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Abstract

In 1988, Masser and Oesterlé conjectured that if A,B,C are co-prime integers satisfying

A+B = C,

then for any ε > 0,

max{|A|, |B|, |C|} ≤ K(ε)Rad(ABC)1+ε,

where Rad(n) denotes the product of the distinct primes dividing n. This is known as the

ABC Conjecture. Versions with the ε dependence made explicit have also been conjectured.

For example in 2004 A. Baker suggested that

max{|A|, |B|, |C|} ≤ 6

5
Rad(ABC)

(log Rad(ABC))ω

ω!

where ω = ω(ABC), denotes the number of distinct primes dividing A, B, and C. For

example this would lead to

max{|A|, |B|, |C|} < Rad(ABC)
7
4 .



The ABC Conjecture really is deep. Its truth would have a wide variety of applications

to many different aspects in Number Theory, which we will see in this report. These include

Fermat’s Last Theorem, Wieferich Primes, gaps between primes, Erdős-Woods Conjecture,

Roth’s Theorem, Mordell’s Conjecture/Faltings’ Theorem, and Baker’s Theorem to name

a few. For instance, it could be used to prove Fermat’s Last Theorem in only a couple of

lines. That is truly fascinating in the world of Number Theory because it took over 300

years before Andrew Wiles came up with a lengthy proof of Fermat’s Last Theorem.

We are far from proving this conjecture. The best we can do is Stewart and Yu’s 2001

result

max{log |A|, log |B|, log |C|} ≤ K(ε)Rad(ABC)
1
3
+ε. (1)

However, a polynomial version was proved by Mason in 1982.
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Preface

History of the ABC Conjecture

In 1988, Masser [12] and Oesterlé [14] conjectured that if A,B,C are co-prime integers

satisfying

A+B = C,

then for any ε > 0,

max{|A|, |B|, |C|} ≤ K(ε)Rad(ABC)1+ε

where Rad(n) denotes the product of the distinct primes dividing n. This is known as the

ABC Conjecture.

In 1982, a polynomial version of the ABC Conjecture was proved by Mason [11], resulting

in the Mason’s Inequality, also known as Mason-Stothers’ Theorem. We are still a long

way from proving the ABC Conjecture. The best we have are still a logarithm away from

proving the ABC Conjecture. For example in 1986, Stewart and Tijdeman [17] first came

up with an upper bound

max{|A|, |B|, |C|} < exp(K1Rad(ABC)15)

for the ABC Conjecture. This was improved by Stewart and Yu [18] in 1991 to

max{|A|, |B|, |C|} < exp(K2Rad(ABC)
2
3
+ε)

ix



and again in 2001 by Stewart and Yu [19] to

max{|A|, |B|, |C|} < exp(K3Rad(ABC)
1
3
+ε).

People are still actively working on proving the ABC Conjecture. Japanese mathematician

Shinichi Mochizuki claims to have proven the ABC Conjecture, but he is in the process of

editing his theories. The ABC Conjecture is a very deep result if it holds true. We shall see

applications to many different branches of Number Theory

In Chapter 1, we will look at the polynomial version of the ABC Conjecture (Mason’s

Inequality) proved by Mason in 1982. We will give the proof involving the Wronskian; there

is another proof by Silverman [16] (see also Granville and Tucker [9]) using the Riemann-

Hurwitz formula. We will see that Mason’s Inequality can be used to prove the polynomial

version of Fermat’s Last Theorem and its variants.

In Chapter 2, we will discuss the ABC Conjecture, effective forms and the current state

of knowledge, and see how the ABC Conjecture leads to a simple proof of Fermat’s Last

Theorem.

In Chapter 3, we present a wide range of other applications of the ABC Conjecture, includ-

ing Wieferich primes, gaps between primes, the Erdős-Woods Conjecture, Roth’s Theorem,

Baker’s Theorem, and the Mordell Conjecture (Faltings’ Theorem).
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Chapter 1

ABC Conjecture for Polynomials

In this section we will see Mason’s Inequality, the polynomial version of the ABC Conjecture,

which can be proved.

1.1 Some Basic Definitions

We are going to define some terms such as the α-order of F , a polynomial with complex

coefficients and positive degree, before we head into the Mason Inequality.

Let F (x) =
N∑
i=0

aix
i be a polynomial over C with aN 6= 0. By the Fundamental Theorem

of Algebra, we have

F (x) = aN(x− α1)(x− α2) · · · (x− αN),

for some complex numbers α1, α2, · · ·αN , the roots of the polynomials of F, where N = degF

is the degree of F .

For α ∈ C, we define

ordα(F ) = |{n : 1 ≤ n ≤ N and αn = α}|

1



as the number of roots of F , which are equal to α, i.e. if ordα(F ) = M , then we have

(x− α)M | F , but (x− α)M+1 - F .

When we sum up the orders we have, as long as F is not the zero polynomial,

∑
α∈C

ordα(F ) = deg F.

We also define,

Z(F ) := {α ∈ C : F (α) = 0}

for the set of distinct zeros of F . Thus we have,

|Z(F )| ≤ deg F.

1.2 Mason’s Inequality

Theorem 1.2.1. Let A(x), B(x), C(x) be polynomials in C[x] such that:

(i) A(x) +B(x) = C(x)

(ii) A(x), B(x), C(x) are not all constants

(iii) A(x), B(x), and C(x) have no common zeroes.

Then

max{degA, degB, degC} ≤ |Z(ABC)| − 1.

Proof. Assume that (i),(ii), and (iii) hold.

2



Define the Wronskian

W (x) := det

 A(x) B(x)

A′(x) B′(x)


= A(x)B′(x)−B(x)A′(x)

Observe that substituting C(x)−B(x) into A(x) we get,

W (x) := det

 C(x)−B(x) B(x)

C ′(x)−B′(x) B′(x)


= det

 C(x) B(x)

C ′(x) B′(x)


= C(x)B′(x)−B(x)C ′(x).

Similarly we get,

W (x) := det

 A(x) C(x)

A′(x) C ′(x)


= A(x)C ′(x)− C(x)A′(x).

For α, a complex number in Z(ABC), we get

ordα(A) + ordα(B) + ordα(C)− 1 ≤ ordα(W ).

To see this observe that if ordα(A) = M ≥ 1, then (x− α)M | A, (x− α)M−1 | A′, but

(x− α) - B,C, so we have (x− α)M−1 | AC ′ − CA′ = W . Hence,

ordα(A) + ordα(B) + ordα(C)− 1 = M + 0 + 0− 1 = M − 1 ≤ ordα(W )

3



Next, summing up this inequality over all the points α in Z(ABC), we get∑
α∈Z(ABC)

ordα(A) +
∑

α∈Z(ABC)

ordα(B) +
∑

α∈Z(ABC)

ordα(C)− |Z(ABC)| ≤
∑

α∈Z(ABC)

ordα(W ),

and so, by summing up those orders, we get

deg A+ deg B + deg C − |Z(ABC)| ≤ deg W.

Looking at deg W , we see that,

deg W = deg{A(x)B′(x)−B(x)A′(x)}

≤ deg A+ deg B − 1.

Now we have,

deg A+ deg B + deg C − |Z(ABC)| ≤ deg A+ deg B − 1.

Canceling out the degA and degB on both sides, we get

deg C − |Z(ABC)| ≤ −1.

Rearranging the inequality we get,

deg C ≤ |Z(ABC)| − 1.

Similarly, with the other representations of W (x), we get

deg A ≤ |Z(ABC)| − 1

and

deg B ≤ |Z(ABC)| − 1.

Combining these inequalities, we have that,

4



max{deg A, deg B, deg C} ≤ |Z(ABC)| − 1.

Thus we have proved Mason’s Inequality.

Observation: We see that Mason’s Inequality can be proven by making use of Wronskian

polynomials. Mason’s Inequality provides a foundation for the ABC Conjecture, but perhaps

a generalized version will give us a better understanding.

1.3 Generalized Mason’s Inequality

Mason’s Inequality can be generalized in different ways that could be useful, let’s look at

one where we have N + 1 polynomials.

Theorem 1.3.1. Suppose φ0(x), φ1(x), · · ·φN(x) are polynomials in C[x] such that

(i) φ0(x) + φ1(x) + · · ·+ φN(x) = 0

(ii) φ0(x), φ1(x), · · · , φN(x) span a vector space of dimension N over C,

(iii) φ0(x), φ1(x), · · · , φN(x) have no common zero in C.

Then,

max{ deg φn : 0 ≤ n ≤ N} ≤
(
N

2

)
(|Z(φ0φ1 · · ·φN)| − 1).

Proof. Suppose we have φi(x) for 0 ≤ i ≤ N satisfying (i), (ii), and (iii). Reordering as

necessary, suppose that φN(x) has the maximum degree.

Say we have,

φ0(x) + φ1(x) + · · ·φN−1(x) + φN(x) = 0.

Looking at the Wronskian, we get,

5



W (x) = det



φ0(x) φ1(x) · · · φN−1(x)

φ
(1)
0 (x) φ

(1)
1 (x) · · · φ

(1)
N−1(x)

...
. . . · · ·

φ
(N−1)
0 (x) φ

(N−1)
1 (x) · · · φ

(N−1)
N−1 (x)


(1.1)

=
∑
σ∈SN

(−1)sgn(σ)φ
(0)
σ(0)φ

(1)
σ(1) · · ·φ

(N−1)
σ(N−1), (1.2)

where SN is the set of permutations of the numbers 0 to N − 1 and sgn(σ) is ±1 depending

on whether the permutation σ is even or odd.

Let,

deg φ0(x) = k0

deg φ1(x) = k1

...

deg φN−1(x) = kN−1

deg φN(x) = kN .

Let α be a zero of the product φ0 · · ·φN . By assumption (iii), we know that α is not a zero

for some φi. Suppose without loss of generality that ordα(φN(x)) = 0, if not, then will write

φi = −
∑
j 6=i

φj (1.3)

and substituting for the ith column in (1.1), we get an expansion, (1.2), with the φi replaced

by φN . From (1.2)

ordα(W ) ≥ min
σ∈SN
{ordα(φ

(0)
σ(0)(x)) + ordα(φ

(1)
σ(1)(x)) + · · ·+ ordα(φ

(N−1)
σ(N−1)(x))} =: R(α).

6



Plainly,

R(α) ≥ min
σ∈SN
{ordα φσ(0)(x) + (ordα φσ(1)(x)− 1) + · · ·+ (ordα φσ(N−1)(x)− (N − 1))}

= ordα(φ0(x)) + ordα(φ1(x)) + · · ·+ ordα(φN−1(x))− 1− 2− · · · − (N − 1)

= ordα(φ0(x)) + ordα(φ1(x)) + · · ·+ ordα(φN−1(x)) + ordα(φN(x))−
(
N

2

)
.

Hence, summing over the α in Z(φ0φ1 · · ·φN)

∑
α∈Z(φ0···φN )

ordα(W ) ≥
∑

α∈Z(φ0···φN )

ordα(φ0(x)) + · · · +
∑

α∈Z(φ0···φN )

ordα(φN(x))−
∑

α∈Z(φ0···φN )

(
N

2

)

= k0 + k1 + · · · + kN−1 + kN -

(
N

2

)
|Z(φ0φ1 · · ·φN)|.

By (ii) W (x) is not the identically 0 polynomial. Hence by (1.2) then,

∑
α∈Z(φ0···φN )

ordα(W ) ≤ deg W

≤ max
σ∈SN
{deg φσ(0)(x) + deg φσ(1)(x)− 1 + · · ·+ deg φσ(N−1)(x)− (N − 1)}

= k0 + k1 + · · ·+ kN−1 −
(
N

2

)
.

Thus we have (
N

2

)
(|Z(φ0φ1 · · ·φN)| - 1) ≥ kN .

And thus we have proven the general form of Mason’s Inequality.

1.4 Stothers’ Theorem

In 1981, W. W. Stothers [20] proved a similar result for a special case of Mason’s Inequality.

Below is Stothers’ original theorem.
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Theorem 1.4.1. Suppose that P (x) and Q(x) are polynomials in C[x] such that

(i) P (x) and Q(x) have the same positive degree,

(ii) P (x) and Q(x) have the same leading coefficient,

(iii) P (x) and Q(x) have no common zero.

Then

deg P ≤ |Z(P )|+ |Z(Q)|+ |Z(P −Q)| − 1

Note: The proof below actually establishes a more general result where assumption (i)

and (ii) are replaced with the assumption that P (x), Q(x) and P (x) − Q(x) are not all

constants. This will be a very short proof with the assumption of the Mason’s Inequality.

Proof. We will write R(x) as,

R(x) = P (x)−Q(x).

By Mason’s Inequality we have,

deg P ≤ max{deg P, deg Q, deg R}

≤ |Z(PQR)| − 1

= |Z(P )|+ |Z(Q)|+ |Z(R)| − 1,

since R, P , and Q have no common zeros.

Observations: This specialized result was proven in three lines, so Mason’s Inequality is a

helpful tool when proving other like results. Now we will look how Mason’s Inequality can

prove Fermat’s Last Theorem in just a few lines as well.
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1.5 Fermat’s Last Theorem for Polynomials

1.5.1 Fermat’s Last Theorem for Polynomials

Using Mason’s Inequality, we quickly can come up with a proof of the polynomial version

of Fermat’s Last Theorem.

Theorem 1.5.1. There are no non-constant co-prime polynomials A(t), B(t) and C(t) ∈

C[t] such that

A(t)N +B(t)N = C(t)N (1.4)

when N ≥ 3.

Note: If A(t), B(t), and C(t) have a common divisor d(t) = gcd(A(t), B(t), C(t)), then

we can divide the gcd out of each term to get polynomials Ã(t), B̃(t), and C̃(t) with no

common factors satisfying (1.4).

Proof. Suppose that such polynomials A(t), B(t), and C(t) exist. Apply Mason’s Inequality

to A(t)N , B(t)N , and C(t)N .

Thus we have,

N max{deg A, deg B, deg C} ≤ |Z(ANBNCN)| − 1. (1.5)

Recall that,

Z(ANBNCN) = {α ∈ C : A(α)NB(α)NC(α)N = 0}

= {α ∈ C : A(α)B(α)C(α) = 0}.

Also we have,

|Z(ABC)| ≤ deg A+ deg B + deg C ≤ 3 max{deg A, deg B, deg C}. (1.6)

9



Combining (1.5) and (1.6) we have,

N max{deg A, deg B, deg C} ≤ 3 max{ degA, deg B, deg C} − 1

and thus for N ≥ 3, we get a contradiction, thus completing our proof.

Note: When N = 1 in (1.4) there are obviously infinitely many solutions, so we will now

look at the special case where N = 2.

1.5.2 Special Case Where N = 2 for Polynomials

Theorem 1.5.2. There exists infinitely many co-prime non-constant polynomial solutions

of

A(t)2 +B(t)2 = C(t)2. (1.7)

All the solutions are of the form,

A(t) = K(t)2 − L(t)2, B(t) = 2K(t)L(t), C(t) = K(t)2 + L(t)2,

for some K(t), L(t) ∈ C[t] with gcd(K(t), L(t)) = 1.

Proof. Let K(t) and L(t) ∈ C[t] where gcd(K(t), L(t)) = 1. Suppose that

A(t) = K(t)2 − L(t)2, B(t) = 2K(t)L(t), C(t) = K(t)2 + L(t)2.

We want to show that A(t)2 +B(t)2 = C(t)2 and gcd(A(t), B(t), C(t)) = 1. Since A(t),

B(t), and C(t) satisfy (1.7), it is enough to check that A(t) and C(t) are co-prime.

A(t)2 +B(t)2 = (K(t)2 − L(t)2)2 + (2K(t)L(t))2 = K(t)4 − 2K(t)2L(t)2 + L(t)4 + 4K(t)2L(t)2

= K(t)4 + 2K(t)2L(t)2 + L(t)4 = (K(t)2 + L(t)2)2 = C(t)2.

10



Recall that C[t] is a Unique Factorization Domain, where primes take the form p = (t− α)

and the units are the non-zero constants. Suppose p | A(t) and p | C(t) then p | A(t)+C(t) =

2K(t)2 and p | C(t)− A(t) = 2L(t)2, so p | K(t)2, p | L(t)2, which implies that p | K(t), p |

L(t), contradicting our assumption gcd(K(t), L(t)) = 1. So gcd(A(t), B(t), C(t)) = 1.

We’ll see the other direction. Suppose thatA(t)2+B(t)2 = C(t)2 where gcd(A(t), B(t), C(t)) =

1 and A(t), B(t), and C(t) ∈ C[t].

We want to show that A(t) = K(t)2−L(t)2, B(t) = 2K(t)L(t), C(t) = K(t)2 +L(t)2 for

some K(t), L(t) ∈ C[t] with gcd(K(t), L(t)) = 1. From A(t)2 +B(t)2 = C(t)2 we have,

B(t)2

4
=
C(t)2 − A(t)2

4
=

(
C(t)− A(t)

2

)(
C(t) + A(t)

2

)
.

Factoring into primes, (
B(t)

2

)2

= p2m1
1 . . . p2mee q2n1

1 . . . q
2nf
f

where the pjs divide C(t)−A(t)
2

and qis divide C(t)+A(t)
2

are non-associate primes. To see that

the pj and qi are not associates, we need to make an observation.

Observe that if p divided both C(t)+A(t)
2

and C(t)−A(t)
2

, then we would have p divides both

C(t) =
C(t) + A(t)

2
+
C(t)− A(t)

2
, A(t) =

C(t) + A(t)

2
− C(t)− A(t)

2
. (1.8)

This gives us a contradiction since gcd(A(t), C(t)) = 1. Given that the units are squares in

C, we can write by Unique Factorization that,

C(t) + A(t)

2
= (upm1

1 · · · pmee )2 = K(t)2

C(t)− A(t)

2
= (u−1qn1

1 · · · q
nf
f )2 = L(t)2.

11



Hence from (1.8),

C(t) = K(t)2 + L(t)2 and A(t) = K(t)2 − L(t)2

and

B(t)2 = C(t)2 − A(t)2 = 4K(t)2L(t)2

giving B(t) = ±2K(t)L(t). Replacing K(t) with −K(t) if necessary, we can assume B(t) =

2K(t)L(t).

Observations: We saw that in order to have a solution of (1.4) with polynomials A(t),

B(t), and C(t) taken to the same power N , then N < 3. We also saw that there are

infinitely many solutions with N = 1 and infinitely many solutions like Pythagorean Triples

with N = 2 when working in C[x]. It’s fascinating to imagine that something as bold as

the polynomial version of Fermat’s Last Theorem could be proven in a couple of lines with

just the assumption of Mason’s Inequality. Next we will see how Mason’s Inequality can be

used to prove a more general version of Fermat’s Last Theorem.

1.5.3 Generalized Fermat’s Equation

Mason’s Inequality can be used to tackle Fermat’s Last Equation where the exponents are

different.

Theorem 1.5.3. There are no co-prime non-constant polynomial solutions to the general-

ized Fermat equation:

A(t)p +B(t)q = C(t)r (1.9)

when
1

p
+

1

q
+

1

r
≤ 1. (1.10)

Proof. As before, by Mason’s Inequality
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max {p degA, q degB, r degC} ≤ |Z(ApBqCr)| − 1 = |Z(ABC)| − 1. (1.11)

By (1.10) we have

|Z(ABC)| ≤ degA+ degB + degC

=
p degA

p
+
q degB

q
+
r degC

r

≤
(

1

p
+

1

q
+

1

r

)
max{p degA, q degB, r degC}

≤ max{p degA, q degB, r degC}.

Thus we obtain

max{p degA, q degB, r degC} ≤ max{p degA, q degB, r degC} − 1, (1.12)

a contradiction.
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Chapter 2

The ABC Conjecture

We now consider the integer version of the ABC Conjecture.

2.1 ABC Introduction

We will begin by looking at the analogue for Z(F ) and degF for integers and see what

Mason’s Inequality suggests for the ABC Conjecture in the integer case.

2.1.1 Using Mason’s Inequality to Motivate ABC-Conjecture

Recall for a polynomial

F (x) = aN(x− α1)
e1(x− α2)

e2 · · · (x− αn)en , (2.1)

where α1, α2, · · · , αn ∈ C[x] are distinct roots, that we define ordα(F ) to be the power of

(x− α) in the factorization of F

ordα(F ) =


M, if (x− α)M ‖ F, i.e. (x− α)M | F and (x− α)M+1 - F ;

0, if (x− α) - F,
(2.2)
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and have ∑
α∈C

ordα(F ) = deg F. (2.3)

Now let A be a nonzero integer. Analogous to (2.1) we can factor A into primes

A = ±pe11 pe22 · · · penn , (2.4)

with the pis for 1 ≤ i ≤ n being distinct primes to positive integer powers. Thus for each

distinct prime, we define ord as

ordp(A) =


e, if pe ‖ A, i.e. pe | A and pe+1 - A;

0, if p is not a prime factor of A,

(2.5)

which is the analogue to (2.2). Similar to (2.3) we have,∑
p

ordp(A) log p = log |A|. (2.6)

To see this,

ordpi(A) = ei for primes pi | A, 1 ≤ i ≤ n and

ordp(A) = 0 for primes p - A.

Thus we have,∑
p

ordp(A) log p =
n∑
i=0

ei log pi =
n∑
i=0

log peii = log pe11 p
e2
2 · · · penn = log |A|.

Recall for a polynomial we had

|Z(F )| = deg{(x− α1) · · · (x− αN)}.

The analogue for A is called the radical. We define the radical to be the product of the

distinct prime factors of A.

Rad (A) = p1p2 · · · pn (2.7)
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In Mason’s Inequality, we had no ε in the exponent. A natural first thought is to get rid

of the ε. Will getting rid of the ε work?

Suppose that A, B, and C, be integers such that

(i) A+B = C

(ii) A, B, and C are each nonzero

(iii) A, B, and C have no common prime factor.

For the case of polynomials we had

max{deg A, deg B, deg C} < |Z(ABC)|.

So we might conjecture the analogue

max{|A|, |B|, |C|} < |Rad(ABC)|. (2.8)

However, (2.8) would be false; let’s consider

1 + 23 = 32,

then (2.8) would have 9 < 6;

33 + 5 = 25,

would have have 32 < 30;

25 + 72 = 34,

would have 81 < 42 and

1 + 29 = 33 × 19,

would have 513 < 114. Thus (2.8) cannot hold.
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Question: Could we modify the inequality with a constant? That is, does there exists a

positive constant K such that,

max{|A|, |B|, |C|} ≤ KRad(ABC) (2.9)

Unfortunately this cannot hold.

Proof. We will proceed using proof by contradiction.

Let q be a large prime, and

A = 1, B = 2q(q−1) − 1, C = 2q(q−1).

By Euler’s Theorem, we have aφ(q
2) ≡ 1 mod q2 for (a, q) = 1 where φ(q2) = q(q − 1).

Hence for odd primes q,

2q(q−1) ≡ 1 modq2

and thus,

B ≡ 0 modq2

giving

q2 | B.

Thus we get, ∏
p|ABC

p ≤ 2(2q(q−1) − 1)

q
.

Thus for (2.9) to hold true, we have a constant K that must satisfy

2q(q−1) ≤ K

(
2(2q(q−1) − 1)

q

)
for all primes q, which is false for suitably large q.
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We will look at what is needed in the ABC Conjecture in the next section.

2.2 ABCConjecture

In 1988, the following modification of Mason’s Inequality was formulated by Masser [12] (a

refined version of the conjecture first formulated by Oesterlé [14]).

Theorem 2.2.1. Suppose that A, B, and C are integers satisfying

(i) A+B = C

(ii) A, B and C are each nonzero,

(iii) A, B and C have no common prime factor.

Then for every ε > 0 there exists a constant K(ε) > 0 such that,

max{|A|, |B|, |C|} ≤ K(ε)Rad(ABC)1+ε. (2.10)

2.3 Explicit Forms

In this section we will talk about explicit forms of the ABC Conjecture. First, we will

define ABC-triple as a triple (A,B,C) with A,B,C being positive co-prime integers that

satisfy A + B = C with A < B. (1, 2, 3) would be the smallest example of an ABC-triple.

Second, we will define ABC-hit as an ABC-triple that satisfy Rad(ABC) < C. Looking at

(1, 8, 9), we can see that is an ABC-hit since 1 + 8 = 9, gcd(1, 8, 9) = 1 and

Rad(1 · 8 · 9) = Rad(1 · 23 · 32) = 2 · 3 = 6 < 9.

Out of the known 15 · 106 ABC-triples with C < 104, there exists 120 ABC-hits.

Theorem 2.3.1. There exists infinitely many ABC-hits.
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Lemma 2.3.1. For any k ∈ N, we have 2k=2 | 32k − 1.

Proof. By induction on k, let k ≥ 1, A = 1, C = 32k , B = C − 1.

Note: we saw the base case k = 1 with A = 1, C = 32 = 9, B = 32 − 1 = 8. We see that

21+2 | 321 − 1 = B. Now we will do the induction case.

Suppose we have A,B, and C such that A = 1, B = 32n − 1, C = 32n for 1 ≤ n ≤ k with

2n+2 | (32n−1). We want to show that A = 1, B = 32n+1−1, C = 32n+1
with 2n+3 | 32n+1−1.

32n+1 − 1 = 32n2 − 1 = (32n)2 − (1)2 = (32n − 1)(32n + 1),

thus by our assumption we have 2n+2 | (32n − 1) and we know at least 2 | (32n + 1), since

32n − 1 is even. Is there more than one power of 2 that divides 32n + 1? No, since 32n − 1

has an even number multiplying 2, so 32n + 1 will have an odd number multiplying 2. Thus

we have 2n+3 | 32n+1 − 1. and so we showed 2k+2 | 32k − 1 by induction.

Now having proved Lemma 2.3, we can prove Theorem 2.3.

Proof. We have for any k ∈ N,

Rad
((

32k − 1
)
· 32k

)
≤ 32k − 1

2k+1
· 3 < 32k .

Thus,

(1, 32k − 1, 32k)

is an ABC-hit. So there are infinitely many ABC-hits.

Lemma 2.3.2. There exists infinitely many ABC-triples (A,B,C) such that

C >
1

6 log 3
R logR

where R = Rad(ABC).
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It is unknown, whether there exists a ABC-triple (A,B,C) such that C > Rad(ABC)2.

Reyssat’s example with

A = 2, B = 310 · 109 = 6, 436, 341, C = 235 = 6, 436, 343,

gives the largest known value of λ that satisfies C > Rad(ABC)λ for an existing ABC-triple

(A,B,C). We see that λ = 1.62991 · · · .

Now we check,

2 + 310 · 109 = 235,Rad(2 · 310 · 109 · 235) = 2 · 3 · 23 · 109 = 15, 042.

Next we define the logarithmic radical of an ABC-triple,

λ(A,B,C) =
logC

log Rad(ABC)
,

and observe that C = Rad(ABC)λ(A,B,C). Plugging in the A,B,C values of Reyssat’s ex-

ample, we get

λ(2, 310 · 109, 235) =
log 6, 436, 343

log 15, 042
= 1.62991 · · · .

Besides Reyssat’s example, Benne de Weger found the next largest λ(A,B,C), with its value

being 1.625990 · · · with

A = 112, B = 32 · 56 · 73 = 48, 234, 375, C = 221 · 23 = 48, 234, 496.

We can see that

112 + 32 · 56 · 73 = 2621 · 23,Rad(221 · 32 · 56 · 73 · 112 · 23) = 2 · 3 · 5 · 7 · 11 · 23 = 53, 130.

Thus we see that λ(112, 32 · 56 · 73, 221 · 23) = log 48,234,496
log 53,130

= 1.625990 · · · .
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Now we will look at an explicit form of the ABC Conjecture. In 1996, Alan Baker [1]

suggested the following statement.

Conjecture 2.3.1. Let (A,B,C) be an ABC-triple and let ε > 0. Then

C ≤ K
(
ε−ωR

)1+ε
where K is an absolute constant, R = Rad(ABC) and ω = ω(ABC) is the number of distinct

prime factors of ABC.

This was revised by A. Baker [2] when A. Granville found that the minimum of the right

hand side occurs when ε = ω
logR

. Baker honed the previous conjecture to where

C ≤ KR
(logR)ω

ω!
.

Then after some experimental calculations, Baker was able to come with a value for the

absolute constant K, thus giving us an explicit version of the ABC-Conjecture.

Conjecture 2.3.2. Let (A,B,C) be an ABC-triple and let ε > 0. Then

C ≤ 6

5
R

(logR)ω

ω!
,

where R = Rad(ABC) and ω = ω(ABC) is the number of distinct prime factors of ABC.

Thus from 2.3, we can deduce

C < Rad(ABC)
7
4 .

In the next section, we will see proven results.
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2.4 What We Can Prove

In this section we will talk about the proven results of Stewart and Tijdeman and Stewart

and Yu. In 1986, Stewart and Tijdeman [17] came up with this proven result that for

A+B = C, gcd(A,B,C) = 1, we have

C < exp
(
k1 ·R15

)
where k1 is a positive constant and R = Rad(ABC).

This was later refined by Stewart and Yu in 1991 [18] for positive integers A,B, and C,

with C > 2 to

C < exp
(
R

2
3
+

k2
log logR

)
where k2 is a positive constant and R = Rad(ABC).

In their 2001 paper, Stewart and Yu worked on presenting two further improvements

and came up with two theorems. If one would like to see the proof, one could look at their

paper [19] and see the extensive proof. Here is their second theorem, which we will use later.

Theorem 2.4.1. There exists an effectively computable positive number K such that, for

all positive integers A, B and C with A+B = C and gcd(A,B,C) = 1,

C < exp
(
KR

1
3 (logR)3

)
,

where R = Rad(ABC).

In their new proof, Stewart and Yu utilize the “p-adic linear forms in the logarithms of

algebraic numbers.” Stewart and Yu look at the p-adic order of A,B, and C with p running

through the small primes that divide A,B, and C. They refine their first theorem through

the focus on the dependence on the parameter p, with the p-adic estimates. Denoting
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pA, pB, and pC as the largest prime factor that divides A,B, and C respectively. One can

say that 1 is the largest “prime” factor of 1. One will define the smallest of these primes as

p′ := min{pA, pB, pC}.

Now one will denote logi as the ith iteration of log, i.e. log1 x = log x and logi x =

log logi−1 x for i = 2, 3 · · · .

Improving on their first theorem, Stewart and Yu came up with their second theorem.

Theorem 2.4.2. There exists an effectively computable positive number K such that, for

all positive integers A, B and C with A+B = C, gcd(A,B,C) = 1, and C > 2,

C < exp
(
p′RK log3R∗/ log2R

)
,

where R∗ = max{R, 16}.

One could deduce from 2.4 that for every ε > 0, there exists a constant K3(ε) that de-

pends on ε, which can be computed, such that for all positive integers A,B, and C with A+

B = C, gcd(A,B,C) = 1,

C < exp (p′K3R
ε) .

Notice that,

p′ ≤ (pApBpC)
1
3 ≤ R

1
3 ,

and thus we get

exp
(
K3R

1
3
+ε
)
.

We will use this weaker result in one of the applications in a later chapter.
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2.5 Fermat’s Last Theorem for Integers

2.5.1 Using ABC to Prove Fermat’s Last Theorem

We used Mason’s Inequality to prove the polynomial version of Fermat’s Last Theorem.

We will use the explicit version (Bakers-Explicit) of the ABC Conjecture (2.10) with ε =

3
4
, K(3

4
) = 1, that is

max{|A|, |B|, |C|} ≤ Rad(ABC)
7
4 , (2.11)

to prove the integer version of Fermat’s Last Theorem at least for exponent N ≥ 6. The

smaller cases N = 3, 4, 5 were proved by the nineteenth century.

Just like for the polynomials, we can also use the ABC Conjecture to prove the general

Fermat Last’s Theorem, as we see in Section 2.5.3.

Theorem 2.5.1. There are no co-prime integers A,B, and C such that

AN +BN = CN (2.12)

when N ≥ 6.

Proof. Suppose A, B, and C are co-prime integers satisfying AN +BN = CN . By (2.11) we

have,

max{|A|N , |B|N , |C|N} ≤ Rad(ABC)
7
4

≤ |ABC|
7
4

≤ max{|A|, |B|, |C|}
21
4

If we have N ≥ 6, we will have a contradiction, thus proving 2.5.1.

In the next section is the proof of the existence of infinitely many solutions of (2.12) in the

case where N = 2, the Pythagorean triples. Fermat was able to prove the N = 4 case using
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the method of infinite descent. Euler proved the N = 3 case in this mid 18th century and

published it in Algebra (1770) with a gap in the proof filled by Legendre. In the early 1800’s,

the next big accomplishment came when Sophie Germain made progress on the N = 5 case.

Legendre improved on Germain’s results and in 1825 published his proof as did Dirichlet

independently. See for example the survey article [10].

2.5.2 Special Case N = 2

Theorem 2.5.2. There exists infinitely many co-prime integer solutions satisfying

A2 +B2 = C2, (2.13)

where all the solutions are of the form,

A = K2 − L2, B = 2KL, C = ±(K2 + L2)

for some integers of opposite parity K,L with gcd(K,L) = 1.

Proof. Suppose A, B, and C satisfy are of the form A = K2 − L2, B = 2KL,

C = ±(K2 + L2) for some K,L of opposite parity with gcd(K,L) = 1.

Straight away, we can see that A and C are odd and B is even.

We need to show that A2 +B2 = C2 and gcd(A,B,C) = 1.

A2+B2 = (K2−L2)2+(2KL)2 = K4−2K2L2+L2+4K2L2 = K4+2K2L2+L4 = (K2+L2)2 = C2.

Suppose there exists a prime p, such that p | A and p | C, then p | C − A = K2 + L2 −

(K2 − L2) = 2L2, p | C + A = K2 + L2 + K2 − L2 = 2K2. We know p 6= 2 since A and C

are odd, so p | L2, K2, so p | K,L. Thus we have a contradiction since gcd(K,L) = 1.

For the converse, suppose that A, B, and C are co-prime integers satisfying (2.13).

Claim: A, B, and C take the form of A = K2 − L2, B = 2KL, C = ±(K2 + L2) for
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some K,L. Note that the K,L must be of opposite parity, otherwise A,B and C would

all be even. Also d = gcd(K,L) must equal 1, otherwise d2 | A,B,C, contradicting our

assumption that gcd(A,B,C) = 1.

Observe, one of A,B is even and the other odd. If both are odd then A2 + B2 ≡

1 + 1 mod 4, but C2 ≡ 0, 1 mod 4. Thus without loss of generality, let B be even and A be

odd. So, A2 +B2 = C2 implies that

(
B

2

)2

=
C2 − A2

4
=

(
C − A

2

)(
C + A

2

)

Factoring B
2

into primes, we have B
2

2
= p2m1

1 . . . p2mee q2n1
1 . . . q

2nf
f , where the pjs divide

C − A
2

and qis divide
C + A

2
are distinct primes. To see that the pj and qi are distinct, we

need to make an observation.

Observe that if p divided both, then we would have p | C + A

2
and p | C − A

2
⇒ p | A,C.

This gives us a contradiction since gcd(A,C) = 1.

Since Z is a unique factorization domain, we can write

C + A

2
= u(pm1

1 · · · pmee )2 = uK2

C − A
2

= u−1(qn1
1 · · · q

nf
f )2 = uL2,

where u is a unit, i.e. u = ±1 and so u = u−1. Hence,

A =

(
C + A

2

)
−
(
C − A

2

)
= u(K2 − L2), C =

(
C + A

2

)
+

(
C − A

2

)
= u(K2 − L2)

, and B2 = C2 − A2 = 4K2L2 giving us B = ±2KL. If necessary we could take K to be

−K or we can switch K and L, so we have what we claimed with A = K2 −L2, B = 2KL,

C = ±(K2 + L2).

Thus we have shown the Pythagorean Triples in the case of N = 2. Now we will look at
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the generalized integer version of Fermat’s Equation.

2.5.3 Generalized Fermat’s Equation

In this section we will look at the generalized integer version of Fermat’s Equation.

Theorem 2.5.3. There exists only finitely many co-prime solutions a, b, c to

ap + bq = cr (2.14)

when
1

p
+

1

q
+

1

r
< 1.

We make the following observation

Lemma 2.5.1. If p, q, r are positive integers with

1

p
+

1

q
+

1

r
< 1,

then
1

p
+

1

q
+

1

r
≤ 41

42
.

Proof. Suppose p ≤ q ≤ r, we’ll attack these by cases.

If p ≥ 3 and (p, q, r) 6= (3, 3, 3) (otherwise we have 1) then,

1

p
+

1

q
+

1

r
≤ 1

3
+

1

3
+

1

4
=

11

12
.

So suppose p = 2. If q = 2 then,

1

p
+

1

q
+

1

r
=

1

2
+

1

2
+

1

r
> 1,

but that gives a contradiction, so q ≥ 3.

27



If q = 3 then,
1

p
+

1

q
+

1

r
≤ 1

2
+

1

3
+

1

r
=

1

r
+

5

6
.

Thus r ≥ 7 and we have
1

p
+

1

q
+

1

r
≤ 1

7
+

5

6
=

41

42
.

If q = 4 then,
1

p
+

1

q
+

1

r
≤ 1

2
+

1

4
+

1

r
=

1

r
+

3

4
.

Thus r ≥ 5 and we have

1

p
+

1

q
+

1

r
≤ 1

2
+

1

4
+

1

5
=

1

5
+

3

4
=

19

20
.

If q ≥ 5 then,
1

p
+

1

q
+

1

r
≤ 1

2
+

1

5
+

1

5
=

9

10
.

So we have proven that if 1
p

+ 1
q

+ 1
r
< 1 then 1

p
+ 1

q
+ 1

r
≤ 41

42
.

Now we will prove Theorem 2.5.3.

Proof. Applying the ABC Conjecture, we get

max{ap, bq, cr} ≤ K(ε)Rad(abc)1+ε

= K(ε)Rad((ap)
1
p (bq)

1
q (cr)

1
r )1+ε

≤ K(ε) max{ap, bq, cr}(
1
p
+ 1
q
+ 1
r
)(1+ε)

≤ K(ε) max{ap, bq, cr}
41
42

(1+ε),

and so we have,

max{ap, bq, cr}
1
42
− 41ε

42 ≤ K(ε).

Thus take ε < 1
41

we have a finite bound, K(ε)
42

1−41ε , for ap, bq, and cr.
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When 1
p

+ 1
q

+ 1
r
< 1, we have only 10 known solutions (a, b, c, p, q, r) to (2.14) with a, b,

and c being relatively prime. In increasing order for cr, we have:

1 + 23 = 32, 25 + 72 = 34, 73 + 132 = 29, 27 + 173 = 712

35 + 114 = 1222, 338 + 1, 549, 0342 = 15, 6133

1, 4143 + 2, 213, 4592, 9, 2623 + 15, 312, 2832 = 1137,

177 + 76, 2713 = 21, 063, 9282, 438 + 96, 2223 = 30, 042, 9072.

What about for 1
p

+ 1
q

+ 1
r
≥ 1?

If 1
p

+ 1
q

+ 1
r
≥ 1 then (p, q, r) is a permutation of one of the following

(2, 2, k) for k ≥ 2, (2, 3, 3), (2, 3, 4), (2, 3, 5), (2, 3, 6), (2, 4, 4), (3, 3, 3) (2.15)

where in each of these cases, all the solutions of (a, b, c) are known, often being infinitely

many of them as stated in the Waldschmidt paper [22].

Observations: Andy Beal made a conjecture that, assuming 1
p

+ 1
q

+ 1
r
< 1, there’s no

solution to (2.14) with p, q, r > 2. There is now $ 1,000,000 prize money if someone can

find another solution (other than the 10 given above) to (2.14) with p, q, r > 2 or prove that

there are no more solutions. One would think there would be no solutions with p, q, r > 2,

p, q, r ∈ Z as shown through the polynomial version of General Fermat Equation. We have

seen the proof of Fermat’s General Equation through Mason’s Inequality and the proof of

the integer version through the use of the ABC Conjecture. It’s fascinating how deep the

ABC Conjecture really can be. In the next section, we will look at the explicit form of the

ABC Conjecture.
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Chapter 3

Applications of ABC Conjecture

3.1 Introduction

In the previous chapter, we looked at the ABC Conjecture, explicit forms of the ABC Con-

jecture, and what we can prove from the ABC Conjecture. Now, we will look at applications

that the ABC conjecture has to offer, which include Wieferich primes, gaps between primes,

Erdős-Woods Conjecture, Roth’s Theorem, Mordell’s Conjecture (Faltings’ Theorem), and

Baker’s Theorem.

3.2 Wieferich Primes

Recall that for any odd prime p, we have by Fermat’s Little Theorem

2p−1 ≡ 1 mod p.

We call a prime p Wieferich if,

2p−1 ≡ 1 mod p2. (3.1)
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The only known Wieferich primes are 1093 and 3511. As of November 2015, the PrimeGrid

project search has shown that there are no others less than 4.9×1017. It is conjectured that

there are infinitely many Wieferich primes. Here we will show that the ABC Conjecture

implies that there are infinitely many non-Wieferich primes.

Theorem 3.2.1. Assume ABC Conjecture with 0 < ε < 1 and define

U = {p : 2p−1 6≡ 1 mod p2}

where p is an odd prime. Then U is an infinite set.

Proof. Let’s assume the U is a finite set, and define the set

V = {p : 2p−1 ≡ 1 mod p2}.

Let n be a large positive integer, not divisible by any prime in U .

We write,

2n − 1 = UnVn

where the primes divisors of Un are contained in U , and the prime divisors of Vn are

contained in V .

We want to show that

if p | Un, then p2 - Un, (3.2)

if p | Vn, then p2 | Vn. (3.3)

Let m = ordp(2) and N = ordp2(2). So
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2m = 1 + λp

giving

2mp = (1 + λp)p

= 1 + λp2 + λp2(· · · ) ≡ 1 mod p2

and N | mp. Since

2N ≡ 1 mod p2 ⇒ 2N ≡ 1 mod p,

we have m | N . Thus N = m or N = mp.

Suppose p | Un. If N = m then, m | p− 1 implies that N | p− 1 and 2p−1 ≡ 1 mod p2.

But, this gives us a contradiction since 2p−1 6≡ 1 mod p2 since p is in U .

So we assume N = mp, but p - n⇒ N - n⇒ 2n 6≡ 1 mod p2.

Thus we have shown (3.2) holds.

Suppose p | Vn. Then 2p−1 ≡ 1 mod p2 since primes in Vn are contained in V .

Therefore, N | p− 1 and so p - N and N = m and so p | 2n − 1 implies m | n so N | n and

so p2 | 2n − 1.

Recall the definition of radical as product of prime factors. Since U is a finite set, we

define a constant

L :=
∏
p∈U

p.

Following from (3.2), we have

Un =
∏
p|Un

p ≤ L.
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Also following from (3.3), we have

Rad(Vn) ≤ (Vn)
1
2

Applying the ABC Conjecture to

(2n − 1) + 1 = 2n

we see that

Vn ≤ UnVn + 1

= 2n

≤ K(ε)Rad(2nUnVn)1+ε

≤ K(ε)Rad(Vn)1+εRad(2Un)2

≤ 4K(ε)L2(Vn)
1+ε
2 ,

implying that Vn ≤ (4K(ε)L2)
2

1−ε is bounded in n. However, Vn is unbounded since 2n−1 =

UnVn is unbounded and Un is bounded. Thus we have a contradiction. Thus U is infinite.

Observations: We know that there are infinitely many primes, so what about infinitely

many primes with a certain property or that lack a certain property. We will see this by

looking at this application with the Wieferich primes, p, of the form V = {p : 2p−1 ≡ 1 mod

p2} and non Wieferich primes, p, of the form U = {p : 2p−1 6≡ 1 mod p2}. We see that the

ABC conjecture shows us there are infinitely many non Wieferich primes. We expect that

most primes are going to be non Wieferich primes, so the result is not surprising, but are

there infinitely many Wieferich primes? There are no other known way to prove infinitely

many non Wieferich primes, so that gives the ABC Conjecture added proof of how deep a
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result it is in Number Theory.

3.3 Gaps Between Primes (Cochrane and Dressler)

3.3.1 Introduction

Cochrane and Dressler [4] made several conjectures about gaps between integers having

the same prime factors. We will look at some properties that can be proven by the ABC

Conjecture.

Conjecture 3.3.1. Between any two positive integers having the same prime factors there

is a prime.

Conjecture 3.3.2. For any ε > 0 there exists a constant C(ε) such that if a < c are positive

integers having the same prime factors, then

c− a ≥ C(ε)a
1
2
−ε. (3.4)

One observation that we can make is that one can see that Conjecture 3.3.1 follows from

Conjecture 3.3.2 assuming Cramér’s Conjecture for prime spacing, since log2 n� n
1
2
−ε.

Cramér’s conjecture is that the gap pn+1 − pn between two consecutive primes pn and pn+1

is O(log2 pn). Assuming Riemann’s Hypothesis, Cramér [5] showed that a prime exists

between n and n+O(n
1
2 log n), but this is not quite good enough to obtain Conjecture

3.3.1 from Conjecture 3.3.2.

Conjecture 3.3.2 can be tackled using the ABC Conjecture.

Theorem 3.3.1. The ABC Conjecture implies Conjecture 3.3.2.

Cochrane and Dressler used the 1991 Stewart and Yu’s result to get:
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If a < c are positive integers having the same prime factors, then

c− a ≥ C(ε)(log c)
3
4
−ε. (3.5)

We will improve their result by using the improved Stewart and Yu’s result from 2001.

Theorem 3.3.2. If a < c are positive integers having the same prime factors, then

c− a ≥ C(ε)(log c)
3
2
−ε. (3.6)

Cochrane and Dressler state “If the prime factors of a and c are restricted to a fixed finite

set S of prime, then we have the much stronger lower bound”

c− a > a

(log a)C
. (3.7)

where the constant C depends on S.

How good is the bound? Can we replace 1
2
− ε by 1

2
? In the example below given

in the Cochrane and Dressler paper, we see that the exponent in (3.4) cannot be exactly 1
2
.

In their findings they found an infinite family of pairs of positive integers a < c containing

the same prime factors and satisfying,

c− a ≤ 2
√

2 log 2
a

1
2

(log a)
1
2

. (3.8)

Below the example is stated exactly as it is in the Cochrane and Dressler paper.

Example Let k be any positive integer and define a1, c1 by

a1 = 2(2k − 1)2, and c1 = 2k+1(2k − 1).
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Then c1, a1 have the same prime divisors and c1 − a1 =
√

2a
1
2
1 . Suppose that k = 2× 3j−1,

where j ≥ 2 is a positive integer. Then we have 3j | (2k − 1) and so we can divide a1 and

c1 by 3j−1 and end up with two smaller numbers

a =
2(2k − 1)2

3j−1
, and c =

2k+1(2k − 1)

3j−1

having the same prime factors and satisfying

c− a =

√
2

3
j−1
2

a
1
2 =

2√
k
a

1
2 .

Now,

log a = log 2 + 2 log(2k − 1)− (j − 1) log 3 < 2k log 2

that is, k > log a/(2 log 2), i.e. c− a ≤ 2
√
2 log 2a

1
2

(log a)
1
2

and thus we obtain (3.8).

Observation: The example helps us to clarify why we have a
1
2
−ε in Conjecture 2. It is

also noted in the Cochrane and Dressler paper that “similar examples may be obtained by

dividing out other prime powers or replacing (2k − 1) with (2k + 1), or by replacing 2 with

any other positive integer m > 1.” They could not find any examples where the order of

magnitude was less than what they’ve found in (3.8).

Note: According to Cochrane and Dressler, if a and c have only two prime divisors in

common, then one can take the exponent in (3.4) to be exactly 1
2

on the assumption of the

ABC Conjecture. Thus we have,

Theorem 3.3.3. Suppose that a < c are positive integers having the same two prime divi-

sors. Then, on the assumption of the ABC Conjecture, c− a� a
1
2 .

36



3.3.2 ABC and Gaps

In this section we will prove the first theorem in the Cochrane and Dressler paper.

Recall, Rad(a) = p1 · · · pn, where the pis are the distinct primes in the factorization of A

and recall the ABC Conjecture.

ABC Conjecture For any ε > 0 there exist a constant C(ε) such that for any non zero

relatively prime integers a, b, and c with a+ b = c we have

max{|a|, |b|, |c|} ≤ C(ε)Rad(abc)1+ε. (3.9)

Theorem 3.3.4. If the ABC Conjecture is true and if a < c are positive integers having

the same prime factors, then for any ε > 0 there exists a constant C(ε) such that

c− a ≥ C(ε)a
1
2
−ε. (3.10)

Proof. Suppose that a < c are positive integers where a and c have the same prime factors.

Rearranging, we get b = c− a.

Let,

P = Rad(a) = Rad(c) and d = gcd(a, b) = gcd(a, c) = gcd(b, c).

Then we have,

a

d
+
b

d
=
c

d
with the integers

a

d
,
b

d
, and

c

d
being relatively prime.

We have,

Rad

(
a

d

b

d

c

d

)
≤ Rad(ac)Rad

(
b

d

)
≤ P

b

d
≤ b2

d
, (3.11)

where we get the last inequality from P | b, since P | a, and P | c imply that P | c− a = b.
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By (3.9), we have
c

d
≤ C(ε)

(
b2

d

)1+ε

,

and thus

c ≤ C(ε)b2(1+ε),

so it follows that

b ≥ C ′(ε)c
1
2
−ε > C ′(ε)a

1
2
−ε. (3.12)

Thus proving Theorem 3.3.1.

Observation: We see how the ABC Conjecture proves Conjecture 3.3.2, which was used

in the work of Cochrane and Dressler to eventually show gaps between integers that have

prime factors. Conjecture 3.3.2 shows us a lower bound for b, the difference between c and

a, with some connection to the Riemann Hypothesis and Cramér Conjecture. The ABC

Conjecture offer some progress on the studies of gaps between primes. the ultimate goal

to understand gaps between primes is to see if the Twin Prime Conjecture can be proven.

Twin Prime Conjecture states there are infinitely many twin primes or primes that are two

apart. In the next proof, we will see another bound through a weaker, but proven result by

Stewart and Yu.

3.3.3 Gap Bounds

At the time of the paper, Cochrane and Dressler [4] had used Stewart and Yu’s 1991 results

max{log |a|, log |b|, log |c|} ≤ C(ε)Rad(abc)
2
3
+ε (3.13)

to prove (3.5). Next we use the improved estimate of Stewart and Yu to prove Theorem

3.3.2.

Proof. We follow the steps as above, but instead of implementing the ABC Conjecture we
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implement the weaker, but proven, result of Stewart and Yu from 2001,

max{log |a|, log |b|, log |c|} ≤ C(ε)Rad(abc)
1
3
+ε. (3.14)

Following the steps as above we have, using (3.14) instead of ABC Conjecture,

log
( c
d

)
≤ C(ε)

(
b2

d

) 1
3
+ε

.

Claim: For 2 ≤ d ≤ c
2

and 0 < ε < 3 we have,

d
(

log
( c
d

))3−ε
≥ .25(log c)3−ε. (3.15)

Observing that the claim follows from

d

(
1− log d

log c

)3−ε

≥ d

(
1− log d

log 2d

)3−ε

= d

(
log 2d

log 2d
− log d

log 2d

)3−ε

= d

(
log 2

log 2d

)3−ε

≥ 2

(
log 2

log 4

)3

= .25.

Thus, we deduce that

b2 ≥ 1

C(ε)
d(log(

c

d
))3−ε ≥ 1

4C(ε)
(log c)3−ε,

which implies

b ≥ 1

2
√
C(ε)

(log c)
3
2
−ε,
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or equivalently,

b�ε (log c)
3
2
−ε, (3.16)

Thus proving Theorem 3.3.2.

Observation: This seems to be a fun little application of results similar to that of the ABC

Conjecture. It’s interesting what sort of bounds we could get with weaker arguments proven

by Stewart and Yu and their work on the ABC Conjecture. One must wonder what other

bounds we can find using the ABC Conjecture or results similar to it. The next theorem

will be a special case where a and c are positive integers with the same two primes.

3.3.4 Two Prime Factors

Suppose that a < c are positive integers composed of the same two prime factors p, q. Let

gcd(a, c) = peqf and say,

c = pe+gqf , a = peqf+h, and b = c− a = peqf (pg − qh). (3.17)

We want to prove,

c− a� a
1
2 . (3.18)

Claim: (3.18) is equivalent to

pg − qh � p
g
2
(1− f

h
− e
g
). (3.19)

There will be two cases to consider,


qh < 1

2
pg,

1
2
pg ≤ qh < pg.

If the former case holds, then (3.18) and (3.19) are trivially true

i.e. c− a ≥ a

2
� a

1
2 , pg − qh ≥ pg

2
� p

g
2
(1− f

h
− e
g
).

If the latter case holds, then (3.18) is equivalent to
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c− a = peqf (pg − qh)� p
e
2 q

f+h
2 .

That is

pg − qh � p
−e
2 q

−f+h
2 . (3.20)

Substituting q ≈ p
g
h into the right-hand side of (3.20) gives (3.19).

Now we use ABC to prove (3.19) in the case where 1
2
pg ≤ qh < pg.

Proof. We may assume e = f = 1, otherwise divide A and C by pe−1qf−1. Now applying

the ABC-Conjecture with A = pg, B = qh, C = pg − qh, we have

pg ≤ max{|qh|, |(pg − qh)|, |pg|} ≤ C(ε)Rad(pq|pg − qh|)1+ε

and so we have, on substituting q ≈ p
g
h ,

|pg − qh| ≥ p
g

1+ε

C(ε)
1

1+ε

p−1−
g
h ≥ C1(ε

′)pg(1−
1
g
− 1
h
−ε′).

3.4 Erdős Woods Conjecture

3.4.1 Introduction

Erdős was a famous Hungarian mathematician and published over a thousand articles.

Woods [23] first conjectured that there exists a constant k such that every integer a is

uniquely determined by the prime divisors of a, a + 1, · · · , a + k. Erdős built off of that

conjecture.

Recall that the radical, Rad(n) is the product of the distinct prime divisors of n. Also

recall that for any abc-triple (a, b, c), from Baker’s inspired conjecture for ε = 3
4
, we can take
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K(ε) = 1. That is, for positive co-prime integers a, b, and c where a+ b = c.

c < Rad(abc)
7
4 . (3.21)

Theorem 3.4.1. There are infinitely many pairs of positive integers x, y with x < y such

that,

Rad(x) = Rad(y) and Rad(x+ 1) = Rad(y + 1). (3.22)

Proof. Suppose k ≥ 1. We will define x and y as

x = 2k − 2 = 2(2k−1 − 1) and y = (2k − 1)2 − 1 = 2k+1(2k−1 − 1).

Then

x+ 1 = 2k − 1 and y + 1 = (2k − 1)2,

Rad(x) = Rad(y) = 2Rad(2k−1 − 1),

Rad(x+ 1) = Rad(y + 1) = Rad(2k − 1).

Thus we have proven 3.4.1.

There is another example that doesn’t follow the form above. We have (x, y) = (75, 1215)

where,

75 = 3× 52 and 1215 = 35 × 5 with Rad(75) = Rad(1215) = 3× 5 = 15,

76 = 22 × 19 and 1216 = 26 × 19 with Rad(76) = Rad(1216) = 2× 19 = 38.

No other further example is known. No one has yet to discover if there exists two different

integers x, y such that
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Rad(x) = Rad(y), Rad(x+ 1) = Rad(y + 1), and Rad(x+ 2) = Rad(y + 2).

We could extend this to the Erdős-Woods Conjecture.

3.4.2 Erdős-Woods Conjecture

Erdős asked whether this question of whether there exists x 6= y with Rad(x) = Rad(y),

Rad(x + 1) = Rad(y + 1), and Rad(x + 2) = Rad(y + 2) could be extended. He came up

with the following.

Conjecture 3.4.1. There exists an absolute constant k such that, if x and y are positive

integers satisfying

Rad(x+ i) = Rad(y + i)

for i = 0, 1, · · · , k − 1, then x = y.

The ABC-conjecture implies that this conjecture holds with k = 2 for all but finitely

many x.

Theorem 3.4.2. If the ABC Conjecture holds, then there are only finitely many positive

integers y < x such that

Rad(x) = Rad(y),

Rad(x+ 1) = Rad(y + 1),

Rad(x+ 2) = Rad(y + 2). (3.23)

Proof. Suppose 0 < y < x satisfy (3.23). Then we have prime power factorization,

x = pα1
1 p

α2
2 · · · pαru , y = pβ11 p

β2
2 · · · pβru ,

x+ 1 = qγ11 q
γ2
2 · · · q

γt
t , y + 1 = qε11 q

ε2
2 · · · qεtt ,
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and

x+ 2 = rδ11 r
δ2
2 · · · r

δl
l , y + 2 = rµ11 r

µ2
2 · · · r

µl
l .

Note:

pj | x− y,

qi | x− y = (x+ 1)− (y + 1),

rh | x− y = (x+ 2)− (y + 2).

Applying the ABC Conjecture to x+1 = (x+1) and (x+1)+1 = (x+2), and x+2 = (x+2)

we get

(x+ 1) ≤ C(ε)(
∏

pj
∏

qi)
1+ε

(x+ 2) ≤ C(ε)(
∏

qi
∏

rh)
1+ε

(x+ 2) ≤ C(ε)(2
∏

pj
∏

rh)
1+ε. (3.24)

We could have two of x, x+ 1, and x+ 2 have 2 as a prime factor, but otherwise the primes

pj,qi, rh, and sg are distinct. so we have

x3 < (x+1)(x+2)2 ≤ C(ε)3(2
∏

pj
∏

qi
∏

rh)
2+2ε ≤ C(ε)3(2(x−y))2+2ε < C(ε)3(2x)2+2ε = 22+2εx2+2ε.

Thus taking ε < 1
2

we have,

x1−2ε ≤ C(ε)322+2ε

x ≤ C(ε)
3

1−2ε2
2+2ε
1−2ε

Thus we have a bound and have shown Theorem 3.4.2.
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If k = 3, we can make the bounds on x effective.

Theorem 3.4.3. If y < x are positive such that

Rad(x) = Rad(y),

Rad(x+ 1) = Rad(y + 1),

Rad(x+ 2) = Rad(y + 2),

Rad(x+ 3) = Rad(y + 3), (3.25)

and the effective ABC Conjecture (3.21) holds, then x < 67.

Proof. Suppose that 0 < y < x satisfy (3.25). We will let

x = pα1
1 p

α2
2 · · · pαru , y = pβ11 p

β2
2 · · · pβru

x+ 1 = qγ11 q
γ2
2 · · · q

γt
t , y + 1 = qε11 q

ε2
2 · · · qεtt

x+ 2 = rδ11 r
δ2
2 · · · r

δl
l , y + 2 = rµ11 r

µ2
2 · · · r

µl
l

x+ 3 = sω1
1 s

ω2
2 · · · sωmm , y + 3 = sζ11 s

ζ2
2 · · · sζmm .

Thus we have,

pj | x− y,

qi | x− y,

rh | x− y,

sg | x− y.
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By (3.21) applied to x+ 1 = (x+ 1) and (x+ 2) + 1 = (x+ 3) we have,

(x+ 1) ≤ (
∏

pj
∏

qi)
7
4

and

(x+ 3) ≤ (
∏

rh
∏

sg)
7
4 .

Then worst case is that 2 and 3 can appear twice, otherwise the primes are distinct. If

a prime divides two different numbers, then it divides the length of the gap between them,

which in this case is at most 3. Thus we have,

x2 < (x+ 1)(x+ 3) ≤ (
∏

pj
∏

qi
∏

rh
∏

sg)
7
4 ≤ (6(x− y))

7
4 ≤ 6

7
4x

7
4 .

Thus we have x ≤ 67 = 279, 936 and so proving Theorem 3.4.2.

3.5 Baker’s Theorem

In this section, I will talk about Baker’s Theorem. In 1968, Baker obtained lower bounds

on linear forms of logarithms that can, for example, be used to find effective bounds on the

size of the integer solutions to certain Diophantine equations. For this breakthrough, Baker

earned the Fields Medal in 1970. Let p1, p2, · · · , pk be prime numbers and define

L := log | log (pa11 p
a2
2 · · · p

ak
k ) | (3.26)

where the ai ∈ Z. Baker showed that when the exponents ai are bounded,

|ai| ≤ W, (3.27)
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then the value of L cannot be too small. For example, Baker and Wüstholz [3] obtained the

lower bound

L ≥ −18(k + 1)!kk+132k+2 log(2k) (logW )
k∏
i=1

log pi.

This result is likely not best possible. In the next section we consider results in the other

direction, namely how small we know that L can be.

3.5.1 Box Principle

To see what’s best possible for such a bound, let’s consider what the box principle will give

us.

Theorem 3.5.1. For any integer W > 1, there exists integers ai with |ai| ≤ W such that,

L ≤ − (k − 1) logW + log log (p1p2 · · · pk) . (3.28)

Proof. Equivalently, we need to show that for any integer W > 1, there exists ai ∈ Z with

|ai| ≤ W such that,

|a1 log p1 + a2 log p2 + · · ·+ ak log pk| ≤
∑k

i=1 log pi
W k−1 . (3.29)

Consider the values

x1 log p1 + x2 log p2 + · · ·+ xk log pk (3.30)

with the xi ∈ {0, 1, · · · ,W}. The number of these, looking at the possibilities (we have

(W + 1) choices k times), is (W + 1)k.

We have (W + 1)k ≥ W k+1 and since
∑k

i=1 xi log pi ≤
∑k

i=1W log pi, all the sums (3.30)

lie within the interval
[
0,W

(∑k
i=1 log pi

)]
. Then we will divide

[
0,W

(∑k
i=1 log pi

)]
into
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W k sub-intervals, each of length

W
(∑k

i=1 log pi

)
W k

=

(∑k
i=1 log pi

)
W k−1 .

By the box principle, two of the sums

x1 log p1 + x2 log p2 + · · ·+ xk log pk, x′1 log p1 + x′2 log p2 + · · ·+ x′k log pk

say, must lie in the same sub-interval, and hence

| (x1 log p1 + x2 log p2 + · · ·+ xk log pk)−(x′1 log p1 + x′2 log p2 + · · ·+ x′k log pk) | ≤

(∑k
i=1 log pi

)
W k−1 .

Let xi − x′i = ai, 1 ≤ i ≤ k, so we have −A ≤ ai ≤ A and thus have (3.29). If we take the

logarithm of both sides of (3.29), then we get (3.28).

3.5.2 Explicit ABC Conjecture and Baker’s Theorem

In this section, we will see how an explicit form of the ABC Conjecture would improve

Baker’s Theorem. We will come close to a bound that we know is optimal coming from the

box principle. We will need to make the epsilon dependence in the ABC Conjecture explicit

and we will use a form conjectured by Baker [1].

Conjecture 3.5.1. There is an absolute constant κ, such that if A,B,C are integers with

A+B = C and gcd(A,B,C) = 1 then for any ε > 0,

max{|A|, |B|, |C|} � ε−κω(AB)Rad(ABC)1+ε. (3.31)

If we assume this conjecture, we will obtain the following lower bound on L.

48



Theorem 3.5.2. If Conjecture 3.5.1 holds, then

L� −k logW − log(p1 · · · pk). (3.32)

Proof. Let A =
∏

ai>0 p
ai
i , B =

∏
ai<0 p

ai
i and C = A−B. We need to show that

L = log

∣∣∣∣log

(
A

B

)∣∣∣∣� −k logW − log(p1 · · · pk).

Assume without loss of generality that A > B. We can also assume that 0 < log
(
A
B

)
< 1,

otherwise the claim is trivial. By assuming the form (3.31) of the ABC Conjecture, we have

A = max{|A|, |B|, |C|} � ε−κk (Cp1 · · · pk)1+ε .

From this, we will get

C � A
1

1+ε ε
κk
1+ε

p1 · · · pk
. (3.33)

Now consider,
C

A
≤ C

B
=
A

B
− 1 = elog(

A
B ) − 1� log

(
A

B

)
, (3.34)

the latter inequality since by concavity ex ≤ 1 + (e− 1)x for 0 ≤ x ≤ 1. Substituting (3.33)

in (3.34) yields

log

(
A

B

)
� ε

κk
1+ε

A
ε

1+ε (p1 · · · pk)
. (3.35)

Taking δ = ε
1+ε

and observing that A ≤ (p1 · · · pk)W , and ε
1

1+ε ≥ ε
1+ε

for ε ≥ 0, we get,

log

(
A

B

)
� δκk

(p1 · · · pk)Wδ+1
, (3.36)

49



for any 0 < δ < 1. Now pick δ = 1
W

, and we get,

log log

(
A

B

)
� −k logW − log(p1 · · · pk), (3.37)

as claimed.

3.6 Other Applications

In this section, we will see two other applications. We will look at Roth’s theorem and

Mordell’s Conjecture. If there were more time, we would go into lengthy proofs, but at least

we will see the statements.

Looking at a survey article by Andrew Granville and Thomas J. Tucker [9], we will see

how the ABC Conjecture plays a part with Roth’s Theorem.

Let α be a real algebraic irrational number of degree d. Using the box principle, gives

infinitely many rational numbers m
n

such that |α− m
n
| < 1

n2 . When we substitute m
n

into the

minimal polynomial for α, we get a constant Cα for which

∣∣∣α− m

n

∣∣∣ > Cα
nd
. (3.38)

In 1955, Roth [15] came up with the best possible lower bound for (3.38) with his theorem,

earning a Fields Medal in 1958.

Theorem 3.6.1 (Roth’s Theorem). If α is a real algebraic number, then for any ε > 0,

there exists a constant Cα,ε > 0 such that,

∣∣∣α− m

n

∣∣∣ ≥ Cα,ε
n2+ε

,

for all rationals m
n

.

Let, F (x, y) ∈ Z[x, y] be a binary homogeneous form with no repeating factors. Then
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applying Roth’s Theorem, it is readily seen that we have for any co-prime integers m and

n,

|F (m,n)| �F n
deg(F )

∏
α:F (α,1)=0

∣∣∣α− m

n

∣∣∣
�F,ε n

deg(F )−2−ε.

In fact it is not hard to see that this is equivalent to Roth’s Theorem.

Applying the ABC Conjecture, it turns out that we get a slightly stronger form,

∏
p|F (m,n)

p�F,ε (max{|m|, |n|})deg(F )−2−ε .

Next, we will look at Mordell’s Conjecture. In 1922, L.J. Mordell [13] conjectured the

following.

Conjecture 3.6.1. Let C be an algebraic curve defined over Q of genus g ≥ 2. Then the

set of rational points on C is finite.

In 1983, this was proved by Faltings [7] who was awarded a Fields Medal in 1986. Elkies

[6] showed that the Mordell’s Conjecture (Faltings’ Theorem) can be proved using the ABC

Conjecture. Machiel van Frankenhuysen [8] writes up a proof using Beyl̆i’s Map to show

how ABC Conjecture proves both Roth’s Theorem and Mordell’s Conjecture.
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3.7 Final Thoughts

In this final section, I will compose a poem about the ABC Conjecture.

ABC, how spectacular one can be.

Its truth holds power in many different branches of Number Theory, one can see.

Explicit forms showing bounds in conjectures related to Erdős-Woods and prime gaps.

Countless number of non-Wieferich primes can be proven by using ABC, oh snap.

Not as easy as the alphabet, a long ways to go to being proved.

Improving results inching closer thanks to Stewart and Yu.

Deep in the fields, polynomial version and integer version as well.

Brief proof showing Fermat’s Last Theorem or General Fermat’s Equation, the details one

can spell.

Countless number of applications, the list keeps going on as it seems.

Oh the ABC Conjecture to Number Theory is truly extraordinary, one could deem.
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