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Abstract

For any automated surveillance operation to be successful, it is critical to have sensing

resources strategically positioned to observe, interpret, react and maybe even predict events.

In many practical scenarios, it is also expected that different zones within a surveillance

area may have different probability of event detection (or false alarm) requirements. The

operational objective in such surveillance systems is to optimize resources (number of sensors

and the associated cost) and their deployment while guaranteeing a certain assured level of

detection/false alarm performance.

In this dissertation, we study two major challenges related to sensor deployment in dis-

tributed sensor networks (DSNs) for detection applications. The first problem we study is

the sensor deployment problem in which we ask the following question: Given a finite number

of sensors (with a known sensing profile), how can we deploy these sensors such that we best

meet the detection and false alarm requirements in a DSN employing a specific information

fusion rule? Even though sensor deployment has garnered significant interest in the past, a

unified, analytical framework to model and study sensor deployment is lacking. Addition-

ally, the algorithms proposed in literature are typically heuristic in nature and are limited

to (1) simplistic DSN fusion architectures, and (2) DSNs with uniform detection/false alarm

requirements. In this dissertation, we propose a novel treatment of the sensor deployment

problem using concepts from optimal control theory. Specifically, the deployment problem

is formulated as a linear quadratic regulator (LQR) problem which provides a rigorous and

analytical framework to study the deployment problem. We develop new sensor deployment

algorithms that are applicable to a wide range of DSN architectures employing different

fusion rules such as (1) logical OR fusion; (2) value fusion; (3) majority decision fusion,



and (4) optimal decision fusion. In all these cases, we demonstrate that our proposed con-

trol theoretic deployment approach is able to significantly outperform previously proposed

algorithms.

The second problem considered in this dissertation is the “self healing” problem in which

we ask the following question: After the failure of a number of sensors, how can one re-

configure the DSN such that the performance degradation due to sensor loss is minimized?

Prior efforts in tackling the self healing problem typically rely on assumptions that don’t

accurately capture the behavior of practical sensors/networks and focus on minimizing per-

formance degradation at a local area of the network instead of considering overall perfor-

mance of the DSN. In this work, we propose two self healing strategies the first approach

relies on adjusting decision thresholds at the fusion center. The second approach involves

sensor redeployment based on our control theoretic deployment framework. Simulation re-

sults illustrate that the proposed algorithms are effective in alleviating the performance

degradation due to sensor loss.
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Chapter 1

Introduction

In this chapter, we provide a brief overview of distributed sensor networks - the primary

topic of interest in this dissertation. We discuss in section 1.1, the sensor deployment and

the self healing challenges associated with detection networks. In section 1.2, we review

prior efforts related to sensor deployment and self healing problems. We briefly discuss the

limitations and unanswered questions in these two areas. In section 1.3, an overview of our

proposed approaches to solving these two problems is discussed. Finally, in section 1.4, we

outline our contributions to the areas of sensor deployment and self healing.

1.1 Background

Distributed sensor networks (DSNs) consist of a number of sensor nodes that are deployed in

a region of interest (ROI) in order to perform a given task [1]-[3]. In general, a typical sensor

node consists of four main units; (1) sensing unit (to measure the physical quantity of in-

terest); (2) processing unit (to extract information from measurements); (3) communication

unit (to send and share data with other sensors or a fusion center), and (4) power supply

unit (e.g., battery, solar cell). A sensor node may also be equipped with other accessories

such as location finder and actuators [1]. DSNs can be used in many applications across

multiple domains. The operational capability of DSNs include (1) detection of rare events;

(2) monitoring of continuous events; (3) tracking of events, and (4) control of processes.

As a result, DSNs are suitable for use in many military and civilian applications. A few

1



examples are given below:

1. Defense: A classic example is the PinPtr system [4] where acoustic sensors are used

to detect and locate snipers in the battle field.

2. Agriculture: The LOFAR-Agro project [5] employs a network of sensors to monitor

micro-climates in crop fields with the goal of maximizing the crop yield.

3. Health care: Sensor networks are used to monitor sleeping patterns of infants and

patients in hospitals. The goal of these applications is to gather medical data or

minimize emergency response time.

4. Environment: DSNs are used to monitor fundamental processes, such as volcanic ac-

tivity (e.g., the Reventador project [6]) and plant growth (e.g. Macroscope of redwood

project [7]).

In this dissertation, we are interested in sensor networks for detection applications. De-

tection refers to the process of making a yes/ no decision regarding the existence of a certain

phenomena of interest (e.g., target). In fact, the earliest application of sensor networks was

for event/target detection in defense applications. For example, the sound surveillance sys-

tem (SOSUS) deployed during the Cold War consisted of a network of acoustic sensors

placed on the bottom of the ocean to detect Soviet submarines [3]. In some applications

(e.g., surveillance systems) the sole goal of the system is to perform detection. Moreover,

in most DSN applications the first step is usually detection. For example, in tracking and

classification systems, one can not perform tracking nor classification without first asserting

the presence of the target or phenomena of interest.

The performance of a detection system is usually specified in terms of its overall false

alarm and detection probability. False alarm probability refers to the probability that a

detection decision of (yes) is made when the phenomena of interest is absent. False alarms

can occur due to imperfection in sensor design or noise and are undesirable. Detection prob-

ability refers to the probability that a (yes) detection decision is made when the phenomena

2



of interest is present. Obviously, correct detection decision are always desirable. Maximiz-

ing the overall detection probability and minimizing the overall false alarm probability are

competing objectives. Therefore, the end user of a detection system usually provides a set

of minimum detection requirements to satisfy and a set of false alarm requirements that are

not to be exceeded.

For any detection system to be successful, it is critical to have sensing resources (i.e.,

sensors) strategically deployed such that performance requirements are met. In a DSN em-

ploying low-powered sensors, this becomes more critical since low-powered sensors have a

limited sensing range. Therefore, the detection performance is highly dependent on the

spatial distribution of sensors within the region of interest. Moreover, having nonuniform

requirements exacerbates the importance of having an intelligent deployment strategy that

takes this into account. In many situations (e.g., battlefield), a region of interest might

have various subregions with different levels of importance assigned to each subregion. For

example, within a battle zone, areas around control centers with mission critical staff and

infrastructure may require a higher level of protection relative to peripheral regions. Ad-

ditionally, in some networks (e.g., underwater and underground network), sensors are ex-

pensive to deploy and maintain. Therefore, it is advantageous to develop a deployment

strategy that takes the limited number of available sensors into consideration as well as

attempting to use as few number of sensors as possible. Finally, the deployment strategy

should also take into account the fusion rule used in the network. The fusion rule refers to

the method used to combine information collected by sensors to make the overall detection

decision. In summary, an intelligent deployment strategy should take the following factors

into consideration

1. Sensing capability of sensors (i.e, sensing profile).

2. Number of available sensors.

3. Performance requirements as set by the end user.

3



4. Fusion rule employed

In this dissertation, we are interested in addressing two challenges related to sensor de-

ployment. First, we attempt to answer the following question: Given a finite number of

sensors (with a known sensing profile), how can we deploy these sensor such that we best

meet the detection and false alarm requirements in a DSN employing a specific information

fusion rule? Secondly, we investigate methods to mitigate the effects of losing sensors. While

an adequate number of sensors can be deployed to meet certain performance requirements,

losing sensors can lead to less than optimal performance. Loss of sensors can happen due

to exhausted power supply (e.g., battery) or damage due to the nature of the deployment

environment (e.g., deep sea, battlefield). Furthermore, it might be neither economical, safe

or practical to replace lost sensors. Thus, it is important to devise strategies to mitigate

performance degradation due to loss of sensors without the addition of new sensors. In

networks, this feature is referred to as the “self-healing” capability of the detection sys-

tem. In this dissertation, our goal is to develop self healing strategies based on network

reconfiguration.

In the following section, we review prior efforts related to sensor deployment in detection

networks.

1.2 Prior Efforts and Motivation

In general, most sensor deployment efforts start with a grid model for the ROI. This alle-

viates the complexity associated with considering a space continuum. In this framework,

usually the goal is to find the best M positions out of N possible positions at which sen-

sors can be deployed in order to minimize a given cost function. If we assume that only

1 sensor can be deployed at a point, then the number of sensors at any point in the ROI

takes only one of two values (0 or 1). In this case, the sensor deployment problem is a

binary integer programming problem. Integer programming problems are NP-hard, which

implies that the computational complexity associated with solving such a problem increases
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exponentially with the number of variables (i.e., N and M in the deployment problem).

One possible solution for an integer programming problem is enumeration. All possible

solutions are listed and the value of the cost function corresponding to each solution is cal-

culated. The optimal solution is the one that has the minimum cost function value. The

enumeration approach requires large storage and computational capabilities which prohibits

its use except for problems of a small search space. For example, in a deployment problem if

N = 20 sensors and M = 900 possible locations the set of enumerated solutions will consist

of
(

900
20

)

= 9.8033 × 1055 possible sensor positions configurations. For integer programming

problems, one can use branch and bound methods to find an optimal solution [8] and [9].

However, the computational complexity of these methods can be quite high. In fact, in the

worst case scenario the computational complexity of branch and bound methods is equal to

that of the enumeration method.

Sensor deployment problem has been investigated in the context of different applica-

tions and approximate solutions have been proposed for the specific problem at hand. For

example, [10] presents a survey of deployment methods used in aerospace industry arena.

A range of stochastic optimization algorithm that include simulated annealing and genetic

algorithms are used to deploy sensors in [11] and [12]. Some of the drawbacks associated

with these algorithms include their sensitivity to initial conditions, reliance on heuristics

and no guarantee of optimality.

The deployment problem was also studied in the context of distribution networks (e.g.,

water networks) in which a DSN is used to detect contaminants (e.g., chemical, biological)

[13]-[15]. The works in [13] and [14] focus primarily on deploying a fixed number of sensors

in order to maximize the network exposure to contaminants. This objective enables an

early warning and a faster response time to contamination. The deployment problem in [13]

and [14] is modeled as an integer programming problem, which has a high computational

complexity as described earlier. In [15], two variations of the sensor deployment problem

are investigated. The first version is the sensor constrained problem– here a fixed number
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of sensors is to be deployed to minimize a contaminant’s detection time. This problem was

shown to be equivalent to the asymmetric k-center problem which is an NP-hard problem.

The second version of the deployment problem is the time constrained problem– here it is

required to detect contaminants within a given time limit while minimizing the number of

sensors employed. This problem was shown to be equivalent to a minimum dominating set

problem, which is also NP-hard. One can use several approximation algorithms to solve

both the asymmetric k-center and minimum dominating set problems. The works in [13]-

[15] were based on the assumption that sensors used are perfect point sensors. Point sensors

do not have an effective coverage area, this means that a sensor detects a chemical only if it

passes through the sensor. One further assumption is that a sensor will always (i.e., 100%

of the time) detect the contaminant regardless of its concentration, which is an unrealistic

assumption. Furthermore, neither sensor collaboration nor false alarm requirements are

incorporated in the deployment framework.

The problem of sensor deployment with sensors having an effective coverage area is pre-

sented in [16] -[22]. Examples of sensors that have an effective coverage area include acoustic,

seismic and infrared sensors. In these works, the focus is on determining the minimum num-

ber of sensors, as well as their positions, needed to satisfy detection requirements. In [18]

and [19], the deployment problem is studied with the assumption that sensors have a binary

sensing model. In such a model, a target/phenomena is always detected by a sensor if it

falls within the sensor’s detection radius (i.e., coverage area). This assumption enables the

treatment of the deployment problem as a coverage problem. However, in reality a sensor

makes a detection decision by comparing a noisy measurement to a detection threshold. The

presence of noise implies that it is not always possible to make a correct detection decision.

Therefore, the binary sensing model is an unrealistic sensing model.

With the same goal of minimizing the number of sensors used, the authors in [20] and

[21] adopt a probabilistic sensing model. In this model, the probability of a sensor detecting

a target is an exponentially decaying function of the distance separating them. This is a
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reasonable model, since the strength of the sensor’s measurement is also a decaying function

of distance. Sensors are assumed to have enough computational capabilities, enabling them

to make local decisions regarding the presence or absence of a target/phenomena. Both, [20]

and [21], employ a simple detection scheme in which a detection at a point within the ROI

is declared if at least one sensor that falls within the detection radius of that point reports

a detection decision. Though a distance dependent sensing model is more practical than a

binary one, it still does not incorporate the effects of noise. Due to the presence of noise,

a sensor detection decision might be a false alarm. Neither [20] nor [21] incorporates false

alarm rates of individual sensors nor system’s overall false alarm requirements. Furthermore,

the proposed deployment algorithms; Min Miss in [20] and Diff Deploy in [21] are heuristic

in nature and have no guarantee of optimality.

In order to account for false alarm probability, one has to incorporate information fusion

across sensors. Recently in [22], false alarm and detection probability requirements were

incorporated in the sensor deployment problem by assuming a value fusion architecture. The

goal in [22] is to deploy as few sensors as possible in order to satisfy uniform false alarm and

detection requirements. Sensors with a fixed collaboration radius report their noisy energy

measurements to a fusion center (FC). The FC decides on the presence or absence of a target

by comparing the average of the measurements against a detection threshold. This simple

fusion scheme is known as value fusion. However, the resulting false alarm and detection

probabilities are nonlinear with respect to the number and positions of the sensors within the

ROI, which complicates the study of the deployment problem in such systems. Therefore,

the authors in [22] propose the use of the constrained simulated annealing (CSA) algorithm

[23], a stochastic optimization algorithm, to solve the deployment problem. However, the

high computational complexity associated with the CSA renders it impractical to use in

large scale networks. Therefore, a divide and conquer (D&C) algorithm was introduced as a

low complexity alternative to the CSA algorithm. In the D&C algorithm, multiple instances

of the CSA algorithm are implemented but with a smaller search space for each instance in
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comparison to a single instance of the CSA algorithm with the full search space. Though

the D&C algorithm has a lower complexity than the CSA, it is a heuristic algorithm with

no guarantee of optimality. Furthermore, one major drawback of the D&C algorithm is it’s

limited applicability to systems with uniform false alarm and detection requirements.

The value fusion approach presented in [22] assumes that data from sensors can be

accurately shared with a fusion center. However, in practice, due to bandwidth and power

constraints it is reasonable to (1) expect local sensors to make preliminary detection decisions

based on their measurements, and (2) transmit the decisions to the fusion center. This is

referred to as decision fusion. In [24], the authors study the deployment problem when

decision fusion is used instead of value fusion. Instead of detection probability, the authors

use the path exposure criteria and the algorithm is heuristic in nature. In [25], deployment

occurs along a one dimensional line and the deployment positions are uniformly spaced.

The authors find the optimal spacing distance between sensors so as to satisfy detection and

false alarm requirements. However, deployment in a 1-D space is not of much practical use.

Additionally, mandating that the sensors are equally spaced might require more sensors than

are really needed to satisfy requirements. In summary, prior efforts in sensor deployment

strategies that account for decision fusion are either heuristic or overly simplistic.

As stated in section 1.1, in this dissertation, we also investigate self healing methods

in DSNs. There have been extensive efforts in this area over the past decade. Employing

sensor mobility as an approach for self healing has been proposed and studied extensively

in several works [26]-[29]. The main objective in [26] is to maximize the coverage area in

the region of interest using mobile sensors. In [26], the area of interest is divided into a set

of Voronoi polygons in which each polygon corresponds to a single sensor. The detection

task in each polygon falls solely on the sensor that lies within that polygon. In the event

of a coverage hole, the authors propose three sensor movement algorithms. The aim of

these algorithms is to move sensors from areas with high sensor density to areas with low

densities which results in a more uniform sensor distribution. A more uniform sensor density
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has the effect of improving the network coverage. In [27], the proposed movement algorithm

is used to counter the effects of coverage holes or inadequacy of detection performance (i.e.,

self-healing). The authors assume a hybrid network consisting of both static and mobile

sensors. Mobile sensors move to either; (1) areas with coverage holes (to eliminate them) or

(2) areas where static sensors suspect that a target exists (to confirm the existence of such

a target). The authors propose a distributed path planning algorithm that guides sensors

in their movement. The algorithm minimizes a linear combination of cost functions. Upon

running the algorithm, a mobile sensor is (1) pulled towards the target’s area (or coverage

hole), (2) pushed away from covered areas and (3) pushed away from areas covered by other

mobile sensors. In the above mentioned efforts [26]-[27], the performance metric used is the

coverage metric. The use of this metric has the advantage of simplifying the treatment of

the self healing problem. However, coverage fails to account for the achieved performance

of the network with regard to false alarm/ detection requirements. For example, in [26], the

movement algorithm is not governed by the exact deviation between achieved and required

network performance. In [28] and [29], the authors propose a sensor movement algorithm

that aims at meeting given false alarm/ detection requirements while minimizing the total

moving distance. Though self-healing is not the specific goal of this algorithm, it can easily

be applied to self-healing scenarios. If static sensors make an initial detection decision in

an area with a lower than required detection probability, a movement schedule is sent to

mobile sensors. Mobile sensors move (reactively) to the area of interest and collaborate

with static sensors to achieve the required detection performance. This can be viewed as a

self-healing algorithm if the performance requirements are not met initially due to the loss

of one or more static sensors. The drawback of this approach is that it does not incorporate

the performance degradation experienced at the original mobile sensor locations. Though

the movement of sensors can improve the detection performance at the area of interest, it

can cause performance degradation at other areas. Therefore, it is desirable to develop a

balanced self-healing sensor movement strategy that takes the network’s overall performance
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(after sensor movement) into account instead of focusing on a limited area of interest.

In summary, even though sensor deployment and self healing problems have garnered

significant research interest over the past decade, there are several unanswered questions that

still remain. The drawback of prior works that serve as the motivation of this dissertation

are summarized below:

1. A unified framework to model and analyze sensor deployment problem is currently

lacking.

2. Most of the proposed deployment algorithms are heuristic in nature and offer no insight

into the deployment problem. There is a need for a structured and rigorous treatment

of sensor deployment.

3. The treatment of sensor deployment problem in literature is limited to either a simple

fusion rule or satisfying uniform performance requirements. Both these simplistic

assumptions are unrealistic. There is a strong need for analyzing detection networks

with nonuniform requirements along with the consideration of practical fusion rules.

4. The majority of research in self healing are based on assumptions that do not ac-

curately capture the behavior of practical sensors and networks. The focus of prior

efforts in self healing is to minimize performance degradation in a local area of the

network. The overall network performance is often not accurately accounted for.

In the next section, we present an overview of our proposed approach that attempts to

address the unanswered questions in the area of sensor deployment and self healing.

1.3 Overview of Dissertation

In this dissertation, we propose a novel treatment of the sensor deployment problem. Using

concepts from optimal control theory, the deployment problem is modeled as an optimal

control problem [30]-[33]. Specifically, the deployment problem is formulated as a linear
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quadratic regulator (LQR) problem which is a very well-behaved and studied problem in

optimal control theory literature [30]-[34]. The proposed LQR formulation offers a unified

treatment of the sensor deployment problem. In addition, our LQR formulation provides

a rigorous and analytical framework to study the deployment problem. A plethora of ana-

lytic solution methods for the LQR problem have been proposed in optimal control theory

literature. This is in contrast to prior efforts in sensor deployment that are mainly heuristic

in nature. Moreover, using the LQR formulation, we are able to consider deployment in

networks with nonuniform performance requirements. This greatly amplifies the impact of

our work, since prior efforts are largely restricted to uniform requirements. Finally, we show

that our proposed approach can be applied to networks employing various fusion rules (e.g.,

value fusion, optimal decision fusion) and sensing models. The steps involved in our LQR

formulation of sensor deployment (irrespective of fusion rule used) are as follows

1. The deployment problem is viewed as a sequential problem (i.e., sensors are sequen-

tially deployed). This is advantageous, since it alleviates the high computational com-

plexity associated with deploying sensors in parallel (i.e., simultaneous deployment).

2. We develop a linear approximation of the effect of each additional sensor deployment

on the overall performance of the network. In this linearized model, the state (i.e.,

detection performance) of the network is driven by a control vector that corresponds

to the sensor positions. This linearization is a significant step in the formulation and

differs based on the fusion rule considered.

3. Since the goal is to satisfy performance requirements, we adopt a squared error cost

function as an objective function to minimize. This cost function, measures achieved

performance deviations from performance requirements.

4. Using the linearized deployment model in conjunction with the squared error cost func-

tion, we are able to formulate the deployment process as a linear quadratic regulator

problem (LQR).
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We also propose a novel treatment of the self healing problem in sensor networks. Specif-

ically, we propose two self healing approaches which are listed below

1. Decision threshold adjustment: In this approach we update the decision threshold at

the fusion center to account for the loss of sensors.

2. Sensor redeployment: If the detection performance after decision threshold adjust-

ment is not satisfactory, we resort to adjusting the spatial distribution of sensors (i.e.,

redeployment). Sensor redeployment is modeled as an LQR problem in a similar way

to what we have discussed earlier.

Our proposed approaches to self healing can be applied to practical detection networks.

They can be equally applied to networks employing data fusion or decision fission rules. In

addition, using the LQR formulation for redeployment ensures that the overall performance

of the network is taken into account. This is in contrast to existing redeployment approaches.

In the next section, we present a summary of our contributions to the problems of sensor

deployment and self healing.

1.4 Contributions

The major contributions of this dissertation are listed below:

• For the first time, we propose an analytic formulation of the sensor deployment prob-

lem. Specifically, the deployment problem is modeled as a linear quadratic regulator

(LQR) problem. [see chapter 3, [35]-[43]]

In chapter 4, we consider a DSN employing the logical OR fusion rule, where only

detection requirements are incorporated. For this system, we

• Propose a novel LQR-based sensor deployment algorithm along with a low complexity

heuristic deployment alternative.
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• Simulation results indicate that the proposed algorithms outperform existing methods

by using 10% to 30% fewer number of sensors to satisfy detection requirements.

These contributions are published in our papers [35] and [36].

In chapter 5, we study deployment in a DSN employing value fusion with energy mea-

surements as in [22], where both false alarm and detection requirements are considered. For

such a system, we

• Derive a novel linear approximation of the effect of a single sensor deployment on the

detection performance of the network.

• Propose an LQR-based sensor deployment algorithm using the linearized model. In

addition, we develop a low complexity alternative to the LQR-based deployment al-

gorithm.

• Illustrate that the proposed algorithms are effective in addressing both uniform as well

as nonuniform false alarm and detection requirements. Simulation results show that

the proposed algorithms use as few as 30% fewer sensors than the D&C algorithm [22].

• Derive the optimal collaboration radius that determines which sensor measurements

are to be combined. In contrast to prior efforts which assume a fixed collaboration

radius, we dynamically update the collaboration radius. The use of a dynamic collabo-

ration radius can save up to 45% of the number of sensors needed to meet performance

requirements with a fixed collaboration radius.

• Extend our proposed algorithms to a DSN employing value fusion with amplitude

instead of energy measurements (see Appendix A).

These contributions are discussed in detail in our papers [37], [38] and [39].

In chapter 6, we investigate sensor deployment in a DSN employing the majority decision

fusion rule.
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• We propose a novel approximation of the change in the DSN detection performance

resulting from deploying an additional sensor. This is done using results from non-

parametric statistical theory.

• For the first time, we introduce a novel LQR-based sensor deployment algorithm that

is especially tailored for decision fusion networks. Simulation results indicate that in

comparison to a greedy deployment algorithm, the proposed algorithm can save up to

40% in the number of sensors needed to satisfy the same detection requirements.

• The proposed algorithm can be applied to networks with nonuniform performance

requirements.

A detailed discussion of these contributions can be found in our papers [40] and [41].

In chapter 7, we examine the deployment problem when the fusion rule employed by the

DSN is the optimal decision fusion rule. In this system, our contributions can be summarized

as follows:

• We propose a novel closed form approximation of the false alarm and detection prob-

abilities in optimal decision fusion networks.

• We use the proposed approximation to linearize the effect of a single sensor deployment

on the overall detection probability of the network.

• For the first time, we introduce a novel LQR-based sensor deployment algorithms for

networks employing the optimal decision fusion rule. Simulation results illustrate that

it is possible to save up to 45% in the number of sensors required to meet perfor-

mance requirements by using the proposed algorithm relative to a greedy deployment

algorithm.

These contributions can be found in our paper [42].

In chapter 8, we study the self healing problem in an optimal decision fusion network.
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• We propose a self healing approach based on adjusting the decision threshold used at

the fusion center.

• For the first time, we propose an LQR-based sensor redeployment algorithm that

takes the network’s overall performance requirements into account. Simulation re-

sults illustrate that the proposed approaches can effectively counter the performance

degradation resulting from lost/failed sensors.

Our contributions to the study of the self healing problem can be found in our paper [43].

In addition to the contributions listed above, the research presented in this dissertation

can serve as a planning tool for many practical DSNs. The proposed approaches can be

used to (1) determine the minimum number of sensors needed to satisfy some given perfor-

mance requirements, and (2) quantify the performance of an existing deployment with low

computational complexity.

The rest of this thesis is organized as follows: In chapter 2, we give a brief background

of detection in distributed sensor networks. In chapter 3, we introduce the proposed math-

ematical formulation of the deployment problem. We also provide an overview of optimal

control theory in general and the linear quadratic regulator (LQR) problem in particular. In

addition, we motivate the use of the LQR formulation in modeling the deployment problem

and discuss LQR solution methods. In chapter 4, we examine the deployment problem in

a DSN employing the logical OR fusion rule. Sensor deployment in a DSN which employs

value fusion with energy measurements is investigated in chapter 5 and the study is extended

to the case of amplitude measurements in Appendix A. In chapters 6 and 7, we examine

the sensor deployment problem when the majority and optimal decision fusion rules rule,

respectively, are used. Our proposed approaches to the self healing problem are discussed

in chapter 8. Finally, in chapter 9 we summarize our major contributions and discuss ideas

for future work.
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Chapter 2

Detection in Sensor Networks –
Fundamentals

Detection usually refers to making a yes/no type decision regarding the existence of a phe-

nomenon of interest (e.g., gas, intruder, plane). Typically, the decision maker is not in direct

contact with the phenomena of interest and relies on noisy measurements from sensors to

make a detection decision. Due to noise, the decision making process is susceptible to errors

which are not desirable. Therefore, in the decision making process a cost/ performance

metric is usually assigned to these errors. The theory of hypothesis testing, also known as

statistical inference, provides a mathematical framework for studying the detection process.

Hypothesis testing is mainly concerned with the design of optimal decision rules that either

minimize a given function of the cost of errors or keep these errors within acceptable levels.

One approach to increase detection reliability is by using multiple sensors (i.e., sensor net-

work). Information (e.g., measurements, decisions) from multiple sensors can be combined/

fused in different ways (e.g., centralized or decentralized detection). One major concern

in sensor networks is to design optimal decision rules at the local sensor levels and an op-

timal fusion rule at the the global level (e.g., fusion center) that meet some performance

requirement. The principles of hypothesis testing theory can be applied to design such rules.

In section 2.1 of this chapter, we review concepts of hypothesis testing theory. We

focus on the design of optimal decision rules under the Bayesian and Neyman-Pearson
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frameworks. Section 2.2.1 provides an overview of centralized detection in sensor networks

and the design of the optimal fusion rule in such networks. Decentralized detection is the

focus of sections 2.2.2, 2.2.3 and 2.2.4. An overview of decentralized detection is provided in

section 2.2.2. Various network architectures that are usually used in decentralized detection

are discussed in section 2.2.3. The design of optimal fusion rules in decentralized detection

networks in the Bayesian and Neyman-Pearson approaches is the focus of section 2.2.4.

Finally, in section 2.3, we summarize the ideas discussed in this chapter.

2.1 Hypothesis Testing

In hypothesis testing, we are faced with the problem of characterizing the state of an event

or phenomena of interest. The state of the phenomena can be any number of discrete

states, with each state constituting a hypothesis. We denote the set of M-ary hypotheses

as H = {H0, H1, . . . , HM−1}. We can have any M number of hypotheses, however, we focus

our discussion on binary hypotheses (i.e., M = 2) problems. Discussions regarding binary

testing can be easily extended to the case of M-ary hypotheses testing.

Following [44], the basic elements of a hypothesis testing problem are shown in Fig.2.1.

The measurement of the phenomena goes through a probabilistic transition mechanism (e.g.,

noisy sensor measurement). Through this transformation we are able to indirectly observe

the phenomena of interest. Based on the resulting observation space, we can then design

decision rules that allow us to determine the state of the phenomena.

Usually, the decision rule is designed in order to minimize a certain criteria of interest

(e.g. probability of error). One additional design factor is the amount of available prior

information (e.g., prior probability of a hypothesis being true). Next, we briefly discuss two

decision rule design approaches.
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Figure 2.1: Components of hypothesis testing

2.1.1 Bayesian Approach

In the Bayesian approach, we assume the priori probabilities P0/P1 of hypotheses H0/H1

are known. Let {Cij, i, j = 0, 1}, denote the cost associated with making the decision that

Hi is present when in fact Hj is true. In the Bayesian approach, we seek to minimize the

average risk function R, given as [44]

R =
1

∑

i=0

1
∑

j=0

CijPjPr(Hi decided|Hj true). (2.1)

Let C10 > C00 and C01 > C11 (i.e., making a wrong decision is more costly than making

a correct one). Under such assumption, the optimal decision rule that minimizes R is a

likelihood ratio test (LRT). The non-randomized LRT is given as [44], [45]

Decision =

{

H0 , if Λ(y) < η
H1 , if Λ(y) ≥ η

(2.2)

where, y is the observation and Λ(y) and η are the likelihood ratio and decision threshold,

respectively. The likelihood ratio and threshold are given as

Λ(y) =
p(y|H1)

p(y|H0)
(2.3)

η =
P0(C10 − C00)

P1(C01 − C11)
. (2.4)

As a special case, if C00 = C11 = 0 and C01 = C10 = 1 then R is the average probability

of error and is given as [45]

R = P0Pf + P1(1− Pd) (2.5)
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where, Pf and Pd are the false alarm and detection probabilities, respectively. Pf and Pd

are given as

Pf = Pr(H1 decided|H0 true) (2.6)

Pd = Pr(H1 decided|H1 true), (2.7)

and the miss probability Pm = 1− Pd (i.e., Pm = Pr(H0 decided|H1 true)).

It is not always possible to know or estimate the hypotheses prior probabilities or the

costs. In a situation like this, the Bayesian approach is not applicable. In the next section, we

examine the Neyman-Pearson approach, which can be applied when both prior probabilities

and costs are not known.

2.1.2 Neyman-Pearson Approach

The Neyman-Pearson test can be stated as follows: for a given acceptable level of false

alarm probability (Pf = α), find the decision rule that maximizes the detection probability

Pd [44],[45]. If y denotes the observation, then the detection decision according to the

optimal Neyman-Pearson test is given as follows [44]-[46]

Decision =

{

H0 , if Λ(y) < η
H1 , if Λ(y) ≥ η

(2.8)

where, Λ(y) = p(y|H1)
p(y|H0)

is the likelihood ratio and η is the decision threshold. The decision

threshold η is chosen such that the false alarm probability is less than or equal to α

Pf = Pr(Λ(y) ≥ η|H0) ≤ α (2.9)

2.2 Detection using Multiple Sensors

The reliability of a detection system is usually measured in terms of the probability of error

as in the Bayesian framework or the overall false and detection probability of the system as in

the Neyman-Pearson approach. To increase the reliability of the detection process, a network

of multiple sensors is usually employed [47]-[49]. Sensors can report their observations
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to a fusion center (FC). Combining these measurements, the FC makes a local decision

according to a predetermined fusion rule. This is known as centralized detection [50]. Due

to increased computational capabilities of sensor, sensors can process their measurements

and make local decisions. These decisions can be shared with other sensors or an FC to

make a global detection decision. This in known as decentralized detection [50]. In this

section, we briefly discuss these two detection schemes. We also discuss different network

designs (i.e., architectures) that are commonly used in decentralized detection. Due to its

prevalence in the literature of sensor deployment, we discuss the design of optimal fusion

rules in a network employing a parallel architecture with a fusion center.

2.2.1 Centralized Detection

In centralized detection, sensors send their measurements without processing to the fusion

center (FC). The (FC) combines the measurements to reach a global detection decision u0

according to a specified decision rule.

Since sensors do not make local decision (i.e., no local decision rules), the focus in

centralized detection is on the design of the fusion rule at the FC. From hypothesis testing

in section 2.1, we know that the optimal fusion rule at the FC is the likelihood ratio test

(LRT). If the network consists of N sensors {si, i = 1, 2, . . . , N}, then the optimal LRT rule

is given as [44], [45]

u0 =

{

0 (i.e., H0 is decided) , if Λ(y1, y2, . . . , yN) < η
1 (i.e., H1 is decided) , if Λ(y1, y2, . . . , yN) ≥ η

(2.10)

where, η is the decision threshold and yi is the measurement of the i-th sensor. The likelihood

ratio Λ(y1, y2, . . . , yN) is given as

Λ(y1, y2, . . . , yN) =
p(y1, y2, . . . , yN |H1)

p(y1, y2, . . . , yN |H0)
. (2.11)

One common simplifying assumption is to assume that the measurements are condition-

ally independent, therefore the likelihood ratio can be expressed as

Λ(y1, y2, . . . , yN) =

N
∏

i=1

p(yi|H1)

p(yi|H0)
. (2.12)
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We note that the form of the decision rule depends on the nature of the conditional

distributions {p(yi|Hj), i = 1, . . . , N, j = 0, 1}. The next example illustrates the structure

of the optimal fusion rule when the hypothesis of interest is corrupted by additive Gaussian

noise.

Example 2.1 : Let the i-th sensor ({i = 1, . . . , N}) measurement model be as follows [45]

H0 : yi = ni, (2.13)

H1 : yi = ai + ni, (2.14)

where, ni is a zero mean Gaussian noise with a variance of σ2. The noise samples {ni, i =

1, . . . , N} are uncorrelated. ai is the signal amplitude at the i-th sensor. Then, using

Eqn.(2.12) the optimal fusion rule is given as [45]

u0 =

{

0 (i.e., H0 is decided) , if
∑N

i=1 aiyi < η′

1 (i.e., H1 is decided) , if
∑N

i=1 aiyi ≥ η′
(2.15)

where, η′ = σ2 ln η +
∑N

i=1
a2i
2

is the decision threshold. The decision rule can be further

simplified if the signal amplitudes are equal {a = ai, i = 1, . . . , N} as follows

u0 =

{

0 (i.e., H0 is decided) , if
∑N

i=1 yi <
η′

a

1 (i.e., H1 is decided) , if
∑N

i=1 yi ≥ η′

a

(2.16)

The new fusion rule is just the summation of the sensor measurements.

2.2.2 Decentralized Detection

Decentralized detection differs from centralized detection in the fact that sensors process

their measurements and make local detection decisions. These decisions can then be shared

with other sensors or sent to a fusion center depending on the network architecture. In

comparison to centralized detection, the fusion center has less information about the phe-

nomena of interest, which results in loss of detection performance. However, decentralized

detection is advantageous when the network has a limited communication bandwidth and

sensors have a limited power supply. In the sections that follow, we review decentralized

detection network architectures. In addition, we discuss decision rule design at the sensor

and fusion center levels when using Bayesian and Neyman-Pearson approaches.
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2.2.3 Network Architectures

A network architecture refers to the way information between sensors are shared/combined

in the network. There are different architectures that can be used in constructing a multi-

sensor network. Examples of these architectures include: (1) parallel architecture with

fusion; (2) serial architecture; (3) parallel architecture without a fusion center and (4) tree

architecture. In what follows, we briefly discuss these architectures.

1. Parallel architecture with a fusion center

This architecture is depicted in Fig.2.2. Based on the measurement yi of the i-th

sensor (i = 1, . . . , N), a decision ui = γi(yi) is made according to the sensor’s decision

rule γi. The decisions from the N sensors are then sent to a fusion center. The FC

makes its final decision u0 according to u0 = γ0(u1, . . . , uN), where γ0 is the global

decision rule. The nature of the local and global decision rules depend on the nature

of the measurements (e.g., independent or correlated) available at the sensors. If the

observations are independent, then the local and global decision rules {γ0, γ1, . . . , γN}
are likelihood ratio tests (LRT) [44], [50]. However, calculating the corresponding

decision thresholds {η0, η1, . . . , ηN} that minimize the average risk or maximize the

detection probability is a computationally intensive process [51]. In the case that

observations are correlated, finding the optimal decision thresholds is computationally

intractable [50].

2. Serial architecture

A network of N sensors employing a serial architecture is shown in Fig.2.3. In this

configuration, the j-th sensor sends its decision uj to the j+1-th sensor. The j+1-th

sensor combines its own observation yj+1 with uj to produce its decision. The decision

uj+1 is given as uj+1 = γj+1(yj+1, uj), where γj+1 is the decision rule at the j + 1

sensor. The global decision u0 is the one made by the last sensor (i.e., u0 = uN),

which implies that the last sensor effectively acts as the fusion center (FC). Similar to
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Figure 2.2: Parallel architecture

the case of parallel fusion, the local decision rules are LRT in the case of conditionally

independent observations and are intractable to calculate when the observations are

correlated [50],[52] and [51].

3. Parallel architecture without a fusion center

This architecture is illustrated in Fig.2.4. We note that sensors do not communicate

with each other and decisions are not fused. Rather, the decision costs at the sensors

are coupled and a system wide optimization is carried out to minimize a given per-

formance metric (e.g., probability of error). In general, the local decision rule at a

sensor is an LRT. However, the optimal local decision threshold at a sensor depends

on both the observations (i.e., data dependent) and decision thresholds at the other

sensors [51]. In the special case of conditionally independent observations, a sensor’s

decision threshold is solely dependent on decision thresholds at the other sensors (i.e.,

data independent).
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Figure 2.4: Parallel architecture without a fusion center

4. Tree architecture

Fig.2.5 depicts a network employing a tree architecture. In this architecture, sensors

correspond to nodes in a directed acyclic graph where the fusion center is the root of

this graph [44].
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Figure 2.5: Tree architecture

In this dissertation, the emphasis is on centralized detection and decentralized detection

networks employing the parallel architecture with a fusion center. This is because, these

networks are the ones generally used in the sensor deployment literature. We next discuss

the design of the decision rule in a network employing the parallel architecture with a fusion

center.

2.2.4 Fusion Rule Design- Parallel Architecture with Fusion Net-
work

From the discussion above, it is evident that the detection performance of a network is

dependent on the local and global decision rules employed. In decision rule design, the

main problem is to design the fusion rule γ0 and local decision rules (γ1, . . . , γN) that mini-

mize/maximize a certain performance requirement. Due to high computational complexity

we limit our discussion to the design of the global fusion rule (i.e,. finding γ0 and threshold
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η0). Moreover, we consider problems where the observations are conditionally independent

since decision design for correlated observations is intractable. Next, we discuss fusion rule

design in the Bayesian and Neyman-Pearson frameworks that employ different performance

metrics.

Bayesian Framework

In the Bayesian framework, it is required to design a fusion rule that minimizes the average

risk R as defined in Eqn.(2.1) given some prior probabilities and cost assignments. We

follow the same notation used in sections 2.1 and 2.2.3. Also, let P i
f and P i

d denote the

false alarm and detection probabilities, respectively, of the i-th sensor (i = 1, . . . , N). The

optimal fusion rule that minimizes the average risk R is the LRT given as [44],[49]

u0 =

{

0 (i.e., H0 is decided) , if Λ(u1, . . . , uN) < η0
1 (i.e., H1 is decided) , if Λ(u1, . . . , uN) ≥ η0

(2.17)

where, η = P0(C10−C00)
P1(C01−C11)

is the decision threshold. The likelihood ratio Λ(u1, . . . , uN) is given

as

Λ(u1, u2, . . . , uN) =
Pr(u1, u2, . . . , uN |H1)

Pr(u1, u2, . . . , uN |H0)
(2.18)

Assuming decisions are conditionally independent, the likelihood ratio and decision

threshold in Eqn.(2.17) can be expressed as [44],[50]

Λ(u1, . . . , uN) =

N
∑

i=1

ln(
P i
d(1− P i

f )

P i
f (1− P i

d)
)ui (2.19)

η0 = ln(
P0(C10 − C00)

P1(C01 − C11)

N
∏

i=1

1− P i
f

1− P i
d

). (2.20)

Therefore, the optimal fusion rule is a linear combination of the sensor decisions. The

weight of the decision ui is proportionally related to P i
d and inversely proportional to P i

f .

The fusion threshold η0 depends on η which contains the prior probability and cost function

information.
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Since the decisions {ui, i = 1, . . . , N} are binary (we are considering a binary hypothesis

setup), one can also use logical rules to combines these binary decisions. For N binary

decisions, there are 22
N

unique logical functions that can be used to combine the data.

However, not all of these functions are suitable for use [44]. In fact, the set of suitable

functions has to satisfy the monotonicity property and are called positive unate functions

[50]. Even though the cardinality of the positive unate functions set is less that 22
N

, it is

still computationally intensive to search for a positive unate function that minimizes the

risk function R. However, one can attain a satisfactory performance (though no optimality

is guaranteed ) by using simple logical functions such as AND, OR and MAJORITY as

fusion rules which are discussed below:

1. And Rule

A global detection decision u0 = 1 is made, only if all sensors agree that the phe-

nomenon exists (i.e., ui = 1, i = 1, . . . , N). In this case, the global false alarm Pf and

detection probability Pd are given as [44],[49]

Pf =

N
∏

i=1

P i
f (2.21)

Pd =

N
∏

i=1

P i
d, (2.22)

where, P i
f and P i

d are the i-th sensor false alarm and detection probabilities, respec-

tively.

2. OR Rule

In the OR rule, a single detection decision by one sensor is sufficient for the fusion

center to decide that the phenomenon exists. The global false alarm Pf and miss
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probability Pm are given as [44], [49]

Pf = 1−
N
∏

i=1

(1− P i
f) (2.23)

Pm =
N
∏

i=1

P i
m, (2.24)

where, P i
m is the miss probability of the i-th sensor.

3. Majority Rule

Assume that sensors have equal false alarm and detection probabilities (i.e., P i
f =

pf , P i
d = pd, i = 1, . . . , N) and that the decisions are conditionally independent. In

this case, the likelihood ratio γ0(u1, . . . , uN) and decision threshold η0 in Eqn.(2.17)

are given as [44], [49]

γ0(u1, . . . , uN) =
N
∑

i=1

ui (2.25)

η0 =

P0(C10−C00)
P1(C01−C11)

N ln
pd(1−pf )

pf (1−pd)

. (2.26)

Since the decisions {ui, i = 1, . . . , N} are binary, the rule in Eqn.(2.25) means that a

detection decision u0 = 1 is made only if the number of sensors with a similar decision

exceeds a certain number (i.e., counting). Each sensor decision is a Bernoulli random

variable, with a success probability of (1 − pf ) under hypothesis H0 and pd under

H1. Therefore, the overall false alarm Pf and detection Pd probabilities are the tail

probabilities of two Binomial distributions (one under each hypothesis) and are given

as

Pf =

N
∑

n=⌈η0⌉
pnf (1− pf)

N−n (2.27)

Pd =
N
∑

n=⌈η0⌉
pnd(1− pd)

N−n (2.28)

where, ⌈η0⌉ is the smallest integer greater than or equal to η0.
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In the Bayesian design framework, the decision threshold is a function of the hypotheses

prior probabilities and the decision costs. Next, we briefly review the Neyman-Pearson

design methodology in which the decision threshold depends on meeting the overall false

alarm requirement.

Neyman-Pearson Framework

In this framework, no prior probability information or costs are assumed to be known. The

goal is design a fusion rule such that the overall false alarm probability Pf is less than a

certain level α, while maximizing the overall detection probability Pd (or minimizing the

miss probability Pm) [44].

One can find a solution for this function by using the Lagrangian method and construct-

ing the unconstrained function F given as [44],[50]

F = Pm + η(Pf − α) (2.29)

where, η is the Largrange multiplier and is chosen such that Pf ≤ α.

The non-randomized optimal decision rule that minimizes F is given as

u0 =

{

0 (i.e., H0 is decided) , if γ0(u1, . . . , uN) < η0
1 (i.e., H1 is decided) , if γ0(u1, . . . , uN) ≥ η0

(2.30)

where, the likelihood ratio γ0(u1, u2, . . . , uN) is given as

γ0(u1, u2 . . . , uN) =
Pr(u1, u2, . . . , uN |H1)

Pr(u1, u2, . . . , uN |H0)
(2.31)

If the sensor decisions {ui, i = 1, 2, . . . , N} are independent, the likelihood ratio γ0(u1, u2 . . . , uN)

and the corresponding decision threshold η′0 are given as [48],[44]

γ0(u1, u2 . . . , uN) =
N
∑

i=1

ln(
P i
d(1− P i

f )

P i
f(1− P i

d)
)ui (2.32)

η′o = ln(η0

N
∏

i=1

1− P i
f

1− P i
d

). (2.33)

We note that the decision rule for the Neyman-Pearson framework is similar in form to

the one in the Bayesian framework, with the difference that the decision threshold is chosen
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to meet the false alarm requirement. Therefore, one can also use the logical rules (e.g.,

AND, OR ) discussed earlier as decision rules in the Neyman-Pearson framework.

2.3 Summary

In this chapter, we provided a general overview of hypothesis testing and detection in multi-

sensor networks. In hypothesis testing, we discussed the design of optimal decision rules

in both the Bayesian and Neyman-Pearson frameworks. We saw that the design of the

decision rule depends on whether the prior hypotheses probabilities and costs are known

or not. Under both frameworks, we saw that the optimal fusion rule is an LRT. We then

examined detection in multi-sensor networks and saw that sensors can either send raw

measurements to an FC (i.e., centralized detection) or make local detection decision (i.e.,

decentralized detection). We discussed the design of optimal fusion rules in both centralized

and decentralized detection networks. In centralized detection, the optimal fusion rule at

the FC is an LRT that is dependent on the statistical distribution of the observations. In

decentralized detection, we briefly discussed some of the common network architectures (e.g.,

detection with fusion). We then discussed the design of fusion rules under the Bayesian and

the Neyeman-Pearson frameworks.
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Chapter 3

Control Theoretic Deployment

In this chapter, we first discuss the general setup of the sensor deployment problem. This

consists of modeling the region of interest where sensors are deployed and modeling the

sensors themselves in terms of their detection performance. In addition, we present a general

mathematical formulation of the sensor deployment problem. Next, we discuss the proposed

approach to solve the deployment problem. Specifically, we motivate and visualize concepts

from optimal control theory that we use as tools to perform sensor deployment. We introduce

the linear quadratic regulator (LQR) problem and briefly review methods that are commonly

used to obtain the solution of the LQR problem.

3.1 System Setup

In deployment problems, the area to be monitored is usually referred to as the region of

interest (ROI) [16],[20]. The ROI is where false alarm/ detection requirements are specified.

It is also the area where sensors are deployed. The ROI is usually modeled as a grid G of

points [16] -[21]. Without loss of generality, we assume that G is rectangular with dimensions

Nx and Ny (i.e., G = {(xix , yiy), ix = 1, . . . , Nx, iy = 1, . . . , Ny}). However, we note

that our proposed solution approach is applicable to any distribution of grid points. Each

grid point is associated with a certain false alarm and detection probability requirement.

Considering all the grid points, we can arrange these false alarm/detection requirements in

two NxNy×1 vectors preq
f / preq

d . Sensors are deployed in the ROI with the goal of satisfying
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false alarm/detection requirements. An NxNy×1 vector D can be used to indicate whether a

sensor is deployed at a certain grid point or not. D(j) = 1 indicates that a sensor is deployed

at the j-th grid point (j = 1, 2, . . . , NxNy) and a value of D(j) = 0 indicates otherwise.

One of the factors that determine the performance of a network is the detection perfor-

mance of the individual sensors. In the next section, we discuss some of the sensing models

used to approximate sensor behavior.

3.2 Sensing Models

In the sensor deployment literature, several sensing models have been proposed and used

to characterize the detection performance of sensors. One main attribute of any sensing

model is its effective coverage area. If a target is present in a sensor’s effective coverage

area, then it is assumed that the sensor is able to detect that target with an acceptable

reliability level. Another attribute that differentiates between sensing models, is the sensor’s

immunity to variability (e.g., noise). One can also classify sensors according to the nature

of the information they report back to the fusion center. For example, a sensor can either

report its raw measurement or its quantized local decision.

In what follows, we discuss some of the sensing models most used in literature [13]-[22]

1. Point model

In this model, sensors do not have an effective coverage area [13]-[15]. This means that

in order for a sensor to detect a phenomenon, the phenomenon has to pass through

the sensor. Examples of point sensors include chemical sensors (e.g., gas sensors).

However, point sensing models are not adequate to model different kinds of sensors

(e.g., acoustic) that exhibit a coverage area feature.

2. Disc model

In this model, sensors have an effective coverage area (usually a circle/sphere in 2-D/

3-D). If a target is within the effective coverage area of a sensor, then it is assumed
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that the sensor can always (with 100% success probability) detect the presence of the

target. On the other hand, the target can not be detected if its outside the sensor’s

coverage area. Let d denote the distance between the sensor and the target of interest,

then the probability of detecting the target pdetect is given as

pdetect(d) =

{

1 if d ≤ R
0 if d > R

(3.1)

where, R is the radius of the sensor effective coverage area. Disc sensing models have

been widely used to model the performance of acoustic and seismic sensors [16]. One

drawback of this model is the fact that it does not incorporate uncertainty in the

decision making process. We also note that a disc sensing model is used when sensors

report quantized detection decisions.

3. Distance-dependent model

This model is frequently used to approximate a sensor’s detection performance in

the presence of noise. It is particularly suitable when a sensor measures the signal

amplitude emitted by the target of interest. The amplitude of a signal decays as it

propagates with a decay rate that depends on the medium of propagation (i.e., distance

dependency). Moreover, since ambient noise interferes with the sensor operation, a

sensor’s detection decision is probabilistic in nature. One frequently used distance-

dependent sensing model is the exponential decay model [20], [21]. Let d denote the

distance between the sensor and target of interest, then the detection probability pdetect

is given as [20], [21]

pdetect(d) =

{

e−τd if d ≤ R
0 if d > R

(3.2)

where, τ is a decay parameter that depends on the sensor’s design and the environment.

R is the radius of the effective coverage area. Similar to the disc sensing model, the

model in Eqn.(3.2) is used to model the performance of acoustic and seismic sensors.

We also note that this model is used when sensors report detection decisions rather

than measurements.
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4. Energy detector model

In this model, a sensor measures the energy of the signal emitted by the target of

interest. If d is the distance between the sensor and the target of interest, and S(d) is

the signal’s energy at the sensor then the energy measurement y as measured by the

sensor is given as

y = S(d) +N2 (3.3)

where, N2 is the energy of the additive noise. The model in Eqn.(3.3) has been

empirically verified and is widely used [22].

In this dissertation, we focus on sensors that have an exponential decay sensing model

or which are energy detectors. This is because they better reflect the actual performance of

a wide range of senors.

We next turn to mathematically stating the general sensor deployment problem that we

examine in this dissertation.

3.3 Problem Formulation

The sensor deployment problem that we study can be stated as follows: given false alarm/

detection requirements and K sensors, how can these sensor be deployed (i.e., what is

the deployment vector D) such that the difference between achieved and required detection

probabilities be minimized while attempting to satisfy false alarm requirements. Let pK
f /p

K
d

be two NxNy×1 vectors, that denote the achieved false alarm/ detection over the grid points

when K sensors are deployed in the grid. We can then mathematically state the deployment

problem as follows

argmin
D

∑

j:pK
d
(j)<preq

d
(j)

(pK
d (j)− preq

d (j))2

subject to

{

pK
f ≤ preq

f

1TD = K.
(3.4)
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We note, that the summation index in Eqn.(3.4) is taken over the set of grid point where

detection requirements are not met. This ensures that grid points where the detection

requirements are satisfied do not negatively contribute to our objective.

3.4 Proposed Approach

In a sensor deployment problem, usually the goal is to find the best K positions out of

N possible positions at which sensors can be deployed in order to minimize a given cost

function. Since the number of sensors at any point in the ROI takes only one of two values

(0 or 1), the sensor deployment problem is a binary integer programming problem. Integer

programming problems are NP-hard, which implies that the computational complexity as-

sociated with solving such a problem increases exponentially with the number of variables

(i.e., K and NxNy in our deployment problem). One possible solution for an integer pro-

gramming problem is enumeration. All possible solutions are listed and the value of the

cost function corresponding to each solution is calculated. The optimal solution is the one

that has the minimum cost function value. The enumeration approach requires large storage

and computational capabilities which prohibits its use except for problems of a small search

space. For example, in our deployment problem if K = 20 sensors and Nx = Ny = 30

possible locations the set of enumerated solutions will consist of
(

900
20

)

= 9.8033× 1055 pos-

sible sensor positions configurations. Therefore, it is necessary to provide solutions to the

deployment problem that do not require high computational complexity to calculate.

In this dissertation, we present a unique and novel approach to sensor deployment. The

highlights of the proposed approach are presented below:

1. First, the inherent complexity of determining K sensor positions out of NxNy possi-

ble grid points is alleviated by switching to a sequential sensor deployment strategy.

However, it is important to note that the sequential approach is merely to reduce

the search space and does not restrict the end user from temporally staggering the

deployment. That is, the entire K steps in the sequential process can be completed
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and all K sensors can be deployed similar to the one shot deployment process.

2. Second, we model the sequential deployment process as an optimal control problem

with the objective as stated in Eqn.(3.4). This provides a rigorous framework to the

deployment problem that has been previously lacking in literature.

3. Thirdly, to simplify the solution of the optimal control based deployment process, we

linearize the effects of a single sensor deployment on the overall detection/false alarm

performance at each grid point for various fusion architectures. Combined with the

objective in Eqn.(3.4), this linearization enables us to model sensor deployment as a

linear quadratic regulator (LQR) problem

4. Finally, we exploit the rich literature in LQR problem solutions to design a suite

of sensor deployment algorithms that can be applied to various data/decision fusion

based detection systems.

In the following section, we present an introduction to optimal control theory and provide

details on how one might formulate the deployment problem as an optimal control problem.

3.5 Optimal Control Theory

The main objective in optimal control theory is to guarantee that a dynamical system

attains a certain desired performance. Optimal control theory is attractive because it offers

an analytic approach to solving many design problems. It is also suitable for handling

multivariable systems with ease.

Let the dynamical system under consideration be discrete and given as [30]

xk+1 = fk(xk,uk), k = 0, 1, . . . , K − 1, (3.5)

x0 = xinitial, (3.6)

where, xk is the state vector of the system at the k-th instant. The function fk(xk,uk)

describes the evolution of the system’s state (i.e., xk → xk+1). We note that fk(·, ·) is
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dependent on both the current system state (i.e. xk) and the vector uk which is called the

control vector. We note that the control vector can be arbitrary in general and is chosen by

the system’s designer. x0 represents the initial state of the system. Fig.4.1 shows a block

diagram of the system described in Eqn.(3.5). Since the goal is for the system to attain

a certain state, a cost function J is usually defined that reflects the end user’s preference.

The cost function J is given as

J = L(xK) +

K−1
∑

k=0

Vk(xk,uk), (3.7)

where, L(xK) is called the final function and is a function of the final state of the system.

The function Vk(xk,uk) is called the running function and is explicitly dependent on the

system state and control vector.
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Figure 3.1: A sequential discrete control system

In optimal control theory, the goal is to find the sequence of optimal control vectors

{uk, k = 0, 1, . . . , K − 1} that results in minimizing J . Noting that the system model in
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Eqn.(3.5) is effectively a set of equality conditions, the optimal control problem can be

viewed as a constrained optimization problem. Thus it is possible to use the methods of

Lagrange multipliers and variational calculus to establish the optimality conditions. For

convenience, the scalar Hamiltonian function Hk is usually defined as [30]

Hk = Vk(xk,uk) + λ
T
k+1fk(xk,uk), (3.8)

where, λk is the k-th Lagrangian multiplier. Using the Hamiltonian , one can derive the

following Karush Kuhn Tucker (KKT) optimality conditions [30], [31] and [32]

xk+1 = fk(xk,uk) (3.9)

x0 = xinitial (3.10)

λk = ∇T
xk
fk(xk,uk)λk+1 +∇T

xk
Vk (3.11)

λK = ∇T
xK

L (3.12)

0 = ∇uk
Vk + λ

T
k+1∇uk

f(xk,uk), (3.13)

where, ∇xL is the differential of L with respect to x.

Note that the boundary conditions for the set of Eqns.(3.9)-(3.13) are at k = 0 since x0 =

xinitial and at k = N since λK = ∇T
xK

L. Therefore, this kind of problems is appropriately

called two-point boundary-value problems.

With regards to the deployment problem, the elements of this problem can be mapped

into elements of an optimal control problem. We can consider the detection network as a

system or a plant. The state of this system (xk) corresponds to the network’s overall detec-

tion performance when k sensors are deployed in the grid. Since the detection performance

depends on the number of deployed sensors, the effect of deploying an additional sensor

k → k + 1 is analogous to the effect of a control vector as in Fig.4.1. Thus, the sequential

deployment of sensors corresponds to a series of control vectors. The system’s evolution

function fk depends on the change in the system state (i.e., detection performance) when

a control vector (i.e., deployment of an additional sensor) is applied to the system. This
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change depends on the network’s design, sensor characteristics and detection requirements.

The last element in an optimal control problem is the cost function J . In the deployment

problem Eqn.(3.4), the goal is to minimize the squared difference between achieved and

required detection performance. This can easily be mapped to the cost function J , which

is the last element of the optimal control problem.

In the next section, we introduce a specific type of optimal control problem - the linear

quadratic regulator (LQR). Our proposed algorithms are based on modeling the deployment

process as an LQR problem as discussed in the next section.

3.6 Linear Quadratic Regulator

The linear quadratic regulator (LQR) problem is a very well-studied problem in optimal

control theory. One of the main advantages of the LQR problem is the fact that the resulting

KKT optimality conditions in Eqns.(3.9)-(3.13), are both sufficient and necessary [30],[31]

and [9]. In addition, there are various approaches to solving the set of optimality conditions

for the LQR problem [30] and [53]. In this section, we discuss the LQR problem formulation

and motivate modeling the deployment problem as an LQR problem.

In a linear quadratic regulator (LQR) problem, the function f(xk,uk) in Eqn.(3.9) is

linear in both xk and uk and can be stated as [30],[31]

xk+1 = Akxk +Bkuk, k = 0, 1, . . . , K − 1, (3.14)

where, Ak and Bk are matrices of appropriate dimensions. A block diagram of the LQR

state evolution is shown in Fig. 4.2. In addition, the cost function J in Eqn.(3.7) is quadratic

and is given as[30],[31]

J =
1

2
xT
KQfxK +

1

2

K−1
∑

k=0

(xT
kQkxk + uT

kRkuk). (3.15)

Qf , Qk and Rk are weighting matrices of appropriate dimensions that the end user chooses

according to the performance requirements. In order to yield positive values of J for all
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possible combinations of xk and uk, the weighting matrices need to be non-negative. In

general, Qf and {Qk, k = 0, 1, . . . , K − 1} are chosen to be positive semi-definite, while

{Rk, k = 0, 1, . . . , K − 1} are positive definite matrices.
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+
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Figure 3.2: An LQR block diagram

We note that the Hamiltonian function that corresponds to the LQR problem is given

as

Hk =
1

2
xT
kQkxk +

1

2
uT
kRkuk + λk+1(Akxk +Bkuk). (3.16)

Applying the KKT conditions Eqns.(3.9)-(3.13), the LQR optimality conditions are given
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as

x0 = xinitial (3.17)

xk+1 = Akxk +Bkuk, k = 0, 1, . . . , K − 1 (3.18)

λk = AT
kλk+1 +Qkxk (3.19)

λK = QfxK (3.20)

uk = −R−1
k BT

kλk+1. (3.21)

The LQR problem is a very well-studied problem in optimal control theory literature

[30]-[33]. It is a well-behaved problem for which a solution (i.e., optimal control vector)

can be analytically evaluated using Eqns.(3.17)-(3.21). The linearity of fk(·, ·) and the

convexity of J means that the KKT LQR optimality conditions are both necessary and

sufficient conditions of optimality. For all of above mentioned advantages, it is desirable to

model an optimal control problem as an LQR problem if possible.

The main contribution in this dissertation, is to propose an LQR formulation of the sensor

deployment problem. One is motivated to do this by noting that if we set xk = pk
d − preq

d ,

then the cost function in Eqn.(3.4) resembles the function J in Eqn.(3.15). Both of the

cost functions are convex in the state xk. Moreover, a sequential deployment of K sensors

corresponds to a sequence of K control vectors (i.e., uk, k = 0, 1, . . . , K − 1). When the

k-th sensor is deployed (i.e., uk is applied), it causes a change in the network detection

performance (i.e., xk → xk+1). This change corresponds to the evolution in the system’s

state. The remaining feature of an LQR problem is a state evolution function that is linear

in both xk and uk as in Eqn.(3.14). This function is not evident from the deployment

problem statement Eqn.(3.4). By constructing this linear function, the deployment problem

becomes equivalent to an LQR problem. As we will see later, the nature of this linear state

evolution function depends on the sensor sensing, nature of target, detection/false alarm

requirements and the detection scheme employed by the network. Formulating this linear

function, taking all of the above factors into account, is the main objective of our work in
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the next chapters. After having an LQR formulation of the deployment problem, one can

then solve for the control vectors (i.e., sensor positions) that minimize the cost function J

(i.e., satisfy performance requirements).

To solve for the sensor positions, we need to solve for the optimal control vectors. In

the next section, we discuss methods for solving for the optimal control vectors in an LQR

problem.

3.7 LQR Solution Methods

In this section, we briefly discuss some of the methods one can use to evaluate the op-

timal control vector in an LQR problem. These solutions differ based on the nature of

the LQR problem. LQR problems can be classified as being either static or dynamic. In

dynamic/static LQR problems, the system evolution function changes/remains fixed after

each application of a control vector. In other words, the matrices Ak and Bk are functions

of k = 0, . . . , K − 1 in a dynamical LQR problem and are constant in a static problem.

Therefore, in a dynamical LQR problem the optimal control vector is calculated based on

the current system evolution function. Hence, solving a dynamical LQR problem is referred

to as a 1-step horizon optimization problem. In contrast, solving a static LQR problem is

referred to as a K-step optimization problem.

1. The Sweep Method

The sweep method is used to solve LQR static problems (i.e., K-step optimization

problems). It is based on the observation that the boundary condition on the Lagrange

multiplier is given as

λK = QfxK . (3.22)

Based on this, in the sweep method it is assumed that the k-th Lagrange multiplier is

of similar form

λk = Pkxk, k = 0, 1, . . . , K − 1 (3.23)
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where, Pk is a square matrix with appropriate dimensions and will be calculated later.

Substituting for λk in Eqn.(3.21), the optimal control vector is given as

uk = −R−1BTPk+1xk+1, k = 0, 1, . . . , K − 1 (3.24)

since xk+1 = Axk +Buk we can solve for uk as follows

uk = −Gkxk, k = 0, 1, . . . , K − 1 (3.25)

where, Gk is a square matrix of appropriate dimensions and is given as

Gk = (R+BTPk+1B)−1BTPk+1A. (3.26)

Using the above equations, it is possible to describe Pk in terms of a backward differ-

ence equation as follows

Pk = AT (Pk+1 −Pk+1BS−1BTPk+1)A+Qk (3.27)

where, Sk is a square matrix of appropriate size and is given as

Sk = R+BTPk+1B (3.28)

The boundary condition of Eqn.(3.27) at k = K can be obtained from Eqns.(3.22)

and (3.23) as

PK = Qf . (3.29)

We note that Eqn.(3.27) is called a discrete time algebraic Riccati equation.

The steps of the sweep method are summarized in Algorithm 1 [30].

2. Non-iterative Riccati Equation Solution Method

The sweep method is in essence an iterative solution of the Riccati equation in Eqn.(3.27).

There are other approaches to solving the Riccati equation that are non-iterative in

nature. These approaches fall under two main classes: Hamiltonian and Lyapunov
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Algorithm 1 Sweep method

1: Initialization PK = Qf , GK = 0 and SK = 0.
2: for k = K − 1, K − 2, . . . , 0 do
3: Calculate Sk from Eqn.(3.28).
4: Calculate Gk from Eqn.(3.26).
5: Store Gk.
6: Calculate Pk from Eqn.(3.27).
7: end for
8: for k = 0, 1, . . . , K − 1 do
9: Calculate uk from Eqn.(3.25).
10: end for

methods [53]. Hamiltonian methods do not make use of sparsity or any feature of the

Riccati equation. On the other hand, the Lyapunov approach can make some use of

matrix structures. Therefore, the focus here is on the latter method.

In a Lyapunov equation, it is required to solve for an unknown matrix P. The Lya-

punov equation is given as

FP+PFT = −HHT (3.30)

where, F and H are matrices of appropriate dimensions.

It is straightforward to show that the Riccati equation Eqn.(3.27) can be written as a

Lyapunov equation

A−BR−1BTP
T
P+PA−BR−1BTP = −Q−PBR−1BTP (3.31)

the right hand side is then

TTT = Q−PBR−1BTP (3.32)

also let A−BR−1BTP = FT . Therefore, a Riccati equation is a special case of the

Lyapunov equation. Thus one can use Lyapunov equation solution methods to solve

for the Riccati equation Eqn.(3.27). Some of the methods one can use include the

Bartlet-Stewart and the alternating direction implicit (ADI) methods [53].

3. Differentiation
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In a dynamic LQR problem, the Ak and Bk matrices are dynamic (i.e., change with k)

and are not known before hand. Therefore, one can not solve the optimality conditions

associated with the K-steps cost function J Eqn.(3.15). One method to overcome this

difficulty, is to sequentially solve for the optimal control vector minimizing the single

step cost function Jk defined as follows:

Jk =
1

2
(xT

kQxk + uT
kRkuk). (3.33)

subject to

xk+1 = Akxk +Bkuk. (3.34)

Then, setting the gradient of Jk with respect to uk equal to zero and solving for uk,

it is straightforward to find:

uk = −(Rk +BT
kQkBk)

−1BT
kQkAkxk (3.35)

In this dissertation, depending on the nature of the LQR problem, we employ both

the Sweep method as well as the Differentiation method to determine optimal control vec-

tor. The LQR formulations for various fusion architectures are presented in the following

chapters.

3.8 Summary

In this chapter, we provided an overview of our sensor deployment problem and our solution

approach. We described the sensing models considered in this dissertation. In addition, we

provided a mathematical formulation of the deployment problem and motivated the use of

the LQR problem as a solution approach. Finally, we provided an overview of some of the

methods that can be used to solve an LQR problem and thus the deployment problem. In

the following chapters, we use the proposed LQR approach to develop algorithms for various

fusion architectures.

45



Chapter 4

Sensor Deployment in
Non-Collaborative Detection
Networks

In this chapter, we study the sensor deployment problem in a non-collaborative detection

system employing the logical OR rule at the fusion center. One of the advantages of con-

sidering this network is the relative simplicity of modeling its detection performance in

comparison to other network fusion rules. Moreover, modeling the effect of the deployment

of an additional sensor is straightforward in a non-collaborative detection network. Using

this network model, we are able to formulate sensor deployment as an LQR problem. Based

on this formulation, we propose an LQR-based deployment algorithm. To reduce computa-

tional complexity, we propose a second heuristic deployment algorithm. The performance

of these algorithms is compared against that of the state of the art Diff Deploy deployment

algorithm.

In section 4.1, we introduce the system model. This mainly includes; the sensor sensing

model and quantifying the overall detection (or miss) performance of the network. In addi-

tion, a linear model of the non-collaborative detection network is discussed. The main focus

in section 4.2 is to introduce the LQR formulation of the sensor deployment problem in the

non-collaborative network. Based on the LQR formulation, we introduce our LQR-based

deployment algorithm in section 4.3. Furthermore, the heuristic deployment algorithm is
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described in section 4.4. In section 4.5, simulation results comparing the performance of the

proposed algorithms versus that of the Diff Deploy algorithm are presented.

4.1 System Model

The system under consideration consists of an area of interest where region-wise detection

requirements are provided by the end user. We model the area of interest as a grid G of

Nx ×Ny points. The detection/miss requirements at every point on the grid are ordered in

two NxNy × 1 vector preq
d /preq

m . Additionally, the sensing model and the number of sensors

available, serve as inputs to our sensor deployment algorithm. Given these inputs, the

objective of this work is to determine the optimal sensor placement that would minimize the

square difference between achieved and required detection/miss probabilities. It is important

to note that we assume a simple detection model in which a target is declared to be detected

if at least a single sensor in the network is able to detect it (i.e., logical OR rule). We assume

that the sensors have an exponential decay sensing model as in Eqn.(3.2). In this model,

even if a target is within the detection radius (i.e. coverage radius), there is a probability

that it will not be detected (i.e., it will be missed). A wide range of practical sensors [54]

(e.g., infrared, ultrasound) fit this general model. However, it is important to note that the

choice of the sensing model does not affect the basic formulation of the algorithms proposed.

Following the linear shift invariant (LSI) model as in [21], the process of linking individual

sensors’ detection characteristic to the overall probability of detection requirements on the

grid is mathematically quantified using miss probabilities pm (pm = 1− pd, where pd is the

probability of detection). The probability of a target being detected by any sensor on the

grid is the complement of the target being missed by all the sensors on the grid. The overall

miss probability M(x, y) corresponds to the probability that a target at point (x, y) will be

missed by all sensors, i.e.,

M(x, y) =
∏

(i,j)∈G
pm((x, y), (i, j))

D(i,j), (4.1)
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where, pm((x, y), (i, j)) is the probability that a sensor at point (i, j) misses a target located

at point (x, y) of the grid. Here, D(i, j) represents the presence or absence of a sensor at

the location (i, j) on the grid, and corresponds to

D(i, j) =

{

1 , if there is a sensor at (i, j)
0 , if there is no sensor at (i, j)

(4.2)

Taking the natural logarithm of both sides in Eqn.(4.1) results in

m(x, y) =
∑

(i,j)∈G
D(i, j) ln pm((x, y), (i, j)), (4.3)

where m(x, y) is called the overall logarithmic miss probability at point (x, y) [21]. Let us

define the function b(x, y) as follows

b(x, y) =

{

ln pm((x, y), (0, 0)) , d((x, y), (0, 0)) ≤ R

0 , d((x, y), (0, 0)) > R,
(4.4)

where, R is the coverage radius and d((x, y), (0, 0)) is the distance between point (x, y) on

the grid and the grid’s origin point (0, 0).

The overall logarithmic miss probabilities for all points on the grid can be arranged in a

vector m = [m(x, y), ∀(x, y) ∈ G]T of dimension NxNy × 1 that corresponds to

m = BD. (4.5)

Here, D = [D(i, j), ∀(i, j) ∈ G]T is the deployment vector of dimension NxNy × 1. The

((i− 1)Ny + j)-th element of D indicates the number of sensors deployed at point (i, j) on

the grid. The matrix B is of dimension NxNy×NxNy, and contains {b(x− i, y−j), ∀(x, y) ∈
G, (i, j) ∈ G}). b(x− i, y−j) corresponds to the (r, c)-th entry of B, where r = (x−1)Ny+y

and c = (i− 1)Ny + j. Essentially, b(x− i, y − j) quantifies the effect of placing a sensor at

point (i, j) on the logarithmic miss probability at point (x, y) on the grid. The logarithmic

miss probabilities can be easily converted to detection probabilities at a later stage.

The question we attempt to address in this work is the following: Given a number of

sensors, how can the sensors be deployed (i.e., where can the sensors be placed) to minimize

the squared error between achieved and required detection/miss probabilities? Once again,
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the squared error (SE) between required and achieved detection probabilities at all points

in the grid can be mapped to the SE between required and achieved miss probabilities.

However, one should note that after sensors have been deployed, the achieved detection

probability at some of the grid points will meet/ exceed the detection requirements at these

points. Therefore, we emphasize on minimizing the squared error at the points for which

detection/miss requirements are not met.

Let mreq be the required miss probability vector, and let mk be the achieved miss

probability vector resulting from deploying k sensors to the grid. Our sensor deployment

problem can be mathematically formulated as follows:

argmin
u

∑

j:pK
d
(j)<preq

d
(j)

(mK(j)−mreq(j))2

subject to
{

1TD = K (4.6)

where, pKd (j) is the detection probability at the j-th grid point after K sensors have been

deployed to the grid. 1T indicates the transpose of an NxNy × 1 vector, with all entries set

to 1 and K is the total number of available sensors.

4.2 Optimal Control Formulation

The problem of minimizing the square error between achieved and required detection prob-

abilities can be viewed as minimizing the square difference between achieved and required

miss or overall logarithmic probabilities. Define xk to be the difference between the required

log miss probability vector (mreq) and the log miss probability vector achieved after deploy-

ing k sensors (mk). i.e., xk = mk −mreq. The system described in Eqn.(4.5) can be written

in terms of the dynamic model

xk+1 = xk +Buk, (4.7)

where, uk is the deployment vector at the k-th step. In typical control problems, the index

k indicates the time index describing time evolution of the system. In our case, we assume
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sequential placing of sensors (i.e., sensors are placed one at a time) with k representing the

k-th step in this process. In terms of the dynamic state vector xk, we can define a weighted

SE cost function J as:

J =
1

2
xT
KQfxK +

1

2

K−1
∑

k=0

(xT
kQxk + uT

kRuk). (4.8)

Here, uk is the deployment vector for the k-th sensor. Q, Qf and R are positive-definite

diagonal weighting matrices with dimension NxNy ×NxNy that are chosen by the designer.

In our problem, a good choice of Q,Qf and R is one that reflects the detection requirements

on the grid. That is, if the detection requirement at a certain point is relatively large

compared to other points, then the entries in the matrices Q,Qf and R that correspond

to that point should be in such a way that the resulting solution will be biased towards

satisfying that point before other points. One choice that fits well with the above reasoning

is the following; R(i) = (mreq(i)
1Tmreq

)−1 where R(i) is the i-th diagonal element of R, mreq(i) is

the overall logarithmic miss requirement at point i on the grid. The i-th diagonal elements of

Q and Qf are given as Q(i) = Qf (i) = (R(i))−1, where (·)−1 denotes the inverse operation.

The goal of the control problem is to determine the sequence of control vectors {uk, k =

0, 1, . . . , K − 1} that would minimize the cost function J . The squared error cost function

penalizes both positive and negative deviations from the required detection probability

profile. To avoid incurring a penalty for satisfying/exceeding detection requirements, the

error terms corresponding to a satisfied point is set to zero in J . Therefore, after each sensor

deployment, the cost function to be minimized is the squared error evaluated at the points

where detection/miss requirements are not satisfied. We refer to this squared error cost

function as the effective SE. Therefore, the effective SE corresponds to

eSE(k) =
∑

j:pk
d
(j)<preq

d
(j)

xk(j)
2 (4.9)

where, pkd(j) is the achieved detection probability at the j-th grid point after k sensors

have been deployed in the grid. The formulation of the problem discussed above is known
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as a linear-quadratic regulator problem in control theory literature [32][33]. Therefore, we

can employ the techniques used for solving LQR problems to solve the sensor deployment

problem as described in the previous chapter.

4.3 Deployment Algorithm

In this section, we introduce the deployment algorithm which is based on the LQR formu-

lation of the sensor deployment problem. Algorithm2, illustrates the steps of the optimal

control based sensor deployment algorithm.

Given the total number of sensors, K, and the B matrix, the algorithm evaluates the

feedback gain matrix (i.e., Gk, k = K − 1 : −1 : 0) using the sweep method discussed

earlier. Sensors are deployed sequentially until all available sensors have been deployed or

when detection requirements at all points on the grid have been satisfied (i.e., effective SE

equals 0). In the k-th iteration, the set of points for which the detection/miss requirements

are satisfied is determined and the entries in the vector xk−1 corresponding to these points

are set to 0. Afterwards, the k-th deployment vector is calculated as in Eqn.(3.25). However,

since the deployment vector can only have {0, 1} entries, the entry in the deployment vector

u corresponding to the largest entry ( with index jmax) in the k-th deployment vector (i.e.,

uk) is set to 1.

We will show that this choice of u serves as the best choice for minimizing the objective

function given in Eqn. (4.8). When we evaluate uk using the sweep method, we obtain

a lower bound on the objective function (since, we relax the integer constraint on u). We

denote the corresponding Hamiltonian as Hc
k. Once, we discretize uk, we obtain a solution

that yields a higher objective function value. We denote the Hamiltonian corresponding to

a discretized u as Hd
k . It is desirable to determine a discretization rule that will minimize

∆k = Hd
k −Hc

k. In Theorem 4.3.1 , we show that forcing the maximum value of uk to 1 is

the best strategy for discretization from this standpoint.

Theorem 4.3.1. The difference ∆k = Hd
k −Hd

c is minimized when the largest entry in uk
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is set to 1 with all the remaining entries set to 0.

Proof. Substituting for λk+1 from Eqn.(3.21) in Eqn.(3.16) , we can express Hc
k as

Hc
k =

1

2
xT
kQxk +

1

2
uT
kRuk − uT

kR
TB−1xk − uT

kR
Tuk. (4.10)

We also note that in the sweep method xk = −G−1
k uk, therefore

Hc
k = ucT

k FHu
c
k, (4.11)

where, FH is given as

FH =
1

2
G−1

k
TQG−1

k +
1

2
R+RTR−1G−1

k −RT . (4.12)

We note that the value of the Hamiltonian is minimum when using the continuous con-

trol vector uc
k. Discretizing the control vector to ud

k introduces an error ∆. Denote the

Hamiltonian when using ud
k as Hd

k = udT

k FHu
d
k (i.e., ∆ = Hd

k −Hd
c )

∆ = udT

k FHu
d
k − ucT

k FHu
c
k (4.13)

= (ud
k − uc

k)
TFH(u

d
k + uc

k) (4.14)

Let y = FHu
d
k + uc

k, then ∆ is the inner product of y and (ud
k − uc

k). To make ∆ as small

as possible, one can use the triangle inequality

∆ ≤ ‖(ud
k − uc

k)‖‖y‖, (4.15)

where, ‖y‖ is the norm of vector y. Therefore, in order to minimize ∆ one replaces the

maximum entry of uc
k with 1 and the remaining entries are set to 0.

After updating the deployment vector, the resulting overall logarithmic miss can be

calculated as in Eqn.(4.5). It is also possible to calculate the achieved detection probability

vector as pk
d = 1− exp(mk), where exp(mk) indicates the exponential of each entry of mk.
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Algorithm 2 LQR Based Deployment Algorithm

1: Input: preq
d (detection requirement), K (number of available sensors) and B

2: Outputs: D (deployment vector).
3: for k = K − 1 : −1 : 0 do
4: Evaluate Gk using the sweep method.
5: end for
6: Initialization: k = 0, u = 0
7: while k ≤ K or preq

d � pk
d (i.e., eSE 6= 0) do

8: Find set of grid points with unsatisfied detection requirements {i : pkd(i) ≥ preqd (i)}
9: Set xk−1(i) = 0 (i.e., Error at unsatisfied points only is considered)
10: Calculate the control vector uk = −Gkxk

11: Find index jmax, where jmax = maxindex(uk) ( The function maxindex(uk) returns the
index of the largest entry in vector uk)

12: Update the deployment vector (i.e., D(jmax) = 1)
13: Calculate mk = BD
14: Evaluate achieved detection profile pk

d = 1− exp(mk)
15: Calculate xk

16: Increment number of sensors in the grid k = k + 1
17: end while

4.4 Max Deficiency / Greedy Deployment Algorithm

Due to the computational cost associated with the optimal control solution presented ear-

lier, it is advantageous to develop a low complexity algorithm that is relatively simple to

implement. In this section, we introduce a new algorithm that we call the Max Deficiency

algorithm.

We assume that given K sensors, we will be deploying them sequentially, until all sensors

have been deployed or the detection requirements have been met at all the grid points. In

the k-th iteration, the Max Deficiency algorithm calculates the difference pδ between the

required preq
d and achieved detection probabilities pk−1

d and then deploys the k-th sensor to

the point jmax on the grid where pδ is maximum. The deployment vector u is updated by

placing a 1 instead of 0 at its jmax entry. Employing Eqn.(4.5), we calculate the resulting

logarithmic miss probability mk. The resulting detection probability vector pk
d is calculated

as pk
d = 1− exp(mk). In other words, at each step in the deployment algorithm, we identify

the point on the grid that is most deficient in terms of meeting the detection requirements
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and we place a sensor in that position, calculate its effect and repeat the process. Identifying

the point with the maximum deficiency is similar to identifying the location on the grid that

will have the maximum impact on the cost function J .

The Max Deficiency algorithm is illustrated in Algorithm 3.

Algorithm 3 Max Deficiency Algorithm

1: Inputs: preq
d ,K

2: Outputs: D (i.e., deployment vector)
3: Initialization: p0

d = 0, pδ = preq
d and k = 0

4: while k ≤ K or pδ ≻ 0 do
5: Calculate pδ = preq

d − pk
d

6: Find index jmax, where jmax = maxindex(pδ) (The function maxindex(pδ) returns the
index of the largest entry in vector pδ)

7: Place a sensor at position jmax (D(jmax) = 1)
8: Calculate mk = BD
9: Evaluate achieved detection profile pd,k = 1− exp(mk)
10: Increment number of sensors in the grid k = k + 1
11: end while

4.5 Simulation Results

In this section, the performance of both the optimal control based and the Max Deficiency

algorithm is compared to that of Diff Deploy algorithm [21].

In the first experiment, we compare the number of sensors needed by the three algorithms

to meet the detection requirements as we vary the decay parameter τ . The area of interest

is modeled as a grid of 25 × 25 points. The area consists of three subregions each with its

own detection requirement as is shown in Fig. 4.1. We assume that all sensors employ a

detection radius of R = 5. Table 4.1 presents the number of sensors needed by the three

algorithms as τ varies. The stopping criteria in both the Diff Deploy and Max Deficiency

algorithm is meeting the detection/miss requirements at all grid points. The optimal control

based algorithm employs the same criteria but in terms of the effective SE (i.e., deployment

terminates when the effective SE equals 0). As expected, the optimal control based algorithm

outperforms the Diff Deploy and the Max Deficiency in terms of the number of sensors
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Figure 4.1: Nonuniform detection requirements Nx = Ny = 25

needed to satisfy the detection requirements. This is because, the cost function used in

the design of the optimal control algorithm is the effective SE, while there is no clear cost

function in the heuristic Diff Deploy. On the other hand, the effective cost function in the

Max Deficiency algorithm is the error at a single point only, with no regard to the errors

at other grid points. In the optimal control deployment algorithm, using the matrix B

along with the sweep method implies that information regarding the effect of each sensor

placement on the entire grid is incorporated in the deployment process. This is in contrast to

the Max Deficiency algorithm which makes its deployment decision based solely on the effect

of a sensor at its deployment location. Additionally, as τ increases, the detection sensitivity

of a single sensor decreases. Therefore, the number of sensors needed to satisfy the detection

requirements increases as τ increases. This is confirmed in our results presented in Table 4.1.

In order to further compare the performance of the three algorithms, we present the
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Table 4.1: Number of required sensor vs. τ
τ Diff Deploy Max Deficiency Optimal Control Based

τ = 0.05 22 20 20
τ = 0.1 31 28 27
τ = 0.15 32 31 28
τ = 0.2 38 38 34
τ = 0.25 41 40 39

Figure 4.2: SE convergence: τ = 0.15

evolution of effective SE between achieved and required detection probability profiles as

sensors get deployed in the grid (see Fig. 4.2). We specifically examine the SE for the

points that are yet to be satisfied in terms of the detection/miss requirements, which we

call the effective SE. Fig. 4.2, considers the case of τ = 0.15 listed in Table 4.1. It is
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Table 4.2: Number of required sensors for different detection requirements
Detection Probabilities Diff Deploy Max Deficiency %Savings
p1=0.9,p2=0.8,p3=0.6 99 72 27%
p1=0.9,p2=0.7,p3=0.5 83 66 20%
p1=0.8,p2=0.9,p3=0.8 133 121 9%
p1=0.9,p2=0.5,p3=0.7 107 92 14%

obvious that the effective SE of the optimal control based algorithm converges faster than

that of the Diff Deploy and the Max Deficiency. The results indicate that we can satisfy the

detection/miss requirements with fewer number of sensors if we employ the proposed optimal

control based algorithm. Fig. 4.3 shows the achieved detection probability profile resulting

from deploying sensors based on the three algorithms. From Fig. 4.3(c), it is evident that

the proposed approach does not overbudget for satisfying the detection requirements in each

subregion. For example, in the outer region of the grid where the detection requirement is

set to 0.7, we note that achieved detection probability in that subregion is around 0.7. This

is in contrast to the Diff Deploy, where the minimum achieved detection probability is close

to 0.86.

In the second experiment, the performance of the Diff Deploy is compared to that of

the Max Deficiency algorithm. The grid size is 50× 50. The detection requirements profile

is shown in Fig. 4.4. The numerical values of p1, p2 and p3 along with the number of

sensors needed to satisfy the detection requirements are listed in Table 4.2. As evident from

Table 4.2, the Max Deficiency algorithm always uses a smaller number of sensors than the

Diff Deploy algorithm. The reduction in the number of sensors depends on the required

detection profile, and in our simulations, it ranges from about 10% to 30%.

In the third experiment, the performance of the Max Deficiency algorithm versus that

of the Diff Deploy is examined in the presence of obstacles. The obstacle positions as well

as the required detection probabilities are shown in Fig 4.5. When an obstacle is present

between a sensor and a point on the grid that lies within the detection radius of the sensor,

the sensor would not be capable of detecting a target at that point (i.e., pmiss = 1). The
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Figure 4.3: Achieved detection probability profile
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Figure 4.4: Nonuniform detection requirements Nx = Ny = 50

effect of an obstacle being present between a sensor placed at point (i, j) and a point on the

grid (x, y) is captured by modifying the entries of the B. The modification is performed by

setting to zero the value of b(x− i, y− j), since b(x− i, y− j) corresponds to the logarithmic

miss probability (i.e., ln(1) = 0). Simulation results show that Diff Deploy requires 97

sensors to satisfy the requirements whereas the Max Defficiency requires 78 sensors only.

This corresponds to a savings of approximately 20% in the number of sensors used by the

Max Deficiency in comparison to Diff Deploy.

4.6 Summary

In this chapter, we studied the sensor deployment problem in a non-collaborative detection

system. Specifically, given a finite number of sensors, we attempt to determine the locations

that the sensors need to be deployed at in order to satisfy the detection requirements in
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Figure 4.5: Detection probability requirements with obstacles

a squared error sense. We expressed the deployment problem as a dynamical system and

formulated the sensor deployment problem as an optimal control problem (linear quadratic

regulator). However, the optimal control based approach is computationally demanding

due to the use of the sweep method. Therefore, we introduced a low complexity alternative

called the Max Deficiency algorithm that offers comparable performance relative to the

optimal control based approach. Using simulation results, we have shown that the proposed

algorithms outperform existing methods by using 10% to 30% fewer number of sensors to

satisfy the detection requirements.

In the next chapter, we study the deployment problem in a network employing a central-

ized fusion rule in which false alarm requirements are incorporated in addition to detection

requirements.
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Chapter 5

Sensor Deployment in Value Fusion
Detection Networks – Energy
Measurements

In this chapter, we study sensor deployment in a centralized detection system. In this

network, noisy energy measurements provided by the sensors are fused to make a global

detection decision. In contrast to the deployment problem in the previous chapter, here

we consider both false alarm and detection requirements. After approximating the effect

of deploying a single sensor on the overall detection performance of the network, we model

sensor deployment as an LQR problem. Based on this formulation, we propose two sensor

deployment algorithms. We also examine the problem of dynamically selecting the optimal

maximum collaboration radius which determines which sensors collaborate to perform de-

tection at a certain grid point. We then study and compare the performance of the proposed

algorithms in comparison to the D&C sensor deployment algorithm [22].

In section 5.1, we discuss the detection model when using the value fusion rule. In

section 5.2, we propose a linear approximation of the overall detection performance in terms

of the sensor positions. This enables us to model deployment as an LQR problem. In

section 5.3, we discuss the dynamical update of the collaboration radius as sensors are

sequentially deployed. In sections 5.4 and 5.5, we introduce two novel sensor deployment

algorithms. Simulation results are presented in section 5.6, where the performance of the
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proposed algorithms is compared against that of the D&C deployment algorithm. Finally,

a summary of our contribution in this chapter is provided in section 5.7.

5.1 System Model

The area of interest is modeled again as grid of Nx × Ny points. Although the target can

be any where in the area of interest, we focus our attention at detecting the target at grid

points. By increasing the number of grid points, the resolution of target detection can be

improved. At each point on the grid, certain false alarm and detection requirements are

specified. Therefore, it is possible to arrange the false alarm and detection requirements

over the whole grid in two NxNy × 1 vectors, denoted as preq
f and preq

d , respectively. In our

model, the sensors are passive devices. They collect energy measurements emitted in the

surrounding environment. For natural phenomena (e.g. seismic activity, electromagnetic

radiation, etc,), the energy level of the signal emitted by the source and observed at some

distance away from it, is inversely proportional to the distance. Specifically, the energy level

at a distance (d) away from an energy source can be modeled as [55], [56]

S(d) =

{

S0 if d ≤ d0
S0

(d/d0)κ
if d > d0.

(5.1)

where; S0 is the energy level at the source and κ is a propagation constant that depends

on the environment. Typical κ values are between 2 and 5. We note however, that our

proposed deployment framework is general and does not depend on any particular choice of

the signal energy function.

Furthermore, we assume that the sensor measurements are corrupted by additive Gaus-

sian noise. The source’s energy level decay combined with the presence of noise implies that

at some distance Rc (referred to as the collaboration radius) away from the source, a sensor’s

measurement becomes unreliable for detection purposes. Therefore, in making a detection

decision at a point on the grid, we disregard a sensor’s measurement if it is more than Rc

units away from the point of interest. The optimal choice of the collaboration radius Rc is

discussed later.
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Therefore, for the k-th sensor, if a source (i.e., target or phenomena) is present at a point

that is dk units away, the energy measurement Uk at the k-th sensor is given as

Uk = S(dk) +N2
k (5.2)

where, N2
k is the noise energy. We assume that the measurement noise at the k-th sensor is

a zero-mean Gaussian noise with a variance of σ2
k (i.e. Nk ∼ N (0, σ2

k)). The sensing model

in Eqn.(5.2) has been previously presented in [22], [55], [56] and empirically verified in [57].

Note that, we assume that sensors have different measurement noise variances. Obviously,

when there is no target or active phenomena, the energy recorded by the k-th sensor is

Uk = N2
k . (5.3)

In Appendix A, we extend our study of the deployment problem to a network employing

value fusion when the sensors measurement is the signal’s amplitude rather then its energy.

In data fusion (i.e., centralized detection) based detection systems, sensors send their mea-

surements to a fusion center (FC). The FC fuses (combines) the measurements according to

a predetermined fusion rule in order to decide on one of two hypotheses, namely: presence

of a target/phenomena (hypothesis H1) or absence of a target/phenomena (hypothesis H0).

A simple and analytically tractable fusion rule is value fusion. In value fusion, the FC com-

putes the weighted average (denoted by T ) of the measurements provided by the sensors

and then compares it to a detection threshold η. The non-randomized decision rule is given

as

δ(T ) =

{

H1 if T ≥ η
H0 if T < η,

(5.4)

Therefore, the false alarm and detection probabilities for this value fusion based detection

system correspond to (Pf and Pd, respectively)

Pf = Pr(T ≥ η | H0 is true) (5.5)

Pd = Pr(T ≥ η | H1 is true). (5.6)
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In our model, we assume that either each sensor has a knowledge about its own variance

or that the FC has knowledge about all sensors variances. Therefore, for the j-th point on

the grid, the FC computes the average Tj , given as

Tj =
1

k(j)

k(j)
∑

i=1

Uk

σ2
k

(5.7)

where k(j) is the number of sensors that are less than Rc units away from the j-th point.

The FC, then compares the average Tj to the detection threshold η(j, k(j)). Therefore, at

the j-th point the system’s overall false alarm rate pf(j, k(j)) is given as

pf(j, k(j)) = Pr[
1

k(j)

k(j)
∑

i=1

Uk

σ2
k

≥ η(j, k(j))] (5.8)

= 1− Pr[

k(j)
∑

i=1

N2
k

σ2
k

≤ k(j)η(j, k(j))] (5.9)

= 1−G(k(j)η(j, k(j)), k(j)). (5.10)

Here, G(x, n) denotes the cumulative distribution function (CDF) of the Chi-Square dis-

tribution χ2 with n degrees of freedom at point x. The system’s overall detection probability

at the j-th point (pd(j, k(j))) corresponds to,

pd(j, k(j)) = Pr[
1

k(j)

k(j)
∑

k=1

Uk

σ2
k

≥ η(j, k(j))] (5.11)

= Pr[
1

k(j)

k(j)
∑

k=1

S(dk) +N2
k

σ2
k

≥ η(j, k(j))] (5.12)

= Pr[

k(j)
∑

k=1

(
Nk

σk
)2 ≥ k(j)η(j, k(j))−

k(j)
∑

k=1

S(dk)

σ2
k

] (5.13)

= 1− Pr[

k(j)
∑

k=1

(
Nk

σk
)2 ≤ k(j)η(j, k(j))−

k(j)
∑

k=1

S(dk)

σ2
k

] (5.14)

= 1−G(k(j)η(j, k(j))−
k(j)
∑

k=1

S(dk)

σ2
k

, k(j)) (5.15)
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The FC calculates the decision statistics associated with each point on the grid. The

decision threshold is calculated using knowledge of the number of sensors that are within the

detection radius, the noise variance and the false alarm requirement associated with every

point. In practice, the FC receives measurements from all sensors in the grid and performs

a series of sensor measurement averages corresponding to each point on the grid.

The deployment problem that we examine in this work can now be stated as follows:

Given preq
f and preq

d and a fixed number of sensors K, how can we deploy these sensors

in a value fusion based detection system, such that the effective SE between achieved and

required detection probabilities is minimized while satisfying false alarm requirements? If

we denote the achieved false alarm and detection probability vectors after K sensor have

been deployed as pK
f and pK

d , then we can mathematically state our problem as

argmin
D

∑

j:pK
d
(j)<preq

d
(j)

(pK
d (j)− preq

d (j))2

subject to

{

pK
f = preq

f

1TD = K
(5.16)

where, D is an NxNy × 1 deployment vector. Its entries indicate the number of sensors at

each point on the grid, and take values of either 0 or 1. 1T indicates the transpose of an

NxNy × 1, with all entries set to 1.

5.2 Optimal Control Formulation

The deployment problem stated earlier can be studied in the context of optimal control

theory. The effective SE between achieved and required detection probabilities can be

thought of as the cost function which is to be minimized in an optimal control problem.

Furthermore, since the detection performance of the DSN detection system is governed by

the sensor positions, the deployment vector corresponds to the control vector in an optimal

control problem. One of the most studied and well behaved problems in optimal control

65



literature is the linear quadratic regulator (LQR) problem. In the discrete version of the

LQR problem, a system’s state evolves linearly with respect to the control vector, while the

cost function corresponds to the norm of the system’s state. In what follows, we will show

that it is possible to approximate the evolution of a logarithmic functional of the achieved

detection probability as a linear function of the sensors’ positions (i.e., control vector). We

then sequentially solve for the optimal control vector by setting the gradient of the cost

function to zero.

Due to the nonlinear nature of the CDF G(x, n), it is difficult to quantitatively assess the

effect of placing a sensor in the grid on the overall detection and false alarm probabilities.

Another difficulty is the change in the degrees of freedom n as an additional sensor is

introduced to the grid. As n varies, the relative contribution of any previously deployed

sensors to the detection probability varies in a nonlinear fashion.

To overcome these difficulties, we approximate the expression of detection probability

in Eqn.(5.15). The approximation provides a better understanding of the effect of placing

an additional sensor to the grid. Subsequently, we use the approximation in modeling the

deployment problem as an optimal control problem (the LQR model), the solution of which

can be analytically determined.

Note that it is possible to approximate the CDF of the Chi-Square distribution using

the standard Gaussian CDF denoted as Φ. The approximation is given as [58]

G(x, n) ≈ Φ(
x− n√

2n
). (5.17)

Therefore, it is possible to approximate the false alarm rate at the j-th point covered by

k(j) sensors (i.e., pf(j, k(j))) as

pf(j, k(j)) ≈ 1− Φ(
k(j)η(j, k(j))− k(j)

√

2k(j)
) (5.18)

= Q(
k(j)η(j, k(j))− k(j)

√

2k(j)
) (5.19)

where k(j) and η(j, k(j)) are as defined earlier, and Q(x) is the Complementary CDF defined

as Q(x) = 1√
2π

∫∞
x

e
−y2

2 dy. Similarly, we approximate the detection probability pd(j, k(j))
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in terms of the Q function as follows

pd(j, k(j)) ≈ 1− Φ(
k(j)η(j, k(j))−∑k(j)

i=1
S(dk)

σ2
k

− k(j)
√

2k(j)
) (5.20)

= Q(
k(j)(η(j, k(j))− 1)−∑k(j)

k=1
S(dk)

σ2
k

√

2k(j)
) (5.21)

Furthermore, the Q function can be approximated as [59]

Q(x) ≈ 1− 1

1 + e−
√
2x
. (5.22)

which enables us to approximate pd(j, k(j)) as

pd(j, k(j)) ≈ 1− 1

1 + e
−
√
2(

(η(j,k(j))−1)nj−
∑k(j)

k=1
S(dk)

σ2
k√

2k(j)
)

(5.23)

we note that we can use the quantity ln( 1
1−pd(j,k(j))

− 1), which has a one-to-one relationship

with pd(j, k(j)), and rearranging the terms in Eqn.(5.23), we get that

ln(
1

1− pd(j, k(j))
− 1) =

1
√

k(j)

k(j)
∑

k=1

S(dk)

σ2
k

− (η(j, k(j))− 1)
√

k(j) (5.24)

In order to model the effect that the addition of a sensor has on the detection probability

pd(j, nj), we initially assume that nj = k. We also assume that the detection threshold ηj,nj

has been set so as the false alarm requirement preqf (j) has been met. Therefore, we can

express ln( 1
1−pd(j,k)

− 1) as

ln(
1

1− pd(j, k(j))
− 1) =

1
√

k(j)

k(j)
∑

k=1

S(dk(j))

σ2
k

− (η(j, k(j))− 1)
√

k(j) (5.25)

Suppose that an additional sensor is placed at a distance dk(j)+1 from the j-th grid point,

i.e., nj = k + 1. Furthermore, suppose that the detection threshold has been modified

accordingly, then we can express ln( 1
1−pd(j,k(j)+1)

− 1) after the sensor addition as

ln(
1

1− pd(j, k(j) + 1)
− 1) =

1
√

k(j) + 1

k(j)
∑

k=1

S(dk)

σ2
k

+
1

√

k(j) + 1

S(dk(j)+1)

σ2
k(j)

− (η(j, k(j) + 1)− 1)
√

k(j) + 1 (5.26)
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using Eqn.(5.25), we can express
∑k(j)

k=1
S(dk)

σ2
k

in terms of ln( 1
1−pd(j,k(j))

− 1) as

k(j)
∑

k=1

S(dk)

σ2
k(j)

=
√

k(j) ln(
1

1− pd(j, k(j))
− 1) + k(j)(η(j, k(j))− 1) (5.27)

substituting Eqn.(5.27) in Eqn.(5.26), we can express ln( 1
1−pd(j,k(j)+1)

−1) in terms of ln( 1
1−pd(j,k(j))

−
1) as

ln(
1

1− pd(j, k(j) + 1)
− 1) = (1− αk(j)+1) ln(

1

1− pd(j, k(j))
− 1) +

1
√

k(j) + 1

S(dk(j)+1)

σ2
k(j)+1

+
k(j)

√

k(j) + 1
(η(j, k(j))− 1)−

√

k(j) + 1(η(j, k(j))− 1)(5.28)

where 1− αk(j)+1 =
√

k(j)
k(j)+1

.

Since we are interested in the difference between achieved and required detection prob-

abilities(or equivalently their functional), we define the quantity x(j, k + 1) as

x(j, k(j) + 1) = ln(
1

1− pd(j, k(j) + 1)
− 1)− ln(

1

1− preqd (j)
− 1) (5.29)

where, preqd (j) is the required detection probability at the j-th point on the grid. The

quantity x(j, k + 1) is in effect a measure of the difference between achieved and required

detection probabilities. This is true since the mapping of y to ln( 1
1−y

− 1) is a one to one

mapping. Subtracting ln( 1
1−preq

d
(j)

− 1) from both sides of Eqn.(5.28), we can express the

evolution of the difference between achieved and required detection probabilities with the

addition of a sensor as

x(j, k(j) + 1) = x(j, k(j))− αk(j)+1 ln(
1

1− pd(j, k(j))
− 1) +

1
√

k(j) + 1

S(dk(j)+1)

σ2
k(j)+1

+
k(j)

√

k(j) + 1
(η(j, k(j))− 1)−

√

k(j) + 1(η(j, k(j) + 1)− 1) (5.30)

Furthermore, noting that ln( 1
1−pd(j,k(j))

− 1) = x(j, k(j)) + ln( 1
1−preq

d
(j)

− 1), Eqn.(5.30) can

be expressed as

x(j, k(j) + 1) = (1− αk(j)+1)x(j, k(j))− αk(j)+1 ln(
1

1− preqd (j)
− 1)

+
1

√

k(j) + 1

S(dk(j)+1)

σ2
k(j)+1

+
k(j)

√

k(j) + 1
(η(j, k(j))− 1)−

√

k(j) + 1(η(j, k(j) + 1)− 1)(5.31)
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The last four terms in Eqn.(5.31), represent the approximate effect the addition of a

sensor that is dk(j)+1 units away from the j-th point on the grid will have on the difference

between achieved and required detection probabilities. Let us denote, the effect of a sensor

placed at the i-th point on the grid on the difference between achieved and required detection

probabilities at the j-th point on the grid as

B(j, i) =
1

√

k(j) + 1

S(d(j, i))

σ2
k(j)+1

+
k(j)

√

k(j) + 1
(η(j, k(j))− 1)

−
√

k(j) + 1(η(j, k(j) + 1)− 1)− αk(j)+1 ln(
1

1− preqd (j)
− 1) (5.32)

where, d(i, j) is the distance between the two points. Furthermore, using the deployment

vector uk, which was introduced earlier, it is possible to express the evolution of the system’s

state (i.e., x(j, k + 1) in Eqn.(5.31)) at all points on the grid in vector form as

xk+1 = Akxk +Bkuk, m = 0, 1, . . . , k − 1 (5.33)

where xk is an NxNy × 1 vector defined as {x(j, k(j)), j = 1, 2, . . . , NxNy}, where k(j) is

the number of sensors whose measurements are used in the fusion process (i.e., sensors

that are within the collaboration radius associated with the j-th point). The subscript k

denotes the number of sensors that are deployed in the grid, and K is the total number of

available sensors. The matrix Ak is a square diagonal matrix of dimension NxNy, with its

j-th diagonal entry given as Ak(j, j) = 1 − αk(j)+1. The matrix Bk is a square matrix of

dimension NxNy, whose entry in the j-th row and i-th column is equal to B(j, i) defined in

Eqn.(5.32). Note that the deployment vector in the linear system described in Eqn.(5.33)

can be viewed as a control vector.

As stated earlier, our goal in this paper is to deploy a fixed number of sensors such

that false alarm requirements are met while the effective SE between the achieved and

required detection probabilities is minimized. Meeting false alarm requirements can be

easily achieved by choosing a suitable detection threshold for every point after each sensor

deployment. As for the effective SE between achieved and required detection probabilities, it
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can be equivalently described as the weighted quadratic norm of the state (xm) of the system

described in Eqn.(5.33). Assuming that the weighted quadratic norm of the system’s state

is chosen as the cost function and the deployment vector corresponds to a control vector, we

are motivated to solve the deployment problem as an optimal control problem. Here, the

objective is to determine the control vector that would minimize the cost function. That is,

the deployment problem in Eqn.(5.16) can be restated as

argmin
uk

J =
1

2
xT
KQfxK +

1

2

K−1
∑

k=0

(xT
kQkxk + uT

kRkuk)

subject to











pK
f = preq

f

xk+1 = Akxk +Bkuk, k = 0, 1, . . . , K − 1

1TD = K,

(5.34)

where, Qf ,Qk and Rk for {k = 0, 1, . . . , K − 1} are symmetric positive definite weighting

matrices. The squared error cost function penalizes both positive and negative deviations

from the required detection probability profile. To avoid incurring a penalty for satisfy-

ing/exceeding detection requirements, the error terms corresponding to a point where the

detection requirement has been met/exceeded is set to zero in J . The optimal control

problem corresponding to our system is the linear quadratic regulator (LQR) problem.

5.3 Choice of Collaboration Radius

The collaboration radius Rc for any given point on the grid determines which sensor mea-

surements are combined to make a detection decision. A naive choice of the collaboration

radius will result in inefficient use of sensors. For example, having a small collaboration

radius implies that for every point only nearby sensor measurements are used in detection

resulting in the deployment of a large number of sensors in the grid. On the other hand,

choosing a large collaboration radius implies that the measurements of sensors that are far

away from the point of interest are used in the decision process. However, due to decaying

signal energy, the measurements of sensors that are far away are dominated by noise energy,

which reduces their value in the decision process. When the number of sensors used in
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the decision process at the j-th point increases, the detection threshold η(j, k(j)) decreases,

while k(j)η(j, k(j)) increases in magnitude. Moreover, Eqn.(5.15) (which is repeated here)

pd(j, k(j)) = 1−G(k(j)η(j, k(j))−
k(j)
∑

k=1

S(dk)

σ2
k

, k(j)) (5.35)

indicates that the achieved detection probability increases as the argument k(j)η(j, k(j))−
∑k(j)

k=1
S(dk)

σ2
k

decreases in magnitude. Therefore, in order to either maintain or improve the

detection probability, any additional sensors need to be close enough to the j-th point, so

that the increase in k(j)η(j, k(j)) is offset by a corresponding increase in
∑k(j)

k=1
S(dk)

σ2
k

. Hence

the collaboration radius should be wisely chosen, so that the number of sensors used is

minimal while the detection requirements are satisfied.

The selection of optimal collaboration radius was studied in [22]. The collaboration

radius was calculated with the assumption of sensors being deployed simultaneously (i.e.,

in parallel), and that false alarm and detection requirements were met after deployment.

This enabled the calculation of the collaboration radius in terms of the required false alarm

and detection probabilities. However, the resulting collaboration radius in [22] essentially

transforms the deployment problem into a coverage problem.

In what follows, we discuss the calculation of the collaboration radius taking into ac-

count the sequential nature of our sensor deployment scheme. In addition to false alarm

and detection probability requirement, we incorporate achieved detection probability in the

calculation of the collaboration radius. Since our deployment scheme is sequential, the col-

laboration radius for any given point, is sequentially updated (i.e., dynamically) as sensors

are added to the grid. Based on the achieved and required detection probability, false alarm

requirement and the number of sensors employed in the decision process, we calculate an up-

per bound on the collaboration radius. The deployment of a sensor within this upper bound

will always improve the achieved detection probability, while placing the sensor outside this

upper bound will degrade the achieved detection probability.

Suppose that, for the j-th point on the grid, k(j) sensors are used in the decision process.

Furthermore, suppose that the achieved detection probability pd(j, k(j)) is less than the
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required detection probability preqd (j), therefore the difference ε(j, k(j)) between the required

and achieved detection probabilities can be written as

ε(j, k(j)) = preqd (j)− pd(j, k(j)) (5.36)

= preqd (j)− 1−G(kη(j, k(j))−
k(j)
∑

k=1

S(dk)

σ2
k

, k(j)). (5.37)

Rearranging the terms in Eqn.(5.37), we can express the weighted sum of the signal energies
∑k(j)

k=1
S(dk)

σ2
k

as

k(j)
∑

k=1

S(dk)

σ2
k

= k(j)η(j, k(j))−G−1(1 + ε(j, k(j))− preqd (j), k(j)) (5.38)

where, G−1(x, n) denotes the inverse of the CDF of the Chi-Square distribution of degree

n and at point x. Now if an additional sensor is added within the collaboration radius,

then the change δ(j, k(j) + 1) in the difference between achieved and required detection

probabilities using k and k(j) + 1 sensors can be written as

δ(j, k(j) + 1) = ε(j, k(j))− ε(j, k(j) + 1). (5.39)

A positive value of δ(j, k(j) + 1) implies that the difference between achieved and required

detection probabilities has decreased by using the measurement of the additional sensor,

whereas a negative value indicates that the use of the additional sensor measurement has

actually degraded the detection probability.

Using Eqn.(5.38), one can express the weighted signal energy
S(dk(j)+1)

σ2
k(j)+1

of the additional

sensor in terms of the change in the detection probability (i.e., δ(j, k(j) + 1)) as

S(dk(j)+1)

σ2
k(j)+1

=

k(j)+1
∑

k=1

S(dk)

σ2
k

−
k(j)
∑

k=1

S(dk)

σ2
k

(5.40)

= G−1(1 + ε(j, k(j))− preqd (j), k(j))+ (k(j) + 1)η(j, k(j) + 1)− k(j)η(j, k(j))

− G−1(1 + ε(j, k(j))− δ(j, k(j) + 1)− preqd (j), k(j) + 1) (5.41)

= g(ε(j, k(j)), δ(j, k(j) + 1), preqd (j)). (5.42)
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Therefore, in order to decrease the difference between achieved and required detection prob-

abilities at the j-th point, the signal energy at the additional sensor should be such that

S(dk(j)+1) ≥ σ2
k(j)+1g(ε(j, k(j)), δ(j, k(j) + 1) = 0, preqd (j)). (5.43)

Since the signal energy function in Eqn.(5.1) is a decaying function of distance, we can use

Eqn.(5.43) to calculate the new maximum allowed distance (i.e., new collaboration radius)

between the j-th point and the additional (k(j) + 1)-th sensor as

Rc(j, k(j) + 1) ≤ S−1(σ2
k(j)+1g(ε(j, k(j)), δ(j, k(j) + 1) = 0, preqd (j))), (5.44)

where, S−1 denotes the inverse of the signal energy function. The right hand side of

Ineq.(5.44) gives the maximum collaboration radius necessary to improve the detection

performance at the j-th grid point.

5.4 Deployment Algorithm

In this section, we introduce the (LQR Deploy) algorithm which is based on the LQR for-

mulation of the deployment problem and its solution that can be evaluated using the differ-

entiation method. Algorithm 4, illustrates the steps of the LQR Deploy sensor deployment

algorithm.

Given the false alarm/detection requirements (preq
f and preq

d , respectively) and the num-

ber of available sensor K, it is required to find the deployment vector D and the achieved

detection probabilities at all points on the grid pK
d . Each loop of the algorithm is executed

if the number of sensors on the grid (i.e., k) is less than the number of available sensors K,

or if the detection requirements are not met at each point on the grid (i.e., preq
d � pK

d ). For

the j-th grid point {j = 1, . . . , NxNy}, the B(j, i), i = 1, . . . , NxNy entry will be evaluated

as in Eqn.(5.32). At each deployment step, we can construct diagonal matrices Rk and

Qk (introduced in Eqn.(8.22)) in the following manner; The diagonal entries in Rk (Qk)

corresponding to the set of points where detection requirements are met can be set to large
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values (small values), whereas the Rk (Qk) entries corresponding to the set of points where

detection requirements are not met can be set to smaller values (larger values). In essence,

this choice reflects our desired deployment preference which is to deploy sensors in regions

of the grid that have unsatisfied detection requirements or where sensors are not deployed.

We can now solve for the optimal control vector uk as in Eqn.(8.23). The binary deploy-

ment vector D is then constructed by placing a 1 at the î index corresponding the index of

the maximum value of uk. After deploying a sensor at the grid point corresponding to the î

index, one can use the maximum collaboration radius for every point to adjust the detection

thresholds (η(j, k(j)), j = 1, . . . , NxNy) such that false alarm requirements are met. This

is followed by evaluating the detection probabilities at each point as in Eqn.(5.15). The

final step in the algorithm is to update k to reflect the fact that an additional sensor has

been deployed to the grid. The algorithm terminates when all available sensors have been

deployed or detection requirements have been satisfied over all points on the grid.

Algorithm 4 Opt Deploy Algorithm

1: Input: preq
d , preq

f , K.

2: Outputs: pK
d , D.

3: Initialization: k = 1, D = zeros(N2,1)
4: while k ≤ K or preq

d � pk
d do

5: uo
k = 01×NxNy

{% (1×NxNy) zero vector}
6: for j = 1 : NxNy do
7: for j = 1 : NxNy do
8: Calculate Bk(j, i) as in Eqn.(5.32).
9: end for
10: end for
11: Solve for uk as in Eqn.(8.23).
12: Find index î, where uk(̂i) = max(uk)
13: Place a sensor at the grid point corresponding to the index î (i.e., D(̂i) = 1).
14: for j = 1 : NxNy do
15: Calculate the maximum collaboration radius Rmax(j, k(j) + 1) in Ineq.(5.44).
16: Update the detection threshold
17: Calculate the achieved detection probability (i.e., pk

d).
18: end for
19: Increment m (i.e., k = k + 1).
20: end while

74



Using Eqn.(8.23) incurs a computational cost of O(K(3N3 + 4N2)) where N = NxNy.

In the following section, we introduce a low complexity sub-optimal sensor deployment

algorithm that only uses knowledge of the matrix Bk in its implementation.

5.5 Sub-optimal Algorithm

In this section, we propose a low complexity deployment algorithm which we call the

Sub Opt Deploy algorithm. To motivate this algorithm, note that it is possible to ap-

proximate the system described in Eqn.(5.33) as

xk+1 ≈ xk +Bkuk. (5.45)

This is especially true when k becomes large. Ideally, it is desirable to deploy sensors

such that the resulting xk+1 is equal to the zero vector (i.e., xk = 0 implies the detection

requirements have been satisfied). Substituting xk+1 = 0 in Eqn.(A.19) and solving for uk,

we get the following ;

uk = −B−1
k xk. (5.46)

The Sub Opt Deploy algorithm is similar to the Opt Deploy algorithm presented earlier,

with the exception that the control vector is calculated as in Eqn.(5.46). The evaluation

of uk in Eqn.(5.46) depends on the invertibility of the Bk matrix. In our case, the energy

model in Eqn.(5.1) follows a power law decay which in turn ensures that the columns of

Bk are linearly independent. That is, Bk in our case is full rank and invertible. We note

that the computational complexity associated with evaluating uk in the Sub Opt Deploy

algorithm is O(K(N3 + N2)), which is lower than that in the Opt Deploy algorithm. In

the next section, we demonstrate that the suboptimal method is comparable to the optimal

approach.
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5.6 Simulation Results

In this section, the performance of the Opt Deploy and Sub Opt Deploy deployment algo-

rithms is compared to that of different algorithms. In the first experiment, we compare

the performance of the Opt Deploy and Sub Opt Deploy deployment algorithms to that of

the greedy and D&C algorithms introduced in [22]. The greedy deployment algorithm is

a simple algorithm, in which a sensor is placed at the point on the grid with the largest

difference between required and achieved detection probabilities. False alarm and detection

requirements are uniform over the grid, with Pf = 0.01 and Pd = 0.9. The initial energy

S0 = 400 Joules, and the collaboration radius is set to Rc = 7.76 meters as in [22]. In

this experiment, the number of points at which false alarm and detection requirements is

required to be met is varied within a 30×30 grid of points. Specifically, we consider meeting

the requirements at 15×15 = 225, 10×10 = 100, 5×5 = 25 and 4×4 = 16 regularly spaced

points on the grid. Table 5.1, shows the minimum number of sensors needed to meet the re-

quirements when using the four algorithms: greedy, D&C, Opt Deploy and Sub Opt Deploy

algorithms. From Table 5.1, it is evident that the use of the Opt Deploy algorithm saves

between 9% to 30% of the minimum number of sensors used by the D&C algorithm to sat-

isfy the same detection/false alarm requirements. In the greedy deployment algorithm, the

decision of where to place the sensor is based on the effect the sensor placement will have

on the detection probability at just one point. The effect of the sensor on the points that

lie in the vicinity of the point it would be placed at is not incorporated. This is in contrast

to the Opt Deploy and Sub Opt Deploy deployment algorithms, where the effect of sensor

deployment on all points within its vicinity is incorporated through the B matrix.

In the second experiment, we compare the effect of using a dynamic collaboration radius

versus that of a fixed collaboration radius on: (1) the number of sensors needed to satisfy

requirements, and (2) the effective SE. The area of interest is a 25× 25 grid of points, and

the energy function parameters are: S0 = 100, d0 = 1 and κ = 2. The measurement noise

variance is assumed to be uniform over all sensors and is set to σ2 = 1. False alarm and
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Table 5.1: Minimum number of sensors required by: Greedy, D&C, Sub Opt Deploy and
Opt Deploy algorithms

Regularly spaced points Greedy D&C Sub Opt Deploy Opt Deploy

225 15 13 9 9

100 16 12 11 9

25 13 11 10 10

16 16 13 15 11

detection requirements are non-uniform as in Fig. 5.1. Table 5.2 lists the number of sensors,

needed by the Opt Deploy and Sub Opt Deploy algorithms, to satisfy different false alarm

and detection requirements as we use a fixed and a dynamic collaboration radius. Results for

the dynamic collaboration radius in Table 5.2, indicate that both the Sub Opt Deploy and

Opt Deploy algorithms use a comparable number of sensors to satisfy false alarm/detcetion

requirements. In addition, results illustrate that the number of sensors required by the

proposed algorithms when using a dynamic collaboration radius can be as much as 45% less

than that required when using a fixed collaboration radius. Furthermore, Fig. 5.2 shows

the effective SE (for case 1 in Table 5.2) as a function of the number of sensors deployed

in the grid. We note that for both the Opt Deploy and Sub Opt Deploy, the effective

SE has faster convergence rates when using a dynamic collaboration radius than the rates

when using a fixed collaboration radius. The use of a dynamic collaboration radius gives

more flexibility for sensors to collaborate. The calculation of the fixed collaboration radius

assumes that requirements will be satisfied with the deployment of a single sensor within the

collaboration radius. However, the optimal collaboration radius depends on the achieved

detection probability which changes with each sensor deployment. Therefore, dynamically

updating the collaboration radius provides significant savings in the number of sensors.
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Figure 5.1: Nonuniform detection requirements Nx = Ny = 25

Table 5.2: Comparison of number of sensors-Fixed vs. Dynamic Rc

Requirements Sub Opt Deploy
(Fixed Radius)

Sub Opt Deploy
(Dynamic Ra-
dius)

Opt Deploy
(Fixed
Radius)

Opt Deploy
(Dynamic
Radius)

pd1 = 0.9, pd2 = 0.7, pf1 = 0.01, pf2 = 0.01 34 18 30 18

pd1 = 0.7, pd2 = 0.9, pf1 = 0.01, pf2 = 0.01 35 19 30 19

pd1 = 0.7, pd2 = 0.9, pf1 = 0.001, pf2 = 0.01 31 22 28 22

pd1 = 0.8, pd2 = 0.5, pf1 = 0.005, pf2 = 0.005 34 21 26 19

5.7 Summary

In this chapter, we studied the sensor deployment problem in a data fusion based DSN de-

tection system. We proposed two novel sensor deployment algorithms; the (Opt Depoy) and

the (Sub Opt Deploy) algorithms. In the (Opt Depoy) algorithm, the deployment problem

is modeled as a linear quadratic regulator (LQR) problem. This is achieved by linearizing

the effect of sensor deployment on the achieved detection probability and using the effective
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Figure 5.2: SE convergence

squared error (SE) between achieved and required detection probabilities as the cost func-

tion in the LQR formulation. In addition, we proposed the (Sub Opt Deploy) in which the

sensor positions are calculated using a single matrix inversion operation. In both deployment

algorithms, we evaluated the impact of adapting the collaboration radius on the efficiency

of sensor usage. Simulation results illustrated that in comparison to the (D&C) algorithm

our proposed algorithm used up to 30% fewer number of sensors to satisfy identical false

alarm and detection requirements, when using a fixed collaboration radius. Additionally, we

illustrated that it is possible to save up to 45% in the number of sensors needed to satisfy

the false alarm/detection requirements by using a dynamic collaboration radius instead of

a fixed one.
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Chapter 6

Sensor Deployment in Decentralized
Detection Networks – Majority
Fusion

In this chapter, we study sensor deployment in a network employing the majority decision

fusion rule. We first approximate the detection performance of the network using a result

from statistical theory. Then we approximate the effect of the deployment of a single sensor

as a function of the sensor position in the grid. This enables us to model the deployment

process as an LQR problem. Based on this formulation, we then propose a sequential sensor

deployment algorithm.

In section 6.1, the system model and the deployment problem are discussed. In sec-

tion 6.2, we present our LQR formulation of the deployment problem. Our proposed LQR-

based deployment algorithm is presented in section 6.3. Finally, in section 6.4, we compare

the performance of the proposed algorithm versus that of a greedy deployment algorithm.

6.1 System Model

The area of interest is modeled as a grid G ofNx×Ny points. The required false alarm/detection

probabilities at all points in the grid are arranged in two NxNy×1 vectors denoted by preq
f

/

preq
d

, respectively. We assume that sensors have an exponential sensing model [18]. Specifi-

cally, if the distance between a sensor and a point of interest is d meters, then the probability
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of the sensor detecting a target located at that point pdetect is given as

pdetect =

{

e−τd if d ≤ R
0 if d > R

(6.1)

where, τ is a decay rate that depends on sensor design and R is the detection radius. We

assume that all sensors to be deployed are identical and have a common τ and R. We further

assume that all sensors have a common false alarm rate of psf .

In a general decision fusion based system, sensors make local decisions regarding the

existence (hypothesis H1) or absence (hypothesis H0) of a phenomena/target. The local

decision ui made by the i-th sensor corresponds to the index of the hypothesis decided upon.

Local decisions from multiple sensors are communicated over an error-free communication

channel to a fusion center where a global decision u0 regarding the two hypothesis is made.

In our model, the fusion rule we employ is the counting rule. Assuming k(j) sensors report

their decisions to the FC are involved in the decision process for the j-th grid point, then its

associated decision statistics U is given as U(j) =
∑k(j)

i=1 ui. The decision rule corresponds

to

u0(j) =

{

1 (i.e., H1 is true) if U(j) ≥ T (j, k(j))
0 (i.e., H0 is true) if U(j) < T (j, k(j))

(6.2)

where, T (j, k(j)) is the decision threshold. Therefore, the system’s overall false alarm and

detection probabilities at the j-th grid point with k(j) sensor decisions (pf(j, k(j)) and

pd(j, k(j)), respectively) are given as

pf(j, k(j)) = Pr(U(j) ≥ T (j, k(j)) | H0 is true) (6.3)

pd(j, k(j)) = Pr(U(j) ≥ T (j, k(j)) | H1 is true) (6.4)

The decision threshold T (j, k(j)) is chosen so as to satisfy the false alarm requirement

preqf (j). We arrange the achieved false alarm and detection probabilities, after a total of K

deployed sensor, in two NxNy × 1 vectors pK
f

and pK
d
, respectively.
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The problem of interest in this paper, can now be stated as follows: Determine the

positions on the grid where a given number of sensors (K) are to be deployed in order

to minimize the squared difference between achieved and required detection probabilities,

without violating false alarm requirements. Mathematically, it can be stated as follows

argmin
u

∑

j:pK
d
(j)<preq

d
(j)

(pK
d (j)− preq

d (j))2

subject to

{

pK
f ≤ preq

f

1TD = K
(6.5)

where, D is the deployment vector. The deployment vector is an NxNy × 1 vector. Its

entries indicate the number of sensors at each point on the grid, and take values of either 0

or 1. 1T indicates the transpose of an NxNy × 1 vector, with all entries set to 1. Note that

in Eqn.(6.5), the squared error is taken at the grid points where detection requirements are

not satisfied.

6.2 Optimal Control Formulation

Our approach to solving the deployment problem relies on modeling the effect of deploying

a sensor on the overall false alarm and detection probabilities. Modeling the change in

the overall false alarm rate is straightforward since the overall false alarm rate at a point

depends only on the number of sensors covering that point and their individual false alarm

rates (i.e., there is no distance dependency). On the other hand, the overall detection

probability at any point on the grid depends on the number of sensors incorporated in the

decision process for that point and their positions relative to the point of interest. This is

due to the distance dependent sensing model of the sensors. This dependency complicates

modeling a sensor’s effect on the overall detection performance. In this case, the overall

detection probability does not have a closed form description. In order to analytically

model and solve the deployment problem, we use a theorem by Hoeffding [60] which gives
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a bound on the achieved detection probability. Using this bound enables us to linearly

approximate the effect of a sensor deployment on the overall detection probability at any

given grid point. The linear approximation of the overall detection probability as a function

of sensor deployment combined with a squared error cost function equivalent to the one

in Eqn.(6.5) enables us to express the deployment problem as a linear quadratic regulator

(LQR) problem. We note that this approximation is only used for deployment purposes and

after the sensor is deployed, the actual resulting overall detection probability is calculated,

and used in our proposed system evolution model. This means that any discrepancy between

using the approximate value and the actual one will be accounted for and corrected with the

evolution of the system. Details of the system approximation and the control formulation

follow in the next few subsections.

Since sensors have a common false alarm rate psf , the decision statistics U(j) associated

with the j-th point, under hypothesis H0, follows a binomial distribution with parameters

psf and k(j) where k(j) is the number of sensors covering that point. Therefore, the overall

false alarm probability at the j-th point, is given as

pf(j, k(j)) = Pr(U(j) ≥ T (j, k(j))|H0) (6.6)

=

k(j)
∑

nj=⌈T (j,k(j))⌉

(

k(j)

nj

)

(psf)
nj (1− psf )

k(j)−nj . (6.7)

where, ⌈T (j, k(j))⌉ is the smallest integer greater than or equal to T (j, k(j)). As noted

earlier, the overall detection probability is difficult to characterize. Under hypothesis H1,

the i-th (i = 1, . . . , k(j)) sensor reports a detection decision ui with a distance- depen-

dant detection probability (i.e., success probability) p(j, i). The detection probabilities

(p(j, i), i = 1, . . . , k(j)) need not be uniform since sensors might be at different distances

from the point of interest. Since the success probabilities are not necessarily equal, the dis-

tribution of the decision statistics U(j) =
∑k(j)

i=1 ui does not follow a binomial distribution.

In fact, the distribution of U(j) is a Poisson trial distribution since each random variable

ui is Bernoulli distributed with a success probability of p(j, i). A closed form description of
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the poisson trial distribution or its tail does not exist. However, its CDF (and therefore the

CCDF) can be bounded based on the theorem described below [60] or approximated as in

[61] and references therein. For ease of notation and generality, we drop the dependence on

j when stating Theorem 6.2.1 below.

Theorem 6.2.1. If U =
∑k

i=1 ui where each ui is a Bernoulli random variable with a success

probability of pi, and c is an integer, then [60]

Pr(U ≤ c) ≤ Pr(X(k, p) ≤ c) if 0 ≤ c ≤ kp− 1 (6.8)

Pr(U ≤ c) ≥ Pr(X(k, p) ≤ c) if kp ≤ c ≤ k (6.9)

where, X(k, p) is a binomial random variable with k trials and p success probability. The

success probability is given as p = 1
k

∑k
i=1 pi.

Proof. See [60] for details.

Theorem 6.2.1 gives upper or lower bounds (depending on the value of c) for the distri-

bution of a random variable U which follows a poisson trial distribution. Both bounds are

given in terms of a binomial distribution with a number of trials k and a success probability

p.

In our case, the binomial approximation serves as a lower or upper bound for the overall

detection probability depending upon the number of sensors (k(j)) as well as their individual

distance dependant probabilities of detection. However, we note that any approximation

error resulting from using bounds will be accounted for after sensor deployment. This is

because, in this paper, the actual detection probability (i.e., not its upper/lower bound)

is evaluated after each sensor deployment. Let X ∼ Bino(n, p) denote a random variable

(r.v.) X , that follows a binomial distribution with success rate p and n trials. It is possible

to approximate the tail probability of X as [58], [62]

Pr(X ≥ x) ≈ Q(
x− 0.5− np√

npq
) (6.10)
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where q = 1− p, and Q(·) is the tail of a standard Gaussian distribution defined as Q(y) =

1√
2π

∫∞
y

e
−t2

2 dt. Various rules of thumb have been suggested for use of the approximation in

Eqn.(6.10). Two such rules are as follows [62]:

1. When npq > 9.

2. When np > 9 for p < 0.5.

However, it was shown that the maximum approximation error for any value of n and p

is 0.14(npq)−0.5 [62]. We note that in our deployment problem, the value of the success

probability p is such that p > 0.5. Therefore, the Q(·) approximation is a lower bound of

the detection probability. Hence, in effect we are underestimating the achieved detection

probability.

Furthermore, it is possible to approximate the Q function as [59]

Q(y) ≈ 1− 1

1 + e−
√
2y
. (6.11)

Therefore, it is possible to approximate pd(j, k(j)), the detection probability at the j-th

point when k(j) sensors are involved in the decision process as

pd(j, k(j)) ≈ Q(
T (j, k(j))− 0.5 + k(j)p(j, k(j))

√

k(j)p(j, k(j)) q(j)
) (6.12)

where, p(j, k(j)) = 1
k(j)

∑k(j)
i=1 p(j, i) is the mean of the detection probabilities of the sensors

involved in the detection process at the j-th point of the grid, and q(j, k(j)) = 1−p(j, k(j)).

Using the approximation in (6.11) and rearranging the terms in Eqn.(6.12), we get

ln(
1

1− pd(j, k(j))
) =

√
2(
k(j)p(j, k(j)) + 0.5− T (j, k(j))

√

k(j)p(j, k(j)) q(j, k(j))
). (6.13)

Let m(j, k(j)) = ln( 1
1−pd(j,k(j))

− 1). Denoting the decision threshold as T (j, k(j)), it is

possible using Eqn.(6.13) to express m(j, k(j) + 1) as follows

m(j, k(j) + 1) = m(j, k(j)) +
√
2(

p(j, k(j))− δk(j)+1(j)

αk(j)

√

k(j)p(j, k(j) + 1) q(j, k(j) + 1)
)− γk(j)m(j, k(j))

(6.14)
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where, δk(j)+1(j) is the change in the decision threshold (i.e., T (j, k(j) + 1) = T (j, k(j)) +

δk(j)+1(j)), αk(j) =
√

k(j)+1
k(j)

, and γk(j) =
1

αk(j)
− 1. In essence, Eqn.(6.14) approximates the

effect of adding of a sensor on the overall detection probability. The false alarm probability

requirement is always met by a proper choice of the decision threshold.

Let preq
d

(j) denote the required detection probability at point (j), thenmreq(j) = ln( 1
1−preq

d
(j)
−

1). Furthermore, define x(j, k(j)) as

x(j, k(j)) = m(j, k(j))−mreq(j), (6.15)

then it is possible to express the change in x(j, k(j)) after adding an additional sensor as

x(j, k(j)+1) = (1−γk(j))x(j, k(j))+
√
2(

p(j, k(j) + 1)− δk(i)+1(j)

αk(j)

√

k(j)p(j, k(j) + 1) q(j, k(j) + 1)
)−γk(j)m

req(j).

(6.16)

Considering all points on the grid, then it is possible to express Eqn.(6.16) in matrix form

as

xk+1 = Akxk +Bkuk (6.17)

where, the matrix subscripts refer to the total number of sensors deployed in the grid. The

matrix Ak is a square diagonal matrix of dimension NxNy, where the j-th diagonal element

corresponds to the j-th point on the grid and is given as Ak(j, j) = (1− γk(j)). The matrix

Bk is also a square matrix of dimension NxNy. The (j, i)-th entry corresponds to the change

in the average overall detection probability at the j-th point on the grid if a sensor were to

be deployed at the i-th point. If the distance between points (i) and (j) is less than R, then

Bk(j, i) =
√
2( pd(j,k(j)+1)−δ(j)k(j)+1

αk(j)

√
k(j)pd(j,k(j)+1)qd(j,k(j)+1)

)− γk(j)m
req(j), (6.18)

otherwise it is set to 0. Here, uk is the deployment vector, which indicates the positions of

sensors that are to be deployed at each point of the grid.
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Note that the squared error (SE) between achieved and required detection probabilities,

can be described as the weighted quadratic norm of the state (xk) of the system described in

Eqn.(6.17). Assuming that the weighted quadratic norm of the system state is chosen as the

cost function and the deployment vector corresponds to a control vector, we are motivated

to solve the deployment problem as an optimal control problem. Here, the objective is to

determine the control vector that would minimize the cost function. That is, the deployment

problem in Eqn.(6.5) can be restated as

argmin
uk

J =
1

2
xT
KQfxK +

1

2

K−1
∑

k=0

(xT
kQxk + uT

kRuk)

subject to











pK
f ≤ preq

f

xk+1 = Akxk +Bkuk, k = 0, 1, . . . , K − 1

1TD = K

(6.19)

where, Q, Qf and R are symmetric positive definite weighting matrices. The squared error

cost function penalizes both positive and negative deviations from the required detection

probability profile. To avoid incurring a penalty for satisfying/exceeding detection require-

ments, the error terms corresponding to a point where the detection requirement has been

met/exceeded is set to zero in J . The optimal control problem corresponding to our system

is the linear quadratic regulator (LQR) problem.

In this chapter, we have adopted the sweep method due to its simplicity and intuitive

interpretation. The resulting optimal control vector uk has continuous entries. In order to

have a binary integer solution, a 1 is placed at the index where uk is maximum and a 0 is

placed at the remaining positions. That is, a sensor is placed at the location corresponding

to the index where uk is maximum.

In the next section, we propose a sensor deployment algorithm based on our LQR for-

mulation.
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6.3 Deployment Algorithm

In order to guarantee that both false alarm and detection requirements are met, we propose

the optimal control based algorithm illustrated in Algorithm 5.

Algorithm 5 Optimal Control Based Algorithm

1: Inputs: preq
f , preq

d andK

2: Outputs: D, pK
f and pK

d

3: Initialization: D = 0 and k = 0
4: while pk

f � preq
f and k < K do

5: Find Iδ s.t. p
req
f (Iδ) < pk

f (Iδ)
6: Solve for uk using Eqn.(3.25)
7: Find imax s.t. uk(imax) ≥ uk(i), ∀i ∈ Iδ
8: Deploy a sensor at grid point imax (i.e., set D(imax) = 1)
9: Increment k
10: Change detection thresholds
11: Calculate pk

f and pk
d

12: end while
13: while pk

d � preq
d and k < K do

14: Find Iδ s.t. p
req
d (Iδ) > pk

d(Iδ)
15: Set x(j) = 0, ∀j * Iδ (equivalent to taking the SE at unsatisfied points )
16: Solve for uk using Eqn.(3.25)
17: Find imax s.t. uk(imax) ≥ uk(i), ∀i ∈ Iδ
18: end while

Giving more importance to satisfying the false alarm requirements, in the first while

loop the algorithm determines the points (Iδ) at which false alarm requirements are not

met. Giving a higher priority for sensor deployment at these points will give more freedom

in choosing the suitable decision threshold which will facilitate satisfying the false alarm

requirements at those points. After calculating the control vector uk, a sensor is deployed

at the the point in Iδ that corresponds to the entry with the largest value in uk(Iδ). This

will have the additional effect of satisfying the detection requirements at these points. In

the case that false alarm requirements have been met at all points, the second while loop is

concerned with meeting the detection requirements. The contribution of the points Iδ, at

which detection requirements are not met, is considered in calculating the deployment vector

uk. This is done by setting entries in x corresponding to points with satisfied requirements to
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0. After each sensor deployment, the decision thresholds are modified in order to satisfy the

false alarm requirements. The algorithm terminates when all available sensors are deployed

or, if K is sufficiently large, when all detection requirements are met. We note that the

complexity associated with the LQR based deployment algorithm is O(K(3N3 + 4N2))

where N = NxNy.

6.4 Simulation Results

In this section, we compare the performance of two deployment algorithms, namely: a greedy

algorithm and the optimal control based algorithm. In each step of the greedy algorithm,

a sensor is deployed at the grid point where the difference between achieved and required

detection probabilities is maximum. In the first experiment, the area of interest is modeled

as a uniformly spaced 25×25 grid. Sensors to be used are identical and share the parameters

τ = 0.1, R = 6, and psf = 0.05. The false alarm and detection requirements are uniform

over the grid. The number of sensors needed to satisfy different detection requirements

(preqd = 0.6, 0.7 and 0.9) by each algorithm is provided in Table 6.1. The false alarm

requirement is set to preq
f

= 0.01 for all 3 cases. From Table 6.1, it is evident that the

optimal control based deployment (i.e., LQR approach) algorithm uses up to 34% fewer

sensors than the greedy deployment algorithm. In the second experiment, we study the

performance of the deployment algorithms as the false alarm rate is varied. The setup of

the second experiment is similar to that of the first experiment. The detection probability

requirement is set to preq
d

= 0.8. Using the optimal control based algorithm, the savings in

the number of sensors used is as high as 25% relative to the greedy algorithm as shown in

Table 6.2 .

In the third experiment, we compare the number of sensors needed by the deployment

algorithms as the detection decay rate τ is varied. The grid is a 25× 25 and the experiment

parameters are; R = 5, preq
d

= 0.8, preqf = 0.05 and the sensor’s false alarm rate is psf = 0.1.

The simulation results listed in Table 6.3, illustrate that as τ increases, the number of
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Table 6.1: Number of sensors for different preq
d

: Greedy vs. Opt Deploy

preq
d

Greedy Opt Deploy

0.6 21 16

0.7 32 21

0.9 60 47

Table 6.2: Number of sensors for different preq
f

: Greedy vs. Opt Deploy

preq
f

Greedy Opt Deploy

0.05 27 22

0.01 33 23

0.005 48 41

sensors needed to satisfy the detection requirements increases as well. This is expected as

a sensor’s ability to detect distant targets is reduced with an increase in τ . We also note

that a saving of up to 50% in the number of sensors can be achieved by using the LQR

deployment algorithm instead of a greedy algorithm.

We next compare the effect of the individual sensor false alarm probability psf on the

number of sensors needed by the deployment algorithms. The false alarm and detection

requirements are uniform over a 25 × 25 grid and are given as preqd = 0.8 and preqf = 0.05,

respectively. The decay rate and the collaboration radius are set to τ = 0.05 and R = 5,

respectively. Results in Table 6.4, demonstrate that more sensors are needed as psf increases.

This is because, information from more sensors need to be fused in order to satisfy the false

alarm requirements. Furthermore, using the LQR deployment algorithm can save up to 50%

Table 6.3: Number of sensors for different τ : Greedy vs. Opt Deploy

τ Greedy Opt Deploy

0.01 19 15

0.05 32 16

0.1 40 20

0.15 61 25
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Table 6.4: Number of sensors for different psf : Greedy vs. Opt Deploy

psf Greedy Opt Deploy

0.1 32 16

0.3 55 45

0.4 87 68

Table 6.5: Number of sensors for different R: Greedy vs. Opt Deploy

R Greedy Opt Deploy

3 73 36

5 40 20

7 21 15

in the number of required sensors in comparison to the greedy algorithm.

In the following experiment, we investigate the effect of changing R (i.e., the collaboration

radius) on the performance of the deployment algorithms in terms of the number of sensors

needed to meet false alarm and detection requirements. The setup of this experiment is

similar to the previous one with an τ = 0.1 and psf = 0.1. Numerical results listed in Table

6.5 show a reduction in the number of required sensors as R increases. This is due to the

fact that more sensors are able to collaborate, as R is increased, reducing the number of

sensors needed to meet false alarm and detection requirements.

We finally compare the performance of the algorithms when the detection requirements

are not uniform over the grid as in Fig. 6.1. The parameters are as follows; R = 5, τ = 0.05

and psf = 0.1. Table 6.4 lists the number of sensors needed to meet the non-uniform perfor-

mance requirements as the performance requirements are varied. Simulation results indicate

that the number of sensors used by the LQR deployment algorithm can be as much as 20%

less than that needed by the greedy deployment algorithm. Fig. 6.2 shows the positions

of sensors deployed by both algorithms in the grid for Case 4 of Table 6.4 .To illustrate

the efficacy of using the deployment algorithms in meeting the detection requirements we

use the effective squared error (SE) measure. The effective SE refers to the squared differ-
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Figure 6.1: Nonuniform requirements Nx = Ny = 25

ence between achieved and required detection probabilities at the points where detection

requirements are not met. Fig . 6.3 shows the effective SE as a function of the number of

sensors deployed in the grid for Case 4 in Table 6.4 . One can see that the LQR deployment

algorithm is more efficient in terms of meeting the requirements than the greedy algorithm

since its SE converges to zero at a faster rate than that of the greedy algorithm.

Number of sensors for nonuniform requirements: Greedy vs. Opt Deploy
Requirements Greedy Opt Deploy
pd1 = 0.8, pd2 = 0.6, pf1 = 0.05, pf2 = 0.05 25 15
pd1 = 0.6, pd2 = 0.8, pf1 = 0.05, pf2 = 0.05 35 24
pd1 = 0.6, pd2 = 0.7, pf1 = 0.05, pf2 = 0.07 25 15
pd1 = 0.6, pd2 = 0.7, pf1 = 0.07, pf2 = 0.05 19 12

Simulation results illustrate that the proposed deployment algorithm consistently out-

performs the greedy algorithm with respect to number of sensors needed to satisfy the
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Figure 6.2: Sensor positions for requirements: pd1 = 0.6, pd2 = 0.7, pf1 = 0.07, pf2 = 0.05

detection/false alarm requirements. This is due to the fact that the proposed algorithm in-

corporates more information in making the deployment decision than the greedy algorithm.

In a greedy algorithm, sensors are deployed based on the effect the addition of a sensor will

have on a single point. In contrast, the proposed algorithm incorporates the approximate

effect the deployment of a sensor at any candidate position will have on all the points that

fall within its detection radius R.

6.5 Summary

We investigated the sensor deployment problem in a decision fusion based DSN system.

Specifically, we determined the positions where a given number of sensors are to be deployed
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to meet detection and false alarm requirements. Unlike prior efforts in this area, we present

a rigorous approach to the sensor deployment problem. Using results from non-parametric

statistical theory, we linearly approximated the effect of a single sensor deployment. Using

this approximation in conjunction with a squared error cost function enabled us to model

the deployment problem as an LQR problem. Based on this, we proposed a sequential

LQR-based sensor deployment algorithm that aims at satisfying both false alarm and de-

tection requirements. Finally, we compared the performance of this algorithm against a

greedy deployment algorithm in terms of the efficiency of meeting detection requirements

(as measured by the effective SE ) and the number of sensors needed to satisfy perfor-

mance requirements. Simulation results illustrated that using the proposed LQR algorithm

the savings in the number of sensors required can be as much as 50% relative to a greedy

algorithm.

In this chapter, the decision fusion rule used was the majority or counting rule which is

suboptimal. In the next chapter, we investigate sensor deployment in a network employing

the optimal decision fusion rule.
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Chapter 7

Sensor Deployment in Decentralized
Detection Networks – Optimal
Decision Fusion

In this chapter, we consider the sensor deployment problem when using the optimal decision

fusion rule [44]. Due to the fact that the tail of the decision statistic distribution has no

closed form expression, this problem received little attention. In this work, we propose a

closed form approximation of the tail probability of the decision statistics distribution. Using

this approximation, we are able to model sensor deployment as an LQR problem. Based

on this formulation, we propose a sensor deployment algorithm to be used in a network

employing the optimal decision rule.

In section 7.1, we review the system setup and the deployment problem formulation.

In section 7.2, we present our proposed closed form approximation of the false alarm and

detection probabilities when using the optimal decision fusion rule. Based on this approx-

imation, we discuss our LQR formulation of the deployment problem. In section 7.3, we

propose an LQR-based sensor deployment algorithm. Simulation results are discussed in

section 7.4 where the performance of our proposed algorithm is shown to outperform that

of a greedy deployment algorithm.

96



7.1 System Model

We model the area of interest as a grid G of Nx ×Ny points. The false alarm and detection

requirements are given in two NxNy × 1 vectors, preq
f and preq

d , respectively with each

entry corresponding to the false alarm and detection requirement at each grid point. The

DSN network employs a parallel decision fusion detection scheme [44],[63]. In a network

of N sensors, the sensor deployed at the i-th grid point makes a local decision ui on the

absence of a target (hypothesis H0) or its presence (hypothesis H1). We assume that every

individual sensor has the same false alarm rate pf . However, the analysis that follows can be

easily extended to the case of sensors with different false alarm probabilities. On the other

hand, the probability of a sensor detecting a target depends on the distance d separating

them. Assume a sensor is located at the i-th grid point, and let d(i, j) denote the distance

separating it from a target located at the j-th grid point, then the probability of the sensor

detecting the target denoted as pd(i, j) is given as

pd(i, j) =

{

e−τd(i,j) if d(i, j) ≤ R
0 if d(i, j) > R

(7.1)

where, τ is the sensor’s detection decay rate and R is a detection radius. We assume that

the detection radius R is such that the detection probability at a point further from R is

negligible.

If k(j) sensors are involved in the decision process for the j-th grid point (i.e., k(j)

sensors are at a distance less than R from the j-th point), the fusion center (FC) combines

the sensors’ individual decisions and makes an overall detection decision u0(j) regarding the

existence/absence of a target at the j-th grid point. In this paper, the FC uses the optimal

decision fusion rule in order to make its decision [44], [64]. The FC constructs the decision

statistic Z(j) given as

Z(j) =
∑

w(j, i)ui, (7.2)

where,
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w(j, i) =

{

log
pd(j,i)(1−pf )

pf (1−pd(j,i))
if d(i, j) ≤ R

0 if d(i, j) > R
(7.3)

The weight w(j, i) quantifies the relative importance that the decision from the i-th sensor

gets in comparison to the decisions coming from the other sensors. Note that the weight

w(j, i) becomes negative infinity if the detection probability pd(j, i) is zero. However, in

Eqn.(8.3) the detection probability is equal to zero only if the distance between target and

sensor is greater than R. Therefore, during the construction of the decision statistic Z(j)

for the j-th grid point, only those sensors that are within a radius of R of the j-th point are

included in evaluating Z(j) and the weights. This insures that no negative infinite weights

are used in calculating Z(j). In addition, we note that the weight w(j, i) is positive in

practice. The weight w(j, i) is negative only if the detection probability is less than that

of the false alarm probability (i.e., pd(j, i) < pf - which is highly undesirable in a practical

system). We note that a practical value for a sensor’s false alarm probability pf lies in the

range (0, 0.1]. Using a worst case value of pf = 0.1 implies that a negative weight only occurs

if the detection probability pd(j, i) < 0.1. This is a extremely low detection probability

that may motivate us to reject the sensor for any detection application. In practice, it is

reasonable to expect that sensors with a high detection probability (e.g., pd(j, i) > 0.5) will

be used. Therefore, the random variable Z(j) will always have a non-negative support for

practical values of detection and false alarm probabilities.

The final decision rule corresponds to

u0(j) =

{

1 (i.e., H1 is true) if Z(j) ≥ η(j, k(j))
0 (i.e., H0 is true) if Z(j) < η(j, k(j))

(7.4)

where, η(j, k(j)) is the decision threshold. The false alarm probability pf(j, k(j)) and de-

tection probability pd(j, k(j)) at the j-th point are given as

pf(j, k(j)) = Pr(Z(j) ≥ η(j, k(j)) /H0 is true) (7.5)

pd(j, k(j)) = Pr(Z(j) ≥ η(j, k(j)) /H1 is true). (7.6)
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Since the calculation of Z(j) under both hypothesis involves using the weights {w(j, i),
both false alarm and detection probability depend on the distance separating the sensors

from the point of interest (i.e., the detection performance is affected by the sensors’ spatial

distribution). Therefore, it is important to devise a deployment strategy that will take into

account the performance requirements and sensor characteristics. We can now state the

problem that we study in this paper as follows: Given false alarm and detection require-

ments, where should a given number of sensors K be deployed in order to meet/minimize

the difference between achieved and required detection probabilities while attempting to

satisfy false alarm requirements. That is,

argmin
u

∑

j:pK
d
(j)<preq

d
(j)

(pK
d (j)− preq

d (j))2

subject to

{

pK
f ≤ preq

f

1TD = K
(7.7)

where, pK
f and pK

d is the achieved false alarm and detection probability vector after K

sensors are deployed in the grid, respectively. D is an NxNy × 1 deployment vector, each

element of which indicates the number of sensors at a corresponding grid point (i.e., D(j) = 1

if a sensor is deployed at the j-th point and 0 otherwise). The squared error cost is taken

at the points where the requirements are not met, this will ensure that we don’t penalize

satisfying the requirements.

7.2 Optimal Control Formulation

One of the difficulties associated with using the optimal decision fusion rule, is the compu-

tational complexity involved in evaluating the false alarm and detection probabilities for a

given K. The distribution of the decision statistic Z has no closed form expression for its

tail probability (i.e., false alarm/detection probabilities) [65],[66], [67] and [68]. We propose

approximating the decision statistics using a binomial distribution, we then use a Gaussian
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approximation to approximate the tail probability of the decision statics Z. Using this

approximation, we model the change in the overall detection performance of the network

as a linear function of the sensor positions. This, in combination with a suitable squared

error cost function results in a linear quadratic regulator (LQR) interpretation of the sensor

deployment problem, in which the control vector corresponds to the sensors positions. One

can use optimality conditions to calculate the optimal control vector (i.e., sensor positions).

In the next subsections, we will detail our effort in formulating the deployment problem as

an LQR problem.

As mentioned earlier, the distribution of the decision statistic has no closed form expres-

sion. The distribution of Z is a weighted combination of sensor decisions. The non-zero

weights {w(i), i = 1, . . . , k (we drop the dependence on j for reducing the clutter in no-

tation) are different for different sensors (as given by Eqn.(7.3)). In order to evaluate the

distribution of Z, one has to consider all weight combinations and the probabilities asso-

ciated with each combination. As a result, it is computationally expensive to characterize

the distribution of Z. This in turn makes the evaluation of the false alarm and detection

probabilities after each sensor deployment prohibitively expensive. The high computational

complexity necessitates the use of approximations or bounds to estimate the tail probability

of Z (i.e., false alarm/detection probability). A class of approximation methods, asymp-

totically approximates the tail probability of the Z distribution when a large number of

sensors are involved in the decision process [69], [70]. This is of little practical relevance

since a real network consists of a limited number of sensors. Another approach for approxi-

mating the tail probability is based on using a saddle point approximation as in [71]. Even

though the approximation in [71] does not assume the presence of a large number of sensors,

it still requires the evaluation of a number of non-linear equations which adds significant

computational complexity. Another class of bounds relies on using results, related to large

deviation theory (LDT), such as that of Hoeffding [65] and Talagrand [66] . However, these

bounds are applicable as long as the decision threshold is larger than the mean of the de-
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cision statistic distribution. The farther the threshold is from the mean, the more accurate

is the approximation. This can be problematic in our case. For instance, while the decision

threshold under hypothesis H0 might be far away from the mean (since false alarm proba-

bility requirement is usually small), there is no guarantee the decision threshold under H1

hypothesis will be larger than the mean.

It is desirable to have a tail probability approximation that (1) does not assume asymp-

totic conditions on the number of sensors; (2) can be easily evaluated, and (3) does not

depend on the value of the decision threshold. We propose using a binomial approximation

followed by a Gaussian approximation of the the tail probability that satisfies conditions (1)-

(3). Our motivation for using the Binomial approximation for Z(j) stems from the following

observations:

1. We note that in the special case where the weights w(i) are identical and the success

probabilities for all Bernoulli random variables ui are the same (i.e., pd(j, i) = pd), the

distribution of Z under each hypothesis is that of a Binomial distribution.

2. We also note that when the weights are identical, but the success probabilities of the

Bernoulli random variables are not identical, the resulting distribution of Z is the

Poisson trial distributions [60]. The tail of the Poisson trial distribution has no closed

form expression [67], [68]. However, Hoeffding in 1956 [60] has proposed bounding the

tail of the Poisson trial distribution using a Binomial distribution.

Therefore, the use of a Binomial to approximate the Z distribution for non- uniform weights

and success probabilities is a natural progression of the use of the Binomial approximation

for the above mentioned special cases.

Let Z denote the scaled decision statistic

Z ′ =
∑

w′(i)ui (7.8)

where, w′(i) = w(i)
max {w(i)} is the set of non-zero weights. A binomial random variable X ∼

Bino(Nx, px) can be fully described in terms of its number of trials Nx and its success
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probability px. Exploiting the structure of Z ′, we wish to determine values of Nx and px

that approximate the distribution of Z ′ using a binomial distribution. We note that in the

most general case, when the weights {w(i), i = 1, . . . , k} are all distinct, we have 2k − 1

distinct non-zero weight combinations. We claim that an Nx value of 2k − 1 accurately

models the number of values encountered in the distribution of Z ′. Based on this choice of

Nx, we can now calculate the success probability px.

Under hypothesis H0 , we are interested in using the proposed approximation to calculate

the decision threshold that results in meeting the false alarm requirement. Since false

alarm requirements are usually small (say less than 0.5), we are interested in the CCDF

of the binomial distribution X being an upper bound for the CCDF of Z ′ in the range of

[E[Z ′] =
∑

w′(i)pf ,maxZ ′ =
∑

w′(i)], where E[Z ′] denotes the expected value of Z ′.

We note that after choosing the number of trials of the approximation to be 2k − 1, our

task is then to calculate the success probability px,0 of X under hypothesis H0. There are

two computationally efficient methods for calculating this quantity:

1. Mandate that E[Z ′] = E[X ] =
∑

w′(i)pf , then

px,0 =

∑

w′(i)pf
2k − 1

(7.9)

2. The max value of Z ′ occurs when all k sensors report a positive decision. That is,

maxZ ′ =
∑

w′(i). The tail probability of Z ′ corresponding to this case can be easily

calculated as Pr(Z ′ ≥ maxZ ′) = pkf . The new success probability is then equal to

px,0 = (pf)
k

(2k−1) .

So, in order to have an upper bound on the CCDF of Z’, under H0, in the range [E[Z ′] =
∑

w′(i)pf ,maxZ ′ =
∑

w′(i)] using a binomial X0, the success probability px,0 should be

chosen as

px,0 = max{
∑

w(i)pf
(2k − 1)

, p
k

(2k−1)

f }. (7.10)

We note that 0 ≤ px,0 ≤ 1 (as Z has been scaled by the maximum weight). One can take

an additional step further and approximate the tail of the binomial approximation using a
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Gaussian density as follows

Pr(X0 ≥ t) ≈ Q(
t− (2k − 1)px,0
√

(2k − 1)px,0qx,0
), (7.11)

where, Q(·) is the complementary cumulative distribution (CCDF) of a standard normal

distribution and qx,0 = 1−px,0. Additionally, the process of choosing px,0 based on Eqn.(7.10)

can be simplified by adding a correction factor in the Gaussian approximation of X0. That

is, if we pick px,0 =
∑

w′(i)pf
2k−1

and use a correction factor of +0.5 in Eqn.(7.11), the overall tail

probability will automatically increase making the resulting tail probability approximation

as an upper bound on the actual false alarm probability as:

Pr(X0 ≥ t) ≈ Q(
t− (2k − 1)px,0+0.5
√

(2k − 1)px,0qx,0
), (7.12)

We can extend this argument to detection probability, under hypothesis H1, bound by using

px,1 =
∑

w′(i)pd(i)
2k−1

in conjunction with a correction factor of −0.5 as:

Pr(X1 ≥ t) ≈ Q(
t− (2k − 1)px,1−0.5
√

(2k − 1)px,1qx,1
), (7.13)

As an example, we approximate the CCDF of the distribution of the Z distribution under

both hypotheses. We assume that the number of sensors involved is k = 7; the sensor’s false

alarm probability is set to pf = 0.2, and the detection probabilities are assumed to be

pd(i) = 0.8 − 0.05 ∗ i, i = 1, 2, . . . , 7. Fig.7.2 shows the CCDF (i.e., tail probability) of

the distribution of Z as well as the CCDF of the approximation in Eqn.7.11. We note

that under hypothesis H0 the CCDF of the approximation is an upper bound of the false

alarm probability (i.e., CCDF of Z). We also note that under hypothesis H1, the CCDF

of the binomial-Gaussian approximation is a lower bound of the CCDF of Z (i.e., detection

probability). This will be helpful since we will be able to compute, using the approximation,

a decision threshold such that the resulting false alarm rate is lower than the false alarm

requirement. The detection probability calculated using the approximation, will also be

lower than the actual detection probability.
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Figure 7.1: Actual CCDF vs Approximation

7.2.1 LQR Problem Formulation

In this section, we go through the steps that enable us to formulate the deployment prob-

lem as a linear quadratic regulator (LQR) problem. Using the Gaussian approximation of

the detection probability, we approximate the effect of a single sensor deployment on the

network’s overall detection probability.

Towards this end, we first note that it is possible to approximate the Q(·) function as

follows [59]

Q(y) ≈ 1− 1

1 + e−
√
2y
. (7.14)

The approximation in Eqn.(8.10) is a widely used approximation of the Q function [18]

and [72]. Below is a graph that shows both the Q(y) function and its approximation. It

is evident that the approximation of Q(y) is valid over a wide range of values. We will

use this approximation in evaluating the decision threshold and in estimating the detection

probability at each grid point.

In a detection system that employs a Neyman-Pearson rule, the decision threshold is

chosen such that the false alarm requirement is satisfied and then the system’s detection
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Figure 7.2: Q Approximation

probability is maximized assuming that decision threshold. In this paper, we adopt a similar

approach.

Under hypothesis H0, the scaled decision statistics η′(j, k(j)) that would enable us to

satisfy the false alarm requirement preqf (j) at the j-th point according to our proposed

approximation Eqns.(7.11) and (8.10) is given as

η′(j, k(j)) = (2k(j) − 1)px,0(j, k(j))

−
√

(2k(j) − 1)px,0(j, k(j))qx,0(j, k(j))

2
ln(

1

1− preqf (j)
− 1)

(7.15)

Under hypothesisH1, using the approximation in Eqn.(7.14) one can express ln( 1
1−pd(j,k(j))

−
1) (which has a one to one relationship with the detection probability pd(j, k(j))) as follows

ln(
1

1− pd(j, k(j))
− 1) = −

√
2(

η′(j, k(j))− (2k(j) − 1)px,1(j, k(j))
√

(2k(j) − 1)px,1(j, k(j))qx,1(j, k(j))
). (7.16)

If an additional sensor is to be deployed (i.e., k(j) → k(j) + 1), one can use Eqn.(7.15)

to calculate the new decision threshold η′(j, k(j) + 1) and Eqn.(7.16) to get that
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ln(
1

1− pd(j, k(j) + 1)
− 1) = −

√
2(

η′(j, k(j) + 1)− (2k(j)+1 − 1)px,1(j, k(j) + 1)
√

(2k(j)+1 − 1)px,1(j, k(j) + 1)qx,1(j, k(j) + 1)
). (7.17)

Eqn.(7.17) can be rewritten as

ln(
1

1 − pd(j, k(j) + 1)
− 1) = −

√
2(

η′(j, k(j)) + ∆η′ − (2k(j)+1 − 1)px,1(j, k(j) + 1) + (2k(j) − 1)px,1(j, k(j)) − (2k(j) − 1)px,1(j, k(j))
√

(2k(j)+1 − 1)px,1(j, k(j) + 1)qx,1(j, k(j) + 1)
),

(7.18)

where, ∆η′ = η′(j, k(j) + 1) − η′(j, k(j)) is the difference in the decision threshold. In

addition, Eqn.(7.18) can be restated as

ln(
1

1− pd(j, k(j) + 1)
− 1) = −

√
2(

η′(j, k(j))− (2k(j) − 1)px,1(j, k(j))
√

(2k(j)+1 − 1)px,1(j, k(j) + 1)qx,1(j, k(j) + 1)
)

−
√
2(
∆η′ − (2k(j)+1 − 1)px,1(j, k(j) + 1) + (2k(j) − 1)px,1(j, k(j))

√

(2k(j)+1 − 1)px,1(j, k(j) + 1)qx,1(j, k(j) + 1)
),(7.19)

multiplying the first term of the right hand side of Eqn.(7.19) by
√

(2k(j)−1)px,1(j,k(j))qx,1(j,k(j))

(2k(j)−1)px,1(j,k(j))qx,1(j,k(j))
=

1, we can state Eqn.(7.19) as

ln(
1

1− pd(j, k(j) + 1)
− 1) = −

√
2

α(j)
(
η′(j, k(j))− (2k(j) − 1)px,1(j, k(j))
√

(2k(j) − 1)px,1(j, k(j))qx,1(j, k(j))
)

−
√
2(
∆η′ − (2k(j)+1 − 1)px,1(j, k(j) + 1) + (2k(j) − 1)px,1(j, k(j))

√

(2k(j)+1 − 1)px,1(j, k(j) + 1)qx,1(j, k(j) + 1)
),(7.20)

where,

α(j) =

√

2k(j)+1px,1(j, k(j) + 1)qx,1(j, k(j) + 1)

2k(j)px,1(j, k(j))qx,1(j, k(j))
.

Finally, since ln( 1
1−pd(j,k(j))

− 1) = −
√
2(

η′(j,k(j))−(2k(j)−1)px,1(j,k(j))√
(2k(j)−1)px,1(j,k(j))qx,1(j,k(j))

), Eqn.(7.20) can be

rewritten as

ln(
1

1− pd(j, k(j) + 1)
− 1) =

1

α(j)
ln(

1

1− pd(j, k(j))
− 1)

−
√
2(
∆η′ − (2k(j)+1 − 1)px,1(j, k(j) + 1) + (2k(j) − 1)px,1(j, k(j))

√

(2k(j)+1 − 1)px,1(j, k(j) + 1)qx,1(j, k(j) + 1)
),(7.21)
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Let preqd (j) be the required detection probability at the j-th point, then one can define

x(j, k(j)) as

x(j, k(j)) = ln(
1

1− pd(j, k(j))
− 1)− ln(

1

1− preqd (j)
− 1). (7.22)

Since there is a one to one relationship between y and ln( 1
1−y

− 1), x(j, k(j)) effectively

measures the difference between the achieved detection probability pd(j, k(j)) and the re-

quired detection probability preqd (j). In terms of x(j, k(j)), it is possible to write the change

(evolution) in x(j, k(j)) when a sensor is added to the grid as

x(j, k(j) + 1) =
1

α(j)
x(j, k(j)) +B(j, i), (7.23)

where, B(j, i) is given as

B(j, i) = (1− 1

α(j)
) ln(

1

1− preqd (j)
− 1) (7.24)

−
√
2(
∆η′ − (2k(j)+1 − 1)px,1(j, k(j)) + (2k(j) − 1)pd(j, k(j))

√

(2k(j)+1 − 1)px,1(j, k(j) + 1)qx,1(j, k(j) + 1)
).

B(j, i) in essence quantifies the change in x(j, k(j)) resulting from deploying a sensor at

the i-th grid point. Eqn.(7.24) dependency on i is manifested by the terms px,1(j, k(j) + 1)

and qx,1(j, k(j) + 1). The term px,1(j, k(j) + 1) is the success probability calculated by

incorporating the contributions of the sensors that are already deployed with an R radius

of the j-th point and a sensor that is possibly to be deployed at the i-th grid point.

Considering all points on the grid, it is possible to write Eqn.(7.23) in matrix form as

xk+1 = Akxk +Bkuk (7.25)

where, the matrix subscript k denotes the total number of deployed sensors. The matrix

Ak is a diagonal matrix of dimension NxNy, where the j-th diagonal entry is A(j, j) = 1
α(j)

.

The matrix Bk is a square matrix of dimension NxNy, with its (j, i) entry is equal to B(j, i)

in Eqn.(7.24). Each element in the NxNy × 1 k-th deployment vector uk corresponds to one

of the grid points. The j-th element in uk, in essence, indicates the contribution of placing

a sensor at the j-th grid point on the overall detection probability.
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In an optimal control problem, the goal is to calculate an optimal control vector that

minimizes a certain cost function. In our original problem statement in Eqn.(7.7), the cost

function is a squared error cost function. Exploiting the one to one relationship between

pd(j, k(j)) and ln( 1
1−pd(j,k(j))

− 1), we define an updated cost function, associated with the

system evolution model in Eqn.(7.25)

J =
1

2
xT
KQfxK +

1

2

K−1
∑

k=1

(xT
kQkxk + uT

kRkuk), (7.26)

where, Qk, Qf and Rk are symmetric positive definite weighting matrices of dimension

NxNy × NxNy. In the cost function J , the matrices Qk and Qf are directly related to

the xk and xK vectors. In fact, xT
kQkxk is a weighted norm of the state xk. Since the

system is dynamic and the detection requirements at some of the grid points might be

satisfied while others might not be satisfied, it is important to not penalize satisfying the

requirements. In the cost function J , this can be achieved by setting the elements in Qk

corresponding to points where requirements have been met to small values. In contrast,

to penalize not meeting detection requirements at the remaining grid points, we set the

elements in Qk that correspond to these points to relatively larger values. This scheme

ensures that when making the deployment decision the areas where requirements are not

met are given more importance in making that decision. We can also see that the matrix

Rk is connected directly to the control vector uk. Choosing a large value for an entry of Rk

indicates that it is costly to deploy a sensor at that point. This can be useful in steering

the deployment away from areas where requirements have been met or points where sensors

have been already deployed. In contrast, assigning relatively small values of entries of Rk

corresponding to points where requirements are not met or where sensors are not deployed

indicates a reasonable bias for deploying sensors at those points.

The optimal control problem corresponding to our system is the linear quadratic regu-

lator (LQR) problem which we state as follows
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argmin
uk

J =
1

2
xT
KQfxK +

1

2

K−1
∑

k=1

(xT
kQkxk + uT

kRkuk)

subject to











pK
f ≤ preq

f

xk+1 = Akxk +Bkuk, k = 0, 1, . . . , K − 1

1Tu = K

(7.27)

The LQR problem described above is dynamic and therefore can be solved using the

differentiation method discussed earlier.

7.3 Deployment Algorithm

Based on the LQR formulation and its solution discussed above, we propose a sequential

LQR based sensor deployment algorithm. Given a number of sensorsK, false alarm/detection

requirements (preq
f /preq

d ), the algorithm sequentially deploys sensors until either all K sen-

sors have been deployed or when the requirements are satisfied. The algorithm deploys the

k-th sensor by first constructing the matrices Ak and Bk. Afterward, the k-th deployment

vector uk is calculated as in Eqn.(3.25). Giving more importance to satisfying false alarm

requirements, in each deployment stage we determine the points at which false alarm re-

quirements are not met, and only consider these points for sensor deployment. The entry

values of uk are compared for these points and a sensor is placed at the index î where uk

is maximum (i.e., D(̂i) = 1). In case all false alarm requirements are met, the algorithm

simply places a sensor at the grid point corresponding to the index where uk is maximum.

The proposed deployment algorithm is described in Algorithm 6.
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Algorithm 6 LQR Based Algorithm

1: Initialization k = 0, D = 0, p0
d = 0, p0

f = 1

2: while (pk
f � preq

f and pk
d � preq

d ) OR (k ≤ K) do
3: Calculate uk as in Eqn.(3.25)
4: Find the index set I∆ = {ij , j = 1, 2, . . . , n}, where pk

f (I∆) ≥ preq
f

5: if I∆ 6= Φ (Φ indicates null set)
6: Find î ∈ I∆ where uk (̂i) ≥ uk(i)∀i ∈ I∆
7: else
8: Find î where uk(̂i) ≥ uk(i)∀i = 1, 2, . . . , NxNy

9: end
10: Deploy sensor at î (i.e., D(̂i) = 1)
11: Update decision thresholds
12: Calculate pk

f and pk
d

13: Increment k to k + 1
14: end while

7.4 Simulation Results

In this section, we compare the performance of the LQR based deployment algorithm to that

of a greedy algorithm. The greedy algorithm sequentially deploys sensors by calculating the

difference between achieved and required detection probabilities at all the grid points and

then deploying a sensor at the grid point with the largest difference. We use two metrics

to compare the performance of the LQR and greedy deployment algorithms. The first met-

ric is the number of sensors needed by each algorithm to meet performance requirements.

Though our original problem statement assumes that the total number of sensors is already

determined before deployment, the LQR sequential formulation ( with the single-step hori-

zon model) does not require the previous knowledge of the number of sensors. Therefore,

we can deploy sensors until performance requirements are met. The same holds for the

greedy deployment algorithm. The second metric, is the effective squared error (SE) which

measures the squared difference between achieved and required detection probabilities at

grid points where requirements are not satisfied.

In the first experiment, the false alarm/detection requirements are uniform over the

grid. We compare the performance of the LQR and greedy deployment algorithms as the
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detection requirement is varied while the false alarm requirement is kept constant. We

assume that the (1) grid is of size 20 × 20, (2) sensor false alarm rate of pf = 0.05, (3)

sensing profile decay rate of τ = 0.15 and (4) the detection radius R = 5. The false

alarm requirement is set to preqf = 0.01. Fig. 7.3 lists the number of sensors needed to

satisfy performance requirements. We note that as the detection requirements become more

stringent, the number of sensors needed by each algorithm increases as well. This is expected

as for a fixed τ , sensors need to be closer to each other (i.e., more compactly distributed) in

order to meet detection requirements. Therefore, more sensors are needed when detection

requirements become more demanding. Simulation results in Fig. 7.3, illustrate that the

LQR based deployment algorithm requires up to 20% fewer number of sensors than does

greedy algorithm to satisfy the same false alarm/detection requirements. The deployment

decision in the greedy algorithm aims at minimizing the detection error at a single point

(i.e., localized cost function). Whereas in the LQR deployment algorithm, the cost function

in the LQR problem takes into account the errors at all the grid point where requirements

are not met. Moreover, in the LQR algorithm the effect of a sensor’s deployment on all

the points within its detection radius is taken into consideration by constructing the Bk.

This is in contrast to the greedy algorithm which does not incorporate this information.

To compare the effective SE of both algorithms, we consider case 1 (i.e., preqd = 0.6) in

Fig. 7.3. The effective SE as a function of the number of sensors deployed in the grid is

depicted in Fig.7.4. Even though both algorithms require the same number of sensors in

this case, it is evident that the LQR deployment algorithm is more efficient in satisfying

detection requirements. This is true since the LQR algorithm results in a lower SE than the

greedy algorithm for a given number of sensors.

In the second experiment, we study the performance of the algorithms as the false alarm

requirement is varied. The parameters in this experiment are as follows; (1) a 20× 20 grid,

(2) sensor false alarm rate pf = 0.1, (3) a sensing decay rate τ = 0.05 and (4) the detection

radius is set to R = 7. The detection requirement at the grid points is set to preqd = 0.8.
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Figure 7.3: Number of sensors for different preqd : Greedy vs. LQR-based
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Figure 7.4: SE convergence for uniform requirements

The number of sensors needed to satisfy performance requirements are listed in Fig. 7.5.

The trend is similar to what is expected and what is seen in the first experiment. The

more stringent a requirement is ( in this case, a lower false alarm probability), the more

sensors are needed. This is because a smaller false alarm requirement results in a larger

decision threshold. However, under hypothesis H1, we desire a larger tail probability in

order to meet the detection requirement. The larger decision threshold mandates the use

of more sensors covering a grid point. From Fig. 7.5, we see that we can save up to 30%
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Figure 7.5: Number of sensors for different preqf : Greedy vs. LQR-based
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Figure 7.6: SE convergence for uniform requirements

in the number of required sensors by using the LQR deployment algorithm instead of the

greedy algorithm. Next, we examine the effective SE corresponding to case 1 of Fig. 7.5. In

Fig.7.6, we note that even though both algorithms require comparable number of sensors

for this case, the LQR deployment algorithm consistently outperforms the greedy algorithm

in terms of effective SE. This further illustrates the advantage of using the LQR algorithm

when provided with a limited number of sensors.

In the third experiment, we consider a grid of non-uniform false alarm/detection require-
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Table 7.1: Number of sensors for non-uniform performance requirements
Requirements Greedy LQR

p1
d
= 0.75, p1

f
= 0.01, p2

d
= 0.6, p2

f
= 0.01 37 32

p1
d
= 0.9, p1

f
= 0.05, p2

d
= 0.6, p2

f
= 0.01 37 30

p1
d
= 0.9, p1

f
= 0.05, p2

d
= 0.8, p2

f
= 0.01 59 45
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Figure 7.7: SE convergence for non-uniform requirements

ments. The experiment setup is as follows; (1) a 20 × 20 grid, (2) pf = 0.1, (3) τ = 0.1

and (4) R = 5. The grid is divided into two areas with different false alarm/ detection

requirements as in Fig.7.8 . Simulation results listed in Table 7.1 indicate that with increas-

ing requirements, the number of sensors needed to satisfy these requirements grows. The

justification is similar to what was discussed in the previous two experiments. Furthermore,

we note that even when the requirements are not uniform, the LQR algorithm consistently

outperforms the greedy deployment algorithm by using a fewer number of sensors to meet

the same requirements. In fact, results in Table 7.1 show that a 23% reduction in the num-

ber of sensors is possible by using the LQR algorithm instead of the greedy algorithm. The

effective SE for case 2 of Table 7.1 is plotted in Fig.7.7 and it is evident that the LQR algo-

rithm is more efficient than the greedy algorithm in satisfying the detection requirements.

We also show the sensor positions as they are deployed by each algorithm in Fig.7.8.
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Figure 7.8: Sensor positions

Table 7.2: Number of sensors for square non-uniform performance requirements
Requirements Greedy LQR

p1
d
= 0.6, p1

f
= 0.05, p2

d
= 0.9, p2

f
= 0.01, p3

d
= 0.6, p3

f
= 0.05 31 28

p1
d
= 0.9, P 1

f
= 0.01, p2

d
= 0.7, p2

f
= 0.01, P 3

d
= 0.7, p3

f
= 0.05 53 44

In the fourth experiment, we consider a grid with nonuniform requirements as in Fig.7.9.

The experiment parameters are as follows: (1) grid size is 20× 20, (2) pf = 0.1 (3) τ = 0.1

and R = 5. Table 7.2 lists the number of sensors needed by each algorithm to satisfy the

performance requirements. As before, it is evident that the LQR deployment algorithm

uses a fewer number of sensors than the greedy algorithm to meet the same performance

requirements. The spatial distribution of sensors when the requirements are as in case 2 of

Table 7.2 is depicted in Fig. 7.9.

7.5 Summary

We examined the sensor deployment problem in a DSN employing the optimal decision fu-

sion rule. The goal was to find the positions where a given number of sensors can be deployed
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Figure 7.9: Sensor positions for square non-uniform requirements

in order to meet some given detection and false alarm rate requirements. In prior efforts,

deployment in an optimal decision fusion network has not been addressed due to mathe-

matical complexity. For the first time, we proposed a rigorous treatment of the deployment

problem with optimal decision fusion by incorporating ideas from optimal control theory.

We first proposed a novel approximation of the detection and false alarm rates and used this

approximation to model the change in the detection performance of the network as a linear

function of the deployment position of a single sensor. Adopting a suitable squared error

cost function, we modeled the deployment problem as a linear quadratic regulator (LQR)

problem. Using this model, we proposed a sequential sensor deployment algorithm with the

goal of satisfying both false alarm and detection requirements. To illustrate the advantages

of using the LQR based algorithm, we compared its performance against a greedy algo-

rithm. Simulation results indicated that the proposed LQR algorithm can save up to 30%

in the number of sensors needed by the greedy algorithm to satisfy the same performance

requirements. Moreover, we illustrated that the LQR based algorithm is more efficient in
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terms of the effective SE than the greedy algorithm.

In the next section, we study the self healing problem in sensor networks. We specifically

show that it is possible to use our proposed LQR formulation of the deployment problem as

a self healing approach.
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Chapter 8

Self Healing in Sensor Networks –
Optimal Decision Fusion

In this chapter, we study the self-healing problem in sensor networks employing the optimal

decision fusion rule. We propose two self healing methods. The first method is based on

adjusting the decision threshold at the fusion center. Since the decision statistics distribution

has no closed form expression, updating the decision threshold is computationally intensive.

Therefore, we propose using the closed form approximation used in the previous chapter

to update the decision threshold. The second method uses sensor mobility for self healing.

Sensors are redeployed such that the performance degradation from sensor loss is minimized.

The redeployment of sensors is modeled as an LQR problem. Based on these two approaches,

we propose a self healing algorithm for sensor network.

The system model is similar to the one used in the previous chapter and is reviewed

in section 8.1. The proposed approaches are discussed in section 8.2. In section 8.3, we

introduce our proposed self-healing algorithm. Simulation results illustrating the advantages

of using our proposed algorithms are listed in section 8.4.

8.1 System Model

An Nx × Ny grid G is used to describe the area of interest where the sensors are deployed.

The j-th (j = 1, . . . , NxNy) grid point is associated with a given false alarm and detection
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requirement, preqf (j) and preqd (j), respectively. Considering all grid points, these requirements

can be arranged in two NxNy×1 vectors preq
f and preq

d . Without loss of generality, we assume

that a sufficient number N of sensors has been deployed in the area of interest such that the

false alarm and detection requirements are met. The binary NxNy × 1 vector D indicates

the positions {(xn, yn), n = 1, . . . , N} of the sensors in the grid. An entry with a value of 1

indicates that a sensor is deployed at the grid point corresponding to that entry, while a 0

value indicates that no sensor is deployed at that point. The binary local decision ui made

by the sensor located at the i-th grid point indicates the absence/ existence of the target

(hypothesis H0 and H1 respectively). We assume that the sensors share a common false

alarm rate pf . On the other hand, we assume that the sensors have a distance dependent

detection profile. If d(i, j) denotes the distance between the sensor, located at the j-th grid

point, and the i-th grid point of interest, then the probability that the sensor detects a

target at that point is given as

pd(i, j) =

{

e−τd(i,j) if d(i, j) ≤ R
0 if d(i, j) > R

(8.1)

where, τ is the sensor’s detection decay rate and R is a detection radius. We assume that

the detection radius R is such that the detection probability at a point further from R is

negligible.

Assuming error free communication, sensors send their decisions to the fusion center

(FC) which combines their individual decisions and makes an overall detection decision

uo(j) regarding the existence/absence of a target at the j-th grid point. In this work, we

assume that the FC employs the optimal decision fusion strategy in making the decision

uo(j) [44],[64]. The decision statistic Z(j) corresponding to the j-th point is given as

Z(j) =
∑

w(j, i)ui, (8.2)

where k(j) is the number of sensors involved in the decision process at the j-th point, and
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the weight w(j, i) is given as

w(j, i) =

{

log
pd(j,i)(1−pf )

pf (1−pd(j,i))
if d(i, j) ≤ R

0 if d(i, j) > R
(8.3)

The weight w(j, i) quantifies the relative confidence in the accuracy of the decision from

the sensor located at the i-th grid point in comparison to the decisions coming from the

other sensors. Since pd(j, i) is distance dependent, it follows that the weight is also distance

dependent. The closer a sensor is to the point of interest, the more importance is given to

its decision in making the overall decision.

The final decision u0(j) rule corresponds to

u0(j) =

{

1 (i.e., H1 is true) if Z(j) ≥ η(j, k(j))
0 (i.e., H0 is true) if Z(j) < η(j, k(j))

(8.4)

where, η(j, k(j)) is the decision threshold. The false alarm probability pf(j, k(j)) and de-

tection probability pd(j, k(j)) at the j-th point are given as

pf (j, k(j)) = Pr(Z(j) ≥ η(j, k(j)) |H0 is true) (8.5)

pd(j, k(j)) = Pr(Z(j) ≥ η(j, k(j)) |H1 is true). (8.6)

Note that in Eqns.(8.5) and (8.6), the false alarm and detection probabilities depend on the

distribution of the decision statistic Z(j) and the decision threshold η(j, k(j)). Furthermore,

Z(j) depends on the number of sensors k(j) and their positions in the grid. Losing one or

more sensors changes the distribution statistic Z(j) and can lead to undesirable change in

the detection performance at many grid points. In light of Eqns.(8.5) and (8.6), one can

minimize performance degradation by: (1) changing the decision threshold η(j, k(j)), or (2)

changing the decision statistic distribution Z(j). Changing the decision threshold can be

achieved by recalculating the distribution of Z(j) and finding a suitable threshold η(j, k(j))

that ensures satisfying the performance requirements. The second option to consider is

changing the distribution of Z(j). The distribution of Z(j) can be changed by modifying
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the weights w(j, i) in Eqn.(8.2) or the number of sensors k(j). Either approaches can be

done by moving sensors in the grid. Moving the i-th sensor closer to the j-th point that it

already covers changes its weight w(j, i). In addition, a sensor can move to cover the j-th

point that it previously did not, effectively changing k(j). In this chapter, we develop self

healing strategies that are based on decision threshold adjustment and sensor mobility.

8.2 Proposed Approaches

In this section, we discuss two self-healing approaches; (1) decision threshold adjustment

and (2) sensor redeployment.

8.2.1 Decision Threshold Adjustment

In decision threshold adjustment, the FC recalculates the decision threshold it employs for

every point affected by loss of sensors. The main difficulty in this approach is the high

computational complexity associated with evaluating the decision statistic distribution. We

propose using an approximation of the decision statistic distribution, which allows us to

evaluate the decision threshold with a relatively low computational complexity. In order

to recalculate the decision threshold, it is necessary to evaluate the distribution of the de-

cision statistic Z (we drop the dependence on j for ease of notation). However, this is a

computationally intensive process since the distribution of Z is non-parametric. Evaluating

Z requires calculating all weight combinations as well as the probability of each combina-

tion. As an alternative to exact evaluation of Z, we consider using a binomial-Gaussian

approximation proposed in the previous chapter.

Consider the scaled Z ′ distribution

Z ′ =

k
∑

i=1

w′(i)ui (8.7)

where, w′(i) = w(i)/maxw(i). The Z ′ distribution is then approximated as a binomial

X ∼ Bino(Nx, px) where Nx = 2k−1 is the number of trials and px is the success probability
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given as

px =
E[Z ′]

nx
. (8.8)

Moreover, we can approximate the CCDF of a binomial distribution using the CCDF of

a Gaussian random variable as [58]

Pr(Z ′ ≥ η′) ≈ Pr(X ≥ η′) ≈ Q(
η′ − nxpx√
nxpxqx

) (8.9)

where, η′ = η
maxw(i)

is the scaled decision threshold and qx = 1 − px. Finally, we can

approximate the Q function as follows [59]

Q(y) ≈ 1− 1

1 + e−
√
2y
. (8.10)

Under a Neyman-Pearson framework, the decision threshold is calculated such that the false

alarm requirement is met (if possible) while maximizing the achieved detection probability.

In this paper, we follow a similar framework. Using the approximations in Eqns.(8.9) -(8.10),

and under hypothesis H0 it is possible to calculate the scaled decision threshold η′(j, k(j))

for the j-th point when it is covered by k(j) sensors as

η′(j, k(j)) = (2k(j) − 1)px,0(j, k(j))

−
√

(2k(j) − 1)px,0(j, k(j))qx,0(j, k(j))

2
ln(

1

1− P req
f (j)

− 1)

(8.11)

where, px,0 =
E[Z′|H0]

2k(j)−1
.

Note that the maximum value of Z ′ is
∑k

i=1w
′(i). Therefore, if η′ ≤ ∑k

i=1w
′(i), then

it is possible to meet the false alarm requirement while at the same time attaining a value

of pd(j, k(j)) > 0. On the other hand, if η′ >
∑k

i=1w
′(i) a false alarm probability of

pf(j, k(j)) = 0 is achieved (i.e., meet any false alarm requirement). However, with regards

to the detection probability, choosing such a threshold implies that pd(j, k(j)) = 0. We

argue that this is not a wise choice, since it effectively implies that sensors covering the
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point of interest are not contributing to the detection process. Therefore, after initially

calculating η′(j, k(j)) as in Eqn.(8.11), the final decision threshold is given as

η′(j, k(j)) = min(η′(j, k(j)),

k(j)
∑

i=1

w′(i)). (8.12)

Eqn.(8.12), in effect, represents a tradeoff between false alarm and detection performance.

A priority is always given to satisfying the false alarm requirement, except in the case

where detection performance is completely compromised. Using Eqns.(8.11) and (8.12), it

is possible to adjust the decision thresholds in the network to minimize the degradation in

the network’s performance after the loss of one or more sensors.

Depending on the position of the failed sensors and the requirements within their area,

the threshold readjustment might not offset the degradation in the system’s performance. In

the next subsection, we discuss sensor redeployment as an alternative self-healing approach.

8.2.2 Sensor Redeployment

In the sensor redeployment approach, we move mobile sensors to grid points such that the

difference between the required and achieved performance profiles is minimized. Approxi-

mating the detection probability at a point as a function of the sensor positions, we are able

to model sensor redeployment as a linear quadratic regulator (LQR) problem.

Note in Eqns.(8.5) and (8.6), that the false alarm and detection probabilities depend

both on the decision threshold and the density of the decision statistic Z. We also note that

the density of Z, which the FC evaluates independently for each grid point, depends on the

number of sensors covering each point and the relative distances between sensors and points

of interest. Assuming that the network consists of a number of static and mobile sensors, it

is possible to change the density of Z by moving sensors in the grid. Moving sensors closer

to a point makes the tail of the corresponding Z distribution heavier, for a fixed threshold.

This increases the achieved detection probability and allows more flexibility in choosing a

suitable decision threshold. Thus improving the detection performance. On the other hand,
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moving sensors can also cause a degradation in performance at the original locations of the

mobile sensors. Therefore, one should develop a redeployment strategy that considers not

just the improvement in performance from moving sensors, but also the possible degradation

caused by sensor movement.

We can state the main problem in the sensor redeployment approach as follows: Let No

denote the total initial number of sensors in the network, we assume that there are S static

sensors and M mobile sensors. In the event of losing l sensors, the question we seek to

address is the following; where can the M mobile sensors be placed (i.e., redeployed) such

that the degradation in the detection performance as well as the total energy consumed in

moving the sensors are minimized? That is,

argmin
D

∑

j:pn
d
(j)<preq

d
(j)

(pn
d (j)− preq

d (j))2 +
M
∑

m=1

Em

subject to

{

pn
f ≤ preq

f

1TD = n
(8.13)

where, n = No − l and pn
f/ pn

d denotes the achieved false alarm/ detection profile when n

sensors are deployed in the grid. {Em, m = 1, . . . ,M} denotes the energy that the m-th

sensor consumes in relocating. The NxNy × 1 deployment vector D indicates the sensor

deployment positions. The squared error cost is taken at the points where the requirements

are not met, this will ensure that we don’t penalize satisfying the requirements.

Our approach towards sensor redeployment is based on modeling the redeployment prob-

lem as a linear quadratic regulator (LQR) problem. First, we model the change in the

detection probability as a linear function of the position of the mobile sensor. We then use

the difference between achieved and required detection performance as a cost function to be

minimized. Thus, the redeployment problem becomes equivalent to an LQR problem. We

can then solve for the new mobile sensor positions that minimize the cost function.

Let k(j),η′(j, k(j)) and pd(j, k(j)) denote the number of sensors, scaled decision threshold

and detection probability at the j-th grid point after losing l sensors. Using the approxima-
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tion in Eqn.(8.10), we can approximate ln( 1
1−pd(j,k(j))

− 1) as follows

ln(
1

1− pd(j, k(j))
− 1) = −

√
2(
η′(j, k(j))− (2k(j) − 1)px,1(j, k(j))

2k(j)px,1(j, k(j))qx,1(j, k(j))
), (8.14)

note that ln( 1
1−pd(j,k(j))

− 1) has a one to one relationship with the detection probability

pd(j, k(j)).

If a sensor is to be moved such that it covers the j-th point (i.e., k(j) → k(j) + 1), one

can use Eqn.(8.12) to calculate the new decision threshold η′(j, k(j) + 1) and Eqn.(8.14) to

express the change from ln( 1
1−pd(j,k(j))

− 1) to ln( 1
1−pd(j,k(j)+1)

− 1) as follows

ln(
1

1− pd(j, k(j) + 1)
− 1) =

−
√
2

α(j)
ln(

1

1− pd(j, k(j))
− 1) (8.15)

−
√
2(

∆η′ − (2k(j)+1 − 1)px,1(j, k(j))
√

(2k(j)+1 − 1)p1x,1(j, k(j) + 1)qx,1(j, k(j) + 1)
)

−
√
2(

(2k(j) − 1)pd(j, k(j))− (2k(j)+1 − 1)∆ps(j)
√

(2k(j)+1 − 1)p1x,1(j, k(j) + 1)qx,1(j, k(j) + 1)
),

ln(
1

1− pd(j, k(j) + 1)
− 1) = −

√
2

α(j)
(
η′(j, k(j))− (2k(j) − 1)px,1(j, k(j))
√

(2k(j) − 1)px,1(j, k(j))qx,1(j, k(j))
)

−
√
2(
∆η′ − (2k(j)+1 − 1)px,1(j, k(j) + 1) + (2k(j) − 1)px,1(j, k(j))

√

(2k(j)+1 − 1)px,1(j, k(j) + 1)qx,1(j, k(j) + 1)
),(8.16)

where, ∆η′ = η′(j, k(j) + 1)− η′(j, k(j)) is the difference in the decision threshold, and

α(j) =

√

2k(j)+1px,1(j, k(j) + 1)qx,1(j, k(j) + 1)

2k(j)px,1(j, k(j))qx,1(j, k(j))
.

Let preqd (j) be the required detection probability at the j-th point, then one can define

x(j, k(j)) as

x(j, k(j)) = ln(
1

1− pd(j, k(j))
− 1)− ln(

1

1− preqd (j)
− 1). (8.17)

In terms of x(j, k(j)), it is possible to write the change (evolution) in x(j, k(j)) when a a

sensor is moved to the vicinity of the j-th point as

x(j, k(j) + 1) =
1

α(j)
x(j, k(j)) +B(j, i), (8.18)
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where, B(j, i) is given as

B(j, i) = (1− 1

α(j)
) ln(

1

1− preqd (j)
− 1) (8.19)

−
√
2(
∆η′ − (2k(j)+1 − 1)px,1(j, k(j)) + (2k(j) − 1)pd(j, k(j))

√

(2k(j)+1 − 1)px,1(j, k(j) + 1)qx,1(j, k(j) + 1)
).

B(j, i) in essence quantifies the change in x(j, k(j)) resulting from placing a sensor at the

i-th grid point.

Considering all points on the grid, it is possible to write Eqn.(8.18) in matrix form as

xm+1 = Amxm +Bmum (8.20)

where, the matrix subscript m denotes the total number of sensors that have been rede-

ployed. The matrix Am is a diagonal matrix of dimension NxNy, where the j-th diagonal

entry is A(j, j) = 1
α(j)

. The matrix Bm is a square matrix of dimension NxNy, with its (j, i)

entry is equal to B(j, i) in Eqn.(??). Each element in the NxNy×1 m-th deployment vector

um corresponds to one of the grid points. The j-th element in um, in essence, indicates the

contribution of placing a sensor at the j-th grid point on the overall detection probability.

As stated in Eqn.(??), our goal is to minimize the difference between the achieved and

required performance. To do this, we choose to minimize m-th step cost function Jm, given

as

Jm =
1

2
(xT

mQmxm + uT
mRmum), (8.21)

where, the matrices Qm, Rm are square positive definite matrices of dimension NxNy. In

essence, Jm quantifies the deviation error between achieved and required detection perfor-

mances. To avoid incurring a penalty for satisfying/exceeding detection requirements, the

error terms corresponding to a point where the detection requirement has been met/exceeded

is set to zero in Jm. Noting that there are M mobile sensors to be moved, we can state the
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M-step system model and cost function as

argmin
um

J =
1

2
xT
MQfxM +

1

2

M−1
∑

m=0

(xT
mQmxm + uT

mRmum)

subject to











pn
f = preq

f

xm+1 = Amxm +Bmum, m = 0, . . . ,M − 1

1TD = n

(8.22)

The quadratic cost function J along with the linear system model in Eqn.(8.20) constitute

a linear quadratic regulator (LQR) problem. Solving an LQR problem, is equivalent to

finding the optimal control vector that minimizes the cost function. One can use several

methods [30], [31] to solve the LQR problem. However, due to the fact that the system

model is dynamic (i.e., Am and Bm vary with m), solving the LQR problem can be done by

solving a single step (one step horizon) optimization problem. This can be done by setting

the gradient of the single step cost function Jm with respect to um to zero, and solving for

um as

um = −(Rm +BT
mQmBm)

−1BT
mQmAmxm. (8.23)

We note, that in calculating the new positions of the mobile sensors we need to account

for any performance degradation that might result from sensor movement. This can be

done in our approach, simply by calculating the achieved performance that results when not

taking the mobile sensors contribution into account. Neglecting any contribution mobile

sensors make in the decision process, we calculate x0 which acts as the initial condition

of the LQR system evolution model. This ensures that the degradation in performance in

the original areas covered by the mobile sensors is given an equal weight in making the

redeployment decision as the areas that suffered performance degradation due to loss of

sensors. Furthermore, it is desirable that mobile sensors move such that their total moving

distance, which is proportional to their energy consumption, is minimized. To ensure this,

sensor move only after the calculation of the all new mobile sensor positions. Every mobile

sensor is moved to the closest new position as calculated from the LQR solution. This

ensures that the total moving distance as well as the energy required for redeployment is
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minimized.

8.3 Self-Healing Algorithm

In this section, we discuss our self-healing algorithm. Assuming that the FC knows the

positions of the compromised sensors, a first attempt at healing the network is made by

adjusting the decision thresholds associated with the affected points. This can be done

using Eqn.(8.12). The network’s user can specify a minimum performance improvement

goal for both false alarm and detection requirements, which are given in vectors ǫpf and

ǫpd, respectively. If the performance improvement is not satisfactory, sensor redeployment

can be incorporated. We first assume that the mobile sensors are removed from the grid,

and then the decision thresholds are recalculated. The removal of these mobile sensors

allows us to quantify the performance change within their immediate area resulting from

moving these sensors to other points in the grid. We then proceed with the redeployment

of the M mobile sensors. The new achieved false alarm and detection profiles are used

in constructing xN0−l−m and BN0−l−m for m = 1, . . . ,M as in Eqns.(8.17) and (??). The

optimal control vector uN0−l−m is calculated as in Eqn.(8.23) . We then store the index of

the grid point îm corresponding to the maximum entry of uN0−l−m. We choose to deploy a

sensor at the îm-th point since placing a sensor at that point has the largest contribution in

minimizing the difference between the achieved and required detection performances. The

redeployment process is repeated till the set {Î = îm, m = 1, . . . ,M} of all redeployment

positions are evaluated. To minimize the total energy consumed in moving the sensors to

their new locations, we compare the set Î to the set {Ĵ = ĵ, j = 1, . . . ,M/ which indicates

the initial positions of the mobile sensors. A mobile sensor is then moved to the point in Î

which is closest to its original location.
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Algorithm 7 Self-healing Algorithm

1: Determine locations of the l compromised sensors
2: Adjust decision thresholds as in Eqn.(8.12).
3: Calculate new false alarm pN0−l

f and detection probability pN0−l
d profiles.

4: if pN0−l
f < ǫpf OR pN0−l

f < ǫpd
5: Assume the M mobile sensors are compromised.
6: Recalculate decision thresholds using Eqn.(8.12).

7: Calculate false alarm p
N0−(l+M)
f and detection p

N0−(l+M)
d profile.

8: Set m = 0
9: for m = 1 : M
10: Calculate control vector um as in Eqn.(8.23)
11: Find îm where um(̂im) = maxum, s.t. D(̂im) = 0
12: Store îm (i.e., I = [Iîm]).
13: Update D (i.e., D(̂im) = 1).
14: end
15: Calculate the distance d(̂im, ĵm̂) ∀îm, ĵm
16: Redeploy sensors
17: end

8.4 Simulation Results

In the first experiment, we examine the improvement in performance resulting from using our

proposed self-healing approaches; decision threshold adjustment and sensor redeployment.

The area of interest is a 15 × 15 grid. The performance requirements are not uniform and

are as shown in Fig.8.1 and are set to P 1
f = 0.01, P 1

d = 0.8, P 2
f = 0.05 and P 1

d = 0.6. The

sensing parameters are given as α = 0.05, pf = 0.1 and R = 5. Initially, we assume that 23

sensors are deployed such that both false alarm and detection requirements are satisfied. We

assume that M = 1 sensor is mobile while the remaining sensors are static. Fig.8.2 (a) and

(b) show the degradation in performance after the loss of 3 sensors. Though the degradation

in false alarm performance was minimum, the degradation in the detection performance is

significant and affects several points. Fig.8.2 (c) and (d) depict the performance of the

system after threshold adjustment is performed. We note that the detection performance

has improved at several points in the grid. However, this improvement is at the cost of

degradation in the false alarm performance of the system. Though a false alarm requirement
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can be achieved by setting the decision threshold high enough, it is detrimental to the

detection performance. Therefore, the improvement in the detection performance is at

the expense of degradation in false alarm performance. The performance of the system

after redeployment of the mobile sensor is shown in Fig.8.2 (e) and (f). We note that

in comparison to both detection performances before and after threshold adjustment, the

detection performance after redeployment has improved considerably with very few points

not meeting their detection requirements. In addition, we note that the redeployment

algorithm was efficient in meeting the false alarm requirements as well. In comparison to

the false alarm performance after threshold adjustment, we note that using redeployment

resulted in meeting the false alarm requirements at a great number of the points where

requirements were not met earlier. Fig.8.3 shows the original distribution of sensors, the

failed sensors and the new position of the mobile sensor for the simulation case corresponding

to Fig.8.2. Next, we quantify the performance improvement after using sensor redeployment.

We define the percentage improvement as the ratio between the number of points where false

alarm/detcetion requirements have been met after redeployment to the total number of grid

points. We compare the improvement in the system’s performance with respect to the

percentage improvement in the number of points where false alarm/detection requirements

have been met after redeployment in comparison to their number before redeployment.

Fig.8.4 illustrates the average percentage performance improvement as we vary the number

of compromised sensors. Since the performance degradation in system performance depends

on the positions of compromised sensors, we assume that sensors are compromised randomly.

The results in Fig.8.4 are the average of 250 Monte Carlo runs. We note that when using

the proposed redeployment algorithm one can achieve significant improvement in both the

false alarm and detection performances of the network.

We next illustrate the improvement in performance when the number of mobile sensors

is set to M = 3. Fig. 8.5 (a) and (b), show the degradation in performance when 3 sensors

are lost. The detection and false alarm error profiles after threshold adjustment are shown
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Figure 8.1: Nonuniform detection requirements Nx = Ny = 15

in Fig.8.5 (c) and (d), respectively. The detection and false alarm error profiles after sensor

redeployment are shown in Fig.8.5 (e) and (f). We note that the same discussion for Fig.8.4

can be applied for Fig.8.5. Fig.8.6, illustrates the average performance improvement as a

function of the number of lost sensors. We note that similar to the previous case of M = 1,

redeploying 3 sensors results in improvement in the system’s performance. In fact, a better

improvement in performance is possible using 3mobile sensors instead of 1. For example,

for M = 1 the average improvement for both false alarm/ detection performance is almost

7% when 6 sensors are lost. On the other hand, when M = 3 the average improvement in

false alarm and detection performance is approximately 18% and 14%, respectively. This

agrees with our expectation that the more mobile sensors one can move, the better one can

mitigate performance degradation by having more flexibility in redeployment.
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Figure 8.2: Change in performance M = 1, l = 3

8.5 Summary

In this chapter, we proposed two approaches for self-healing in a DSN employing the optimal

decision rule. The first approach is decision threshold adjustment, where the decision thresh-

old at the FC is updated to account for sensor failures. We proposed using an approximation

of the decision statistic distribution, which enabled us to re-evaluate the decision threshold

with low computational complexity. The second approach that we proposed is sensor rede-

ployment. Assuming that a number of the deployed sensors are mobile, we determine the

positions where these sensors should move to in order to mitigate performance degradation.

Towards this, we modeled redeployment as a linear quadratic regulator (LQR) problem.

To minimize the total moving energy, a mobile sensor moves from its original location to
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the location closest to it among the new sensor locations. Simulation results illustrated

the efficacy of using the proposed approaches in self-healing the network by improving its
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detection performance after sensor failures.

In the next chapter, we briefly outline our contributions in this dissertation and future

research directions.
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Chapter 9

Conclusion and Future Work

In this chapter, we summarize the contributions of this dissertation and discuss future

research directions.

9.1 Summary of Key Contributions

In this dissertation, we considered two major challenges related to deployment in sensor

networks for detection applications. First, we investigated the sensor deployment problem.

Using concepts from optimal control theory, the deployment problem was modeled as an

optimal control problem. Specifically, the deployment problem was formulated as a linear

quadratic regulator (LQR) problem which is a very well-behaved and studied problem in op-

timal control theory literature. The proposed LQR formulation offered a unified treatment

of the sensor deployment problem. In addition, our LQR formulation provided a rigorous

and analytical framework to study the deployment problem. This is in contrast to prior

efforts in sensor deployment that are mainly heuristic in nature. We first investigated a

DSN employing the logical OR fusion rule with detection requirements only (no false alarm

requirements). We proposed an LQR-based deployment algorithm along with a low com-

plexity heuristic alternative. Simulation results showed that using our proposed algorithms

can save up to 30% in the number of sensors in comparison to the Diff Deploy algorithm [21].

Next, we considered a network employing value fusion with both false alarm and detection

requirements. Once again, we proposed an LQR formulation and a deployment algorithms
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based on it. In contrast to prior efforts, our proposed algorithm can be applied to networks

with nonuniform false alarm and detection requirements. We also considered the problem of

dynamically calculating the maximum collaboration radius instead of a fixed collaboration

radius (which was a common assumption in prior works). Simulation results illustrated

the advantages of using our proposed algorithms and a dynamic collaboration radius in

reducing the number of sensors needed to meet performance requirements in comparison to

the D&C algorithm [22]. We next considered sensor deployment in a DSN employing the

majority decision fusion rule. Using results from nonparametric statistical theory, we were

able to model the effect of deploying a single sensor on the network overall detection per-

formance. This enabled us to model sensor deployment as an LQR problem. Subsequently,

we proposed an LQR-based sensor deployment algorithm. Simulation results showed the

advantages of using the proposed algorithm versus using a greedy deployment algorithm.

Finally, we examined deployment for a network employing the optimal decision fusion rule

[44]. To the best of or knowledge, this is the first analytical attempt to study sensor deploy-

ment incorporating optimal decision fusion. One reason for the lack of prior efforts in this

arena is the complexity associated with the probability of detection and false alarm analysis.

To reduce the computational complexity, we proposed a novel closed form approximation of

false alarm/ detection probabilities. Using this approximation, we were able to develop an

LQR formulation of the sensor deployment problem and propose an LQR-based deployment

algorithm. The performance of the proposed algorithm was shown to outperform that of a

greedy deployment algorithm.

Secondly, we investigate methods to mitigate the effects of losing sensors. While an

adequate number of sensors can be deployed to meet certain performance requirements,

losing sensors can lead to less than optimal performance. Thus, it is important to devise

strategies to mitigate performance degradation due to loss of sensors without the addition

of new sensors. In networks, this feature is referred to as the “self-healing” capability of the

detection system. For the first time, we considered self healing in a network employing the
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optimal decision fusion rule. The first proposed approach relies on adjusting the decision

threshold at the fusion center after the loss of sensors. Using the closed form approxima-

tion proposed in chapter 7, we can efficiently update the decision threshold. The second

proposed approach, sensor redeployment, uses sensor mobility. We were able to model the

redeployment problem as an LQR problem. This LQR formulation allows us to consider the

network’s overall detection performance instead of focusing on a localized part as in prior

efforts. Simulation results illustrated that the proposed algorithms are able to mitigate

performance degradation to a large extent.

In summary, a novel treatment of the sensor deployment problem has been proposed.

This control theoretic approach provides a unified to study sensor deployment with (1)

uniform and nonuniform false alarm and detection requirements, and (2) a wide range of

fusion rules. The proposed approach can serve as a planning tool for many practical DSNs.

The proposed approaches can be used to (1) determine the minimum number of sensors

needed to satisfy some given performance requirements, and (2) quantify the performance

of an existing deployment with low computational complexity.

9.2 Future Work

Some possible future research directions are provided in this section. We first discuss ex-

tensions to our work proposed in chapters 5-8.

• Throughout this dissertation, we assumed that sensors have a common false alarm rate

and detection sensing profile. We can extend our work to the case of heterogeneous

sensors with different false alarm rates and/or detection sensing profiles.

• In chapter 4, we have studied deployment for a basic terrain model. We can extend our

work to more realistic terrain models under which the various proposed deployment

algorithms can be evaluated.

• In chapter 5, we evaluated the dynamic collaboration radius in a DSN employing value
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fusion. We can extend this by evaluating the collaboration radius for DSNs employing

the majority fusion or optimal decision fusion rules.

• In chapter 8, we developed approaches for self healing to mitigate performance degra-

dation due to loss of sensors. Consider a situation where detection/ false alarm re-

quirements change from their initial state for some reason (e.g., change in mission

priorities). In this case, how can we “self-adapt” the DSN to meet the modified re-

quirements?

In addition to the extensions discussed above, we can investigate the deployment and

self healing problems under new dimensions. A subset of possible next steps are discussed

below:

• Modeling effects of communications: In this dissertation, we assumed communication

between sensors and the fusion center to be error free. One can can consider the deploy-

ment problem when the communication channel is noisy/unreliable. Understanding

the effects of communication delay on the fusion process as well as deployment is a

problem that needs further study.

• Network architectures: The networks examined in this dissertation use a parallel archi-

tecture with a fusion center. It would be an interesting problem to investigate sensor

deployment in networks using other architectures (e.g., serial architecture).

• Target localization/tracking : In the target localization problem, noisy measurements

from multiple sensors are processed to determine the position of a target of interest.

In general, sensor measurements are distance dependent and therefore it is important

to determine the deployment positions where sensors are placed to minimize the error

in estimating the target position.

• Game-theoretic self healing: We have considered the problem of minimizing the to-

tal energy consumed in sensor redeployment. However, we did not incorporate the
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amount of residual energy available to each sensor. Incorporating this in the solution

of the redeployment problem can significantly improve the network’s lifetime, since

the movement of a sensor will be dependent on its residual energy. We note that this

problem can be studied using game-theoretic approaches.
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Appendix A

Sensor Deployment in Value Fusion
Detection Networks – Amplitude
Measurements

A.1 System Model

The measurement (Ui) of the i-th sensor, under the two hypothesis (i.e., H0 and H1), is

given as

Ui = Ni | H0 true (A.1)

Ui = A(di) +Ni | H1 true (A.2)

where, Ni ∼ N (0, σ2). Furthermore, we assume that sensor measurement noise is i.i.d. The

signal amplitude A(di) is distance dependent, and is given as

A(di) =







A0 if di ≤ d0
A0

(di/d0)κ
if d0 < di ≤ dmax

0 if di > dmax

(A.3)

where; di is the distance between the i-th sensor and the target/phenomena, dmax is the

detection radius and κ is a decay factor that depends on the environment. We also assume

that the collaboration radius Rc is equal to dmax. We note however, that our proposed

deployment framework is general and does not depend on any particular choice of the signal

amplitude function.
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A detection decision is made regarding the presence or absence of a target at the j-

th point on the grid by combining the available sensor measurements. This is done at a

fusion center (FC), which calculates a decision statistic Tj and compares it to a decision

threshold η(j, nj), where nj is the number of sensors reporting measurements regarding the

j-th point (i.e., less than dmax meters from the j-th point). A decision is made according to

the following non-randomized decision rule,

δ(Tj) =

{

H0 if Tj ≤ η(j, nj)
H1 if Tj > η(j, nj).

(A.4)

In this paper, we adopt the value fusion detection strategy. The decision statistic Tj is

given as the average of the measurements reported by the nj sensors, i.e.,

Tj =
1

nj

nj
∑

i=1

Ui (A.5)

therefore, the detection probability at the j-th point, denoted as pd(j, nj), is given as

pd(j, nj) = Pr(Tj ≥ η(j, nj)| H1 true) (A.6)

= Pr(
1

nj

nj
∑

i=1

[A(di) +Ni] ≥ η(j, nj)) (A.7)

= Q(

√
njη(j, nj)

σ
− 1

σ
√
nj

nj
∑

i=1

A(di)) (A.8)

where, Q(x) is given asQ(x) = 1√
2π

∫∞
x

e
−t2

2 dt. Similarly, the false alarm probability, denoted

as pf(j, nj), at point (j) is given as

pf (j, nj) = Pr(Tj ≥ η(j, nj)| H0 true) (A.9)

= Pr(
1

nj

nj
∑

i=1

Ni ≥ η(j, nj)| H0 true) (A.10)

= Q(

√
njη(j, nj)

σ
). (A.11)

The FC calculates the decision statistics associated with each point on the grid. The decision

threshold is calculated using knowledge of the number of sensors that are within the detection
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radius, the noise variance and the false alarm requirement associated with every point. In

practice, the FC receives measurements from all sensors in the grid and performs a series of

sensor measurement averages corresponding to each point on the grid.

The deployment problem that we examine in this work can now be stated as follows:

Given preq
f and preq

d and a fixed number of sensors K, how can we deploy these sensors in

a value fusion based detection system, such that the squared error (SE) between achieved

and required detection probabilities is minimized while satisfying false alarm requirements?

If we denote the achieved false alarm and detection probability vectors after K sensor have

been deployed as pf,K and pd,K , then we can mathematically state our problem as

argmin
u

∑

j:pd,K(j)<preq
d

(j)

(pd,K(j)− preq
d (j))2

subject to

{

pf,K = preq
f

1Tu = K
(A.12)

where, u is the deployment vector. The deployment vector is an NxNy×1 vector. Its entries

indicate the number of sensors at each point on the grid, and take values of either 0 or 1.

1T indicates the transpose of an NxNy × 1, with all entries set to 1.

A.2 Optimal Control Formulation

The deployment problem stated earlier can be thought of as a optimal control problem.

The SE between achieved and required detection probabilities can be mapped into the cost

function to be minimized in an optimal control problem. Furthermore, the set of optimal

control vectors correspond to the sensor positions on the grid (i.e., the deployment vector).

In an LQR problem, the optimal control vectors are solved sequentially, this means that in

the proposed framework sensors are sequentially placed on the grid. In the next section,

we illustrate that it is indeed possible to approximate the deployment problem as a linear

quadratic regulator (LQR) problem. We will also discuss solving for the optimal control

vectors (i.e., deployment vector in our problem) in the LQR problem.
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In an LQR problem, the evolution of the state of the system (i.e., difference in detection

probabilities in our problem) is governed by a linear relationship. In this section, we show

that it is possible to linearly approximate the change in the difference between ln( 1
1−pd(j,nj)

−
1) and ln( 1

1−preq
d

(j)
−1). Due to the monotone nature of the logarithmic function, minimizing

the difference between these two quantities is equivalent to minimizing the difference between

pd(j, nj) and preqd (j). Furthermore, we quantify the effect each entry in the control vector

will have on the system’s evolution.

Noting that we can approximate the Q(·) function as [59]

Q(x) ≈ 1− 1

1 + e−
√
2x
, (A.13)

we can approximate ln( 1
1−pd(j,nj)

− 1) as follows

ln(
1

1− pd(j, nj)
− 1) ≈

√

2

σ2nj

nj
∑

i=1

A(di)−
√

2nj

σ2
η(j, nj). (A.14)

Eqn.(A.14), illustrates that for a fixed nj and η(j, nj), the change in ln( 1
1−pd(j,nj)

− 1) is

approximately linear with respect to the signal amplitudes measured by the nj sensors.

Define m(j, nj) = ln( 1
1−pd(j,nj)

− 1) and mreq(j) = ln( 1
1−preq

d
(j)

− 1). Having nj = k − 1,

then it is possible to write x(j, k) = m(j, k)−mreq(j) after the k-th sensor has been added

within the detection radius of point (j), as follows

x(j, k) = x(j, k − 1) +

√

2

σ2k
A(dk)

+

√

2

σ2
(
1√
k
− 1√

k − 1
)

nj−1
∑

i=1

A(di)

+

√

2k

σ2
η(j, k) +

√

2(k − 1)

σ2
η(j, k − 1). (A.15)

It is possible to write Eqn.(A.15) in matrix form as follows

xk = xk−1 +Bkuk. (A.16)
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where, xK = [x(j, nj), ∀j ∈ G]T . k is the total number of sensors in the grid. We note that,

depending on the detection radius, the number of sensor covering a point (j) might be in

general less than k. The matrix B is of dimension NxNy × NxNy. The elements of the

B, quantify the contribution of possible sensor positions to the detection probability. For

example, the (r, c)th element of B is given as

B(r, c) =

√

2

σ2(nr + 1)
A(d(r, c))−

√

2(nr + 1)

σ2
η(j, nr + 1)

+

√

2

σ2
(

1√
nr + 1

− 1√
nr

)
nr
∑

i=1

A(d(r, i))

+

√

2(nr)

σ2
η(j, nr) (A.17)

where, d(r, c) is the distance between points r and c on the grid. The deployment vector u

is an NxNy × 1 vector, with either 0 or 1 entries. The entry value indicates the number of

sensors at the point on the grid that corresponds to that entry.

Note that the SE between achieved and required detection probabilities, can be described

as the weighted quadratic norm of the state (xk) of the system described in Eqn.(A.16).

Assuming that the weighted quadratic norm of the system’s state is chosen as the cost

function and the deployment vector corresponds to a control vector, we are motivated to

solve the deployment problem as an optimal control problem. Here, the objective is to

determine the control vector that would minimize the cost function. That is, the deployment

problem in Eqn.(A.12) can be restated as

argmin
uk

J =
1

2
xT
KQfxK +

1

2

K−1
∑

k=1

(xT
kQxk + uT

kRuk)

subject to











pf,K = preq
f

xk = xk−1 +Bkuk, k = 1, . . . , K

1Tu = K

(A.18)

where, Q,Qf and R are symmetric positive definite weighing matrices. The squared error

cost function penalizes both positive and negative deviations from the required detection
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probability profile. To avoid incurring a penalty for satisfying/exceeding detection require-

ments, the error terms corresponding to a point where the detection requirement has been

met/exceeded is set to zero in J . The optimal control problem corresponding to our system

is the linear quadratic regulator (LQR) problem. We note here, that the cost function J

does not incorporate the false alarm requirements. However, false alarm requirements can

be always met by choosing a suitable detection threshold at the FC. Since the LQR prob-

lem described above is dynamic, we can use either the sweep method or differentiation to

calculate the optimal control vector.

A.3 Suboptimal Deployment Algorithm

Our system equation is as follows

xk = xk−1 +Bkuk. (A.19)

Ideally, it is desirable to deploy sensors such that the resulting xk is equal to the zero vector

(i.e., xk = 0 implies the detection requirements have been satisfied). Substituting xk = 0

in Eqn.(A.19) and solving for uk, we get the following ;

uk = −B−1
k xk−1. (A.20)

Similar to the optimal control based algorithm, the resulting deployment vector consists of

continuous real-valued elements. Therefore, a 1 is placed at the index where uk is maximum

and a 0 is placed at the remaining positions. Once again, a sensor is placed at the location

corresponding to the index where uk is maximum. The computational complexity of the

suboptimal algorithm is O(K(N3 + N2)), where N is as defined earlier. Furthermore,

simulation results show that the performance of this algorithm is comparable to that of the

optimal control based algorithm.
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A.4 Simulation Results

In this section, we compare the performance of the greedy, suboptimal and optimal control

based algorithms. In the greedy algorithm, a sensor is placed at the point with the largest

difference between required and achieved detection probability.

In the first experiment, the area of interest is modeled as a grid of 25× 25 points. The

false alarm and detection probability are uniform and are set to preqf = 0.01 and preqd =

0.9, respectively. The noise variance is set to σ2 = 1 and d0 = 1. A discussion of the

choice of Rc can be found in [22]. Table A.1, lists the number of sensors needed by

each algorithm, to meet the false alarm and detection requirements as the initial signal

amplitude and detection radius are varied. The minimum numbers of sensors can be found

by assuming, in the problem statement and LQR formulation, a large number of sensors

K, and deploying sensors till detection and false alarm requirements are met. Results in

Table A.1 indicate, that the optimal control based algorithm uses 25% fewer sensors than

the greedy algorithm. This is due to the fact, that in the greedy algorithm a sensor is

deployed by anticipating the effect the sensor deployment will have at a single point (i.e.,

the point with the largest difference between required and achieved detection probabilities).

In contrast, in the proposed algorithms, the deployment process takes into account the effect

of each sensor deployment on the whole grid, which is embedded in the matrix B. Fig. A.1

shows the convergence of the SE between required and achieved detection probabilities as a

function of the number of sensors deployed in the network by each algorithm, for the case

of A0 = 100 and Rc = 5.26 meters. We note that the suboptimal and optimal control based

algorithms have a faster convergence rate than the greedy algorithm.

In the second experiment, we consider a setup similar to the first experiment with a fixed

initial amplitude of A0 = 50. However, the false alarm and detection requirements are not

uniform over the grid (see Fig. A.2). In Table A.2, the number of sensors needed by each

algorithm to satisfy the same preq
d and preq

f requirements is indicated. Results indicate that

even with nonuniform requirements, the proposed algorithm uses fewer number of sensors
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Table A.1: Minimum number of sensors to satisfy uniform requirements for different A0

and Rc: Greedy, Sub-optimal and Optimal-control based algorithms

Parameters Greedy Sub-optimal Optimal-control based

A0 = 30, Rc = 2.9 58 56 53

A0 = 50, Rc = 3.72 36 35 30

A0 = 100, Rc = 5.26 20 16 15

A0 = 250, Rc = 8.3 9 8 8
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Figure A.1: SE convergence

than the greedy algorithm.

Table A.2: Minimum number of sensors to satisfy various nonuniform requirements for
fixed A0 and Rc: Greedy, Sub-optimal and Optimal-control based algorithms

Requirements Greedy Suboptimal Optimal-control based

pd1 = 0.9, pd2 = 0.7, pf1 = 0.01, pf2 = 0.001 35 33 31

pd1 = 0.9, pd2 = 0.7, pf1 = 0.001, pf2 = 0.01 30 27 26

pd1 = 0.9, pd2 = 0.9, pf1 = 0.01, pf2 = 0.001 40 37 34

156



0 5 10 15 20 25
0

5

10

15

20

25

p
d1

p
f1

 

p
d2

p
f2

 

Figure A.2: Nonuniform requirements Nx = Ny = 25
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