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Abstract 

Many nonstationary univariate time series can be made stationary by appropriate 

differencing before ARMA models are fitted to the differenced series. However, when it comes 

to nonstationary vector time series, the situation is more complex. Since the dynamic of a 

multivariate time series is multidimensional, even if we can make each component stationary by 

appropriate differencing, the vector process of the differenced components may be still 

nonstationary. However, it is possible that the projections of a nonstationary vector time series in 

some directions may result in a stationary process. Engle and Granger(1987) formally 

demonstrated that it is possible for some linear combinations of the components of nonstationary 

vector time series to be stationary. They called this phenomenon Co-Integration. 

This concept of cointegration turned out to be extremely important in the modeling and 

analysis of non-stationary time series in economics. Although economic variables individually 

may exhibit disequilibrium behaviors, often time, due to economic forces, these disequilibrium 

economic variables corporately form a dynamic equilibrium relationship. Specifically, certain 

linear combinations of nonstationary time series may appear to be stationary. Engle and Granger 

developed statistical method for detecting and estimating this equilibrium relationship. They also 

proposed the so called error correction model to model Co-Integrated vector time series. 

In this report, I give a detail review on the concept of cointegration, the 2-step estimation 

procedure for the error correction models, and the 7 types of tests for testing cointegration. 

Since the test statistics for testing cointegration do not follow any known distribution, critical 

values were obtained based on two models by Engle and Granger. Augmented Dickey-Fuller and 

Dickey-Fuller tests were recommended as it is believed that their distributions are independent of 

the under lying process model. The critical values table presented in their paper is widely used in 

testing cointegration. In this report, we’ll construct tables of critical values based on different 

models and compare them with those obtained by Engle and Granger. Also, to demonstrate the 

practical usage of cointegration, applications to currency exchange rates and US stock and Asian 

stock indexes are presented as illustrative examples. 
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CHAPTER 1 - Introduction 

Many nonstationary univariate time series can be made stationary by appropriate 

differencing before ARMA models are fitted to the differenced series. However, when it comes 

to nonstationary vector time series, the situation is more complex. Since the dynamic of a 

multivariate time series is multidimensional, even if we can make each component stationary by 

appropriate differencing, the vector process of the differenced components may be still 

nonstationary. However, it is possible that the projections of a nonstationary vector time series in 

some directions may result in a stationary process. Engle and Granger(1987) formally 

demonstrated that it is possible for some linear combinations of the components of nonstationary 

vector time series to be stationary. They called this phenomenon Co-Integration. 

This concept of cointegration turned out to be extremely important in the modeling and 

analysis of non-stationary time series in economics. Although economic variables individually 

may exhibit disequilibrium behaviors, often time, due to economic forces, these disequilibrium 

economic variables corporately form a dynamic equilibrium relationship. Specifically, certain 

linear combinations of nonstationary time series may appear to be stationary. Engle and Granger 

developed statistical method for detecting and estimating this equilibrium relationship. They also 

proposed the so called error correction model to model Co-Integrated vector time series. 

This paper gives a detail review of the concept of cointegration.  

The second chapter briefly introduces basic notation, representations of vector time series 

and definition of stationarity. Chapter 3 states the definition of cointegration, several 

representations of cointegrated vector processes and the two-step method for estimating the 

cointegrating system proposed by Engle and Granger (1987). Chapter 4 discusses 7 types of 

cointegration tests for bivariate (1,1)CI  case and provides critical values based on several null 

hypothesis generating models. Two applications of cointegration on finance data are presented in 

Chapter 5 as examples. Codes for simulations and examples are provided in the appendix. 
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CHAPTER 2 - Vector Time Series 

Time series data in many empirical studies, especially those involved in economics and 

finances, consist of observations from several variables. The interrelation and dynamic among all 

the variables are of great interest. For example, as economic globalization and internet 

communication accelerating the integration of world financial markets in recent years, financial 

markets are more and more dependent on each other than ever before. Hence, to understand the 

dynamic structure of the global finance, one need to consider several financial and economical 

variables simultaneously representing the behaviors of different markets. In such cases, 

multivariate time series models are used to describe interrelationships among several time series 

variables.  

This chapter is organized as following. Section1 defines weak stationarity and correlation 

structures of a vector time series. Section 2 discusses two widely used models of multivariate 

time series: Moving average and Autoregressive representations. Section 3 introduces the 

definitions of nonstationarity and some of the studies on multivariate time series.   

Section 2.1  Weak Stationarity 

Consider a m-dimensional time series 1, 2, ,[ , ,..., ]t t m tZ Z Z ′=tZ , 0, 1, 2,...t = ± ± . A vector 

time series tZ  is weakly stationary if its first and second moments are time-invariant. In 

particular, the mean vector of a weakly stationary series is constant over time and the cross-

covariance between ,i tZ and ,j sZ , for all i=1,2,…m and j=1,2,…m, are functions only of the 

absolute value of the time difference |s-t| 

For a weakly stationary time series tZ , we define its mean vector to be ( )E =tZ μ   and the 

lag-k covariance matrix as: 

 ( ) cov{ , } [( )( ) ]t t k t t kk E+ + ′= = − −Γ Z Z Z μ Z μ  

11 1

1

( ) ( )

( ) ( )

m

m mm

k k

k k

γ γ

γ γ

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

…
# % #

"
, 

where 

 , ,( ) ( )( )ij i t i j t k jk E Z Zγ μ μ+= − − , 



 3  

for 0, 1, 2..., 1, 2,..., ,  and 1,2,...,k i m j m= ± ± = = .  As a function of k, ( )kΓ  is also called the 

covariance matrix function for the vector process tZ . (0)Γ is called the contemporaneous 

variance-covariance matrix of the vector process tZ . And ( )ii kγ  is the auto-covariance function 

for the ith component process ,i tZ ; ( )ij kγ is the cross-covariance function between ,i tZ  and ,j tZ  

for i j≠ .  

The correlation matrix function is defined by 

 1/2 1/2( ) ( ) [ ( )]ijk k kρ− −= =ρ D Γ D  

where D is the diagonal matrix  with  (0)iiγ , (i=1,2,…,m) as its diagonal elements. The ith 

diagonal element of ( )kρ , ( )ii kρ is the autocorrelation function for the ith component series ,i tZ  

whereas the off-diagonal element ( )ij kρ , i j≠ , represents the cross-correlation function between 

,i tZ  and ,j tZ . 

Like the univariate autocovariance and autocorrelation functions, the covariance and 

correlation matrix functions are also semi-positive definite in the following sense 

 
1 1

( ) 0
n n

j
j

i j
i

it t
= =

′ − ≥∑∑α Γ α  

and 
1 1

( ) 0
n n

j
j

i j
i

it t
= =

′ − ≥∑∑α ρ α  

for any set of time points 1 2, , , nt t t… and any set of real vectors 1 2, , , nα α α… . 

Since , , , ,( ) ( )( ) ( )( ) ( )ij i t i j t k j t k i t i jij jk E Z Z E Z Z kγ μ μ μ μ γ+ += − − = − − = − , ( )kΓ and 

( )kρ have the following symmetry property: 

 
( ) ( )
( ) ( )
k k
k k

′= −⎧
⎨ ′= −⎩

Γ Γ
ρ ρ

 

Sometimes, the covariance and correlation matrix functions are also called 

autocovariance and autocorrelation functions. 

 

Section 2.2  Some Vector Time Series Models 
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An m-dimensional vector process tZ  is said to be a purely nondeterministic vector 

process if it can be written as a weighted sum of sequence of m-dimensional white noise random 

process. Namely, 

 
1 1

0

2 2t t t t

s t s
s

− −

−

∞

=

= + + + +

= +∑

Z μ a Ψ a Ψ a

μ Ψ a

"
 

where 0 =Ψ I  is the mxm identity matrix, the j s′Ψ are mxm coefficient matrices, and the ta ’s 

are m-dimensional white noise random vectors with zero mean and covariance matrix 

 
,    if k=0

[ ' ]
0,    if k 0t t kE +

⎧
= ⎨ ≠⎩

Σ
a a   

with Σ being a mxm symmetric positive definite matrix. Hence, even though the components of 

ta  at different times are uncorrelated, they might be contemporaneously correlated. Using the 

backshift operator B, and with t t= −Z Z μ� , the equivalent representation of the above model can 

be written as 

 
0

( ) t s
sB B

∞

= ∑ tt
s=

Z Ψ a = Ψ a� . 

This presentation is known as the vector moving average or Wold representation. 

Let ,[ ]i ss jψ=Ψ  and ( ) [ ( )]ijB Bψ=Ψ  where ,0
( ) s

ij ijs sB Bψ ψ∞

=
=∑ . If the coefficient 

matrices sΨ is square summable, in the sense that each of the mxm sequences ,ij sψ is square 

summable, i.e., 
0

2
,ij ss

ψ∞

=
< ∞∑  for i=1,2,…,m, j=1,2,…,m, then we say the vector process is 

stationary. 

Another useful representation of a multivariate time series is that apart from a white noise 

process ta , tZ is a linear function of its past:  

 
21

s

∞

= +

∑
t-1 t-2 t

t-s t

t

s=1

Z Π Z Π Z + + a

= Π Z + a

� � � "

�  

In terms of backshift operator, 

 ( ) t tB =Π Z a�  

where 
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 ( ) sB B
∞

= −∑ s
s=1

Π I Π  

and sΠ  are m m×  autoregressive coefficient matrices. The above representation is called vector 

autoregressive (VAR) representation. 

Combined the two representation, the widely used vector autoregressive moving average 

VARMA(p,q) process expressed in backshift operator is of the form 

 ( ) ( )p t q tB B=Φ Z Θ a�  

where   

 2
0 21( ) p

p pB B B B= − − − −Φ Φ Φ Φ Φ"  

and 

 2
0 1 2( ) q

q qB B B B= − − − −Θ Θ Θ Θ Θ"  

are the autoregressive and moving average matrix polynomials of orders p and q respectively. 

We assume that the two matrix polynomials have no left common factors; otherwise, we can 

simplify the model. When Σ (the covariance matrix of ta ) is positive definite, without loss of 

generality we can also assume that 0 0= =Φ Θ I , an mxm identity matrix. By taking p=0 or q=0, 

it is easily seen that moving average and autoregressive processes are just special cases of 

ARMA representation. 

The process is stationary if the zeros of the determinantal polynomial ( )p BΦ  are outside 

the unit circle. In this case, writing  

 1( ) [ ( )] ( )p qB B B−=Ψ Φ Θ  

then the equivalent moving average representation is 

 
0

( ) s
t t s

s
B B

∞

=

= =∑Z Ψ a Ψ�   

and the sequence sΨ is square summable. 

 When a vector time series is stationary, and a model is identified, the fitting of the model 

can be obtained by maximizing the likelihood function if we assume the vector time series is a 

Gaussian process.  

 However, when the time series is not stationary, maximum likelihood procedure is not 

directly applicable. 
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Section 2.3  Nonstationarity 
 In the analysis of time series, it is not unusual to observe series that exhibit nonstationary 

behavior. One useful and most frequently used way to reduce nonstationary univariate time 

series to stationary series is by appropriate differencing. For example, in univariate time series, a 

nonstationary series Zt  can be reduced to a stationary series (1 )s d
tB Z−  for an appropriate 

choice of d>0 and 0s > , so that we can write 

 ( )(1 ) ( )s d
p t q tB B Z B aφ θ− =  

with ( )p Bφ  a stationary AR operator. A natural, an extension to the vector process is 

 ( )( ) ( )s d
p t q tB B B− =Φ I I Z Θ a  

i.e., 

 ( )(1 ) ( )s d
p t q tB B B− =Φ Z Θ a  

This extension implies that all component series are differenced the same number of times, 

which is unnecessary and undesirable in most cases. To be more flexible, we assume that tZ can 

be reduced to stationary vector series by applying a differencing operator ( )BD , where 

 

1 1

2 2

(1 ) 0 0 0
0 (1 )

( )
0

0 0 (1 )m m

s d

s d

s d

B
B

B

B

⎡ ⎤−
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥

−⎣ ⎦

D

"
% #

# % %
"

 

and ( 1 2, , , md d d… )&( 1 2, , , ms s s… ) are two sets of nonnegative integers such that we have a 

nonstationary vector ARMA model for tZ  

 ( ) ( ) ( )p t q tB B B=Φ D Z Θ a  

for which the zeros of | ( ) |p BΦ  are outside the unit circle.  

 However, compared with univariate case, differencing on vector time series is much more 

complicated. Over differencing may lead to complications in model fitting. And Box and Tiao 

(1977) shows that when the orders of differencing for each component series are the same, it 

may lead to a noninvertible representation. Hence, one should be particularly careful when 

handle the nonstationary vector processes by differencing. Box and Tiao (1977) also points out 

that when zeros of | ( ) |p BΦ  approach values on the unit circle, a canonical transformation can 
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decompose tZ  into two parts, one of which follows a stationary autoregressive process, while 

the other part approaches nonstationarity. They suggested that, in analyzing multiple time series, 

“it is useful to entertain the possibility that the dynamic pattern in the data may be due to a small 

subset of nearly nonstationary components and that there may exist stable contemporaneous 

linear relationships among the variables.” Hence, differencing of the original series could lead to 

complications in the analysis. Especially, when a linear combination of the component series is 

stationary, a model purely based on differences may not even exist. For example, suppose we 

have a bivariate model 

 1 1( 1) 1 2 1 2,  t t t t t tx x a x x aβ−= + = +  

Each series individually is nonstationary, but the linear combination of the two 

components 2 1t tx xβ− is stationary. By differencing the two series, we get: 

 1 1 1

2 2 1 2 2( 1)

(1 ) ,
(1 )

t t t

t t t t t

w B x a
w B x a a aβ −

= − =
= − = + −

 

i.e. 

 1 1 11

2 2 2 1

1 0 0 0
1 0 1

t t

t t

a aw
w a aβ

−

−

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

The differenced series can not be expressed in the form of  bivariate stationary autoregressive 

process any more, making the analysis more complicated. Hence, to identify and estimate the 

possible stationary linear combination of the components and build an estimable model for this 

type of time series are of great importance in multivariate time series analysis. 

(Find an example, each component is stationary but jointly nonstationary) 

CHAPTER 3 - Cointegration 

As stated in the last chapter, most statistical theory applied in building, estimating and 

testing time series models are based on the assumption that the time series in the models are 

stationary.  Statistical inference associated with a time series process is not valid if the 

assumption of stationarity is violated. However, nonstationarity is a common property to many 

time series. Especially in macroeconomic and financial processes, often time a process has no 

clear tendency to return to a constant value or a linear trend. By appropriate differencing, one can 
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achieve stationary components but it might complicate the structure of the time series. 

Fortunately, although individual time series can wander extensively, some subset of these series 

may move in a pattern so that they do not drift too far apart from each other. Such phenomenon 

can be found in financial and economic time series data—for examples, indexes of different 

stock markets or exchange rates among different currencies. We consider such phenomenon as 

existence of an equilibrium relationship between the nonstationary time series. To describe this 

phenomenon, Clive Granger first introduced the concept of cointegration, which was thought of 

as a great breakthrough and has changed the way empirical models of macroeconomic 

relationships are formulated today.  

As a review of Engle and Granger (1987)’s work, the first section of this chapter 

introduces the definition of cointegration. Section 2 presents the two equivalent models of 

cointegrated time series: Granger’s representation and error correction model. Section 3 provides 

methods for estimating cointegrated systems. 

Section 3.1  Definition of Cointegration 
 It is well known from Wold’s theorem that a single stationary time series with no 

deterministic components has an infinite moving average representation. If in addition, it is 

invertible, then it can be approximated by a finite autoregressive moving average process. Many 

nonstationary time series can be made stationary by appropriate differencing. The following 

definition formally defines such a class of nonstationary time series.  

 

Definition: A series with no deterministic component which has a stationary, invertible, 

ARMA representation after differencing d  times, is said to be integrated of order d , denoted by 

~ ( )tx I d . 

 

Under this notion, ~ (0)tx I is stationary while ~ (1)tx I  is nonstationary but has a 

stationary change. There are substantial differences in behavior between a series that is (0)I and 

another which is (1)I . Suppose ~ (0)tx I with zero mean, then (i) the variance of  tx  is a finite 

constant; (ii) an innovation has only a temporary effect on the value of tx ; (iii) the 

autocorrelations, kρ , decrease rapidly in magnitude as k increases, so that the infinite sum of 
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them is finite. Whereas, if ~ (1)tx I  with 0 0x = , then (i) variance of tx  goes to infinity as t goes 

to infinity; (ii) its innovation has a permanent effect on the value of tx , since tx  is the sum of all 

previous changes; (iii) the theoretical autocorrelations, 1kρ →  for all k as t →∞ . More 

discussion can be found in Feller (1968) or Granger and Newbold (1977).  

Due to the relative sizes of the variances, it is always true that the sum of an (0)I and 

(1)I  will be (1)I . Generally, if a  and b  are constants, 0b ≠ , then ta bx+ is ( )I d if tx is ( )I d ; 

However, if tx  and ty  are both ( )I d , then it is possible that the linear combination t t tz x ay= −  

will be ( )I d b− , 0b > . Consider the case when 1d b= = , so that tx  and ty  are both (1)I  with 

dominant long run components, but their linear combination tz  is (0)I , a stationary series. This 

is a special constraint on the long-run components of the two series. However, it is worth 

noticing that it is not generally true that there exists such an a  that makes ~ (0)tz I . To 

formalize the ideas above, the following definition from Granger(1981) and Granger and 

Weiss(1983) is introduced. 

 

Definition: The components of the vector tx  are said to be co-integrated of order ,d b , 

denoted ~ ( , )CI d btx , if (i) all components of tx  are ( )I d ; (ii) there exists a vector ( 0)≠α so 

that ' ~ ( ),  0tz I d b b= − >tα x . The vector α  is called a co-integrating vector.  

 

As an illustration, consider the vector time series in section 2.3,  

 1 1( 1) 1 2 1 2,  t t t t t tx x a x x aβ−= + = + . 

Clearly, each component is an (1)I process, since they become stationary after first differencing: 

1 1 1

2 2 1 2 2( 1)

(1 ) ,
(1 ) .

t t t

t t t t t

w B x a
w B x a a aβ −

= − =

= − = + −
 

However, with ' [ , 1]β= −α , the linear combination 

 1
1 2 1 1 1 2 1 2

2

' [ , 1] t
t t t t t t t t

t

x
x x x x x a a a

x
α β β β β β−

⎡ ⎤
= − = − = − − = −⎢ ⎥

⎣ ⎦
 

 is (0)I . Hence, the vector time series tx is cointegrated with a cointegration vector ' [ , 1]β= −α . 
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Sometimes, co-integration vector is also called the long-run parameter. It is clearly not 

unique. Because if tα'x  is stationary, then so too is tcα'Z  for any nonzero constant c. Hence cα  

is also a cointegrating vector. If tx is a vector of economic variables, then they are said to be in 

equilibrium when the following linear constraint is satisfied. 

 0t =α'x  

Of course, in reality, the equilibrium holds only approximately in the sense that 

 t tz = α'x  

is a (0)I process, where tz  is called the equilibrium error. 

Concentrating on the bivariate time series and d=1, b=1 case, cointegration would mean 

that if the components of vector time series tx  were all (1)I , then the equilibrium error would be 

(0)I , so that tz will rarely drift far from zero if it has zero mean and will cross zero line often. It 

means that the equilibrium or at least a close approximation will occur often; whereas if tx  is not 

cointegrated, then for any vector 0≠α , 't tz = α x  will always wander widely and equilibrium 

would be rarely reached, which suggests that in this case equilibrium concept is not applicable.  

The phenomenon of cointegration can be found in many economic studies. For example, 

as shown in Figure 3.1, the monthly highest quotation (the solid line) and lowest quotation (the 

dotted line) of Dow Jones industrial average are both individually nonstationary. However, the 

difference of the two series (the discontinuous line at the bottom) is (0)I , which indicates that 

although each series can wander wildly, they can not drift too far apart from each other.  

Figure 3.1  Monthly high and low quotes of Dow Jones industrial average 
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More generally, if the vector series tx  contains p components, each being (1)I , then it is 

possible for several equilibrium relations to govern the joint behavior of the components of tx . 

So there may be k (<p) linearly independent cointegration vectors 1 2, ,..., kα α α such that tα'x  is a 

stationary (kx1) vector process, where 

 

1

2

'
'

'

'k

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

α
α

α

α
#

 

α'  is called the cointegrating matrix. If  α'  is a cointegrating matrix, then for any qxk matrix C , 

'Cα  is also a cointegrating matrix. Hence, α  is not unique. If for any other (1xp) vector 'b that is 

linearly independent of the rows of 'α , we have that tb'x is nonstationary, then tx is said to be 

cointegrated of rank k. The vectors 1 2', ',..., 'kα α α  form a basis for the space of the cointegrating 

vectors which is called cointegration space. 

Section 3.2  MA, AR Representations and Error Correction Model 

 Suppose that each component of tx  is (1)I , then without loss of generality we can 

assume that the change in each component is a zero mean purely nondeterministic stationary 

stochastic process, since any known deterministic components can be subtracted before the 

analysis is begun. It follows that there will always exist a multivariate Wold representation: 

 (1 ) ( )t tB BΔ = − =tx x Ψ a  

Where 
0

( ) j
jj

B B∞

=
=∑Ψ Ψ , (0) =Ψ I and the coefficient matrices jΨ  are absolutely summable 

since (1 ) tB− x  is stationary. ta is the vector white noise process with mean 0 and covariance 

matrix 

 
2

( ' ) 0,  

,
s tE t s

t sσ

= ≠

= =

a a
 

so that only contemporaneous correlations can occur.  

 The moving average polynomial can be expressed as  
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0 0 0

1

0 0

0 1

( ) ( 1)

(1) (1 )( ( ))

(1) (1 ) ( )

(1) (1 ) ( )

j j j

j

j j
j j j

i
j

i j

j i

j
j i

B B B

B B

B B

B B

∞ ∞ ∞

= = =

∞ −

= =

∞ ∞

= = +

= = + −

= + − −

= + − −

= + −

∑ ∑ ∑
∑ ∑

∑ ∑
*

Ψ Ψ Ψ Ψ

Ψ Ψ

Ψ Ψ

Ψ Ψ

 

Where 
0

( ) j
jj

B B∞

=
= ∑* *Ψ Ψ and 

1j ii j+
∞

=
= −∑*Ψ Ψ . If ( )BΨ is of finite order, then ( )B*Ψ will 

be of finite order. If (1)*Ψ  is identically zero, then a similar expression involving 2(1 )B− can be 

defined. Based on the expression, tx can be written in the form 

 

0 1 2

1 2

1 2

1 2 1 2

( )( )

[ (1) (1 ) ( )]( )

(1)( ) (1 ) ( )( )

t

t

t

t t

B

B B

B B

− = Δ + Δ + + Δ

= + + +

= + − + + +

= + + + + − + + +

t

*

*

x x x x x
Ψ a a a

Ψ Ψ a a a

Ψ a a a Ψ a a a

"
"

"
" "

 

Denote ( )t tB= *y Ψ a , then 

 
1 2 1 2

1 2

0

(1 ) ( )( ) (1 )( )t t

t

t

B B B− + + + = − + +
= Δ + Δ + + Δ
= −

*Ψ a a a y y y
y y y

y y

" "
"  

Hence 

 0 1 2 0(1)( )t t= + + + + + −tx x Ψ a a a y y"  

and  

 0 0 1 2' '( ) ' (1)( ) 't t= − + + + + +tα x α x y α Ψ a a a α y"  

Obviously, 1 2'( )t+ + +b a a a" is not stationary for any nonzero (1xp) vector 'b . Therefore, ' tα x  

will be stationary if and only if 

 ' (1) =α Ψ 0  

This indicates that a cointegration matrix is perpendicular to (1)Ψ . Thus the cointegration space 

spanned by the rows of 'α  is a complement space of the column space of (1)Ψ . The determinant 

( ) 0B =Ψ at 1B = ; hence the process is not invertible and we can never invert the MA 

representation ( ) tBΔ =tx Ψ a  to  represent a cointegrated process with a vector AR form in terms 

of Δ tx . The vector AR representation of a cointegrated process must be in terms of tx directly.  
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The representation ( ) tBΔ =tx Ψ a and the above restriction together is the MA representation of a 

cointegrated vector process. 

  

Suppose that tx is nonstationary and can be represented as ( )AR p model 

 ( ) t tB =pΦ x a  

such that ( ) 0B =pΦ  contains some unit roots, where 1( ) p
pB B B= − − −pΦ I Φ Φ" . Multiply 

(1 )B− on both sides, 

 (1 ) ( ) (1 )t tB B B− = −pΦ x a . 

If each component of tx  is I(1), then, the MA representation (1 ) ( )t tB B− =x Ψ a  can be 

transformed to 

 (1 ) ( ) ( ) ( )t tB B B B− =p pΦ x Φ Ψ a . 

Comparing the above two, we have  

 (1 ) ( ) ( )t tB B B− = pa Φ Ψ a  

holds for any ta . It implies that 

 (1 ) ( ) ( )B B B− = pI Φ Ψ  

for any B . Hence, if we take 1B = ， 

 (1) (1) =pΦ Ψ 0 . 

(1)pΦ is perpendicular of (1)Ψ , so it must belong to the cointegration space spanned by the rows 

of 'α . That indicates 

 (1) '=pΦ γα  

for some (pxk) matrix γ . The model ( ) t tB =pΦ x a  and the above restriction together is the AR 

presentation of a cointegrated vector process. 

 

Notice in the AR representation, 

 1
1 1 1( ) ( ) ( )(1 ),p p

p pB B B B B B B−
−= − − − = − − + + −* *

pΦ I Φ Φ I λ Φ Φ" "  

where 1 p= + +λ Φ Φ"  and 1( )j j p+= − + +*Φ Φ Φ"  for 1,2, , 1.j p= −… Hence the AR 

representation ( ) t tB =pΦ x a can be written as 
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 1
1 1( ) ( )p

t p t tB B B −
−− − + + Δ =* *I λ x Φ Φ x a"  

or 

 1 1 1 1 1t t t p t p t− − − − += + Δ + + Δ +* *x λx Φ x Φ x a" . 

Subtract 1t−x  on both sides, then 

 1 1 1 1 1t t t p t p t− − − − +Δ = + Δ + + Δ +* *x δx Φ x Φ x a"  

where (1) 'p= − = − = −δ λ I Φ γα  based on the restriction in AR representation. Therefore,  

 1 1 1 1 1t t t p t p t− − − − +Δ = − + Δ + + Δ +* *x γz Φ x Φ x a"  

for some (pxk) matrix γ , where 1 1't t− −=z α x  is a (kx1) stationary process. This representation 

implies that the differenced series tΔx  of a cointegrated process tx  can not be described using 

only the values of its own lagged differences. The model must include an “error correction” 

term, 1 1't t− −=γz γα x . Consider the relation tΔx in terms of its own past lagged values as a long-

run equilibrium, then the term 1t−z  can be taken as an error from the equilibrium and the 

coefficient matrix γ is an adjustment for this error. Writing the above representation in an AR(p) 

form, we have the definition of error correction representation as below. 

 

Definition: A vector time series tx  has an error correction representation if it can be 

expressed as: 

 1( )(1 ) t t tB B z −− = − +Φ x γ a  

where ta  is a stationary multivariate disturbance, with (0) =Φ I , (1)Φ has all elements finite, 

't tz = α x  and 0≠γ . 

 

The error correction representation was first proposed by Davidson et al.(1978) and has 

been used widely in economic studies. For a two variable vector process, a typical error 

correction model would relate the change in one variable to past equilibrium errors, as well as to 

past changes in both variables. 

The relationship between error correction models and co-integration was first pointed out 

in Granger (1981). A theorem showing that co-integrated series can be represented by error 

correction models was stated and proved in Granger (1983) and therefore is called the Granger 
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Representation Theorem. Analysis of related but more complex cases is covered by Johansen 

(1985) and Yoo (1985). 

Section 3.3  Estimating Cointegration System 
Besides maximum likelihood estimation procedure, with different representations for 

cointegrated systems, other estimation procedures have been proposed. The most convenient 

methods use the error correction form, especially when we can assume there is no moving 

average term. Two of these methods are decribed below.  

The presentation of error correction model: 

 1 1 1 1 1t t t p t p t− − − − +Δ = + Δ + + Δ +* *x δx Φ x Φ x a"        (3.3.1) 

naturally leads to a method of regression to get the estimate of δ . Johansen (1994) introduced a 

three-stage regression procedure: 

1. Regress tΔx  on 1 1, ,t t p− − +Δ Δx x"  to obtain residual matrix 1te . 

2. Regress 1t−x  on 1 1, ,t t p− − +Δ Δx x"  to obtain residual matrix 2, 1t−e . 

3. Regress 1te  on 2, 1t−e  to obtain the estimate of matrix δ . 

4. Then estimate model (3.3.1) with δ  fixed at the estimated value obtained in step3 to 

get estimates of the j
*Φ s. 

Notice '= −δ γα , so by examining the rank of δ through its eigenvalues,  we can also estimate 

and test the rank of cointegrating space.  

Engle and Granger (1987) suggested another estimation method which is called two-step 

estimator. In the first step cointegration vector is estimated. And then the estimated cointegration 

vector is used in the error correction form to estimate the dynamics of the process.  These two 

steps both require only ordinary least squares and the result is consistent for all the parameters. 

This estimating procedure is convenient in the sense that the dynamics do not need to be 

specified until the error correction structure has been estimated, and it also provides some test 

statistics useful for testing for cointegration. 

If the p-dimensional vector process 1, 2, ,' [ , , , ]t t t p tx x x=x "  is (1,1)CI with single 

cointegrating vector, there is a nonzero px1 vector 1 2' [ , , , ]pc c c=α "  such that ' tα x  is stationary. 

Without loss of generality, say 1 0c ≠ . Then 1(1/ ) 'c α  is also a cointegration vector, with the first 
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element 1. Thus it is natural to consider the following regression model with 1,tx  as the 

dependent variable and 2, ,, ,t p tx x"  the predictors: 

 1, 1 2, 1 ,t t p p t tx x xφ φ ε−= + + +" . 

This regression is called the cointegrating regression. It attempts to fit the long run equilibrium 

relationship without worrying about the dynamics. It provides an estimate of the elements of the 

cointegrating vector. Such a regression has been called a spurious regression by Granger and 

Newbold (1974) since the standard errors of the estimated regression coefficients are incorrect. 

So here we only seek coefficient estimates to use in the second stage of estimation and for tests 

of the equilibrium relationship. Further discussions about more general cases of more than one 

cointegration vectors can be found in Engle and Granger (1987).   

The estimated cointegrating vector obtained by regression method provides a good 

approximation to the true cointegrating vector because it seeks vector with minimal residual 

variance. Asymptotically all linear combinations of tx  will have infinite variance except those 

which are cointegrating vectors. A point need to be made is that we estimate the cointegrating 

vector by normalizing the first element to be unity. However, we can normalize any nonzero 

element ic and regress ,i tx on other variables in estimating the regression coefficients. The results 

are invariant of the choice of ,i tx  as the dependent variable in the regression for most of the cases, 

but could be inconsistent sometimes. This is a weakness of this approach. But due to its 

simplicity, it is still commonly used. 

In the second step, the remainder of the parameters of the cointegrated system are 

estimated by regressing the difference vector series on its lagged series and the equilibrium error 

term 1t−z  with α  fixed at the estimated value in the computation of 1 1't tα− −=z x . This simplifies 

the estimation procedure by imposing cross-equation restrictions and the dynamics of the system 

does not have to be specified in order to estimateα . 

Surprisingly, the two-step estimator has excellent properties. As stated in the theorem 

below, it is as efficient as the maximum likelihood estimator based on the known value of α . 

Under some regular conditions the estimator is asymptotically normal. This theorem is first 

stated and proved by Engle and Granger (1987). 
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Theorem The two step estimator of a single equation of an error correction system, 

obtained by taking α̂  from the cointegrating regression as the true value, will have the same 

limiting distribution as the maximum likelihood estimator using the true value of α . Least 

squares standard errors will be consistent estimates of the true standard errors. 

 

 A simple example will illustrate this estimation procedure. Suppose two series are 

generated according to the following model: 

 1 2 1 1 1 1 1

1 2 2 2 2 1 2

,   ,
,   ,  1

t t t t t t

t t t t t t

x x u u u
x x u u u

β ε
α ρ ε ρ

−

−

+ = = +

+ = = + <
  (3.3.2) 

where 1tε  and 2tε  are white noise processes. In the usual sense, α  and β  are unidentifiable 

since there are no exogenous variables and the errors are contemporaneously correlated. Aso, 

notice that 2 ~ (0)tu I  and 1 ~ (1)tu I . By simply rearranging terms, 1tx and 2tx  can be expressed 

as linear combinations of 1tu  and 2tu , so they are both (1)I . The second equation suggests that 

1 2t tx xα+  is a stationary series. Thus 1tx and 2tx  are (1,1)CI . We will estimate the parameters by 

the two step approach. 

First step, a linear least squares regression of 1tx  on 2tx  provides a good estimate of α . 

This is called cointegrating regression. All linear combination of 1tx and 2tx  except 1 2t tx xα+  

defined in the model will have infinite variance. Therefore, it makes sense that regression of  1tx  

on 2tx  by method of least square will give good estimate of α . For series generated by model 

(3.3.2), the reverse regression of 2tx  on 1tx has the same property and will give a consistent 

estimate of 1/α . 

Once the parameter α  has been estimated, the others can be estimated in many ways 

conditional on the estimate of α . Let (1 ) / ( )δ ρ α β= − − , then the generating model can be 

written in the autoregressive representation as 

 1 1 1 1

2 2 1 2

t t t

t t t

x x
x x

ηβδ αβδ
δ αδ η

−

−

Δ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟Δ − −⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (3.3.3) 

where the η s are linear combinations of the ε s and thus are white noise themselves. Let 

1 2t t tz x xα= + . Then model (3.3.3) can be written in the error correction representation form: 
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 1 1
1

2 2

t t
t

t t

x
z

x
ηβδ

δ η−

Δ⎛ ⎞ ⎛ ⎞⎛ ⎞
= +⎜ ⎟ ⎜ ⎟⎜ ⎟Δ −⎝ ⎠⎝ ⎠ ⎝ ⎠

. 

There are 3 unknown parameters in the original model (3.3.2). Now the error correction 

form has only 2 unknown parameters left. Once α  is estimated in the first step, there is no 

constraints in the error correction model, thus we can get estimators for the dynamics system by 

simple regression or MLE. Notice that when 1ρ → , the series are no longer cointegrated, but 

correlated random walks. 

 

CHAPTER 4 - Test of Cointegration 

It is usually of interest to test whether a set of variables are cointegrated. This may be 

desirable because of practical inquiries such as whether a system is in some form of equilibrium 

in the long run, and whether it is sensible to identify cointegration before estimating a 

multivariate dynamic model. 

Unfortunately, the setup of cointegration system renders direct application of likelihood 

base test impossible. The testing of cointegration is closely related to tests for unit roots in 

observed series as formulated by Fuller (1976) and Dickey and Fuller (1979, 1981). It is also 

related to the problem of testing when some parameters are unidentified under the null 

hypothesis as discussed by Davies (1977) and Watson and Engle (1982). 

 In testing for cointegration in tx ,  sometimes we are particularly interested in a matrix or 

vector 'α  based on some theoretical consideration. Then we can simply formulate the null 

hypothesis to test whether the process 't t=z α x contains a unit root so that Dickey and Fuller test 

or Augmented Dickey and Fuller test is applicable. The distribution in this case is already 

nonstandard and was obtained through a simulation by Dickey (1976). We will conclude that tx  

is cointegrated if the null hypothesis of unit roots is rejected. However, when 'α is unknown and 

estimated from the data, the Dickey-Fuller test tends to reject the null hypothesis too often. The 

reasons are that when the series is not cointegrated, 'α is not identifiable and that the variation of 

the estimated 'α  is not accounted for. 
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Section 4.1  Seven Types of Tests 
Suppose the true system is a bivariate linear vector autoregression with Gaussian errors 

where each of the series is individually (1)I denoted by ( , )t tx y , Engle and Granger (1987) 

introduced seven types of tests. Each type is useful under some assumptions.  

1. CRDW. After running the cointegrating regression, the Durbin Watson test is carried out 

to see if the residuals appear stationary. If they are nonstationary, the Durbin Watson 

statistic will approach zero and thus the test rejects non-cointegration null hypothesis if 

DW is too big. This was first proposed by Bhargava (1984) for the case when null and 

alternative are first order models. 

2. DF. This tests the residuals from the cointegrating regression by running an auxiliary 

regression as described by Dickey and Fuller. It also assumes that the model is of only 

first order. 

3. ADF. The augmented Dickey Fuller test allows for more lagged terms in the regression 

and is appropriate to use when higher order lags are needed. 

4. RVAR. The restricted vector autoregression test is closely related to the two step 

estimator. Based on the estimate of the cointegrating vector from the cointegration 

regression, the error correction representation is estimated. Then whether the error 

correction term is significant is tested. First order system is assumed in this case. 

5. ARVAR. The augmented RVAR test comes with the same idea as RVAR but allows 

higher order system. 

6. UVAR. The unrestricted VAR test is based on a vector autoregression in the levels which 

is not restricted to satisfy the cointegration constraints.The test is simply whether the 

lagged levels would appear at all, or whether the model can be expressed entirely in 

changes. This test assumes first order model. 

7. AUVAR. This is a higher order version of UVAR test. 

The test statistics of the above seven types of tests are stated in Table 4.1. They are all 

computable by least squares. The critical values were estimated for each statistics by simulation 

using 10,000 replications by Engle and Granger (1987) under the null hypothesis of two 

independent (1)I series. Using these critical values, the power of the test statistics were 

computed by simulations under various alternatives. 
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 In the more complicated but realistic case that the system is of infinite order but can be 

approximated by a p th order autoregression, the statistics will only be asymptotically similar. 

Therefore, tests 3, 5 and 7 are asymptotically similar if the p th order model is true, whereas 

tests 1, 2, 4, and 6 are not asymptotically similar since these tests omit the lagged terms in 

regression. For this reason, Engle and Granger (1987) suggested one should not use the latter 

tests unless first order assumption is appropriate. Whether it is preferable to use a data base 

selection of p for these testing procedures needs further investigation. Furthermore, by 

comparing the critical values and powers for the seven tests under first order system and fourth 

order system assumptions, they decided that CRDW test is the best in power for first order case 

but too sensitive to changes of parameters in the null hypothesis. However, due to its simplicity,  

 

Table 4.1 The Test Statistics: Reject for large values 

1. The Cointegrating Regression Durbin Watson:. t t ty x c uα= + + . 

1 .DWξ =  Under null hypothesis 0DW =  

2. Dicky Fuller Regression: 1t t tu uφ ε−Δ = − + . 

2 φξ τ= : the t statistic for φ . 

3. Augmented DF Regression: 1 1t t t t p tu u u uφ ε− − −Δ = − + Δ + + Δ +" . 

3 φξ τ= . 

4. Restricted VAR: 1 1 1t t ty uβ ε−Δ = + , 2 1 2 .t t t tx u yβ γ ε−Δ = + Δ +  

2 2
4 1 2β βξ τ τ= + . 

5. Augmented Restricted VAR: Same as (4) but with p lags of tyΔ  and txΔ  in each equation. 

2 2
1 25 β βξ τ τ= +  

6. Unrestricted  VAR: 1 1 2 1 1 1 ,t t t ty y x cβ β ε− −Δ = + + + 1 24 213t t t t tx y x y cβ β γ ε− −Δ = + + Δ + + . 

6 1 22[ ]F Fξ = +   

where 1F  is the F statistic for testing 1β  and 2β  both equal to zero in the first equation; 

and 2F  is the F statistic for testing 3β  and 4β  both equal to zero in the second. 

7. Augmented Unrestricted VAR: Same as (6) but with p lags of txΔ and tyΔ  in each equation. 

                     7 1 22[ ]F Fξ = +  



 21  

CRDW is frequently used as a quick approximate result. Considering that realistically, one could  

not know which critical value to use, the ADF test with relative high power and quite consistent 

critical values for both first order and fourth order cases was recommended by Engle and 

Granger (1987) and has been widely used for testing cointegration. However, its power is 

slightly lower than DF test when first order can be assumed to be true. The critical values 

obtained by Engle and Granger for CRDW, DF and ADF test statistics are listed in Table 4.2. 

 The critical values listed here have only been estimated by simulation for the bivariate 

case for one sample size and from two specific models under null hypothesis. More general cases 

are remained to be discussed. Nevertheless, the critical values given in Table 4.2 have been used 

widely as a rough guide in applied studies.  

 

Table 4.2 Critical Values: Reject for large values 

 

First Order Model:  

txΔ , tyΔ independent standard normal, 100 observations, 10,000 replications, p=4 

 Critical Values 

Statistics Type of Test 1% 5% 10% 

1 CRDW 0.511 0.386 0.322 

2 DF 4.07 3.37 3.03 

3 ADF 3.77 3.17 2.84 

 

Higher Order Model:  

40 .8t t ty y ε−Δ = Δ + , 
40 .8t t tx x η−Δ = Δ +  

tε , tη independent standard normal, 100 observations, 10,000 replications, p=4 

 Critical Values 

Statistics Type of Test 1% 5% 10% 

1 CRDW 0.455 0.282 0.209 

2 DF 3.90 3.05 2.71 

3 ADF 3.73 3.17 2.91 
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Section 4.2  Critical Values Simulated for other sample sizes 
To discuss the effect of sample sizes on the simulation results, critical values of DF and 

ADF tests are obtained by simulation under the same null hypotheses as in Table 4.2 but with 

various sample sizes. The independent series were generated according to the models under null 

hypothesis, then test statistics were calculated as stated in Table 4.1. The procedure was 

replicated for 10,000 times and the (1 )α− th percentiles were recorded as the critical values. 

Results is shown in Table 4.3.  

Table 4.3 Critical Values for different sample sizes 

 

First Order Model:  

txΔ , tyΔ independent standard normal, 100 observations, 10,000 replications, p=4 

Type of Tests DF ADF 

 Critical Values Critical Values 

Sample Size 1% 5% 10% 1% 5% 10% 

30 4.37 3.55 3.19 3.77 3.04 2.71 

50 4.13 3.50 3.15 3.74 3.14 2.83 

70 4.05 3.43 3.11 3.82 3.22 2.90 

80 4.03 3.43 3.11 3.89 3.26 2.95 

90 4.01 3.38 3.07 3.80 3.23 2.94 

100 3.99 3.39 3.08 3.80 3.25 2.93 

 

Higher Order Model:  

40 .8t t ty y ε−Δ = Δ + , 
40 .8t t tx x η−Δ = Δ +  

tε , tη independent standard normal, 100 observations, 10,000 replications, p=4 

Type of Tests DF ADF 

 Critical Values Critical Values 

Sample Size 1% 5% 10% 1% 5% 10% 

30 5.66 4.67 4.14 3.90 3.21 2.86 

50 5.39 4.27 3.70 3.87 3.26 2.95 

70 4.83 3.73 3.25 3.93 3.31 3.00 

80 4.69 3.68 3.19 3.87 3.30 3.00 

90 4.47 3.51 3.06 3.88 3.33 3.01 

100 4.34 3.48 3.02 3.89 3.31 3.02 
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It can be seen from Table 4.3 that the estimated critical values stabilized towards a 

limiting value as n approaches 100 and one should be cautious when use the critical values for 

n=100 if the sample size is less than 90. 

Surprisingly, the critical values for sample size 100 are slightly larger than the critical 

values provided by Engle and Granger (1987). Thus, based on critical values in Table 4.3, it  

would be harder to reject the null hypothesis and thus conclude cointegration less often than 

based on critical values in Table 4.2. Consequently, the power of the test is lower. Since the 

algorithm of simulation has been checked carefully, it is possible that Engle and Granger (1987) 

used slightly different test statistic from the regression. 

  

Section 4.3  Critical Values Simulated for other models 
In reality, we are not likely to know beforehand which model is appropriate and thus 

which critical value to use. Hence, an ideal test statistic should be consistent under various kinds 

of null hypothesis. As the most widely used cointegration test DF and ADF, it is desirable to 

know their behavior under models with different coefficients, different lags and different forms. 

In this section, the critical values of ADF and DF tests obtained by simulation under various null 

hypotheses are tabulated in Table 4.4. Here five models were used as null hypotheses: the first 

one has only lag 4 term with coefficient 0.8 (this is the one used in Table 4.2); the second model 

includes all lagged terms with orders lower or equal to 4; the third one contains only lag 5 term; 

the fourth model is the same as model 3 with different coefficient; and the last one is an 

invertible moving average model.  

It can be seen that the critical values of DF test vary dramatically with different models. 

Since DF test does not include any lagged term in the test regression, so not surprisingly it is 

sensitive to changes in lags. For ADF test, adding lower order lagged terms into the model 

doesn’t affect the critical values very much. But with higher order lag, the critical values 

decrease, so that it would be easier to reject null hypotheses and detect cointegration. 

Consequently, if we were to use the critical values from Table 4.2 to detect cointegrated system 

with order higher than four, we might fail to reject the null hypothesis sometimes. Fortunately, 

autoregressive time series with more than 4 lags are not common. 
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Table 4.4 Critical Values for different models 

100 observations, 10,000 replications, p=4 , tε , tη independent standard normal 

Type of Tests DF ADF 

 Critical Values Critical Values 

Models under Null Hypothesis 1% 5% 10% 1% 5% 10% 

40 .8t t ty y ε−Δ = Δ + , 
40 .8t t tx x η−Δ = Δ +  4.34 3.48 3.02 3.89 3.31 3.02 

4(1 0 .8 ) t tB y ε− Δ = , 4
4(1 0 .8 ) t tB x η−− Δ =  7.81 5.28 4.02 3.83 3.20 2.88 

50 .8t t ty y ε−Δ = Δ + , 
50 .8t t tx x η−Δ = Δ +  4.58 3.62 3.16 3.78 2.78 2.31 

50 .7t t ty y ε−Δ = Δ + , 
50 .7t t tx x η−Δ = Δ +  4.24 3.46 3.03 3.54 2.67 2.22 

(1 0 .5 )(1 0 .9 )t ty B B εΔ = − − , (1 0 .8 )(1 0 .9 )t tx B B ηΔ = − −  18.08 16.83 16.24 6.56 5.89 5.55 

 

It is worth noticing that when the 2 independent differenced series under null hypothesis 

are invertible moving average process instead of autoregression process, the critical values are 

much larger than those for model one. Hence, when the true system involves moving average 

term, tests based on critical values provided by Engle and Granger (1987) would reject the null 

too often with too many false positives. 

 This discussion is still based on the bivariate case and leaves many questions unanswered. 

Critical values for more variables and sample sizes were calculated by Engle and Yoo (1986) 

using the same general approach. Research on the limiting distribution theory by Phillips (1985) 

and Phillips and Durlauf (1985) might lead to alternative approach with better performance. We 

should be cautious if the structure of practical time series is not autoregressive or the test 

statistics is on the edge of critical values when applying test of cointegration. 

 

CHAPTER 5 - Applications to Finance Data 

 Nowadays, due to economic globalization, decisions and activities taking place in one 

part of the world have significant impact for people and communities elsewhere in the world. 

This close relationship among different parts of the world can be seen in various kinds of 

economic and financial indexes and criteria.  
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To investigate the currency relationship between United States and Asia, the monthly log 

exchange rates of US Dollar (USD) vs British Pound (GBP) and the log exchange rate of 

Chinese Yuan (CNY) vs British Pound (GBP) from 1995 Jan to 2007 Dec were obtained. Initial 

plots of the two time series Figure 5.1 and Figure 5.2 show that they are both nonstationary but 

share similar trend over time as seen in Figure 5.3 (dotted line represents USD, and solid line 

represents CNY). 

Figure 5.1 Log USDvsGBP exchange rate (1995-2007) 
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Figure 5.2  Log CNYvsGBP exchange rate (1995-2007) 
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 Then it was checked that both series are (1)I . ADF test was run for log USDvsGBP 

exchange rate (denoted by LUSD) with lag 3. It gave a t-statistic -0.09 which suggests the 

existence of unit root. Running the same test for the first difference of the series with lag 2 

yielded a t-statistic -7.47 indicating that first difference is stationary. For log CNYvsGBP  
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Figure 5.3  Log CNYvsGBP and USDvsGBP (1995-2007) 
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exchange rate (denoted by LCNY), same tests were used and two t-statistics were -1.06 and -7.35 

respectively. Hence both series are (1)I . 

 It is of interest to know if the ratio of USD and CNY remains stationary over time. Then 

a test for whether log ratio=LUSD-LCNY (denoted as LDIFF) is stationary or not could be 

conducted. In this case, the cointegration vector for testing is known as (1, -1). Thus an ADF or 

DF test on the series of difference between log USDvsGBP exchange rate and log CNYvsGBP 

exchange rate would be sufficient.  Surprisingly, ADF test with first lag gave a t-statistic 5.20  

 

Figure 5.4 The Plot of Residuals of Cointegrating Regression (LDIFF) 
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indicating that one cannot reject the null hypothesis, thus the two series were not cointegrated by 

vector (1, -1). The LDIFF series is plotted to show its behavior. It seems that there was a 

gradually drop in the log ratio between USD and CNY from 2005’s June till the end of 2007 as 

shown in Figure 5.4. Therefore, it is possible that equilibrium exists but has been violated by an 

event happened around 2005 June. 

By removing the observations since 2005’s June till now, the remain two series are still 

(1)I . (ADF tests with 2 lags for LUSD and LCNY yielded t statistics -0.67 and -0.69 indicating 

that both series are nonstationary. And DF tests for the first differenced series gave t-statistics     

-9.57 and -9.66 suggesting that they are stationary after once difference.) LDIFF was tested again 

for stationarity by ADF test with first lag. The test statistic turned out to be -6.17 suggesting that 

one should reject the unit root null hypothesis and conclude stationarity. Now LDIFF=LUSD-

LCNY is stationary, we can conclude that LUSD and LCNY are cointegrated with cointegration 

vector (1, -1) until 2005 June. It is found that before 2005, the value of China’s Currency, the 

Yuan has been linked to US Dollar through government adjustment. However, in the June of 

2005, China's political leadership actively mentioned the thought of breaking such a link and 

instead, tying Yuan’s value to a group of currencies as Euro, Yen etc. Since then, the value of 

CNY has been slowly but steadily going up causing the log ratio of USD over CNY decreased 

and broke the equilibrium of the past ten years. Although losing the equilibrium with USD, CNY 

is very likely to be cointegrated with average values of the dollar, yen, euro and possibly other 

currencies like the British pound. 

Other than currency exchange rates, the performance of stock markets also presents 

certain relationships in economics and finance between different districts of the world. Here, 

the monthly average of Adjusted Close quotes (The adjusted close adjusts for dividends and 

stock splits for the stock and will be a different number than the close.) of Dow Jones 

Industrial Average and the Hong Kong HSI-HANG SENG from 1987 Jan to 2007 Dec were 

put together to check the underlying relationship between the two stock indexes. Although 

they are both going up, there is no clear common trend can be detected from the graph. 

Hence, they might not be cointegrated. Tests were conducted to see if cointegration can be 

detected. 
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First, the two series were taken log to stabilize the variances and plotted together with 

each other. The solid line presents the behavior of log Adjusted close quotes of Dow Jones 

Industrial Average, while the dotted line presents that of HSI-HANG SENG.  

Figure 5.5 Plots of Log Adjusted Close quotes of Dow Jones and His-hang Seng 
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They are denoted by LAdjDJ and LAdjHS. Then they were checked by ADF tests for stationarity. 

The ADF test with lag 2 of the original series gave t-statistics -0.71 for LAdjDJ and -0.76 for 

LAdjHS suggesting neither of them is stationary; after the first order difference, they were tested 

again by ADF tests with lag 4, which gave a t-statistic -7.41 for LAdjDJ and -8.36 for LAdjHS 

indicating that after first difference, both series turned out to be stationary. Thus, the two time 

series of interest are both (1)I . Cointegrating regression was then run and DW turned out to be 

0.0413 which is not even close to the critical value listed in Table 4.2. A regression of the 

differenced residual series on one lagged residual and 4 lags of the differenced terms was then 

run and the results of both regressions are shown in Table5.1. The ADF test statistic is -1.51. 

Based on the critical values listed in Table 4.2, we cannot reject the non-cointegration null 

hypothesis and thus failed to detect cointegration between Log AdjDJ and Log AdjHS. Since all 

the lagged terms appear to be significiant at least under 0.10 level, using DF test to seek for 

higher power is not appropriate in this case. Further, when the cointegrating regression was 

reversed, by regressing Log AdjHS on Log AdjDJ, similar results were obtained and no 

cointegration was identified. In conclusion, the log Adjusted Close quotes for Dow Jones 

Industrial Average and that for Hong Kong HSI-HANG SENG are not cointegrated. It is not so  
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Table 5.1 Regression of LAdjcloseDJ on LAdjcloseHS 

Independent Variables, estimates and t-stats Dependent 

Variables c  LAdjHS Res(-1) ΔRes(-1) Δ Res(-2) Δ Res(-3) ΔRes(-4) 

LAdjDJ 
0.783 

(3.73) 

0.873 

(37.63) 
     

Δ Res   
-0.0196 

(-1.51) 

0.1697 

(2.66) 

-0.1189 

(-1.85) 

0.1158 

(1.80) 

-0.1026 

(-1.59) 

 

surprisingly in the sense that instead of close relationship between just two stock markets, 

mutually impacts and constraints are expected as economics globalized. Hence, we might expect 

that if more variables such as the quotes for Shang Hai Stock Market or Nasdaq were available, 

then they might be cointegrated. Furthermore, it is clear from the plots in Figure 5.5 that the 

Hong Kong stock market is more volatile than the US market and the investment patterns of the 

two eareas are different due to different types of investors. This may also explain why the two 

series are not cointegrated. 
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Appendix A - Codes for Simulation Study 

The simulation was conducted by R. 

 

# ADF and DF test functions are available in the package “uroot”; 

 

library(uroot); 

 

Generate Lagged  I(1) series and get test statistics 
 

# Generate the series under null hypothesis; 
# 

t t l ty c y ε−Δ = Δ + , 
t t l tx c x η−Δ = Δ + ; 

# Parameter in the model: order of the lag=l; coefficient=c, sample sizes=n; 

lag4stat<-function(l,c,n) 

{ 

 x<-numeric(); y<-numeric(); 

 deltax<-numeric(); 

 deltay<-numeric(); 

 e<-rnorm((n+500),0,1); 

 u<-rnorm((n+500),0,1); 

 deltax[1:l]<-e[1:l];  

 deltay[1:l]<-u[1:l]; 

 for(i in (l+1):(n+500)) 

 { 

  deltax[i]<-c*deltax[i-l]+e[i]; 

  deltay[i]<-c*deltay[i-l]+u[i]; 

  x[i]<-sum(deltax[1:i]); 

  y[i]<-sum(deltay[1:i]); 
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 } 

# Erase the first 500 observation; 

 x<-x[501:(n+500)]; 

 y<-y[501:(n+500)]; 

# Regress y on x to get residual then get ADF and DF test statistics; 

 lm<-lm(y~x); 

 res<-resid(summary(lm)); 

 adfout<-ADF.test(wts=ts(res), itsd=c(0,0,c(0)),regvar=0,  

  selectlags=list(mode=c(1,2,3,4), Pmax=4)); 

 dfout<-ADF.test(wts=ts(res), itsd=c(0,0,c(0)),regvar=0,  

  selectlags=list(mode=c(0), Pmax=4));  

 adf<-adfout@stat; df<-dfout@stat; 

      return(c(adf[1,3],df[1,3])); 

}; 

 

begin<-Sys.time(); 

# Assign number of replication and number of observation, i.e. sample sizes; 

 rep<-10000; 

 obs<-100; 

 adf<-numeric(rep); 

 df<-numeric(rep); 

# Replicate the function 10,000 times and collect all ADF and DF stats; 

 for(j in 1:rep) 

 {  

  adf[j]<-lag4stat(l=4,c=0.8,n=obs)[1]; 

  df[j]<-lag4stat(l=4,c=0.8,n=obs)[2]; 

 } 

# Sort the stats and find the desired percentiles;; 

 lag4adf<-c(sort(adf)[0.01*rep],sort(adf)[0.05*rep],sort(adf)[0.10*rep]); 

 lag4df<-c(sort(df)[0.01*rep],sort(df)[0.05*rep],sort(df)[0.10*rep]); 

 lag4adf;lag4df; 
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Generate No Lag I(1) series and get test statistics 
 

# Generate the series under null hypothesis; 

# tyΔ and, txΔ are independent standard normal; 

# Parameter: sample size=n; 

nolagstat<-function(n) 

{ 

 x<-numeric(); y<-numeric(); 

 deltax<-rnorm((n+500),0,1); 

 deltay<-rnorm((n+500),0,1); 

  for(i in 1:(n+500)) 

 { 

  x[i]<-sum(deltax[1:i]); 

  y[i]<-sum(deltay[1:i]); 

 } 

 x<-x[501:(n+500)]; 

 y<-y[501:(n+500)]; 

 lm<-lm(y~x); 

 res<-resid(summary(lm)); 

 adfout<-ADF.test(wts=ts(res), itsd=c(0,0,c(0)),regvar=0,  

  selectlags=list(mode=c(1,2,3,4), Pmax=4)); 

 dfout<-ADF.test(wts=ts(res), itsd=c(0,0,c(0)),regvar=0,  

  selectlags=list(mode=c(0), Pmax=4)); 

 adf<-adfout@stat; df<-dfout@stat; 

 return(c(adf[1,3],df[1,3])); 

}; 

 

# Replicate the procedure 10,000 times and collect all test stats; 

 adf<-numeric(rep); 

 df<-numeric(rep); 

 for(j in 1:rep) 
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 {  

  adf[j]<-nolagstat(n=obs)[1]; 

  df[j]<-nolagstat(n=obs)[2]; 

 } 

 

# Get desired percentiles as critical valus; 

 nolagadf<-c(sort(adf)[0.01*rep],sort(adf)[0.05*rep],sort(adf)[0.10*rep]); 

 nolagdf<-c(sort(df)[0.01*rep],sort(df)[0.05*rep],sort(df)[0.10*rep]); 

 nolagadf;nolagdf; 

 

# To estimate the time needed for simulation; 

end<-Sys.time(); 

end-begin; 

 

Generate Lag 1,2,3,4 I(1) series and get test statistics 
lag1234stat<-function(n) 

{ 

 x<-numeric(); y<-numeric(); 

 deltax<-numeric(); 

 deltay<-numeric(); 

 e<-rnorm((n+500),0,1); 

 u<-rnorm((n+500),0,1); 

 deltax[1]<-e[1]; 

 deltay[1]<-u[1]; 

 deltax[2]<-3.2*deltax[1]+e[2]; 

 deltay[2]<-3.2*deltay[1]+u[2]; 

 deltax[3]<-3.2*deltax[2]-3.84*deltax[1]+e[3]; 

 deltay[3]<-3.2*deltay[2]-3.84*deltay[1]+u[3]; 

 deltax[4]<-3.2*deltax[3]-3.84*deltax[2]+2.048*deltax[1]+e[4]; 

 deltay[4]<-3.2*deltay[3]-3.84*deltay[2]+2.048*deltay[1]+u[4];  
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 for(i in 5:(n+500)) 

 { 

  deltax[i]<-3.2*deltax[i-1]-3.84*deltax[i-2]+2.048*deltax[i-3]-

0.4096*deltax[i-4]+e[i]; 

  deltay[i]<-3.2*deltay[i-1]-3.84*deltay[i-2]+2.048*deltay[i-3]-

0.4096*deltay[i-4]+u[i]; 

  x[i]<-sum(deltax[1:i]); 

  y[i]<-sum(deltay[1:i]); 

 } 

 x<-x[501:(n+500)]; 

 y<-y[501:(n+500)]; 

 lm<-lm(y~x); 

 res<-resid(summary(lm)); 

 adfout<-ADF.test(wts=ts(res), itsd=c(0,0,c(0)),regvar=0,  

  selectlags=list(mode=c(1,2,3,4), Pmax=4)); 

 dfout<-ADF.test(wts=ts(res), itsd=c(0,0,c(0)),regvar=0,  

  selectlags=list(mode=c(0), Pmax=4));  

 adf<-adfout@stat; df<-dfout@stat; 

      return(c(adf[1,3],df[1,3])); 

}; 

 

##results; 

begin<-Sys.time(); 

 rep<-10000; 

 obs<-100; 

 adf<-numeric(rep); 

 df<-numeric(rep); 

 for(j in 1:rep) 

 {  

  adf[j]<-lag1234stat(n=obs)[1]; 

  df[j]<-lag1234stat(n=obs)[2]; 
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 } 

 lagladf<-c(sort(adf)[0.01*rep],sort(adf)[0.05*rep],sort(adf)[0.10*rep]); 

 lagldf<-c(sort(df)[0.01*rep],sort(df)[0.05*rep],sort(df)[0.10*rep]); 

 lagladf;lagldf; 

 

end<-Sys.time(); 

end-begin; 

 

Generate Invertible MA(2) I(1) series and get test statistics 
 

library(uroot); 

MA2stat<-function(n) 

{ 

 x<-numeric(); y<-numeric(); 

 deltax<-numeric(); 

 deltay<-numeric(); 

  

 e<-rnorm((n+500),0,1); 

 u<-rnorm((n+500),0,1); 

 deltax[1]<-e[1];  

 deltay[1]<-u[1]; 

 deltax[2]<-e[2]-1.7*e[1]; 

 deltay[2]<-u[2]-1.4*u[1]; 

 

 for(i in 3:(n+500)) 

 { 

  deltax[i]<-e[i]-1.7*e[i-1]+0.72*e[i-2]; 

  deltay[i]<-u[i]-1.4*u[i-1]+0.45*u[i-2]; 

  x[i]<-sum(deltax[1:i]); 

  y[i]<-sum(deltay[1:i]); 
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 } 

 x<-x[501:(n+500)]; 

 y<-y[501:(n+500)]; 

 lm<-lm(y~x); 

 res<-resid(summary(lm)); 

 adfout<-ADF.test(wts=ts(res), itsd=c(0,0,c(0)),regvar=0,  

  selectlags=list(mode=c(1,2,3,4), Pmax=4)); 

 dfout<-ADF.test(wts=ts(res), itsd=c(0,0,c(0)),regvar=0,  

  selectlags=list(mode=c(0), Pmax=4));  

 adf<-adfout@stat; df<-dfout@stat; 

      return(c(adf[1,3],df[1,3])); 

}; 

 

##results; 

begin<-Sys.time(); 

 rep<-10000; 

 obs<-100; 

 adf<-numeric(rep); 

 df<-numeric(rep); 

 for(j in 1:rep) 

 {  

  adf[j]<-MA2stat(n=obs)[1]; 

  df[j]<-MA2stat(n=obs)[2]; 

 } 

 adf<-c(sort(adf)[0.01*rep],sort(adf)[0.05*rep],sort(adf)[0.10*rep]); 

 df<-c(sort(df)[0.01*rep],sort(df)[0.05*rep],sort(df)[0.10*rep]); 

 adf;df; 

 

end<-Sys.time(); 

end-begin; 
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Appendix B - Codes for Analysis of Finance Data 

Examples were analyzed by SAS. 

Currency Exchange Rate Data Analysis 
Data can be obtained at http://www.oanda.com/convert/fxhistory 

 
*Arrange the data; 
 
data sasuser.currency; 
 merge meanusd meancny t; 
 time=year||month; 
 lusd=log(usdrate); 
 lcny=log(cnyrate); 
 ldiff=lusd-lcny; 
 drop _TYPE_ _FREQ_; 
run; 
 
* Plot the two series separately; 
 
proc gplot data=sasuser.currency; 
 plot lcny*time lusd*time; 
run; 

 
* Plot the two series together; 
 
goptions colors=(black); 
 symbol1  i=join v=none l=1; 
 symbol2  i=join v=none l=3; 
 
proc gplot data=sasuser.currency; 
 plot lcny*time lusd*time/overlay; 
run; 

 

* Check if the two series are both I(1); 
 
*First check if the series are stationary; 
 
proc arima data=sasuser.currency; 
 identify var=lusd stationarity=(ADF=(3)); 
 estimate p=4; 
 identify var=lcny stationarity=(ADF=(3)); 
 estimate p=4; 
run; 

 

*Then check if the series after once difference are stationary; 
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proc arima data=sasuser.currency; 
 identify var=lusd(1) stationarity=(ADF=(3)); 
 estimate p=4; 
 identify var=lcny(1) stationarity=(ADF=(3)); 
 estimate p=4; 
run; 

 

* check if LUSD-LCNY is a stationary series; 
 
proc arima data=sasuser.currency; 
 identify var=ldiff stationarity=(ADF=(1)); 
 estimate p=4; 
run; 
 
 
*Plot the LDIFF series; 
 
proc gplot data=res; 
 symbol v=diamond i=join; 
 plot ldiff*time; 
run; 
 
*Cutoff the irregular observations after 2005 June; 
 
data cutoff; 
 set sasuser.currency; 
 if t>126 then delete; 
run; 
 
*ADF tests for the series after cutoff to see if they are still I(1); 
 
proc arima data=cutoff; 
 identify var=lusd stationarity=(ADF=(3)); 
 estimate p=4; 
 identify var=lcny stationarity=(ADF=(3)); 
 estimate p=4; 
run; 
 
proc arima data=cutoff; 
 identify var=lusd(1) stationarity=(ADF=(0)); 
 estimate p=4; 
 identify var=lcny(1) stationarity=(ADF=(0)); 
 estimate p=4; 
run; 
 
*ADF tests for LDIFF after cutoff to see if it is stationary; 
 
proc arima data=cutoff; 
 identify var=ldiff stationarity=(ADF=(1)); 
 estimate p=4; 
run; 
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Stock Market Data Analysis 
 Data can be obtained at http://finance.yahoo.com/ 

 

*Plot the two series DJ and NQ; 
 
proc gplot data=sasuser.stock; 
 plot lAdjDJ*t lAdjHS*t/overlay; 
run; 
 
* Check if the two series are both I(1); 
 
*First check if the series are stationary; 
 
proc arima data=sasuser.stock; 
 identify var=lAdjDJ stationarity=(ADF=(2)); 
 estimate p=4; 
 identify var=lAdjHS stationarity=(ADF=(2)); 
 estimate p=4; 
 identify var=lAdjNQ stationarity=(ADF=(2)); 
 estimate p=4; 
 
run; 

*Then check if series after once difference are stationary; 
 
proc arima data=sasuser.stock; 
 identify var=lAdjDJ(1) stationarity=(ADF=(4)); 
 estimate p=4; 
 identify var=lAdjHS(1) stationarity=(ADF=(4)); 
 estimate p=4; 
 identify var=lAdjNQ(1) stationarity=(ADF=(1)); 
 estimate p=4; 
 
run; 
 
*Cointegrating Regression is run to get DW and residuals; 
 
proc autoreg data=sasuser.stock; 
 model lAdjDJ=lAdjHS; 
 output out=res residual=res; 
run; 
 
*ADF test for the residual series from the cointegrating regression; 
 
proc arima data=res; 
 identify var=res stationarity=(ADF=(4)); 
 estimate p=4 noconstant; 
run; 
 
*Get lagged terms from the data and Regression of the differenced residual series; 
 
data DJHS; 
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 set res; 
 ec=res; 
 ec1=lag(ec); 
 dec=ec-ec1; 
 dec1=lag(dec); 
 dec2=lag(dec1); 
 dec3=lag(dec2); 
 dec4=lag(dec3); 
run; 
 
proc autoreg data=djhs; 
 model dec=ec1 dec1 dec2 dec3 dec4/noint; 
run; 
 
 
*Plot the two series DJ and NQ; 
 
goptions colors=(black); 
 symbol1  i=join v=none l=1; 
 symbol2  i=join v=none l=3; 
 
proc gplot data=sasuser.stock; 
 plot ladjDJ*t ladjNQ*t/overlay; 
run; 
 
*Cointegrating Regression and the reverse regression; 
 
proc autoreg data=sasuser.stock; 
 model lAdjNQ=lAdjDJ; 
 output out=res2 residual=res; 
run; 
 
proc autoreg data=sasuser.stock; 
 model lAdjDJ=lAdjNQ; 
 output out=res3 residual=res; 
run; 
 
*ADF tests for the residuals to see if cointegration exists; 
 
proc arima data=res2; 
 identify var=res stationarity=(ADF=(4)); 
 estimate p=4; 
run; 
 
proc arima data=res3; 
 identify var=res stationarity=(ADF=(4)); 
 estimate p=4; 
run; 
 
*Get Lags and Differenced Series from the original Data; 
 
data DJNQ; 
 set res3; 
 c=lAdjNQ; 
 c1=lag(c); 
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 ec=res; 
 ec1=lag(ec); 
 dc=c-c1; 
 dc1=lag(dc); 
 dc2=lag(dc1); 
 dc3=lag(dc2); 
 dc4=lag(dc3); 
 y=lAdjDJ; 
 y1=lag(y); 
 dy=y-y1; 
 dy1=lag(dy); 
 dy2=lag(dy1); 
 dy3=lag(dy2); 
 dy4=lag(dy3); 
 dec=ec-ec1; 
 dec1=lag(dec); 
 dec2=lag(dec1); 
 dec3=lag(dec2); 
 dec4=lag(dec3); 
run; 
 
*Regressions to estimate the final model; 
 
proc autoreg data=djnq; 
 model dec=ec1 dec1 dec2 dec3 dec4/noint; 
run;  
 
proc autoreg data=djnq; 
 model dc=c1 y1 dc1 dc2 dc3 dc4 dy1 dy2 dy3 dy4; 
run;  
 
proc reg data=djnq; 
 model dc=ec1 dc1 dy3 dy4/noint; 
run;  
 


