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INTRODUCTION

In a steady-flow process, the available part of potential energy is

equal to the potential energy, gz/g J BTU/lbra, but in a non-flow process

it is less than the potential energy. In a footnote in Keenan's Thermo-

dynamics (page 297), he mentioned that if a piece of fluid is lowered in

a medium, the amount of rotary shaft work that can be realized is equal to

the decrease in potential energy minus the work done by the buoyant force

of the medium; i.e. the available part of potential energy equals
v

i
(z

l
~ z

o
J(1, "

v~~
' '

in wnich v
a

denotes the specific volume of the medium
a

and v^ denotes the specific volume of the piece of fluid. This equation

can apply only to a constant specific volume medium. However, below the

tropopause the specific volume of the atmosphere air changes with the

altitude according to the relation

f
T 4.260

T"
2- (f

2-) » U - 0.000006871c)
JS.L. S.L

This density-temperature relationship can be derived by either a differen-

tial element force method or a thermodynamics steady-flow analysis method.

From the second method it can be shown that pv" » c holds for the standard

atmosphere up to the tropopause and n equals 1.2347.

From the equations of the pressure, temperature and density relations,

the equations for the available part of potential energy can be obtained.

Several numerical examples are presented to show the detail of calcula-

tions required to obtain the net rotary shaft work in non-flow processes,

non-flow cycles and steady-flow cycles with change in elevations. Several

equations for net rotary shaft work are presented.



In a non-flow cycle or steady-flow cycle in which elevation changes are

a part of the cycle and the processes are adiabatic during the elevation

changes, the net rotary shaft work equals the net rotary shaft work of a

Carnot Cycle working between the same temperature and pressure limits as

those of the atmosphere at the two prescribed elevations. This is so

because, in the non-flow cycle, the work done by the atmosphere at high

altitude plus the work done by the buoyant force during ascent equals the

work done on the atmosphere at sea level plus the work done against the

buoyant force during descent. In the case of a steady-flow cycle, no work

is done by the atmosphere on the working fluid of the cycle, and no work is

done by the working fluid on the atmosphere.

This relation can be also explained in the following example; one cubic

foot of vacuum is created at sea level in a container of negligible weight.

Then it is brought to 20,000 ft height. The rotary shaft work input at sea

level required to create the vacuum is 2.72 BTU. The rotary shaft work

output produced by the buoyant force of the atmosphere is 1.47 BTU. The

rotary shaft work output produced by the availability of this vacuum at

20,000 ft height is 1.25 BTU. The net rotary shaft work output for these

three processes, which starts from the sea-level dead state and ends at the

dead state at 20,000 ft height is 1.47 + 1.25 - 2.72 0. The details of

these relations are presented in this report.



NOMENCLATURE

AEH

AEPE

AEQ.
in

AEQ
o

AEU

C
P

C
v

F

g

gc

h

J

P

UEQ.

UEQ
o

v

Available part of enthalpy, BTU per lbm.

Available part of potential energy, BTU per lbm.

Available part of heat in, BTU per lbm.

Available part of heat out, BTU per lbm.

Available part of internal energy, BTU per lbm.

Specific heat at constant pressure, BTU per (lbm)(°F).

Specific heat at constant volume, BTU per (lbm)(°F).

Friction loss, ft-lbf per lbm.

2Acceleration of gravity, ft per sec .

Defined by ma/F 32.2 lbm-ft per UbfHsec 2
).

Enthalpy, BTU per lbm.

Mechanical equivalent of heat, 778.16 ft-lbf per BTU.

Absolute pressure, psia or psfa; p for the atmospheric

pressure at sea level, 14.696 psia or 2116.2 psfa. p for
oz

the atmospheric pressure at altitude z.

Heat BTU per lbm; Q. , heat in; Q , heat out.in ' ^o

Entropy, BTU per Ubm)(°R).

Absolute temperature, R; T for the atmospheric temperature

at sea level. T for the atmospheric temperature at

altitude z.

Temperature, F.

Internal energy, BTU per lbm.

Unavailable part of heat in, BTU per lbm.

Unavailable part of heat out, BTU per lbm.

Specific volume, cu ft per lbm.



V

w

on atra

by a Cm

z or Z

Total volume, cu ft; velocity, ft per second.

Piston work, BTU per lbm; W for work output; W for work
o in

input.

Rotary shaft work, BTU per lbm; W for work output; W ,rso r rsln

for work input.

Work done on the atmosphere, BTU per lbm.

Work done by the atmosphere, BTU per lbm.

Altitude, ft.

Density, lbm per cu ft; f for the atmospheric density at

sea level, f for the atmospheric density at altitude z.



THE STANDARD ATMOSPHERE

A. General Description

The atmosphere may be thought of consisting of four layers; troposphere,

stratosphere, ionosphere and exosphere.

The height of the troposphere varies from about 5 miles at the poles to

approximately ten miles at the equator. The stratosphere extends from the

upper limits of the troposphere, the tropopause, to approximately fifty to

seventy miles above the earth. The temperature in this region remains

nearly constant at 392.78 °R or -66.92 °F. The ionosphere is characterized

by the presence of ions and free electrons. The exosphere ranges from 300

to 600 miles.

The standard atmosphere is an assumed standard which has been derived

from an average of the seasonal variations at latitude 40° N in the United

States.

(1) The sea-level standard conditions are:

P
S.L

= 76° cm Hg = 29 - 921 " HS " 2116.2 lb/ft
2

= 14,696 psia

'S.L * 59
°
F or T

S.L
518 - 7

°
R

g 32.174 ft/sec
2

(2) pv RT is assumed to hold for the atmosphere air as well as the

following constants.

C = 0.23992 Btu/lb F
P

C
y

= 0.17137 Btu/lb°F

k = 1.4



(3) The variation of temperature with altitude is linear up to the

stratosphere and is given by the equation:

t °F = 59 - 0.003564zoz

(4) The troposphere extends up to 35,332 ft.

B. Derivations of the Expressions for Temperature, Pressure and Density as

Functions of Altitude by Means of a Balance of Forces.

Assume that the value of g does not change with altitude. Consider a

unit element of the atmosphere as shown in Fig. 1.

Fig. 1

p - Ip + dp ) - f *- dzoz roz roz oz g

/„.
oz

RT

From the "NACA Standard Atmosphere" the atmosphere temperature at
35,000 ft is -65.75 F. Because the variation of temperature with altitude
is assumed to be linear, therefore

59 - (-65.74)
t "F -

oz 35,000
59 - 59 - 0.003564z



dp
oz

RT 53.342(T„ ,
- 0.003564z)

oz S.L

Poz dp
r z d(T - 0.003564z)

5.260 -I* Jp- . oz u
T - 0.003564z

P T 5.260 , „,„

f*- = lf*~) = (1 - 0.000006871Z)
5 - 260

• • • • (1)
P S.L S.L

P P T„
, T 4.260Joz oz r T

J'S.L P S.-
T -

— - (r2*-) ' = (1 - 0.000006871Z)
4,260

(2)

.L oz S.L

To obtain the expressions for the pressure and density ratios above the

tropopause we use the differential equation

roz _ _ a?.

p
" 53.342T

OZ oz

The integration is performed in two parts;

„
Poz dp 35332 d(T c , - 0.003564z) „z .

as _ . r s.l r dz
J
psL

Poz i
TSL - 0.003564z ^53.342x392.78

ln £°£_ . _ {l>46„ „ 1 - 35332

P s
li.-w*/

2Q952
>

^ " *» (0 - 2236 " 209M >
(3)

£c*
= Sj^ " L3206 Exp. (0.2236 - -JL-, . . <4)

J S.L r S.L oz



C. Derivations of the Expression for the Relation Between Temperature and

Pressure by Means of Thermodynamics Relation:

P v

^ ^S"

n-l

p
i

n-l T

Assume that the atmosphere flows very slowly with negligible velocity change

inside a pipe as shown in Fig. 2. From Bernoulli's equation:

S.L

2 2
V - V

vd£ =w +
S_z +

F
+

_z SJ.
J rso g J J 2g J

W =0 and F = in this case,
rso

dz vdp

2 dT

n

n-l T

R (- dT)

But T

n-l

T
s

- 0.003564z

dT_ = - 0.003564 dz
oz

n x 53.342 x 0.003564
n - 1

T »P ^oz oz

^S.L'Ps.L

Fig. 2

n = 1.2347

From the result it follows that n is constant below the stratosphere and

equals 1.2347.

Above the stratosphere, the temperature is constant, therefore n equals 1.0.



Below Che stratosphere:

oz -n-1

'S.L S.L

T
1-2347

S.L

T 5.260

S.L
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AVAILABLE PART OF ENERGY

A. Available Part of Enthalpy (AEH).

Consider that one pound of a perfect gas is flowing with negligible

velocity at p and T as shown in Fig. 3. The dead state of the gas is

attained when it has negligible velocity and is at the same pressure and

temperature as the atmosphere, p and T . The maximum amount of rotaryr roz oz *

shaft work that can be obtained when the gas is brought to the dead state is

AEH = C (T, - T ) - T (s. - s ) (4)pi oz oz 1 oz

C (T, - T )

P 1 oz

Fig. 3.

The shaded areas in Fig. h and Fig. 5 are the available parts of

enthalpy. When the gas changes from p , T, to p , T , the change in the

available part of enthalpy is

AEH - AEH V T
2

T. ) - T (s,
1 oz 2

(5)
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V T
i PV Tj

Fig. 4. s
Q

< s
;

Fig. 5. s
x
< s

B. Available Part of Internal Energy (AEU)

One pound of a perfect gas is in a cylinder at state p. and T. as

shown in Fig. 6. The maximum amount of rotary shaft work that can be

obtained when the gas is brought to the dead state is given by

AEU = C (T. -T )-T (s. -s ) - -7* (v -v.)
V 1 oz oz 1 oz J oz 1

(6)

1
W - AEU
rso net

T (s - s.) = Qoz oz 1

/

T
l

p
l

compression
1 or

T Poz oz
expansion

isothermal
compression

or
expansion

Fig. 6.

The last term, ~r (v
J oz

v ), is the work done on the atmosphere, and

is energy which is wholly unavailable. The change in the available part of

internal energy from p , T to p , T is
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AEU
2
-A EUl - C

v
(T

2
- V -IMUa -V 1°2 (V - V )

j 2 r (7)

The shaded area in Fig. 7 and Fig. 8, are the available parts of

internal energy.

P. T P . T
oz oz

Fig. 7. s, > s
1 oz Fig. 8. s, < s

1 oz

C. Available Energy of a Vacuum, AE

AE
P V
oz

(8)

D. Available Part of Potential Energy, AEPE, For Constant Density.

There are two forces acting on the system: the gravity force, f Vg/g ,

and the buoyant force, p Vb/r
J o z c

Net downward force V( f - f )
£-

Joz g
«- (i --££*)

= (1 - —

p

5
)
*- per lbm.

Below the tropopause

foz * .fs#L
<l " 0.0O0006817z)

4.260
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We can assume g is constant; therefore,

AEPE = 7^-J [l - ^U - 0.000006871z)
4-26

°jdj

J t Z " fx 5.260 x'o.000006871
[l " U " O.0OO0O6871Z)

5 ' 260
] ,

's.L * 53.342
1

x1l8.7
=

°-°76483 ^^ '

~— = 13.074 ft
3
/lbm ,

'S.L
S.L

f

AEPE = ±*- z -^j^f [1 - (1 - 0.000006871z)
5 - 260

] , • • (9)

p
AEPE = f-

8 - 2.7195 v [l - -2S-1 Btu/lbm , (10)
Jg

c P S.L

AEPE above the tropopause:

AEPE = 7
s- T [1 -"^fu - 0.000006871z)

4-26
°]dz

J gci
°

z P
+

J tL32
[1 " "V"

x 1 ' 3206 *• (0,2236 "^ )]dz

-(-0.757235 - 260
+ l-e°'

2236 "
20952

+ e-
1 - 4627

,J 8C
J f 8C

0.2236 -

-
f
«-- 2.719 v[l -e 20952

]
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p
AEPE - 7^-- 2.7195 v [l - -**-]

J Sc PS .L

J^S.L-O ' (U)

The equations of Che available part of potential energy in the strato-

sphere and in the troposphere are the same despite the difference in the

equations for the density of the atmosphere. The decrease in the available

part of potential energy from elevation (1) to (2) is

AEPEl - AEPE
2

. £- U
x
- z

2
) - " (pQz2

- pozl
) (12)

This means that the work done against the buoyant force per pound mass

of fluid is equal to the product of the specific volume and the difference

in the atmospheric pressures.

Therefore at elevations z. and z it can be shown that equation (12),

the equation for the available part of potential energy, not only can be

applied to the standard atmosphere but also can be applied to the atmosphere

at any latitude.

For any atmosphere:

e z S V
l r

Z
dz

AEPE **-v - —f-
iiz-

, where v = f(z)
g J g J J V oz
c "c o oz

For steady flow: W^ = hj - h^ - T^ (^ - s^) *-*
. .

(A)

V
l
(p

l - Pqz' ^ i f dz
For non-flow: H = ; + "—

:

- - -°rr v,
J V §c

J 1 { v
qz

+ U
l * U

S.L " T
S.L

(S
1 " S

S.l? - "j^ (V
S.L-

V
1

) (B)

According to the Second Law, equations (A) and ( B) are equal, therefore

Trf v- • r (

"s.l - »oz>
° r AEPE - £5 - :r ( ps .l - Poz }

c o oz °c



15

NUMERICAL EXAMPLE I — AVAILABLE PART OF POTENTIAL
ENERGY IN NON-FLOW PROCESSES

One pound of air is at p = 100 psia, T. = 1000 R and Z 20,000 ft.

The problem is to determine the maximum amount of rotary shaft work that can

be produced when the one pound of air initially at state (1) is brought to

the sea-level dead state. Four different methods of bringing the air to the

sea-level dead state are presented; in the last method (case D) more rotary

shaft work is obtained than in each of the first three cases.

Case A:

The one pound of air is brought to sea level by an adiabatic, constant-

volume process, then is expanded adiabatically to sea-level temperature, and

finally is compressed isothermally to the dead state as shown in Fig. 10.

The atmospheric pressure and temperature at 20,000 ft height are 6.75 psia

and 447. 5° R.

p, = 100 psia

T, 1000°R

Z. 20,000 ft

AEPE = 20.27

/
adiabatic
constant
volume

p_ 100 psia

T
2

= 1000°R

W 40.62
rso

L
adiabatic
expansion

p, = 10.08 psia

T
3

= 518. 7°R

2.89

isothermal
compression

% 13.48

p. = 14.7 psia

T
4

= 518. 7°R

\ ' °

Fig. 10. Case A
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P
3

" P^" 1 lOO^]
3"

= 10.08 psia.

RT
1 1000 x 53.342 _ , ,„, ,,3...

V, = = —7——^7~, = 3.704 ft /lbra
p 100 x 144

P„
AEPE

'"S.L
r - 2 - 7195 V i^i - rf-]

^^ - 2 7195 x 3 074 [l - -^-]
778.16 '•'*" * J - u '* Li !4.696 J

= 20.27 Btu/lbm.

W „ , • C (T -T_) = 0.17137(1000-518.7) = 82.48 Btu/lbm.
o 2-J V 2 J

'3 =
5S x

^' 7
= ».« ^--

W = -S»i
[v - v ]on atra 2-3 J L 3 2

J

2.7195[l9.09 - 3.704] = 41.86 Btu/lbm.

W „ - 82.48 - 41.86 = 40.62 Btu/lbm.
rso 2-3

R p4

in 3-4 x> 3-4 o 3-4 S.L S.L J p.

= 518.7 x 0.068549 In ]'].. = 13.48 Btu/lbm.

W, . . » 2.7195[l9.09 - 13.074] = 16.37 Btu/lbm.
by atra 3-4 J

W , . = - 13.48 + 16.37 = + 2.89 Btu/lbm.
rso 3-4

AEU, - AEU, = W , , + W , .

2 4 rso 2-3 rso 3-4

40.62 + 2.89 = 43.51 Btu/lbm.
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AEPE + AEU = 20.27 + 43.51 « 63.78 Btu/lbm.

The original potential energy of the air is 20,000/778.16 » 25.70

Btu/lbm. The sura of this figure and AEU is 69.21. However, in this

case, the work done by the buoyant forces on the one pound of air causes

production of only 20.27 Btu/lbm of rotary shaft work during the descent

of the system. Thus the total amount of rotary shaft work is 63.78 Btu/lbm,

a loss of 5.43 Btu/lbm.

Case B:

Let the one pound of air of state (1) expand to p and T at 20,000 ft,

then let the one pound of air be at same pressure and temperature as the

atmosphere during descent to sea level as shown in Fig. 11. In this case no

rotary shaft work will be realized during the descent of the air because the

buoyant force and the weight force cancel each other.

p = 100 psia

T = 1000°R

Z, 20,000 ft
adiabatic
expansion

w 64.63 0.39 Q 3.62

p, = 5.97 psia

T
2

= 447. 5°

R

Z, 20,000 ft
isothermal
compression

P3
= 6.75 psia

T
3

= 447. 5°R

Z, = 20,000 ft

8.62 AEPE

diabetic
n= 1.2347

p, 14.7 psia

T. = 518. 7°R
4

Fig. 11. Case B.
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1.4

447.5 1.4-1

W
, „ » C (T. -T ) = 0.17137(1000-447.5) = 94.68 Btu/lbm.

o 1-2 v 1 2

RT

U " — " 53.342 x 1000 , ,„. ~3...
1 P

l 100 x 144
= 3 - 704 ft /lbra -

RT

-2 - ^ "
53

;

3' 2 X
^r

5
27.76 ft

3
/lb

2 p 5.97 x 144

w
. , , " r(y,-v.) =

6 '^
Q
X
,1

44
(27.76 -3.704) = 30.06

on atmo 1-2 J 2 1 778.16 _„ ...
Btu/lbm

W , , 94.68 - 30.05 = 64.63 Btu/lbm.
rso 1-2

W. „, = T 7 In — = 447.5 x 0.068549 In ^^ = 3.62 Btu/lbm
in 2-3 o J p 5.97

RT
„ - —A -. 53.342 x 447.5 _ ,. .. -.3,,.v = = T-^r: . , , 24.55 ft /lbm
3 p, 6.75 x 144

W
hv « rm > * * -T(v--v ) =

6 -^
R
X
^
44

(27. 76 -24.55) » 4.01
by atm 2-3 J 2 3 778.16

Btu/lbm

W
rso 2-3

= 4-01 ' 3>62 =
°' 39 Btu/lbm -

W . , « " 64.63 * 0.39 65.02 Btu/lbm.
rso net 1-3

AU
3_4

= C
v
(T
4

- T
3

) = 0.17137(518.7-447.5) 12.20 Btu/lbm
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RCT
4 - T

3
)

0.068549(518.7 - 447.5) = - „-
W
in 3-4 " (n - 1)J 1.2347 - 1 «,fv_Btu/lbm

Q , . = 20.82 - 12.20 = 8.62 Btu/lbm.
o 3-4

UEQ . , = 7T- , In — = 0.068549 x 518.7 In ~^B = 4 - 20
o 2-3 J S.L p 2

5.97
Btu/lbn

AEQ „ , = Q - UEQ = 3.62 - 4.20 = - 0.58 Btu/lbm.
o 2—3 o o

s. - s, = C In ^ - f In - = 0.23992 In 777H - 0.068549
4 3 p T J p, 447.5

In
l

t'tl
6

* 0.01790 Btu/lbm°R
0.75

UEQ , . = T As = 518.7 x 0.01790 = 9.29 Btu/lbm.
o 3-4 o

AEQ , . = Q - UEQ = 8.62 - 9.29 = - 0.67 Btu/lbm.
o 3-4 o o

UEQ „ , + UEQ , . = 4.20 + 9.29 = 13.49 Btu/lbm.
o 2-3 o 3-4

AEQ „ , + AEQ , . = - 0.58 - 0.67 = -1.25 Btu/lbm.
o 2-3 o 3-4

(AEU + AEPE)„ , - (AEU + AEPE)„ , » 65.02 - 63.78 1.24
Case B CaSe A

Btu/lbm.

(ABVca.e A " ^^o'case B
=

° " ( " 1 - 25) = U25 BtU/lbm -

The reason that case B developed more rotary shaft work than case A is that

the available part of the heat rejected in case B is less than in case A.

Case C.

Let the one pound of air of state (1) expand to p and T at 20,000

ft altitude, then hold the volume constant during descent to sea level, as



shown in Fig. 12.

20

p. = 100 psia

T = 1000°R

Z. 20,000 ft
adiabat ic

expansion

W 63.33 W = 3.92 Q = 11.63
rso rso

p = 10.08 psia

T
2

= 518. 7°R

Z
2

20,000 ft
isothermal
compression

AEPE =6.48

p. = 14.7 psia

T = 518. 7°R

Z = 20,000 ft
constant
volume

p, = 14.7 psia

T, = 518. 7°R
4

z
4

= o

Fig. 12. Case C.

AEU
X

- AEU = 0.17137(1000-518.7) - 447.5(0.23992 In
*°°°

?

- „«..,„ , 100 . 6.75x144 . 53.342x1000
0.068549 in J^j) *

J*g**=
( 100 .0xl44

"'^ X
w?'

7 " 82.48 - 11.36 - 11.71 = 59.41
14 - 696 x 144

Btu/lbm.

AEPE » 7* - 2.7195(1 - —"-) v,
J p„ , 3

^o
?S.L

ftS - 2 - 7195 « - &&> *
13 - 07*

= 6.48 Btu/lbm.

AEU AEPE = 59.41 6.48 = 65.89 Btu/lbm.
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Case D.

In this case the one pound of air of state (1) is expanded to T at

20,000 ft and is compressed again isothermally to the pressure of state (1).

Then it is brought to the sea level and is expanded to the dead state.

These processes are shown in Fig. 13.

p 100 psia

T = 1000°R

Z = 20,000 ft

W = 64.62
rso

adiabatic
expansion

86.35

20,000 ft
isothermal
compression

AEPE 23.27 W , 11.75
rsin

p, • 100 psia

T
3

= 447. 5°R

Z., = 20,000 ft
constant
vo lume
adiabatic

100 psia

447. 5°R

z
4

=
adiabatic
compression

Q. = 86.53
in

p. 167.5 psia

T = 518. 7°R

W = 55.03
rso

14.7 psia

Fig. 13. Case D.

T —

—

3 5
2 k-1 447 5

p, ?,(=*)" lOOCfg**) = 5.97 psiaf2 rri, Uooo

T -s— 3.5

p5
= \& ' 100(

447tl
)

= 167 - 5 pSia
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T
l R P

l
Po

AEU, - AEU, = C (T, -T_) - T (C In =*-» In — ) + —(v. -v )

1 3 vl3 o p T_ J p, J 1 3

= 0.17137(1000-447.5) - 447.5(0.23992 x In ^^j)

972.6 53.342 x 1000 53.342 x 447.5
+

778.16 100 x 144 100 x 144

= 94.68 - 86.35 + 2.56 = 10.89 Btu/lbm.

AEPE
3-4 " ?-m»su-^> v

3

_ 20.000 6.75 53.342 x 447.5

778.16 ~ ,/l" v
14.696

J
100 x 144

= 23.27 Btu/lbm.

AEU, -AEU. = 0.17137(447.5-518.7) - 518.7(0.23992 x In gfjf*j4 6 518.7

« *£».. , 100 ^ 2116.2 , 53.342 x 447.5 ., „,.,
- 0.06855 in *£_) + fJSjS* 100 « lS " 13 '°74)

- 12.20 + 86.53 - 31.05 = 43.28 Btu/lbm.

AEU + AEPE = 10.89 + 23.27 + 43.28 = 77.44 Btu/lbm.

First Modification of Case D

In this case after the air has been brought to the state (3) in the

same manner as in case D, the temperature of the air is kept equal to that

of the atmosphere during descent, while the volume remains constant. This

process is shown in Fig. 14.
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Q • 12.20 AEPE = 23.27 Qin
73.42 W

rsQ
= 42.37

p, 100 psia

T
3

= 447. 5°

R

Z = 20,000 ft

115.9

518.7

Fig. 14.

^3 T,
= 100 x

518.7
447.5

115.9 psia.

AEU. - AEU,
4 6

T 7 In — +
o J p6

P4 ,
P S.L,

~TCv
4 " V

AEU
adiab.

- 518.7 x 0.068549 In ^| 2.7195(
5^^ X

x
?^7 - 13.074)

= 73.42 - 31.05 = 42.37 Btu/lbm.

43.28 - 42.37 = 0.91 Btu/lbm.AEU
diab.

The available part of the internal energy is smaller by 0.91 Btu/lbm when

the process during descent is diabatic instead of adiabatic. The reason is

because the diabatic case has an inflow of negative available energy as heat

flows from the atmosphere to the system during descent. This flow of negative

available energy can be determined in the flowing manner:

AS
3-4 "

C
v

ln
T7 " °- 17137 ln

4^7ti
0.025286 Btu/lbm R

UEQ. = T As
in o

Q. = C CT. - T,)
^in v 4 3

518.7 x 0.025286 = 13.11 Btu/lbm.

= 0.17137(518.7 - 447.5) = 12.20 Btu/lbm.
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AECv 0, - UEQ. = 12.20 - 13.11
^in ^n in

0.91 Btu/lbra.

Second Modification of Case D

In this case, after the air is brought to state (4) in the same manner

as in case D, it is first expanded at constant pressure to the sea-level

temperature, and then is expanded isothermally to the dead state, as shown

in Fig. 15.

p, = 100 psia

Fig. 15.

o 4-5 r(v5-V j
(W 53.342

778.16
(518.7-447.5) = 4.88

Btu/lbra.

o 5-6 | In — = 0.068549 In 77^ = 68.17 Btu/lbm.
J p, 14.7

» ta A-A " 7^6 "V = 2.7195(13.074 - 5^ X.^- 5
) = 31.05

on atm. 4-6 J 6 5 100 x 144
Btu/lbm

W . . » 4.88 + 68.17 - 31.05 = 42.00 Btu/lbm.
rso 4-6

AEU, , - W , , - 43.28 - 42.00 = 1.28 Btu/lbm.
4-6 rso 4-6

This difference between the change in the available part of internal energy

and the production of rotary shaft work for the process 4-6 can be explained

in the following manner:
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T
As - C In 5* = 0.23992 In y~^ = 0.035397 Btu/lbm.4-5

_
p T, 447.5

UEQ
in 4_5

= T
q
As 518.7 x 0.035397 = 18.36 Btu/lbm.

Qin A_5
" C <Tj - T

4
) = 0.23992(518.7 - 447.5) = 17.08 Btu/lbm.

AEQ
in 4_3

= \
n

~ "EQ
in

17.08 - 18.36 = - 1.28 Btu/lbm.

It is this negative available part of the heat flow in (-1.28 Btu/lbm)

during the process 4-5 which is the reason that the production of rotary

shaft work during the process 4-6 is less by 1.28 Btu/lbm than the decrease

in the available part of internal energy during the process 4-6.

Summary for the Non-flow Processes of Case (A) to (D)

Heat rejected to the atmosphere at elevations

above sea level Btu/lbm

3.62 at 20,000 ft

8.62 during descent

Case C 65.89 11.36 at 20,000 ft

Case D 77.44 86.35 at 20,000 ft

Case A: Work done against buoyant force during descent

= 25.70 - 20.27 = 5.43 Btu/lbm.

W . , « 41.86 Btu/lbm.
on atm. 2-3

V .». i_A
= 16 - 37 Btu/lbm.

by atm. J-**

L work done on atm. = 41.86 - 16.37 + 5.43 = 30.92 Btu/lbm.

W net
rso

Btu/lbm

Case A 63.78

Case B 65.02
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Case B: W , , » 30.06 Btu/lbm.
on atm. 1-2

W, „ . = 4.01 Btu/lbm.
by a tin. 2-3

Ifork done against buoyant force = 25.70 Btu/lbm.

Wu , . = 20.82 Btu/lbm.
by atm. 3-4

2 work done on atm. = 30.06 + 25.7 - 4.01 - 20.82 = 30.93
Btu/lbm.

Case C: W
, , = U-71 Btu/lbm.

on atm. 1-3

Vtork done against buoyant force = 25.70 - 6.48 19.22
Btu/lbm.

2 work done on atm. = 11.71 + 19.22 = 30.93 Btu/lbm.

Case D: W, , , 2.56 Btu/lbm.
by atm. 1-3

tfork done against buoyant force » 25.70 - 23.27 = 2.43
Btu/lbm.

W . , = 31.05 Btu/lbm.
on atm. 4-0

2 work done on atm. = 31.05 + 2.43 - 2.56 = 30.92 Btu/lbm.

From the previous calculations it follows that the greater the heat

rejected to the atmosphere above sea level, the greater is the production of

net rotary shaft work.

Furthermore, when the system changes from state (1) at high altitude

to the dead state at sea-level, the summation, of work done on the atmosphere

is constant and is independent of the process.

Derivation of the Equation of i.W for One Found of Ideal Gas at p,

,

^ rso 1

T. , z. which undergoes the Processes As Shown in Fig. 16, which is case D,

the case that produces more rotary shaft work than the other three.
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adiabatic
expansion

isothermal
expansion or
compression

oz adiabatic
constant
volume

rsin
w

In rso

P4
= P3

T = T
4 oz

\ P5

T
S.L

z
5 = °

V PS.L

T
S.L

z
6

=

adiabatic
compression

isothermal
expansion

Fig. 16.

RT
o

'3
=
i:

h ~ s
3

= C
P

ln
T " J

ln
p,r oz 3

W,
, , = T (s. - s,) - C (T - T )

in 1-3 oz 1 3 v 1 oz

by atm. 1-3 J 1 3'

W . , , = T (s, - s,) - C (T. - T ) - —^(v - v )

rs in 1-3 ozl3 vloz J I J

3"4
«c

J J 3 PS.L
g J " J

(p
S.L " Poz

)
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- .

T
S.L R ,

P S.L
B c i

" *?. ~ C In = - - In —

—

S.L i p T J p,oz 3

W . , = Tc ,(s„ , - s,) - C (T . - T )

o 4-6 S.L S.L 3 v S.L oz

S L

on atm. 4-6 J S.L 3

P S L

rso *+-o S.L S.L J vS.L oz J S.L J

iW
rso " ^7 " ^S.L " Poz } + T

S.L
(S

S.L " T
oz

}

C
v
(T
S.L " T

oz
) " ^S.L " V

- T (s, - s,) + C (T, - T )
oz 1 3 v 1 oz

oz , ,

T"(v
i
" V

"W'u'VV^-W
7(p v. - p„ ,v_ .) - T (s, - s,)
J oz 1

rS.L S.L oz 1 3

Zw
,..,„

= °-:tI..(ii
1
.,-s,)*(T., -T )(s. - s,)

rso g J S.L S.L 1 S.L oz 1 3

+ V T
1 - T

S.l'
+
J

( Poz
V
l " P S.L

V
S.L>

(13)

The greater is p., the greater is (s, - s„) and the greater is i.W . In
~> i J rso

Fig. 27 the production of rotary shaft work is plotted versus altitude for
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the cases in which p. has Che values of SO psia, 100 psia, and 200 psia,

and for which p, = p and T, T
1 oz 1 oz
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NUMERICAL EXAMPLE II — POWER PRODUCTION IN NON-FLOW CYCLES
WITH CHANGES IN ELEVATION

Non-Flow Cycle (1)

Consider that one pound of air in a cylinder completes the simple non-

flow air cycle shown in Fig. 17.

W = 4.79
. rso

p 14.696

z, " 20,000 z
2

= 20,000

adiabatic

-AEPE =6.48

Q 9.29

p^ = 14.696
b

T
&

518.7

W =1.25
rso

isothermal
compression

P
5

= 11.34

T
5

= 518.7

z
3

20,000

adiabatic

AEPE = -10.38

W = 8.46
rso

adiabatic
compression

P4
= 6.75

T
4

= 447.5

z
4

=

AEPE, , = -6.48 Btu/lbm
o-l

Fig. 17. Non-flow cycle

(See III Case C)

AEU
1-3

0.17137(518.7 - 447.5) - 447.5(0.23992 In
518.7
447.5

0.068549 in !£«, . ^^3.074 - »•% « gd ,
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12.20 + 8.01 - 14.34 = 5.87 Btu/lbra.

W , , = -6.48 + 5.87 = - 0.61 Btu/lbm.
rso 6-3

—3-4 " Sffl " »'™» * »'»«« ~ Afe
10.38 Btu/lbra.

AEU. , = 0.17137(447.5 - 518.7) - 518.7(0.23992 In |S '

3

4-6 518.7

- 0.068549 In
,

b
,'\

5
c,, ) - 2.7195(13.074 - 24.546)

14.696

- 12.20 - 9.29 + 31.20 9.71 Btu/lbm.

W , , = 9.71 - 10.38 = - 0.67 Btu/lbra.
rso 3-6

W , « (9.71 + 5.87) - (10.38 + 6.48) = - 1.28 Btu/lbm.
rso cycle

General Equation for W , for the Process Shown in Fig. 17.
rso cycle "

The available part of the internal energy of the system when its pressure

and temperature are the same as those of the atmosphere at elevation z,

referred to a dead state whose pressure and temperature are the same as the

atmosphere at sea-level is

AEU - AEU = C (T - T„ . ) - T„ (s - s_ . )oz S.L V oz S.L S.L oz S.L

PS L
- "T'lv, , - V ) (A)

J S.L oz

The available part of the potential energy of the system whose state

properties are: (1) elevation z, (2) pressure and temperature equal to

those of the atmosphere at elevation z, referred to a dead state whose state

properties are: (1) sea-level elevation, (2) pressure and temperature equal
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to chose of the atmosphere ac sea-level is

AEPE c , 7 s-- -f*
1 v (1 - -ss-) (B)

z - S.L J g
c

J oz ps ,

The available pare of Che internal energy of Che system when its pres-

sure and temperature are the same as Chose of Che aCmosphere at sea-level

referred to a dead state whose pressure and temperature are the same as the

atmosphere at elevation z is

Poz
AEU , -AEU - C (T. . -T ) -T (»«,,-») --^(v -v c , ) (C)

S.L oz v S.L oz oz S.L z J z S.L

The available part of the potential energy of the system whose state

properties are: (1) sea-level elevation, (2) pressure and temperature equal

to those of the atmosphere at sea-level, referred to a dead state whose

state properties are: (1) elevation z, (2) pressure and temperature equal

to those of the atmosphere ac elevation z is

P P
AEPE. , = -7 *- + "T

5 v . , (1 - -**-) (D)
S.L - z J gc

J S.L pSL

W , = A + B + C + D = - (T - T )(s -sOI , (14)
rso cycle S.L oz oz S.L)

If z 20,000 ft

H , = - (518.7 -447. 5) (0.23992 In ^7^7-0.068549 In tt^^t)rso cycle 518.7 14.696

= - 1.28 Btu/lbm. Q.E.D.

This means that the W required to raise the one pound of air from sea
rsin ^ r

level to altitude z plus the W required to lower it from z to sea level
rsin

exceeds the W produced by AEU - AEU„ , plus AEU„ , - AEU by
rso r ' z S.L r S.L z '
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(T„ ,
- T )(s - s„ ,). The thermodynamic cycle is as shown in Fig. 18.

S. L oz z S.L

518.7

447.5

1,

p=14.696 psia
6 5

p=11.34

a ^p=6.75

p=8.75
2

b

0.01790 —

-

3,4 '

Fig. 18. T-s diagram for non-flow cycle (1).

The process 3-5-6 gives AEU - AEU

The process 1-2-3 gives AEU
S.L

S.L

AEU .

Area (a) represents (T„ , - T Msr S.L oz S.L

Non-Flow Cycle (2)

If the air at (6) is expanded isothermally to (5) while at sea level

and then raised to z, and if the air at (3) is compressed isothermally to

(2) while at z and then lowered to sea level, the cycle will then go In the

opposite direction from that shown in Fig. 18. The result will be a produc-

tion of W from the cycle which is greater than the W . required to raise
rso ' " rsin

and lower the one pound of air by the factor (T , - T )(s - s„ , ) . This
S.L oz Z S.L

is demonstrated by the following set of computations. The T-s diagram is

shown in Fig. 19.
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518.7

447.5

p=14.696 p=U.34
6

5.4

~~~T 2 * - 3

p=8.75 p=6.75

-— 0.01790—

Fig. 19. T-s diagram for non-flow cycle (2).

3.5
» _

f. ,-, 518.7 ,

P5 "
6<75(

447.5
) 11.34 psia.

3.5

14.696(77^4) = 8.75 psia.

.
53.342 x 518.7 . ., .« .,3...

*k -
, , ,, T77

= 16.95 ft /lbm.
5 11.34 x 144

», = 13.074 ft /lbm.

53.342 x 447.5
8.75 x 144

= 18.93 ft /lbm.

v
3

24.546 ft /lbm.

» , , = (!, t , = 518.7(0.01790) = 9.29 Btu/lbm.
o o—

5

in o—

5

W 2.7159(16.95 - 13.074) = 10.54 Btu/lbm.
on atm. 6-5

W = 10.54 - 9.29 = 1.25 Btu/lbm.
rsin 6-5
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W needed Co raise the one pound of air to z
rsin

= 20,000 ft 25.70 - 2.7195 x 16.95 x (1 -
[f^ffi

0.83 Btu/lbm.

W . , = 0.17137(518.7 - 447.5) » 12.20 Btu/lbm.
o 4-3

M / ,
6 "^ X

,^
4
(24.546 - 16.95) = 9.47 Btu/lbm.

on atm 4-3 778.16

W . . 12.20 - 9.47 = 2.73 Btu/lbm.
rso 4-3

W. , « = 447.5(0.01790) = 8.00 Btu/lbm.
in 3-2

U . . -
6 '^ *

1
44

(24.546 - 18.93) = 7.01 Btu/lbm.
by atra 3-2 778.16

W . , » = 8.00 - 7.01 = 0.99 Btu/lbm.
rsin 3-2

W , needed to lower the one pound of air to sea level
rsin

25.70 + 2.7195 x 18.95(1 - |f*ffp " 2.10 Btu/lbm.

W. , , = 0.17137(518.7 - 447.5) = 12.20 Btu/lbm.
in 1-6

Wu , - - 2.7195(18.95 - 13.074) = 15.92 Btu/lbm.
by atm 1-6

W , , = 15.92 - 12.20 = 3.72 Btu/lbm.
r60 1-6

Net W in thermo. cycle (2.73 + 3.72) - (1.25 + 0.99)
rso

= 4.21 Btu/lbm.

W needed to raise and lower = 0.83 +2.10 " 2.93 Btu/lbm.
rsin
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Net W produced 4.21 - 2.93 1.28 Btu/lbra.
rso

= (T_ ,
- T Ms - s_ , )

.... (15)
S.L oz oz S.L

Hence the lower Is p and the greater is p., the greater will be

W
.. and it will equal (Tc , - T )(s c - s„).

rso net S.L oz 5 2

From the derivation of aquation (14) it is very interesting to note that

SW iilt + ZAEPE (16)
on atm by atm

For non-flow cycle (1)

14.34 = 31.20 + (- 10.38 - 6.48)

= 14.34

For non-flow cycle (2) — power producing cycle

on atm by atm cycle

10.54 + 9.47 = 7.01 + 15.92 + (- 0.83 - 2.10)

20.01 = 20.00

Therefore the above two cycles are Carnot cycles despite the influence

of W, , W and the buoyant force,
by atm. on atm.

Equation (16) can also be illustrated in the following manner:
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v
l

Poz
v.

z Compression

PS.L

z

Constant
volume

Const
volum

v
4

V
3

z
4

Expansion »3

Fig. 20. Non-flow cycle.

In the above non-flow cycle (Fig. 20).

W, (v, - v„)
by atm J 1 2

= -' (v, - v, ) = ' (v. - v„)
on atm J 4 3 J 1 2

MEPE, , **-.- rp(p„ , - p )2-3 J g J r S.L oz

MEPE. , = -7 £- + T^P- . - P )4-1 J g J *S.L foz

ZAEPE = -(v
x

- v
2
)(p

SiL
- pQz

)

SO » £WL + 2AEPE
on atm by atm
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rS,L , ,

J
(V

1 - V * 3
(V

1 - V * (pS.L " "oz*

rS.L,—(v
i
- V

Q.E.D.
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NUMERICAL EXAMPLE III — POWER PRODUCTION IN STEADY-FLOW
CYCLES WITH CHANGES IN ELEVATION

The atmosphere temperature at high altitude is much less than the sea-

level temperature. We can use the atmosphere at high altitude as a heat

sink and the sea-level atmosphere as a heat source to construct a power

cycle. It is very interesting to see the relations between various kinds

of steady-flow cycles in which there are changes in elevation in the cycles.

Four cases are given which have the following identical conditions:

(1) the flow starts at sea level and goes to an altitude of 20,000 feet,

(2) the pressure and temperature of the system at the start of the upflow

are the same as the atmospheric air at sea level, and (3) at the start of

the downflow the system has a pressure of 100 psia and a temperature which

is the same as that of the atmosphere at 20,000 feet.

Steady-Flow Cycle (1)

The upward flow and the downward flow are adiabatic processes. The

schematic diagram, and the p-v and T-S diagrams are shown in Figs. 21, 22

and 23.

z
2
8

C T = C T + -— (negligible velocity change)

0.23992 x 518.7 = 0.23992 x T, + ^°'°°°
I 7 /o. lo

T
2

= 411. 6°R

T —k— 3 5
,_2,k-l ,. 411.6 .

,a

P2
" P!<~> = 14.696(

318j7
) = 6.54 psia
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T2 = 411.6

"2=6.54
z2= 2 0.00

Wrsin

adiabatic

compression

adiabatic

T3 = 447.5
P3= 8.76

T4 Ji4475

P4sl00

Qin Wrso

isothermal
compression

adiabatic

Wrso

T| =518.7

P, = 14.696

T6 = 518.7

P6 = 167.45

Tg« 554.5

Po'211.7

isothermal

expansion
adiabatic
expansion

Fig. 21 • Steady tlow cycle 'I
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P3 - P 2<r>
k_1

" 6 - 3A(2^tf>
' ' = 8 - 76 P6la

W . „ , " C (T, - T„) = 0.23992(447.5 - 411.6) = 8.62
rsin 2-3 p 3 2 Btu/lbm.

"rsin 3-4 " J
T
o

ln
p, 0.68549 x 447.5 In £*£- = 74.67
2 8 - 76

Btu/lbm.

Z
48

C T. + — = C T.
p 4 Jg p 5

^ = — S9 554 - 6
°
R

„.
ft

3 ' 5

p„ = l00<2S*f) = 211.70 psiar5 447.5

W . - C (T. - T-) 0.23992(554.6 - 518.7) = 8.62
rso 5-6 p 5 6 Btu/lbm.

518 7
3 ' 5

p6
= 2U - 7(

i54T6
) = 167 - 45 psia

W , . = 7 TQ ,
In —*- = 0.068549 x 518.7 In ^f^

rso 6-1 J S.L p
s ,

it.oao

86.55 Btu/lbm

Cycle net work 86.55 + 8.62 - 8.62 - 74.6 11.88 Btu/lbm

... 518.7 - 447.5 „ ,„,.
Carnot cycle efficiency ,,„ _ - 0.1J7J

W^i „ , _ rso net _ 11.88 _ ,,„Cycle efficiency = r = „, « = 0.1373
"in
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s .
86 - 55 = 0.1669 Btu/lbra°R

6—1 518.7

s , = Vhri 0.1669 Btu/lbon°R
3-4 447.5

Steady-Flow Cycle (2)

Diabatic processes are used in both the upward flow and downward flow

instead of adiabatic processes. In these diabatic processes the pressure

and temperature of the system at any altitude are the same as those of the

atmosphere at that altitude. The schematic diagram, p-v and T-s diagrams

are shown in Figs. 24, 25 and 26.

CT+Q =CT+-r- in which T = T - 447. 5°R
p 1

xin p 2 Jg
c

2 oz

,,, c 20.000
0.23992 x 518.7 + Q

in
= 0.23992 x 447.5 +

?7^ 16

= 8.62 Btu/lbm
^in

T _D_ 1-2347

P4
- P3CI)"-

1
= lOOC^) 1-^7"1

- 217.8 psia

p1 100
W „ = 0.68549 T In — = 0.068549 x 447.5 In -rrrr
rsin 2-3 ° p 2

= 82.67 Btu/lbm

W
4-1

= 0.068549 x 518.7 In ^96 = 95-84 Btu/lbm

Cycle work net = 95.84 - 82.67 = 13.17 Btu/lbm
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T2
= 447.5 447.5

isothermal
expansion

Fig.24- Steady flow cycle 2.
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c
p

ln i;-J ln ^
= °-"*>21"^

0.068549 in &&&
0.75

= - 0.01790 Btu/lbm R

s
3

- s
4

= 0.23992 in {g^ - 0.068549 In ±^

+ 0.01790 Btu/lbm R

I, - •- = 77^?- = 0.1847 Btu/lbra°R
2 3 447 .

5

s
l

~ S
4

=
518^7

= °' 1847 Bt"/ lbm
°
R

i «« .
518.7 - 447.6 _

Carnot cycle efficiency .,„ ' - 0.1373
51o. /

„, .

Qin Qo 95.84 - 82.67 _ . .-,,
The cycle efficiency = = „. „, = 0.1373

in

Steady-Flow Cycle (3)

Let the upward flow be the adiabatic process of cycle (1) and the down-

ward flow be the diabatic process of cycle (2). As compared with cycle 1

and cycle 2 it is obvious that the cycle net work equals

- 8.62 - 74.67 + 95.84 = 12.55 Btu/lbm.

Steady-Flow Cycle (4)

Let the upward flow be the diabatic process of cycle (2) and the down-

ward flow be the adiabatic process of cycle (1). As compared with cycle 1

and cycle 2, the cycle net work equals -82.67 + 8.62 + 86.55 = 12.50 Btu/lbra.
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Summary for the Above Four Steady-Flow Cycles

cycle 1 W = 11.88 Btu/lbm, adiab. up and down.
' rso net

cycle 2 W =13.17 Btu/lbm, diab. up and down.
* rso net

cycle 3 W 12.55 Btu/lbm, adiab. up, diab. down.
' rso net

cycle 4 W = 12.50 Btu/lbm, diab. up, adiab. down.
' rso net

In cycle 2, the Q. in the diabatic upward flow is 8.62 Btu/lbm,

As 0.01790 Btu/lbm°R, therefore

UEQ = T As = 447.5 x 0.1790 = 8.00 Btu/lbm
in oz

AEQ = Q. - UEQ, « 8.62 - 8.00 0.62 Btu/lbm
in ^in in

W „ - W , = 13.17 - 12.55 = 0.62 Btu/lbm
rso net 2 rso net 3

The Q in the diabatic downward flow is 8.62 Btu/lbm,

As = - 0.1790 Btu/lbm°R, therefore

UEQ = 518.7 x 0.01790 = 9.29 Btu/lbm
o

AEQ = Q - UEQ 8.62 - 9.29 = - 0.67 Btu/lbm
o o o

W „ - W . = 13.17 - 12.50 0.67 Btu/lbm
rso net 2 rso net ^

From the previous calculations it follows that cycle (2) is the best

cycle, because during the upward flow process there is 0.62 Btu/lbm of

available part of heat flow into the system, and during the downward flow

process there is 0.67 Btu/lbm of negative available part of heat flow out.

Therefore the net rotary shaft work produced by cycle (2) is greater than

the net rotary shaft work produced by cycle (1) by 0.62 + 0.67 = 1.29

Btu/lbm.
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Derivation o£ the Formula For W In Cycle 2; Diabatic Flow Up and Down,
r60

Below the Tropopause:

W . = & T ln Ih. _ I T m ^
rso net J 4 p J 2 p

in which p
2

= Pqz , T
2

= T
Qz

, T
4

= T
S>L

Pl T
l

T
4 ?4

W = 7(518.7 - T )ln — (17)
rso net J oz proz

In the stratosphere, pv = C. n = 1. T = constant = 392.78 R. It is

P4 P
3

obvious that — " — still holds above tropopause. Therefore:
Pi P?

W = 7(T, - T„)ln — = 7(518.7 - 392.78)ln —
rso net J 4 2 p J p_

7 x 125.92 ln — (18)
J poz

The W _ versus height and p_ is shown in Fig. 27.
rso net ° r3
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CONCLUSIONS

(1) The equation pv = c holds for the standard atmosphere. Below

the tropopause n equals 1.2347. In the stratosphere n equals 1.

(2) The available part of potential energy for non-flow processes can

be expressed by this equation:

p
AEPE 7 s-- 2.7195v[l - -2Z-]

J 8c PS.L

The smaller is the specific volume during descent, the greater is the

«,

z g
available part of potential energy, but it can not be greater than

This equation holds for any atmosphere.

(3) In non-flow processes, the greater the heat rejected to the atmos-

phere above sea-level, the greater is the production of net rotary shaft

work. Furthermore, when the system changes from state (1) at high altitude

to the dead state at sea-level, the summation of work done on the atmosphere

is constant and is independent of the process.

(4) In a non-flow cycle or a steady-flow cycle, in which elevation

changes are a part of the cycle, and the processes are adiabatic during the

elevation changes, the net rotary shaft work equals the net rotary shaft

work of a Carnot Cycle working between the same temperature and pressure

limits as those of the atmosphere at the two prescribed elevations. For

both non-flow and steady-flow cycles, the greater the pressure before the

fluid descends to sea level and the smaller the pressure at sea level before

the fluid rises, the greater the production rotary shaft work.

(5) In steady-flow processes, if diabatic processes are used in both

the upward flow and downward flow, the cycle efficiency equals the cycle

efficiency of a Carnot Cycle working between the same temperature limits.
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This report deals with the available part of potential energy, avail-

able part of internal energy and available part of enthalpy as it is related

to the NACA Standard Atmosphere.

The equations of the temperature, pressure and density ratio relation-

ships and the equations of the available part of potential energy are

derived for the elevation change from sea level to the stratosphere.

Several numerical examples are presented to show the detailed calcula-

tions required to obtain net rotary shaft work in non-flow processes, non-

flow cycles and steady flow cycles with change in elevations. Several

equations for net rotary shaft work are presented.

In a non-flow cycle or a steady-flow cycle, in which elevation changes

are a part of the cycle and the processes are adiabatic during the elevation

changes, the net rotary shaft work equals the net rotary shaft work of a

Carnot Cycle working between the same temperature and pressure limits as

those of the atmosphere at the two prescribed elevations. This is so

because, in a non-flow cycle, the work done by the atmosphere at high

altitude plus the work done by the buoyant force during ascent equals the

work done on the atmosphere at sea level plus the work done against the

buoyant force during descent. In the case of a steady-flow cycle, no work

is done by the atmosphere on the working fluid of the cycle, and no work is

done by the working fluid on the atmosphere.


