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INTRODUCTION

The crbsscorrelation function of two sets of random data sequence
is a measure of the linear dependence of one set of data on the other.
For an exact estimate of the crosscorrelation function we need
infinite length of data sequence. In practice, only finite lengths
of data sequences are available. In such cases we can obtain only an
estimate of the crosscorrelation function.

Consider two real-valued data sequences X(n) and Y(n), where n
.is the time index. Suppose these sequenceé are known over a finite
length of time. Then an estimate of their crosscorrelation is given
by

N-T
Rxy(T) = ¥ X(n) Y(a+T) ltl < L
n=o

where

T is the shift or lag index, L is the maximum shift and N is
the total number of points in each sequence. In the interest of
reducing the variance of the estimate, L is typically chosen to be
less than 10% of N.

The crosscorrelation function Ryxy(T), in (1) is usually esti-
mated via Fast Fourier Transform (FFT) techniques, which rely on the

Wiener-Khinchin theorem, according to which

fxy(t) = FTl (6(w))
where FT~!l denotes the inverse Fourier transform, G(w) is an estimate
of the cross Power Density Spectrum (PDS), which is usually computed
uning overlapping FFT's. This method is discussed in great detail

and literature pertaining to it is readily available, e.g. see [1-3].

(1)

(2)



This frequency domian method is commonly employed to compute the
crosscorrelation function in order to estimate the time delay between
the sequences X(n) and Y(n). The estimate of time delay is given by
that value of lag index T at which Ryy(T) attains it's peak value.

In this report we restrict our discussion to a time domain
approach, which we refer to as the Short term correlatior (STCOR),
for estimating the crosscorrelation sequence. The motivation for
doing so is it is relevance to two possible applicatioms which are
discussed in section IV.

The computational simplicity of this method makes it ammenable
to implementation in a microcomputer system. In additiom,it has the
capability of adapting to variations in the crosscorrelation functionm,

in the event the data sequences X(n) and Y(n) are nonstationary.

II. STCOR ALGORITHM

The basic idea of this algorithm is to estimate the crosscor-
relation Rgy(T) at each lag value T, using the first order recurrence

relation

(1-81) X(n) Y(n+1) It (3)
Sx(n-D) Sy(a-D) ° WAk e

ﬁXY(n,T) = Bp Rgy(n-1,7) +

where ny(n,T) is an estimate of the crosscorrelation at the time n

and lag , 0 < By <1 is a smoothing parameter, and D is a delay
parameter; Sy and Sy are estimates of the signal strengths of the

sequences X and Y repectively, and are estimated recurrsively as

Sx(n) = BZ Sx(n-l) + (1‘82) [X(n)| (4a)

sy(n) = By Sy(n-1) + (1-8y) lv(w)l, 0 <By < 1. (4b)



It is apparent that (3) represents the process of shifting the
sequence Y(n) respect to X(n) by T time steps, and then averaging
the related products. A total of (2L+l) first-order computations are
involved at each time step n, since the lag index take on values
-L,-L+1,..., =-1,0,1,..., L-1,L. This aspect is summarized in Fig. 1.
The denominator terms Sy and Sy causes Ryy(n,T) to be a dimensionless
quantity.

Consider the equation
Ryy(n,T) = Bj Rgy(n-1,T) + (1-B)) X(n) Y(n+1).

For a particular lag index T, the above equation implements a first

order filter whose transfer function is

(l"Bl) .
H(z) = — . (5)
(1-8,z71)

The input to this filter is the product X(n)Y(n+T). Since at every

time index n we require a total of (2L+1) crosscorrelation values,

each corresponding to a particular lag value, we can implement

equation (3) using a bank of first order filters, as shown in Fig. 2.
To illustrate, the autocorrelation function estimate of a 45 Hz

sinusoid sampled at 256 Hz per second is displayed in Fig. 3(a).

This estimate was obtained using the overlapping FFT techmique [1],

with a 256 point FFT's and a 50% overlap for successive segments.

The corresponding autocorrelation function estimate was obtained

using STCOR algorithm and are displayed in Fig. 3(b) to 3(d). These

were the outputs at 2 second intervals, which implies that Figs. 3(b)



Figure 1.

Summary of equatiom (3)
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Figure 2. Bank of first-order filters.
For simplicity the structure is shown for lag values -1,

0 and 1 only.
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through 3(d) represent the results of a 6 second data sequence. It
can be ovserved that the estimates are also sinusoids of 45 Hz as
they should be. We note that the shapes of the autocorrelation
functions obtained by the FFT technique (Fig. 3(a)) and the STCOR
algorithm (Figs. 3(b)-3(d)) are essentially the same. However, their
amplitudes are different. This is because the estimates obtained via

the FFT's are not normalized, while the estimates obtained via the

STCOR algorithm are normalized by the signal strength in the sequences.

Hence the estimate obtained via the STCOR satisfies the condition

-1 < Rgy(n,T) < + 1.

Similar autocorrelation estimates were obtained for 35 Hz - 45 Hz
bandpassed white noise sampled at 256 sps. These results are dis-
played in Fig. 4. 1It's apparent that the FFT and STCOR methods yield
the same crosscorrelation information. The parameters used for the

STCOR algorithm in both the above experiments were as follows.

L = 16
By = 0.999
D =0

B, = 0.98

III. STATISTICAL COHSIDEEATIONS (4]

A statistical analysis for the estimates obtained from the STCOR
algorithm can be carried out assuming that the input sequences X(n)
and Y(n) are stationary Gaussian process with zero means. Since the
denominator in (3) is merely a normalizing comstant, it is ignored
for convenience. Hence our discussion is restricted to the cross-

correlation function defined as

(6)
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Bxy(n,T) = B Rgy(n~1,T) + (1-B;) X(n) Y(n+1)

In (7), n is the time index and T is the lag or shift index.
With some manipulations the recursive relation in (7) can be re-

written as

~ n .."1 ~
Ryy(n,T) = (1-B1) ): Bi' X(n-i) Y(n-i+1) + B"i‘ Rxy(T,0) Itl<L

1=1
for a fixed lag value T.
We now define the true (exact) crosscorrelation function of the

sequences X{(n) and Y(n) as

Ryy(t) = E{X(n-1i) Y(n-i+7)}
with

Rgx(0) = E {XZ(n-i)}
and

Ryy(0) = E {¥2(a-i)}

where the operatior E(-) denotes the statistical expectation of
the quantity within the brackets. Taking the expected value of
(8), we get
-~ n i.-l n A
E {BRxy(n, 1)} = (1-8;) § 81 BRxy(n,7) + 81 Rxy(0,7)

L=1
The limiting value of (9) as the time index,n, tends to infinity

is given by

Lim E{ ﬁxy(n,T)} = Ryylm,t) = Rgy(1); [T!.ﬁ 14
n e
since,
v 2
iél?’;-l = Ls Fpefy .
1

= —— , for IB1l <1

1-8;

(7

(8)

(8a)

(8b)

(8c)

(9}

(10)



From (10) we see that the estimate of Ryxy(m,T) in (7) is an unbiased

estimate.
The time constant T(B;) of the convergence associated with (9)

can be found by letting ﬁgy(n,T) = e land ﬁxy(G,T) = 1, i.e.,

Solving (11), we get

o -1
T(8y) =Ry

From the properties of logarithm, we know that

1In B < B1-1

Further, when By = 1,
in (B1) =B; -1

From (12) and (13) we get

.
= 1
1-B;
For example, if By = 0.999 then the associated time constant is

1000 samples. This is equivalent to 4 seconds for a data sequence
sampled at 256 sps.

Next, we determine the steady state variance of the estimate
%xy(n,T). Equation (5) can be rewritten as

(1-81)z
z-B

H(z)

Thus, we can interpret our estimator to be a discrete time system

whose impulse respones is given by

h(n) = (1 - By) 8? A n 30

10

(11)

(12)

(13)

(14)

(15)



ar

The impulse response is an exponentially damped sequence since
0 < B < 1. The input and output variances of this filter are thus

related via the equation (see Fig. 5)

o = g? { Z hZ(n) }

out in } n=o

where, G% is the variance of the input X(n) Y(n+T), and 62 tis the
in ou

variance of the output Rgy(n,T}, which is desired. Equation (17)
states that the variance of the estimate is product of the input

variance and the sum of squares of the impulse response. The sum

= -}
of squares of the impulse response Z h2(n), is given by
n=o
2 | 2 2n (1-8)2
h2(n) = (1- 8%) B = ——  , Byl < 1.
néo ' k ;Zo ] 1- B12 1
That is
@ (1-81) 1-8;
2 = =
n=o
The input variance Gin is found as follows,
2 r 2 _ 2
o;, = E { X(n) Y(n+1) }] a [E{K(n) Y(n+1) }:[ ;
That is
o = E@?) - [E@]?
in
where,
@ = X{(n) ¥(n+T) and E {X(n) Y(a+1)} = Rxy(T) .

Now, (19) can be written as

gfn = B(a2) - R§Y(r>

11

(17

(18)

(19)

(20)



Figure 5. Pertains to equatiom 17.

out
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The term E(a?) is given by
E(a?) = E {X(n) Y(a+1) X(n) ¥(n+1)} . (21)
Since we are assuming that the input process is Gaussian we can
make use of the fact that [5],
Elg,8,848,] = Elg;g,] Elgsg,] + Elg;8,] Elg,g,] +
E(g,g,] Elg,8,] (22)

where the g, are zero mean Gaussian random variables. In this particu-

lar case

g = g = X(n)
and

g8, = g, = Y(n+T) .

Thus (21) and (22) yield

E [a2] = 2 R§Y(T) + Ry (0) Ry (0) (23)

Substituting (23) into (20), we obtain

aﬁn = R§Y(T) + Reg (0) Ry (0) . (24)

Combining (17),(18) and (24) we get the result

(1-81)
o> = 21 [RXX(O) Ryy(0) + R;Y('r)] , It 1 (25)

which is the steady state variance of the crosscorrelation estimate
in (7).

From (25) it is evident that when B] = l, the steady-state variance
of the estimate is not zero. but is the product of a small number, which
is the reciprocal of twice the time constant of convergence, and the

quantity (R;X(O) RéYCO) + R;Y(T))' Hence the.STCOR estimate is incon-

sistent.
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IV. APPLICATIONS
We now discuss two possible applications that are relevant to

point sensor intrusion-detection schemes.

1. Directionality

In certain intrusion-detection applications. it may be necessary
to ignore alarms due to sources that are located in the region to be
protected. To illustrate, we consider Fig. 6, which shows geophone
array. Geophones are electromechanical transducers which produce an
output signal voltage proportional to the velocity of ground motioms.
The output of each geophone is processed by a detection algorithm,
which involves an adaptive digital predictor. Details of the detection
algorithm are given in [6], which is reproduced in Appendix I. The
output of detection algorithm is a 0 and 1, where output of l indicates
an alarm conditiom.

Referring to Fig. 6 it is apparent that false alarms can originate
in a number of ways; e.g. traffic on a road close to the semsor
array, or a thumping action due to some construction activity. In
such cases, it is clear that an intrusion detection system must be
capable of determining source directiom, 1i.e., whether the source is
north or south of the geophone array. Then alarms due to a source
north of the array in Fig. 6 will be classified as possible intrusiom,
while those due to sources south of the array will be ignored.

A possible approach to solve this problem could be to use pairs
of geophones as depicited in Fig. 7. The basic idea is to determine
whether a source is closer to the geophone 1 or geophone 2 in Fig. 7.
It is apparent that signals due to sources in the region to be pro-

tected will arrive at geophone 2 first and then at geophone 1.
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Figure 6. Pertains to directiomality.
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Thus there will be time delay between the arrival times of signals
at the two geophones. There are several algorithms that can be
used to estimate the related time delay. However, most of these
involve frequency domain crosscorrelation techniques [1-3], and
thus would be difficult to implement in a microcomputer system which
would be part of a field unit. As such,we propose the STCOR algorithm,
as depicited in Fig. 8. Here the output of the STCOR algorithm
is a 0 and 1, depending on whether the source location is to the
south or north of the line AB, respectively in Fig. 8. A simple
logic stage utilizes the outputs of the detectiom algorithm, and
the STCOR algorithm to indicate a final output of a 1 or 0 to indi-
cate a qualified alarm or no alarm condition, respectively. For
illustration purposes we now present some experimental results.

Experiment 1: The data for this experiment was acquired as
illustrated in Fig. 7. A person (intruder) walked parallel to the
line joining geoPﬁones 1 and 2, and the output voltages of these
geophones were digitized and recorded. The sampling frequency
employed for A/D conversion was 256 Hz. The data is illustrated
in Fig. 9(a). The intruder walked in the south direction, and
a crossover to the other side of the line AB in Fig. 7 occured
around 14 seconds into the data file. This crossover is indicated
by the symbol '4' in Fig. 9(a).

For each value of the time index n in (3), the value of %, for
which ﬁxy(n,;) attains the peak value (see Fig. 1) was stored.

The other parameters for estimating the crosscorrelation functionm,

were L = 16, By = 0.999,B8 = 0.98 and D = 0. These values
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Figure 8. .Proposed scheme for intruder detection and

qualifying the alarm.
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of T were then smoothed using thefirst order smoothing filter
y(n) = By(a-1) + (1-8) T(n) (26)

where y(n) is the smoothed estimate of 7. Here B = 0.997 was used

as the smoothing parameter. The resulting y(n) is plotted in Fig. 9(b).
From Fig. 9(b), we can see that the TDF (time delay function)

Y(n) changes sign around 15 seconds, indicating a crossover around

the midpoint of the line joining the geophones in Fig. 7. C(learly,

this compares well with the actual crossover point which was around

14 seconds. The value of TDF can be encoded as 1 or 0, to indicate

the directions north or south of the line AB respectively; see

Fig. (8). Thus the alarm conditions of the detection algorithm can

be qualified, depending upon whether intruder is north or south

of the line AB in Fig. 7.

Experiment 2: A vehicle (pickup truck) was driven parallel

to a geophone pair; see Fig. (10). The data files comsisted of
48 seconds of data, of which the segment from 15 to 39 seconds acquired
at geophone 1 is displayed in Fig. 11(a). The vehicle crossed over
the line AB around 31 seconds.

Crosscorrelation estimates obtained via the STCOR algorithm
are displayed in Fig. 11(b) and Fig. 11(c) respectively. These
estimates were obtained at 23 and 39 seconds into the data file,
respectively. The corresponding TDF is plotted in Fig. 11(d), which
indicates that the truck crossed the line AB in Fig. 10 around 33
seconds. This.result again compares well with the actual value
of 31 seconds when the actual crossover occured. Thisillustrates that

the STCOR algorithm is capable of tracking the scurce direction
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with reference to the line AB in Fig. 7.
The parameters used for Experiment 2 were identical to those in
Experiment 1; i.e. L = 16, B; = 0.999, B, = 0.98, D = 0

and § = 0.997.

2. Estimation of dominant frequency component:

This application concerns sinusoidal-like signals. where we are
interested in continuously estimating the dominant frequency
component in such signals. To illustrate. we present 32 seconds of
helicopter data which is plotted in Fig. 12(b). This represents the
response of a geophone placed on the surface of earth, as depicited
in Fig. 12(a) with a helicopter approaching from the west.

The acoustical waves which impinge the earth create seismic
waves which propagate and cause the geophone to respond. The power
density spectra of the data in Fig. 12(b) is displayed in Fig. 12 (e).
From these spectra we can observe the sinusoidal nature of the geo-
phone output signals. We note that there is a dominant component
around 24 Hz. Our objective is to estimate this component on a
continuous basis. To this end. we use STCOR algorithm in (3) to
estimate the autocorrelation function §XY(n,T). The parameters used
for the STCOR algorithm were Bl = 0.999, 52 = 0.98 and L = 16.
Hence the associated time comstant is 1000 samples (or 4 seconds).
at 256 Hz sampling frequency. The autocorrelation is computed noting
that it is symmetric about the point T = 0, i.e. ﬁxy(n.-r) = §XY(D.T),

With L = 16, the total length of Ryxy(T,n) is thus given by



Helicopter direction
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Figure 12(a). Pertains to Helicopter data.
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T = 32/256 = 1/8 second
since the sampling frequency is 256 Hz. Thus If Z(n) denotes the
number of sign changes that occur in Ryx(n,T) at time n, the fre-
quency associated with the dominant component in the input signal at
time n, say f(n), is estimated as

f(n) = 2Z(a)/2T ,

= 4Z(n)
since T = 1/8 seconds.

As an example, plots of ﬁxy(n,T) are displayed in Fig. 13 at 8,
16, 24 and 32 seconds into the data file. We observe that they all
tend to be sinusoidal functions and the number of sign changes in
each of them is 6. Thus the dominant component at the instants 8,
16, 24 and 32 seconds is 24 Hz.

Our approach is to construct a histogram for the dominant com-
ponent variable f(n); i.e. the number of times the component f(n)
occurs during a specified number of iteratioms. To illustrate,
histograms are obtained over 8-second intervals for the helicopter
data and are displayed in Fig. 14, at 8, 16, 24 and 32 seconds into
the data file. We note that the peak values of these histograms are

at 2048. This implies that the dominant component at each of 2048

iterations (= 8 second interval) is 24 Hz. Thus the dominant component

in the helicopter data is 24 Hz as estimated by the STCOR algorithm,

with a time constant of 1000 samples. This value for the dominant

frequency component agrees with the power density spectrum information

in Fig. (12c) which also indicates that most of the power is around
24 Hz. The PDS estimate employed overlapped FFT's and used all the

48 seconds of data.
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It is apparent that the STCOR algorithm is capable of tracking
the dominant frequency component in sinusoidal-like data, in the
event the dominant component is changing. This aspect is illustrated
via an experiment on synthetic data, which is displayed in Fig. 15.
The frequency components of the sinﬁsoids are changed over each
segment of the data. The data consists of 6 segments of 45, 60 and
90 Hz sinusoids. The additive noise is white, and the SNR is
approximately 0 dB. From Figures 15(b) through 15(g), it is clear
that the algorithm tracks the frequency of sinusoid as it changes

from segment to segment.

V. CONCLUSION

This study of STCOR algorithm shows that the algorithm could be
useful for two possible applications. They are

1. Direction determination in a point sensor intruder detection
scheme, and

2. Estimation of the dominant component in sinusoidal-like
signals and tracking them.
An attractive feature of the STCOR algorithm is that it can be easily
implemented on a microcomputer system, and hence is a promising

candidate for real time applicationms.
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FOINT SENSOR ADAPTIVE SIGNAL PROCESSING
FOR INTRUSION-DETECTION*

N. Almed and S. Vijayendra
Electrical Engineering Department
Kansas State University, Manhattan, KS 66506

R. J. Fogler and G, R, Elliott
Sandia Laboratories, Org. 1738
Albuquerque, MM 87185

Abstract

This paper addresses same adaptive signal pro~-
cessing aspects of point-sensor based intrusion-
detection systems, The sensors considered are
geophones ard microphones, Several examples are
given of systems which can process signals fram
these sensors to materially reduce the affects
of noise ard yet reliably detect the presence of
the walking intruder. The problem of accustic-
ally-generated noise is discussed in same detail.
Scme aspects of implementation in field hardware
are also included.

Introeduction

Velcoity geophones are transducers which produce
an cutput signal voltage proportional to the
velosity of ground motions, These ground motions
can be caused by a person walking (intruder) or
by vehicular traffic, portable power generators,
wind qusts, trains, tractors, amd so on (noise
scurces). Geophone signals produced by seismic
waves caused by the moticn of the scurces on the
ground will be referred to as type 1 signals.
Accustical moise sources such as overhead air-
craft also produce seismic waves in an indirect
manner, as depicted in Pig. 1. We observe that
the process of sourd waves impinging on the soil
in proximity of the geophone results in seismic
waves to which the geophone responds. Geophone
signals produced by this acoustic coupling will .
te referred to as type 2 signals.

Studies related to the geophone response to
footsteps of a person have been reported in Ref.
1. At distances under 2 metres, strong signal
carponents have been found well below 20 Hz with
weaker camponents in the 50 to 100 Hz range. At
distances greater than 2 metres, the camponents
in the 50 to 100 Hz range become daninant. These
spectral camponents are largely independent of
site conditions. Since no significant footstep
energy exists beyond 100 Az, cur investigations
have been restricted to signals that are band-
limited to 100 Hz.

*This work was sponsored and funded by the Base
Installation Security Systems Program Qffice,
Electronic Systems Division of the Air Force
Systems Comnand, Hanscam Air force Base, MA
017131,

e geophone signal for a walking intruder
1.s depictad in Fig. 2. The mtrudung:.s walking
in a circle of constant radius with the gecohone
at its center. A time damain plot of the
resultant gecphone signal is shown in Fig. 2a.
The power density spectrum averaged over several
footsteps is shown in Fig. 2b.

The intruder signal is not always as easily dis-
cernible—as depicted in Fig. 3. The walking
intruder signals in Figs. 2 and 3a are the same
magnitude but the latter is buried in tvpe 2
noise generated by a helicoper hovering near the
geophone, From Fig. 3a, it is apparant that in
the interest of reliable intruder detection in
the presence of such moise, same form of filter-
ing to reduce noise must be done prior o using
a detection algerithm, Furthermore, since soil
characteristics can vary depending upon location
ard climatic conditicons, spectral properties of
noise signals may not be stationary.* As such,
we will consider solutions which involve adaptive
systems,

Algorithms

We consider two systems, the first of which is
shown. in Fig. 4, and is referred to as System 1.
It consists of an adaptive digital predictor
(ADP) and an adaptive threshold detsctor (ATD).

The ADP in System 1 can be implemented as a
transversal filter or a lattice structure. We
consider a symmetrical lattice implementation
which has been effective in a recent intrusion-
detection algeritim?s3, The lattice coeffi-
cients (weights) are updated by an algorithm
proposed by Griffiths, details related to which
are available elsawhere4:3,

The ATD stage in Fig. 4 computes a ratio, R(n),

of two signal energies e2(n) and e2(n-D) at
time n; see Fig, 5., The parameters Nj and N3

denote the mumber of samples over which the

energies e2(n) and e2(n-D) are camputed,
while D is a delay parameter, The quantity

e2(n) represents the intruder energy if one is



present, while e?(n-D) is a measure of the
moise energy D samples earlier. The value of
Ny depends on the typical duration of an

intruder fcotstep. At a sampling frequency of
256 Hz, the value Ny=24 samples has been found

to be satisfactory. Correspording values for
N, and D that have worked well are 48 and 32

samples, respectivelyS. The value of N, is

chosen so that a reascnably smooth estimate of
the ambient noise is obtained,

The rale of the ALP in System 1 is to decorre-
late the input noise. As such, it reduces
rnuisance alarms, ard at the same time, improves
the signal-to-noise ratio if a footstep is
present, Footsteps by themselves produce broad-
band transient signals which pass through the
ADP with little change. )

An assortment of data files were processed using
System 1 with 8 stages for the ADP, and the
related sampling frequency was 256 Hz. The con-
vergence constant (a in Ref., 5) was 0.02, while
the smoothing paramter (3 in Ref. 5) was 0.98.
Parameter values for the detector part of System
1 were as follows: Ny=24, No=48, D=32,

€22717 ang 9y=4. Noise scurces included

helicopters, turboprops, jet aircraft, idling
vehicles, ard wind gusts, An example of the
results so obtained is displayed in Figs. 3b and
6. Eight seconds of a l6~secord data file are
shown, We note that the ADP cutput is signifi-
cantly recuced compared to the input. This is
because the ADP in Systsm 1 removes correlated
noise present in the geophone cutput prior to
detection. To illustrate this important pro-
perty, we present the input-cutput power density
spectra shown in Fig. 7. These correspord to
the AP input amd shown in Fig. 6, and
were camputed by taking the logaritim (to the
base 10) of each spectrum value. It is apparent
that the ADP ocutput spectrum is relatively
“white" (flat) compared to the correspording
input spectrum.

The results cbtained led tn the conclusion that
System 1 is a pramising candidate for intrusion=-
detection applications where type 2 mnoise (e.q.,
due to aircraft) is mederate. An array of geo~
phones could be deployed in linear fashion to
provide perimeter protection where the cutput of
each gecphone is processed by System 1.

Imorovement Considerations.

The performarce of System 1 may not be satisfac-
tory in enviroments whers type 2 noise is high,
when cne seeks a high probability of detection
(D) and a low ruisance alarm (NA) rate.

The key to arriving at a systam whose perform=
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ance is better than that of System 1 is to intro-
duce a secord transducer, namely a microohone.
This is because a study using crosstorrelation

and coherence? 8:9 methods has shown that type
2 sources produce geophone and mi

Signals that are correlated. As such, adaptive
moise J

cancellation techniqueslO be employed as
indicated in System 2; seeu?i’g. 8. This system
differs fram System 1 (Fig. 4) in four respects:

(a) It has an ANC stage.

(b) It has an alarm qualifier (ALQUAL) stage.

(c) The product of the ANC and ADP cutputs
becames the input to the ATD, instead of

the ADP autput.

alarm condition is determined by the cut-

of ALQUAL and ATD via a logic stage.

In the following, the above differences are
discerned on an individual basis,

)

[

(a} The ANC decorrelates type 2 noise causad by
overhead aircraft, therebv enhancing foot-
steps buried in noise (see Fig. 9). The aNC
cutput is also used by a stage called ALQRAL
(Alarm Qualifier), which will be discussed

. later. We use the nonsvmmetrical lattice
implementation for the ANC propocsed

by GriffithsS, It is described by equa-
tions 13a and 13b in Ref. 5. Eight lattice
schemes are used with a convergence parameter
{a in Ref, 5) of 0.02, and a smoothing
parameter (3 in Ref. 5) of 0.98.

(b) ALQUAL eliminates nuisance alarms that may
be caused by overhead aircraft., It consists
of a short-term correlator (STC) and a
threshold, #9; see Fig. 8. The STC cut-

pats a measure of the short-term correlation
between the ANC and ADP cutputs. Since the’
ANC ard ADP both remove correlated noise
present in their inputs, it is reasonable to
expect that the short-term correlation will
be higher for intruders' footsteps as com=
pared to aircraft noise. To illustrate, the
STC output corresponding to an intruder in
helicopter moise is shown in Fig. 10. The
related ANC and ADP cutputs are also plottad,
It is observed that fcotsteps produce a
larger cutput than helicopter noise. Thus,
if the STC cutputs exceed a specified

. threshold 4, then ALQUAL cutputs a 1.

Otherwise, its output is Q. Several air-
craft roise files wers examined to obtain a
value for 84 which eliminates nuisance

alarms due to overhead aircraft, and yet
qualifies mest intruder footsteps.

The STC stage of ALQUAL first computes the
following function C(n,m), where n is the

time index, and m is a shift (lag) index



(e

(@

Cin,m) = C(n=l,m) + (1=B)x(n)y(ntm)
1 sx—‘%r-m—)-’sym_m 1)

where
x(n} and y(n) denote the ANC and ADP cutputs,
respectively; 51 is a smoothing parameter;

D is a delay parameter; Sy and S, are

measures of signal strengths in the ANC and
ADP cutputs, ard are estimated recursively
via the relations

Sx(n) = BoSye(m=l) + (1-89) x(n)
and

Sy(n) = foSy(n-l) + (1~B5) y(n)
where 3, is again a smoothing parameter.

Equaticn (1) represents the process of shift-
ing the sequence y(n) with respect to x(n) by
m time steps, and then averaging the related
products, A total of (24+l) first-order
camputations are involved at each time step
n, since the shift parameter m takes the
Wlli.ﬂ! "M’ %1'..-' 0'1‘...'“0 m' the
SIC camputation process picks the peak value
of C(n,m) for each n, Hence, the final cut-
put of the SIC stage is a single mmber
C*(n,m) for each n;

C*(n,m) = max C(n,m) (2)

The parameter values associated C(n,m) in
Eq. (1) are as follows:

By = 0.5, By = 0.98, D=4l, and Ma20.
Aain, the "best” value for the threshold

6 was found to be 15.5, based on varicus

to enhance the ATD output in the preserce of

type 2 noise. This aspect is illus-
a in Fig. 11, from which it is apparent
that the ratio cutput R(n) obtained via
Systam 2 is much larger than that obtained
via Systam- 1. Hence, the chances of detect-
ing footsteps under pocr SNR corditions are
improved..

q
g

The ATD parameters we uyse for Systam 2 are:
Ny=24, Ny=48, 61=4, and €=Z"25,

The logic stage is basically an AND functien,
Pricx mc:nputi;g the AND function, the out-
puts of ALQUAL ATD are windowed; i.e.,
the cutputs of ALQUAL and ATD are 1, if there
at last one 1 in a strimg of zercs ard
in a specified window width, Thus, if
windowed cutputs of ALQUAL and ATD are
1, the cutput of the logic stage is 1,

igu

g
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indicating an intrusien.

Sane Experimental Results

The performances of System 1 and System 2 were
evaluated using an. assortment of field-acquired
data, Two example plots (8 secords each) are
displayed in Fig. 12 and Fig. 13, respectively.
These results demonstrate the supericr perform-
ance of System 2 over System 1 under strong
noise conditions, In these figures, "|" and N/A
denote intruder footsteps and nuisance alamms,
respectively.

The value of ) used for both systems was 4.
The value of §; for system 3 must be set so

that no nuisance alamms are cbtained with type 1
noise signals—i.e., signals due to sources such
as wind qusts, vehicular traffic, etc. This is
because such noise sources could yield STC cut-
puts that exceed the related threshold 4. For
the results reported here, 6y=4 was found to

be adequate.
Hardware Considerations

The proposed algorithms could be implemented
using special purpose digital hardware, charge
transfer device technology, or microprocessors.
We restrict cur attention to microprocessor-
based implementation in this discussion. We do
not mean to imply that this is the most judicious
approach, It merely serves to indicate the
degree of complexity associated with these
algoritims,

Any digital implementation must necessarily
involve binary number representations of algor-
ithm variables and parameters. Because the
numerical range of these quantities can greatly
exceed the computational range of f£ixed-point
mmerical representations in lé~bit binary or
smaller word sites, a flcating-point represen-
tation is needed.

In fleating-point processes, mumbers are repre-
sented in normalized magnitude sign-exponent
formats. Such number representations are not
typically supported in small microcamputsr hard-
ware and thus entail a considerable amount of

software overhead. In recent literaturell,l2,
a number representaticn, termed block flcating-
peint (BFP), is described wherein the exponent
is implied and the numeric range and precision
of parameters are variable within a given pro—-
cess and can be optimized at each computaticnal
stage, Since the exponent is not computed at
each arithmetic operation, there is very little
software overhead. This results in computation
speeds approaching those of fixed-point processes
while providing a much greater computational.
range. In the discussion that follows, it is
assumed that all arithmetic operations are per
formed in BFP format, .



We have restricted aur attention to micropro-
cessors fabricated in either 121 or QDS tach=
mologies because of noise immunity and power
consumption considerations.

We have used the Texas Instruments SEP9900 16—
bit 12, microprocessor in another signal pro-

cessing application2? and have begun evaluation

of the new SEP9989 microprocesscor which possesses

scme addtional software instructions including
signed 16x16 bit multiply and divide, an

important consideration in two's camplement EFP
real-timé implementation. We have followed the

of a second microprocessor, the

National | Semiconductor NSCB00 8-bit ODS micro-
pr , with interest. Although it does not

possess 3 hardware multiply/divide, it has a
powerful instruction set and has excellent
potential if augmented by external signed
multiply/divide hardware. The NSC800 is both
less expensive than the SBP9989 and is simpler
to power. The NSCBO0 needs only single supply
veltage but the SEP9989 requires both a supply
voltage for memories and miscellanecus logic as
well as a constant injector current at low
voltage. There are also other microprocessors
which undoubtedly function as well as these
two, Their inclusion here stems fram cur
familiarity with them and a desire to discuss
implementation with active hardware. Although

the execution speed perfommance figures given in
the following discussion relate specifically to

the SBP9989 microprocesscr, a NSCB00 micro-

processor augmented by external signed multiply/

divide hardware may approach the SBP9989 execu-
tion speed.

A SEP9989 operating at a clock frequency of 6 MHz
with no memory wait states can implement System 1

which consists of an adaptive digital predictor

(ADP) and adaptive thresheld detector (ATD) at a

sampling rate of 400 sps (samples per second).
Thus, the speed of the SEP9989 is more than

adequate for prccessing the 100 Hz bandwidth
signals in this applicatien.

System 2 is much more camplex, and therefore,
more conputaticnally burdensame. The major
camputations are fourd in three of the Systam 2
functional blocks—the noise canceller, predic-
tor, and correlator. The lattice noise cancel-

ler involves approximatsly 1.5 times more campu-

tation than the predicteor. Thus, a SEP9989
operating at § MEz could execute the noise can-
celler at approximately 266 samples per secord.
The correlator, assuming that the smoothing
parameter 3y is an integral power of 2 allow-

ing multiplication by arithmetic shift, involves

approximately 3.25 times the computation neces-
sary to implement the lattice predictor. A

single SEP9989 could implament the correlator at

enly 120 sps. By distribu the camputation

of I:he predicter, noi er, and correlator

in four SBP9989 microprocessors, Systam 3 csuld
be implemented in real-time,

35

Itisapprmtﬁrmtheabawdismsaimthat
Systam 1 could be implemented in a single micro-
xecessor without difficulty tut that implementa-
tion of System 2 would not be as strathtforward.
Sericus consideration should be given to other

for System 2 such as special purpose
dréglm hardware or charge transfer device tech-

OJY .
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Figure 1. Response of a Geophone
to an Acoustical Source
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Walker Intruder
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SHORT TERM CORRELATOR STCOR.FR

THIS PROGRAM ESTINATES THE CROSS CORRELATION OF TWQ SEBUENCES
USING 4 BANK OF FIRST ORDER FILTERS . AT ANY INSTANT IN TIME
THE QUTPUT OF EACH FILTER CORRESPONDS TO THE CORRELATION
ESTIMATE CORRESPONDING TQ A PARTICULAR LAG VALUE . THE

TIME DELAY BETWEEN TWO SEQUENCES ARE ESTIMATED AND A + 1 IS

QUTFUTED FOR POSITIVE DELAY AND & - 1 IS OUTPUTED FOR
MEGATIVE DELAY . THE # OF ZEROCRUSSINGS IN THE CORRELATION

FUNCTION CAM ALSC BE COUNTED IF DESIRED .

Cinrm} = BETALIC(n=1re) + BETALIEXD(n)XYD(nts}

DENOH

DENCK = PRODUCT OR AVERAGE OF SIGNAL STRENGTHS

DENOM = SXin - d) % SY{n - d)

OR

DENOX = SX(n - d} + SY(n - d)

2.0

SX(n-d} = BETA2 ¥ SX{n-d-1) + BETA21 3 ABS(X(n-d})

CCCCCCCCCCCCCeooreocoeeracoeeeeeeeeccerceeeereeeieeeeeeeoceceeeeeeeceeceet

VIJAYENIRA 9/24/81

U0 0 S8R IO LI IO B BB 2 K D R BB KRR R KR R P R

DIMENSION X(234)+Y(234)
DIMENSION XD{(129):YD(129),C(129)+UXD(129)VYD(129)
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INTEGER NEWFTR:PTR:MIDFTR:OLDPTR: TEMPPTR/UNWPTR,VOLPTR
INTEGER H(N+DAYsYEARHRS+MINsSEC

LOGICAL [ENFROsSTOR,ZECROSS:PCPNT fNORM
FCRWAT (/=== SHORT TERK CORRELATOR -— *)
FORMAT ( "EETAL(C.0-1.0) (FOR CORRELATION)(F)? = “»2)

FORMAT('BETA2(0.G-1.0) (FOR NORMALIZATIONI(F)? = *41)

FORKAT( 'DENOMINATOR EPSILON (F) 7 = '42)

FORMAT(/* —-FROGRAN TERMINATION —- ")

FORMAT ('UENOXINATOR (1=PROD.Q=SUX)(I) ? = 2}

FORMAT(F1D.12}

FORMAT(IS)

FORMAT('MON 412 o' DAY *+I2 o' YEAR *+12 +" ")

FORMAT(® HRS '+I2 +2X *MIN *y 12 +2X "SEC "y I2 ' )

FORMAT(" EPSILON(HIN ABS VALUE FOR ZECROSS) ! *:2)

FORNAT(* DO YOU WISH TO STORE CORRELATION(1=YES:0=ND)? : *+2)

FORKAT!* DO YOU WISH TO CONPUTE + OF ZEROCROSSINGS(1=YES.0=N()? ! ",1)

FORMAT(® 0Q YOU WISH T2 STORT CORR PEAK POINT(1=YES,0=H0!? . '+2)

FORMAT(® DO YOU WISH TO MORMALISE BY GIGNAL POMER(1=YES:(-NO}? ! *42)

CALL FEDAY(MON DAY YEAR)
BRITECIG-%) RONS DAY, YEAR
WRITE(10:1)

CONTTNUE

CaLL FSVINE(Q10+0)

(GUzRY aNu GET RESPONSE)

YRITEC1Q, 14}

READCLL,S) :
IF{I.NE.9) STOR = ,TRUE.

TFU1LER.0) STOR = JFALSE.

IF(5TGR) ACCEPT * DUMP AT ITER’'S MULTIPLE OF & *,IDUNP

WRITE(10,13)

READC11/8) I

IF(Z.NE.G) ZECROSS = ,TRUE,
IF{1,E0.0) ZECROSS = ,FALSE.
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160

WRITE(1Gr L4}
READ(11:2) I
IF{I.NE.O} PCPNT = .TRUE.
IF(T.EG.0) PCPNT = .FALSE.

ERITE(10 17
READ(11,8) I
IF(I.NE,0) NORM = ,TRUE.
IF(I.EQ.G7 NORM = (FALSE.,

OBTAIN PARAMETERS

CONTINUE

WRITE(10,2)

READ{11,7) BETAL

BETALL = 1.0 - BETAL
IF(BETAL,LT.0.0.0R,BETAL.GT.L1} GO TO 100

CONTINUE

IF (. NOT.NORK) 80 TO 120

IF(NORM) WRITE(10+3)

READ(11,7) BETA2

BETA21 = 1.0 - BETA2

IF (3ETA2,LT.0,0.0R,BETA2.6T.1) 60 TO 110

CONTTHUE

ACCEPT ' MUMBER OF SHIFTS K (1 - &44)7 = "o¥
HL=HK¢+!

HS = 2t

MSl=KS 41

IF(%.LT.1.0R.H.ET.44) GO TO 120

CONTINUE

IF(.NOT,MORM) GO TO 140

IF(NORN) ACCEPT ' VARIANCE ESTIMATE DELAY(1-129)% = *,ND
NDL = NG ¢+ ¥ ¢+ 1

IF(ND.LT.(,0.0R.ND.GT.129) GO TO 130

CONTINUE

IF(.NOT.NORM) 60 TO 130

IF(NORM) WRITE(1Q+4)

READ(11,7) EPSILON
IF(EPSILON.LE.040.0R(EPSILON.GT.1.0) GO TO 140

CONT INUE

IF (. NOT.NORK) GO TO 140
TF(NORN) WRITE(10s6)
READ(11:8) I

IF(I.NE.Q) DENPRO=,TRUE.
TF(1.£Q,Q) DENPRO= FALSE,

CONTINUE
IF(.HOT.ZECROSS) 60 TO {70
IF(ZECROSS) BRITE(10,13)
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READ(11,7) EFS
(INITIALIZATION)
CONTINUE

210 I=1,H81
0i=6.0
D(II=0.0
C(1)=0.0
CONTINUE

[F{.NOT.NORH) 60 TO 230
b0 220 I=1,ND1L

(INITIALISE VALLES)
VXB(I=1.0
Woi=1.0

CONTINUE

FX
PY

(e

.0
0
CONTINUE

SET UP PARAMETERS

NB =HS1 %4

NBYTE = 256 £ 4

PTR = ¢

REWR TH=HSL

MILPTR=#!

CLDFTR=i

IF L NOT.NORR) DENOR = 1.0
IF(§T0R) WUUMP = IDUHF
FOUKRT = 0.0

UNWPTR=RIL

VOLFTR=1

/0 SET UF

CALL OPENR(0+" INPUT FILE - X § "/NBYTE,F2}

CALL OPENR(1,* INPUT FILE - Y 1 *»MBYTE,SIZE)

IF(PCPNT) CALL OPENW(3:* CORR. FEAK POINT FILE @ '+4,SIZE)
IF(STOR) CALL OPENW(4,' SHOOTH CORR. FILE 1 “oNB:SIZEL)
[F{ZECROSS) CALL OPENW(S,* ZERQ CROSSINGS FILE ! '148IZE2)

FIND QUT HOW MANY POINTS IN FILE
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P = FU/4.0
Ne = IFIXOXE)
ITER = NP/234

TYPE * & OF POINTS IN FILE & *iNP
TYPE * ITERATION v "1 ITER

MAIN LOOF

D0 410 J&1LITER
READ 256 POINTS OF DATA

Call READR(GrJJrXo1sIER)
CALL READR(1»JJeYs1sIER}

(ALEDRTTHY EXECUTION)

DO 420 1 = 14256
IFDURP = IFDUMP + 1
AD(VERPTR)=X(T)
YD(RERFTRI=Y(I)

FX = BETAZIPX + BETAZISABS(XDINEWPTR))
PY = BETA23PY 4 BETA21XABS(YD(NEWPTR))

IF (. MOT, NORH) 6O TO 43¢0
VXDIVNEPTR) = PX

UYD(VNWPTR) = PY
UXOLO=\XD(VELPTR)
VYBLD=VYD{VOLPTR}

[F{RENPRO) DENON=VXOLDIVYOLD

1F{ HOT.DENPRD) DENON=(VXOLB+VYOLD)/2
IF(VXOLD.LT.EPSILON.OR.VYOLD.LT.EPSILON) DENON=1.¢

CONTINUE

TEMPPTR = OLIPTR
CPEAR = 0.0

IPEAK = 1

IF{ZECROSS) IERD = 0.0

FILTER BANK

DO 440 J =1,sH81

C{J)=BETAL$C(J) + BETALI¥XD(NIDPTR)2YD(TEMPPTR)/DENOM

CNORN = C(J)
TEXPPTR=TEMPPTR+1
IF{TEMPPTR.GTMS1) TENPPTR={
IF (CNORM.LT.CPEAKY GOTO 440
IPEAK=J

CPEAK=CNORN

CONTINUE

IF(.MOT.STOR) GO TO 4S50
IF(IFDume . NENDUMP) 60 TO 430
PIR=PFIR ¢ 1

NDUMP = IFTUNP + IDUMP

CALL WRITR(4+PTR:C:1,IER)
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CONTIMUE

COUNT 4 OF ZEROCROSSINGS IN CORRELATION FUNCTION

IF(.NOT.ZECROSS) GO TO 440

DO 470 J = 1:+#S

IF{ABSICLJYILLT.EPS) GO TO 470
= C{JIECLH1)

IF{P,LT.C.0) ZERO = ZERD + 1

CONTINUE

WRITE BINARY(S) ZERD

CONTINUE
(COUNTERE FOR VARIOUS VARIABLES)

NEWPTR=NEWFTR+1
IF(NEWPTR.GT.HS1) NEWPTR=1
HIDPTR=HIDPTR+1
IF{KIDPTR.GT.NS1) MIDPTR=1
OLDPTR=0LDFTR+1
[F{OLIPTR.GT.KS1) OLDPTR=1
UHUPTR=VNUPTR+1
VALFTR=VOLFTRL
IF(VOLPTR.GT,NDL) VOLPTR = |

IF(.NOT,PCPNT) GO TO 480
ESTIMATE THE DELAY

ALARS=FLDAT (TFEAK-41)
IF(ACARMWLT.0) ALARM = -1
IF(ALARM.GT.0) ALARM = 1
WRITE BINARY(3) ALARM
CONTIMUE

CONTINUE

CONTINUE

FROGRAN TERMINATION
CONTINUE

CALL RESET
WRITE{10+3)

CaLl FGTIHE(HRS:HIN,SED)

TYFE * '

TYPE * EXECUTION TIME °
BRITE(10,12) HRS,HIN,SEC

TVPE '
CALL QUERY(*<7>12> RE EXECUTE (Y/N} & *sID)
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IF{I0.EQ.1) GOTQ SO0

STOP
END
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Westiertottscostesdioisstesdatibeciisasiiseeotstatiniosy
SHOOTH.FR
THIS FROGRAM IMPLENENTS THE EQATIOM BELOW.

SUN = BETAXSUM + (1.0 - BETAIRX(J)

OO OO OO

DIMENSION X(128},Y(128)
REAL 3UMsBETA

ACCEPT ' BETA FOR SHOOTING : '/BETA

NE = 128 ¢ 4
CALL CPENR(0:"INPUT FILE NAME
CALL OPENW(1:'"OUTPUT FILE NAME

'rNBaF1)
ToNBF2)

‘e ==

=19
SUK = 0.0
CONTINUE
[=1+1
CALL READR(Gy I+ Xe1/[ER)
[F.IE®.ED,9) GO TC 130
o120 J = 1,128
YiJY = SU¥
SUM = RETARSUM + (1.0-BETA) % X(J)
120 COMTINUE
CALL BRITR(Ls Do Y14 IERD
G0 TO 10¢

[y
<3
<>

15 OIS
CALL FESET
£Top
END
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ABSTRACT

The purpose of this report is to study a Short-Term Correlator (STCOR)
algorithm and two possible applications, that are related to point sensor
intrustion-detection schemes. The STCOR can be implemented as a bank of
infinite impulse response (IIR) filters, each of which estimates the
value of the desired crosscorrelation function for a particular lag value.
Experimental results which help assess the performance of this algorithm

are also included.



