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NOMENCLATURE

a amplitude of light ray

T time

w circular frequency

^ angle between polarizer axis and directions of principal
stresses

R wavelengths of relative retardation

t model thickness

C stress optical coefficient of birefringent material

<J
j

maximum principal stress

cr 2 minimum principal stress

t shearing stress

P radius of curvature of stress trajectory

s distance measured along a stress trajectory

2 sum of the principal stresses, i. e. ,
{<J

1
+ O z )

€ strain

v Poisson's ratio

E modulus of elasticity

^r Laplacian operator

6 mesh spacing

X. wavelength of light

[J. absolute index of refraction

L physical path length of light

<j> angle of incidence

a angle of refraction
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NOMENCLATURE concl.

I intensity of light source

AN isopachic fringe order

K isopachic calibration constant



INTRODUCTION

Effective methods of determining isopachic patterns in plane

stress structures and models have been eagerly sought for the last

half century. The isopachic pattern describes the thickness changes

caused by loading a two-dimensional model and therefore represents

the sum of the principal stresses at all points of the plane stress

systems. When used in conjunction with the conventional isochromatic

pattern of photoelasticity, which represents the difference of the prin-

cipal stresses at all points in a model, simple evaluation or separa-

tion of the individual principal stresses is made possible.

Numerous instruments for measuring minute thickness changes

have been devised (3). The earliest ones were sensitive, delicate

instruments capable only of point by point scanning of models under

investigation. Instruments and techniques for observing isopachics

over large fields are fewer in number. These are elaborate, expen-

sive instruments, and highly sensitive to external vibrations and tem-

perature changes. None has been successful enough to replace the

laborious and time-consuming integration and iteration procedures of

conventional photoelasticity.

The purpose of this paper is to present a new method for obtain-

ing isopachic patterns which is a significant improvement over the

methods now available.



PHOTOELASTIC TECHNIQUE

An understanding of the photoelastic technique is necessary if

a comparison of the methods of separating the principal stresses

is to be made.

Examining the effect of a homogenous plate of doubly refracting

material upon a normal beam of monochromatic, plane polarized

light, as shown in Fig. 1, it is seen that the plane polarized beam

represented by the vector A = a sin u t is resolved into two com-

ponents along the optical axes of the plate. Due to the property of

double refraction the light travels through the plate faster along one

of the optical axes than the other. Upon passing through the analyzer

the emergent components are reduced to the vector A' :

A 1 = (a sin 2\&) ( sin ttR )(cos (u T+ 2ttR ) (la)

analyzer A 1

doubly refracting plate

Fig. 1. Doubly refracting plate.



in which R represents the phase difference developed as a result

of the different transmission velocities along the optical axes of the

doubly refracting medium.

In 1816, Sir David Brewster discovered that certain isotropic

transparent materials are made artificially doubly refracting by

applied stresses. Photoelasticians call the property of double refrac

tion "birefringence. "

In 1852, Maxwell formulated the following laws:

(1) At any point in a birefrigent material
the optical axes of double refraction
are parallel to the direction of the
principal stresses.

(2) The phase different developed by a two-
dimensional stress system in a bire-
fringent material is given by
R = Ct (CTj - CT 2 ).

The second law requires that the stresses be within the elastic limit.

Using the second law formulated by Maxwell it is seen that the

light passed by the analyzer is given by

A' = a sin 2 ^ sin (tt Ct (a
,

- G z ) cos (w T + 2 ttR) (lb)

The amplitude of A 1 is then

a sin 2^ sin (tt Ct ( a x
- a 2 ) ) = a sin 2 ^ sin ttR

Since the intensity is proportional to the square of the ampli-

tude it will be a minimum under the following two conditions

»

1 \ t n tt

(1) # = — n = 0, 1, 2, 3 ...

(2) R = m = Ct (tfj - a 2 ) m=0,l,2,3...

(lc)



From the first of these conditions and Maxwell's first law

it can be deduced that the principal stresses in the stressed plate

of birefringent material are parallel to the polarizer and analyzer,

respectively. At all points at which this occurs the intensity of

light transmitted by the analyzer will be zero, regardless of the

wavelength and the magnitude of 0"
j

- <T 2 . If then the stressed

birefringent material be viewed through the analyzer, certain black

regions will be observed showing the locus of all points at which the

directions of principal stress are parallel to the axes of the polarizer

and analyzer. These black regions are called isoclinic lines or

fringes, or simply isoclinics. An isoclinic then is the locus of points

along which the principal stresses have parallel directions. In gen-

eral, the directions of the principal stresses will vary from point

to point in the loaded plate, so that if the polarizer and analyzer are

rotated together, the isoclinics will move to points of the plate at

which the principal stresses are parallel to the new directions of the

polarizing axes of the analyzer and polarizer. Thus different sets of

isoclinic lines are obtained for different orientations of polarizer and

analyzer. It is usual to take as standard directions the vertical and

horizontal and to measure the inclinations of the principal stresses

counter-clockwise from these directions. Then for an n inclination

of the polarizer a set of fringes is obtained which is called the n

isoclinics along which the principal stresses in the plane of the plate

are inclined n to the vertical and horizontal.



It should be noted that in regions where the directions of the

principal stresses are changing very slowly from point to point the

intensity of light passed by the analyzer will be changing slowly.

In such regions then, the isoclinics will appear as poorly defined,

diffuse dark fringes. The true isoclinics in such a case are the lines

of least illumination and must be judged by eye.

The second condition for zero intensity is that R = m. If

then the loaded plate is viewed through the analyzer, dark regions

will appear at points where the relative retardation is zero or an

integral number of wavelengths. Along these lines the principal

stress difference <J \ - C7 2 = m/tC is constant. Such lines are called

isochromatic fringes or simply isochromatics. Then each integral

value of m will yield a dark line, if the loaded plate is viewed through

the analyzer, along which T = *-^—— = _^„— is constant.° max 2 2tC

In effect, the diameter of Mohr's circle has been determined. The

integer m is called the fringe order and the constant 1/tC = F is

called the model fringe value, while the constant l/C is called the

material fringe value. These constants are usually determined ex-

perimentally.

By suitable optical arrangements the two effects ^ = n it/ 2

and R = m can be obtained separately and thus the directions of the

principal stresses and their difference throughout the stressed bire-

fringent material determined independently. The isoclinics and iso-

chromatics shall hereafter be referred to as photoelastic data.



If a two-dimensional stress system is to be investigated then

the procedure is to form a model in the shape desired from some

birefringent material of constant thickness and load it under the elastic

limit with the two-dimensional load distribution under investigation.

The direction of the principal stresses and their difference can then be

determined as outlined above.

Equations of Elasticity

The usual object of an experimental stress analysis is to obtain

the individual principal stresses and the directions at which they act.

To achieve this end through the photoelastic technique, the theory of

elasticity must be utilized. The discussion will be limited to the state

of plane stress: O = 0.
z

Considering the equilibrium of a small rectangular element

subjected to a two-dimensional stress system and neglecting body

forces, such as inertia, the equations of equilibrium in Cartesian

coordinates are found by force summations in the coordinate directions

to be
do 3 T

and
9 cr 9 r

V- + -*f*- °- (3)

It should be noted that the omission of body forces limits

these equations to the case of static equilibrium.

Considering the equilibrium of a curvilinear rectangle, formed

by intersecting stress trajectories, the equations of equilibrium in



curvilinear coordinates are obtained. These equations are called

the Lame '-Maxwell equations of equilibrium. They are

3/i + g
i - u ^ - o ( 4\

and

Stress trajectories are lines to which the principal

a z_ +
a, -or

, . „, {5)

stresses are tangent at all points and are obtained by graphical

construction from the isoclinics.

In two dimensions the equations of compatibility reduce

to a single equation. This equation for the state of plane stress,

neglecting body forces as before, may be written in terms of the

stresses as

a 2 a 2

+

8y2
J

U x
+cr

y
)

= 0. (6)

Remembering that the sum of the normal stresses at a point is

constant, i. e. , (7 + (7 = a
t
+ <J z , it is seen that the sum ofx y

the principal stresses satisfies Laplace's equation in two dimen-

sions.

Hooke's law gives the strain in the transverse direction as

e
z = -&-(*.- !'( CT

x
+ <y) • (7)

This equation reduces to



since the sum of the normal stresses at a point is constant. It

may be noted also that T = —^ sin 28 where 6 is the angle
' xy 2

measured from the axis to the direction of maximum principal stress.

Separation of the Principal Stresses

by Conventional Methods

Returning to the problem of analyzing photoelastic data, i. e. ,

separating the principal stresses, several established methods are

available using the photoelastic data in conjunction with the results

of the theory of elasticity. The method employed necessarily depends

upon the particular problem involved, the accuracy desired, and the

equipment and time available. All the methods, however, can be

categorized under the following headings:

(A) Integration of the equations of equilibrium

(B) Determination of the sum of the principal stresses

(1) Numerical solution of Laplace's equation

(2) Experimental methods.

Integration of the Equations of Equilibrium. Considering the

integration of the equations of equilibrium, the general procedure in

rectangular co-ordinates is to construct a normal to a free boundary

and label this normal as either the x or y axis, as shown in Fig. 2.

The appropriate equation of equilibrium is then integrated along this

normal. Using Eq. (2) and integrating from x to xj :

r
x l do r

Xl a T r
Xl

-

\ m
x dx+ \

» *y dx = a -a + \ ^lxy.dx=0.
J ox J a y x x J oy
xo Xo Xi |xq Xo



free
boundary 3

Fig. 2. Normal to free boundary.

Since the point xo is on the free boundary, one of the prin-

cipal stresses must be zero there. The isochromatic fringe pat-

tern then yields directly the principal stress at that point. The

direction of this principal stress may be obtained from the iso-

clinics. M)hr's circle can then be used to determine C
Xj n x

The problem of evaluating
9 t

y
2- dx remains,

however, if O

T =
xy

a, - a

is to be found. From the theory of elasticity

2- sin 29 . The isochromatic pattern yields ((Tj - C 2 )

while the angle 9 is obtained from the isoclinics. Therefore r
xy

may be evaluated.

If the shearing stress is then plotted as a function of the

co-ordinate y at intervals along the x axis, its slope, i.e. ,

9 T

g—^- , may be determined graphically at each such point and a
y 3 t

XV
plot of —g

—

*- as a function of x obtained. Graphical integration
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of this plot then yields the desired integral. If the shear stress is

3t
xy

not changing too rapidly, a quicker method of determining —n '—

is simply to evaluate t at two points, B and C, near tor xy r

one another, and then divide the difference between these values

by the length BC. This scheme is called the shear difference method

and is attributed to Frocht (3).

The integration of the Lame - Maxwell equations of equilibrium

along a stress trajectory follows the same general procedure.

Determination _of the Sum of the Principa l Stresses . If the

sum of the principal stresses can be found, a complete solution of

the photoelastic problem is obtained. The isochromatic pattern

yields the difference of the principal stresses so addition and sub-

traction with the sum gives the individual principal stresses, i. e. ,

separates them.

Numerical Solution of Laplace's Equation. The sum of

the principal stresses is a harmonic function. All harmonic functions

possess one fundamental property that is formulated in Dirichlet's

theorem. This theorem states that for a given boundary T sur-

rounding a region R to which the function applies, and for specified

boundary values on T, there exists only one solution of Laplace's

equation for all points within the region R. It follows that the sum

of the principal stresses is uniquely determined at every point within

a given region of a two-dimensionally stressed body provided the

boundary stresses are known.
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It will be recalled that the photoelastic technique yields 2 on

the free boundaries in that Cj - <T 2 is obtained from the isochromatics,

and one of the principal stresses must be zero on a free boundary.

Numerical techniques for solving V 2 2 utilizing these boundary stresses

would then yield a unique solution for 2 in the interior of the stressed

body.

There are several techniques used to carry out the numerical

solution desired, including the methods of algebraic harmonization,

iteration, the linear rosette method, block iteration, method of dif-

ferences, and the relaxation method. Each varies in complexity,

accuracy, and time involved. The relaxation method will be examined

briefly, in order to illuminate the general procedures involved and

some of the difficulties that may be encountered.

Consider the region for which 2 is defined divided into a grid-

work as shown in Fig. 3. Approximating Laplace's equation by means

t 4.1, j« -j j A-tt a2£ 22-2 2 +2 4of the divided differences ^ — —~— and
a y

2
6

2

92 2 „ 2! - 2 2 + 2 3 . ... .. , - ,= —

*

substitution leads to

8x2
6

2

Z =
S

i
+S2+S 3 +S4

.
( 10 )
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y 6

6

s2

C l AO N 3^\
\ y v

j

Fig. 3. Relaxation method network.

In the interior of the region in question, values for 2 are

assumed at each nodal point of the constructed network. Starting

at the boundary points where the correct values of 2 are known

from the isochromatics, a traverse of the network is made calculat-

ing new values for 2 at the nodal points using Eq. (lO). These values

will be different from the ones assumed in that they are influenced by

the correct values on the boundaries. The process is repeated until

the interior values become stationary.

Experimental Methods. Historically, the experimental deter-

mination of 2 was the first method employed to separate the principal

stresses. It is a direct application of Hooke's law for the state of plane
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stress, that is

V-J_(a, a 2
)=^L. (11)

Solving for 2 gives

<7i+ cr
2 = (^T-)At. (12)

in which At denotes the change in thickness. Now if the changes

in thickness at the point in question can be measured with suf-

ficient accuracy a complete solution of the photoelastic problem is

obtained, in that the sum and difference of the principal stresses

will be known. The instruments used to determine At are called

lateral extensometers, and may be classified generally as mechan-

ical, electrical, or optical.

In order to gauge the efficiency of this method an estimate of

the order of displacements to be measured is desirable. Modern

birefringent materials will produce observable relative retardations

of approximately 1/20 of a wavelength. This corresponds to a

5/t lb/in. 2 stress difference. Applying this to a typical birefringent

tension test specimen it is seen that this produces a change in thick-

ness of 5( 10 ) in.

Obviously, lateral extensometers must be quite sensitive if

the data obtained with them is to compare with that obtained from

the isochromatic pattern.

Coker ( l) , one of the founders of the photoelastic method,

employed a mechanical lateral extensometer in his pioneering work.

It was a caliper-type device utilizing levers to amplify the effect and

was necessarily adaptable only to point by point measurements.
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A. V. de Forest and A. R. Anderson ( Z) developed a caliper

type device utilizing resistance strain gages so arranged as to give

the desired magnification. Again this was a point by point measur-

ing device thereby making the determination of 2 over a large

region of interest laborious.

The optical lateral extensometers are all interferometers. Most

are of the simple two-beam type which employ division of amplitude

as compared to division of wave front.

Consider a beam of monochromatic light of wave length X meet-

ing the surface of a plane parallel transparent plate of thickness t

and refractive index (i , as shown in Fig. 4.

21

Fig. 4. Two beam interference.

Part of the beam is reflected as ray 1, and the remainder refracts

to C at which point it is partially reflected to D. At D partial re-

flection takes place again and ray 2 emerges. The distances from the

eye are so large in comparison with the thickness that rays 1 and 2 may
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be considered to be essentially parallel. The distances from E and D

to the eye are then equal. Rays 1 and 2 will then interfere construc-

tively or destructively, depending on the phase difference developed by

their different paths to the eye from the point of incidence A.

The optical path length is defined as £ fi . L. where \i , is the

absolute refractive index and L. is the physical path length of the

medium through which the light ray is passing.

Snell's law for rays passing from one medium to another states

that fij sin (pj = u 2 sin a z where Uj and u 2 are the absolute indices of

refraction of the media, and (j^ and a 2 are the angles of incidence

and refraction of the respective media.

The physical path length of ray 1 is AE = AD sin <j>. Hence its

optical path length is AD sin d? since the absolute index of refraction

of air is unity.

The physical path length of ray 2 is

A
Z

a n
2AC = 2 AD+BC = 2 ( ^- sin a + t cos a ) (l3)

The optical path length is then

(i AD sin a + 2u t cos a (l4)

By Snell's law sin 4> = u sin a so the optical path of ray 2 can

then be written as

AD sin 6 + 2p.t cos a (j5)

The optical path difference then is 2|JL t cos a where a is the

angle of refraction. Including a retardation of \/2 of ray I upon

reflection from a denser medium to air it is seen that destructive

interference could occur when the optical path difference is

an integral number of wavelengths and constructive inter-

ference could occur when the difference is equal to an odd number
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of half wavelengths.

NX = 2(jl t cosar -- possible at .ructive interference (l6)

(N + 1/2) X = 2u t cos a -- possible constructive
interference ( 1 7)

N = 1, 2, 3, . ..

For normal incidence, a 0, and these relations become

NX = 2ut (18)

(N+ 1/2) X = 2nt (19)

The intensities of the reflected rays 1 and 2 must be

examined to determine whether interference to an observable

degree will in fact occur. Taking the plate material to be

glass or plastic which have reflectivities of approximately

4 per cent and the intensity of the impingent ray to be I, it

is seen that the intensity of ray 1 is 0. 04 I, and that of ray

AB is 0.9 6 I. After partial reflection at C ray DC will have

intensity (0.04) (0.96 I) . Finally, the partial reflectionat D

gives the intensity of ray 2 as (0.04)(0.96 I) (0.96) = 0.037 I.

The intensities and therefore the amplitudes of rays I and 2 are

almost the same so observable interference can in fact occur.

Examining the intensities of ray 1' and V, it is seen that their

intensities are 0.9216 I and 0.0147 I, respectively, so the trans-

mitted light will not produce observable interference unless partially

reflecting coatings are applied to the surfaces of the sheet material.

For normal incidence, the fringes appear localized at the

surface of the plate.



If a wedge of quite small angle is considered, as shown in

Fig. 5, the basic relation for normal incidence NX = 2u t holds

closely enough. The possible variables are N, X , u , and t.

17

Fig. 5. Wedge fringes.

Using monochromatic light and materials with constant indices of

refraction the variables reduce to N and t. Then the locus of points

that satisfy Eq. (18) form dark bands or interference fringes repre-

senting lines of constant plate thickness. Adjacent fringes indicate

thickness variations of \ /2u. In Fig. 5, then the lines BB ', CC,

etc.
,
are called "fringes of equal thickness" and each fringe is a

traverse of points for which the wedge thickness is constant. The

fringes can be considered as height contour lines exactly as on a

geographical contour map. If either of the two surfaces is irregular,

then the fringes will be the map of the irregularities, each following

a path of constant thickness. If the plate is initially optically flat no
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fringe patterns will be observed. On the other hand the plate may-

display extreme thickness variations in which case the fringes are

so densely spaced that they become indistinguishable.

If an originally optically flat model is loaded two dimensionally,

thickness variations occur which are proportional to (<7 1
+ ff 2 ) since

At = - -g- (0"i + 0"
2 ) • The appearing fringes will then give directly

the loci of points along which the thickness changes between the

strained and unstrained state is constant and therefore the loci of

points along which (0"i + 0"
2 ) is constant. Such fringes are called

isopachic fringes. The term isopachic is due to Coker and Filon ( l)

and is derived from the Greek words iso, meaning same, and

pachic, meaning thickness.

The Mach-Zehnder and Michelson interferometers may be

adapted for the determination of isopachic patterns using models which

are initially optically flat. These are elaborate and very expensive

instruments and are highly sensitive to vibration and temperature

changes.

Frocht (3) observed the interference of light from the surfaces of

a model originally optically flat and an auxiliary optical flat placed

close to the model.

SUMMARY OF CONVENTIONAL METHODS

The integration of the equations of equilibrium in Cartesian co-
e T

ordinates involves the graphical evaluation of —,.

xy
and of the

p
x

i 3 T
9 Y

integral \ 3 ^ dx. Hence errors due to this graphical
xo
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evaluation are bound to arise in the solution. Experience aids in

reducing such errors but regardless of the care exercised, the

experimental error involved is difficult to determine. Note also

that this method utilizes the isoclinics which may be inaccurate as

implied previously. If the region of interest is remote from a free

boundary, this method is quite time-consuming.

Integration of the Lame' -Maxwell equations of equilibrium along

a stress trajectory is also subject to the errors inherent in a graph-

ical evaluation, in that the stress trajectories and radii of curvature

must be determined graphically. The use of the isoclinic patterns in

determining the stress trajectories introduces further inaccuracies.

Filon ( l) and Frocht (3) have set forth methods by which these inherent

errors may be reduced but their methods are only applicable to special

types of problems.

The accuracy of the relaxation method obviously depends upon

the mesh of the constructed gridwork and the number of traverses

carried out. It is time-consuming if the assumed initial values in the

interior are very much different from the correct ones. However,

in regions where the isoclinics cannot be found with sufficient accuracy

to utilize the shear difference method, it is decidedly useful

The determination of isopachic patterns by the usual interfer-

ometric means is an expensive operation in that equipment costs become

prohibitive. The requirement that the model be originally optically

flat is rather stringent for the ordinary photoelastic laboratory.
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A NEW METHOD FOR OBTAINING
ISOPACHIC PATTERNS

The classical optical methods for obtaining the sum of the

principal stresses require that the model be initially optically flat.

If, however, a model that is not optically flat, but one that

exhibits only slight thickness variations in the unstrained state is

used, many of the difficulties mentioned above may be eliminated:

Such a model would display fine, sparsely spaced thickness contour

interference fringes satisfying N^ = 2 |i t under monochromatic

normally incident light. Under loading these fringes would move to

new locations as a result of the thickness changes produced. The

number of fringes passing a point would be directly proportional to

the thickness change at that point. If the model were observed under

loading and the fringes passing the point counted, the sum of the

principal stresses could be found.

Considering a point in the model in both the unstrained and strained

states, it is seen that the thickness contour or interference fringes at

that point satisfy the relations NX = 2 ut and N'X. = 2 ut' before and

after loading. The thickness change then is

At = 27~ (N '- N) = AN
"TIT ( 2 °)

AN is called the relative fringe order, the fringe shift, or

simply the isopachic fringe order and is the number of fringes

passing the point in question as mentioned above. Now
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f- «Tnrr-"-jr(«
r

« + *.)«. < 21 »

from Eqs. ( 1 1) and (20).

Solving for 2 gives

"i + 'i-fssf— («0--T-'«»' (22)

The constant K is called the isopachic calibration constant

and may be determined by substituting the appropriate values

or by experimentation.

Instead of observing the region of interest point by point

under loading and counting the number of fringes which move

past, photographs of the model in the unstrained and strained

states may be taken. Starting at a point of known or zero 2

on the photograph of the unstrained model the thickness contour

fringes may be numbered consecutively from the arbitrarily

numbered starting point along any line, straight or curved. On

the photograph of the strained model the fringes are again num-

bered consecutively along the arbitrary line or curve from the

same arbitrarily numbered starting point. If plots of these

arbitrary fringe numbers along the line or curve are made,

graphical subtraction will yield the fringe shift or relative fringe

order along the line.

Another scheme for obtaining the isopachic fringe order is

to utilize the moire effect.

The moire effect is an optical phenomenon observed when two

arrays of lines are superimposed. If the arrays consist of opaque
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lines which are not identical in spacing or orientation, then moire

fringes will form as lines of one array alternately fall on or between

the lines of the other array. This phenomenon can be observed by

placing two pieces of ordinary screen wire together.

To aid in visualizing the moire effect consider the array of

lines shown in Fig. 6.

l*ray

u array

Fig. 6. Moire fringes.

It will be noticed that if the intersection of the "u" array and the "i "

array are connected as shown, the lines so formed are the loci of

constant line number difference. Along these loci alternately dark

and light patterns are observed. Between the lines of constant line

number difference the "u" and "i " array lines approach each other

more closely and form areas of gray or black.

If the lines of the "u" array are considered to be the thickness

contour fringes exhibited by the unloaded model and the lines of the "i"

array those exhibited by the loaded model it is evident that, if super-

imposed, the load and no load fringe patterns will produce a moire
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effect giving lines of constant fringe number difference. In other words,

the moire pattern produced will give the loci of points along which the

thickness fringe shift between load and no-load conditions is constant

and hence the isopachic pattern.

The procedure then is to print through the properly superimposed

negatives of the strained and unstrained model. An alternate procedure

is to double expose one film with the load and no-load thickness contour

fringe patterns.

EXPERIMENTAL CONSIDERATIONS

The foregoing has implied restrictions that require further

discussion.

Since distinct thickness interference fringes require a unique

velocity of light through the model, the model material must not be

permanently or artificially birefringent. Photoelastic materials, on

the other hand, should be highly birefringent. Acrylic plastics such

as plexiglass exhibit very small artificial birefringence and were

found to be satisfactory. Glass falls into the same category. The

material fringe values of plexiglass and glass are 500 and 800,

respectively (4). These figures are lower limits and may be com-

pared with a material fringe value of 100 for a common photoelastic

material such as CR 39. The plexiglass used was found to have a

material fringe value of 800.
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In plexiglass, stresses may be used in the elastic range up to

about 1500 lb/in. . This corresponds to an isopachic fringe order

of about 20. This is comparable to the number of isochromatic

fringes that can be obtained. Of course the number that can actually

be observed depends upon the initial thickness contour fringe pattern

and geometrical distortion in plane of model.

Using materials whose surfaces have been made partially reflect-

ing the transmitted light in Fig. 4 will produce interference patterns.

Interference patterns may be observed with untreated materials only

from the reflected light. The transmission method has the advantage

that the direction of the light observed is not seriously affected by

tipping or warping of the model under load whereas the reflected

rays are.

In models of appreciable thickness the light source must be

highly monochromatic. Referring to Fig. 7 it is seen that, if X in

the basic formula NX = 2u t takes on a small range of values, the

fringes will appear as bands instead of distinct lines. If a conservative

criterion for distinct fringes is set as a maximum permissible broaden-

ing of 1/4 of the distance between fringes, the maximum width of the

spectral band AX is AX =
4N
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Fringe

Fig. 7. Fringe broadening.

For most practical photoelastic analyses, model thicknesses range

from 1/16 in. to 1/2 in.
, giving rise to interference fringe orders

between 7,500 and 60,000 from NX = 2 fit with X. in the green region

(5460A ) and n = 1.5. For a model l/4-in. thick, the nominal fringe

order is 30, 000 permitting a spectral band width of only 0. 05 ang-

strom units. This is very near the limiting minim-am effective

band width for ordinary low-pressure mercury vapor lamps (2).

The use of thicker models is possible, but the fringes become in-

distinct.

A sodium vapor lamp may be employed if a little trick is used

(9) . Since sodium light contains a line doublet (5890A° and 5896A° )

the sets of interference fringes produced by the doublet may overlap



26

and disturb the moire effect if the model thickness is not just right.

Since the variation in thickness is a small fraction of the nominal

model thickness only a few hundred fringes at the most will appear

in the fringe patterns. If the model thickness is correct, the fringe

order at a point associated with one line of the doublet may be a

small integer different from the fringe order associated with the other

lines. Then for a few hundred fringes the overlapping will be of no

serious consequence. Thus the trick is to tilt the model very slightly

away from normal incidence until the clearest system of fringes appears,

If photographs of the fringe pattern are to be made, the intensity

of the light source should be great enough to make the exposure time

reasonable.

The initial uniformity of the model material must be such that

it does not display excessively high fringe densities. In regions of

high stress gradient the thickness changes produced by loading would

be expected to cause the fringes to become densely spaced, and they

would become impossible to distinguish. By careful selection of model

materials, so that in areas of supposed high stress concentrations the

initial fringe density is small, this difficulty can be overcome. Of

course, if the stress gradient is large enough the elastic limit of

the material will be exceeded and the method fails anyway, in that the

equations of elasticity no longer apply.

The requirement of small initial fringe densities will be met if

the model is wedge-shaped at least in the area of interest. Commer-

cial acrylic plastics should be suitable in that they are cast between
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plate glass. By pretest, areas displaying a desirable initial fringe

distribution can be found. It must be pointed out that only the thinner

sheets of such material (l/l6 in. to 1/4 in.) will display small enough

thickness variations to be useful.

The loading of the model should be such that the plane stress

condition is produced exactly; i. e. , the loading must not vary through-

out the thickness of the plate model.

The optical geometry must provide a wide stream of uniformly

distributed light perpendicular to the plane of the model. This may

be accomplished by using long distances between the light source and

the model. Mesmer (6) has suggested the arrangement shown in

Fig. 8, using a partially reflecting mirror and a lenses.

camera

light source

model

lenses

partially

reflecting mirror

Fig. 8. Simple interferometer.

Care must be exercised in cutting the model. If excessive heat

is developed along cuts, residual stresses will be developed which

cause such extreme thickness variations that no interference fringes

at all may be observed along the edges of the model.
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From Fig. 6 it may be observed that the moire lines or lines

of constant line number difference are approximately perpendicular

to the "unloaded" or initial fringes. Therefore if the moire technique

is to be used, the model should be cut so that the initial interference

fringes are approximately perpendicular to the known or guessed

isopachic pattern.

If the isopachic pattern is to be produced by printing through

the superimposed negatives of the fringe pattern in the loaded and

unloaded condition, the coincidence of the negatives must be exact.

This could be accomplished by marking the model so that exact align-

ment would be possible. Some sort of device incorporating micrometer

screws for moving the negatives relative to one another would facili-

tate this operation. If the deformations are small, one film can be

double exposed with the load and no-load fringe patterns.

Film, developers, and printing paper used must be such as to

produce maximum contrast with a minimum of graininess.

EXPERIMENTAL SETUP AND PROCEDURE

In that no facilities were available for producing partially reflect-

ing surfaces on the model material, the reflection technique was used.

To obtain the isopachic pattern directly, the moire effect was

utilized with the isopachic pattern being obtained by double exposure of

the loaded and unloaded model on the same film. Initial attempts were

made to print through the separate negatives by superimposing them by
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hand but exact coincidence was almost impossible to obtain. The

double exposure technique proved to be entirely satisfactory. Of

course the relative fringe order could be plotted for the load and

no-load state, and graphical subtraction of the plots would yield

the isopachic fringe order.

The optical arrangement shown in Fig. 8 is undoubtedly one

of the best possible but in that no large lenses or half silvered

mirror were available, and the cost of purchasing them was pro-

hibitive, an alternate optical arrangement was dictated. It was

decided to utilize the optical elements of the polariscope of the

K. S. U. Experimental Stress Analysis Laboratory to the greatest

extent possible. The arrangement used is as shown in Fig. 9 and

Plate I.

model and
loading device

camera

light source

Fig. 9. Experimental arrangement.
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The utilization, of the polariscope proved to be particularly-

advantageous in that it is equipped with an integral loading frame

so no construction was necessary along this line. The small par-

tially reflecting mirror (reflectance 33 per cent) was the only

optical component purchased. An adjustable frame was constructed to

hold it and the camera was mounted by means of angle irons clamped

to the frame of the polariscope.

The light rays originating at the source travel to the partially

reflecting mirror which passes a portion of them and reflects the

remainder. The latter portion is in effect wasted. The transmitted

portion travels to the model by way of the small mirror and the para-

bolic mirror both of which are integral to the polariscope. At the

model two-beam interference takes place and the reflected rays travel

back to the partially silvered mirror along the same path. At this

point they are again reflected and transmitted with the former portion

becoming available for photography. Denoting the intensity of the light

source by I, the reflectance of the partially silvered mirror by p and

that of the model by q, the light reaching the camera is given by

(l - p ) (pq - I). Taking the reflectance of the model as 4 per cent

and that of the mirror as 33 per cent, the light intensity available for

photographic purposes is 9.64 (l0~
4

) that of the source. Hence an

intense light source was necessary to avoid excessively long exposure

times.
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A mercury vapor lamp was tried initially but was not satisfactory

in that the light was not sufficiently monochromatic. Fringes appeared

upon firing but disappeared almost immediately due to pressure

broadening (2). A sodium vapor lamp was substituted and found by

trial to be sufficiently monochromatic. It was used as the light source.

The model material used was the acrylic plastic methyl meth-

acyrlate, which is manufactured under the trade name plexiglass.

One quarter inch, 1/8 in. , and 1 / 1 6 in. sheets of the type II, clear,

ultraviolet absorbing material with polished faces were obtained.

The selection of the region from which the model was to be cut

was accomplished by pretest. Each sheet of plexiglass was placed

in the optical train at the loading frame and visual observation made

at the camera location to determine whether the material displayed

suitable initial thickness interference fringes. The I /4-inch sheet

displayed a perfect Newton's ring in a region too small to be used as

a model, and no fringes in any other location. The 1 /8-inch sheet,

however, displayed fringes over its entire area with the fringes vary-

ing smoothly in density and width from point to point hence affording

a wide selection of regions from which a model could be cut.

A Linhof 4 by 5 Color Camera was mounted as shown in Fig. 9

and Plate I at the focal point of the optical train. A Goertz "Red Dot"

Artar lense with a focal length of 8-1/4 inch was used. This arrange-

ment produced a negative which was 0. 265 times as large as the model.

The maximum f number available was 9, and the exposure times

possible ranged upward from 1/400 sec. as desired. The camera was



34

equipped with a ground glass back so that visual observation, of the

image could be made before the film was inserted.

Kodak Contrast Process Panchromatic film was used. This is

a fine grain, panchromatic, antihalation film of very high contrast

(5). It gives sharp separation of light and dark tones, and is sensi-

tive from approximately 3600A to 6500A . The correct exposure

is critical if maximum contrast is desired. For single exposures

an f number of 16 and a shutter speed of 1/5 sec. were used. For

double exposures, the f number and shutter speed were 22 and 1/5

sec. , respectively. l Kodak D-ll developer was used for processing

the film as recommended (5).

Because of the small negatives produced, enlargement was

necessary during the printing process. The negatives were enlarged

approximately 8 times on Kodabromide F-4 single weight printing

paper. The f number on the enlarger lense was 5. 6, and the

exposure times were 15 sec. and 30 sec. for single exposed and double

exposed negatives, respectively.

The integral loading frame was modified by tapping holes in

its base to receive adjusting screws so that it could be tipped off vertical.

By doing this the model could be moved slightly relative to the impingent

light rays.

1 The light source varied in intensity from day to day, so no optimum
exposure was found. The figures given represent the best results
obtained.
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The model was placed in the loading frame and a slight load

applied to hold it in place. It was then adjusted relative to the light

field until the clearest image was observed through the ground glass

camera back. 2 The model was then unloaded, and five minutes

allowed for it to return to its unstrained state. This was done to

compensate for any creep that might have been present. The desired

exposures of the unloaded model were then taken. The model was

then loaded slowly to the desired point and the desired exposures made

immediately. Extreme care was exercised in placing the model in

the loading frame in an effort to ensure that the state of plane stress

was obtained.

The models were cut to the desired shape using a high speed

milling machine. Care was exercised in order to minimize the stresses

produced by this operation.

VERIFICATION

The isopachic calibration constant K = X E/2 u v was deter-

mined experimentally using a beam loaded in pure bending as

shown in Fig. 10.

Models with very fine initial patterns produced the moire effect
with the ground glass of the camera back, and adjustment was
made difficult for such models.



h = 0.971 in.

t = 0. 114 in.

Fig. 10. Calibration beam.
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From the familiar relation 0"
2

6M K AM „= — AN. Hence,
t

max
6M

th2
, it is seen that

th'

K =
6M

(23)

ANh^

Using 1500 lb/in. 2 as the elastic limit for plexiglass, it was

found that maximum moment that could be applied was 26.8 in. -lb.

Plate II shows the middle section of the beam in the unstrained

and strained states. Plate III shows the isopachic patterns obtained

by double exposure.

The isopachic fringe order of the beams of Plate III was ob-

tained directly. As a check, the fringe order was obtained from

the figures of Plate II by graphical subtraction as shown in Fig. 15.



EXPLANATION OF PLATE II

Fig. 11. Thickness contour fringes of the unstrained

calibration beam.

7. 5 fringes/in.

Fig. 12. Thickness contour fringes of the strained

calibration beam.

M = 15.64 in. -lb.
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PLATE II

Fig. 11

Fig. 12



EXPLANATION OF PLATE III

Fig. 13. Isopachic pattern of calibration beam.
M = 7.53 in. -lb.

AN = 4.9

Fig. 14. Isopachic pattern of calibration beam.
M = 15. 64 in. -lb.

AN = 10. 1
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PLATE III

VXV \\\\S\\\V\\\N VN^S>^

Fig. 13

Fig. 14
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15.64 in-lb

unstrained fringe no.

strained fringe no.

15.64 in-lb

Fig. 15. Graphical determination of the isopachic fringe order.

The isopachic calibration constant was found to be

9.855 lb/in.fringe by Eq. (23).

The diametrically loaded disk was chosen as the model shape

to be used to compare the theoretical and experimental analyses.

R = 0.95 in.

t = 0. 115 in.

TTT

Fig. 16. Model shape.
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The theoretical stress distribution (3, 10 ) in Cartesian

co-ordinates throug the center of the disk is given by

P 4PR
Rt

and

Adding:

*
|_
(x2 + y

2 + R2
)
2 - 4R 2

y
2

Cr 7 =

2 =

P 4PR
Rt t

2 „2R 2
- y

2P
Rt

(x2 + y
2 + R2

)

2 - 4R 2 y2

(x2 + y
2 + R2

)

2 - 2R 2 (x2 + y
2 + R 2

)

(24a)

(24b)

(x2 + y
2 + R2

)
2 - 4R 2

y
2

-K
AN.

The theoretical result in polar co-ordinates is given by

2 =
2P
Rt

r
4

- R4

(r
2 + R 2

)

2
- 4r 2 R 2 sin2

2P

K AN.

(25)

(26)

ttRK

- AN cos 29 i^AN2 cos 2 2G+ (AN + A)(A- AN)
AN + A

Solving for r with A =

r
2 = R 2

This relation was used to compute the theoretical isopachic fringe

values of Plate XI.

The sum of the principal stresses along the x axis is given

by

(27)

2 = -i£.
X, O IT Rt

Hence along the x axis:

x 2 - R 2

x2 + R2

K
AN.

x^ = R<
A - AN
A + AN

This solution was used to calculate the theoretical isopachic

fringe values of Plate XII.

(28)

(29)
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The sum of the principal stresses along the y axis is given

by 2P
°>y TTRt

y
z + R 2

ir2 R 2
_y - JK._

K
AN.

Hence along the x axis:

2- D2y^= R AN - A

(30)

AN+ A

The theoretical values of Plate XIII were obtained from this

relation.

It will be noted that the theoretical fringe value at

the center of the disk is given by

2PA -A ~ ttRK

while the fringe order along the circumference of the disk

is zero.

Three models were used to determine the best initial fringe

pattern for distinct isopachic patterns. The models displayed

fringe densities of 12, 24, and 40 fringes/in. with fringe widths

of 0.05, 0.0125, and 0. 01 inch, and will be called the coarse,

medium and fine screen models, respectively.

Plates IV through IX show these disks loaded with the initial

fringe pattern perpendicular to the load, while Plate X shows the

isopachic pattern with the load parallel to the initial fringe pattern.

Two loads were used for each model. They were 44. 24 lb

and 88.48 lb which gave theoretical isopachic fringe orders of 3.01

and 6.02, respectively, at the center of the disk. The elastic limit

with these loads was theoretically reached on the y axis at y = 8.48R

(31)

(32)



EXPLANATION OF PLATE IV

Fig. 17. Coarse screen initial interference pat-

tern immediately after model was cut.

Fig. 18. Coarse screen initial interference pat-

tern two months after the picture of

Fig. 17 was taken.
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PLATE IV

Fig. 17

Fig. l;



EXPLANATION OF PLATE V

Fig. 19. Coarse screen interference fringes.

P = 88.48 lb.

Fig. 20. Coarse screen isopachic pattern.

P = 88.48 lb.
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PLATE V

Fig. 19

Fie. 20



EXPLANATION OF PLATE VI

Fig. 21. Medium screen initial interference fringes.

Fig. 22. Medium screen interference fringes.

P = 44. 24 lb.
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PLATE VI

Fig. 21

Fig. 22



EXPLANATION OF PLATE VII

Fig. 23. Medium screen isopachic pattern.
P = 44. 24 lb.

Fig. 24. Medium screen isopachic pattern.

P = 88.48 lb.
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PLATE VII

Fig. 23

Fig. 24



EXPLANATION OF PLATE VIII

Fig. 25. Fine screen initial interference pattern.

Fig. 26. Fine screen interference pattern.
P = 44. 24 lb.
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PLATE VIII

Fig. 25

Fie. 26



EXPLANATION OF PLATE IX

Fig. 27. Fine screen isopachic pattern.
P = 44. 24 lb.

Fig. 28. Fine screen isopachic pattern.
P = 88.48 lb.
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PLATE IX

Fig. 27

Fig. 28



EXPLANATION OF PLATE X

Fig. 29. Coarse screen interference pattern
with the initial pattern parallel to

the load.

P = 44. 24 lb.

Fig. 30. Coarse screen isopachic pattern with
the initial pattern parallel to the load.

P = 44. 24 lb.
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PLATE X

Fig. 29

Fig. 30



'

EXPLANATION OF PLATE XI

Theoretical and experimental isopachic fringes.



PLATE XI
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PLATE XII
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and y= 6.97R, respectively. These figures correspond to a

theoretical maximum obtainable isopachic fringe order of

1500 .

9.855 (0.115)
= l 7 - 41b/m. fringe

at the elastic limit.

Plates XI, XII and XIII show both theoretical and experimental

results.

CONCLUSIONS AND RECOMMENDATIONS

From Plates XI, XII and XIII it is seen that the experimental

results agree very well with those expected from theoretical con-

siderations. The slight discrepancy noted at the center of the disk

in Plates XII and XII is due in part to difficulty in determining the

exact fringe order there. In the opinion of the author, the agree-

ment between experimental and theoretical solutions fully corro-

borates the validity of the experimental method.

Plate XIII shows the experimental and theoretical results only

up to an isopachic fringe order of 1 3 at y = 0. 79R on the vertical axis.

This was with the model loaded to 44. 24 lb. Higher order fringes

became difficult if not impossible to distinguish. Of course it would

be unreasonable to compare analyses in the vicinity of y = R, since

the loading conditions are not the same for the experimental and theo-

retical problems.

The difficulty in distinguishing the higher order isopachic fringes

was to be expected. In regions of high stress the interference fringes
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were very closely spaced as Figs. 19, 22, 26 and 29 show clearly

in the vicinity of y = R. The initial interference fringes on the

other hand were not so dense there. Hence upon superposition of

the two systems of fringes the loaded set was obliterated, and

all that could be seen was the initial pattern as Figs. 20, 23, 24,

27, 28, 29 and 30 indicate.

A comparison of Figs. 23, 24, 27 and 28 indicates that the

obliteration effect became worse with the finer initial patterns. Thus

the coarse screen model should have produced the best isopachic

patterns near y = R. Examination of Fig. 18 shows that this was

not the case, however. Even though the initial pattern was not dense,

the fringe widths were so large as to produce the obliteration effect

with any other set of fringes when superimposed. The ideal model,

of course, would display no initial fringes near the load so that the

loaded pattern would be the isopachic pattern. Post (8) has devised a

photoelastic interferometer that eliminates this difficulty. The highest

fringe number that could be distinguished at the higher loading was 15

at y = 0. 65R.

Along the horizontal axis with correspondingly lower stresses

the fine screen model would have been expected to produce better

isopachic patterns. No significant difference in the isopachic fringes

produced by the different models could be detected by the author,

however. It can then be concluded that the best isopachic patterns were

obtained from the medium screen model with a fringe density of 24 fringes

per inch and a fringe width of 0.0125 in. This was as expected from pre-

liminary considerations.
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The pictures shown in Figs. 17, 21 and 25 were taken immed-

iately after the model was cut. The stresses produced by the cutting

operation are evident in the curved initial fringes near the boundary

of the disk. The picture shown in Fig. 18 was taken two months after

that of Fig. 17. Both figures show the same model; the only dif-

ference being the time lapse. As an interesting sidelight notice the

change in the initial fringe pattern near the boundary due to thickness

changes arising from humidity and temperature variation.

Figures 29 and 30 show the coarse screen model loaded with

its initial fringes parallel to the load. This was done in order to

determine whether the initial fringe pattern should indeed be approx-

imately perpendicular to the known or supposed resulting isopachic

pattern. It should, as the figures obviously indicate, in that the

isopachic set in this case are not as distinct as those in which the

initial pattern is perpendicular to the isopachic pattern.

The experimental results shown are the result of many trials,

some more successful than others. The greatest difficulty with the

experimental procedure was obtaining a true two-dimensional stress

state. Initial attempts at matching experimental and theoretical analyses

met with no success. The experimental results were off as much as

one fringe at the lower loading which represented an error of 33 per

cent. The higher loading produced results which were a maximum of

14 per cent in error. This reduction in error with larger loading in-

dicated that the loading device was at fault after the calibration constant

was checked and found to be correct. Adjustment of the loading frame to

eliminate as much friction as possible and extreme care in placing the
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model in the loading frame produced the isopachic patterns shown.

With the equipment available, this is the chief drawback of the ex-

perimental method.

The negatives produced by the optical train were too small to

be directly useful. The enlargement neeeiiit&ttd by their §mall

size was a definite drawback. Had the negatives been large enough

to examine directly, much time could have been saved in arriving

at a suitable experimental procedure and evaluation of results.

The technique of double exposing the film with the initial and

loaded interference fringes proved to be quite satisfactory with the

model shape used. For the more general case displacements in the

plane of the model may become large enough to necessitate super-

imposures of separate negatives in the area of interest.

The film used proved to be entirely satisfactory. It is felt

by the author that it would have been even more so if the exact ex-

posure necessary could have been found. The printing paper and

development technique were adequate. Added contrast would have

been an improvement, however.

The following recommendations are made by the author: First,

the procedure discussed here would be greatly improved if a more

refined loading device were constructed. This device should enable

the true two-dimensional state of stress to be achieved. Also, it

should be constructed so that it could be moved relative to the light

field around the horizontal and vertical axes. This would facilitate

the alignment of the model relative to the light field. Second, a camera
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with a longer focal length should be used so that larger negatives

could be obtained. A device for superimposing the strained and

unstrained exposures should be constructed if more general stress

states are to be investigated. Last, it is recommended that

Kodabromide F-5 instead of F-4 paper be used for printing,

that D-8 developer in place of D-ll be used for developing the

exposed film (5)

.

The isopachic method described here may be used when initial

stresses are present, in that the superposition yields the effects due

to loading only. It may theoretically be used to determine stresses

due to dynamic loadings whereas the classical separation techniques

may not, since they require the assumption that the body forces in

the equations of equilibrium are negligible or zero. The technique

may also be used in plastic range to measure displacements. By

printing or ruling a fine system of lines on a model, displacements

in the plane of the model may be determined through the moire

effect (7, 11, 12, 13 ).

The isopachic method described here is the best, in the author's

opinion, of the isopachic methods presently available. All of the other

practical systems are tedious point by point methods, or else require

highly elaborate equipment and intricate techniques.
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Effective methods of obtaining isopachic patterns in plane stress

structures and models have been sought for the last half century.

The isopachic pattern describes the thickness changes caused by-

loading a two-dimensional model and therefore represents the sum

of the principal stresses at all points of a plane stress system. When

used in conjunction with the conventional isochromatic pattern of

photoelasticity, which represents the difference of the principal stresses

at all points in a model, simple evaluation or separation of the indi-

vidual principal stresses is made possible.

A brief review of the theory of photoelasticity is presented.

The equations from the theory of elasticity that are necessary to

utilize the photoelastic technique are set forth along with the con-

ventional methods for obtaining the individual principal stresses. The

conventional methods reviewed are: integration of the equations of

equilibrium, numerical solution of Laplace's equation, and the exist-

ing methods for obtaining isopachic patterns. In the latter section

simple two-beam interference is discussed and the manner in which

it may be utilized to obtain directly the isopachic pattern for optically

flat models is pointed out.

The new isopachic method does not require an optically flat model.

The model must be essentially wedge shaped at least in the area of

interest. Hence thickness contour interference fringes are observed

initially. These fringes move to new locations under the action of

applied stresses. The number that move past a given point is pro-



portional to the thickness change produced and hence to the sum of

the principal stresses.

Three methods for analyzing the thickness contour interference

fringes produced by the new method are discussed briefly. The chief

among these makes use of the moire effect.

From the theory of the new method the experimental technique

must meet several criteria. These are discussed, and the setup

and procedure actually used to verify the method are given.

The diametrically loaded disk was chosen as the model shape

to be used to compare the analyses of the new method with the

theoretical analyses available from the theory of elasticity. Three

disks were used with different initial thickness contour interference

fringe patterns. The experimental results are given and compared

with the theoretical results.

Several recommendations are made by the author which would

improve the experimental techniques and possible extensions of the

method are pointed out.


