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Abstract 

Volyn Oblast in Western Ukraine has experienced substantial land use/land cover change over 

the last 25 years as a result of a change in political systems. Remote sensing provides a 

framework to quantify this change without extensive field work or historical land cover records. 

In this study, land change is quantified utilizing a post-classification change detection technique 

comparing Landsat imagery from 1986-2011(Post-Soviet era began 1991). A variety of remote 

sensing classification methods are explored to take advantage of spectral and spatial variation 

within this complex study area, and a hybrid scheme is ultimately utilized. Land cover from the 

CORINE classification scheme is then converted to the EUNIS habitat classification scheme to 

analyze how land cover change has affected habitat fragmentation. I found large scale 

agricultural abandonment, increases in forested areas, shifts towards smaller scale farming 

practices, shifts towards mixed forest structures, and increases in fragmentation of both forest 

and agricultural habitat types. These changes could have several positive and negative on 

biodiversity, ecosystems, and human well-being. 
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Chapter 1 - Introduction and Literature Review 

Earth’s land surface is changing at an unprecedented pace, magnitude and spatial extent 

(Lambin et al. 2001). Humans alter land cover (biophysical attributes of earth’s surface) and land 

use (human use of earth’s surface) for a variety of reasons, and these changes can have persistent 

effects on ecosystems (Sala et al. 2000), climate (Chase et al. 1999), and human well-being in 

general (Foley et al. 2005, Vitousek et al. 1997). Understanding land use/land cover (LULC) 

change patterns are therefore a key challenge for researchers (Turner et al. 2007). To gain greater 

understanding of land change it is important to link observed changes to their underlying 

socioeconomic and political causes (Geist & Lambin, 2002). 

Human actions are often constrained partially or fully by laws, regulations, or policies 

brought about by political systems (Sieber et al. 2013). This is especially true in areas where 

strict policies are in place, limiting individuals in making decisions on how to use the land. Such 

limitations were common in the Soviet Union, and the consequences of Soviet-era land 

management practices are still relevant in areas formerly under Soviet control (Lerman 1999). 

During the Soviet Era, many eastern European countries operated under a collectivized farmland 

structure, in which decision making was centralized, and agricultural production intensified 

(Lerman 2004).When the Soviet Union fell in the early 1990’s there were rapid changes in 

political systems, and as a result, LULC changed dramatically as it went from government 

controlled to local market driven decisions as to how land would be divided and managed 

(Hostert et al. 2011, Kuemmerle et al. 2006). This shift had impacts on LULC as well as 

ecosystems in areas formerly under the control of the Soviet Union.   

While socio-economic disturbances can cause major hardships for local populations, they 

also present opportunities to understand how humans affect the landscape (Hostert et al. 2011). 

As human technology advances, so does the ability to change the earth’s surface, LULC caused 

directly by humans is increasingly affecting biodiversity, biogeography, biophysics, and 

biochemistry of the Earth’s surface and atmosphere (Pielke et al. 2011), with far reaching but 

only partially understood consequences on human well-being (Turner et al. 2007). Our scientific 

understanding of the extent, rates, drivers, patterns, and consequences of land cover change is 

often limited (Giri et al. 2013). Understanding the distribution and dynamics of the world’s land 

cover is essential to better understand the Earth’s fundamental characteristics and processes 
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(DeFries 2008). As populations increase, environmental stresses increase, and available land 

decrease, resource managers and planners need reliable mechanism to assess these consequences 

by detecting, monitoring, and analyzing land cover changes quickly and efficiently (Green et al. 

1994). 

Remote sensing data and techniques play an important role in the monitoring and 

analyzing LULC changes (Shalaby and Tateishi 2007). Remotely sensed data analysis can 

provide information on land change, habitat change, degradation and fragmentation as well as 

temporal analysis of change characteristics (Muchoney and Williams 2010). Additionally, use of 

remote sensing techniques allows for rapid, semi-automated assessment of the spatial patterns of 

land change over large areas and long periods of time (Coppin et al. 2004, Cihlar 2000). 

Implementation of remote sensing and its various data analysis techniques are valuable for land 

change investigations as they provide an effective and efficient way to track trends and change 

(Berlanga-Robles and Ruiz-Luna 2001, Dimyati et al. 1996). 

Knowledge and understanding of processes and trends of the past allows for more 

effective environmental management in the present and the future (Coppin et al. 2004). Habitat 

and classification maps derived from remote sensing techniques serve a wide range of 

applications including: landscape planning, zoning, delineation of protection zones, habitat 

connection corridor planning/ biotope linkage, environmental impact assessment, and other 

Government/environmental agency guideline planning (Weiers et al 2004). Proper planning and 

implementation of conservation strategies present opportunities for natural ecosystems to recover 

which may have a wide variety of positive impacts on an ecosystem (Hostert et al. 2011). Better 

understanding of LULC aides in understanding of how humans have affected the landscape, and 

may provide insight into how to mitigate future impacts. 

This thesis examines how a change in political systems affected LULC in the Volyn 

oblast, a province in northwest Ukraine. Change has undoubtedly occurred within this region; 

this study quantifies how LULC has changed and how this has affected potential habitat 

distribution a fragmentation in Volyn. Remote sensing and other geospatial technologies have 

proven to be effective tools for quantifying changes (Berlanga-Robles and Ruiz-Luna 2002, 

Cakir et al. 2008) and will serve as an essential tool for analysis in this study. Data and 

information generated within this study using the geospatial techniques will certainly provide 

greater knowledge to decision makers managing the land in Volyn, as they asses the LULC 
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patterns and formulate future policies. In general this study is aimed at understanding, in hopes 

of guiding future land management decisions. 

An important first step in any study is to look at the history, trends, techniques, and 

methods that are relevant in the analysis. Evaluation of previous work utilizing similar 

methodologies is important for selection of appropriate techniques, methods, and data. To do 

this, I will review literature in several critical areas. First, I will review events in recent history 

that have affected current LULC trends, and examine works that have focused on landscape 

changes in former Soviet states. This review will provide context in which to place this analysis. 

Next, I will examine why this work is important and valuable for ecological applications. 

Finally, a variety of change detection techniques, remote sensing data acquisition systems, and 

classification schemes that have been used to quantify and evaluate change will be reviewed. 

These techniques, data, and schemes will be assessed for selection of appropriate methodology in 

my study.  

 1.1 LULC Change in Ukraine and former Soviet States 

In 1991, due primarily to economic struggles and pressure from the general public, the 

Soviet Union dissolved (Zaleski 1991). The dissolution of the USSR was the ultimate cause for 

widespread change in historical land use practices. While under the control of the Soviet Union, 

land use planning was centralized (Baumann et al. 2011). Arable land, for example, was 

completely state owned and managed by large agricultural enterprises. The same was true for 

forests (Ash 1998). The collapse of the socialist governments in the former Soviet republics was 

a drastic socio-economic change, resulting in the creation (or re-creation) of a number of new 

independent states. Within these states, there was often a shift from a state-command to a 

market-driven economy (Prishchepov et al. 2012). This change in political systems from the 

Soviet to the post-Soviet era is said to have led to ‘the most widespread and abrupt episode of 

land change in the 20th century’ (Henebry 2009). Due to the change in political regimes, the fall 

of the Soviet Union is a crucial turning point in the history of Eastern Europe, as this event led to 

rapid land use and land cover change (Bicik et al. 2001, Kuemmerle et al. 2007). When societies 

and institutions change rapidly, opportunities arise to better understand the drivers and processes 

of land-use change (Prishchepov et al. 2012). There are vast research opportunities in areas 

formerly under Soviet influence to better understand how a change in political system can affect 

the land. 
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Based on previous LULC change work in Ukraine and other formerly Soviet states, it is 

expected that all Volyn land cover classes and its landscape in general, have shown substantial 

changes. Shierhorn et al. (2013) and Kuemmerle et al. (2007) studied land changes across 

regions of the former Soviet Union and found consistently high rates of land transition in both 

forests and agriculture. Kuemmerle et al. (2008) compared land abandonment rates between 

three Eastern European countries and found Ukraine to have the highest abandonment rates in 

areas with elevation less than 300 meters. Kuemmerle et al. (2006) studied the differences in 

land cover and landscape patterns in Eastern Europe, including an area of the Ukraine. They 

found significant differences in land cover and landscape patterns, suggesting that separate 

countries reacted differently to political change after the collapse of the Soviet Union. It has also 

been suggested that Ukraine was most strongly affected by post-Soviet changes relative to 

surrounding eastern European countries after the fall of the Soviet Union. Considering the 

consistently high rates of change found throughout former Soviet regions of Eastern Europe, the 

entirety of my study area at low altitudes, and the high rates of change found in Ukraine relative 

to other countries, widespread changes were expected. 

1.1.1Agricultural trends 

In Ukraine, as in most former Soviet states, agriculture is the most widely studied of all 

land uses. This is not surprising, as much of the former Soviet Union was devoted to agricultural 

land use and agricultural lands are particularly prone to change under economic or market forces. 

In the post-Soviet period, guaranteed markets disappeared, subsidies ended, and foreign 

competition drove many people to abandoned tracts of land previously used in agriculture 

(Lerman and Shagaida 2007). With widespread political change, former Soviet states provide 

prime examples of regions with extensive land abandonment (Baumann et al. 2011).  

Although, agricultural land abandonment is commonly studied in former Soviet states, 

rates of abandonment vary considerably. Rates vary from lows of less than 10% to highs greater 

than 40%. This is likely due to the fact that study area, terminology, time frames and methods 

vary greatly for tracking land abandonment.  Hostert et al (2011) mapped farmland, forest, 

grassland and water in central Ukraine. They then used a support vector machine classification 

algorithm to delineate change and they suggest 36% land abandonment. Baumann et al. (2011) 

mapped farm land for two separate periods and then used a multi-temporal classification 

approach to map change in western Ukraine and suggests 30% land abandonment. Kuemmerle et 
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al. (2008) also utilized multi-temporal change detection in the western Carpathian region of 

Ukraine and suggest 13.3%. Schierhorn et al. (2013) used global land cover data and agricultural 

inventories to estimate abandonment across the whole country of Ukraine and suggests 8%. 

Some studies outside of Ukraine, such as Prishchepov et al. (2012), suggest rates as high as 60% 

in some parts of Russia.  

Although land abandonment rates are commonly quantified, the restructuring or 

fragmentation of agricultural landscapes is less often studied. Kuemmerle et al. (2006) suggests 

that fragmentation in agricultural lands may be increasing, and suggests this may be due to arable 

land being subdivided, specifically for subsistence farming, leading to high levels of agricultural 

fragmentation in some areas. Similarly, Kuemmerle et al. (2008) notes that much former state 

owned land was converted to household plots, for people who now depend on subsistence 

farming. While agricultural fragmentation and restructuring are recognized, it is rarely 

quantified. The recognition that a shift from a centrally planned toward market economies 

resulted in a profound restructuring of Eastern Europe’s agricultural sector provides opportunity 

for quantitative research (Lerman 1999). 

1.1.2 Forest trends 

Forests are another commonly studied LULC type in former Soviet states. Forests are 

particularly important to understand because they have widespread effects on biodiversity, 

ecosystem services, and provide important feedback to climate change and human welfare 

(Bonan 2008). Naturally, forest cover in Western Ukraine is estimated at 75% of land cover 

(Kuemmerle et al. 2011). Under Soviet influence, Ukraine had low forest cover, high proportion 

of coniferous forests, and high forest fragmentation (Kuemmerle et al. 2006).  Reforestation, 

illegal logging, and overall weak forest management drove forest change in the transition period 

characterized by economic hardship and weakened institutions (Elbakidze & Angelstam 2007). 

Due to the fact that forests are important for ecosystems and are known to have been widely 

effected by the fall of the Soviet Union, forests changes and fragmentation have been studied 

across Ukraine and other former Soviet states. 

Although studies do not always agree about the rate or patterns, forests have certainly 

changed following the fall of the Soviet Union. Baumann et al. (2012) studied forest changes 

across several Soviet states and found slight decreases after 1991, followed by periods of forest 

regrowth after 2000, and especially after 2005. Kuemmerle et al. (2009) studied forest cover 
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change in the Ukrainian Carpathians and documented both forest losses through logging and 

forest increases through reforestation on abandoned farmland. They concluded that overall forest 

areas slightly increased.  

Although slight forest increases are an overall trend, restructuring and fragmentation of 

forests is less clear. Kuemmerle et al (2007) and Kuemmerle et al. (2009) suggest increases in 

disturbances and fragmentation between 1978 and 2000. Alternatively, Boentje and Blinnikov 

(2007) looked at forest fragmentation near Moscow as a result of the fall of the Soviet Union and 

found that it had decreased. Additionally, it has been suggested that forest increases can relate to 

fragmentation; Reforestation on abandoned agricultural lands can reconnect previously separated 

forest fragments, defragmenting forests (Prishchepov et al. 2012).  

In summary, landscape changes in post-Soviet Union states has been moderately explored 

in academic research and often is focused on only one land cover class. Specifically, agricultural 

and forest changes are commonly recognized and studied independently of one another.  My 

study looks at the landscape more holistically in hopes to quantify land changes in western 

Ukraine. While general land cover change trends in Eastern Europe are recognized, detailed 

spatial data on these trends are lacking (Kuemmerle et al. 2006). Understanding changes and 

trends is important as they hold a wide variety of consequences for landscapes, ecosystems, and 

humans (Rindfuss et al. 2004). 

 1.2 Remote Sensing in Ecology/Biogeography 

Landscapes and their associated species are at the mercy of human decisions, which have 

profound effects on ecosystems and the organisms that inhabit them (Kerr and Ostrovsky 2003). 

Land-use change strongly affects ecosystems, their services and biodiversity, and ultimately 

human well-being (Foley et al. 2005). For example, McKinney (2002) showed that where 

intensive land development has already occurred, native animal biodiversity can be increased by 

revegetation with a diversity of native plant species. Protecting revegetated habitat from 

disturbance allowed ecological succession that not only enhance plant and animal diversity, but 

also tend to reduce the diversity of nonnative species (McKinney 2002). A number of positive or 

adverse effects can arise when landscape patterns change, and with proper quantitative landscape 

analysis positive management strategies can be developed (Mairota et al. 2013). 

Transitioning towards sustainable habitat structures requires up-to date accounting of 

land cover structures, which is often done through computerized mapping (Kuemmerle et al. 
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2009). Traditional approach, such as digitizing habitats by hand, can be time consuming and 

subjective to several different digitizers interpretation (Schindler et al. 2008). Alternatively, 

remote sensing can play a key role in characterizing and mapping habitats quickly and efficiently 

for further use in a variety of applications (Nagendra et al. 2013). Remote sensing techniques 

provide a synoptic vision of the Earth that is not possible to obtain other than by exhaustive and 

expansive field evaluation (Berlanga-Robles and Ruiz-Luna 2002).  

Remote sensing techniques have been adopted in ecology, to better understand habitat 

distribution and changes. In a relatively short time period, remote sensing analysis has become a 

common tool for ecologists, conservationists, and biologists to better understand landscape 

changes and dynamics (Roughgarden et al. 1991). There are a number of research studies that 

utilize or analyze remote sensing to understand the ecology or distribution of various species 

(Buermann et al. 2008, Debinski et al. 1999, Simone et al. 2010, Wiens et al. 2009, Rushton et 

al. 2004, Cauter et al. 2005). Each of these studies uses remotely sensed data in various ways but 

the conclusions are similar: remote sensing is an efficient and effective ecological tool that can 

quickly categorize large areas of land.  

Products of remote sensing image processing techniques are often a fundamental first 

step in further analysis; specifically classification maps derived from remote sensing techniques 

are commonly used for fragmentation or landscape dynamics analysis (Kuemmerle et al. 2006, 

Boentje and Blinnikov 2007).  In ecology, fragmentation involves the breaking up of habitats and 

ecosystems into smaller parcels, and has been shown to have adverse effects on habitats and 

species distributions (Fahrig and Meriam 1994, Salek et al. 2013). Fragmentation effects 

isolation of habitats, endangered species population dynamics, and species richness (Cakir, 

Sivrikaya and Keles 2008). Fragmentation also has effects on habitat connectivity and mobility 

of the ecological processes inside a landscape (Pearson 1994). Connectivity is considered a 

structural component of the landscape and its reduction is associated with reduction of species 

diversity and energy flow (Goossens et al. 1993). Landscape fragmentation, through the 

disruption of habitat connectivity, can impact species dispersion, habitat colonization, gene flow, 

population diversity, species mortality, and reproduction; thus, quantitative analyses of changes 

in landscape structure are needed to provide early warning signs of habitat degradation 

(Nagendra et al. 2013). In summary, fragmentation analysis on land cover maps, produced 

through remote sensing techniques, provide greater understanding as to how habitat distribution 
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and quality have changed through time, and ultimately assist in management (Nagendra et al. 

2013). 

 1.3 Analyzing LULC Change 

Understanding how the earth is changing as a result of both natural and a human 

interaction could be considered a grand challenge. Accurate change detection of Earth’s surface 

features is extremely important for understanding relationships and interactions between human 

and natural phenomena in order to promote better decision making (Lu et al. 2003). Change 

detection and remote sensing in general, are relatively young but may provide the most effective 

and efficient means of detecting temporal changes in landscapes over large scale; alternative 

methods such as, air photo interpretation, can be expensive and not easily repeatable (Coppin et 

al. 2004). Like much of remote sensing, change detection has subjective elements, where each 

analyst determines the techniques they will use and how they will assess their final products. 

Unfortunately, there is still no universally accepted method of detecting change or of assessing 

the accuracy of change detection map products (Jensen 2005).  

A wide variety of change detection methods within remote sensing have been developed 

and examined over the last several decades.  Lu et al. (2003) comprehensively reviewed a 

number of different change detection techniques commonly found in remote sensing literature 

and summarized them into seven groups: algebra, transformation, classification, advanced 

models, GIS approaches, visual analysis, other/hybrid approaches. They concluded that although 

image differencing, post-classification and Principle Components Analysis (PCA) are the most 

widely used, change detection techniques should be selected based on study goals. Almutairi and 

Warner (2010) compared post-classification, direct classification, image differencing, PCA, and 

change vector analysis (CVA). They concluded that although no single change detection method 

consistently produced the best results, post-classification and direct classification generally 

produced the highest accuracies and were the most consistent, while PCA was the least 

consistent. Coppin et al. (2004) examined post-classification, composite, differencing, ratioing, 

linear data transformation, CVA, regression, spectral mixture analysis, and feature space 

analysis. They conclude that although remote sensing can be effective in detecting and 

monitoring changes in ecosystems, the remote sensing research community needs to develop an 

improved understanding of the change detection process and how to match applications and 

change detection methods. Although a wide variety of techniques have been developed and 
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successfully implemented, even a consistent terminology is still lacking (Coppin et al. 2004). 

While reviewing the literature it becomes quickly apparent that there are no strict guidelines or 

best practice guidelines for conducting change detection, and no one method is appropriate for 

all situations.  

Change detection techniques are often grouped into two categories, depending on when 

the change detection is actually performed (Coppin et al. 2004). In pre-classification change 

detection, a transformation (e.g. image differencing, image ratioing, principle components 

analysis, artificial neural network, etc.) is applied to imagery prior to performing any 

classification. Alternatively, in post-classification change detection, the remotely sensed imagery 

is first submitted to some classification algorithm, and then change detection is performed on the 

classified output. Post-classification techniques are valuable as they show areas of change, areas 

of no change, and also make it possible to generate a “from-to” cross tabulation information 

table; Post-classification comparisons of derived thematic maps go beyond simple change 

detection and quantify the nature of the change that is occurring (Shalaby and Tateishi 2007). 

Alternatively, pre-classification techniques apply various algorithms to single or multiple 

spectral bands in order to generate “change” vs. “no-change” maps (Yuan et al. 2005). These 

techniques locate changes but do not provide information on the nature of change (Singh 1989).  

An additional advantage of post-classification comparison is that atmospheric correction and/or 

sensor calibration, which must be done in pre-classification techniques, is unnecessary (Song et 

al. 2001). Finally, classification before comparison minimizes errors caused by phenological 

variability between images collected at different dates (Lu et al. 2004). Post-Classification does, 

however, have a few drawbacks. The main disadvantage of post-classification change detection 

is that there is a need for two separate classifications, the classifications need to be very accurate 

to limit error propagation, and the final product is highly dependent on the accuracy 

classification (Yuan et al. 2005, Coppin et al. 2004). Another potential issue of this method is the 

importance of producing consistent classifications for each of the independent classifications 

(Almutairi and Warner 2010). Although there are a few things to carefully consider, there are 

many papers that utilize post-classification change detection because of its advantages over pre-

classification techniques.  

Post-classification change detection has proven to be a reliable and easily interpretable 

means of tracking change at various landscape scales. Shalaby and Tateishi (2007) used post- 
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classification change detection to map land cover changes in the northwestern coast of Egypt 

between 1987 and 2001. They reasoned this change detection technique as the most obvious 

method because they could avoid normalization of atmospheric and sensor differences between 

the two dates, especially because the two images were gathered more than ten years apart. Jensen 

et al. (1993) used post-classification change detection in his evaluation of wetland habitats and 

adjacent uplands in South Carolina. Post-classification was the selected change detection 

technique in this study because it yielded the best accuracy as opposed to other change detection 

techniques, and this was in large part due to high accuracies in the original input classifications. 

This technique has been widely used in previous LULC change research with varying goals, 

spatial extent, and study objectives. Yuan et al. (2005), Choi and Han (2013), and Berlanga-

Robles and Ruiz-Luna (2002) utilized post-classification change detection to monitor urban 

growth in Minnesota, reclamation effects in Korea, and changing coastal zones in Mexico 

respectably, displaying the versatility of this method. As long as classification is objective, 

accurate, and consistent, this method provides an efficient and effective means of tracking 

landscape changes. 

1.4 LULC Classification Schemes 

An important first step in any remote sensing exercise is selecting or developing an 

appropriate classification scheme. While classification schemes are often developed based on 

specific study needs or locations, a number of standardized systems have been developed for a 

broad range of land cover or land uses (Kerr and Ostrovsky 2003). Land cover is defined as the 

observed physical layers which cover the surface of the earth while land use is the human 

induced socioeconomic function or use of land (Martinez and Mollicone 2012). The difference 

between land use and land cover makes defining a single classification scheme difficult. 

Fortunately, several classification schemes (e.g. Anderson, CORINE, International Global 

Biosphere Program Land Cover Classification System) can readily incorporate land use and/or 

land cover data obtained by the interpretation of remotely sensed data (Chen 2002). A commonly 

used land cover and land use classification guide used in Europe is the Coordination of 

Information on the Environment (CORINE) scheme. This scheme was developed within the 

CORINE land cover project of the European Union’s European Environmental Agency (Weiers 

et al 2004). The CORINE classification scheme has been used in a variety of research 

applications, including research focused on land change (Osborne et al. 2001). Although the 
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CORINE scheme provides a systematic guide to map countries across Europe, including areas to 

the east, it has not been formally implemented in Ukraine. 

The CORINE scheme has proven to be a versatile LULC scheme, capable of being 

implemented across scales and study regions. Yilmaz (2010) analyzes land cover change by 

classifying Landsat data from two separate dates to the CORINE scheme, and then comparing 

the classifications. This study was in Turkey, outside of the area for which the classification 

scheme had been developed. Alternatively, Radovic et al. (2011) utilized maps previously 

classified to the CORINE scheme to analyze habitat for endangered bird fauna in Croatia. 

Classifying land cover data to this scheme has proven to help decision makers, resource 

managers, ecologists, and other scientists studying across Europe (Han and Champeaux 2004). 

Transitioning from LULC to habitat classification is often a difficult process requiring 

field information and expert knowledge (Negendra et al. 2013). Fortunately, the European 

Environmental Agency has developed a systematic way to transfer data classified in the 

CORINE scheme to the European Nature Information System (EUNIS), which is a habitat 

mapping scheme. Although a habitat is a species specific concept, habitat mapping schemes are 

generalized to provide a common and easily understood framework for mapping purposes. In the 

EUNIS habitat mapping scheme habitat is defined as: “plant and animal communities as the 

characterizing elements of the biotic environment, together with abiotic factors (soil, climate, 

water availability and quality, and others), operating together at a particular scale” (Moss 2008).  

Similarly to the CORINE scheme, classification performed to the EUNIS habitat level 

can provide a key starting point for a variety of studies including monitoring biodiversity 

(Martinez, Ramil, and Chuvieco 2010), conservation (Barbera et al. 2012), invasive species 

tracking (Vila, Pino, and Font 2007), and vegetation monitoring (Cakan et al. 2011). The 

CORINE and EUNIS mapping schemes have shown to be robust and versatile for a variety of 

studies, and are the most widely implemented schemes in Europe. Additionally, they have 

proven to be valuable across various spatial extents and studies utilizing a variety of sensors. 

 1.5 Remote Sensing Imagery 

There are several remotely sensed datasets that have been used to monitor the earth’s 

surface and land changes such as SPOT, Landsat, AVHRR, MODIS (Kerr and Ostrovsky 2003). 

Landsat satellites are the most commonly utilized and are well suited to assess land change 

(Baumann et al. 2011). Numerous studies have utilized Landsat data to produce accurate 



12 

 

landscape change maps, change statistics, or other quantifiable change metrics for monitoring 

LULC change (Sieber et al. 2013, Shalaby and Tateishi 2007, Yuan et al. 2005). Landsat data 

have proven to be versatile in application and especially effective in the monitoring LULC 

change. 

Landsat data is utilized in this study for a number of reasons. First, there is a large 

archive of Landsat imagery from before and after the fall of the Soviet Union, with sufficient 

temporal resolution to ensure a cloud free image. Second, the imagery has sufficient spectral 

resolution for multispectral analysis and the imagery is available free of charge (Cohen and 

Goward 2004). Although there may be finer spatial resolution data available (e.g., SPOT) 

Landsat data have been found to be more useful, in certain studies, because of their spectrally 

important thermal infrared bands (Gao 1999). Finally, for studies at a regional scale that cover a 

large area, Landsat data are appropriate. Weiers et al. (2004) suggests that for studies at regional 

to European scales (~1:200,000-1:100,000) Landsat data is appropriate imagery to use. The 

Volyn oblast is similar in size to one full Landsat image, and I can obtain all my data from a few 

downloaded images. Landsat data is an effective tool for large scale land cover classifications, 

regional time series analysis, and also for larger regional development/conservation strategies 

(Cohen and Goward 2004). For these reasons a vast majority of studies have used Landsat 

images to assess changes throughout the world, highlighting the continued utility of these data 

and the invaluable historical record that now covers a period of four decades (Nagendra et al. 

2013). 

Landsat data are not without limitation, however, and there are several important factors 

to consider. The most fundamental issue is most likely the revisit rate of this satellite. Images are 

gathered less frequently (16 day repeat cycle) relative to several other coarse resolution satellites 

making it occasionally difficult to obtain cloud free imagery or multi-date imagery within the 

same year (Giri et al. 2013). This relatively long revisit period leads to less opportunity for cloud 

free imagery (Baumann et al. 2012). Additionally, Landsat data can often be too coarse for 

studies of fine spatial extent, or too fine for larger spatial extent studies, depending on the nature 

and objectives of the study. Overall, however, Landsat is often the satellite of choice as the 

benefits are often greater than the weaknesses. 
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 1.6 General Relevance of Research 

The goal of this study is to provide recent perspectives of land cover and habitat changes 

in Volyn Oblast, Ukraine, that have taken place in the last 25 years, since the fall of the Soviet 

Union. Although, agricultural land abandonment and forest changes are recognized across the 

Ukraine and Eastern Europe, no quantitative land change analysis has been done within Volyn 

that I am aware. Additionally, very little work quantifies or considers agricultural/forest 

restructuring, or fragmentation of habitats. Restructuring in the agricultural class refers to shifts 

in land use from large collective style agriculture to small scale, subsistence style agriculture. For 

forests, restructuring refers to intra-categorical forests changes. Previous research is also often 

focused either forest or agricultural dominated landscapes. The Volyn Oblast is a more evenly 

distributed landscape allowing for an examination of interspecific and intra-categorical landscape 

changes as a result of political change. This study fills a gap in research and furthers knowledge, 

relevant to other studies, of how political events transform landscapes within and between 

countries, fragment the landscape, and cause restructuring or changes in land use. Understanding 

how landscapes evolve is important as changes can lead to alterations in soil stability, water 

quality, carbon sequestration, biodiversity, and other environmental and organic characteristics 

of the landscape (Kuemmerle et al. 2008). Understanding is a crucial first step to assist local land 

managers and decision makers in developing sustainable policy or strategies of land use. 

Additional to aiding decision makers, scientists or others interested in quantifying land 

change in the study area, my research also contributes in the advancement of knowledge of 

change detection for both land cover and habitats. Although there are several techniques each of 

which has its own strengths and weaknesses, research of change detection techniques is still an 

active field of study (Lu et al. 2003). The identification of a robust change-detection 

methodology is essential for dealing with multi-date data and could ultimately expedite research 

processes in the future (Mas 1999). Utilizing the specific techniques in this study will add to the 

existing body of knowledge about the effectiveness of post-classification change detection.  

A final area of contribution is in the analysis of remote sensing as an ecology tool. 

Monitoring national or regional changes in species distributions through field surveys cannot 

realistically keep pace with the rate of agricultural and infrastructure development (Osborne et al. 

2001). Additionally, field surveys generally cover a small scale, are very subjective to the 

researchers’ opinion, and expensive in terms of time, labor, and money (Lucas et al. 2007). 
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Relative to getting in field, the scheme implemented in this study will hopefully reinforce and 

illustrate how remote sensing can be an accurate and cost efficient method of monitoring habitat 

characteristics and change through time. 

 1.7 Research Question and Hypotheses 

My research will address the following questions: How has the Volyn landscape changed 

or restructured in the last 20 years following a change in political systems? Specifically how 

have the forest and agricultural landscapes changed or been restructured and what effect have 

these changes had on the distribution and fragmentation of habitat types? 

 To address these questions, I propose the following hypotheses: 

1) There will be a decrease and restructuring in the land cover class agriculture due to a change 

in political systems. 1a) I expect greater than 20% farmland abandonment based on previous 

studies of farmland abandonment in areas formerly under Soviet influence. 1b) There will be a 

shift towards complex smaller scale farming rather than large homogeneous agricultural 

production practices due to a shift from state controlled to market driven production policies. 1c) 

Increased fragmentation in agricultural habitats due to increased land abandonment and shifts 

towards smaller scale farming agricultural practices 

 

2) Forested areas will increase and restructure as a result of farmland abandonment. 2a) Forested 

cover will increase as a result of losses in agricultural land cover. 2b) Due to less intensive forest 

management practices, there will be a shift from coniferous towards more of a mixed forest 

structure 2c) Decreased fragmentation in forest habitats as forests regenerate after a period of 

intensive management. 

 

  



15 

 

 

Chapter 2 - Study Area 

 2.1 Physical Landscape 

The study area is the Volyn oblast located in Western Ukraine (Figure 2.1). Volyn oblast 

is one of 24 oblasts into which the Ukraine is divided.  This oblast or province is located in the 

north-west corner of the Ukraine and is further subdivided into 16 rayons or districts. Oblasts are 

the first political subdivision in Ukraine, and are somewhat analogous to U. S. states, but without 

the autonomy of a state. Rayons are equivalent to a US county, in that they are a secondary 

political subdivision. The study area is roughly 20,000 km² and generally shows little elevation 

change. Slightly higher elevations in the south west gradually slope to the lowlands in the north 

east portion of the study area. Elevations range from approximately 125 to 290 m above sea 

level. The Bug River boarders the study area to the west and serves as a natural border between 

Ukraine and Poland. Belarus borders the oblast to the north, and to the east and south of the 

study area are the Rivne and Lviv oblasts respectively.  

 

 

Figure 2.1 The study area is the full extent of the Volyn oblast which is outlined in gray (a) 

and is located in North-West Ukraine, near the border of Poland and Belarus (b). 
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 Volyn is in the Palearctic biogeographic realm and in the temperate broadleaf and mixed 

forest biome. This biome is traditionally home to 400+ species of birds and mammals and is 

considered a critical/endangered biome (Olsen et al. 2001). Complex vegetation patterns are 

present within the study area, but a majority of the land cover is dominated by forest and 

agricultural. Wetlands are located mainly in the North West corner of Volyn but also appear 

along the Bug River and in other low-lying areas. Drainage ditches and canals are located 

throughout the study area, presumably to reclaim land for agricultural use during the Soviet era. 

The landscape changed drastically under the influence of the former Soviet Union as agricultural 

land expanded greatly putting marginal land into production (Hostert et al. 2011), forest 

structures changed as fast growing species, such as conifers replaced natural stands (Turnock et 

al. 2002).  

 2.2 Population and Climate 

Volyn ranks 22 of 24 oblasts in total population at approximately 1,040,000 people. 

There are four cities with population greater than 30,000: Lutsk (~203,000), Kovel (~66,000), 

Novovolyns’k (~54,000), and Volodymyr-Volyns’kyi (~38,000). A majority of the settlements 

are smaller farming towns and villages. The climate is warm summer continental (Köppen Dfb). 

January has the lowest average temperature at approximately -5°C, and July typically has the 

warmest average temperature of 19°C. Rainfall varies from a high of about 94mm in July to a 

low of 33mm in December (hydrometeorological service of Ukraine http://meteo.gov.ua/en/).  

 2.3 Historical Land Use/Land Cover 

2.3.1 Forests 

The forests within Volyn have experienced significant anthropogenic induced changes, 

especially in the last 100 years. Before human settlement this area was dominated by mixed 

broadleaf and conifer forests (~75% of the landscape) due to past glaciation and uniform 

topography (Kuemmerle et al. 2011). Forests had been excessively exploited under Soviet rule, 

resulting in high fragmentation, loss of old growth forests, and widespread plantations of fast 

growing coniferous stands (Turnock 2002). After the fall of the Soviet Union, control of forests 

was decentralized and privatized resulting in both regeneration and illegal logging (Kuemmerle 

et al. 2009). Today there are deciduous, coniferous, and mixed forest structures present, 
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especially in the eastern area of study, where elevations are low relative to the rest of the study 

region. Naturally, broadleaved and mixed forests dominate the study area. Pedunculate oak 

(Quercus robur) and sessile oak (Quercus petrea) mixed with European beech (Fagus sylvatica), 

linden (Tilia cordata), hornbeam (Carpinus betulus), and ash (Fraxinus excelsior) (Kuemmerle 

et al. 2007). Strict forest management has changed the forest composition in many areas and led 

to widespread replacement of natural forests with coniferous species including Norway spruce 

and Scots pine monocultures (Pinus sylvestris). 

2.3.2 Agriculture  

Agricultural in Volyn has also experienced substantial historical changes. Under the 

Austro-Hungarian Empire control, large tracks of forests were cleared for agricultural production 

as technology advanced and human demands increased (Turnock 2002). More recently, during 

socialist rule, great efforts were made to intensify agricultural production. All land was owned 

and managed by the state in large-scale agricultural enterprises, known as collectives or state 

farms in the Soviet era (Kuemmerle et al. 2008). After the fall of the Soviet Union, agricultural 

land was distributed among the former workers of the agricultural enterprises (Lerman et al. 

2004) or to residents of nearby villages. This agricultural history has resulted in a complex 

agricultural structure today; past social and political policies have shaped the Ukraine into an 

intricate mixture of farmed, abandoned, pastures and mixed fields. Today, agricultural activity 

includes dairy, meat, and various crops including cereals, vegetables and melons, fruits and nuts, 

oilseed crops, root/tuber crops, sugar crops, and flower crops. 
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Chapter 3 - Data and Methods 

 3.1 Datasets 

3.1.1 Satellite Images 

Landsat 5 TM data were utilized in this study to map land cover and analyze changes 

between 1986 and 2011. Although the Soviet Union collapsed in 1991, 1986 was selected as the 

first year of analysis as this was the most recent year with sufficient cloud free imagery prior to 

1991. 2011 was selected as it was the most recent date available with a cloud free image. In order 

to maximize spectral contrast between LULC classes, paired winter and summer images were 

used for each year of the analysis (Lucas et al. 2007). Coppin et al (2004) supports the use of 

summer and winter imagery and suggests they are the best seasons for change detection because 

of their phenological differences and overall stability. Additionally, winter imagery used in 

conjunction with summer imagery, for the purpose of classification, has been shown to improve 

classification accuracy (Baumann et al. 2012). For the year of 1986 two cloud free images were 

available, one in the summer and one in the winter. In 2011 there was only one cloud free image 

which represented the winter season. 2007 was the most recent year with a cloud free summer 

image available, so it was mosaicked with the 2011 image. Where cloud cover is a limiting 

factor, mosaicking images from different years to represent one distinct time period is often 

necessary. Mosaicking images from different years has been utilized in previous studies where 

multidate imagery was desired but not available in a single year; specifically, this method has 

been used in Eastern Europe and Ukraine where cloud cover is often problematic (Baumann et 

al. 2011 and Kuemmerle et al. 2009). 

Eight TM images were used in the analysis. Two images for each date were needed to 

cover the full extent of the study area from path/row 185/24 and 185/25 (Table 3.1). Images were 

stacked, mosaicked and clipped to the extent of the Volyn oblast. The visible bands 1-3, near-

infrared bands 4 and 5, and middle-infrared band 7 were utilized in this study. The thermal band 

6 was not used. This band is commonly omitted due to the 30 vs. 120 meter spatial resolution 

which can affect classification (Oguz and Zengin 2011, Yu and NG 2006). Images were gathered 

from the USGS Earth Explorer and were orthorectified with a root mean squared error ranging 

from .15 to .51 pixels (Tucker et al. 2004). 
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3.1.2 Ground Truth and Training Data 

Field work was conducted from September 9-20, 2013. A GPS was used for in-situ 

collection of ground truth point locations, land cover and land use attributes, species information, 

and other general notes. Points were taken in homogeneous areas of the landscape, away from 

edges, in order to avoid possible confusion in training or accuracy assessment. Photographs were 

also captured and linked to ground truth data through a GIS geodatabase. Ground truth data was 

gathered across the entire study region, representing all land cover classes as evenly as was 

practical. Water and wetlands were underrepresented in this field survey as the terrain near these 

classes made surveying impractical. Forest, agriculture, and urban classes were surveyed 

extensively. 

The in-situ collected data was supplemented by a set of randomly generated points 

selected from the study imagery. This dataset was partially stratified to ensure that each class 

received a minimum of 15 ground truth points. Several iterations were needed to achieve this 

minimum, and points that were near edges or were difficult to interpret were discarded. In total 

500 points were generated. Randomly generated points were assigned a land cover class through 

a combination of expert knowledge, evaluation of Landsat imagery and spectral signatures, 

unsupervised clustering, and analysis of high spatial resolution Quickbird images within Google 

Earth™. Google Earth has been used widely by remote sensing scientists for gathering of ground 

truth data (Baumann et al. 2011, Kuemmerle et al. 2009, Choi and Han 2013) especially when 

field work is not possible or limited. unsupervised classification was also used as a preliminary 

step for finding spectrally homogeneous clusters of pixels. Yu and NG (2006) utilized this 

method to aid in assigning values to ground truth data and finding training locations for 

supervised classification approaches  

A total of 835 ground truth points were gathered through field work and generation of the 

stratified random sample. These points were used in both training for supervised classification 

and accuracy assessment of LULC maps. Careful consideration was taken to ensure that no 

ground truth point used in training was used in accuracy assessment, and vice-versa.  
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Table 3.1 The eight Landsat 5 TM images used to derive land cover maps for the years 

1986 and 2011. These images were orthorectified to WGS84/UTM zone 35U. 

Date Path Row RMSE GCP Description

23-Apr-11 185 24 0.28 1706.00 30 m spatial resolution, bands 1-5, 7

23-Apr-11 185 25 0.32 1476.00 30 m spatial resolution, bands 1-5, 7

17-Jul-07 185 24 0.15 2123.00 30 m spatial resolution, bands 1-5, 7

17-Jul-07 185 25 0.28 1302.00 30 m spatial resolution, bands 1-5, 7

12-Nov-86 185 24 0.41 1521.00 30 m spatial resolution, bands 1-5, 7

12-Nov-86 185 25 0.51 985.00 30 m spatial resolution, bands 1-5, 7

20-May-86 185 24 0.28 1717.00 30 m spatial resolution, bands 1-5, 7

20-May-86 185 25 0.31 1281.00 30 m spatial resolution, bands 1-5, 7
 

 

 3.2 Classification Scheme 

Classifications were carried out using a slightly modified form of the CORINE Land 

Use/Land Cover classification scheme (Table 3.2). The CORINE system is a 3-level hierarchical 

classification system, with 5 classes at level one (the coarsest level) and 44 classes at the third 

and most detailed level. The first and third levels were desired as the first level provides a 

scheme for general LULC mapping, and the third level has much more detailed classes, such as 

mixed, coniferous, and deciduous rather than just forests. In summary, level 1 was the most 

general classification available, and level 3 was the most detailed level available within the 

CORINE scheme.  

Classification LULC maps at the first and third CORINE levels were desired for several 

reasons. The level 1 classification is a very general LULC classification allowing for the 

examination of inter-categorical land changes. The level 3 classification is a much more detailed 

classification, and allows for the examination of intra-categorical changes within the landscape. 

The level 3 map was valuable as intra-categorical changes have not been quantifiably examined 

in former Soviet states to my knowledge. Finally, the level 1 classification was a natural first step 

preceding the level 3 classification; building a mask from the level 1 classification was used to 

isolate agriculture and forest for classification to level 3. 

There are two classes that need further clarification within the third level of the scheme, 

pasture (231) and complex cultivation patterns (242). Natural grassland (class 321) and class 231 

were combined in this classification, since it was nearly impossible to tell what was natural from 

what was being grazed regularly. Through field work and analysis of imagery, we determined 
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these classes could be combined into 231. Pasture, in this exercise, is a broad class of minimally 

or unmanaged grasslands. Another class needing clarification is the two actively tilled 

agricultural classes of 211 and 242. While reviewing the CORINE land cover nomenclature 

guide, it is not easy to distinguish the difference between arable land (211) and class 242. Both 

classes contain many of the same crops, are commonly in rotations, and have arable land within 

their definitions. The definition of 242 goes beyond arable land and uses the wording such as 

complexity of field patterns, juxtaposition of small parcels, and very fine textured agricultural 

patterns with no single unit larger than 25 hectare. LULC with this small, complex, juxtaposition 

of agricultural land was quite obvious while we conducted field work and examined aerial 

photography. Although 211 and 242 are, for most practical purposes, the same land cover I 

suggest they are different land use. I decided to separate them as 211 is more of a 

commercialized structure, while 242 is more of a local or subsistence style of agriculture. I 

utilized the area of 25 hectares to separate these two classes. 

 

Table 3.2 The three level hierarchical classification scheme which was derived from 

CORINE land cover project. 

Level 1 Classification Level 3 Classification Definitions

1 Artif icial surfaces 1.1.1 Continuous urban 

fabric

Most of land is covered by: Buildings, roads and artif icially 

surfaced area cover almost all the ground. Includes Non-

linear areas of vegetation and bare soil.

2.1.1 Non-irrigated arable 

land

Cereals, legumes, fodder crops, root crops and fallow  land. 

Includes f low er and tree (nurseries) cultivation and 

vegetables, w hether open field, under plastic or glass 

(includes market gardening). Excludes pastures.

2.3.1 Pastures Dense, predominantly graminoid grass cover, of f loral 

composition, not under a rotation system. Mainly used for 

grazing, but the fodder may be harvested mechanically. 

Includes areas w ith hedges (bocage).

2.4.2 Complex cultivation 

patterns

Juxtaposition of small parcels of diverse annual crops, 

pasture and/or permanent crops.

3.1.1 Broad-leaved forest Vegetation formation composed principally of trees, including 

shrub and bush understories, w here broad-leaved species 

predominate (75%).

3.1.2 Coniferous forest Vegetation formation composed principally of trees, including 

shrub and bush understories, w here coniferous species 

predominate (75%).

3.1.3 Mixed forest Vegetation formation composed principally of trees, including 

shrub and bush understories, w here broad-leaved and 

coniferous species co-dominate.

4  Wetland 4.1.1 Inland marshes Low -lying land usually f looded in w inter, and more or less 

saturated by w ater all year round.

5 Water Bodies 5.1.2 Water bodies Natural or artif icial stretches of w ater.

2 Agricultural Areas

3 Forest Natural Areas
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 3.3 Classification to CORINE Level 1 

A hybrid classification technique combining supervised, unsupervised, and object-

oriented classification techniques was used to generate LULC maps (Figure 3.1). Hybrid 

approaches bear significant potential for accurate classification, however no standard procedure 

exists, and approaches have to be adjusted based on data availability and study goals 

(Kuemmerle et al. 2006). The images were classified first to level one of the CORINE system 

using a hybrid supervised and unsupervised approach. After several attempts with both 

supervised and unsupervised approaches, using a variety of input parameters, water and wetlands 

where found to be most accurately classified using an unsupervised Iterative Self-Organizing 

Data Analysis (ISODATA) approach (Memarsadeghi et al. 2007). Input parameters for the 

unsupervised classification were 75 classes, 2500 minimum pixels per class, and 20 iterations. 

ISODATA was particularly useful as training data for wetlands was limited and this approach 

has proven to be effective in both mapping wetlands and finding areas of spectrally similar 

clusters (Long and Giri 2011). Wetlands and water classes had accuracies of 97 and 100 percent, 

repeatedly. However, ISODATA performed poorly for separating urban, forest, and agriculture. 

There were several confused classes which made conversion to information classes difficult, 

resulting in user/producer accuracies commonly below 70%. Due to low accuracy, water and 

wetlands were masked out and supervised approaches were pursued. Several supervised 

approaches were attempted, utilizing a variety of classifiers, training locations, and number of 

training sites. The maximum likelihood classifier with 30 training sites ultimately worked best 

for separating urban, forests, and agricultural lands. The supervised approach utilized yielded 

higher accuracy for urban, forests, and agriculture compared to the unsupervised approach. 

Training sites were selected from ground truth data gathered through the field survey outlined in 

section 3.1.2. 

 3.4 Classification to CORINE Level 3 

3.4.1 Forest Classification 

After assessment of the level 1 classification accuracies were deemed acceptable,  

classifications was carried out to level 3 of the CORINE system. Acceptable in this context was 
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accuracy higher than 90% overall with all classes having user/producers accuracy near 80% or 

higher. Water, wetlands and urban were accurately classified based on the guidelines listed in 

section 3.3. Forests were isolated by masking out all other classes. Forests were then classified to 

deciduous, coniferous, and mixed classes using a maximum likelihood supervised techniques. 

Training sites were carefully selected in this step using training data gathered in the field, as 

outlined in section 3.1.2. Where sufficient in situ data was lacking, supplemental training sites 

were taken from the randomly generated ground truth data set. When this was the case, spectral 

signatures were carefully evaluated to ensure consistent classification. Multidate imagery was 

essential for differentiating these forests types, especially for the interpretation of the 1986 

image, which had no ground truth data. A band combination of 5 from the winter image and 

bands 4 and 1 from the summer image was found to be particularly useful. This combination was 

utilized in visual and spectral interpretation to differentiate the three forest types. 

3.4.2 Agriculture Classification 

As with forest, agriculture was classified to level 3 via stratification (using the Level 1 

classification), using a supervised approach. This supervised approach did well separating 

pastures from the other two agricultural classes. Multidate imagery was again deemed essential 

as pastures did not change drastically throughout the year and the other two classes did. A band 

combination of 7,4,2 was useful to differentiate pastures from actively tilled classes. Band 7 was 

from the winter image, and band 4 and 2 were from the summer image. This combination 

maximized visual differences between pastures and the other two classes, which aided in training 

site selection and classification. However, supervised techniques did a poorer job of separating 

larger arable fields (CORINE class 211) from smaller complex fields (CORINE class 242). The 

same crops were grown in both class 211 and 242, so spectrally they were similar. An object-

oriented approach was implemented to take advantage of size differences of fields within these 

two classes. Object based approaches first delineate objects, also known as segments in this 

analysis, that are made up of one or several pixels, and then utilize spectral and/or contextual 

information in an integrative way to aid in classification (Blaschke 2010). Object based 

approaches have proven valuable in remote sensing, and often can improve classification from 

traditional per pixel approaches (Yu et al. 2006).  An edge based segmentation technique was 

used with a scale factor of .8 with no merging (Figure 3.2). Edge-detection methods are a 

common approach for the production of segments and are used to derive the initial boundaries 
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and delineate areas of contrast (Wang et al. 2004). A supervised approach with the selection of 

50 training samples was then used to classify the image. Training fields were located by both 

calculating the area within the segmented images and referencing the ground truth data set. 

Classification involved the use of a support vector approach based on area size of each segment 

produced. The object based technique produced higher accuracy than either supervised or 

unsupervised approaches by taking advantage of spatial factors rather than purely spectral 

properties. After the classifications were complete, individual classifications were mosaicked 

together, and then a 3x3 lowpass filter was applied. Post classification filtering is a common 

approach for noise reduction and accuracy improvement within classified images (Zukowskyj et 

al. 2001). This procedure removes isolated pixels and is useful when there is interest in gross 

tonal variations rather than details (Berlanga-Robles and Ruiz-Luna 2002). 

 

  

Figure 3.1 (a) High resolution 2011 image. (b) Result of segmentation overlain on band 3 of 

the 2011 Landsat image utilized in this study. Fields less than 25 ha were classified as 242 

and fields greater than 25 ha were classified as 211. (c) Result after supervised 

classification was performed on the segmentation. 
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Figure 3.2 Simplified classification workflow, see text for details. In the classification row, the option that had the highest 

accuracy is highlighted; the highlighted option was utilized in final classification.
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 3.5 Accuracy Assessment 

Accuracy was assessed for each classification using a confusion matrix, which was used 

to compute a number of accuracy metrics. A confusion matrix (also referred to as error matrix) is 

an n x n matrix (where n is the number of classes), commonly used for generating accuracy 

statistics and performing classification evaluation (Congalton and Green 1999). This matrix is 

arranged such that class membership determined by ground truth values are along the x-axis, and 

class membership determined by image classification is along the y-axis. When arranged this 

way, correct values fall along the major diagonal of the matrix. Incorrectly classified values lie in 

the off-diagonal areas of the matrix, such that it is apparent which class they are confused with. It 

has been suggested that a minimum of 50 sample points for each land-use/land-cover category in 

the error matrix be collected for the accuracy assessment of any image classification (Congalton, 

1991). In total 500 of the 835 ground truth points were utilized for accuracy assessment (the 

other 335 were used in training). Ground truth points used in accuracy assessment accurately 

represent the distribution of land cover classes within the study area. For example there were 175 

ground truth points in the forest class which is about 34.9% of the total ground truth points. The 

actual distribution in this class of forest in the level 1 land cover map was close to that number 

with as forests composed 32.5% of the total land cover. Agriculture ground truth points were a 

bit underrepresented as compared to the actual distribution within the field (50.2% compared to 

60.6%). This is due to the fact that I stratified the sample so the relatively small classes of water, 

wetland, and urban had at least 15 ground truth points. Ground truth points were assigned values 

based on methods outlined section 3.1.2. Points were carefully selected to ensure no single 

ground truth point was used in both training of unsupervised classifications and accuracy 

assessment. The ground truth points were overlain on the land cover maps, the land cover value 

was extracted. After values were extracted a confusion matrix was generated for accuracy 

assessment.  

The confusion matrix was used for several accuracy calculations including user/producer 

error, overall percent accuracy and the Kappa statistic. Overall accuracy is produced by dividing 

the sum of the major diagonal by the total number of ground truth points. The Kappa statistic 

was also calculated from the error matrix (Foody 2002). Kappa is a categorical comparison 

metric that quantifies how much better a classification is compared to random chance. Finally, 
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errors of omission (producer’s accuracy) and commission (user’s accuracy) were calculated. 

Errors of commission are produced when a pixel is assigned to a different category, in the 

classification process, than it belongs. Errors of omission are produced when a pixel is excluded 

from the category to which it belongs (Congalton and Green 1999). In statistics, an error of 

commission would be equivalent to a Type I error, while an error of omission would be 

equivalent to a Type II error. 

The 1986 classifications did not have aerial photographs or field data for validation, so it 

is assumed that a similar accuracy is achieved using the same methods from the 2011 image. 

This assumption has been utilized in previous research, where no field data or aerial photography 

was available (Berlanga-Robles and Ruiz-Luna 2002, Li et al. 2004). One important thing to 

remember here is that post-classification change detection techniques require very accurate 

classifications. If inaccurately classified maps are compared there is a significant probability that 

changes between maps may be caused by misclassification rather than by actual differences in 

land cover (Green et al. 1994). For this reason accuracy results of roughly 90% were needed. 

 3.6 Change Detection from LULC classifications 

Change was evaluated by overlaying classified maps from each year to create a 

composite change map, followed by quantitative assessment of categorical change. The change 

map shows areas of change and, since attributes could also be joined, it is possible to quantify 

the extent to which specific changes have occurred. A to-from cross tabulation chart or transition 

matrix was also produced, which provided a useful tool for analyzing detailed land change. 

Creation of a cross tabulation chart is common in post-classification land use change analysis in 

order to quantify change (Li et al. 2004, Yu and Ng 2006). The transition matrix gives detailed, 

quantifiable information about the nature and rate of change between and within classes. From 

this information several graphs, charts and maps can be produced to aid in visualization of 

change. One concern in change detection analysis is that both position and attribute errors can 

propagate through the multiple dates (Yuan et al. 2005). The change map accuracy is determined 

by multiplying the individual classification map accuracies to estimate the expected accuracy of 

the change map (Yuan et al. 1998). For this research, accuracy was assessed by this 

multiplication method.  
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 3.7 Conversion from LULC to Habitat Maps 

Classified maps were converted to the EUNIS habitat classification scheme in order to 

demonstrate how LULC change has affected habitat distribution in the study area (Table 3.3). 

The methodology for this conversion is detailed in guidelines published by the European 

Environmental Agency, which provides guidelines for converting land cover classes to habitat 

types (http://www.eea.europa.eu/). Transformation from the CORINE classification scheme to 

the EUNIS habitat scheme was straight forward in this study. All CORINE classes belonged to 

only 1 EUNIS class, which was carried out using spatial analysis software. 

 

Table 3.3 Name, description, and CORINE level 3 classes from which each of the EUNIS 

habitats were derived for fragmentation analysis. 

CORINE Level 3 Eunis Habitat Types Description

5.1.2. C Freshw ater aquatic 

habitats

Inland surface w aters are non-coastal above-ground open fresh or 

brackish w aterbodies (e.g. rivers, streams, lakes and pools, springs), 

including their littoral zones.

4.1.1. D Wetland Habitats Wetlands, w ith the w ater table at or above ground level for at least half 

of the year, dominated by herbaceous or ericoid vegetation.

2.3.1. E Grassland habitats Non-coastal land w hich is dry or only seasonally w et (w ith the w ater 

table at or above ground level for less than half of the year) w ith greater 

than 30% vegetation cover. The vegetation is dominated by grasses and 

other non-w oody plants, including mosses, ferns, sedges and herbs.

3.1.1., 3.1.2., 3.1.3. G Woodland/forest 

habitats/other w ooded 

areas

Woodland and recently cleared or burnt land w here the dominant 

vegetation is, or w as until very recently, trees w ith a canopy cover of at 

least 10%. Trees are defined as w oody plants, typically single-stemmed, 

that can reach a height of 5 meters.

2.1.1., 2.4.2. I Regularly/recently 

cultivated habitats or 

garden

Habitats maintained solely by frequent tilling or arising from recent 

abandonment of previously tilled ground such as arable land and 

gardens. Includes tilled ground subject to inundation.

1.1.1. J Constructed industrial/ 

other arif icail habitats

Primarily human settlements, buildings, industrial developments, the 

transport netw ork, w aste dump sites.

 

 3.8 Fragmentation Analysis 

Landscape fragmentation analysis metrics were used to determine structural changes in 

habitat between the two dates of 1986 and 2011. Fragmentation analysis offers a means to 

analyze categorical maps with more than 50 landscape metrics and more than 60 class metrics 

(Li et al. 2004). Many of these metrics are redundant so it is important to select only a few 

metrics (Riitters et al. 1995). Previous research has acknowledged this redundancy and suggested 

a core set of metrics may be possible across scale and space (Schindler et al. 2008). Leitao and 

Ahern (2002) proposed 9 core landscape metrics that are most useful and relevant for landscape 
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analysis. Several studies analyzed utilize the same 6-8 metrics in study sites located in Eastern 

Europe, southern Europe, western Asia, and central Asia suggesting these metrics can be applied 

in varying regions and spatial scales (Kadiogullari 2012, Keles et al. 2008, Li et al. 2004, 

Mairota et al. 2013, Oguz and Zengin 2011, Schindler et al. 2008, Yu and NG 2006). I selected 8 

metrics that are commonly used for fragmentation analysis and understanding landscape changes 

in general. Selection of metrics was based on the previously mentioned literature and the metrics 

proposed by Leitao and Ahern (2002). 

 Two groups of landscape metrics were used: one at the class level and one at the 

landscape level. The class level metrics analyze each individual class type, while the landscape 

metrics considers the study area as a whole. The specific metrics chose for this analysis were 

class area (CA), percentage of land (PLAND), number of patches (NP), mean patch size (MPS) 

and largest patch size (LPI) at the class level (Table 3.4). At the landscape level number of 

patches (NP), mean patch size (MPS), mean-nearest neighbor distance (MNN), Contagion Index 

(CONTAG) and Shannon’s Diversity Index (SHDI) were utilized. Each fragmentation metric 

applies to the landscape level, the class level, or both. Understanding these metrics aids in 

interpret of how habitats and/or land cover classes are fragmented currently, how this has 

changed through time, and also provide a baseline for future analysis. 

At the class level I wanted to understand not only how the landscape was composed but 

also how the fragmentation has changed through time. CA and PLAND provide a basic summary 

of the landscape, can show an indication of dominance, and can be used to quantitatively show 

how a landscape has changed through time (Tyler and Peterson 2004). MPS was used as it is 

arguably the most important indication of fragmentation (McGarigal and Marks 1995). Other 

indicators are often used in conjunction with MPS to indicate fragmentation, specifically NP and 

CONTAG (Yu and Ng 2006). It has been suggested that NP and MPS should be used 

complementarily since high NP and low MPS values suggest fragmentation (Keles et al. 2008, 

Leitao and Ahern 2002, Matsushita et al. 2006, Yu and NG 2006). LPI has been shown to 

reinforce or be associated with changes in MPS (Keles et al. 2008) thus giving an indication of 

fragmentation. LPI also gives indication of dominance within a landscape, which gives 

indication of changes in landscape homogeneity (Yu and Ng 2006). In summary, statistics 

generated at the class level were useful for understanding changes through time and general 

fragmentation patterns. 
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To more fully understand landscape changes within Volyn, landscape level statistics were 

desired. Landscape metrics aid in not only understanding of fragmentation, but also composition 

and connectivity, which have been shown to be important for species distribution (Salek et al. 

2013). SHDI is a diversity index (Li et al. 2004, Yu and Ng 2006) and is particularly useful in 

studying landscape patterns as it is very sensitive to changes (Mairota et al. 2013). In this study 

SHDI provides a quantitative measure of how many different types of habitats are in the 

landscape, and how evenly these habitats are distributed. CONTAG is an adjacency index (Li et 

al. 2004) and has also been used as a fragmentation index (Yu and Ng 2006). SHDI and 

CONTAG are commonly used together as they give indication of landscape fragmentation and 

heterogeneity (Li et al. 2004, Mariota et al. 2013). CONTAG has also been shown to be the best 

landscape index for differentiating landscape patterns (Remmel and Csillag 2003). MNN is a 

measure of isolation and is important to understand as it quantifies the mean distance between 

patches (Li et al. 2004). This may affect the ability of species to disperse between patches, 

interact, and maintain relationships between populations (Tyler and Peterson 2004). In summary, 

statistics generated at the landscape level go beyond fragmentation patterns, and show diversity, 

adjacency and isolation. Diversity, adjacency, and isolation have been shown to have important 

implications for ecosystems (Mariota et al. 2013, Schindler et al. 2008).  

Throughout this thesis, geospatial analysis, image classification, and fragmentation 

analysis were done using ENVI 5 (Exelis Visual Information Solutions 2013), ArcGIS 10.2 

(ESRI 2013), and Fragstats 4.2 (McGarigal and Marks 1995). 

Table 3.4 Acronym, metric name, and description of the landscape metrics used in this 

study. There is also an indication as to whether the index was calculated for the class level, 

the landscape level, or both. 

Acronym Metric name Level Description

CA Class/Total Area Class Total Area of all patches per class

PLAND Percentage of Landscape Class Percentage the landscape comprised by certain class

LPI Largest Patch Index Class Area of largest patch in landscape divided by landscape area

NP Number of Patches Both Number of patches per class/landscape

MPS Mean Patch Size Both Average size of patches

MNN Mean Nearest-Neighbor Distance Landscape Sum of distances to nearest neighboring patch of same type

CONTAG Contagion Index Landscape Measure of adjacency,dissagrigation

SHDI Shannon's diversity Index Landscape Measure of diversity w ithin landscape
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Chapter 4 - Results 

 4.1 CORINE Level 1 Classification, Accuracy, and Change 

4.1.1 Classification Results 

The first two classifications contained 5 classes from the CORINE level 1 classification 

scheme and represent the years of 1986 and 2011(Figure 4.1). These two land cover maps are 

essential first steps in this study as they are inputs for change detection and fragmentation 

analysis. These maps can also provide some quantifiable and qualitative (visual interpretation) 

indication of landscape structure. The agriculture class dominates the majority of landcover in 

both 1986 and 2011, representing 65.8% and 60.6% of the total land cover respectively. This 

class is most prevalent in areas of higher elevation, specifically areas to the south west portion of 

the study area. Forest is the next most prevalent class in each image representing 28.8% of the 

land cover in 1986 and 32.5% of the land cover in 2011. Forests become more prevalent 

throughout the central and especially the eastern portions of Volyn. The northeast corner of 

Volyn is dominated by wetlands, which follows the general elevation pattern within the study 

area (In general, highest elevations in the southwest slope to lower elevations in the northeast). 

The classes of wetland, water and urban cumulatively represent only about 5.5% of the 1986 

image and 6.9% of the 2011 image.  

4.1.2 Accuracy Results 

Classifications to level 1 of the CORINE scheme proved to be highly accurate (Table 

4.1). Overall accuracy and the kappa statistic were both over 95%, with user and producer 

accuracies over 97% for all classes except urban. Unsupervised techniques were the most 

accurate method of identifying the wetland and water classes. After water and wetland were 

masked out, a supervised technique, improved accuracy in the urban, agriculture, and forest 

classes.  

While overall accuracy within the landscape is high, urban land cover accuracies are 

relatively low. When examining the error matrix and the Producers/Users Accuracy table (Table 

4.1), it is apparent this was a difficult class. User’s accuracy of this class is 81.25, indicating that 

a sample from the urban class is actually a different class about 19% of the time. The producer’s 

accuracy is a low relative to the other classes as well. Producer’s accuracy indicates that there is 

about a 13% more urban area than was actually mapped. Overall this means that the urban class 
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was slightly overestimated. From the field work survey, it was apparent that agriculture and 

settlements were intricately mixed. This juxtaposition increases difficulty of separating urban 

and agriculture, and could be the cause of relatively low accuracy of the urban class. Although 

accuracy is low within the urban class, this is a relatively small class which was not of particular 

interest in this study. 

 

 

 

Figure 4.1 Land cover maps generated to level 1 of the CORINE classification scheme for 

1986 and 2011. 
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Table 4.1 Confusion matrix generated for CORINE level 1 accuracy assessment. 

Producer’s and user’s accuracy for each class, overall accuracy and Kappa accuracy are 

also included. 

Classif iation→ 

Reference↓ Urban Agriculture Forest Wetland Water Row

Producer's 

Accuracy

Urban 13 2 1 0 0 16 81.25%

Agriculture 2 243 3 1 0 249 97.59%

Forest 0 3 170 0 0 173 98.27%

Wetland 0 0 1 39 0 40 97.50%

Water 0 0 0 0 22 22 100.00%

Column 15 248 175 40 22 487

User's Accuracy 86.67% 97.98% 97.14% 97.50% 100.00%

Overall Accuracy = (13 + 243 + 170 + 39 + 22)/500 = 97.40%

Kappa Accuracy = 95.82%  

 

4.1.3 Change Analysis 

Overall, about 15% of the Volyn oblast has experienced some change from 1986-2011 

for the level 1 classification (Table 4.3). In the transition map and the transition table, only the 

top 5 of a total of 20 possible combinations for transition are displayed (Figure 4.3). The top 5 

are displayed in order to reduce confusion and due to the fact that these classes account for about 

~83% of the change. Changes were also color coded to give not only the nature of the change 

(e.g. from agriculture to forest, forest to wetland, etc.) but also as an aid for visualizing the 

geographic location of the changes. The most dominate transition within the study area is from 

agriculture to forest (~1284 km²). This change seems to be consistent throughout the study area, 

especially near existing forest edges, within forests, and areas where forest and agriculture 

classes meet. The next most prevalent area of change was from forested areas to wetland. This 

change occurred most prevalently in the northeast area of Volyn, but also occurred in the east-

central area which is dominated by forest. In general, the classes of agriculture, forest, and 

wetland experienced the most changes. Although the urban class experienced a noticeable 

amount of increase (almost doubled in area) it is a small class relative to agriculture, forest, and 

wetland, and accuracy of this class was questionable (see section 4.1.2). The water class 

remained relatively stable over the time period examined. 
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Table 4.2 CORINE level 1 land cover change matrix, 1986-2011 (km²) 

From-1986 Urban Agriculture Forest Wetland Water 1986 Total

Urban 101.63 45.16 10.16 2.36 0.81 160.13

Agriculture 199.94 11471.11 1284.71 178.60 26.30 13160.65

Forest 38.82 303.96 4987.72 417.64 2.79 5750.92

Wetland 7.55 280.80 208.20 246.56 11.92 755.03

Water 0.44 1.96 3.31 13.73 141.86 161.31

2011 Total 348.38 12102.99 6494.09 858.89 183.68 19988.04

Change 188.25 -1057.66 743.17 103.86 22.37 3039.15

Change (%) 54.04% -8.74% 11.44% 12.09% 12.18% 15.20%

TO-2011

 

 

Figure 4.2 Top 5 CORINE level 1 change map, Volyn, 1986-2011. 
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 4.2 CORINE Level 3 Classification, Accuracy, and Change 

4.2.1 Classification Results 

The level three classification subdivide the two largest classes, Agriculture and Forest, 

into six separate sub classes. Agriculture is split into large arable fields (211), pasture (231) and 

small complex fields (242) (see table 3.2 for a full list of land cover codes and definitions). 

Forests are divided into deciduous (311), coniferous (312) and mixed (313). While examining 

the two level 3 classifications clear visual signs begin to emerge of land cover changes that have 

taken place in Volyn. Within the agricultural class, class 211 has noticeably been replaced by 

class 231 and 242. Visually inspecting figure 4.2, class 211 is much less dominant, and classes 

231 and 242, which are shown in brown and orange respectably, have replaced 211. Class 211 

has decreased from 34% of the landscape to 11%. This has resulted in increases in other 

agricultural classes including an increase from 15% to 25% for class 231, and an increase from 

16% to 25% for class 242. Changes in forests are less obvious and no immediate trends are 

apparent from strictly visual interpretation. 

4.2.2 Accuracy Results 

The level three CORINE classified map were above or very near the desired 90% 

accuracy for both overall and kappa statistic (Table 4.2). Of the 500 ground truth points gathered 

456 were accurately classified resulting in an overall accuracy was 91.2%. The Kappa statistic 

indicates that the classification was 89.76% better than a random classification. Classes 111, 411, 

and 512 show the same accuracy as the level 1 classification as they were not reclassified. 

Classes 231, 242, 311, and 312 all had similarly high user and producer accuracy values, never 

falling below 88% accuracy. Accuracy in these four classes is particularly important, as they 

comprise about 75% of the study area. Class 211 showed a relatively low user’s accuracy of 

82.72 indicating that about 17% of the time a pixel that is classified as class 211 is actually a 

member of another class. Class 313 had the lowest value in the producer accuracy with a value of 

79.31%. This indicates that slightly more than 20% of the time a pixel that was actually mixed 

forest was incorrectly classified to another class. Urban and Mixed classes have proved to be 

difficult to classify in past studies (Kuemmerle et al. 2006) and are considered problematic as 

borders need to be drawn artificially (Foody 2002).  
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Most of the inaccuracies in the error matrix are from within subclasses of the same level 

1 class, for example, mixed forests confused with deciduous forests. For the three agriculture 

classes (211, 231 and 242) 21 of the 32 misclassified pixels where classified as another form of 

agriculture. Similar results are true for the forest classes, where greater than half of the 

misclassified pixels were within a different forest class. This is commonly the case in remote 

sensing as splitting land cover classes that are similar spectrally is difficult and often subjective 

to interpretation (Foody 2002, Kuemmerle et al. 2006). 

 

  

 

Figure 4.3 Land cover maps generated to level 3 of the CORINE classification scheme for 

1986 and 2011. 
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Table 4.3 Confusion matrix generated for CORINE level 3 accuracy assessment. 

Producer’s and user’s accuracy for each class, overall accuracy and Kappa accuracy are 

also included. 

Classif iation→ 

Reference↓ 111 211 231 242 311 312 313 411 512 Total

Producer's 

Accuracy

111 13 - 1 1 - 1 - - - 16 81.3%

211 1 67 8 2 1 1 - 1 - 81 82.7%

231 - - 98 3 1 - - - - 102 96.1%

242 1 5 3 57 - - - - - 66 86.4%

311 - - - 2 68 - - - - 70 97.1%

312 - - 1 - 1 69 6 - - 77 89.6%

313 - - - - 3 - 23 - - 26 88.5%

411 - - - - - 1 - 39 - 40 97.5%

512 - - - - - - - - 22 22 100.0%

Total 15 72 111 65 74 72 29 40 22 456

User's Accuracy 86.7% 93.1% 88.3% 87.7% 91.9% 95.8% 79.3% 97.5% 100.0%

Overall Accuracy = (13 + 67 + 98 + 57 + 68 + 69 + 23 + 39 + 22)/500 = 91.20%

Kappa Accuracy = 89.76%  

 

4.2.3 Change Analysis 

According to the level three classifications, about 56% of the total study area has 

experienced change (Table 4.4). Transformation of the landscape has occurred throughout the 

study area, with the most changes occurring in the west, central, and southern regions of the 

study area. In the transition map and the transition table, only the top 7 of a total of 72 possible 

combinations for transition are displayed (Figure 4.4). The top 7 are displayed in order to reduce 

confusion and due to the fact that these classes account for about three quarters of the change. 

 The transition matrix shows that the most prevalent changes involved transitions within 

agricultural classes. Specifically class 211 showed a 220% decrease with a net loss of 4,692 km². 

Classes 231 and 242 showed the largest increases with gains of 1891 km² and 1744 km² 

respectably. The top 4 transitions involve changes to or from classes 211, 231, or 242. These 

changes involved large percentages of the landscape, resulting in widespread agricultural LULC 

change.  

The next most prevalent changes occurred within the forest classes. The 5
th

 and 6
th

 largest 

transitions involved intra-categorical forest changes. Specifically class 313 showed an increase 

of 1200 km². This large increase is, for the most part, from previously homogeneous forest 

classes 311 and 312. Due to this transition, classes 311 and 312 both show decreases of ~10%. 
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However, class 311, has shown increases from other classes, specifically agricultural class 231. 

The forest class  

 

 

 

Figure 4.4 Top 7 CORINE level 3 change map, Volyn, 1986-2011. These top 7 represent 

~75% of the change in this time period. 

Table 4.4 CORINE level 3 land cover change matrix, 1986-2011 (km²) 
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From-1986 1.1.1. 2.1.1. 2.3.1. 2.4.2. 3.1.1. 3.1.2. 3.1.3. 4.1.1. 5.1.2. 1986 Total

1.1.1. 101.63 1.79 6.47 36.90 1.98 6.03 2.15 2.36 0.81 160.13

2.1.1. 63.51 1857.66 1999.14 2667.33 97.97 63.61 52.89 20.35 7.87 6830.33

2.3.1. 20.39 118.92 1521.72 705.55 450.75 49.86 87.14 122.76 8.80 3085.89

2.4.2. 116.03 144.46 1031.33 1425.00 201.04 149.27 132.19 35.48 9.62 3244.42

3.1.1. 4.83 2.29 89.32 30.84 1717.49 80.59 694.34 379.22 1.31 3000.24

3.1.2. 32.37 1.90 119.44 29.32 71.27 1253.41 496.62 14.15 1.09 2019.58

3.1.3. 1.62 0.07 27.20 3.57 51.91 188.55 433.53 24.26 0.39 731.11

4.1.1. 7.55 10.50 181.25 89.06 147.90 27.28 33.02 246.56 11.92 755.03

5.1.2. 0.44 0.16 0.97 0.84 2.02 0.95 0.34 13.73 141.86 161.31

2011 Total 348.38 2137.74 4976.85 4988.40 2742.33 1819.55 1932.22 858.89 183.68 19988.04

Change 188.25 -4692.60 1890.96 1743.98 -257.91 -200.03 1201.11 103.86 22.37 11289.18

Change (%) 54.04% -219.51% 38.00% 34.96% -9.40% -10.99% 62.16% 12.09% 12.18% 56.48%

TO-2011

 

 4.3 Habitat Classification and Fragmentation Analysis 

Following classification, the level 3 CORINE maps were used to produce EUNIS habitat 

maps (Figure 4.5). Essentially this involved collapsing several classes, recode the raster grid, and 

renaming the classes. CORINE class 311, 312 and 313 collapsed into EUNIS class G, 

Woodland/forest habitats/other wooded areas (see figure 3.4 for detailed information on 

CORINE to EUNIS conversion). CORINE class 211 and 242 collapsed into EUNIS class I, 

Regularly/ recently cultivated habitats or gardens. The main point for the production of these 

maps was to perform fragmentation statistics (Tables 4.5 and 4.6). While examining the 

fragmentation statistics, there appears to be substantial changes at both the class and the 

landscape level. 

Agricultural habitats are the most dominant habitat type located in Volyn for both years 

studied, followed by forests and then grasslands. Agricultural habitats show a decrease from 

10075 km² to 7152 km² or from 50% to 36% of the landscape. Grassland habitats show the 

greatest increase from one time to the next. In 1986 the composed 15% of the landscape and by 

2011 that number had jumped to 25%. The rest of the habitat types remained relatively stable in 

terms of CA and PLAND from 1986 to 2011. However, there are large increases in NP, and 

decreases in MPS for all habitat types.  

The landscape level statistics also reveal change over the time period studied. Looking at 

the EUNIS habitat maps, this is not surprising, as visually the landscape appears different. NP 

and SHDI both show increases, while MPS, MNN, and CONTAG all show decreases. All 

statistics calculated at the landscape level have changed substantially.  
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Figure 4.5 Maps produced after conversion to EUNIS habitat scheme. 

 

Table 4.5 Landscape metrics change in class level, Volyn, 1986-2011 

EUNIS Habitat Class 1986 2011 1986 2011 1986 2011 1986 2011 1986 2011

C Freshwater aquatic habitats 161.31 183.21 0.81 0.92 599 973 0.13 0.13 26.93 18.83

D Wetland Habitats 755.03 842.17 3.78 4.21 8040 10608 1.06 0.71 9.39 7.94

E Grassland habitats 3085.89 4963.16 15.44 24.83 18202 30493 0.22 0.91 16.95 16.28

G Woodland/forest habitats/other wooded areas 5750.92 6527.78 28.77 32.66 5698 10326 8.08 8.66 100.93 63.22

I Regularly/recently cultivated habitats or garden 10074.76 7151.58 50.40 35.78 11927 15225 35.51 17.65 84.47 46.97

J Constructed industrial/other arificial habitats 160.13 320.04 0.80 1.60 3971 7237 0.09 0.11 4.03 4.42

CA (km²) PLAND NP MPS (ha)LPI (km²)

 

 

Table 4.6 Landscape metrics change in landscape level, Volyn, 1986-2011 

Year NP MPS(ha) MNN CONTAG(%) SHDI

1986 48437 41.266 253.0129 59.2405 1.1935

2011 74826 26.7126 215.98 54.61 1.3218  
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Chapter 5 - Discussion 

The fall of the Soviet Union is recognized as one of the most significant socio-economic 

changes in recent history, with widespread effects on the landscape (Prishchepov et al. 2012). 

Like other former Soviet states, Volyn has felt the effect of this political change. Although there 

is widespread change, I utilized the land cover maps, transition matrix, and fragmentation 

statistics to look specifically at 1) agricultural changes and 2) forest changes. For each of these 

two classes 1) changes in areal extent, 2) restructuring, and 3) habitat changes were examined to 

get a better overall picture of landscape changes. Agriculture and forests classes were selected 

for closer examination as they make up the largest percentage of the landscape, they are the most 

widely studied in this region of the world, and these classes are known to be important for 

various ecosystem functions. 

 5.1 Agriculture Changes  

5.1.1 Agricultural Land Abandonment 

Arable land was completely state owned and managed by large agricultural enterprises in 

the former Soviet Union (Ash 1998). While some of the agricultural land still operate in a 

collective or co-op style (Ash 1998), the transition from a subsidized, centrally planned 

agricultural economy to a market-drive economics has resulted in large scale land abandonment 

of unproductive land (Baumann et al. 2011). Several former soviet states in Eastern Europe show 

this large scale land abandonment trend and the Volyn oblast is no exception (Prishchepov et al. 

2012). 

Examination of the land cover maps, transition matrix, and fragmentation metrics suggest 

widespread changes within the agricultural class. The level 1 transition matrix shows that 

agricultural land use decreased from 66% of the total landscape in 1986 to 61% in 2011, or a 

decrease from roughly 13,160 km² to approximately 12,100 km².  The most common transition 

was from the agricultural class to the forest class (1200 km²) which I consider as one indication 

of abandonment. Transition from agriculture to forest was three times greater than any other 

change in the level 1 map. From the level three transition analysis, two of the top three 

transitions in terms of total area are from actively cultivated agricultural classes (class 211 and 

242) to pasture (class 231), accounting for over 3000 km² of land transition. Additionally about 

450 km² of land was converted from class 231 to 311, the largest inter-categorical transition. 
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These two changes represent the largest indication of abandonment as land transitions from 

currently farmed fields to grassland and eventually to forest. Another indication of abandonment 

could be derived by looking at the fragmentation statistics. Regularly cultivated habitats decline 

from 50% to only 35% of the landscape, while grassland habitats increased from 15% to 25%. 

Additionally Shannon’s diversity increases from 1.19 to 1.35 showing that the landscape became 

more heterogeneous and evenly distributed. The landscape is no longer dominated by regularly 

cultivated habitats, suggesting land has transitioned most likely through abandoned. 

While the transition matrices and fragmentation statistics suggest abandonment, a more 

narrowly defined abandonment rate is needed to put this research in context of previous work. 

Past studies have defined abandonment in a variety of ways, such as transition from fields and 

pastures that reverted to forests (Sieber et al. 2013), from farmland to fallow (Baumann et al. 

2011) and/or the sum of fallow and reforested divided by total agricultural land (Kuemmerle et 

al. 2008). I will define abandonment rate as changes from either class 211 or 242 in 1986, which 

are active agricultural classes, to class 231, 311, 312 or 313, or from class 231 to 311, 312, or 

313 (see table 3.2 for a full list of land cover codes and definitions). Using the aforementioned 

definition of abandonment produces a 33% abandonment rate, or 4336 km² of 13,160.6 km². I 

feel it is important not to consider the 33% abandonment rate without the context of agricultural 

gains over the same time period. The level 3 transition matrix (table 4.4) shows that 992 km² 

were gained by classes 211 and 242. Most of this gain, 706 km² of 992 km², was from 231 to 

242.  This suggests an agricultural net loss of 26%, less than the abandonment rate of 33%, from 

1986 to 2011.  

When mapped, widespread land abandonment across the entire study region becomes 

visually apparent (Figure 5.1). One thing noticeable about change is that it does not appear to be 

even across the oblast. Areas to the south of the study area tended to remain in the agricultural 

classes. As you traverse north, abandonment is widespread. I believe this difference has to do 

with elevation, and wetness. Elevation is highest in the southern third of the oblast (200-290 m), 

where land abandonment visually appears to be lowest. The northern two thirds of the study area 

have low elevations (125-200 m) and contain more wetlands. I suggest abandonment is more 

widespread in the northern two thirds of the study region due to low elevations and poor 

drainage. 
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A net abandonment rate of 26% fits well with previous land abandonment research in 

Eastern Europe, and suggests an average rate of abandonment in the 25 year transition period. A 

few selected studies suggest abandonment rates of 16.1% (Kuemmerle et al. 2008), 30% 

(Baumann et al. 2011), 39.89% (Sieber et al. 2013) all the way to 55.4% (Hostert et al. 2011), 

however these studies vary in terms of time periods, study area, elevation, methodologies, and 

terminology for defining abandonment.  

Drivers of this change can be attributed to a variety of reasons. In Soviet times, subsidies 

and capital investment by the state led to increases in agricultural and farmed lands, often on 

highly marginal lands (Turnock 1998). The ending of subsidies and capital investment let to 

declining profitability in agriculture under free markets, restructuring of the agricultural sector, 

and societal changes; these reasons can be used to generalize the drivers of agricultural changes 

(Kuemmerle et al. 2006). Additionally, many large scale agricultural enterprises went bankrupt 

after the political systems change (Ash 1998). Access to machinery was limited and farmers 

could only cultivate small portions of the potentially available land (Kuemmerle et al. 2006). 
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Figure 5.1 Map of agricultural land abandonment in Volyn, 1986-2011. 

 

5.1.2 Changes in agricultural land use 

Examination of the segmentation process, transition matrix, and classification statistics 

reveal that the agricultural landscape has changed dramatically. The first sign of restructuring 

resulted from the segmentation process used in classification.  Segments were produced to 

separate agricultural class 211 from 242 before classification (figure 3.2). Using the exact same 

methods, the segmentation resulted in the production of 402,301 segments in 1986 and 592,318 

segments for the 2011 image. The large increase in number of segments is profound considering 

agricultural land decreased from 1986 to 2011, from 10074 km² to 7126 km². The average field 

size halved from 1986 to 2011, declining from .25 km² or 6.18 acres to .012 km² or 2.97 acres. 
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Other signs of reorganization within the agricultural class are apparent when examining the 

transition matrix. The largest single transition within the level 3 transition matrix was from class 

211 to class 242 (table 4.4). 2667 km² or 13% of the total study area made this transition, 

suggesting a large portion of the study area has been converted from large scale homogenous 

collective or co-op style agriculture to smaller scale heterogonous family style agriculture. When 

examining the proportions each of these classes make to the actively tilled agricultural class 

(211+242), it becomes apparent that agricultural production has underwent restructuring or 

shifted toward 242 (Figure 5.2). In 1986, class 211, accounted for roughly 70% of actively tilled 

agriculture. By 2011, this proportion had flipped and small, complex fields were the agricultural 

land use. 

Drivers of agricultural land use change from 211 to 242 are difficult to determine within 

Volyn. Although many studies recognize and acknowledge agricultural land abandonment 

(Kuemmerle et al. 2009, Hostert. et al 2011), few comment on agricultural restructuring 

(Kuemmerle et al. 2006, Baumann et al. 2011). Suli-Zakar (1998) acknowledges that the regime 

change has given rise to structural change in agriculture with small farms providing food and 

income to a transitional population. Additionally, declining profitability of agriculture may be 

deterring large scale farming practices for production of cash crops, in favor of small local 

production for consumption and possibly local sale, which may be why we see the pattern that 

has emerged. 

This shift in agricultural land use may have profound impacts on the local environment. 

Shifting away from intensive agricultural land use may decrease infectious diseases, improve air 

and water quality, increase carbon sequestration, increase forests, and preserve habitats and 

biodiversity (Foley et al. 2005). Furthermore, a shift away from intensive agricultural land use, 

such as monocultures, may be beneficial for local and global environments as intensive 

agricultural use is responsible for a wide range of negative impacts (Tilman 1999).  

While the impacts of large scale farming is well research and mostly understood to be 

environmentally and socially detrimental, little research has been done on the impacts of small 

scale farming practices. However, one study indicates that there is a positive and statistically 

significant relationship between small farms and sustainable impacts (Tavernier and Tolomeo 

2008). Additionally, Sarris et al. (1999) suggests that small-scale farming has major yet 

unexploited economic and production potential for local populations. The shift in agricultural 
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land use within Volyn from 211 to 242 may have wide reaching positive impacts for the people 

and the environment. 

 

Figure 5.2 Tilled agriculture restructuring, Volyn, 1986-2011. 

 

5.1.3 Agricultural Habitat Fragmentation 

Agricultural fragmentation has been shown to be high where state farms have dissolved 

and land was thus made available to the people (Kuemmerle et al. 2006). Agricultural land 

abandonment has, in turn, resulted in fragmentation of the agricultural landscape, as active 

parcels become interspersed with abandoned ones (Kuemmerle et al. 2008).  This undoubtedly 

affects species that rely on agricultural lands for habitat. For instance, Mustela eversmanii or 

steppe polecat, a species in decline in Europe, has adopted agricultural habitats consisting of 

mosaic grassland and small fields (Salek et al. 2013). Understand landscape metrics and 

structures can aid in prioritizing research, provide baselines, and promote intervention allowing 

for more effective landscape management (Mairota et al. 2013)  

When examining the fragmentation statistics it becomes apparent that agricultural 

habitats have changed (see table 4.5). First the percentage of landscape that agriculture habitats 

occupy has decreased from 50.4% to 35.7%. This drastic decrease contributes to a large increase 

from 15.4% to 24.8% in grassland habitats, which were in the agricultural class in the CORINE 

level 3 classifications. The number of agricultural habitat patches has increased from 11,927 to 

15,225, the largest patch index has decreased from 3.6 to 1.8 km², and the mean patch size has 
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decreased from 8.5 to 4.7 km². Figure 5.3 shows that the number patches less than 1 hectare 

(approximately 10 Landsat pixels) has tripled. The increase in number of patches, decrease in 

largest patch index, decrease in mean patch size, and large increase in number of patches under 1 

hectare suggest increased fragmentation in agricultural habitats.  

My findings fit well with a few studies in Eastern Europe that have analyzed 

fragmentation. Kuemmerle et al. (2006) suggests that agricultural fragmentation was highest 

where private land ownership was allowed during socialist times (Poland) and where state farms 

were dissolved and land was made available to the people (Ukraine). The study also suggests that 

before the fall of the Soviet Union, Ukraine agricultural structure was similar to Slovakia in that 

there were large fields, and today it is transitioning to a fragmented agricultural landscape, 

similar to the findings within my study. 

While patterns of agriculture fragmentation after the fall of the Soviet Union are 

recognized in academic literature, drivers are sparsely explained. The high degrees of arable 

landscape fragmentation may be a result of a shift towards subsistence farming and increases in 

agricultural land abandonment, in the post-Soviet era (Kuemmerle et al. 2006). Although there is 

no clear answer from the literature, it appears that as farmland was abandoned it converted to 

grassland, which divided and isolated agricultural habitat patches.  Therefore increased 

agricultural fragmentation is likely a result of farmland abandonment.  

 

 

Figure 5.3 Distribution of agricultural patches based on area, Volyn, 1986-2011. 
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It is relevant to talk about landscape level changes when examining the agricultural 

habitat as this habitat composed over half of the Volyn landmass in the 1986 image. The 

landscape has seen an increase in the number of patches from 48,437 to 74,826 and a decrease in 

mean patch size from 41.27 to 26.71 ha². The Contagion index, which ranges from 0 to 100, 

decreased from 59.2 to 54.6 which is an indication of a disaggregation tendency and also a sign 

that the whole landscape has become more complicated and fragmented (Yu and Ng 2006). At 

the surface, these statistics suggest that the landscape has become more fragmented, however I 

suggest they represent a more heterogeneous landscape with high diversity. This statement is 

backed by the fact that the mean nearest neighbor distance has decreased from 253 to 216 and 

Shannons diversity index has increased from 1.19 to 1.32. The decrease in mean nearest 

neighbor distance suggests a less isolated landscape (Li et al. 2004) and the increase in 

Shannon’s Index suggests a more equally distributed landscape (Figure 5.4) (Yu and NG 2006). 

Although the statistics at the landscape level are likely skewed due to many small patches in the 

agricultural and grassland, the agricultural dominated landscape transitioned to a more equally 

distributed landscape of agriculture, grassland, and forested habitats.  A more heterogeneous 

landscape is a good goal of conservation policies (Fahrig 2001) as it may haves positive 

implications for species and landscapes (Gustafson and Gardner 1996). 

While landscape indices provide a quantifiable means for understanding and comparison 

of spatial processes, they are not without limitation. In a study using a simulated binary 

landscape, Remmel and Csillag (2003) showed how very different landscapes can produce the 

same landscape pattern indicies. Furthermore, the statistical distribution properties of landscape 

metrics are not well known, meaning that expected values and variances are not readily usable 

for statistical comparison (Hess and Bay 1997, and Remmel and Csillag 2003). In summary, 

while results may look significant, they may in fact be misleading. 
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Figure 5.4 Distribution of landcover by class, Volyn, 1986-2011. 

 5.2 Forest Changes  

5.2.1 Increase in Forest Land Cover  

From 1986 to 2011, forests within Volyn have increased in areal extent. Forest show an 

expansion from 28.8% of the land cover in 1986 to 32.5% in 2011, which is an increase from 

about 5751 km²  to roughly 6494 km². Approximately 1500 km² of land were gained in the forest 

class, while approximately 750 km² were lost in the time period studied (Figure 5.5). The most 

significant increases (~1285 km² or ~90%) came from the agricultural class. The largest 

decreases were changes from forest to agriculture representing 304 km². Far and away the largest 

gains in forest were specifically to deciduous forests with a gain of approximately 900 km². 

Coniferous and mixed forests both showed a gain on formerly unforested lands of about 300 

km². Relative net change was calculated, as outlined by Baumann et al. (2012) to be 12% 

between 1986 and 2011.  

Large increases in forests are likely a result of agricultural land abandonment, but this 

switch also could represent recovery from Soviet era practices of large scale clear cut logging. 

The largest increases in forest land cover came from the agricultural class, which fits well with 

the idea of land abandonment or forest regeneration from clear cut. Relative net change is 

slightly higher than previous research reviewed near Ukraine on forest change (Baumann et al. 

2012, Kuemmerle et al. 2009). However, these studies were in areas where forest cover was 
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historically a much higher percentage of the landscape, and there was less agricultural land that 

could be abandoned.   

In Soviet times, Ukrainian forests were overexploited (Kuemmerle et al. 2011) and 

heavily managed for timber production. After the collapse of the Soviet Union forests were 

largely unmanaged resulting in a period of forest decreases through the early 1990’s (Kuemmerle 

et al. 2007). Additionally, it has been suggested that there was a period of slight expansion in the 

late 1990’s through the early 2000’s, and strong forest expansion through the first decade of the 

21
st
 century (Baumann et al. 2012, Kuemmerle et al. 2011). This fits well with what my study 

shows, as there is a relatively high rate of forest regrowth. It has also been suggested that 

abandoned farmland, which was widespread in this study, will ultimately revert back to forests in 

this ecosystem without anthropogenic effects (Rudel et al. 2005) so forest expansion was 

anticipated.  

Gains in forest are not surprising as Ukraine has taken important steps towards 

sustainable forestry in recent years, and reporting and forest monitoring have improved 

significantly (Kuemmerle et al. 2009). Additionally, demand for forestry products has been 

thought to have decreased considerably in the Ukraine (Kuemmerle et al. 2007). Formerly state 

funded forest enterprises could not afford to modernize or buy new equipment (Turnock 2002). 

Observed increases in forests are likely due to improvement in management of existing forests, 

agricultural land abandonment leading to natural succession, and the relative expense of logging 

in general. 



51 

 

 

Figure 5.5 Map of forest changes in Volyn, 1986-2011. 

 

5.2.2 Restructuring within Forests 

Within class forests, there have been substantial changes within Volyn. In this study the 

most prevalent changes, within the forest class, were from deciduous and coniferous forests to a 

mixed forest structure. In 2011 the forest distribution was 42% deciduous, 28% coniferous, and 

30% mixed, which is a large shift from 52% deciduous, 35% coniferous, and 13% mixed from 

the 1986 image (Figure 5.6). According to the transition matrix, mixed forests expanded from 

731 km² to 1932 km², while pure deciduous and coniferous forests decreased by 250 km² and 

200 km², respectably. A raise in mixed forests and slight decreases in coniferous and deciduous 

forests make sense in light of less strict forest management practices today, which may be 
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allowing the system to return to a more natural mixed forest structure. From the level 3 transition 

matrix, two of the top six transitions involve forest classes. The top four all involved agricultural 

changes but the 5
th

 and 6
th

 largest transitions were intra-specific changes, specifically, from 

deciduous forests to mixed forests (694 km²) and from coniferous forests to mixed forests (497 

km²). In summary, forests have shifted from a pure coniferous and deciduous dominated 

landscape to a more evenly distribution between the three forests types, with the largest gains 

being in the mixed forests, and the largest decreases in coniferous forests.  

Kuemmerle et al. (2006) suggests pure coniferous forests found in Ukraine do not occur 

naturally; rather they are due to anthropogenic and legacy effects of socialist forest management 

practices. In Ukraine, Soviet forest management resulted in widespread replacement of natural 

forest communities with coniferous forests (Kuemmerle et al. 2006). The collapse of the Soviet 

Union resulted in a return to semi-natural vegetation across large areas (Hostert et al. 2011). 

There are a few studies that show general or intra-categorical forest changes through time 

(Baumann et al. 2012, Kuemmerle et al. 2009). There are no studies, to my knowledge, that show 

intra-specific change through time within the forest category, in areas of Eastern Europe.  

 

 

Figure 5.6 Forest restructuring within Volyn, 1986-2011. Each classes area is included in 

km² 
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1986 image, no such data was available, causing me to rely solely on expert knowledge of the 

study area and forest canopy reflectance values. Additionally, classification of mixed classes has 

been shown to be somewhat problematic because class boarders are drawn artificially (Foody 

2002). I did find a band combination of band 5 from the summer image, and bands 4 and 1 from 

the winter images, which illuminated differences between the three forests types. Along with 

spectral profile analysis, and field work, the 5, 4, 1 combination was used for training in the 

classification of both images, allowing high accuracies to be achieved. Although there are 

important considerations and limitations with discerning deciduous, coniferous, and mixed 

forests in previous research, I am confident in this classification and the trends are too 

widespread to ignore. 

5.2.3 Forest Habitat Fragmentation 

Fragmentation statistics show widespread changes in current and formerly forested 

habitats. The class level fragmentation statistics calculated show that forest habitats have 

increased in area and thus, they make up a larger percentage of the land; In 1986 forest made up 

~29% of the land and in 2011 they made up ~33% of the landscape. There is also a large jump in 

the number of patches from one period to the next from 5698 to 10326, and subsequently the 

mean patch size has decreased 100.93 to 63.22, which are associated with increased 

fragmentation (Li et al. 2004). It has been suggested that mean patch size is likely the most 

important indicator of fragmentation (McGarigal and Marks 1995), therefore I suggest 

fragmentation has increased 

The statistics suggest increased fragmentation since the socialist period. One reason for 

this increased fragmentation may be changes in logging patterns. Today it appears that logging is 

done over relatively smaller tracts, which give forests a ‘swiss cheese’ or perforated pattern as 

shown in figure 5.7. Kuemmerle et al. (2006) suggests high forest fragmentation, within Ukraine, 

and attributed this trend to lack of management and presumed illegal forest harvesting (Turnock 

2002). The perforated pattern observed may be due to this lack of management and illegal 

logging as well. 

 Another possible explanation for increased fragmentation may be forest regeneration. 

Abandonment of large tracts of agricultural land has allowed forests to regenerate, creating small 

isolated patches of forest throughout the landscape (figure 5.8). This pattern of young forest 

growth in apparently abandoned fields was commonly observed while conducting field work 
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within Volyn (figure 5.8f). Kuemmerle et al. (2006) suggests fragmentation may partially be 

caused by successional forests.  Additionally, Hostert et al. (2011) acknowledges that forests 

have regrown on many former farm fields. These small isolated patches, a result of regeneration, 

have likely contributed to fragmentation of forests within Volyn.  

While some research in areas under former Soviet influence suggests no change or 

defragmentation, previous research in Ukraine generally agrees with increased fragmentation. In 

Romania, forest cover and fragmentation were found to be stable between 1990 and 2005. 

Stability was due to forest institutions and policies that were in place in the transition period, 

which prevented large-scale logging (Kuemmerle et al. 2009). Ukraine did not have similar 

policies or stability in the transition period. Kuemmerle et al. (2007) suggests increased 

fragmentation after the socialist regime, likely due to ownership changes, worsening economic 

conditions, and weakening of governing institutions. Similarly, Kuemmerle et al. (2006) and 

Kuemmerle et al. (2009) suggest fragmentation within Ukraine may be high, but they do not 

quantifiably analyze fragmentation through time. In summary, the combination of current forest 

harvesting practices and regeneration on formerly agricultural habitats are likely causes of the 

forest fragmentation observed. The trends observed are important as fragmentation of forests 

have been found to have profound impacts on ecosystems (Boentje and Blinnikov 2007). 
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Figure 5.7 (a) 2011 imagery (b) map of forested (green) and not forested (grey) area for 

2011 (c) indication of where frames a, b, c, d are located (d) 1986 imagery (e) map of 

forested(green) and not forested(grey) area for 1986 (f) image taken illustrating selective 

harvesting patterns which may be contributing to increased fragmentation. 
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Figure 5.8 (a) 2011 imagery (b) map of forested (green) and not forested (grey) area for 

2011 (c) indication of where frames a, b, c, d are located (d) 2986 imagery (e) map of 

forested(green) and not forested(grey) area for 1986 (f) image taken illustrating regrowth 

of young forest on abandoned lands. 
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Chapter 6 - Conclusion 

This research quantifies how the Volyn landscape changed or restructured in the last 20 

years following a change in political systems. In the agricultural classes we see decreases in 

agricultural lands, a shift towards smaller field structures, and increased fragmentation in 

agricultural habitats. In forests, I observed increases in areas, shifts in composition towards a 

mixed structure, and an increase in fragmentation. Five of the six hypotheses proposed were 

supported (see section 1.7 for list of hypotheses). 

Hypothesis 1a is supported by the net abandonment rate of 25% calculated as a result of 

classification and post-classification change detection. Hypothesis 1b is supported by both the 

result of the segmentation that revealed that the size of fields had more than halved. 

Additionally, classification and post-classification change detection revealed that class 242, 

small complex fields contributed to 70% of actively tilled agricultural land use, a shift from 30% 

in 1986. Hypothesis 1c was also supported by the fragmentation statistics that show increased 

fragmentation over the two years studied. Additionally, most of the land lost by actively tilled 

agricultural classes (~3000 of 4000 km²) is now pasture, or grassland habitats. This shift or 

abandonment has resulted in large increases in small patches of agricultural habitats, thus, 

increased fragmentation. 

 It is widely agreed that agricultural changes are a result of post-Soviet institutional 

changes and economic shock (Kuemmerle et al 2008, Bauman et al. 2011, Prishchepov et al. 

2012). Land was abandoned as profitability of agriculture decreased, the agricultural sector 

restructured, and societal changes occurred in Eastern Europe’s landscape (Kuemmerle et al. 

2008) all of which lead to agricultural land decreases.  Much arable land was also subdivided for 

subsistence farming (Kuemmerle et al. 2006) thus a shift towards smaller field sizes. Land 

abandonment and the observed shift in the farming landscape patterns undoubtedly contributed 

to increased agricultural habitat fragmentation, and an increase in grassland habitats. Finally, 

there was an observed shift from agricultural dominated habitat structure, to a more even 

distribution of habitat types.  

Hypothesis 2a is supported by the Level 1 transition matrix which shows that most of the 

gains in forest cover (1,285 of 1500 km² or ~85%) were from agricultural land cover. The Level 

3 transition matrix shows that about half of the gain observed, from agriculture to forest, was 
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from the class 231 or pasture category. Hypothesis 2b is supported by the evaluation of the Level 

3 transition matrix, which shows that that the coniferous forest class has experienced the largest 

decrease, in terms of percentage of the landscape, of the three forest cover types. Finally, 

hypothesis 2c is not supported as the fragmentation statistics show an increase in fragmentation, 

as opposed to the decrease that was hypothesized. 

The changes in forests are also widely accepted as results of economic changes in the 

post-socialist era. Farmland abandonment is thought to be the main driver for increases in forest 

(Kuemmerle et al. 2009, Baumann et al. 2012) and this study agrees. I believe shifts in forest 

composition are primarily due to a lack of current management relative to the socialist era. In the 

former Soviet Union, coniferous forests were desired as they grew quickly, and increased timber 

production. Today very little is done in the way of management relative to the Soviet era, and 

this has caused a shift away from pure coniferous forests, which are not natural in this region of 

the world, to a more mixed structure. Increases in forest fragmentation are likely also due to lack 

of management which allows local actors to log small pockets forest (Griffiths et al. 2012). 

Additionally, increases in small patches are observed, as agricultural lands revert to forest, likely 

increasing fragmentation. Kuemmerle et al. (2007) attributed increased fragmentation in 

southwestern Ukraine to ownership changes, worsening economic conditions, and weakening of 

institutions. These factors likely contributed to increased forest fragmentation in Volyn as well. 

Understanding LULC changes is paramount to effective future landscape management. 

LULC information helps us understand the spatial distribution of land uses and land cover; with 

this knowledge proper strategies and policies can be developed and applied in various 

professions including land use planning, environmental monitoring, and disaster prevention 

(Choi and Han 2013). Change analysis has many applications for ecologists, conservation 

biologists, policy makers, protected area managers, conservation consultants and other experts 

(Nagendra et al. 2013). While land cover and change analysis data can be used to further 

knowledge and understanding of changes in the landscape, which are known to have impact on 

biodiversity, this analysis also allow for long-term planning for restoration of habitats (e.g., 

establishment of corridors, regeneration) and  planning for protection from the adverse effects of 

climate change (Jones et al. 2009). Data derived from studies such as my research provide land 

managers and decision makers with spatial and temporal information on the extent and condition 
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of habitats, and knowledge as to how landscapes response to political change over time 

(Nagendra et al. 2013). 

This research compares landscapes through time using remote sensing, GIS, and 

fragmentation analysis. For a more thorough understanding of changes, land cover was examined 

in three different ways including a general land cover classification (CORINE level 1), a more 

detailed land cover classification scheme (CORINE level 3) and a habitat classification (EUNIS). 

After analyzing the results it becomes obvious that the Volyn oblast has experienced drastic 

change over the last 25 years. However, it is important to acknowledge that this study only 

considered two specific points in time. Any change observed could be largely influenced by a 

high disturbance event just before image acquisition, which may largely affect results. I have no 

reason to believe that such an event has occurred, but it is an important consideration 

nonetheless.  

Every land cover class has experienced a change in spatial extent or spatial distribution to 

some extent. With such drastic changes occurring in a relatively short period of time, coinciding 

with the collapse of the Soviet Union, I suggest the changes can be attributed to large-scale 

changes in socioeconomic and political regimes. No study to date has studied land cover change 

in Volyn specifically, to my knowledge. Additionally most studies in this region of the world 

focus specifically on land abandonment (Kuemmerle et al. 2008, Baumann et al 2011) or forest 

changes (Boentje and Blinnikov 2007, Kuemmerle et al. 2009) in the post-Soviet era. This study 

examines landscape change dynamics holistically giving a more complete view of how the 

landscape has changed and an idea as to how the overall ecosystem has changed.  

The Global Terrestrial Observing System identified land cover as one of the five highest 

priority essential climate variables along with biomass, glacier and ice caps, soil moisture, and 

permafrost (Giri et al 2013). The fact that sustainability has become a primary objective in 

present-day ecosystem management has as one of its consequences the continuous need for 

accurate and up to date monitoring of land surfaces (Coppin et al. 2004).  Remote sensing using 

a hybrid classification scheme and the post classification change detection technique utilized in 

this study proved to be effective and efficient means of understanding landcover and landscape 

changes. I would suggest that a hybrid approach, especially with multidate imagery, is beneficial 

in any study that requires highly accurate classification, such as post-classification change 

detection. The post classification technique utilized was valuable as it showed consistent changes 
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relative to other studies in the area, and opened more questions which may have significant 

implications for Volyn’s landscape and habitats. For example, urban areas were shown to have 

expanded, and wetlands experienced changes in spatial distribution. Wetlands are known to 

provide a variety of ecosystem services, including groundwater recharge, flooding risk reduction 

and increased dry season flows, as well as possible benefits for biodiversity and human welfare 

in general (Bullock and Acreman 2003). To my knowledge these changes have not been 

adequately studied in Eastern Europe and may provide direction for future research. 

This research quantifies how profound an impact a political regime changes can have on 

a landscape. The observed changes in Volyn, including widespread farmland abandonment and 

subsequent forest regrowth, may have important implications for the ecosystem. Decreases in 

agriculture and increases in forests have been shown to lead to increased soil stability (Tasser et 

al. 2003), improved water quality (Kramer et al., 1997), increase biodiversity (Baur et al. 2006, 

Bowen et al. 2007) and increased carbon sequestration (Post and Kwon 2000). Conversely, 

increases in fragmentation have been shown to have a number of negative effects on ecosystems. 

For example, increases in fragmentation have been linked to increases in infectious diseases, 

ultimately influencing human health (Allen et al. 2003). 

The future of Ukraine is largely uncertain, and the trends observed may change rapidly 

again soon. If adequately supported by policy, positive effects could be realized. For example, 

forest expansion on former farmland could help mitigate climate change, benefit sustainable 

development and conserve biodiversity (Kuemmerle et al. 2011).  Conversely, if agricultural 

land use intensifies on presently abandoned lands, a wide variety of negative impacts may result 

including loss of biodiversity, degradation of water and soil, and decreased carbon sequestration 

(Stoate et al. 2001). There are vast opportunities for conservation and implementation of 

effective land-use policies to guide future land cover and land use trajectories.  
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