SS 

treatment was administered via individual water bowls at a concentration of 1.95 g/L, delivering 

a mean of 123.3 ± 5.5 g salicylate/d during the 7 d of treatment.  For the first 21 days in milk dry 

matter intake, water intake, milk yield, and health were monitored daily and milk samples 

collected twice weekly for milk component analysis.  Additionally, cows were followed through 

the lactation by monthly milk yield and component testing, and the effects of treatment on the 

risk of leaving the herd and on 305-day milk, fat, and protein yields were assessed.  Sodium 

salicylate did not alter water or dry matter intake during the treatment period.  Milk fat yield was 

increased (12.5%, P =0.02) and energy corrected milk tended to be increased (8.4%, P = 0.06) in 

the 3
rd

 week of lactation in SS cows.  During the 1
st
 21 DIM there were no differences in health 

disorder incidence, except for increased risk of metritis in 3P SS cows.  Treatment by parity 

interactions were detected for both 305-day milk and fat yields.  Milk yield was 1,988 ± 704 kg 

greater over the lactation in 3P SS cows compared to 3P controls (17% increase, P = 0.05); no 

effects were detected in 1P or 2P cows.  Furthermore, 3P SS cows produced 144 ± 25 kg more 

milk fat over the lactation (34% increase, P < 0.001).  Again, no effects were detected for 1P or 

2P.  Treatments tended to increase 305-day milk protein yield (P = 0.06) in 3P cows.  A 

treatment by parity interaction was observed for the risk of leaving the herd.  First parity cows 

treated with SS cows tended to have greater risk of leaving the herd than controls (30% vs. 6% 

risk, P < 0.10).  However, treatment did not alter herd retention in 2P or 3P groups, and SS had 
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no effect on the risk of leaving the herd overall (P = 0.59).  Results indicate that sodium 

salicylate has long term effects on lactation of aged cows, particularly on fat metabolism, but has 

potential negative effects for primaparous cows. 

 INTRODUCTION 

Fatty liver (FL) is a metabolic disease in transition dairy cows that increases health 

disorders and expenses and subsequently decreases productivity.  Fatty liver is characterized by a 

buildup of fat in the liver which gives it a yellowish color and a sponge-like appearance under 

the microscope.  Cows that have FL often have other diseases associated with this disorder, 

including ketosis, milk fever, mastitis, metritis, displaced abomasum, and retained placenta 

(Ametaj, 2005). 

The transition from late pregnancy to lactation causes stress for the dairy cow.  The high 

demand for energy by the mammary gland and the parallel reduction in dry matter intake lead to 

a negative energy balance (NEB) in dairy cows (Grummer, 1993; Drackley, 1999; Bobe et al., 

2004).  While the cows are in NEB they mobilize large quantities of fatty acids from fat deposits 

which increase the concentration of plasma non-esterified fatty acids (Herdt, 1988).  Non-

esterfied fatty acids (NEFAs) are either used as an energy source in the mammary gland, muscle, 

or in the liver.  Triglycerides can either be stored in the liver or incorporated and released into 

the blood as very low density lipoprotein (VLDL).  When uptake of fatty acids in the liver is 

greater than the ability of the liver to oxidize fatty acids, TGs accumulate in the liver and fatty 

liver can develop.  Compared to other species, the ruminant liver is unable to efficiently export 

fatty acids as components of VLDL (Kleppe et al., 1988). 

Traditionally the etiology of FL has been largely attributed to the NEB that dairy cows 

have following parturition; however, lately researchers have been pointing to inflammation as a 

potential contributor to FL.  Inflammation may link FL to  disorders such as mastitis, metritis, etc 

(Bertoni et al., 2004; Bobe et al., 2004; Ametaj et al., 2005b; Bradford et al., 2009).  Animals 

with excessive adiposity exhibit a low-grade inflammation (Hotamisligil, 2006).  Inflammatory 

cytokines cause endocrine-metabolic changes in dairy cattle, such as anorexia, lipomobilization, 

impaired insulin sensitivity, reduction of milk yield, and impaired reproductive function 

(Kushibiki et al., 2001a; Kushibiki et al., 2003; Bertoni et al., 2004), all of which are similar to 

symptoms associated with FL. 
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Based on effects observed with inflammation, a possible method to prevent these 

negative effects could be the use of non-steroidal anti-inflammatory drugs (NSAIDs).   Non-

steroidal anti-inflammatory drugs are classified into 5 broad categories with slightly different 

modes of action (Gallo et al., 2008) and different results have been observed in their effects on 

transition disorders.  Prolonged use of certain NSAIDs can have negative effects such as 

gastrointestinal bleeding, intestinal ulceration, aplastic anaemia, and inhibition of platelet 

aggregation (summarized by Gallo et al., 2008) potentially due to suppression of both isoforms 

of cyclooxygenase (COX-1 and COX-2).  Sodium salicylate is a weak inhibitor of COX-1 and 

COX-2 (Mitchell et al., 1993) and its probable mode of action is that it inhibits phosphorylation 

of IκB-α which impairs the activation of nuclear factor kappa-B (NFκB), a common mediator of 

inflammation (Kopp and Ghosh, 1994; Pierce et al., 1996).  The transcription factor NFκB can 

be activated by inflammatory stimuli and in turn produces proinflammatory cytokines such as 

TNFα, interleukin (IL)-1β, IL-6, and interferon β (Shoelson et al., 2003).  In addition to 

inhibiting this inflammatory pathway, sodium salicylate has demonstrated antilipolytic effects in 

normal and diabetic patients (Schonhofer et al., 1973). 

Based on the responses to exogenous cytokine administration, it was hypothesized that 

elevated plasma concentrations of NEFA and cytokines cause an inflammatory response in the 

liver of transition dairy cows, resulting in partitioning of fatty acids toward triglyceride 

synthesis, depressed gluconeogenesis, and continued adipose tissue mobilization.  The specific 

objective of this study was to determine the effects of sodium salicylate (SS) in the first week of 

lactation on production and health through the entire lactation. 

 

 MATERIALS AND METHODS 

All experimental procedures were approved by the Kansas State University Institutional 

Animal Care and Use Committee #2880. 

Design and Treatments 

A total of 78 cows [n = 39 primiparous (1P), n = 24 2nd parity (2P), and n = 15 ≥3rd 

parity (3P)] from the Kansas State University Dairy Teaching and Research Facility were 

blocked by parity and alternately assigned to treatment at parturition.  Cows that were enrolled 

were considered to be “healthy”, had a dystocia score less than 2 (1-4 scale), and structurally 
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sound.  Treatment consisted of administration of sodium salicylate (SS; 1.95 g/L) in a molasses 

carrier (0.14 g/L) via individual water bowls for 7 d postpartum.  Control cows received water 

with the same molasses concentration for 7 d (CON).  On d 8 postpartum all cows were given 

non-medicated water for the remainder of the experiment.  Cows were housed in a tie-stall 

facility in randomly assigned stalls through d 21 postpartum.  Cattle were milked 3 times daily 

(0600, 1000, and 1800 h) and fed ad libitum twice daily (0630 and 1800 h) with a diet 

formulated to meet all nutrient requirements (Table 2.1).  Once cows were removed from the tie-

stall facility, they returned to the general herd free-stall facility and were managed similarly.   

Data and sample collection 

Throughout the 21-d trial, feed and water intake and milk yield were recorded daily.  

During these 21 d, milk samples were collected at each milking on twice a week for analysis of 

milk components.  For 305-d analyses, milk yields were recorded and samples were collected 

and analyzed once monthly.   

 Milk Analyses 

Milk samples were analyzed by Heart of America DHIA (Manhattan, KS) to determine 

concentrations of fat, true protein, lactose (B-2000 Infrared Analyzer, Bentley Instruments), urea 

nitrogen (MUN spectrophotometer, Bentley Instruments), and somatic cell count (SCC).  

Energy-corrected milk (ECM) was calculated as: ECM = 0.327 × milk yield + 12.86 × fat yield + 

7.65 × protein yield (Dairy Record Management Systems, 2009).  Somatic cell score (SCS) was 

calculated according to Shook (1993): log2(SCC/100) + 3. 

 Disease Incidence 

Cows were assessed daily for health status by trained personnel where rectal temperature 

and urine ketones (ReliOn ketone test strips, Bayer Healthcare LLC., Mishawaka, IN) were 

recorded.   Ketosis, left displaced abomasum, retained placenta, metritis, milk fever, lameness, 

and other abnormalities were recorded and treated per farm protocol.   Ketosis was defined as the 

detection of urine ketone concentrations exceeding 80 mg/dL on any l d, or exceeding 40 mg/dL 

for 2 consecutive days.  Metritis was identified as a cow that had a fever (>103°F) and uterine 

discharge that was reddish brown and had an odor.   Cows that had a displaced abomasums (DA) 

during the trial were removed on the day of surgery.   Data obtained before removal for DA cows 
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were included in all analyses.   Clinical cases of mastitis were recorded as cows that had unusual 

milk consistency as determined by trained milking personnel and were subsequently treated with 

an antibiotic.   Disorders not described above were identified based on definitions provided by 

Kelton et al. (1998).    

  Behavioral data 

Each tie stall was equipped with individual feed bunks suspended on load cells and bunk 

weight was monitored continuously by computer.  Feeding activity including meal length and 

size were recorded electronically.  Behavior data was analyzed as described previously (Mullins 

et al., 2012).  Briefly, intermeal intervals were no less than 12 minutes and meals < 0.2 kg DM 

were excluded.  Meal number, meal length, intermeal interval, and meal size (DM basis) data 

were analyzed for treatment effects. 

 Retrospective analyses 

Herd management data and DHIA production records were used for a retrospective 

analysis of whole-lactation production and risk of leaving the herd.  Cows that did not remain in 

the herd for a subsequent calving were considered to have left the herd, and the reason entered 

was recorded.  Predicted 305-d yields of milk, fat, and protein generated by DHIA (VanRaden, 

1997) were used for all animals for which a value was generated.  Predictions were not available 

for 3 animals that left the herd prior to 95 DIM.    

 Statistical analysis 

Statistical analyses for DMI, water intake, milk yield, and ECM over the first 21 d 

postpartum were carried out using the Mixed Procedure of SAS (version 9.2; SAS Institute Inc., 

Cary, NC) to assess the fixed effects of parity, time, treatment, and all 2- and 3-way interactions; 

cow was included as a random effect.  Repeated measures over time were modeled with 

autoregressive covariance structures, and denominator degrees of freedom were estimated using 

the Kenword-Rogers method.  Values were deemed outliers and omitted from analysis when 

Studentized residuals were >|3.5|.  Interactions were investigated when P < 0.15 using the slice 

option, and slices declared significant at P < 0.05.  Health disorder incidence and risk of leaving 

the herd were analyzed by Fisher’s exact test using JMP (version 8.0; SAS Institute Inc.  Cary, 

NC).   To test for randomization bias in milk production, treatment effects on predicted 
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transmitting ability (PTA) for milk, fat, and protein yield were tested, and no significant 

differences between treatment groups were observed (all P > 0.50).    An additional potential 

confounding factor was the enrollment of 27 of the cows (n =14 control, n = 13 SS) in a nutrition 

study following the completion of the 21 d salicylate study.  The study (Vargas et al., 2012) was 

a Latin square design with treatments that failed to influence any measured outcome.  Therefore, 

the simple effect of enrollment in the study was included in the model.  Statistical analysis of 

305-d milk, fat, and protein yields were carried out using JMP (version 8.0) to estimate the fixed 

effects of treatment, parity, treatment by parity interaction, and subsequent study enrollment.  

Additionally, the PTA for the variable of interest was included as a covariate to account for 

genetic contributions to variance. 

 RESULTS 

 DMI and water intake 

Multiparous cows (both 2P and 3P) had higher DMI than 1P cows (P < 0.001) and a time 

effect (P < 0.001) was observed, reflecting an increase in DMI from d1 to 21.  Additionally, a 

significant 3-way interaction (P < 0.001) was observed where 2P and 3P cows had a number of 

days with significantly different intakes between treatments.  Control 2P cows had greater DMI 

than SS 2P cows on numerous days through the first 20 DIM (Figure 2.1A), whereas 3P SS cows 

had greater DMI than 3P CON cows on several days (Figure 2.1B).   

Water intake followed a pattern similar to DIM; older cows had higher water intake than 

primiparous cows (P < 0.001) with increasing consumption of water as time progressed (P < 

0.001).  There was a significant treatment by day interaction (P < 0.001) where on d 1 CON 

cows tended (P < 0.10) to have a greater water intake, but then the remainder of the differences 

were observed after treatment ended (after d 8, Figure 2.1C). 

 Milk production 

During the first 21 DIM, daily milk yield was higher for multiparous cows than 

primiparous cows (P < 0.001; 39.51, 38.06, 29.00 ± 1.04 kg/d for 3P, 2P, and 1P).  Daily milk 

yield increased in the first three weeks (P < 0.001) regardless of treatment.  There was a 

significant treatment × day × parity interaction for milk yield (P < 0.001) where all the observed 

differences were in 3P cows (Figure 2.2A).  Fat yield was increased by 12.5% (P = 0.02, Figure 
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2.2B) in week 3 with SS treatment.  Older cows had higher milk fat percentage and milk fat yield 

than primiparous cows, resulting in a parity effect (P < 0.01) for these variables.  A treatment × 

week interaction (P < 0.01) was observed for milk protein content, where in the first week of 

lactation (while SS was administered), SS cows had higher milk protein content compared to 

CON cows (4.00 vs. 3.78 ± 0.05%, Figure 2.2C).  There were no treatment effects during the 

following 2 weeks, and overall protein content and yield decreased through the first 3 wk (P < 

0.001).  Multiparous cows had higher protein concentrations than primiparous cows (3.33, 3.51, 

3.29 ± 0.06 for 3P, 2P, and 1P; P = 0.01).  There was no treatment (P = 0.75) effect during the 

first 3 weeks for lactose yield, but both lactose content and yield increased through the first 3 wk 

(P < 0.001).  A treatment × parity × week interaction (P = 0.01) was also observed for lactose 

yield.  Salicylate treatment tended to increase ECM yield by 8.4% in week 3 (P = 0.06, Figure 

2.2D).   

Milk urea nitrogen (MUN) concentration was decreased (P = 0.03) with SS treatment 

(Table 2.2) during the first 3 wk.  There was also a treatment × parity interaction (P = 0.13) 

where 3P SS cows had lower MUN versus their CON counterparts (11.51 vs. 14.17 ± 0.80 

mg/dL; P = 0.02).  Somatic cell score was not impacted by treatment (P = 0.63), but a parity 

effect (P < 0.01) was observed where 1P cows had the highest SCS followed by 3P and 2P cows 

(3.39 ± 0.40, 2.73 ± 0.67, 1.90 ± 0.52, respectively).  

 There was no treatment effect (P = 0.16) for 305-d milk yield, but there was a treatment 

× parity interaction (P < 0.001).   Salicylate administration increased (P = 0.05) 305-d milk yield 

in 3P cows by 1,988 ± 704 kg (17%; Figure 2.4A).  A parity effect was observed (P < 0.01) 

where 3P cows had the highest 305-d milk yield and 1P cows had the lowest (12,852, 12,160, 

11,258 ± 364 kg for 3P, 2P, and 1P).  Estimated 305-d milk fat yield was increased 13% in SS 

cows (P < 0.001).  Parity also affected 305-d fat yield (P < 0.001), with 3P cows again having 

greatest 305-d fat yield and 1P cows the lowest (495, 423, 392 ± 13 kg for 3P, 2P, and 1P).  A 

treatment × parity effect was also observed, where 3P SS cows had 144 ± 25 kg more fat yield 

over the lactation than 3P CON (34% increase, P < 0.001; Figure 2.4B).  There was no overall 

treatment effect for 305-d protein yield, but there was a significant parity effect where 1P cows 

had the lowest protein yield and multiparous cows had higher yields (335 ± 7.5 vs. 370 ± 11.6 

kg).  There was also a treatment × parity interaction for 305-d protein yield, where 3P SS cows 

tended to have greater protein yield than 3P CON (14% increase, Figure 2.4C). 
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 Energy balance 

A tendency for a treatment effect (P = 0.09) was observed for energy balance where SS 

cows had a more severe negative energy balance than CON (-13.9 vs. -12.4 ± 0.86 Mcal/d).  A 

parity effect (P < 0.001) was observed where the oldest cows (3P) had the most negative energy 

balance and the 1P cows had the least (-19.7, -13.4, -10.5 ± 1.0 Mcal/d for 3P, 2P, 1P).  An 

interesting interaction for treatment × week (P = 0.11) was observed, where in weeks 2 and 3 SS 

cows had a more severe energy balance (Figure 2.2E); this response occurred after treatment had 

ended. 

 Disease incidence and herd retention 

Overall, health disorders were not impacted by SS treatment in the first 21 DIM.  

However, within the 3P block, SS cows had a higher incidence of metritis than CON (P = 0.03, 

Table 2.3). 

A treatment × parity interaction was observed (P < 0.05) where 1P SS cows tended (P < 

0.10) to have a greater risk of leaving the herd than controls (Table 3).  There was no difference 

observed in 2P and 3P cows.  There were no significant differences between treatments (P > 

0.10) in herd removal risk for specific reasons, but the most prevalent causes for cows leaving 

the herd were reproductive issues and chronic mastitis (Table 2.6). 

 Feeding behavior 

Feeding behavior results are listed in Table 2.4.  For meals per day, there was a 3-way 

interaction (P = 0.06) where all differences were observed in 2P and 3P cows (Figures 2.3A and 

2.3B).  Among 2P cows, SS increased the number of meals on d 3 postpartum but decreased the 

number of meals on d 17 postpartum.  In contrast, among 3P cows SS tended to decrease the 

number of meals on d 3 and 5 postpartum but increased the number of meals on d 17 postpartum.   

For meal length a treatment × day interaction was observed; SS tended to increase meal length 

on d 2 postpartum but significantly decreased meal length on d 18 (Figure 2.3C).   A treatment × 

day × parity interaction was observed for intermeal interval, where most of the significant 

differences were observed in 3P cows (Figure 2.3D).  In this block, intermeal interval was 

shorter for SS cows compared to CON on d 1, 11, 17, and 18 postpartum (all P < 0.10).   A 

significant parity effect (P < 0.001) was observed for meal size where 2P and 3P cows had larger 

meal sizes than 1P cows (2.95, 2.83, 2.32 ± 0.08 kg DM/meal for 3P, 2P, and 1P).   A treatment 
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× day interaction was also observed with decreased meal sizes for SS on d 1, 14, and 18 

postpartum but increased meal size on d 8 (Figure 2.3E).   

 DISCUSSION 

Milk and milk fat yields were increased in cows treated with sodium salicylate, with the 

greatest differences observed in 3rd or greater lactation cows.  Although no treatment effects on 

milk yield were detected during the 7-d treatment period, milk yields began diverging toward the 

end of the intensive 21-d monitoring period in the oldest cows.  This trend extended into the rest 

of the lactation, resulting in significantly higher 305-d milk yield for 3P SS cows compared to 3P 

CON.  This finding is similar to results observed by Bertoni et al. (2004), who administered 

lysine acetylsalicylate (aspirin) by daily injection for the first 5 d postpartum.  In that study, 

aspirin tended to increase milk yield compared to control, primarily at peak lactation.  In a 

separate but similar study, aspirin treatment for 5 days postpartum increased milk yield in the 

first 2 months of lactation (Trevisi and Bertoni, 2008).   Additionally Trevisi et al. (2003) 

observed increased milk yield compared to a placebo group in cows receiving lysine 

acetylsalicylate.    

However, in an endotoxin-induced mastitis model where SS was used in an attempt to 

minimize the negative effects on production, the authors observed a slower return to pre-

challenge production levels (Morkoc et al., 1993b).  The quantity of SS administered to these 

cows daily was much greater than in the current study (plasma salicylate concentrations of 236 

vs. 34 ± 15.0 µg/mL in this study), and the negative production effects may have been related to 

the high dose of SS.  In a study where a different NSAID was used, flunixin meglumine 

decreased milk production in an endotoxin-induced mastitis model (Anderson et al., 1986).  

However, in a transition cow model, flunixin meglumine administered i.v.  for the first 3 days 

after parturition had no effect on milk yield, 3.5% fat-corrected milk yield, energy-corrected milk 

yield, milk fat, protein or lactose percentages (Shwartz et al., 2009).  Flunixin meglumine 

administration also failed to significantly alter milk yield when administered (following ceftiofur 

treatment) to cows diagnosed with metritis in early lactation (Drillich et al., 2007a).  However, in 

this study milk yield was measured only over the 6 days following treatment, so impacts on the 

whole lactation were not assessed.  In another study where flunixin meglumine was administered 

to cows with toxic mastitis, the authors did not observe any differences in milk production in the 
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10 weeks following the development of mastitis (Dascanio et al., 1995).  Looking at a third class 

of NSAID, ketoprofen had no effects on milk yield when given by intramuscular injection for 2 

days after parturition (Richards et al., 2009).  However, in this study the only evaluation of milk 

yield was a single measurement obtained from the first individual milk reading of the lactation.  

Overall, it appears that the different classes of NSAIDs have different effects as evidenced by 

differences observed in milk production. 

Even though increases in milk yield were observed in older cows treated with SS, 

mechanisms for this increase in the dairy cow have not been identified.   In an isolated mammary 

tissue model from lactating rats, incubation with SS in the media was found to increase in Ca
2+

 

(mmol/kg cell H2O) (Shennan, 1992).  An efflux of K+ is also observed in response to SS in 

lactating rat mammary tissue, and as such the authors concluded that salicylates activate a 

calcium-dependent K
+
 efflux channel and/or a calcium-dependent non-selective cation channel 

(Shennan, 1992).  The authors speculated that there are 3 possible explanations for the increase 

in calcium uptake.  First, salicylate can complex with Ca
2+

.  Salicylate rapidly crosses biological 

membranes (Dalmark and Wieth, 1972) and if complexed with Ca
2+

, can increase intracellular 

Ca
2+

 levels.  Another possible explanation is that salicylate might act like an ionophore to form 

Ca
2+

 channels.  The final potential mechanism the authors suggested was that salicylate may 

activate quiescent endogenous Ca
2+

 channels.  Calcium is important in mammary cell survival 

(Delbecchi et al., 2005) and milk protein synthesis (Duncan and Burgoyne, 1996) and as such, 

increasing calcium uptake by the mammary gland might explain why salicylate increased milk 

yield in this trial. 

Early lactation cows have increased transcription of genes in the mammary gland that are 

involved in lipid transport and metabolism.  Specifically, lipoprotein lipase (LPL) and very low 

density lipoprotein receptor (VLDL-R2) are significantly upregulated (Finucane et al., 2008) in 

early lactation and are important in fatty acid uptake.  These fatty acids are primarily utilized for 

milk TG synthesis (Bell, 1995).  Sodium salicylate may potentially impact the expression of 

these genes, leading to the increased milk fat observed by week 3 of lactation, and might have a 

programming role in the expression of lipoprotein receptors extending through the entire 

lactation.  

Glucose utilization for milk synthesis might be another potential mechanism to explain 

the increase in milk yield that was observed.   In early lactation glucose transporters are 
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upregulated in the mammary gland compared to the dry period (Finucane et al., 2008).   In 

healthy adults receiving salicylates, there is a depression in plasma glucose concentration (Hecht 

and Goldner, 1959; Carlson and Ostman, 1965; Richardson et al., 1986; Gilbert et al., 1993), 

which several authors have attributed to an increase in tissue uptake of glucose.  Plasma glucose 

concentration was decreased on d 7 by SS in the current study (Chapter 3).  This suppression in 

plasma glucose might indicate greater use of glucose by tissues, especially the mammary gland, 

which might partially explain the increased milk yield observed with cows that were given SS.  

There may be longer-term cellular alterations that are due to SS where glucose transporters or 

ion pores might be altered to lead to increased milk production. 

Administration of SS did not alter incidence of health disorders during the first 21 DIM, 

except that older cows treated with SS had a greater incidence of metritis.  Similarly, a group out 

of Italy observed an increase in metritis (30% vs. 18% for control) in transition dairy cows given 

daily injections of aspirin (Bertoni et al., 2004).  In a separate study by this group, once again 

metritis incidence was observed to increase with aspirin treatment (30.4% vs 13.6% in control 

cows) (Trevisi and Bertoni, 2008).  However, in this study, the authors also observed decreases 

in mastitis and lameness incidences with aspirin treatment (statistical analyses were not 

conducted).   

The increase in milk yield observed in response to SS in the current study could have 

occurred through a suppression of subclinical health disorders in early lactation.  It has been well 

documented that many health disorders that occur in early lactation decrease whole lactation 

milk yield (Goff and Horst, 1997; Drackley, 1999; Bobe et al., 2004; Goff, 2006); SS may have 

improved production by minimizing the “hidden” health disorders that are common in early 

lactation cows.  Even though there were few differences observed in diagnosed health disorders, 

improving health through prevention of subclinical conditions could be beneficial to production.   

Another interesting observation was that there was a greater risk of primiparous cows 

being removed from the herd if they were given SS during the first week of lactation.  There was 

no consistent reason why these cows were culled, although the most common reasons for leaving 

the herd consisted of reproductive issues and chronic mastitis.  The reproduction issues with 

primiparous cows could partially be explained by differences in metabolism of SS based on 

parity.  In Brahman cows that were administered aspirin, plasma concentrations of salicylate 

differed by parity; primparous cows had higher plasma salicylate concentrations than 
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multiparous cows (Stahringer et al., 1999).  Additionally, the aspirin-treated cows used in this 

study had lower pregnancy rates, increases in abnormal estrous cycles, and reduced formation of 

corpora lutea after estrus.  Primiparous aspirin-treated cows had a longer postpartum return to 

estrus interval, providing further evidence of detrimental effects of aspirin administration on 

postpartum reproduction.  When parity was not a factor, as in the Bertoni et al. (2004) trial (only 

multiparous cows were used), an increase in fertility was observed with aspirin treatment.  

Specifically, more cows were pregnant after 1st insemination (50 vs. 27%), there were fewer 

services per conception (2.11 vs 2.33), and a slight reduction in days open (126 vs. 133 d) 

observed in aspirin-treated cows. 

Prostaglandin production is important in reproduction, but also has impacts on 

inflammation.   Prostaglandin F2α is important immediately post-partum for uterine involution 

and ovarian activity.   Suppression of prostaglandin synthesis has been reported to alter 

postpartum reproductive traits in Brown Swiss cows (Guilbault et al., 1987).   A prostaglandin 

synthase inhibitor administered to cows twice daily for 6 days postpartum reduced ovarian 

activity and altered progesterone waves after calving.    Prostaglandin F2α can decrease the 

postpartum return to estrus interval and increase follicle size in ovaries (Tolleson and Randel, 

1988; Villeneuve et al., 1988; White and Dobson, 1990).   Administration of salicylate 

derivatives suppresses prostaglandin production, which includes both prostaglandin F2α and E2.   

Prostaglandin E2 has been well documented to induce fever, influence contraction and relaxation 

of smooth muscle, and affect dilation and constriction of blood vessels (Kelly, 1996).   

Suppressing prostaglandin production can be an effective way to manage inflammation, 

however, when suppressing the inflammatory prostaglandin E2, it is possible to suppress PGF2α 

as well, which has negative reproductive effects and may promote retained placenta.   Sodium 

salicylate should not directly suppress prostaglandin production, because the mode of action has 

been attributed to inhibition of NFκB activity, not COX activity.   However, NFκB is a 

transcriptional regulator of COX enzymes, so suppressing its activity may indirectly inhibit 

prostaglandin synthesis (Shoelsen et al., 2006). 

 CONCLUSION 

Sodium salicylate administered in drinking water during the first 7 d of lactation alters 

milk production in the dairy cow.   The greatest increases in production were observed in older 
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cows (≥ 3 lactations).   Treatment of cows with SS did not significantly alter overall incidence of 

health disorders.   However, metritis was increased in older cows that were given SS, further 

identifying a need to understand the differences in effects of salicylates in different parities.   

Another negative effect was observed in primiparous cows, which had a greater risk of leaving 

the herd when they were given SS during the first week of lactation.   Overall, it appears that SS 

has some benefits in regards to production and potentially profit in 3rd or greater lactation cows, 

but is not a beneficial management practice for primiparous cows, as it increases their probability 

of being removed from the herd with no increases in milk production.   It is important to note 

that SS is not approved for commercial use for these purposes.   Interesting results were observed 

when SS was administered during the first week of lactation, however, all the improvements in 

milk production were observed once cows were not receiving the drug anymore.   Further 

research into potential modes of action for this response, including alterations in mammary gland 

“programming”, may help clarify the results observed in this study. 

Although veterinary forms of aspirin are marketed with label indications for pain, fever, 

and inflammation, in the U. S. this drug as not been approved for use by the Food and Drug 

Administration Center for Veterinary Medicine (FDA CVM).  Consequently, there are no 

established withdrawl times in food-producing animals.  With this in mind, the only use of 

aspirin or salicylates is as an extra-label use in cooperation with veterinarians according to 

AMDUCA (Animal Medicinal Drug Use Clarification Act). 

 ACKNOWLEGEMENTS 

This project was supported by the National Research Initiative Grant no.  2009-35206-

05271 from the USDA National Institute of Food and Agriculture.  The work was also supported 

by the Kansas Agricultural Experiment Station.  The authors express their appreciation to Mike 

Scheffel, Chad Mullins, and other Kansas State University graduate and undergraduate students 

(Manhattan, KS) for help in sample collection and analysis.  We gratefully acknowledge the 

donation of molasses from Quality Liquid Feeds (Dodgeville, WI). 

  



52 

 

 REFERENCES 

Ametaj, B. N. 2005. A new understanding of the causes of fatty liver in dairy cows. Adv. Dairy 

Technol. 17:97-112. 

 

Ametaj, B. N., B. J. Bradford, G. Bobe, R. A. Nafikov, Y. Lu, J. W. Young and D. C. Beitz. 

2005. Strong relationships between mediators of the acute phase response and fatty liver 

in dairy cows. Can. J. Anim. Sci. 85:165-175. 

 

Anderson, K. L., A. R. Smith, R. D. Shanks, L. E. Davis and B. K. Gustafsson. 1986. Efficacy of 

flunixin meglumine for the treatment of endotoxin-induced bovine mastitis. Am. J. Vet. 

Res. 47:1366-1372. 

 

Bell, A. W. 1995. Regulation of organic nutrient metabolism during transition from late 

pregnancy to early lactation. J. Anim. Sci. 73:2804-2819. 

 

Bertoni, G., E. Trevisi and F. Piccioli-Cappelli. 2004. Effects of acetyl-salicylate used in post-

calving of dairy cows. Vet. Res. Commun. 28 Suppl 1:217-219. 

 

Bobe, G., J. W. Young and D. C. Beitz. 2004. Invited review: Pathology, etiology, prevention 

and treatment of fatty liver in dairy cows. J. Dairy Sci. 87:3105-3124. 

 

Bradford, B. J., L. K. Mamedova, J. E. Minton, J. S. Drouillard and B. J. Johnson. 2009. Daily 

injection of tumor necrosis factor-α increases hepatic triglycerides and alters transcript 

abundance of metabolic genes in lactating dairy cattle. J. Nutr. 139:1451-1456. 

 

Carlson, L. A. and J. Ostman. 1965. Inhibition of the mobilization of free fatty acids from 

adipose tissue in diabetes. 2. Effect of nicotinic acid and acetyl-salicylate on blood 

glucose in human diabetics. Acta. Med. Scand. 178:71-79. 

 

Dalmark, M. and J. O. Wieth. 1972. Temperature dependence of chloride, bromide, iodide, 

thiocyanate, and salicylate transport iin human red-cells. J. Physiol.-London. 224:583-

610. 

 

Dascanio, J. J., G. D. Mechor, Y. T. Grohn, D. G. Kenney, C. A. Booker, P. Thompson, C. L. 

Chiffelle, J. M. M. Musser and L. D. Warnick. 1995. Effect of phenybutazone and 

flunxin meglumine on acute toxic mastitis in dairy-cows. Am. J. Vet. Res. 56:1213-1218. 

 

Delbecchi, L., N. Miller, C. Prud'homme, D. Petitclerc, G. F. Wagner and P. Lacasse. 2005. 17 

beta-estradiol reduces milk synthesis and increases stanniocalcin gene expression in the 

mammary gland of lactating cows. Livest. Prod. Sci. 98:57-66. 

 

Drackley, J. K. 1999. Biology of dairy cows during the transition period: the final frontier? J. 

Dairy Sci. 82:2259-2273. 

 



53 

 

Drillich, M., D. Voigt, D. Forderung and W. Heuwieser. 2007. Treatment of acute puerperal 

metritis with flunixin meglumine in addition to antibiotic treatment. J. Dairy Sci. 

90:3758-3763. 

 

Duncan, J. S. and R. D. Burgoyne. 1996. Characterization of the effects of Ca 2+ depletion on 

the synthesis, phosphorylation and secretion of caseins in lactating mammary epithelial 

cells. Biochem. J.-London. 317:487-493. 

 

Finucane, K. A., T. B. McFadden, J. P. Bond, J. J. Kennelly and F. Q. Zhao. 2008. Onset of 

lactation in the bovine mammary gland: gene expression profiling indicates a strong 

inhibition of gene expression in cell proliferation. Funct. Integr. Genomics. 8:251-264. 

 

Gallo, P., S. Fabbrocino, F. Vinci, M. Fiori, V. Danese and L. Serpe. 2008. Confirmatory 

identification of sixteen non-steroidal anti-inflammatory drug residues in raw milk by 

liquid chromatography coupled with ion trap mass spectrometry. Rapid Commun. Mass 

Spectrom. 22:841-854. 

 

Gilbert, R. O., Y. T. Grohn, P. M. Miller and D. J. Hoffman. 1993. Effect of parity on 

periparturient neutrophil function in dairy cows. Vet. Immunol. Immunopathol. 36:75-82. 

 

Goff, J. P. and R. L. Horst. 1997. Physiological changes at parturition and their relationship to 

metabolic disorders. J. Dairy Sci. 80:1260-1268. 

 

Goff, J. P. 2006. Major advances in our understanding of nutritional influences on bovine health. 

J. Dairy Sci. 89:1292-1301. 

 

Grummer, R. R. 1993. Etiology of lipid-related metabolic disorders in periparturient dairy cows. 

J. Dairy Sci. 76:3882-3896. 

 

Guilbault, L. A., W. W. Thatcher and C. J. Wilcox. 1987. Influence of a physiological infusion 

of prostaglandin F 2alpha into postpartum cows with partially suppressed endogenous 

production of prostaglandins. 2. Interrelationships of hormonal, ovarian and uterine 

responses. Therio. 27:947-957. 

 

Hecht, A. and M. G. Goldner. 1959. Reappraisal of the hypoglycemic action of acetylsalicylate. 

Metab.-Clin. Exp. 8:418-428. 

 

Herdt, T. H. 1988. Fatty liver in dairy cows. Vet. Clin. North Am. Food Anim. Pract. 2:269-287. 

 

Hotamisligil, G. S. 2006. Inflammation and metabolic disorders. Nature. 444:860-867. 

 

Kelly, R. W. 1996. Inflammatory mediators and parturition. Rev. Reprod. 1:89-96. 

 

Kelton, D. F., K. D. Lissemore and G. Martin. 1998. Recommendations for recording and 

calculating the incidence of selected clinical diseases of dairy cattle. J. Dairy Sci. 

81:2502-2509. 



54 

 

 

Kleppe, B. B., R. J. Aiello, R. R. Grummer and L. E. Armentano. 1988. Triglyceride 

accumulation and very low density lipoprotein secretion by rat and goat hepatocytes in 

vitro. J. Dairy Sci. 71:1813-1822. 

 

Kopp, E. and S. Ghosh. 1994. Inhibition of NF-kB by sodium salicylate and aspirin. Science. 

265:956-959. 

 

Kushibiki, S., K. Hodate, H. Shingu, Y. Ueda, Y. Mori, T. Itoh and Y. Yokomizo. 2001. Effects 

of long-term administration of recombinant bovine tumor necrosis factor-alpha on 

glucose metabolism and growth hormone secretion in steers. Am. J. Vet. Res. 62:794-

798. 

 

Kushibiki, S., K. Hodate, H. Shingu, Y. Obara, E. Touno, M. Shinoda and Y. Yokomizo. 2003. 

Metabolic and lactational responses during recombinant bovine tumor necrosis factor-

alpha treatment in lactating cows. J. Dairy Sci. 86:819-827. 

 

Mitchell, J. A., P. Akarasereenont, C. Thiemermann, R. J. Flower and J. R. Vane. 1993. 

Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and 

inducible cyclooxygenase. Proc. Natl. Acad. Sci. U.S.A. 90:11693-11697. 

 

Morkoc, A. C., W. L. Hurley, H. L. Whitmore and B. K. Gustafsson. 1993. Bovine acute 

mastitis: effects of intravenous sodium salicylate on endotoxin-induced intramammary 

inflammation. J. Dairy Sci. 76:2579-2588. 

 

Mullins, C. R., L. K. Mamedova, M. J. Brouk, C. E. Moore, H. B. Green, K. L. Perfield, J. F. 

Smith, J. P. Harner and B. J. Bradford. 2012. Effects of monensin on metabolic 

parameters, feeding behavior, and productivity of transition dairy cows. J. Dairy Sci. 

95:1323-1336. 

 

Pierce, J. W., M. A. Read, H. Ding, F. W. Luscinskas and T. Collins. 1996. Salicylates inhibit 

IκB-α phosphorylation, endothelial-leukocyte adhesion molecule expression, and 

neutrophil transmigration. J. Immunol. 156:3961-3969. 

 

Richards, B. D., D. H. Black, R. M. Christley, M. D. Royal, R. F. Smith and H. Dobson. 2009. 

Effects of the administration of ketoprofen at parturition on the milk yield and fertility of 

Holstein-Friesian cattle. Vet. Rec. 165:102-106. 

 

Richardson, T., J. Foster and G. E. Mawer. 1986. Enhancement by sodium-salicylate of the 

blood-glucose lowering effects of chlorpropamide drug-interaction or summation of 

similar effects. Br. J. Clin. Pharmacol. 22:43-48. 

 

Schonhofer, P. S., J. Sohn, H. D. Peters and V. Dinnendahl. 1973. Effects of sodium salicylate 

and acetylsalicylic acid on the lipolytic system of fat cells. Biochem. Pharmacol. 22:629-

637. 

 



55 

 

Shennan, D. B. 1992. Salicylate-induced cation fluxes across biological-membranes-A study of 

the underlying mechanism. Biochem. Pharmacol. 44:645-650. 

 

Shoelson, S. E., J. Lee and M. Yuan. 2003. Inflammation and the IKKbeta/IkappaB/NF-kappaB 

axis in obesity- and diet-induced insulin resistance. Int. J. Obes. 27:S49-S52. 

 

Shook, G. E. 1993. Genetic improvement of mastitis through selection on somatic cell count. 

Vet. Clin. North Am. Food Anim. Pract. 9:563-581. 

 

Shwartz, G., K. L. Hill, M. J. VanBaale and L. H. Baumgard. 2009. Effects of flunixin 

meglumine on pyrexia and bioenergetic variables in postparturient dairy cows. J. Dairy 

Sci. 92:1963-1970. 

 

Stahringer, R. C., D. A. Neuendorff and R. D. Randel. 1999. The effect of aspirin administration 

and parity on plasma salicylate concentrations and postpartum reproductive parameters in 

Brahman cows. Prostagl. Lipid. Mediat. 58:125-138. 

 

Tolleson, D. R. and R. D. Randel. 1988. Effects if alfaprostol and uterine palpation on 

postpartum interval and pregnancy rate to embryo transfer in Brahman influenced beef-

cows. Therio. 29:555-564. 

 

Trevisi, E., F. Librandi and G. Bertoni. 2003. Inflammatory conditions in peri-parturient cows 

and anti-inflammatory treatments. in Proc. 54th Ann. Meet. of EAAP, Rome, Italy. 

 

Trevisi, E. and G. Bertoni. 2008. Attenuation with acetylsalicylate treatments of inflammatory 

conditions in periparturient dairy cows. Pages 22-37 in Aspirin and Health Research 

Progress. P. I. Quinn, ed. Nova Science Publishers.  

 

VanRaden, P. M. 1997. Lactation yields and accuracies computed from test day yields and 

(Co)Variances by best prediction. J. Dairy Sci. 80:3015-3022. 

 

Vargas, C. F., M. Engstrom and B. J. Bradford. 2012. Effects of dietary amylase and sucrose on 

productivity of cows fed low-starch diets. J. Dairy Sci. 95 (suppl. 2):116. 

 

Villeneuve, P., J. J. Dufour and L. A. Guilbault. 1988. Influence of infusion of prostaglandin F2-

alpha (PGF2-alpha) and weaning on surface and histologic population of ovarian follicles 

in postpartum beef-cows. J. Anim. Sci. 66:3174-3184. 

 

White, A. J. and H. Dobson. 1990. Effect of prostaglandin-F2-alpha on the fertility of dairy-cows 

after calving. Vet. Rec. 127:588-592. 

 

 

 

  



56 

 

Table 2.1 Diet composition 

Diet composition  

Ingredient (% of DM)  

    Corn silage 22.2 

    WCGF
1 

30.3 

    Alfalfa hay 20.4 

    Cottonseed 4.9 

    Corn grain
 

9.2 

    Sorghum grain
 

4.0 

    Micronutrient premix
2 

9.0 

Nutrient (% of DM)  

    DM (% as-fed) 53.2 

    CP 18.6 

    ADF 18.0 

    NDF 30.5 

    NFC 38.1 

    Ether extract 5.2 

    Ash 7.9 

    NEL
3
 (Mcal/kg)  1.72 

1
Wet corn gluten feed (Sweet Bran; Cargill Inc., Blair, NE). 

2
Premix consisted of 54.9% SoyBest, 14.3% limestone, 

1.6% salt; 10.2% sodium bicarbonate, 2.0% magnesium 

oxide, 0.6% 4-plex, 0.3 selenium (0.06%), 0.10% of 

Vitamin A and D, 1.6% Vitamin E, 0.1% Rumensin 90, 

2.6% Diamond V XP, 10.0% MegalacR, 1.6% potassium 

carbonate, 0.1% Zinpro 100. 
3
Estimated according to NRC (2001). 
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Table 2.2 Energetics and milk components in the first 21 DIM 

   P-value
3 

Item CON
1
 SS

2
 SEM Trt Par Wk 

DMI
**,***,†† 17.28 17.41 0.66 0.87 < 0.001 < 0.001 

Water intake (L/d)
**

 85.41 87.57 2.32 0.51 < 0.001 < 0.001 

Energy balance, Mcal/d -12.44 -13.93 0.86 0.23 < 0.001 < 0.01 

Milk yield, kg/d
†,*** 

35.04 36.00 1.36 0.56 < 0.001 < 0.001 

Fat (%) 4.94 5.18 0.11 0.15 < 0.01 < 0.001 

Protein (%)
*,†

 3.37 3.43 0.04 0.35 < 0.001 < 0.001 

Lactose (%) 4.67 4.63 0.03 0.31 0.22 < 0.001 

ECM, kg/d 42.31 44.39 1.38 0.29 < 0.001 < 0.001 

Yield, kg/d       

   Milk Fat
*
 1.70 1.83 0.06 0.16 < 0.001 < 0.001 

   Milk Protein 1.17 1.20 0.04 0.66 < 0.001 < 0.001 

   Milk Lactose
***

 1.70 1.72 0.05 0.75 < 0.001 < 0.001 

MUN, mg/dL
4
 12.80 11.66 0.37 0.04 0.35 < 0.01 

SCS
5
 2.57 2.78 0.31 0.63 < 0.01 < 0.01 

1
 CON; control treatment 

2
 SS; sodium salicylate treatment 

3
P-value: Trt; treatment effect (CON vs SS); Par; parity effect (1P, 2P, 3P); Wk; week effect  

4
 MUN; milk urea nitrogen 

5
SCS; somatic cell score: log2(SCC/100) + 3 (Shook, 1993) 

*
Parity × week (P < 0.05); 

** 
Treatment × week (P < 0.05); 

*** 
Treatment × parity × week (P < 

0.05); 
†
Treatment × week (P < 0.10), 

††
Parity × week (P < 0.10). 

Values reported are least square means (LSM) 
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Figure 2.1 Dry matter intake and water intake during the first 21 DIM 

 

 

 

  

A time effect (day or week) was observed (P < 0.05) for DMI and water intake 

where all increased over time.  A treatment × parity × day interaction was 

observed (P < 0.001) for feed intake where all the differences were observed in 

2P (Panel A) and 3P cows (Panel B).  There were a greater number of days 

where CON 2P cows had a greater DMI, however 3P SS cows had a greater 

number of days with a greater DMI. Panel C. A significant treatment × day 

interaction (P < 0.001) was observed for daily water intake.  A tendency was 

observed on d1 where CON cows had greater intake, and all the remainder of 

differences occurred once treatment was removed (after d 8).   

All values are least squares means ± SE. 

* P < 0.05 

† P < 0.10 
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Figure 2.2 Milk production and energetic changes observed during the first 21 DIM 

 

  

A significant time (DIM or week) was observed (P < 0.05) for all variables shown.  Panel A. A 

treatment × day × parity interaction (P < 0.001) was observed for daily milk yield where all the 

differences were associated with 3P cows, shown here.  Panel B. There was a significant treatment × 

week interaction (P = 0.04) for fat yield.  SS treated cows had significantly higher fat yield in the 

third week of lactation.  Panel C. A treatment × week interaction (P < 0.01) was observed for protein 

concentration where in the first week, while SS was administered, SS treated cows had higher milk 

protein concentration.  Panel D. A treatment × week interaction (P = 0.11) for ECM was observed 

where there was a tendency for SS cows to have a higher ECM in week 3.  Panel E. A treatment × 

day interaction was observed (P = 0.05) were SS treated cows had a more pronounced negative 

energy balance in week 3.  All values are least squares means ± SE. 

* P < 0.05 

† P < 0.10 
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Table 2.3 Health disorder incidences in first 21 DIM 

Disorder Incidence (%)
1 

CON (n)
2 

SS (n)
3 

P-value 

Ketosis 32 12 13 NS 

Lameness  5 3 1 NS 

Temperature
4 

28 11 11 NS 

Metritis 23 8 10 
5 

Displaced abomasum
 

 8 2 4 NS 

Diarrhea  8 4 2 NS 

Retained Placenta 10 4 4 NS 

Mastitis 19 7 8 NS 

Other
6 

12 4 6 NS 

Multiple
7 

45 16 19 NS 
1
 Total diagnosed and treated incidence of each specific disorder out of all 78 cows.   

2
 Count of control cows (out of 39) diagnosed with the specific disorder. 

3
 Count of salicylate treated cows (out of 39) diagnosed with the specific disorder. 

4
Cows had a fever >104°F but no other symptoms, so no specific disease diagnosis. 

5 
Parity x treatment interaction; treatment effect was significant for 3P block (P = 0.03). 

6
 Cows that were diagnosed with something other than that listed above (i.e. hardware). 

7
 Cows that were diagnosed and treated as having more than one disorder during the trial. 

 

 

 

Table 2.4 Feeding behavior during the first 21 DIM 

   P-value 

Item CON
1
 SS

2
 SEM

3
 Trt

4
 Par

5
 Day

6
 

Meal frequency (d
-1

)
** 

15.17 15.27 0.46 0.88 0.69 <0.01 

Meal length (min)
*
 12.33 11.87 0.55 0.54 0.07 <0.01 

Intermeal interval (min)
**

 73.49 72.29 2.46 0.73 0.85 <0.01 

Meal size (kg of DM)
* 

2.72 2.68 0.06 0.67 <0.01 <0.01 
1
 CON; control treatment 

2
 SS; sodium salicylate treatment 

3
SEM; standard error of means 

4
Trt; treatment effect (CON vs. SS) 

5
Par; parity effect (1P, 2P, 3P) 

6
Day; day effect  

*
Treatment × day (P < 0.05); 

**
Treatment × parity × day (P < 0.05). 

Values reported are least square means (LSM) 
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Figure 2.3 Feeding behavior changes during the first 21 DIM 

 

   

There was a tendency for a treatment × day × parity interaction (P = 0.06) for meals per 

day, where the majority of the differences were for 2P (Panel A) and 3P (Panel B) cows.  

Panel C. A treatment × day interaction (P = 0.02) was observed for meal length.  Panel D. 

A treatment × parity × day interaction (P = 0.03) was observed for intermeal length were 

the greatest number of days with significant differences were in 3P cows as illustrated in 

Panel D.  SS cows had a number of days with a shorter intermeal interval.  Panel E. A 

treatment × day interaction (P < 0.01) was observed for meal size where SS cows had a 

number of days with smaller meal sizes in the 3rd week, but larger meal size on d 8.  All 

variables shown had a significant day effect (P < 0.05).   

All values are least squares means ± SE. 

* P < 0.05 

† P < 0.10 
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Figure 2.4 Whole lactation data for cows treated during the first week of lactation 

 

  

Whole lactation data for cows treated during the first week of lactation with sodium salicylate (SS    ) 

or control (CON   ).  X-axis labels are parity (1=1P, 2=2P, 3=3P).  Values are 305-d estimates and are 

least square means ± SEM.  Panel A. There was a treatment × parity interaction (P < 0.01) for 305-d 

milk yield, with 3P SS cows having higher milk yield (P < 0.01), but also a tendency (P = 0.07) for 

1P CON cows to have higher milk yield. Panel B. A treatment × parity effect (P < 0.01) was 

observed for 305-d milk fat yield.  Panel C. 305-d milk protein yield had a tendency (P = 0.08) for a 

treatment × parity effect with a tendency for 3P SS cows to have higher protein yield. 
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Table 2.5 Reasons cows left herd
1 

 1P
2
 2P

3
 3P

4
  

Reason CON
5
 SS

6
 CON SS CON SS Total 

Foot/Leg -- -- -- -- 1 -- 1 

Low Production -- 1 1 -- -- -- 2 

Reproduction 1 3 1 2 1 1 9 

Injury -- -- -- -- -- 1 1 

Died -- -- 1 1 1 -- 3 

Mastitis -- 2 2 2 1 -- 7 

Udder -- -- 1 -- -- -- 1 

Total 1 6 6 5 4 2 24 
1
All values are numerical counts based on parity and treatment for each specific reason cows 

were removed from the herd. 
2
 1P; First parity cows  

3 
2P; 2

nd
 lactation cows 

4
 3P; 3

rd
 or greater lactation cows 

5
 CON; control 

6
 SS; sodium salicylate treatment 
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Chapter 3 - Inflammatory pathways contribute to the metabolic 

adaptations to lactation in dairy cattle  

J. K. Farney, L. K. Mamedova, J. F. Coetzee, B. KuKanich, L. M. Sordillo, J. E. Minton, L.C.  

Hollis, and B. J. Bradford 

 ABSTRACT 

Inflammation has been proposed as a contributor to metabolic disorders in dairy cows during the 

transition from gestation to lactation. The purpose of this experiment was to determine if a non-

steroidal anti-inflammatory drug, sodium salicylate (SS), alters metabolism of transition dairy 

cows. At calving, cows were alternately assigned, based on parity, to either control (CON) or SS 

treatment delivered in drinking water for 7 d, and metabolic responses were monitored for the 

first 21 d of lactation. Hepatic inflammation, as assessed by mRNA abundance of TNFα, was 

decreased by SS during treatment. Plasma glucose concentration and expression of the 

gluconeogenic gene glucose-6-phosphatase were decreased in SS treated cows, especially among 

cows in their 3rd lactation or greater. Although no effects on lipolysis or ketogenesis were 

detected during treatment, both non-esterified fatty acid and beta-hydroxybutyrate concentrations 

were elevated in SS-treated cows in the 2 weeks after treatments ended. Liver triglyceride 

concentration was increased during SS administration but by d 21 there were no differences 

between treatment groups. Because the most dramatic responses were observed in aged cows, 

plasma eicosanoids were analyzed for these cows. No effects of treatment on plasma eicosanoids 

were observed at the end of the treatment period; however, SS cows had elevated concentrations 

of several inflammatory eicosanoids, including thromboxane B2, on d 14 of lactation. Post-

treatment metabolic responses to SS therefore may have been due to altered metabolic 

programming or to post-treatment increases in inflammatory signals. In summary, SS suppressed 

liver inflammation but decreased plasma glucose, increased plasma ketones, and contributed to 

liver triglyceride accumulation. These findings suggest that interrupting inflammation during the 

first week after parturition disrupts the metabolic adaptations to lactation. 
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 INTRODUCTION 

Fatty liver (FL) is a common metabolic disease in dairy cows during the transition from 

gestation to lactation. Like non-alcoholic FL in humans, bovine FL is characterized by 

hepatocellular accumulation of triglycerides and other lipids. The etiologies of these conditions, 

however, are quite different. Human fatty liver disease is closely associated with obesity and 

typically develops over many years (Farrell and Larter, 2006). Bovine FL, on the other hand, 

commonly develops over the course of just 1 or 2 weeks during a period of dramatic weight loss 

(Drackley, 1999). 

The transition from late pregnancy to lactation is a time of great physiological stress for 

the dairy cow. The decline in feed intake that accompanies parturition, coupled with the rapid 

increase in energy requirements during lactogenesis, generates a negative energy balance (NEB) 

(Grummer, 1993; Drackley, 1999; Bobe et al., 2004). Cows in NEB mobilize large quantities of 

fatty acids from adipose tissue stores, increasing plasma non-esterified fatty acid (NEFA) 

concentrations by as much as 10-fold within a few days after parturition (Herdt, 1988). Although 

some NEFA are used for mammary gland lipogenesis, a proportion is taken up by the liver. 

When uptake of fatty acids by the liver is greater than the ability of the liver to oxidize fatty 

acids, TGs accumulate in the liver and fatty liver develops. Compared to other species, the 

ruminant liver is inefficient at exporting triglycerides in VLDL (Kleppe et al., 1988). Nearly 

90% of all metabolic diseases in dairy cattle occur during the first 4 wk of the 305-d lactation 

(Ingvartsen, 2006).  

Bovine FL has often been seen as a natural, if unfortunate, consequence of the NEB that 

occurs in early lactation. However, several observations suggest that this may not be the case. 

Although lipolysis is certainly an expected response to NEB, early lactation cows had 7-fold 

greater increases in plasma NEFA concentration than mid-lactation cows subjected to a similar 

NEB (Gross et al., 2011), suggesting that the magnitude of lipolysis in early lactation may be 

unnecessary. Similarly, dramatic lipomobilization occurs during early lactation in numerous 

species, perhaps most obviously in aquatic mammals such as the Northern elephant seal, which 

can lose more than 50% of its adipose mass over a 4-week lactation (Costa et al., 1986; Houser et 

al., 2007) without experiencing obvious metabolic disease.  

Despite their reliance on mobilized lipid as an energy source, dairy cattle entering 

lactation with greater adipose mass are at greatest risk of developing metabolic diseases 
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(Morrow, 1976).  It has become clear in the past decade that animals with excessive adiposity 

exhibit a low-grade inflammation (Hotamisligil, 2006), suggesting that perhaps inflammation 

underlies the metabolic disturbances in obese dairy cows. In support of this hypothesis, cows 

with moderate or severe FL have increased levels of the inflammatory cytokine tumor necrosis 

factor-α (TNFα) (Ohtsuka et al., 2001). Inflammatory cytokines cause myriad metabolic changes 

in dairy cattle, including anorexia, lipomobilization, impaired insulin sensitivity, and reduced 

milk yield (Kushibiki et al., 2001a; Kushibiki et al., 2003; Bertoni et al., 2004), all of which are 

associated with FL. Furthermore, daily injection of TNFα for 7 d increased liver TG content 

independent of effects on feed intake, and this effect was accompanied by changes in hepatic 

gene expression consistent with both inflammation and a shift from fatty acid oxidation to TG 

synthesis (Bradford et al., 2009). 

These recent findings suggest that exogenous inflammatory agents are sufficient to 

induce FL. It remains unclear, however, whether inflammation is a necessary causative factor in 

the natural progression of bovine FL. To test this broad question, use of a non-steroidal anti-

inflammatory drug (NSAID) sodium salicylate (SS). Sodium salicylate is a weak inhibitor of 

cyclooxygenase (COX)-1 and COX-2 (Mitchell et al., 1993), and its probable mode of action is 

that it inhibits phosphorylation of the NF-κB inhibitor IκB-α (Yin et al., 1998). Phosphorylation 

of IκB results in its degradation, allowing NF-κB to be released for translocation into the nucleus 

and subsequent activation of an inflammatory transcription program (Baker et al., 2011).  

The specific hypothesis for this study was that SS, by interrupting inflammatory signals 

in the liver during the first 7 d of lactation, would limit accumulation of TG, promote 

gluconeogenesis, and limit metabolic disease in transition dairy cows. In contrast, our findings 

suggest that inflammatory signals may be necessary for metabolic adaptations to lactation, 

especially increased gluconeogenesis necessary to support lactogenesis, and modulation of 

lipolysis and ketogenesis as animals return to positive energy balance. 

 

 METHODS AND MATERIALS 

 

All experimental procedures were approved by the Kansas State University Institutional 

Animal Care and Use Committee #2880. 
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 Design and Treatments 

A total of 78 cows [n = 39 primiparous (1P), n = 24 2nd parity (2P), and n = 15 ≥3rd 

parity (3P)] from the Kansas State University Dairy Teaching and Research Facility were 

randomly assigned to treatment at parturition.  Treatment consisted of administration of sodium 

salicylate (SS; 1.95 g/L) via individual water bowls for 7 d postpartum with a molasses carrier 

(0.14 g/L).  Control cows received the same molasses additive for 7 d (CON).  On the 8th day 

postpartum all cows were given non-treated water for the remainder of the 21 days.  Cows were 

housed in a tie-stall facility in randomly assigned stalls.  Cattle were milked 3 times daily (0600, 

1000, and 1800 h) and fed ad libitum twice daily (0630 and 1800 h).   

 Data and sample collection 

Throughout the 21-d trial, feed and water intake and milk yield were recorded daily.  

Health checks were conducted by trained personnel once daily (0630 h), where urine ketone and 

rectal temperature were collected and recorded.  Milk samples were collected at all 3 milkings, 

twice weekly, for analysis of milk components.  Blood samples were collected from coccygeal 

vessels on days 1, 7, 14, and 21 post-partum and processed as described previously (Morey et al., 

2011).  Briefly, approximately 6 mL of blood was collected into a tube containing EDTA and 

another 6 mL was collected into a tube containing potassium oxalate with sodium fluoride as a 

glycolytic inhibitor (Vacutainer; Becton, Dickinson and Co., Franklin Lakes, NJ).  Blood 

samples were centrifuged at 2,000 × g for 10 min immediately after sample collection, plasma 

was harvested and frozen at -20°C until analysis.  Liver samples were taken on days 4 and 21 as 

described previously (Morey et al., 2011).  Briefly, liver samples were taken using a 14-gauge × 

15 cm biopsy needle (SABD-1415-15-T; US Biopsy, Franklin, IN) between the 10
th

 and 11
th

 

ribs, 5 cm dorsal to a line between the olecranon and tuber coxae.  The area was shaved, 

scrubbed, and a local anesthetic (lidocaine hydrochloride; Agri Laboratories Ltd., St. Joseph, 

MO) applied before making a small incision in the skin with a #10 blade (Feather Safety Razor 

Co. Ltd., Kita-Ku, Osaka, Japan).  The biopsy needle was inserted cranioventrally toward the 

liver and ~200 mg of tissue was collected (a total of 10 biopsies per collection day).  The liver 

sample was immediately frozen in liquid nitrogen and stored in a -80°C freezer until used for 

analysis.  Body condition score (BCS, scale 1-5 with 1=emaciated and 5=severely obese) was 

evaluated by 3 trained personnel on d 1, 7, 14, and 21. 
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 Plasma analyses 

Metabolites.  Non-esterified fatty acids were analyzed using an enzymatic colorimetric 

procedure (NEFA-HR; Wako Chemicals USA Inc., Richmond, VA), glucose by a colorimetric 

kit (kit #439-90901; Wako Chemicals USA Inc.), BHBA using an enzymatic reaction (kit 

#H7587-58; Pointe Scientific Inc., Canton, MI), and insulin by a bovine-specific sandwich 

ELISA (#10-1201-01; Mercodia AB, Uppsala, Sweden).  Plasma fibroblast growth factor-21 

(FGF-21) was evaluated on d 7 with a bovine FGF-21 ELISA kit (#CSB-EL008627BO; Cusabio 

Biotech Co., Ltd., Wuhan, China)  Absorbance was read on a spectrophotometer (PowerWave 

XS; BioTek Instruments Inc., Winooski, VT) and calculations were performed using Gen5 

software (BioTeck Instruments Inc.). 

Eicosanoid panel.  Eicosanoid concentrations were determined in the lipid fraction of 

plasma samples using liquid chromatography and mass spectrometry (LC-MS).  Plasma samples 

(500 µL) from 3P cows were mixed with 500 µL of HPLC grade water, 100 µL methanol,  4 µL 

antioxidant/reducing agent containing ethylenediaminetetraacetic acid (EDTA), butylhydroxy 

toluene (BHT), triphenylphosphine (TPP), and indomethacin (4 μL/mL), 100 µL of a mixture of 

internal standards, and 1 µL of formic acid. The internal standards mixture contained the 

following deuterated eicosanoids (0.1 ng/µL, 10 ng total):  LTB4-d4, TxB2-d4, PGF2α-d4, PGE2-

d4, PGD2-d4, 13(S)-HODE-d4, 6-keto PGF1α-d4, 9(S)-HODE-d4, LTD4-d5, 12(S)-HETE-d8, 

15(S)-HETE-d8. Sample mixtures were centrifuged at 3200 × g for 10 min at 4°C.  Lipids were 

isolated from the sample supernatant by solid phase extraction using a Phenomenex Strata-X 

33mu Polymeric Reversed Phase 60 mg/3 mL columns, catalog # 8B-S100-UBJ SPE 

(Phenomenex, Torrance, CA).  Columns were first conditioned with 3 mL methanol (MeOH) 

then 3 mL water.  The samples were passed through the columns; 3 ml of 40% MeOH was 

passed through afterward as the wash.  After a 4 min vacuum drying step, samples were eluted in 

2 mL MeOH/acetonitrile (50:50 v/v), dried in a Savant SVD121P SpeedVac (Thermo Scientific, 

Waltham, MA), and resuspended in 100 µL acetonitrile/water/formic acid (37:63:0.02 v/v/v).  

Eicosanoids were analyzed using two distinct LC-MS methods.  Both utilized reverse-

phase LC on a Waters ACQUITY UPLC
®
 BEH C18 1.7µm column (2.1 × 100mm) at a flow rate 

of 0.6 mL/min at 35°C and a quadrupole mass spectrometer (Waters ACQUITY SQD H-Class) 

in electrospray negative ionization mode.  The electrospray voltage was -3 kV and the turbo ion 

spray source temperature was 450°C.  Nitrogen was used as the drying gas.  For each method, 10 
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µL samples were injected in triplicate.   An isocratic mobile phase consisting of 

acetonitrile:water:0.1% formic acid (45:55:10; v/v/v) with an analysis time of 15 min was used 

to analyze LTB4, PGE2, PGD2, 5(S),6(R)-Lipoxin A4, PGF2α, TxB2, 6-keto PGF1α, resolvin D1, 

and resolvin D2.  The second method utilized an isocratic mobile phase of 

acetonitrile:methanol:water:0.1%formic acid (47.4:15.8:26.8:10; v/v/v/v) and an analysis time of 

10 min to analyze 9(S)-HODE, 13(S)-HODE, 15-deoxy-
Δ12,14

-PGJ2, 15-oxoETE, 5-oxoETE, 

5(S)-HETE, 12(S)-HETE, 15(S)-HETE, 7(S)-maresin 1, 7(S),17(S)-dihydroxy-

8(E),10(Z),13(Z),15(E), 19(Z)-docosapentaenoic acid, and LTD4.  Eicosanoids were identified in 

samples by matching their deprotonated (i.e., [M-H]-) m/z values and LC retention times with 

those of a pure standard.  Extraction and ionization efficiencies were measured for the internal 

standards by comparing the intensity of the samples with the ion intensity of the extraction 

controls.  The efficiency range was between 18% to 84%. 

Salicylate Analyses.  Plasma salicylate concentrations were determined with liquid 

chromatography (Shimadzu Prominence, Shimadzu Scientific Instruments) and triple quadrupole 

mass spectrometry (API 2000, Applied Biosystems). The ions monitored were: salicylate (m/z 

136.91→93.00) and the internal standard acetaminophen (m/z 152.17→110.0).  The mobile 

phase consisted of A: acetonitrile and B: 0.1% formic acid. The mobile phase gradient was 75% 

B from 0 - 0.5 min, 75% B to 50% B from 0.5 - 4.0 min, and 50% B to 75% B from 4.0 - 5.5 min 

with a total run time of 6.5 min.  A C8 column (Supelco Discovery, 2.1×150 mm, 5 µM, Sigma-

Aldrich, St. Louis, MO, USA) achieved separation. Sample processing consisted of adding 0.1 

mL plasma to 0.4 mL methanol with 0.1% formic acid containing 1 µg/mL acetaminophen. The 

samples were vortexed, centrifuged for 5 min at 15,000 ×g, the supernatant transferred to an 

injection vial and 0.01 mL was the injection volume. The accuracy of the assay was 100, 96, 104, 

103, 105 and 97% at 1, 5, 10, 25, 50, and 100 µg/mL on replicates of 3 for each concentration, 

respectively.  The coefficients of variation were 5, 9, 2, 10, 1, and 12% at 1, 5, 10, 25, 50, and 

100 µg/mL on replicates of 3 for each concentration, respectively. 

 Liver Analyses 

 Triglyceride. Approximately 20 mg of liver was placed in 500 µL of chilled PBS and 

homogenized, centrifuged at 2,000 × g for 10 min at 4°C, and 100 µL of the supernatant was 

then removed for free glycerol and total protein analysis.  Triglyceride content was measured as 
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described previously (Morey et al., 2011).  Briefly, some liver homogenate was incubated with 

100 µL of lipase (porcine pancreatic lipase, MP Biomedicals, Solon, OH) and glycerol content 

was then determined by an enzymatic glycerol phosphate oxidase method (#F6428 Sigma-

Aldrich Co., St. Louis, MO).  Trigylceride amount was calculated by the difference between 

glycerol concentrations before and after lipase digestion.  Total protein content of original 

homogenate was analyzed by a Coomassie blue (Bradford, 1976) colorimetric method (kit 

#23236; Thermo Scientific, Pierce, Rockford, IL).  Variation in moisture content of liver samples 

was accounted for by normalizing with protein concentration of the sample (Fronk et al., 1980). 

Gene expression. Transcript abundance of genes of interest, involved in glucose and lipid 

metabolism and inflammation, were determined by real-time PCR.  Total RNA was isolated 

from liver samples using a commercial kit (RNeasy Lipid Tissue Mini Kit; Qiagen Inc., 

Valencia, CA) and spectroscopy was used to quantify RNA (Nanodrop 1000; NanoDrop 

Technologies Inc., Wilmington, DE).  Complementary DNA was synthesized from 2 µg of total 

RNA using the High Capacity cDNA Reverse Transcription kit (Applied Biosystems, Foster 

City, CA).  Quantitative real-time PCR was performed in duplicate utilizing synthesized cDNA 

in the presence of 200 nmol/L gene-specific forward and reverse primers with SYBR green 

fluorescent detection (7500 Fast Real-Time PCR System, Applied Biosystems).  Control genes 

β-actin, GAPDH, and RPS9 were used in a geometric means model to determine the respective 

abundance differences in genes.  All genes, primers, and amplification region are identified in 

Table 1. 

Western blot. Protein abundance of c-Jun and Ikk-B and their respective phosphorylated 

forms were determined by Western blot essentially as described (Titgemeyer et al., 2011).  

Antibodies used were IκB-α (catalog #sc-847, Santa Cruz Biotechnology, Inc., Santa Cruz, CA), 

phosphor-IκB-α (catalog #sc-8404. Santa Cruz Biotechnology), c-Jun (catalog #sc-166540, Santa 

Cruz Biotechnology), and phosphorylated c-JUN (catalog #sc-166540, Santa Cruz 

Biotechnology).  Briefly, ~20 mg of liver tissue was homogenized at 4°C in RIPA lysis buffer 

with PhospoStop (Santa Cruz Biotechnology) containing a broad-spectrum protease inhibitor 

cocktail (Protease Inhibitor Cocktail I; Calbiochem, Gibbstown, NJ).  The homogenate was 

centrifuged and the supernatant was measured by the Bradford method (1976).  Forty 

micrograms of total protein was diluted in Laemmli sample buffer, heated at 90°C for 5 min, 

cooled, vortexed, separated by SDS-PAGE on a 4 to 12% Tris-HCl gel, and dry-transferred onto 
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nitrocellulose membranes (iBlot; Invitrogen, Carlsbad, CA).  Membranes were blocked in Tris 

buffer with 5% dry milk powder for 2 h at room temperature with antibodies (1:500) of interest 

from Santa Cruz Biotechnology.  After washing, a secondary antibody (anti-rabbit sc2313 

1:10,000; Santa Cruz Biotechnology) was incubated for 1 h at room temperature.  

Immunodetection was performed by chimiluminescence (West-Dura; Thermo Scientific, 

Waltham, MA) and bands quantified by scanning densitometry (ChemiDoc-It Imaging System; 

UVP Inc., Upland, CA).  ImageJ software from NIH website was used to calculate densitometry 

bands.  

Nuclear extract of NFkB. Nuclear extracts were collected from bovine liver samples 

according to manufacture guidelines (kit #SK-0001, Signosis Inc., Sunnyvale, CA).  Briefly, 20 

mg of liver was homogenized using lysis buffer, centrifuged, and the pellet was reconstituted 

with a second lysis buffer, centrifuged, and supernatant collected.  This supernatant was the 

nuclear extract.  Total protein was measured using the Bradford method (1976) and a total of 0.7 

mg of nuclear extract was used in the collection plate for evaluation of NFkB content.  Extract 

was stored at -20°C until used in a NFkB filter plate assay (#FA-0001; Signosis).  The extract is 

incubated with a NFkB probe for 30 min at 18°C then washed through a filter plate in which 

NFkB-bound probes are retained.  Bound NFkB was eluted, denatured, and hybridized to a 

hybridization plate overnight at 45°C.  The captured DNA was then detected with streptavidin-

HRP and measured using luminescence on a microplate luminometer. 

 Statistical analysis  

Statistical analyses were carried out using the Mixed Procedure of SAS (version 9.2; SAS 

institute Inc., Cary, NC) to assess the fixed effects of parity, time, treatment, and all 2- and 3-

way interactions; cow was included as a random effect. Repeated measures over time were 

modeled with autoregressive covariance structures, and denominator degrees of freedom were 

estimated using the Kenword-Rogers method. Values were deemed outliers and omitted from 

analysis when Studentized residuals were >|3.5|. Interactions were investigated when P < 0.15 

using the slice option, and slices declared significant at P < 0.05.  

 RESULTS AND DISCUSSION 

 Sodium salicylate inhibits inflammatory cascades in the liver  
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Salicylate has a half-life of approximately 30 min in cattle (Gingerich et al., 1975). 

Therefore, to deliver a therapeutic dose and to maintain relatively consistent plasma 

concentrations throughout the d, SS was delivered in drinking water. A preliminary study 

indicated that SS decreased water consumption by cows, but this problem was avoided when the 

flavor of SS was masked with 6 ppm molasses. Based on analysis of water bowl samples and 

measured individual water intakes, total daily intake of salicylate was 123.3 ± 5.5 g/cow, and 

plasma salicylate concentrations on d 7 were 34.4 ± 15.0 µg/mL, slightly above the therapeutic 

target of 30 µg/mL (Gingerich et al., 1975; Anderson et al., 1979; Coetzee et al., 2007). Plasma 

SS concentration did not differ by parity (P > 0.50). There was no effect of treatment on daily 

water intake during the 7-d treatment period (P = 0.81; 72.4 vs. 73.2 ± 3.5 L/d for CON and SS, 

respectively), suggesting that the inclusion of molasses in water for both treatments prevented 

any aversion to consumption of SS in drinking water.  

To assess whether SS treatment effectively inhibited inflammatory signaling in the liver, 

the relative phosphorylation of IκB-α was determined. Western blot analyses were evaluated on 

the liver samples from 3P cows for measurement proteins of IkB-α (total and phosphorylated) 

and c-Jun and densitromitry was done to quantify protein expression. Total IkB-α tended (P = 

0.07) to be lower for SS cows on d 4 but were significantly higher (P = 0.04) on d 21. Total 

phosphorylated IkB-α was not different between treatment groups, however, when analyzing the 

percentage of IkB-α that was phosphorylated, CON cows had a higher percentage (P = 0.04) 

phosphorylated on d 21.  Phosphorylated c-JUN was not impacted by treatment (P = 0.71) or day 

(P = 0.26). 

Inflammation was decreased (28%) in SS treated cows as evidenced by a decrease in 

tumor necrosis factor-α (TNFα) expression in the liver on d 4, then on d 21 had equivalent 

expression of this gene (Figure 3.1A).  However, no effect (P = 0.30) on nuclear NFκB 

abundance was observed between treatment groups. 

 Removal of salicylate results in elevated inflammatory eicosanoids in plasma 

Eicosanoids such as prostaglandins, prostacyclins, leukotrienes, lipoxines, and 

thromboxanes have been identified as key regulators of both acute and chronic inflammatory 

reactions (Sordillo et al., 2009).  Fatty acids can be used as precursors for inflammatory 

eicosanoids and due to the increase in NEFAs observed in early lactation may impact the 
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duration and magnitude of inflammation (Sordillo et al., 2009).  Since a majority of the 

production responses were observed in 3P cows (Chapter 2), the plasma samples for these cows 

were analyzed for 15 different eicosanoids.  Significant treatment × day interactions (P < 0.05) 

for eicosanoids show a significant increase on d 14 (Figure 3.2 panels A-D).  This trend was 

similar when looking at a pro-inflammatory index comprised of 11 pro-inflammatory 

eicosanoids (Figure 3.2E). 

 Sodium salicylate promotes liver TG accumulation and causes hypoglycemia in aged cows 

Previously it was reported that low-grade inflammation induced by 7-d administration of 

the inflammatory cytokine TNFα promoted liver triglyceride (TG) accumulation (Bradford et al., 

2009), which led us to hypothesize that blocking endogenous inflammation during the transition 

period would decrease liver TG content. In contrast to our hypothesis, liver triglyceride (TG) 

concentrations were increased 29% by SS on d 4 of lactation (P < 0.01), although by d 21 no 

differences were observed (P = 0.47, Figure 3.3E). Glucose metabolism was likewise altered, as 

evidenced by decreased (P < 0.05) plasma glucose concentration on d 7 (Fig. 3.3A). 

Interestingly, SS induced hypoglycemia on d 7 in 2P (45.4 vs. 53.5 ± 2.4 mg/dL, P = 0.05) and 

3P (36.0 vs. 50.2 ± 3.5 mg/dL, P < 0.01) cows, but not in 1P (55.5 vs. 53.5 ± 2.1 mg/dL for SS 

vs. CON, P = 0.50). Similar to our results, dairy cows injected with lysine acetyl-salicylate for 

the first 5 d of lactation had decreased plasma glucose on d 3 of lactation (Bertoni et al., 2004).  

Transcript abundance for key rate-determining enzymes in hepatic fatty acid oxidation 

and gluconeogenesis was measured to assess potential mechanisms underlying these responses. 

Carnatine palmitoyl transferase 1A, which catalyzes the rate-determining step in mitochondrial 

fatty acid oxidation, was not altered by treatment (P = 0.60, Fig. 3.3C). Although SS decreased 

hepatic expression of the gluconeogenic gene glucose-6-phosphatase (G6P) by 49% on d 4 (P = 

0.03, Figure 3.3C), it also tended to increase abundance of cytosolic phosphoenolpyruvate 

carboxykinase (PCK1) by 81% (P = 0.10) and had no effect on pyruvate carboxylase (Figure 

3.3C). Targeted analysis of hepatic transcripts failed to identify a clear shift in transcriptional 

programs underlying the increased liver TG content and hypoglycemia. 

Milk lactose synthesis requires as much as 70% of total glucose supply in lactating dairy 

cattle (Reynolds et al., 1988). Milk lactose yield was greater in multiparous than primaparous 

cows (Chapter 2), but treatment did not influence lactose yield in any parity group (P > 0.30). 
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Therefore, although greater glucose demands for lactose synthesis may have made multiparous 

cows more susceptible to hypoglycemia, this does not explain the treatment effects on plasma 

glucose concentration. Likewise, feed intake was not affected during treatment (Chapter 2), 

indicating that altered supply of gluconeogenic precursors is an unlikely explanation for the 

effect on plasma glucose. 

A key adaptation to lactation in the ruminant animal is insulin resistance, leading to 

decreased utilization of glucose by muscle and adipose tissue (Olefsky and Glass, 2010), thus 

sparing glucose for use by the mammary gland (Bell and Bauman, 1997). Additionally, a 

depression in liver mRNA expression of the insulin receptor in ketotic cows and those diagnosed 

with fatty liver, has been observed which might further induce insulin resistance (Liu et al., 

2010).  The ability of inflammatory mediators to induce insulin resistance is now well 

established, and SS increases glucose uptake in cultured adipocytes (Ostman, 1965). Studies in 

mice (Nixon et al., 2012) and humans (Goldfine et al., 2008) have suggested that salicylate can 

improve insulin sensitivity, resulting in increased glucose utilization rates and decreased fasting 

glucose concentrations. Therefore, SS may have interrupted the homeorhetic induction of 

peripheral insulin resistance early in lactation.  Plasma insulin concentrations tended to be 

decreased on d 7 in SS treated cows (Figure 3.3B), consistent with the observed hypoglycemia. 

Fibroblast growth factor 21 (FGF-21) is an endocrine factor produced primarily in the 

liver which is critical to liver and adipose tissue adaptations to negative energy balance; not 

surprisingly, FGF-21 production is dramatically enhanced during the transition to lactation 

(Schoenberg et al., 2011). Analysis of hepatic FGF-21 gene expression demonstrated a treatment 

by time interaction (P = 0.05), with SS-treated cows showing elevated FGF-21 transcript 

abundance on d 4 of lactation and decreased abundance on d 21 (Fig. 3.3D).  Plasma FGF-21 had 

an interesting treatment × parity interaction on d 7 (P = 0.11).  Plasma FGF21 was higher in 3P 

cows (P < 0.01; 53.94, 5.87, 5.37 ± 13.52 pg/mL).  Additionally, 3P SS cows had greater plasma 

concentration of FGF21 compared to 3P CON (P = 0.04; 198.33 vs. 14.67 ± 116.69 pg/mL).  In 

adipose tissue, FGF-21 induces expression of the GLUT-1 glucose transporter (Ge et al., 2011) 

and promotes systemic glucose uptake (Xu et al., 2009). The altered temporal pattern of liver 

FGF-21 expression with SS may have contributed to the hypoglycemia on d 7. 

 Sodium salicylate causes a delayed elevation in plasma BHBA and NEFA concentrations 
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Beta hydroxybutyric acid (BHBA) is a ketone produced after fatty acid oxidation and can 

be used as a source of energy by animals in energy deficit. Although BHBA is a key energy 

substrate in early lactation, sustained or excessive elevations in BHBA concentrations are 

associated with poor health and production outcomes in dairy cattle (Bobe et al., 2004). 

Surprisingly, although SS did not alter plasma BHBA concentration during treatment (d 7), it 

increased BHBA levels on d 14 and 21 of lactation, well after treatments ended on d 7 (Figure 

3.4A). Non-esterified fatty acid concentrations were increased by SS, but again, this response 

was observed only on d 21, 2 wk after treatment ended (Figure 3.4B). As expected for cows in 

negative energy balance, body condition score decreased through the 3 wk trial (P < 0.01). 

Consistent with treatment effects on measures of lipolysis and ketogenesis, SS increased the rate 

of BCS loss in wk 2 of lactation (P = 0.003, Fig. 3.4C). 

 CONCLUSION 

Inflammation plays critical roles in the early lactation dairy cow.  An alteration of normal 

inflammation by use of the NSAID sodium salicylate leads to significant changes in lipid and 

glucose metabolism.  In general, SS administered during the first week of lactation leads to 

decreased plasma glucose, and increased plasma BHBA and NEFA.  The changes in glucose 

metabolism were not accompanied by consistent alterations in gluconeogenic gene expression.  

Potentially, there is an increase in glucose utilization by other organs, such as muscle and 

adipose tissue.  This theory stems from work by Kim and others (2001) where in male mice 

subjected to hyperinsulinemic-euglycermic clamp, salicylate overcame lipid-mediated insulin 

resistance and maintained similar glucose uptake as control mice (Kim et al., 2001).   

More research needs to be completed to understand how SS impacts multiple tissues.  

Such research may better clarify how inflammatory signals contribute to the homeorhetic 

adaptations necessary to sustain lactation. 
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Table 3.1 Primers used for quantitative real-time PCR detection of transcripts in liver 

tissue 

Gene
1 

Accession # 
Forward Primer (5’ – 3’) 

Reverse Primer (5’ – 3’) 

Β-actin NM_173979.3 
ACGACATGGAGAAGATCTGG 

ATCTGGGTCATCTTCTCACG 

GAPDH NW_0031039231.1 
TCAACGGGAAGCTCACTGG 

CCCCAGCATCGAAGGTAGA  

RPS9
* 

DT860044.1 
GAACAAACGTGAGGTCTGGAGG 

ATTACCTTCGAACAGACGCCG 

TNFα
*
 NM_173966.1 

AAGTAACAAGCCGGTAGCCCA 

CTTCCAGCTTCACACCGTTG 

FGF21 NW_003104466.1 
GCCAGGCGTCATTCAGATCT 

GAAAGCTGCAGGCTTTGGG 

G6PC NM_001076124.1 
TGAGGATGGAGAAGGGAATG 

AACCAAATGGGGAAGAGGAC 

cPEPCK
*
 NM_174737.2 

CGAGAGCAAAGAGATACGGTGC 

TGACATACATGGTGCGACCCT 

CPT1a
*
 DV820520.1 

CTTCCCATTCCGCACTTTC 

CCATGTCCTTGTAATGAGCCA 

PC
*
 NM_177946.2 

CTTCAAGGACTTCACTGCCACC 

GCCAAGGCTTTGATGTGCA 
1
GAPDH = glyceraldehydes 3-phosphate dehydrogenase; RPS9 = ribosomal protein subunit 9; 

TNFα  = tumor necrosis factor-α; FGF21 = fibroblast growth factor-21; G6PC = catalytic 

subunit of glucose-6-phosphatase; cPEPCK = cytosolic phosphoenolpyruvate carboxykinase; 

CPT1a = mitochondrial carnitine palmitoyltransferase 1A; PC = pyruvate carboxylase;  
2
From NCBI Entrez Nucleotide Database 

(http://www.ncbi.nlm.gov/sites/entrez?db=nucleotide). 
*
Amplicons span an exon-exon boundary, as predicted by aligning the specific sequence to the 

bovine genome using Splign (http://www.ncbi.nlm.nih.gov/sutils/splign). 
 

 

  

http://www.ncbi.nlm.gov/sites/entrez?db=nucleotide
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Figure 3.1 Inflammation is suppressed while sodium salicylate is administered 

   

Liver biopsies were collected on days 4 and 21 of lactation from control (CON■) and sodium 

salicylate (SS ).  Panel A. qRT-PCR was completed for the inflammatory cytokine tumor 

necrosis factor-α (TNFα).  Values are arbitrary units with standard error of means. mRNA 

abundance of tumor necrosis factor-α (TNFα) was measured in the liver on d 4 and 21.  There 

was no overall treatment effect on TNFα (P > 0.50) but there was a significant (P < 0.01) 

treatment × day interaction where TNFα was significantly lower on d 4, but then returned to 

similar levels by d 21.  Panel B. There was no treatment effect (P = 0.70) for liver IκB, with a 

decrease on d 21 (P = 0.01).  A significant treatment × day interaction (P = 0.05) was observed 

where SS tended to decrease total IκB on d 4 (P = 0.07) and on d 21 increased (P = 0.04).  

Phosphorylated IκB (p-IκB) had no treatment (P = 0.30) effect yet tended to increase on d 21 (P 

= 0.07).  The treatment × day interaction (P = 0.17) observed a tendency (P = 0.08) for SS cows 

to have higher p-IκB on d 21. 

* P - value < 0.05 

† 0.05 < P- value < 0.10 
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Figure 3.2 Removal of sodium salicylate increases pro-inflammatory eicosanoids in plasma 

 

  

Plasma samples were collected on days 1, 7, 14, and 21 of lactation and the 3rd parity or greater 

cows were analyzed by a panel of 15 eicosanoids using a Solid Phase Lipid extractions and liquid 

chromatography–mass spectrometry.  The panel consisted of both pro-inflammatory and resolving 

eicosanoids.  There was no treatment effect (P > 0.15) observed for any of the eicosanoids evaluated.  

Eicosanoids with a  treatment × day (P < 0.05)  interactions are shown (Panels A-D).    Control 

(CON) cows are identified with the solid (■) and sodium salicylate (SS) cows are identfied by the 

black dashed (●) line.  Hydroxyoxtadecadienoic acid [9(S)-HODE, Panel A; 13(S)-HODE, Panel B], 

thromboxane B2 (TXB2, Panel C), and prostaglandin F2α (PGF2α, Panel D) are shown.  Panel E. An 

index comprised of 11 pro-inflammatory eicosanoid index showed an elevation in pro-inflammatory 

eicosanoids after SS was removed. 

* P-value < 0.05 

† 0.05 < P-value < 0.10  
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 Figure 3.3 Glucose metabolism is altered by SS administration, but not through an 

alteration in gluconeogenesis 

  

interaction (P = 0.09) was observed where SS depressed insulin on d 7 (P = 0.07).  Panel C. mRNA 

abundance for genes associated with gluconeogenensis and fatty acid metabolism. The four genes of 

interest were carnatine palmitoyl transferase 1A (CPT1a), catalytic subunit of glucose-6-phosphatase 

(G6P), cytosolic phosphoenolpyruvate carboxykinase (PCK1), and pyruvate carboxylase (PC).  No 

treatment effect (P > 0.23) was observed for genes shown. A treatment × parity × day interaction (P = 

0.11) for G6P where 3P SS cows had lower abundance d 4 (P = 0.03) with no differences observed on d 

21 (P > 0.50). There was a treatment × day (P = 0.03) interaction for PCK1 where on d 4 SS cows had 

higher abundance (P = 0.10).  Panel D. Fibroblast growth factor-21 (FGF-21) mRNA abundance was not 

affected by treatment (P = 0.98), there was a treatment × day interaction (P = 0.05) where on d 4 SS 

tended (P = 0.13) to increase liver FGF-21 expression, but on d 21 there was no difference (P = 0.18).  

Panel E. There was no treatment effect (P = 0.24) for TG concentration, but there was a significant 

treatment × day interaction (P = 0.02) where on d 4, SS cows had a higher concentration of fat in their 

liver, with no difference on d 21.  

* P-value < 0.05; † 0.05 < P-value < 0.10  

Panel A. There was no treatment 

effect (P = 0.75) on plasma glucose, 

but there was a significant treatment 

× day interaction (P < 0.01) where 

SS cows had significantly lower 

plasma glucose concentrations on d 7 

(P < 0.01). Panel B. Plasma insulin 

was not affected by treatment (P = 

0.33), but a treatment × day 

C. 

D. E. 
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Figure 3.4 Sodium salicylate causes a delayed elevation of plasma β-hydroxybutyric acid 

and non-esterified fatty acids 

     

Panels A. Plasma ketones in the form of BHBA showed a tendency (P = 0.07) for plasma BHBA 

to be elevated in SS treated cows and there was a significant treatment × day interaction (P = 

0.002) where SS cows had significantly higher BHBA on d 14 and 21.  Panel B. Fatty acid 

mobilization was quantified using NEFA.  There was no treatment effect (P = 0.23) no plasma 

NEFA; however a significant treatment × day interaction was observed (P = 0.05; where SS cows 

had higher NEFAs on d 21.  Panel C. There was not treatment effect (P > 0.50) on body 

condition score, but there was a significant treatment × day interaction (P = 0.04) where on days 

1 and 7, SS cow had a higher BCS. Sodium salicylate increased the rate of BCS loss in week 2 of 

lactation (P < 0.01) which corresponds with the greater magnitude of negative energy balance 

observed in weeks 2 (between d 7 and d 14) and 3 (between d 14 and  d21) with SS 

administration (P = 0.08 and P = 0.02, respectively). 

* P –value < 0.05. 
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Chapter 4 - Technical note: TNFα ELISA for bovine plasma 

J. K. Farney, L. K. Mamedova, B. H. Godsey, and B. J. Bradford 

Technical Note: Validation of an ELISA for measurement of tumor necrosis factor alpha in 

bovine plasma – Published in Journal of Dairy Science 2011 94:3504-3509. 

 ABSTRACT 

Tumor necrosis factor alpha (TNFα) is an inflammatory cytokine that is involved in immune 

function and is proposed to play a role in metabolic disorders. While some bovine-specific 

methods have been published recently, assays used for determining plasma TNFα concentration 

in bovine disease models often do not offer acceptable precision for measurement of basal 

concentrations in healthy animals. The objective of this work was to develop an effective, low-

cost sandwich enzyme-linked immunosorbent assay (ELISA) procedure with improved 

sensitivity. A protocol developed for use with cell culture supernatant was modified for use with 

bovine plasma and serum by optimizing antibody concentrations, incubation times and 

temperatures, and standard diluents. The coating antibody concentration was decreased from 10 

µg/mL to 6.8 µg/mL, while the detection antibody concentration remained 2.5 µg/mL. Sample 

incubation was increased from 1 h at room temperature to an overnight incubation at 4°C, which 

increased the sensitivity of the assay. Multiple matrices were tested for dilution of standards and 

were assessed by determining recovery of bovine TNFα spiked into bovine serum and plasma. 

Recoveries were acceptable in both bovine serum and plasma (71-103%) when quantified with 

standards diluted in human serum or phosphate-buffered saline. The modified bovine TNFα 

ELISA offers a detection range of 2 to 250 pg/mL. This detection limit is at least an order of 

magnitude lower than previously reported, and will allow for greater precision in determining 

basal TNFα concentrations in bovine plasma. The improved sensitivity of this ELISA will be 

critical to assessing current hypotheses concerning the metabolic effects of moderately elevated 

TNFα concentrations.  
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 MANUSCRIPT 

In recent years, the role of cytokines in immunity, inflammation, and metabolism have 

attracted increasing attention in the animal sciences. Tumor necrosis factor alpha (TNFα), in 

particular, is of interest because it represents one potential mediator linking infectious and 

metabolic diseases. Infectious diseases such as mastitis and metritis (Sordillo et al., 2009) can 

cause systemic increases in TNFα, which may in turn promote the development of fatty liver and 

associated metabolic problems (Bradford et al., 2009). 

Research on the role of TNFα in bovine physiology has been slowed by a lack of 

commercially-available analytical reagents. Although human and bovine forms of TNFα share 

~80% sequence homology, numerous anti-human TNFα antibodies failed to detect bovine TNFα 

(Dernfalk et al., 2004). Kenison and colleagues (1990) generated anti-bovine TNFα serum for 

use in a competitive radioimmunoassay, and this assay has subsequently been used in a number 

of key studies (Daniel et al., 2003b; Elsasser et al., 2005). However, broad use of this approach is 

difficult because the reagents are not commercially available and because it requires 

radioimmunoassay capabilities, including facilities for protein iodination. 

Bovine-specific reagents for measurement of TNFα have become commercially available 

(bTNFα ELISA; Bovine TNFα Screening Set, Thermo Fisher Scientific Inc., Rockford, IL); 

however, the protocols published are for cell culture supernatants, not bovine serum or plasma. 

Additionally, TNFα in bovine plasma was measured using a human ELISA kit (hTNFα ELISA; 

catalog #589201, Cayman Chemical, Ann Arbor, MI) to relate its concentration in periparturient 

cows with incidence of fatty liver (Ametaj et al., 2005a). However, this kit was not validated for 

use with bovine samples. Our goal in this work was to evaluate the validity of both ELISA kits 

for measurement of bTNFα in plasma. An additional goal was to develop a low cost, precise 

method for measurement of TNFα in bovine serum and plasma with adequate sensitivity to 

detect basal levels of TNFα. All experimental procedures were approved by the Kansas State 

University Institutional Animal Care and Use Committee.  

To produce a protein standard for evaluation of ELISA assays, a recombinant expression 

vector encoding the secreted form of bTNFα (Entrez Protein Accession AAB84086.1, region 77 

- 233) was expressed in E. coli and purified by a commercial laboratory. Purity and biological 

activity of the isolated recombinant bTNFα were verified by SDS-PAGE and a WEHI 13Var-

164-based assay, respectively. There are a number of commercial sources of recombinant 
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bTNFα, and it is expected that all such standards would work equally well for the purpose of this 

ELISA assay; evaluating these standards was outside the scope of this study.  

The specificity of the polyclonal rabbit anti-bovine TNFα antibody was initially 

evaluated by Western blot analysis of bovine plasma proteins. Plasma samples (1 µL) collected 

from cows receiving continuous low-dose infusions of recombinant bTNFα (concentrations 

ranging from ~5 to 35 pg/mL) were diluted with 19 µL Laemmli sample buffer (Bio-Rad, 

Richmond, CA). The homogenate was heated at 90°C for 5 min, cooled, vortexed, and loaded 

onto a 4-20% Tris-HCl gel for electrophoresis. Samples were separated by SDS-PAGE and dry-

transferred onto nitrocellulose membranes (iBlot, Invitrogen, Carlsbad, CA). Membranes were 

blocked for 2 h in blocking buffer (5% dry milk in Tris-HCl buffer, pH 7.5, with 0.05 % Tween 

20). After incubation with blocking buffer, the membranes were washed 3 times for 5 min each 

with washing buffer (phosphate-buffered saline, pH 7.5, containing 0.05% Tween 20), then 

incubated for 1 h with the biotin-conjugated polyclonal rabbit antibody (detection antibody, 

PBOTNFABI, Thermo-Fisher Scientific Inc.) diluted 20,000-fold in blocking buffer. After 

incubation, membranes were rinsed 3 times with washing buffer and then incubated for 1 h with 

horseradish peroxidase-labeled streptavidin diluted 50,000-fold in blocking buffer. 

Immunodetection was performed by chemiluminescence (West-Dura; Thermo Scientific, 

Waltham, MA). 

Western blot results (Fig. 1A) showed that the detection antibody used in the bTNFα 

ELISA detected a single band in plasma with the expected molecular weight of bTNFα (~17 

kDa). The lack of other bands suggests that cross-reactivity of the antibody with other common 

proteins found in bovine plasma is likely to be minimal. The product literature notes that ~ 2% 

cross-reactivity with bovine interleukin-6 (IL-6) was detected with the bTNFα ELISA, but no 

other bovine cross-reactivities were reported. We conclude that the specificity of the bTNFα 

ELISA antibodies are sufficient for use in plasma samples. 

The bTNFα ELISA kit originally included suggested protocols for determination of 

bovine TNFα in cell culture media (screening kit protocol no longer available online), and did 

not include information regarding precision of the assay for concentrations typically found in 

bovine plasma (≤ 300 pg/mL; Kenison et al., 1991b). We therefore tested a variety of primary 

and secondary antibody concentrations to determine the optimal protocol for determination of 

basal TNFα concentrations in bovine plasma, with the goal of achieving a low detection limit 
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and an assay range of at least 2 orders of magnitude. The optimal concentration of coating 

antibody was determined to be 6.8 µg/mL while the optimal concentration of detection antibody 

was 2.5 µg/mL (data not shown).  

The final protocol was as follows. First, a 96-well plate (Corning Costar high binding 96 

well plate, Thermo Fisher Scientific Inc.) was coated with 100 µL of coating antibody 

(polyclonal rabbit anti-bovine TNFα, PBOTNFAI, Thermo Fisher Scientific Inc.) at a 

concentration of 6.8 µg/mL diluted in 0.2 M sodium-bicarbonate buffer (pH 9.4; 0.2 µm 

filtered). The plate was then sealed and incubated overnight at room temperature. On the next 

day, the wells were aspirated and then washed 5 times with wash buffer (0.05% Tween 20 and 

0.1% sodium azide in PBS). Following the wash steps, 300 µL of blocking buffer (4% bovine 

serum albumin, 5% sucrose in PBS, 0.2 µm filtered) was added to the wells and incubated for 2 h 

at room temperature. The wells were aspirated and again washed with wash buffer 5 times, and 

then samples (100 µL) and standards (100 µL at concentrations 200 pg/mL, 50 pg/mL, 12.5 

pg/mL, and 3.125 pg/mL in human serum) were added to the wells. Human serum was added to 

non-specific binding and 0 pg/mL standard wells. The samples were allowed to incubate 

overnight at 4°C. On the third day of the procedure, the wells were washed 5 times with wash 

buffer followed by addition of 100 µL of detection antibody (biotin labeled polyclonal rabbit 

anti-bovine TNFα, PBOTNFABI, Thermo Fisher Scientific Inc.) at a concentration of 2.5 

µg/mL, then allowed to incubate for 1 h. After the incubation period, the plates were again 

washed 5 times, then 100 µL of horseradish peroxidase-labeled streptavidin (diluted 1:500 in 

reagent diluent; HRP-conjugated streptavidin, Thermo Fisher Scientific Inc.) was added to each 

well and incubated at room temperature for 30 min, followed by another round of 5 washes with 

wash buffer. Finally, 100 μL of 3,3’,5,5’-tetramethylbenzidine substrate solution (TMB Solution; 

Thermo Fisher Scientific Inc.) was added to each well and allowed to incubate for 20 min at 

room temperature, followed by the addition of 100 μL of stop solution (0.18 M sulfuric acid). 

Optical density was measured at 450 and 550 nm using a plate reader (PowerWaveXS, BioTek, 

Winooski, VT). Gen5 software (BioTek Instruments, Inc.) was used to calculate the 

concentration of TNFα in the samples by calculating the difference between the A450 and A550. 

A450-A550 values were corrected by subtracting the mean value for non-specific binding wells 

from all other values. The corrected difference values were fit to the standard curve by point to 

point regression. 
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With this protocol, we were able to detect bTNFα concentrations in a range from 2 to 250 

pg/mL. After reviewing the literature there was only one protocol that had a similar detection 

limit in bovine serum/plasma; the sandwich ELISA protocol described by Ellis et al. (1993) had 

a detection limit of 35 pg/mL in bovine serum. Other protocols in previous bTNFα ELISA 

studies reported basal plasma concentrations that were likely inflated by poor sensitivity of the 

assays (133 – 15,630 pg/mL: Hisaeda et al., 2001; Røntved et al., 2005; Burciaga-Robles et al., 

2010). 

One challenge in developing ELISA protocols is to find a diluent for standards that 

mimics the matrix effect of plasma or serum. For example, Dernfalk et al. (2004) observed that 

the apparent recovery of recombinant hTNFα added to bovine serum was only 36.4% of the 

apparent recovery when recombinant hTNFα was added to a buffer solution. Therefore, 

standards were prepared in a variety of diluents, and standard curves were generated. These were 

then used to quantify known concentrations of recombinant bTNFα that were spiked into serum 

and plasma from healthy cattle. Table 1 shows the different diluents utilized and the apparent 

recovery of the spiked in recombinant bTNFα. Based on these results, we suggest that PBS and 

human serum can serve as valid standard diluents for both bovine serum and plasma analyses. 

We also tested the difference in TNFα concentrations in plasma and serum collected at the same 

time from 8 cows with detectable TNFα to determine if the concentrations were similar. We 

observed no significant difference (P > 0.10) between bovine serum and plasma samples (means: 

3.59 vs. 4.92  0.88 pg/mL in plasma vs. serum, n=8). Thus, the procedure appears to be equally 

useful for either sample type. However, the type of sample collected could influence the choice 

of standard curve diluent (Table 1).  

This ELISA procedure was used across 10 plates to test the precision of the assay when 

using human serum as the standard diluent. The intra-assay CV values at specific concentrations 

are shown in Table 2, and a typical standard curve is shown in Figure 1B. Pooled samples were 

included on each plate to determine inter-assay CVs, which were 13.9% and 10.4% for serum 

and plasma, respectively. Linearity of the assay was tested using plasma samples (n = 10) with 

relatively high concentrations of TNFα (605 ± 253 pg/mL, mean ± SD). Samples were plated in 

duplicate at each of 3 volumes (20 µL, 10 µL, and 5 µL per well). To ease data interpretation, 

concentrations within sample were divided by the result for the highest sample volume (20 µL = 
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100%). The slope of the resulting regression equation (1.06, Figure 1C) suggests that the assay 

produces unbiased results across the range of the assay (14 – 199 pg/mL for these samples).  

Additionally, we tested the ability of this assay to detect physiological changes in TNFα 

concentrations in a model mimicking a disease scenario. To accomplish this, plasma samples 

from cows that were injected i.v. with rbTNFα (5 µg/kg BW) were used in this assay. Samples (n 

= 8 per time point) collected immediately before and at 1, 2, and 3 h post-infusion (diluted with 

human serum when necessary) were assayed for TNFα. The assay was able to detect a highly 

significant increase in plasma TNFα concentrations (P < 0.001; Figure 2) in spite of the fact that 

the mean concentration at 1 h post-infusion remained below the detection limit for most bovine 

TNFα assays. 

We were interested in determining if bTNFα is detectable by human TNFα antibodies, 

especially because of previously-reported associations between fatty liver disease and bTNFα 

determined using an hTNFα ELISA (Ametaj et al., 2005). We used the same kit as Ametaj et al. 

(2005; Catalog #589201, Cayman Chemical, Ann Arbor, MI) to determine whether the anti-

hTNFα antibodies employed in the kit would detect recombinant bTNFα. We added human and 

bovine TNFα to the kit’s standard diluent and carried out the assay according to the 

manufacturer’s directions. The results showed that the recombinant bTNFα protein did not cross 

react with the human antibodies (Figure 3A). Another paper reported similar findings when 

human TNFα antibodies were used in an attempt to detect recombinant bTNFα and recombinant 

ovine TNFα in bovine milk and serum samples (Dernfalk et al., 2004). The authors observed no 

cross-reactivity with recombinant bTNFα, and recombinant ovine TNFα was only detectable at 

concentrations greater than 2.5 ng/mL. 

Although we were unable to detect recombinant bTNFα with the hTNFα ELISA kit, the 

original report (Ametaj et al., 2005) demonstrated differences across time, and we also clearly 

detected some immunoreactive protein in bovine plasma using this assay. To further assess 

whether the hTNFα ELISA kit was detecting bTNFα, the detection antibody from the human 

TNFα kit was used in a Western blot. Serum samples (1 µL) collected from early lactation dairy 

cows (concentrations ranging from ~2 to 9 pg/mL) and a 1-µL aliquot of recombinant bTNFα 

(0.58 µg/ml) were diluted with Laemmli sample buffer (Bio-Rad, Richmond, CA) and prepared 

as described above. The Western blot was carried out according to the same procedure described 

above, but used the TNFα AChE:Fab’ antibody (TNFα acetylcholinexterase:Fa; hTNFα EIA Kit, 
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Cayman Chemical) diluted 10,000-fold in blocking buffer in the overnight incubation. The 

results (Fig. 3B) showed strong bands between 50-60 kDa, indicating that the detection antibody 

in the kit is able to detect some protein in bovine plasma. However, only very faint bands were 

observed at 17 kDa, even for the purified protein, suggesting that this antibody is a poor probe 

for bovine TNFα. With the findings from this series of experiments, it seems unlikely that the 

protein detected by Ametaj et al. (2005) was TNFα, and the previous results therefor need to be 

re-evaluated.  

In conclusion, the procedure described herein provides a useful tool to determine basal 

concentrations of bovine TNFα, which are often below 10 pg/mL. This improved sensitivity 

should aid in determining the roles of TNFα in bovine metabolism and chronic diseases.  
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Table 4.1 Apparent recovery of recombinant bTNFα spiked into bovine serum or plasma 

as assessed using various standard curve diluents
1 

Diluent type Regression Equation 

Serum 

Regression Equation 

Plasma 

Dialyzed FBS
2 

y = 0.28x + 1.01 y = 0.42x + 0.82 

FBS y = 0.49x + 1.93 y = 0.70x - 2.53 

Human plasma y = 1.02x - 22.65 y = 1.54x - 21.57 

Human serum y = 0.71x + 2.41 y = 0.96x + 4.98 

Lyophilized bovine plasma y = 1.89x - 14.54 y = 1.97x + 9.30 

Lyophilized human plasma y = 0.99x - 21.96 y = 1.60x - 25.54 

Lyophilized human serum y = 0.88x - 0.75 y = 1.19x + 0.66 

Phosphate-buffere saline y = 0.85x + 2.91 y = 1.02x + 13.61 

1
 Equations derived from plots of spiked rbTNFα (x) against observed TNFα concentrations (y), 

both in pg/mL. 
2
 FBS – fetal bovine serum  
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Table 4.2 Average intra-assay coefficient of variation from 10 plates 

Concentration CV(%) 

200 pg/mL
 

2.58 

50 pg/mL 12.66 

12.5 pg/mL 13.00 

3.125 pg/mL 23.61 
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Figure 4.1 Characteristics of the bovine-specific ELISA assay.  

                            

 

A) Western blot analysis of TNFα protein in bovine plasma (1 L per lane) using the bovine-

specific ELISA detection antibody. The Western blot image shows bands corresponding to 

bTNFα ( ~17 kDa), with no other proteins apparently detected. B) A typical standard curve 

utilizing bovine-specific antibodies and recombinant bTNFα diluted in human serum is shown. 

Values are means ± SD of standards plated in triplicate. C) Linearity of the assay was assessed 

by linearly decreasing sample volume. Bovine plasma samples (n = 10) were plated in duplicate 

at each of 3 sample volumes (20 µL, 10 µL, and 5 µL per well). Within sample, concentrations 

of the 20 µL samples were scaled to 1, and the lower volume concentrations scaled accordingly. 

Points represent the mean ± SD; a linear regression of the plot generated the equation: y = 1.063x 

– 0.076. 
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Figure 4.2 Changes in bovine plasma TNFα in response to rbTNFα injection.  

 

Lactating cows cows were administered an i.v. bolus of rbTNFα (5 µg/kg BW) immediately after 

a blood sample was collected (time 0 h). Blood samples were collected at 1, 2, and 3 h post-

infusion. Plasma samples were analyzed using the bovine TNFα ELISA. Values are means ± 

SEM, n = 8; values were log-transformed for analysis and means shown are back-transformed. 

The effect of time was significant (P <0.001). 
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Figure 4.3 Human TNFα ELISA does not detect bovine TNFα.  

 

B.    MW      1     2    3  4 

 

 

TNFα 17 kDa 

 

 

 

A) Recombinant bovine TNFα was used to test cross-reactivity of a human TNFα ELISA kit 

(Caymon Chemical Company, Ann Arbor, MI). The assay was performed according to the 

manufacturer’s instructions, and bovine standards were diluted to match those of the human 

TNFα standard curve. Values are means ± SD (error bars are too small to be seen for most 

points). B) Western blot analysis of TNFα protein in bovine serum using the anti-human TNFα 

detection antibody. Lanes are as follows: MW, protein ladder (8 µL, Novex Sharp Protein 

Standard, Invitrogen, CA, standards at 260, 160, 110, 80, 60, 50, 40, 30, 20, 15 and 10 kDa); 

lanes 1-3, bovine serum (1 μL diluted with 19 μL Laemmli buffer); lane 4, 0.58 ng recombinant 

bovine TNFα. The results demonstrated that the antibody did not detect the bovine form of TNFα 

with reasonable specificity. 

 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0 50 100 150 200 250 

A
b

so
rb

a
n

ce
 (

4
5

0
-5

5
0
 n

m
) 

TNFα concentration (pg/mL) 

A. 
Human Bovine 



98 

 

Chapter 5 - Daily injection of tumor necrosis factor alpha in the first 

week of lactation decreases milk production and promotes health 

disorders in Holstein dairy cows 

J. K. Farney, K. Yuan, L. K. Mamedova, and B. J. Bradford 

 ABSTRACT 

Inflammation may be a contributing factor to several transition disorders, so the objective of this 

study was to determine the production effects observed when an inflammatory cytokine, TNFα, 

is injected in the first week of lactation to Holstein dairy cows.  At calving, 33 cows (n=9 

primiparous [PP]; n=24 multiparous [MP]) were alternately assigned to either control (CON; 0 

µg TNFα/kg BW), low dose (LOW; 1.5 µg TNFα/kg BW), or high dose (HIGH; 3.0 µg TNFα/kg 

BW) injections daily for 7 d.  Daily data collected included DMI, water intake, and health status; 

plasma samples were also collected daily for metabolite analyses.  Data were analyzed using 

mixed models with repeated measures over time and significance was declared at P < 0.05 and 

tendencies at P < 0.10.  Preplanned contrasts evaluating CON vs. TNFα treatment and LOW vs. 

HIGH were evaluated.  Plasma TNFα concentrations tended to be increased in cows receiving 

TNFα injections (64% increase), but there were no differences observed between HIGH and 

LOW treatments.  DMI was significantly reduced in cows receiving TNFα injections (18% 

decrease).  Similarly, water intake was decreased (13%) with TNFα.  Milk production was 

reduced in TNFα treated cows as evidenced by 15 to 18% decreases in yields of milk, milk fat, 

milk protein, milk lactose, energy-corrected milk, and solids-corrected milk.  Milk fat yield and 

energy-corrected milk tended to be further depressed in HIGH cows, but no other differences 

were observed between LOW and HIGH for any other milk variable.  No treatment differences 

were observed for plasma glucose, β-hydroxybutyrate (BHBA), non-esterified fatty acids 

(NEFA), or triglyceride concentrations.  Daily injection of TNFα increased (P = 0.04) diagnosed 

health disorders in the first week of lactation, due in part to a tendency for an increased incidence 

of ketosis in cows injected with TNFα.  The results of this study indicate that low grade 

inflammation induced by daily injection of TNFα negatively impacts milk production and 

increases physiological stress on the transition dairy cow as evidenced by increased health 

disorders.  
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 INTRODUCTION 

There is growing evidence in multiple species that inflammation not only affects the 

immune system, but also affects metabolism (Hotamisligil, 2006).  Metabolic adaptations during 

the transition period are of primary concern to the dairy industry as this impacts production and 

sustainability.  The dairy cow must undergo important metabolic adaptations during late 

pregnancy and early lactation, and these homeorhetic adaptations target a variety of tissues and 

homeostatic signals (Bauman and Currie, 1980; Bell, 1995).  Inadequate adaptation to lactation 

can lead to health disorders such as fatty liver and ketosis (Drackley, 1999; Bobe et al., 2004; 

Ingvartsen, 2006) while negatively impacting overall milk production (Micinski et al., 2009). 

Energy requirements increase in early lactation (Bell and Bauman, 1997) and during this 

time cows have a depression in feed intake (Bobe et al., 2004) which can lead to severe negative 

nutrient balance.  To compensate for the reduction in energy intake cows mobilize adipose tissue 

triglycerides, increase uptake of fatty acids by the liver, and increase hepatic triglyceride (TG) 

synthesis (Bobe et al., 2004).  The increase in TG synthesis coupled with an inefficient export of 

TG leads to an accumulation of fat in the liver.  This accumulation of fat in the liver has been 

reported in approximately 50% of all cows in early lactation (Jorritsma et al., 2000; Jorritsma et 

al., 2003). 

Tumor necrosis factor-α has been researched extensively in rodents and humans and has 

been the focus of some bovine research to determine effects of inflammation on metabolism.  In 

obese mice, TNFα is highly expressed in adipose tissue and has been proposed as one link 

between obesity, diabetes, and chronic inflammation (Hotamisligil et al., 1993).  Tumor necrosis 

factor-α has several effects such as a depression in feed intake and insulin sensitivity, as well as 

increased hepatic lipogenesis, muscle and adipose catabolism, and further increases in 

inflammation (Drackley, 1999; Ohtsuka et al., 2001; Kushibiki et al., 2003).  In a bovine model, 

recombinant bovine TNFα (rbTNFα) decreases appetite and feed intake and can increase blood 

NEFA concentrations (Kushibiki et al., 2000).  Additionally, TNFα has been demonstrated to 

decrease liver glucose production (Kettelhut et al., 1987a) and promote triglyceride accumulation 

once mobilized NEFA reach the liver (Garcia-Ruiz et al., 2006). 
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Serum TNFα activity was increased in cows with moderate to severe fatty liver (Ohtsuka 

et al., 2001) possibly providing a link between inflammation and metabolic disorders.  However, 

such results demonstrate correlation, not necessarily cause and effect relationships.  To evaluate 

the ability of TNFα to disrupt hepatic metabolism, rbTNFα was injected daily for 7 d in late-

lactation Holstein cows, and the authors observed a higher liver triglyceride content, with no 

effects on plasma NEFA concentration (Bradford et al., 2009).   

Inflammatory cytokines are known to increase body temperature, induce anorexia, and 

promote catabolism of adipose tissue and muscle (Elsasser et al., 1995), all conditions which are 

commonly observed in transition dairy cows.  Since transition cow health and management is 

important, it is critical to understand how elevated systemic inflammation alters productivity and 

wellness of dairy cows during this period.  The objective of this study was to determine if adding 

an inflammatory stressor in early lactation compounds transition issues and alters milk 

production.  

 MATERIALS AND METHODS 

All experimental procedures were approved by the Kansas State University Institutional 

Animal Care and Use Committee #3075. 

 Design and Treatments 

Recombinant bovine TNFα was acquired in the same fashion as described in Bradford et 

al. (2009).  To briefly summarize, a recombinant expression vector encoding for the secreted 

form of bovine TNFα (Entrez Protein Accession AAB84086.1, region 72-233) was expressed in 

Escherichia coli, purified by a commercial laboratory, and tested by SDS-PAGE for purity.  

Thirty-three Holstein cows [n=9 primiparous (PP), n=24 multiparous (MP)] from the Kansas 

State University Dairy Teaching and Research Facility were randomly assigned to treatment at 

parturition.  Treatments were balanced within parity and were administered s.c. daily for 7 d. 

Treatments were control (CON; 10% glycerol in PBS), low dose (LOW; 1.5 µg rbTNFα/kg BW 

in 10% glycerol in PBS), and high dose (HIGH; 3.0 µg rbTNFα/kg BW in 10% glycerol in PBS).  

Injections were given in the neck at 1600 h daily, and were administered on alternate sides to 

minimize local tissue inflammation at injection sites.  After calving, cows were housed in a tie-

stall facility for 8 d before returning to free-stall housing.  Cows were milked 3 times daily 
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(0800, 1200, and 2000 h) and fed twice daily (0700 and 1600 h) for ad libitum intake of a diet 

formulated to meet all nutrient requirements (Table 5.1). 

 Data and sample collection 

During the 7-d trial, feed and water intake and milk yield were recorded daily.  Milk 

samples were collected from d 4 to 7 of treatment at each of the 3 milkings for analysis of milk 

components.  Samples were analyzed for concentrations of fat, true protein, lactose (B-2000 

Infrared Analyzer; Bentley Instruments Inc., Chaska, MN), urea nitrogen (MUN 

spectrophotometer, Bentley Instruments Inc.), and somatic cell (SCC 500, Bentley Instruments 

Inc., Heart of America DHIA, Manhattan, KS).  Energy corrected milk (ECM) was calculated: 

0.327 × milk yield + 12.86 × fat yield + 7.65 × protein yield (Dairy Records Management 

Systems, 2010).  Solids corrected milk (SCM) was calculated as described by Tyrrell and Reid 

(1965): 12.3 × fat yield + 6.56 × SNF yield – 0.0752 × milk yield.  Somatic cell score was 

calculated according to Shook (1993): log2(SCC/100) + 3. 

Blood samples were collected from coccygeal vessels daily in 2 tubes, one containing 

potassium EDTA and the other containing potassium oxalate with sodium fluoride as a 

glycolytic inhibitor (Vacutainer; Becton, Dickinson and Co., Franklin Lakes, NJ).  Blood was 

centrifuged at 2,000 × g for 10 min immediately after sample collection, and plasma was frozen 

at -20°C until used for analysis of BHBA, NEFA, glucose, TG, and TNFα concentration.  Non-

esterified fatty acids were analyzed using an enzymatic colorimetric procedure (NEFA-HR; 

Wako Chemicals USA Inc., Richmond, VA), glucose by a colorimetric kit (kit #439-90901; 

Wako Chemicals USA Inc.), and BHBA using an enzymatic reaction (kit #H7587-58; Pointe 

Scientific Inc., Canton, MI).  Plasma TG was analyzed by enzymatic reaction (kit #T7532-120; 

Pointe Scientific Inc.).  Plasma TNFα was evaluated by sandwich ELISA according to the 

protocol described by Farney et al. (2011).   Absorbance was read on a spectrophotometer 

(PowerWave XS; BioTek Instruments Inc., Winooski, VT) and calculations were performed 

using Gen5 software (BioTeck Instruments Inc.). 

 Disease Incidence 

Cows were assessed daily for health by trained personnel where rectal temperature and 

urine ketones (ReliOn ketone test strips, Bayer Healthcare LLC., Mishawaka, IN) were recorded.  

Ketosis, left displaced abomassum, retained placenta, metritis, milk fever, lameness, and other 
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abnormalities were recorded.  Any cow identified as displaying signs of a health disorder was 

treated according to on-site standard operating procedures.  Ketosis was defined as the detection 

of urine ketone concentrations exceeding 80 mg/dL on any l d, or exceeding 40 mg/dL for 2 

consecutive days.  Metritis was defined by the combination of a fever (>39.4°C), a uterine 

discharge that was reddish brown, and an odor.  Cows with a rectal temperature greater 39.4°C 

but with no other symptoms to suggest an infectious disorder were classified as fever cases.  

Disorders not described above were identified based on definitions defined by Kelton et al.  

(1998). 

 Statistical analysis 

Statistical analyses were carried out using the Mixed Procedure of SAS (version 9.2; SAS 

Institute Inc., Cary, NC) to assess the fixed effects of parity, time, treatment, and all 2- and 3-

way interactions; cow was included as a random effect.  Repeated measures over time were 

modeled with either autoregressive or autoregressive heterogeneous covariance structures, 

depending on which analysis had the lowest Bayesian Information Criterion value.  Denominator 

degrees of freedom were estimated using the Kenword-Rogers method.  Values were deemed 

outliers and omitted from analysis when Studentized residuals were >|3.5|. Interactions were 

investigated when P < 0.15 using the slice option, and slices declared significant at P < 0.05.  

Interactions with a P-value greater than 0.30 were removed from the model.  Preplanned 

contrasts were evaluated to compare CON vs. both TNFα treatments and LOW vs. HIGH.  

Health disorders were analyzed using JMP (version 8.0; SAS Institute Inc. Cary, NC). A nominal 

logistic analysis was first run for each health disorder to assess the fixed effects of treatment, 

parity, and treatment × parity interaction. For those disorders with an interaction P value < 0.10, 

Fisher’s exact test was used to assess CON vs. TNF and HIGH vs. LOW contrasts within each 

parity group. For all other disorders, Fisher’s exact test was used to test these contrasts across all 

animals.  

 RESULTS 

 Feed and water intake and energy balance 

Dry matter intake was decreased in cows injected with rbTNFα (P = 0.02, Table 5.2).  

There was no difference detected between LOW and HIGH treatments (P = 0.15).  Multiparous 
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cows had greater DMI than PP cows (P < 0.001; 14.10 ± 0.48 vs. 10.09 ± 0.79 kg DM/d).  Water 

intake was decreased with both TNFα treated groups versus CON (P = 0.04, Table 5.2) with no 

difference between HIGH and LOW (P = 0.34).  There was a tendency for a 3-way interaction (P 

= 0.07) where all the differences were observed in MP cows (Figure 5.1).  Energy balance was 

not affected by treatment, day, parity, or interactions (P > 0.10) and all values were negative, 

indicating that cows were in a negative energy balance through the 7 d trial.   

 Milk yield and milk components 

Milk production data is shown in Table 5.2.  Milk yield was decreased when TNFα was 

injected (P = 0.03) with no differences observed between LOW and HIGH (P = 0.76).  Milk 

yield increased daily over the 7-d treatment period (P < 0.001) and MP cows had higher milk 

yield than PP cows (34.3 ± 1.l kg/d vs. 26.6 ± 1.7 kg/d).  Additionally, a 3-way interaction was 

observed (P = 0.03; Figure 5.2A) where the differences were primarily observed in MP cows.   

Milk fat % was similar in CON and HIGH (5.41 ± 0.25, 5.18 ± 0.24%, respectively; 

Table 5.2), and the overall effect of TNF was not significant. LOW cows, however, had 

significantly higher milk fat concentration than HIGH (P = 0.02).  Additionally, there was a 

treatment × parity × day interaction (P < 0.05) where on d 6 PP LOW cows had higher milk fat 

than PP HIGH, with tendencies for the same observation to occur on d 6 and d 7 in MP cows 

(Figures 5.2B and 5.2C).  Milk fat yield was decreased in cows treated with TNF (P = 0.01) 

and there was a tendency for the HIGH group to have a more pronounced decrease in milk fat 

yield than LOW (P = 0.07; Table 5.2).  Multiparous cows had higher milk fat yield than PP cows 

(P < 0.001; 2.18 ± 0.06 vs. 1.51 ± 0.11 kg/d).   

Milk protein concentration was not impacted by treatment (P > 0.10; Table 5.2); however 

there was a difference by parity (P < 0.001) where MP cows had higher milk protein 

concentration than PP (3.70 ± 0.07 vs. 3.26 ± 0.11%).   Milk protein yield was decreased with 

TNF administration (P < 0.01).  Multiparous cows had significantly (P < 0.001) higher protein 

yield than PP cows (1.35 ± 0.03 vs. 0.92 ± 0.05 kg/d).   

There was no effect of treatment on milk lactose concentration (P > 0.10), nor an effect 

of parity (P > 0.10).  There was a significant day effect (P = 0.03) where milk lactose 

concentration increased from d 4 to 7.  A significant treatment × day interaction was observed 

for lactose concentration, where treatments tended to separate on d 6 and 7 (Figure 5.2D).  Milk 
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lactose yield was decreased when TNFα was administered (P < 0.001, Table 5.2).  Similar to 

other milk component yields, milk lactose was greater in MP cows compared to PP cows (1.67 

vs.1.24 ± 0.06 kg/d; P < 0.001).  Milk urea nitrogen (MUN) concentration was not impacted by 

treatment or parity (P > 0.10), but MUN tended to decrease (P = 0.07) as days in milk increased, 

regardless of treatment.   

Energy corrected milk yield was decreased by TNFα administration (P < 0.01, Table 5.2) 

with no differences observed between LOW and HIGH treatments (P = 0.13).  Multiparous cows 

had higher ECM (50.9 ± 1.3 kg/d) than PP cows (35.8 ± 2.1 kg/d; P < 0.001).  Solids corrected 

milk yield was decreased in cows that were treated with TNFα (P < 0.01).  Additionally, the 

HIGH treatment group tended (P = 0.10) to have lower SCM than the LOW treatment.  

Multiparous cows had higher SCM than PP cows (46.4 vs. 32.2 ± 1.9 kg/d; P < 0.001). 

 Plasma metabolites 

Plasma concentrations of TNFα, BHBA, glucose, NEFA, and triglyceride (TG) are 

displayed in Table 5.3.  There was a tendency for TNFα injection to increase plasma TNFα 

concentrations over controls (P = 0.09), but there was no difference observed between LOW and 

HIGH treatment groups (P = 0.19).  Plasma BHBA was not affected (P > 0.10) by treatment, 

parity, or any interaction.  A day effect for BHBA was observed (P < 0.001), where plasma 

BHBA concentrations increased through the treatment period (Figure 5.3).  Similar results were 

observed for plasma glucose, where treatment, parity, and interaction effects were not significant 

(P > 0.10; Table 5.3).  A day effect was observed (P < 0.001) where plasma glucose 

concentrations decreased through the trial (Figure 5.3).  Plasma NEFA concentration was not 

affected by treatment, parity, day, or any interaction between these (P > 0.10; Table 5.3).  Plasma 

triglyceride (TG) was not affected by treatment or day (P > 0.10) but there was a tendency (P = 

0.10) for a treatment × day interaction with no specific differences observed by slice evaluation.  

There was a parity effect (P = 0.03) reflecting higher concentrations of plasma TG in PP cows 

than MP (14.51 ± 1.16 vs. 11.29 ± 0.71 mg/dL). 

 Health disorders 

Health disorder incidences are shown in Table 5.4.  At the site of injection in most cows, 

TNFα produced some local heat and swelling; this response was not considered a health disorder.  

A treatment effect was detected (P = 0.02) for the proportion of cows with 1 or more health 
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disorders, where cows receiving TNF had a greater number of health disorders (P = 0.04), with 

a tendency (P = 0.08) for HIGH cows to have greater incidence of health disorders than LOW 

(Table 5.4).  Ketosis was the most common disorder observed, but treatment contrasts for 

specific disorders were not significant. 

 DISCUSSION 

Fatty liver disease is associated with decreased milk production and increased costs to 

dairy producers (Bobe et al., 2004).  Clinical symptoms of fatty liver include depressed appetite, 

weight loss, and weak and apathetic cows (Radostits et al., 2000).  Fat cows have a higher risk of 

developing fatty liver as it has been found that obese cows lose more body weight (Smith et al., 

1997) and have higher plasma NEFA concentration and liver TG content (Rukkwamsuk et al., 

1998).  The extra fat in these cows can be due to both increased number and size of adipocytes, 

so there are additional fatty acids available for release as a source of energy.  Additionally, 

because adipose tissue is metabolically active, producing cytokines and other hormones that alter 

carbohydrate and protein metabolism, this tissue may play a tremendous role in etiology of fatty 

liver (Hotamisligil, 2006).  In an obese ruminant model, as well as in rodents and humans, 

circulating concentrations of plasma TNFα are increased as adiposity increased (Hotamisligil et 

al., 1993; Corica et al., 1999; Tsukui et al., 2000; Ohtsuka et al., 2001; Daniel et al., 2003a).  In 

the study of Ohtuka et al. (2001), serum TNF activity was associated with fatty liver in dairy 

cows.  

Tumor necrosis factor-α in ruminants can cause severe damage to the animal as indicated 

in a calf trial where prolonged treatment of up to 5 µg/kg BW induced inflammation in the liver, 

primarily in the portal region (Bielefeldt-Ohmann et al., 1989).  Additional damage observed in 

the liver included infiltration of mononuclear leukocytes, fibrous tissues, fatty degeneration, and 

necrosis of hepatocytes.  The kidney were also affected by high dose rbTNFα, characterized as 

interstitial infiltration of mononuclear cells and degenerative changes in glomeruli and medullary 

edema (Bielefeldt-Ohmann et al., 1989).   

Appetite was decreased in cows that received a daily injection of rbTNFα in this study.  

Similarly, in a study using late lactation non-pregnant Holstein cows injected with 2.5 µg 

rbTNFα/kg BW per day for 7 d, the authors observed a decrease in DMI (Kushibiki et al., 2003).  

However, in Bradford et al. (2009), no significant differences were observed in the DMI of late 
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lactation cows given daily injections of rbTNFα.  Several other studies have observed reductions 

in DMI in response to other inflammatory cytokines (Ingvartsen and Andersen, 2000; Johnson 

and Finck, 2001; Trevisi et al., 2002). Such responses are especially problematic in the 1st month 

of lactation, when suppressed DMI results in a more pronounced negative energy balance 

(Trevisi et al., 2002).   

A significant reduction in milk yield was observed in this study, regardless of dosage, 

when cows received rbTNFα.  This milk yield reduction might be partially explained by the 

reduction in DMI and water intake that was observed in rbTNFα treated cows.  A direct 

correlation between intake of feed and water and milk production is typically observed (Murphy, 

1992).  Kushibiki and colleagues (2003) observed a decrease in milk production in cows injected 

with similar concentrations of rbTNFα.  In this study there was an increase in milk fat percentage 

for LOW compared to HIGH treatment, yet the combination of the two TNF treatments was not 

different than controls.  The increase in milk fat percentage for LOW is similar to results 

observed by Kushibiki et al. (2003).  However, despite the higher values observed in milk fat 

percentage, the significant decrease in milk production led to a reduction in milk fat yield in 

cows treated with rbTNFα, with HIGH treated cows having the most pronounced reduction in 

yield.  In contrast to the decrease in milk protein concentration observed by Kushibiki et al. 

(2003), this study did not observe any differences.  However, a decrease in total milk protein 

yield occurred, and once again this difference could be attributed to the suppression in DMI. 

Effects of TNFα injections on plasma glucose concentration have been variable.  

Bradford and colleagues (2009) did not observe a difference in plasma glucose in response to 

daily injection of TNF, similar to that observed in this trial.  In a steer model where 2.5 µg 

rbTNFα/kg BW was injected for 9 days, the authors observed an increase in plasma glucose 

concentration (Kushibiki et al., 2001b) which might be explained by a reduction in glucose 

uptake by the animal (Kushibiki et al., 2000).  Similarly, plasma glucose concentration was 

higher in cows with fatty liver, when serum TNF activity was also elevated (Ohtsuka et al., 

2001).  Decreased glucose disposal rate is a measure of the metabolic syndrome in patients with 

type I diabetes.  In Ohtsuka et al. (2001), the authors observed an inverse correlation between 

serum TNF (P < 0.05) and glucose disposal rate, demonstrating that cows with lower levels of 

TNF had higher glucose disposal rates. 
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Lipid mobilization often occurs in cattle receiving TNFα, as evidenced by elevated 

concentrations of NEFA (Kushibiki et al., 2003).  It is unclear though, whether this was due to 

decreased DMI or alteration of lipid metabolism by this cytokine.  No difference in plasma 

NEFA concentration was detected in late lactation cows injected with rbTNFα (Bradford et al., 

2009).  The authors did, however, observe differences in hepatic mRNA abundance of genes that 

relate to lipid metabolism, primarily those that can lead to increased accumulation of fat in the 

liver.  Increased abundance of a transcript involved in NEFA uptake (fatty acid translocase; 

CD36) was observed, along with a decrease in a key transcript contributing to fatty acid 

oxidation (carnitine palmitoyltransferase 1A; CPT1a), and an increase in a TG synthesis 

transcript (1-acylglycerol-3-phosphate I-acyltransferase 1).  In this study cows that received 

rbTNFα had higher TG content in the liver, which might be explained by the observations of 

gene alterations described above (Bradford et al., 2009).  An increase in uptake of NEFA might 

explain why there were no differences observed in plasma NEFA concentration.  Even though 

liver TG was not evaluated in the current paper, it is possible that the same mechanisms were 

occurring in this trial in regards to lipid metabolism.  To further complicate the effects of TNF,  

Kenison and colleagues (1991) did not observe differences in plasma TG or NEFA in bull calves 

injected with TNF.  All these studies evaluated responses in cattle in different stages of 

maturity, lactation status, and gender, and as such, different responses suggest that the impact of 

TNFα may depend on the metabolic state of the animal.  Interestingly, in the early lactation 

model, where plasma NEFA concentrations are already elevated, TNF administration did not 

further increase this marker of lipolysis.  One hypothesis is that there is a threshold of NEFA that 

is available to be released, and once this threshold is met, a “resistant” state for catabolism might 

be induced.   

Early lactation cows that received daily injections of rbTNFα had increased risk for 

health disorders, suggesting that inflammation is a potential contributor to transition disorders.  

In an early study using young Holstein steers, rbTNFα administration of 10-20 µg/kg BW twice 

daily induced substantial weight loss, such that calves were diagnosed as being clinically 

emaciated, depressed, and lethargic, with intermittent watery diarrhea and light coughing 

(Bielefeldt-Ohmann et al., 1989).  The authors also observed a decrease in blood lymphocytes, 

with unclear functional responses, as some tests showed improved immune function while others 

showed a suppression.  Additionally, these calves that received TNF injections had 



108 

 

significantly lower plasma levels of iron and copper, perhaps in response to acute phase protein 

sequestration of these minerals.  The combination of hepatic tissue damage, a reduction in 

circulating immune cells, and depletion of plasma concentrations of important minerals 

associated with immunity observed in the calf trial (Bielefedt-Ohmann et al., 1989) might help to 

explain why TNF increased health disorders in the current study.  Although the doses used in 

the current study were an order of magnitude lower than those given in the calf study, similar but 

more subtle responses may have occurred. 

 CONCLUSION 

Daily s.c. injection of a low dose inflammatory cytokine decreased milk production, 

likely through reductions in DMI and water consumption.  In addition to this costly loss in 

productivity, clinical disorders were also increased when TNF was administered.  There were 

minimal production differences observed between the two levels of TNF administered in this 

study, possibly indicating that the low dose is biologically effective enough to negatively impact 

performance, but the higher dose tended to increase the incidence of disorders relative to the 

lower dose.  In contrast to many studies in non-ruminant species were TNF induced lipid 

mobilization and impacted glucose metabolism primarily through insulin resistance, this study 

did not show the same responses.  Determining the cellular mechanisms that contributed to the 

suppression in DMI that was observed would be important as the reduction in DMI was 

apparently not caused by pyrexia.  Additionally, the longer-term effects of inflammatory 

cytokine administration on lactation persistency and reproductive efficiency are worthy of 

continued research.  
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Table 5.1 Ingredient and nutrient composition of diets 

Diet composition  

Ingredient (% of DM)  

    Corn silage 22.2 

    WCGF
1 

30.3 

    Alfalfa hay 20.4 

    Cottonseed 4.9 

    Corn grain
 

9.2 

    Sorghum grain
 

4.0 

    Micronutrient premix
2 

9.0 

Nutrient (% of DM)  

    DM (% as-fed) 57.2 

    CP 19.0 

    ADF 20.0 

    NDF 33.0 

    NFC 35.5 

    Ether extract 5.1 

    Ash 7.9 

    NEL
3
 (Mcal/kg)  1.72 

1
Wet corn gluten feed (Sweet Bran; Cargill Inc., Blair, NE). 

2
Premix consisted of 54.9% SoyBest, 14.3% limestone, 

1.6% salt; 10.2% sodium bicarbonate, 2.0% magnesium 

oxide, 0.6% 4-plex, 0.3 selenium (0.06%), 0.10% of 

Vitamin A and D, 1.6% Vitamin E, 0.1% Rumensin 90, 

2.6% Diamond V XP, 10.0% MegalacR, 1.6% potassium 

carbonate, 0.1% Zinpro 100. 
3
Estimated according to NRC (2001). 
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Figure 5.1 Daily water intake 

  

Daily water intake was decreased (P = 0.04) for 

cows treated with rbTNFα, with no difference (P = 

0.34) between LOW and HIGH treatment groups.  

There was a tendency for a 3-way interaction (P = 

0.07) where all the differences were observed in 

multiparous cows and are illustrated in the figure 

above.  Values are least square means with 

standard error bars. 

* P < 0.05 for day effect 

† P < 0.10 for day effect 
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Table 5.2 Intake, milk production and composition, and energy balance responses 

   Treatment
1 

 P - value 

Item CON LOW HIGH SEM C vs. T
2 

L vs. H
3 

DMI, kg/d 13.7
 

12.1
 

10.4
 

0.80 0.02 0.15 

Water intake, L/d
** 

79.8
 

71. 9
 

66.5
 

3.9 0.04 0.34 

Milk yield, kg/d
* 

33.7
 

29.1
 

28. 4
 

1.7 0.03 0.76 

Milk fat
4
, %

* 
5.41

 
6.00

 
5.18

 
0.24 0.55 0.02 

Milk protein
4
, % 3.51 3.57 3.37 0.11 0.75 0.19 

Milk lactose
4
, % 4.52 4.52 4.45 0.05 0.65 0.33 

SCS
4
, × 10

3 
cells/mL 3.27 2.49 3.13 0.51 0.50 0.39 

MUN
4
, mg/dL 11. 1 12.7 12.3 0.75 0.13 0.75 

ECM
4
, kg/d 49. l 42.8

 
38.2 2. l < 0.0l 0.13 

SCM
4
, kg/d 44.4

 
38.8

 
34.2

 
1.9 < 0.01 0.10 

Yield, kg/d       

     Milk fat
4
 2.08 1.87 1.59 0.11 0.01 0.07 

     Milk protein
4
 1.29 1.11 1.01 0.05 < 0.01 0.19 

     Milk lactose
4
 1.65 1.39 1.32 0.08 < 0.01 0.55 

EB
4
, Mcal/d -23.6 -21.6 -22.0 1.6 0.36 0.89 

1
Treatments: CON = No TNFα; LOW = 1.5 µg/kg BW TNFα; HIGH = 3.0 µg/kg BW TNFα. 

2
 P-value for preplanned contrast between CON and TNF injection (Low and High). 

3
 P-value for preplanned contrast between LOW and HIGH treatment. 

4
 Data represent d 4 to d 7 for these variables.  

*
Treatment × parity × day (P < 0.05); 

**
Treatment × parity × day (P < 0.10). 
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Figure 5.2 Milk responses by day 

  

Milk yield was decreased (P = 0.03) when cows were injected with rbTNFα, 

with no differences observed between HIGH and LOW treatment groups (P = 

0.76).  Milk yield increased daily (P < 0.001) and a 3-way interaction was 

observed (P = 0.03) where all differences were observed in multiparous cows 

(Panel A).  Milk fat % was significantly lower (P = 0.02) for LOW treatment.  A 

3-way interaction was observed (P < 0.05) where both primiparous cows (Panel 

B) and multiparous (Panel C) cows had treatment × day interactions for milk fat 

%.  There was no overall effect of treatment for milk lactose % (P = 0.56), but 

there was a significant treatment × day (P = 0.04) interaction (Panel D) where 

values tended to differ on days 6 and 7 of treatment.  Values are least square 

means with standard error bars. 

* P < 0.05 for day effect 

† P < 0.10 for day effect 
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Table 5.3 Plasma metabolites 

 Treatment
1 

 P – value 

Item CON LOW HIGH SEM C vs. T
2 

L vs. H
3 

BHBA, µM 996 1108 1186 154.3 0.40 0.72 

Glucose, mg/dL 50.8 51.9 51.7 2.l 0.68 0.94 

NEFA, µM 857 854 757 83 0.62 0.41 

TG
*
, mg/dL 13.5 12.9 12.4 1.1 0.52 0.73 

1
Treatments: CON = No TNFα; LOW = 1.5 µg/kg BW TNFα; HIGH = 3.0 µg/kg BW TNFα. 

2
 P-value for preplanned contrast between CON and TNF injection (Low and High). 

3
 P-value for preplanned contrast between LOW and HIGH treatment. 

*
Treatment × day (P = 0.10). 
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Figure 5.3 Plasma  BHBA and glucose by day  

Figure 3: Daily plasma BHBA and glucose.  

There were no treatment, parity, or treatment × 

parity for plasma BHBA and glucose (P > 0.10).  

There was a significant day effect (P < 0.001) 

were BHBA increased over time, but plasma 

glucose decreased.  Values are least square means 

with standard error bars. 
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Table 5.4 Health disorders 

 Treatment
1 

Total by 

disorder Disorder CON LOW HIGH 

Ketosis
** 

1 3 3 7 

Respiratory 0 0 2 2 

Metritis 1 0 0 1 

Milk fever 0 0 1 1 

Fever 0 0 2 2 

≥ 1 event
2,3,4

 1 3 7  
1
Treatments: CON = No TNFα; LOW = 1.5 µg/kg BW 

TNFα; HIGH = 3.0 µg/kg BW TNFα; n=11 per treatment. 
2
 Cows diagnosed with one or more health disorders 

3
 Preplanned contrast between CON and TNF injection 

(Low and High), P = 0.05. 
4
 Preplanned contrast between LOW and HIGH treatment, 

P = 0.09. 
**

Treatment × parity (P < 0.10). 

 

  



119 

 

 

Appendix A - Bovine ELISA Detailed Protocol 

1. Add 100 µL of reconstituted coating antibody diluted in carbonate-bicarbonate buffer at a 

concentration of 6.8 µg/mL. Seal the plate and incubate overnight at room temperature.  

a. Carbonate-Bicarbonate Buffer: 0.2M sodium carbonate-bicarbonate buffer, pH 

9.4, 0.2 µm filtered. Dilute the Coating Antibody 1:75 in buffer. Calculation for 1 

plate: 75 µL Coating Antibody in 10.925 mL carbonate-bicarbonate buffer. 

2. Aspirate the wells and wash five times with 300 µL Wash Buffer in each well.  

a. Wash Buffer: 0.05% Tween 20 and 0.1% Sodium Izide in PBS. 

b. NOTE: after adding wash buffer, gently agitate for 30 seconds before removing 

liquid at each wash cycle. Completely remove wash buffer before next step. 

3. Add 300 µL blocking buffer (4% BSA, 5% Sucrose in PBS) to each well. Seal the plate 

and incubate for 2 hours at room temperature. 

a. 4% BSA, 5% Sucrose in PBS, 0.2 µm filtered  

b. Calculation for 200 mL: weigh 8 g BSA and add to 192 mL PBS, weight 5 g 

sucrose and add to 95 mL 4% BSA solution and filter using 0.2 µm. Filter 

remaining 4% BSA solution to use as reagent diluent.  

c. NOTE: 4% BSA in PBS (filtered 0.2 µm) will use as reagent diluent. 

4. Aspirate the wells and wash five times with 300 µL wash buffer in each well. 

5. Add 100 µL of each standard (example: 250, 125, 62.5, 31.25, 15.625, 7.8, 3.9 pg/mL 

diluted in human serum) or 100 µL of each sample to each well (for NSB and 0 standard, 

100 µL of human serum was used). Seal the plate and incubate overnight at 4
0 

C.  

a. Make standards the day of use 

b. Samples should be in triplicate with the standard replicates being spread out 

through the plate (ex. Row A, Row E. and Row H) 

6. Aspirate the wells and wash five times with 300 µL wash buffer in each well. 

7. Add 100 µL of detection antibody in reagent diluent at a concentration of 2.5 µg/mL to 

each well EXCEPT for NSB wells, use 100 µL reagent diluent. Seal the plate and incubate 

for 1 hour at room temperature. 

a. Dilute the Detection Antibody 1:100 in Reagent Diluent by adding 110 µL of 

Detection Antibody 10.89 mL Reagent Diluent (Calculation for 1 plate). 

8. Aspirate the wells and wash five times with 300 µL wash buffer in each well. 

9. Add 100 µL diluted SA-HRP reagent to each well. Seal the plate and incubate for 30 

minutes at room temperature. 

a. Dilute SA-HRP 1:500 in Reagent Diluent by adding 24 µL SA-HRP to 12 mL of 

Reagent Diluent (Calculation for 1 plate). 

10. Aspirate the wells and wash five times with 300 µL wash buffer in each well. 

11. Add 100 µL Substrate Solution to each well. Seal the plate and incubate in the dark for 10 

minutes at room temperature.  

a. Substrate Solution is ready to use 3,3’,5,5’- tetramethyl benzidine (TMB). 

12. Stop the reaction by adding 100 µL of stop solution to each well 

a. Stop Solution - 0.18M Sulfuric Acid 

13. Measure the absorbance at A450 minus A550.  


