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Abstract

In recent years deep learning has achieved great success in various computer vision tasks,

such as image classification and segmentation. Unsupervised image-to-image (I2I) trans-

lation, which models how to translate images from one domain to another without paired

data, lacks systematic and thorough study. In this dissertation I illustrate the significance of

studying unsupervised I2I translation, relevant theories, and propose potential approaches to

addressing drawbacks and shortcomings in existing works. This dissertation introduces four

new contributions in unsupervised I2I translation. The first contribution is the proposal of

a unified framework for unsupervised I2I translation. The second contribution is to provide

fine-grained control on I2I translation where current approaches fall short. The third contri-

bution of this dissertation is cooperating a module for controlling shapes when translating

certain type of images, which require preserving shapes after I2I translation. Lastly, this

dissertation proposes a new I2I translation framework that learns to, in an unsupervised

manner, only translate objects of interest and leave others unaltered.

The first contribution of this work is to address the open problem of multimodal unsuper-

vised I2I translation using a generative adversarial network. Previous works, such as MUNIT

and DRIT, are able to translate images among multiple domains, but they generate images

of inferior quality and less diverse. Moreover, they require training n(n− 1) generators and

n discriminators for learning to translate images among n domains. Therefore, I propose

a simpler yet more effective framework for multimodal unsupervised I2I translation. The

new approach only consists of a mapping network, a encode-decoder pair (generator), and a

discriminator. The methods assume that the latent space can be decomposed into content

and style sub-spaces by the encoder, where content space is deemed domain-invariant and



style space is domain-dependent. Unlike MUNIT and DRIT that simply sample style codes

from a standard normal distribution when translating, I employ a mapping network to learn

style codes of different domains. Translation is done through the decoder by keeping content

codes and exchanging the style codes. To encourage diversity in translated images, I employ

style regularizations and inject Guassian noise in the decoder. Extensive experiments show

that the new framework is superior to or comparable to state-of-the-art baselines.

The second contribution of this dissertation is to add fine-grained control when per-

forming I2I translation. The new framework first assumes that the latent space can be

decomposed into content and style sub-spaces. Instead of naively exchanging style codes

when translating, the framework uses an interpolator that guides the transformation and

produces sequences of intermediate results under different strengths of transformation. Do-

main specific information, which might still exist in content code and generate inferior images

if they are simply treated as domain-invariant, are excluded in our framework. We prove

the key assumptions of our framework by establishing some theoretical foundations. Exten-

sive experiments show that the translated images using the new framework are superior or

comparable to state-of-the-field baselines.

This dissertation also proposes a new I2I translation framework that is shape-aware.

Attribute transfer is more challenging when the source and target domain share different

shapes, and this new model is able to preserve shape when transferring attributes. Compared

to other state-of-art GANs-based image-to-image translation models, the new model is able

to generate more visually appealing results while maintaining the quality of results from

transfer learning.

The last part of this work tries to learn to only translate objects of interest and keep the

background unaltered, which produces more visually pleasing results than other approaches.

Previous works, such as CycleGAN, MUNIT, and StarGAN2 are able to translate images

among multiple domains and generate diverse images, but they often introduce unwanted

changes to the background. To improve this, I propose a simple yet effective attention-based



framework for unsupervised I2I translation. The framework not only translates solely objects

of interests and leave the background unaltered, but also generates images for multiple

domains simultaneously. Unlike recent studies on unsupervised I2I with attention mechanism

that require ground truth for learning attention maps, the new approach learns attention

maps in an unsupervised manner. Extensive experiments show that the new framework is

superior to the state-of-the-art baselines.
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Abstract

In recent years deep learning has achieved great success in various computer vision tasks,

such as image classification and segmentation. Unsupervised image-to-image (I2I) trans-

lation, which models how to translate images from one domain to another without paired

data, lacks systematic and thorough study. In this dissertation I illustrate the significance of

studying unsupervised I2I translation, relevant theories, and propose potential approaches to

addressing drawbacks and shortcomings in existing works. This dissertation introduces four

new contributions in unsupervised I2I translation. The first contribution is the proposal of

a unified framework for unsupervised I2I translation. The second contribution is to provide

fine-grained control on I2I translation where current approaches fall short. The third contri-

bution of this dissertation is cooperating a module for controlling shapes when translating

certain type of images, which require preserving shapes after I2I translation. Lastly, this

dissertation proposes a new I2I translation framework that learns to, in an unsupervised

manner, only translate objects of interest and leave others unaltered.

The first contribution of this work is to address the open problem of multimodal unsuper-

vised I2I translation using a generative adversarial network. Previous works, such as MUNIT

and DRIT, are able to translate images among multiple domains, but they generate images

of inferior quality and less diverse. Moreover, they require training n(n− 1) generators and

n discriminators for learning to translate images among n domains. Therefore, I propose

a simpler yet more effective framework for multimodal unsupervised I2I translation. The

new approach only consists of a mapping network, a encode-decoder pair (generator), and a

discriminator. The methods assume that the latent space can be decomposed into content

and style sub-spaces by the encoder, where content space is deemed domain-invariant and



style space is domain-dependent. Unlike MUNIT and DRIT that simply sample style codes

from a standard normal distribution when translating, I employ a mapping network to learn

style codes of different domains. Translation is done through the decoder by keeping content

codes and exchanging the style codes. To encourage diversity in translated images, I employ

style regularizations and inject Guassian noise in the decoder. Extensive experiments show

that the new framework is superior to or comparable to state-of-the-art baselines.

The second contribution of this dissertation is to add fine-grained control when per-

forming I2I translation. The new framework first assumes that the latent space can be

decomposed into content and style sub-spaces. Instead of naively exchanging style codes

when translating, the framework uses an interpolator that guides the transformation and

produces sequences of intermediate results under different strengths of transformation. Do-

main specific information, which might still exist in content code and generate inferior images

if they are simply treated as domain-invariant, are excluded in our framework. We prove

the key assumptions of our framework by establishing some theoretical foundations. Exten-

sive experiments show that the translated images using the new framework are superior or

comparable to state-of-the-field baselines.

This dissertation also proposes a new I2I translation framework that is shape-aware.

Attribute transfer is more challenging when the source and target domain share different

shapes, and this new model is able to preserve shape when transferring attributes. Compared

to other state-of-art GANs-based image-to-image translation models, the new model is able

to generate more visually appealing results while maintaining the quality of results from

transfer learning.

The last part of this work tries to learn to only translate objects of interest and keep the

background unaltered, which produces more visually pleasing results than other approaches.

Previous works, such as CycleGAN, MUNIT, and StarGAN2 are able to translate images

among multiple domains and generate diverse images, but they often introduce unwanted

changes to the background. To improve this, I propose a simple yet effective attention-based



framework for unsupervised I2I translation. The framework not only translates solely objects

of interests and leave the background unaltered, but also generates images for multiple

domains simultaneously. Unlike recent studies on unsupervised I2I with attention mechanism

that require ground truth for learning attention maps, the new approach learns attention

maps in an unsupervised manner. Extensive experiments show that the new framework is

superior to the state-of-the-art baselines.
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Chapter 1

Introduction

Chapter 1 introduces the problem of unsupervised image-to-image (I2I) translation and

briefly summarizes techniques for solving it. I begin by defining the problem and addressing

its significance. Then, classic and current approaches to unsupervised I2I translation will be

reviewed.

1.1 Problem Statement

In recent years, computer vision (CV) has seen great success using deep learning due to im-

provements in parallel computing devices and deep learning libraries. Deep learning models

outperform humans in various CV tasks like image classification4–6 and object detection7–11.

I2I translation, which has received less attention than other CV tasks, focuses on how images

translate from one domain to another, so the translated images preserve the content of the

source domain image but appear as an image of target domain. For example, Fig 1.1 shows

examples of translating edge maps to shoes and handbags. Image-to-image translation is

a broad body of sub-problems that can be categorized into multi-domain and multimodal

1



Figure 1.1: Examples of translating edge maps to shoes and handbags.

problems. In multi-domain I2I translation, models can translate images to multiple do-

mains simultaneously as with a model that translates cat images to dog and lion images.

Multimodal I2I translation shows that translation results are not deterministic and have

variations. For example, a winter scene translated to summer scenes can differ because of

the lighting, or the degree of a smile might differ when translating neutral faces to smiling

ones.

I2I translation has great significance, and various computer vision tasks can benefit from

it. Class imbalance issues in image classification is one such example. Class imbalance issues

occur when one class has far fewer images than other classes. Deep learning models trained

on imbalanced data sets tend to be biased and sensitive. One can use a I2I translation

model to synthesize data for the smaller classes so that data sets are more balanced. Image

super-resolution is another example of I2I translation, referring to making images with low-

resolution into high-resolution images. Fig. 1.2 is an example of image super-resolution.

This means that a low resolution image can be transmitted over the internet at lower cost

than a high-resolution image; the receiver can then use super-resolution to make the image

a high resolution image using a trained image super-resolution model.

I2I translation not only has wide practical uses but also constantly encourages new the-

oretical breakthroughs. I2I translation is closely related to generative models, which are

2



Figure 1.2: An example of image super-resolution.

roughly categorized into three types. The first type is autoencoders (AE) for studying data

compression and reconstruction. Subsequent improvement on AE has introduced various

regularizations on loss functions to learn disentangled representations of input data, which

directly inspires the study of I2I translation. For example, varying the smile dimension in

learned disentangled representation can turn neutral faces into smiling ones. Another gen-

erative model is flow-based, which uses the variable theorem and learns invertable mapping

from image to image, a natural option for modelling I2I. Another type of generative model,

generative adversarial networks (GANs)12, shows impressive results for unsupervised learn-

ing and is vital to this research13–18. GANs consist of a generator and a discriminator, with

the former producing fake data samples from a latent vector and the later attempting to

distinguish fake samples from real ones. The generator can be an AE, a flow-based model, or

a mix of the two, thus creating many options in designing generative models. No thorough

study, however, provides a systematic guideline for choosing the right design. Therefore, in

this research, I bridge this gap theoretically and empirically.

3



1.2 Unsupervised Image-to-Image Translation

Image-to-image (I2I) translation refers to translating images from one domain to another,

one with different properties. An example is the task of turning images of cartoon sketches

into real-life graphs. Many tasks in computer vision can be considered I2I translation: image

inpainting19, style and attribute transfer20;21, and super-resolution22, among others. Paired

I2I transfer tasks require paired data sets that are costly to acquire; paired data sets make

I2I relatively easy to solve, unlike unpaired data sets. Chen and Koltun translated paired

images of semantic maps to photographic images using regression23. Isola et al. framed

paired I2I translation tasks using conditional generative models24.

Unsupervised I2I translation converts images from one domain to another without paired

data supervision. Much success in unpaired I2I translation is due to the cycle consistency

constraint, proposed in three earlier works: CycleGANs25, DiscoGANs26, and DualGANs27.

Recent systems like MUNIT28 and DRIT29 were developed to perform multimodal I2I trans-

lation, which refers to producing images with the same content but in different contexts. For

example, a winter scene could be translated into many different summer scenes depending on

weather or lighting. StarGAN-V230 and ModularGANs31 have been proposed to translate

more than two domains.

Previous research shows that unsupervised I2I is feasible, but several shortcomings in the

process must be addressed.

• Recent SOTA studies like MUNIT28 and DRIT29 can translate images into several

domains, but they generate less diverse images with inferior quality. Moreover, they

require training n(n − 1) generators and n discriminators for learning to translate

images among n domains, which is computationally expensive.

• Most frameworks for unsupervised I2I translation shift images by simply keeping con-

tent latent codes and exchanging style latent codes, which generate inferior images.

4



Moreover, they often cannot control translation strength because they naively adopt

the cycle consistency loss. As a result, only one translation can be produced, and

generating possible intermediate translation results is not feasible.

• Existing studies mostly focus on I2I at the image level, meaning that the entire input

image is translated. This introduces unwanted changes to the background and produces

sub-optimal translation results.

To remedy the drawbacks of current methods of unsupervised I2I translation, I propose

several approaches based on GANs and autoencoders, which I hypothesize will improve the

quality of generated images according to current state-of-the-field metrics.

1.3 A Unified Framework for Unsupervised I2I Trans-

lation

MUNIT and DRIT have been recently suggested as frameworks for unsupervised I2I transla-

tion. MUNIT, or Multimodal UNsupervised Image-to-image Translation, and DRIT, Diverse

Image-to-Image Translation via Disentangled Representations were used in two co-current

studies that addressed the multimodal problem of unsupervised I2I translation. They use

encoders to extract content and style codes from images and translate images by replacing

the style codes with codes of different domains while keeping the content codes of the source

domain. They so need a pair of encoders and decoders for each domain. As a result, they

require training n(n − 1) generators and n discriminators for learning to translate images

among n domains, which is computationally expensive. Moreover, they sample style codes

from a standard normal distribution when translating, which leads to inferior translation.

Therefore, I propose a simplified, yet more effective, framework for unsupervised I2I

translation. The framework consists of only one paired encoder-decoder and one discrim-
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inator for learning to translate among all domains, while achieving better generalization

than previous attempts at unsupervised translation. Instead of sampling style codes from a

standard normal distribution, I used a mapping network to learn style information. With

more generalization capability added by the mapping network, the translation results im-

proved. MUNIT and DRIT also do not regularize the style and content codes. Both studies

using MUNIT and DRIT assume that style codes are domain-specific and content codes are

domain-invariant, an assumption that requires imposing regularization. Therefore, I added

loss functions to impose constraints that show content codes are domain-invariant and style

codes are diverse.

To summarize, the novel contributions for this research are the following:

• A new I2I translation framework that is simplified yet more effective than existing

frameworks and reduces network size and training time;

• A novel framework with a mapping network to learn the styles of different domains,

leading to better translation results;

• Several regularization techniques to show that content codes are domain-invariant and

style codes are diverse;

• Results from extensive experiments that show the framework is superior or comparable

to SOTA baselines.

1.4 Unsupervised I2I with Fine-grained Control on La-

tent Space

Previous studies using such translators as self-supervised CycleGAN, MUNIT, and con-

trastive GAN translate images by keeping content latent codes from one domain and ex-
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changing the style latent codes with codes from another domain, thus generating images of

inferior quality. Moreover, they depend on the cycle consistency constraint, so they cannot

generate translation images in intermediate stages. Therefore, I included a module, the in-

terpolator, which is placed between style codes of different domains. The interpolator takes

two style codes and mixes them non-linearly. This allows control of the strength of trans-

lation by changing how much style code is taken from different domains. Unlike naively

mixing two style codes linearly, the interpolator can produce smoother and more natural

looking results. MUNIT and DRIT both operate assuming content codes of each domain are

domian-invariant, but domain-specific information may still occur in content code. Without

special care, generated images could still show traits of the source domain. Therefore, to

keep content code domain-independent, I removed style-specific information in content code

before translating images.

To sum up, fine-grained control over latent space manifests three ways: 1) latent codes

can be deconstructed into content and style, much like DRIT29 and MUNIT28; 2) instead of

simply exchanging style codes, an interpolator, which is a neural network, guides their trans-

formation; and 3) domain-specific information in content code is removed before translation

for better results. This research offers the following novel contributions:

• A new framework with an embedded interpolator controls translation strength and

generates smooth-looking translation results of intermediate stages;

• New techniques remove domain-specific information in content code;

• A simplified framework architecture based on MUNIT reduces the size and training

time but achieves better translation.

• The framework appears superior or comparable to SOTA baselines after extensive

experiments on publicly available data sets.
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1.5 Shape-aware Generative Adversarial Networks for

Attribute Transfer

Generative adversarial networks (GANs) have been successfully applied to transfer visual

attributes in many domains, including that of human face images. This success is partly

attributable to the facts that human faces have similar shapes and the positions of eyes, noses,

and mouths are fixed among different people. Attribute transfer is more challenging when

the source and target domain share different shapes. In this paper, we introduce a shape-

aware GAN model that is able to preserve shape when transferring attributes, and propose

its application to some real-world domains. Compared to other state-of-art GANs-based

image-to-image translation models, the model I propose is able to generate more visually

appealing results while maintaining the quality of results from transfer learning. The novel

contributions are as follows:

• A novel shape-aware GANs model that is capable of multi-domain, multi-modal at-

tribute transfer while maintaining the shape of source domain;

• Several strategies for stabilizing training of the proposed model.

• Experiments showed that the model is able to generate more visually satisfying results

than recently proposed state-of-art baseline model while maintaining the quality of

translated results.
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1.6 Instance-level Unsupervised I2I with Self-supervised

Learning

Most studies on I2I translation emphasize translating at the image-level, not the instance

level. As a result, if the task is to translate horse images to zebra images, an image with

a horse eating green grass can be translated into a fake zebra, but the grass would also

change to yellow because most zebra images show yellow grass. In other words, the trans-

lated horse image shows unwanted changes to the background. In another scenario, images

have multiple objects of interest like two or more horses, so frameworks based on image-level

translation fail to accurately translate all objects at the same time. To achieve instance-level

translation, then, a segmentation mask must post-process the translated results. Segmenta-

tion annotations are costly because they require pixel-level annotation. Therefore, I applied

self-supervised methods to learn the segmentation mask while also learning to translate. Self-

supervised approaches exploit labels and annotations from the input data itself, so it can be

considered an unsupervised approach, unlike a supervised approach that requires annotations

provided by humans. This part of the research has the following novel contributions:

• A novel framework for unsupervised I2I translation with an attention mechanism, which

allows image translation at the instance level;

• A framework that allows unsupervised learning of attention maps, which does not

require segmentation annotations;

• Our framework was superior the SOTA baselines, as demonstrated by extensive exper-

iments using publicly available data sets.
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1.7 Road Map

This dissertation is organized as follows:

Chapter 2 introduces theoretical background that serves as a foundation for the theory

behind I2I translation. This includes autoencoders and their variants, flow-based models,

and finally GANs.

Chapter 3 lays out a novel, simplified, yet more effective model for image translation

based on GANs and AEs. This model improves on MUNIT and DRIT but overcomes several

shortcomings. The proposed model simplifies the network architecture without compromis-

ing translation performance. It also provides several regularization techniques to solidify

the assumption that content code is domain-invariant and style code is diverse. To further

improve translation performance, style information from different domains was learned via

a mapping network instead of samples from a standard Gaussian distribution. Test beds

and evaluation metrics for evaluating the new model are also discussed, and the model is

compared to SOTA baselines.

Chapter 4 offers a new model that addresses the effect of fine-grained control on trans-

lation results. To be specific, existing models perform translation by exchanging style codes

from different domains. We could not, however, generate translation results of intermediate

stages using existing models. Moreover, naively interpolating two translated images to make

a pseudo intermediate image does not guarantee a smooth result. Therefore, our model was

equipped with an interpolator, which also operates as a neural network, to guide the creation

of intermediate stages. A commonly used assumption underlying I2I translation is that con-

tent codes are domain-invariant across multiple domains. However, content codes are not

guaranteed to contain domain-specific information, which leads to results that look artificial.

To address this problem, before translation begins, the new model removed domain-related

information contained in content codes. Test beds and evaluation metrics were selected to
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evaluate the new model, comparing it against previous SOTA baselines.

Chapter 5 proposes a shape-aware GAN model that is able to preserve the shape before

and after translation. I employ the same idea of interpolator proposed in Chapter 4, so the

model can translate images of intermediate results. Using an example of tomato leaves, the

model shows promising results in successfully preserving shape at little cost of classification

accuracy.

Chapter 6 offers a novel model to achieve instance-level translation. Previous methods

mostly translate at image-level, which introduces unwanted changes to the background and is

limited if multiple objects of interest appear in the original images. The new model achieved

instance-level translation by using a self-supervised, attention mechanism. Some studies

have attempted to use an attention mechanism, but the mechanism is often supervised and

requires segmentation masks in the model, a costly technique. Moreover, previous research

often used oversimplified models for dual-domain translation, which requires a large amount

of training to model multiple domains. Therefore, our model used a unified framework

that achieved instance-level I2I translation while also using multiple domains and producing

diverse translation results. Test beds and evaluation metrics evaluated the new model,

comparing it against previous SOTA baselines.

In Chapter 7, I review the claims made throughout this dissertation, summarize key

finding, and provide ideas for future study.
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Chapter 2

Literature Review

This chapter provides a review of recent literature on generative models with a focus on

autoencoders and generative adversarial neural networks.

2.1 Autoencoders

The ability to learn useful representations of data with little or no supervision is challenging.

Autoencoders (AEs32) could accomplish this goal. AEs learn mapping from high-dimensional

observations to lower-dimensional representation space so that the original observations can

be reconstructed (approximately) from lower-dimensional representations. Bengio et al.33

proposed a set of meta-priors, which are general assumptions about or goals of AE such as

disentanglement of explanatory factors and the concentration of data on low-dimensional

manifolds. AEs can be grouped by meta-priors into four categories:

• Disentanglement: If data consists of independent factors of variations, disentanglement

AEs can capture these factors in learned representations. Therefore, changing one
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factor leads to only one variation in reconstructed data.

• Hierarchical organization of explanatory factors: This assumes data can be described

by a hierarchy of increasingly abstract concepts. For example, images can be abstractly

described using objects at different levels of granularity.

• Semi-supervised learning: Supervised and unsupervised learning share representations.

and shared representations can then be used to synthesize data.

• Clustering: Assuming data has multi-category structures, structures can be captured

with a latent mixture model where each mixture corresponds to one category, and its

distribution models the factors of variations within that category, which leads to a

representation within that cluster and enables controlled data synthesis.

2.1.1 Preliminaries

Variational autoencoders34 are intended to learn disentangled, semantically meaningful, sta-

tistically independent and causal factors of variation in data. VAEs consist of two coupled

but independent models: the encoder and decoder. The encoder models a mapping (pθ(z|x))

from data space to latent variables, and the decoder learns a mapping from latent variables

to original data space. To turn the intractable posterior inference into tractable problems,

we can introduce a parametric inference model qφ(z|x), where φ are the parameters of this

inference model. We optimize φ such that pθ(z|x) ≈ qφ(z|x). The distribution qφ(z|x) can

be parameterized using deep neural networks. The parameters φ can be the the weights and

biases of the neural network.

(µ, logσ) = Encoderφ(x) (2.1)

qφ(z|x) = N (z;µ, diag(σ)) (2.2)

The optimization objective of the variational autoencoder is the evidence of the lower bound,
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abbreviated as ELBO. For any choice of inference model qφ(z|x), we have

logpθ(x) = Eqφ(z|x)[logpθ(x)]

= Eqφ(z|x)[log[
pθ(x, z)

pθ(z|x)
]]

= Eqφ(z|x)[log[
pθ(x, z)

qφ(z|x)

qφ(z|x)

pθ(z|x)
]]

= Eqφ(z|x)[log[
pθ(x, z)

qφ(z|x)
]]︸ ︷︷ ︸

=Lθ,φ(x)

+Eqφ(z|x)[log[
qφ(z|x)

pθ(z|x)
]]︸ ︷︷ ︸

=DKL(qφ(z|x)||pθ(z|x))

(2.3)

The first term is the ELBO, and the second term is the Kullback-Leibler (KL) divergence

between qφ(z|x) and pθ(z|x), which is equal to or greater than 0. So we have the following

inequality:

Lθ,φ(x) = logpθ(z|x)−DKL(qφ(z|x)||pθ(z|x))

≤ logpθ(z|x).

(2.4)

When we maximize the ELBO Lθ,φ(x) w.r.t θ and φ, we will maximize the marginal likelihood

pθ(x) and minimize the KL divergence so that qφ(z|x) is closer to logpθ(z|x).

Intuitively, we would attempt to optimize the ELBO using gradient descent. The back-

propagation, however, through z is infeasible because it is randomly sampled from some

distribution. We resolve this problem by the reparameterization trick. assuming we have

continuous latent variables and a differentiable encoder and generative model, so the ELBO

can be straightforwardly differentiated w.r.t. both θ and φ through a change of variables.

This process is called the reparameterization trick. We first express the random variable

z ∼ qφ(z|x) as some differentiable (and invertible) transformation of another random variable

ε, given z and φ: z = g(ε, φ, x), where the distribution of random variable ε is independent

of x and φ. Then, we can rewrite the expectations in terms of ε:

Eqφ(z|x)[f(z)] = Ep(ε)[f(z)]. (2.5)

Under the reparameterization, we can replace the expectation for qφ(z|x) with one for
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p(ε):

Lθ,φ(x) = Eqφ(z|x)[log[
pθ(x, z)

qφ(z|x)
]]

= Ep(ε)[log[
pθ(x, z)

qφ(z|x)
]].

(2.6)

After we replace z with g(ε, φ, x), we can calculate the gradient for z and φ because they are

not produced in a random sampling process.

Computation of ELBO

Computing ELBO requires computing the density, log(qφ(z|x)), which can be easy to com-

pute with suitable g(·). If g(·) is an invertible function, the densities of ε and z are related

by logqφ(z|x) = logp(ε)− logdφ(x, ε), where the the second term is log|det∂z
∂ε
|.

We usually use Gaussian distribution for factorizing the encoder, which means qφ(z|x) =

N (z;µ, diag(σ2)), where µ and σ are outputs of the encoder. After reparameterization, we

can write:

ε ∼ N (0, I), (2.7)

(µ, logσ) = Encoderφ(x), (2.8)

z = µ+ φ� ε, (2.9)

where � is element-wise product. The Jacobian of the transformation from ε to z is ∂z
∂ε

=

diag(σ), which is a diagonal matrix with the elements of σ on the diagonal. Then, the log

determinant of the Jacobian is
∑

i logσi, so the posterior density can be written as

logqφ(z|x) = logp(ε)− logdφ(x, ε)

=
∑
i

logN (εi; 0, 1)− logσi.
(2.10)
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2.1.2 VAE for Learning Disentangled Representations

Assuming the data are generated from independent factors of variations, VAEs with suit-

able regularization can learn disentangled representations. A classic approach to enforce

some meta-priors on the latent representations is to regularize the posterior qφ(z|x) or the

aggregated posterior qφ(z). Most recent work can be summarized into an objective in the

form

LV AE(θ, φ) + λ1E ˆp(x)[R1(qφ(z|x))] + λ2R1(qφ(z)), (2.11)

where R1 and R2 are regularizers, and λ1, λ2 > 0 are the corresponding weights. The

main idea behind several recent research on disentanglement augmented the LV AE loss with

regularizers that encourage disentanglement of the latent variable z.

β − V AE 35 proposes to weigh the second term in Equation 2.11 with a coefficient β > 1,

thus adding λ1 = β − 1 > 0 to LV AE(θ, φ):

Lβ−V AE(θ, φ) = LV AE(θ, φ) + λ1E ˆp(x)[R1(qφ(z|x))]. (2.12)

By minimizing Equation 2.12, we encourage qφ(z|x) to better match the factorized prior

qφ(x), which in turn constrains the implicit capacity of the latent representation z ∼ qφ(z|x)

and encourages it to be factorized.

In FactorVAE36, we observed that Equation 2.11 encouraged qφ(z) to be factorized by

penalizing the second term but simultaneously discouraged the latent code to be informa-

tive by penalizing the first term. To reinforce only the former effect, FactorVAE proposes

to regularize LV AE with the total correlation TC(qφ(z) = DKL(qφ(z)||
∏

j qφ(zj)) of qφ(z),

which is a popular measure of dependence for multiple random variables. The objective of

FactorVAE is

LFactorV AE(θ, φ) = LV AE(θ, φ) + λ2TC(qφ(z), (2.13)

where the last term is the total correlation.
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β − TCV AE 37 splitsDKL(qφ(z)||pθ(z)) intoDKL(qφ(z)||
∏

j qφ(zj))+
∑m

j=1DKL(qφ(zj)||p(zj)),

penalizing each term individually.

Lβ−TCV AE(θ, φ) = LV AE(θ, φ) + λ1TC(qφ(z) + λ2
∑
j

DKL(qφ(zj)||p(zj)), (2.14)

where λ1 and λ2 are set to 0 by default, leading to the same objective as FactorVAE. Unlike

FactorVAE, however, the TC term is estimated using importance sampling. InfoVAE38

rewrites LV AE(θ, φ) as

DKL(qφ(z)||p(z)) + Ep̂(x)DKL(qφ(x|z)||pθ(x|z)), (2.15)

which encourages disentanglement. We can further reweight the first term in 2.15 and

encourage mutual information between z ∼ q(z|x) and x by adding a regularizer proportional

to Iqφ(x; z) to 2.15. We can further rearrange the terms in the resulting objective, arriving

at

LV AE(θ, φ) + λ1DKL(qφ(z)||p(z)) + λ2Ep̂(x)DKL(qφ(z|x)||pθ(z)). (2.16)

For tractability, the last term in Equation 2.16 is replaced by other divergences, such as the

Jensen-Shannon divergence, which is implemented as a GAN model.

DIP-VAE39 It suggests matching the moments of the aggregated posterior qφ(z) to a mul-

tivariate standard normal before p(z) during optimization of LV AE(θ, φ) to encourage disen-

tanglement of the latent variables z ∼ q(z). It proposes to match the covariance of qφ(z) and

N(0, I) by penalizing their L2 distance, leading to a disentangled inferred prior objective:

LV AE(θ, φ) + λ1
∑
k 6=l

(Covqφ(z)[z])2k,l + λ2
∑
k

((Covqφ(z)[z])k,k − 1)2. (2.17)

For standard parametrization, qφ(z|x) = N(µφ(x), diag(σφ(x))), Covqφ(z)[z] =∑N
i=1 diag(σφ(xi)) + Covp̂(x)[µφ(x)], σφ(x) only contributes to the diagonal of Covqφ(z)[z].

HSIC-VAE40 It leverage the Hilbert-Schmidt independence criterion (HSIC) to encourage
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independence between groups of latent variables, as

LV AE(θ, φ) + λHSIC(qφ(zG1), qφ(zG2)), (2.18)

where zG = {zk}k∈G is an estimator of HSIC. In addition to controlling independent relations

of the latent variables, HSIC can be used to remove sensitive information, provided as labels

with the training data, from latent representation by using the regularizer HSIC.

HFVAE41 It hierarchically decomposes the DKL term into a regularization term of the de-

pendencies between groups of latent variables {Gk}nGk=1 and regularization of the dependencies

between the random variables in each group Gk. Re-weighting different regularization terms

allows encouraging different degrees of intra- and inter-group disentanglement, leading to

the following:

LHFVAE(θ, φ) = LV AE − λ1Iqφ(x; z)

= + λ2(−Eqφ(z)[log
p(z)∏

G∈G p(zG)
] +DKL(qφ(z)||

∏
G∈G

qφ(zG)))

= + λ3
∑
G∈G

(−Eqφ(zG)[log
p(zG)∏
k∈G p(zk)

] +DKL(qφ(zG)||
∏
k∈G

qφ(zk))),

(2.19)

where λ1 controls the mutual information between the data and latent variables, and λ2 and

λ3 determine the regularization of dependencies within groups by penalizing the correspond-

ing total correlation.

VIB42 It aims to derive a variational approximation of the information bottleneck objec-

tive, which targets learning a compact representation z of some random variable x that is

maximally informative about some random variable y. The objective of VIB is

LVIB(θ, φ) = LV AE(θ, φ) + λ1Ep̂(x)[DKL(qφ(z|x)||p(z))] + λ2TC(qφ(z)). (2.20)

We can derive a more tractable expression for 2.20 and establish a connection to dropout

for particular choices of p(z) and qφ(z|x).

AAE43 Adversarial Autoencoders (AAEs) turn a standard autoencoder into a generative
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model by imposing a prior distribution p(z) on the latent variables by penalizing some

statistical divergence Df between p(z) and qφ(z) using a GAN. Using the negative log-

likelihood as reconstruction loss, the AAE objective can be written as

LAAE(θ, φ) = Ep̂(x)[Eqφ(z|x)[−logpθ(x|z)]] + λ2Df (q(z)||p(z)). (2.21)

The encoder and decoder are deterministic, which means that p(x|z) and q(z|x) are replaced

by decoder (Dθ) and encoder (Eφ), and the negative log-likelihood in 2.24 is replaced with

the standard autoencoder loss. The advantage of implementing the regularizer λ2Df using

a GAN is that any p(z) we sample can be matched.

VFAE44 (Variational Fair Autoencoders) assumes a likelihood of the form pθ(x|z, s), where

s models redundant latent factors like sensitive information. z models the remaining latent

factors. Using an approximate posterior of the form qφ(z|x, s) and imposing factorized prior

p(z)p(s) encourages independence of z ∼ qφ(z|x, s) from s. However, z might still contain

information about s, in particular in supervised settings where z encodes label information

y that might correlate with s and additional factors of variation z′. To mitigate this issue,

VFAE proposes an MMD-based regularizer to LVAE, encouraging independence between

q(z|s = k) and q(z|s = k′).

LVFAE(θ, φ) = LVAE + λ1

K∑
l=2

MMD(qφ(z|s = l), qφ(z|s = 1)), (2.22)

where qφ(z|s = l) =
∑

i:s(i)=l
1

|{i:s(i)=l}|qφ(z|x(i), s(i)). To reduce the computational complexity

of the MMD, VFAE can use random Fourier features.

2.1.3 VAE for Learning Hierarchical Representations

PixelVAE45 It uses a VAE with feed-forward convolutional encoder and decoder, combining

the decoder with a (shallow) conditional PixelCNN46 to predict output probabilities. It has

a hierarchical encoder and decoder structure with several levels of latent variables, meaning

19



pθ(x, z1, z2, ..., zL) = pθ(x|z1)pθ(z1|z2)...pθ(zL−1|zL)p(zL). The variables are realized by a feed-

forward convolutional network. This approach extracts high- and low-level features on one

hand, allowing controlled generation of local and global structure but, on the other hand,

results in better clustering of the codes according to classes for multi-class data.

VLAE47 The second term in LVAE of Equation 2.11 encourages the latent code z ∼ qφ(z|x)

to store only the information that cannot be modeled locally by decoding distribution pθ(x|z).

To enforce latent codes z ∼ qφ(z|x) in storing meaningful information, VLAE adapts the

structure of the decoding distribution pθ(x|z), so it cannot model information we want z to

store. For example, to encourage z to capture global high-level information while allowing

pθ(x|z) to model local information like texture, we used an autoregressive decoding distribu-

tion with a limited local receptive field that cannot model long-range spatial dependencies.

VQ-VAE48 It realizes a VAE with discrete latent space structure using vector quantization

(VQ-VAE). Each latent variable zj is assumed to be a categorical random variable with

K categories, and the approximate posterior qφ(zj|x) is assumed to be deterministic. Each

category is associated with an embedding vector ek ∈ RD. The embedding operation induces

an additional latent space dimension of size D. Let us say the latent representation z is an

M ×M × 1 feature map, the embedded latent representation z̃ is an M ×M × D feature

map. The distribution qφ(z̃j|x) is implemented using a deterministic encoder network Eφ(x)

with D-dimensional output, quantized w.r.t the embedding vectors {ek}Kk=1. In summary,

we have

qφ(z̃j = ek|x) =


1 if k = argminl

∥∥∥∥Eφ(x)− el

∥∥∥∥
0 otherwise

, (2.23)

The embeddings ek can be learned individually for each latent variable zj or shared for

the entire latent space. Assuming a uniform prior p(z), the second term in LVAE evaluates

to logK because qφ(z|x) is deterministic and can be discarded during optimization. The

embedding vectors ek, which do not receive gradients as a consequence of using a straight-

through estimator, are updated as the mean of the encoded points Eφ(x(i)) assigned to the
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corresponding category k as in mini-batch k-means.

2.1.4 VAE for Semi-supervised Representations

For Semi-supervised VAE49, latent codes can be divided into two parts: z and y, where

y is label information. The inference model takes the form qφ(z|y, x) = qφ(z|y, x)qφ(y|x),

meaning there is a hierarchy between y and z. When labels are available, the inference

model is conditioned on y, meaning qφ(z|y, x). Without a label, the label is inferred from

qφ(z, y|x). This model thus effectively disentangles the latent code into two parts y and z and

allows semi-supervised classification and controlled generation by holding one of the factors

fixed and generating the other. This model can optionally be combined with an additional,

unsupervised learning model to gain an additional level of hierarchy.

AAE43 (Adversarial Autoencoders (AAEs)) turns a standard autoencoder into a generative

model by imposing a prior distribution p(z) on the latent variables by penalizing some

statistical divergence Df between p(z) and qφ(z) using a GAN. Using the negative log-

likelihood as reconstruction loss, the AAE objective can be written as

LAAE(θ, φ) = Ep̂(x)[Eqφ(z|x)[−logpθ(x|z)]] + λ2Df (q(z)||p(z)). (2.24)

The encoder and decoder are assumed to be deterministic, which means that p(x|z) and

q(z|x) are replaced by decoder (Dθ) and encoder (Eφ), and the negative log-likelihood in

Equation 2.24 is replaced with the standard autoencoder loss. The advantage of implement-

ing the regularizer λ2Df using a GAN is that any p(z) we can sample can be matched.

2.1.5 VAE for Unsupervised Learning

In PixelGAN-AE50, if pθ(x|z) is not too powerful (in the sense that it cannot model

the data distribution unconditionally without using the latent code z), the term pθ(x|z)
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and the reconstruction term have competing effects: a small amount of mutual information

Iqφ(x; z) makes reconstructing xi from qφ(z|x(i)) challenging for pθ(x|z), leading to a large

reconstruction error. Conversely, a small reconstruction error requires the code z to be

informative and hence Iqφ(x; z) to be large. In contrast, if the decoder is powerful, the mutual

information and reconstruction terms can be minimized and are largely independent, which

prevents the latent code from being informative and hence providing a useful representation.

To prevent this, PixelGAN-AE drops the Iqφ(x; z).

LPixelGAN-AE(θ, φ) = LV AE(θ, φ)− Iqφ(x; z). (2.25)

JointVAE51 equips the β−VAE framework with heterogeneous latent variable distributions

by concatenating continuous latent variables z with discrete ones c for improved disentang-

ment of different types of latent factors. The corresponding approximate posterior is factor-

ized as qφ(c|x)qφ(z|x). The regularization strength λ1 in the β−VAE objective is gradually

increased during training, assigning different weights to the regularization term correspond-

ing to the discrete and continuous random variables. Numerical results (based on visual

inspection) show that the discrete latent variables naturally model discrete factors of vari-

ation like digit class in MNIST or garment type in Fashion-MNIST and hence disentangle

such factors better than models with continuous latent variables only.

2.2 GANs for Unpaired Image-to-Image Translation

Ideally, generative models learn how data is distributed, thus allowing data synthesis from

the learned distribution. Since the advent of GANs12, generative models have achieved

impressive results in tasks like image editing52;53 and style transfer21. GANs learn the data

distribution by approximating the similarity of distributions between the training data and

the fake data produced by the learned model. GANs usually comprise a generator and a

discriminator. The entire model learns by playing a minimax game: the generator tries to

fool the discriminator by gradually generating realistic data samples, and the discriminator,
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in turn, tries to distinguish real samples from fake ones. GANs have been improved in various

ways. To produce more realistic samples, an architecture of stacked GANs has been proposed:

the laplacian pyramid of GANs54; layered, recursive GANs55; progressive growing GANs56;

and style-based GANs20;21. Several studies have attempted to solve the instability training of

GANs using energy-based GANs57, Wasserstein GANs58, and boundary equilibrium GANs59.

Generative models are designed to model and reproduce the statistical distribution of the

training data, allowing the synthesis of data from the learned distribution. The key incentive

behind GANs is estimating the underlying probability density or probability mass function

of the observed data. GANs learn the probability distribution implicitly by computing the

similarity of the distribution between the real training examples and the fake data generated

by the learned model. After the model is trained well, it can be used to generate additional

data with distribution similar to the real data.

Figure 2.1 shows the general architecture of GANs. The learning process is guided by

a minmax game (See Equation 2.1) where the discriminator (D) increases the probability

of classifying images as real when the images (x) are sampled from the real distribution

(pdata(x)). The generator (G), however, tries to decrease the likelihood of identifying gen-

erated images as real when images come from the fake distribution (pz(z)). As learning

progresses, the discriminator gets better at classifying the data as real or not, and the gen-

erator becomes better at producing realistic data. Naturally, the generator can then be used

to generate data when training examples are not sufficiently available.

min
G

max
D

V (D,G) = E
x∈pdata(x)

[logD(x)] + E
z∈pz(z)

[log(1−D(G(z)))] (2.26)

Image-to-image (I2I) translation refers to translating images from one domain with one

set of properties to another with different properties. An example is the task of turning

images of cartoon sketches into real-life graphs. Many tasks in computer vision can be posed

as I2I translation, such as image inpainting19, style and attribute transfer20;21, and super-
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Figure 2.1: Architecture of GANs

resolution22. Paired I2I transfer tasks require costly paired data sets; translation using

paired data sets are relatively easier to solve than unpaired data sets. Chen and Koltun

translated paired images of semantic maps to photographic images using regression23. Isola

et al. framed paired I2I translation tasks using conditional generative models24. We will

review the literature on the more challenging unpaired I2I task where no paired data sets

are available. Unpaired I2I translation can be categorized into two-domain I2I and multi-

domain I2I, and each category can be divided into two sub-groups: single-modal output

and multi-modal output. Single-modal output means that a framework can produce only a

single output, and multi-modal output refers to variations on a single output. For example, a

winter scene can be translated into different summer scenes with different lighting or weather

conditions.

Two-domain single-modal I2I

Two-domain single-modal I2I refers to frameworks that can translate images between two

domains resulting in only one translated image. We begin by reviewing some pioneering

research that inspired unpaired I2I.
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CycleGANs16 learn a mapping G: X → Y such that the distribution of images from

G(X) is indistinguishable from the distribution from Y ; CycleGANs use an adversarial loss

expressed as

LCycleGANs(G,DY , X, Y ) = Ey∼pdata(y)[logDY (y)] + Ex∼pdata(x)[log(1−DY (G(x)))], (2.27)

where G generates images G(x) that look similar to images from domain Y , while DY

distinguishes between translated samplesG(x) and real samples y. Gminimizes this objective

against an adversary D that maximizes it. CycleGANs introduce a similar adversarial loss

for the mapping function G′: Y → X as well as its discriminator DX . CycleGANs introduce

a cycle consistency loss to enforce G′(G(X)) ≈ X, meaning for each image x from domain X,

the image translation cycle should bring x back to the original image. The cycle consistency

loss is calculated as

LCycleGANs(G,G
′) = Ey∼pdata(y)[||G(G′(y))− y||1] + Ex∼pdata(x)[||G

′(G(x))− x||1]. (2.28)

The full objective is

L(G,G′, X, Y ) = LGAN(G,DY , X, Y ) + LGAN(G′, DX , Y,X) + λLcyc(G,F ), (2.29)

where λ controls the relative importance of the two objectives. We solve for

G∗, G′∗ = arg min
G,G′

max
Dx,Dy

L(G,G′, X, Y ). (2.30)

U-GAT-IT60 stands for unsupervised generative attentional networks with adaptive layer-

instance normalization for image-to-image translation. U-GAT-IT has an attention module

that guides a model to focus on more important regions, distinguishing between source and

target domains based on the attention map obtained by the auxiliary classifier. Moreover, the

AdaLIN (adaptive layer-instance normalization) function helps our attention-guided model

to flexibly control the amount of change in shape and texture by learned parameters depend-

ing on datasets. The translation model consists of an encoder Es and an auxiliary classifier

ηs(x) trained to learn the weight of the k-th feature map for the source domain, wks , by

using global average pooling and global max pooling; i.e., ηs(x) = σ(
∑

k w
k
s

∑
ij E

kij
s (x)).
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By exploiting wks , we can calculate a set of domain specific attention feature maps as(x) =

ws ∗ Es(x) = {wks ∗ Ek
s (x)|1 ≤ k ≤ n}, where n is the number of encoded feature maps.

Residual blocks are equipped with AdaLIN whose parameters, γ and β, are dynamically

computed by a fully connected layer from the attention map.

AdaLIN(a, γ, β) = γ(ρ ∗ âI + (1− ρ) ∗ âL) + β (2.31)

âI =
a− µI√
σ2
I + ε

, âL =
a− µL√
σ2
L + ε

, (2.32)

ρ← clip[0,1](ρ− τ∆ρ) (2.33)

µI , µL are channel-wise, layer-wise mean, and σI , σL are standard deviations, γ and β are

parameters generated by the fully connected layer, τ is the learning rate, and ∆ρ indicates

the parameter update vector (e.g., the gradient) determined by the optimizer. A special loss

function used in this research is CAM loss, which is the classification loss. Imposing this loss

function shows the generator and discriminator where they must improve or what makes the

most difference between the two domains in the current state.

UAIT61 stands for unsupervised attention-guided image-to-image translation, where unsu-

pervised attention mechanisms are introduced to jointly train with generators and discrim-

inators. The proposed approach has two attention networks. One AS extracts attention

maps of images from the source domain, and another AT extracts attention maps of images

from the target domain. The translated image is evaluated by

s′ = sa � FS→T (s) + (1− sa)� s, (2.34)

where FS→T (s) translates source image s to the target domain T , and sa is the attention

map.

UAITs also embed attention mechanisms into the discriminator, which only considers

attended regions. Simply using sa�s is problematic because real samples fed to the discrim-

inator now depend on the initially-untrained attention map sa. This leads to mode collapse

if all networks in the GAN are trained jointly. To overcome this issue, UAITs first train
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the discriminators on full images for 30 epochs, and then switch to masked images once the

attention networks AS and AT have developed. Further, with a continuous attention map,

the discriminator may receive fractional pixel values, which may be close to zero early in

training. While the generator benefits from the ability to blend pixels at object boundaries,

multiplying real images by these fractional values causes the discriminator to learn that mid

gray is real. Thus, they provide a threshold for the learned attention map for the discrimi-

nator. The loss functions are common, which include adversarial loss and cycle consistency

loss.

TIIT62 stands for towards instance-level image-to-image translation. TIIT is based on

MUNIT28 and equipped with instance-level translation. MaskRCNN63 is used to extract

(multiple) instance(s) from images. Translation is done by swapping style codes but keeping

content codes. The loss functions are similar to MUNIT, which include cycle consistency

loss, adversarial loss, and latent codes reconstruction loss, but TIIT uses the global level and

MUNIT the local instance level.

AGOT64 stands for attention-GAN for object transfiguration in wild images. This frame-

work also introduces an attention mechanism into an image-to-image translation framework.

AGOT, however, is supervised; i.e. they train the attention network with segmentation

annotations. Like UAIT, they express translated images as

s′ = sa � FS→T (s) + (1− sa)� s, (2.35)

where FS→T (s) translates source image s to the target domain T , and sa is the attention

map. The loss functions used to train the network are standard for other image-to-image

translation frameworks. The loss functions are adversarial loss, cycle consistency loss, and

a sparse loss to encourage the attention network to focus on a small region related to the

object instead of the whole image. The sparse loss is the L1 loss of attention maps.

AGGAN65 stands for attention-guided generative adversarial networks for unsupervised

image-to-image translation. AGGANs embed an attention module inside the generator. Like
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other image-to-image translation frameworks, AGGAN learns two attention maps, one from

the source domain to the target domain and another in the reverse direction. For example,

the generator (GX→Y ) : x→ [My, Ry, Gy] takes in source image x and outputs an attention

map (My), content map (Ry), and translation results Gy. The attention maps define a per

pixel intensity specifying to what extent each pixel in the content maps will contribute to the

final rendered image. Translation results Gy can be obtained by Ry ∗My +x∗ (1−My). The

generator only considers the attended area, but the discriminator looks at the entire region.

Therefore, an attention mechanism is added to the discriminator, so it only focuses on the

area of interest. The final loss function comprises attention-guided adversarial loss and cycle

consistency loss. To reduce changes and constrain generators, we adopted pixel loss between

the input images and the generated images. To prevent attention maps being saturated to

1, at which point, the attention-guided generator has no effect, generators perform a total

variation regularization over attention maps.

MUNIT & DRIT28;29 share similar ideas: the generator consists of a style encoder and

a content encoder. The content encoder extracts content codes, which are assumed to be

domain-invariant, and the style encoder outputs style codes that are domain-variant. When

MUNIT and DRIT perform image translation, the style codes of different domains are ex-

changed, and the content codes are kept. Like other GANs-based models, they use a discrim-

inator to distinguish images of different domains. The loss functions for training the model

are adversarial losses for translated results, cycle-consistency loss, image reconstruction loss

when decoded back from the latent codes, and latent code reconstruction loss. Image recon-

struction loss and latent code reconstruction loss have not been discussed, so they will be

illustrated here. We can reconstruct images using the decoder on the latent codes obtained

from the encoders, so the image reconstruction loss is expressed as

Lxrecon = ‖D(Ec(x), Es(x))− x‖1 , (2.36)

where Ec is the content encoder, and Es is the style encoder. D is the decoder. Latent codes

can be reconstructed from the translated images, and the latent code reconstruction loss is
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expressed as

Lcrecon = ‖c′m − cm‖1 ; (2.37)

Lsrecon = ‖s′n − sn‖1 , (2.38)

where cm and sn are content codes of xm and style codes of xn. Encoding the translated

image xmn produces (c′m, s
′
n).

StyleGANs13 are based on the progressively growing gan56; both the generator and dis-

criminator grow progressively, starting from a low resolution of 4× 4 and adding new layers

that model increasingly fine details as training progresses before achieving high resolution of

1024 × 1024. Several techniques can increase the quality of the final images. The first uses

minibatch standard deviation, which solves one problem with gans; they have a tendency to

capture only a subset of the variation found in training data. Their solution is to compute

the standard deviation for each feature in each spatial location over the minibatch. Then,

these estimates are averaged over all features and spatial locations to arrive at a single value.

They replicate the value and concatenate it to all spatial locations and over the minibatch,

yielding one additional feature map, which is inserted towards the end of the discriminator.

The second technique solves the problem of GANs being prone to escalating signal mag-

nitudes as a result of unhealthy competition between the discriminator and the generator.

Using a trivial N(0, 1) initialization and then explicitly scaling the weights at runtime re-

places carefully designed weight initialization. Another technique is to normalize the feature

vector in each pixel to unit length in the generator after each convolution layer.

StyleGAN is based on a progressively growing gan, but it makes several improvements. The

biggest change is removing the progressive grow training scheme. First, an 8-layer multi-

layer perceptron is used on the initial latent code z that produces an intermediate style code

w. Then, w is injected into the generator using adaptive instance normalization (AdaIN)
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operations after each convolution layer. The AdaIN operation is defined as

AdaIN(xi, y) = ys,i
xi − µ(xi)

σ(xi)
+ yb,i, (2.39)

where each feature map xi is normalized separately and then scaled and biased using the

corresponding scalar components from style y. Finally, the generator is provided a direct

means to generate stochastic detail by introducing explicit noise inputs. These are single-

channel images consisting of uncorrelated Gaussian noise. We fed a dedicated noise image

to each layer of the synthesis network.

2.3 Flow-Based Model for I2I Translation

Autoencoders and generative adversarial networks do not explicitly model the probability

density function of data. Flow-based models try to do so using normalizing flows, which are

a powerful statistical tool for density estimation. Normalizing flows66 transform a simple dis-

tribution into a complex one by applying a sequence of invertible transformation functions.

Flowing through a chain of transformations, such models repeatedly substitute one variable

for a new one according to the change of variables theorem, eventually obtaining a prob-

ability distribution of the final target variable. Mathematics requires in normalizing flows

that all transformation functions be easily invertible and their Jacobian determinant easy

to determine. There are three important models with normalizing flows. Dinh et al.67 used

RealNVP (real-valued non-volume preserving) to implement a normalizing flow by stacking

a sequence of invertible bijective transformation functions. Dinh et al.68 also used a pre-

decessor model of RealNVP called NICE (non-linear independent component estimation),

whose transformation is the affine coupling layer without the scale term, known as an addi-

tive coupling layer. Kingma and Dharimal69 extended previous reversible generative models,

NICE and RealNVP, and simplified the architecture by replacing the reverse permutation

operation on the channel ordering with invertible 1x1 convolutions. The details of these

models are reviewed in detail in Chapter 2.
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Image-to-image translation would be easy if we could find the hidden factors behind the

images that control whether the image is, for instance, a cat or dog. When we discuss GANs

and VAEs, latent codes z are important intermediaries between source images and translated

images. However, neither of them explicitly learns the probability density function because it

is too difficult. Flow-based models can find such disentangled factors, so we can manipulate

them to turn, for example, cat images into dog images.

Flow-based generative models are based on the change of variable theorem, which is

briefly illustrated here. Given a random variable z and its known probability density function

z ∼ π(z), we construct a new random variable using a 1-1 mapping function x = f(z), whose

inverse function z = f−1(z) exists. We can infer p(x) using∫
p(x)dx =

∫
π(z)dz = 1 (2.40)

p(x) = π(z)|dz
dx
| = π(f−1(x))|df

−1

dx
| = π(f−1(x))|(f−1)′(x)|. (2.41)

The multivariable version has a similar format:

z ∼ π(x), x = f(z), z = f−1(x) (2.42)

p(x) = π(z)|det
dz

dx
| = π(f−1(x))|det

df−1

dx
| (2.43)

where det dz
dx

is the Jacobian determinant of the function f . A normalizing flow transforms a

simple distribution into a complex one by applying a sequence of invertible transformation

functions. Flowing through a chain of transformations, we repeatedly substitute each variable

for a new one following the change of variables theorem and eventually obtaining a probability

distribution of the final target variable. To illustrate, we have x = zi = fi(zi−1), zi−1 =
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fi−1(zi−2), ..., z1 = f1(z0); then we have

zi−1 ∼ pi−1(zz−1) (2.44)

zi = fi(zi−1)→ zi−1 = f−1i (zi) (2.45)

pi(zi) = pi−1(f
−1
i (zi))|det

df−1i
dzi
| (2.46)

= pi−1(zi−1)|det(
dfi
dzi−1

)−1| according to inverse function theorem. (2.47)

= pi−1(zi−1)|det
dfi
dzi−1

|−1 according to property of the Jacobian invertible function, then

(2.48)

logpi(zi) = logpi−1(zi−1)− log|det
dfi
dzi−1

| (2.49)

= logpi−2(zi−2)− log|det
dfi−1
dzi−2

| − log|det
dfi
dzi−1

| (2.50)

= ... = logp0(z0)−
K∑
i=1

log|det
dfi
dzi−1

| p0(z0) is known to us. (2.51)

The path traversed by the random variables zi = fi(zi−1) is the flow, and the full chain formed

by successive distributions pi is called a normalizing flow. Required by the computation

in the equation, a transformation function fi should be easily invertible and its Jacobian

determinant easy to compute.

RealNVP67 stands for real-valued non-volume preserving, which implements a normalizing

flow by stacking a sequence of invertible bijective transformation functions. In each bijection

f : x→ y, known as affine coupling layer, the input dimensions are split into two parts. The

first d dimensions remain the same, and the rest undergo an affine transformation. Both the

scale and shift parameters are functions of the first d dimensions, so we have

y1:d = x1:d (2.52)

yd+1:D = xd+1:D � exp(s(x1:d)) + t(x1:d), (2.53)

where s(.) and t(.) are scale and translation functions, and both map. The � operation

is the element-wise product. The mapping function is easily invertible, and its Jacobian
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determinant is easy to compute: exp(
∑D−d

j=1 s(x1:d)j). Furthermore, RealNVP can work in

a multi-scale architecture to build a more efficient model for larger inputs. The multi-scale

architecture applies several sampling operations to normal affine layers, including spatial

checkerboard pattern masking, squeezing, and channel-wise masking.

NICE68 stands for non-linear independent component estimation, a predecessor of RealNVP.

The transformation in NICE is the affine coupling layer without the scale term, known as

an additive coupling layer.

y1:d = x1:d (2.54)

yd+1:D = xd+1:D +m(x1:d). (2.55)

GLOW69 stands for generative flow with invertible 1x1 convolutions. The GLOW model

extends the previous reversible generative models, NICE and RealNVP, by replacing the

reverse permutation operation on the channel ordering with invertible 1×1 convolutions. The

flow module in GLOW consists of three sub-modules. It begins with activation normalization,

which performs an affine transformation using one scale and bias parameter per channel. The

parameters are trainable but initialized, so the first minibatch of data has a mean of 0 and

standard deviation of 1 after normalization. The second step in the flow module is invertible

1× 1 convolution, which is a generalization of any permutation of the channel ordering. For

instance, we have an invertible 1× 1 convolution of an input hw × c tensor h with a weight

matrix W of size c× c. The output is a h× w × c tensor, labeled as f = conv2d(h;W). We

must compute the Jacobian determinant, det df
dh

, to apply the change of variable rule. The

input and output after 1× 1 convolution can be viewed as a matrix of h×w. Each entry xij

in h is a vector of c channels, and each entry is multiplied by the weight matrix W to obtain

the corresponding entry yij in the output matrix. The derivative of each entry is
dxijW

dxij
= W ,

and there are h× w such entries in total, so we have

log|det
dconv2d(h;W )

dh
| = log(|detW|hw) = hwlog|detW |. (2.56)
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The inverse 1× 1 convolution depends on the inverse matrix of W−1. The weight matrix

is relatively small, so the amount of computation for the determinant and inversion is not

huge. The last step in the flow module is the affine coupling layer, which shares the same

design as RealNVP.

2.4 Summary

I2I translation is of great significance, and various computer vision tasks can be posed as

and benefit from it. Class imbalance issues in image classification is one such example. Class

imbalance issues occur when one class of images have far fewer entries than the other classes

of images. Deep learning models trained on imbalanced data sets tend to be biased and

sensitive. One can use a I2I translation model to synthesis fake samples, so data sets become

more balanced. Image super-resolution is another example of I2I translation, which refers

to turning low-resolution images to high-resolution ones. Image super-resolution is of great

value. One application is that one only needs to transmit a low resolution image over the

internet at low cost, and then the recipient restores the image to high resolution using a

trained model.

I2I translation not only has wide practical uses but is also a study that constantly en-

courages new theoretical breakthroughs. I2I translation can benefit from the information in

Chapter 2: autoencoders, GANs, and flow-based models. We can impose various regular-

izations on loss functions to learn disentangled representations of input data, which directly

inspires the study of I2I translation. For example, varying the smile dimension in learned

disentangled representation can turn neutral faces into smiling ones. Another kind of gen-

erative models are flow-based models, which are based on the change of variable theorem

and learning an invertable mapping from image to image, which is a natural option for mod-

elling I2I. GANs can generate images with higher quality than autoencoders via adversarial

training. The generator can be even be an AE, a flow-based model, or a mix of the two,
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which provides many options in designing generative models. Flow-based models can di-

rectly model data distribution instead of sampling through a prior latent distribution as in

GANs, and it can also help reveal disentangled latent factors, which can be used directly for

I2I translation.

In the next four chapters, I will outline potential approaches to I2I translation with

methods mostly focused on GANs and AEs.
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Chapter 3

A Unified Framework for

Unsupervised I2I Translation

Image-to-image translation refers to translating images from one domain to another featuring

different styles, styles that are visually distinct. An example is the task of turning images of

cartoon sketches into real-life graphs. Many tasks in computer vision can be viewed as image-

to-image translation, such as image inpainting19, style transfer20;21, and super-resolution22.

Supervised image-to-image translation tasks need paired data sets that are costly to obtain,

and such tasks are relatively easier to solve than their unsupervised counterparts. Under

paired data supervision, image-to-image translation can be done by taking a regression ap-

proach23 or using conditional generative models24. Our work addresses the more challenging

unsupervised image-to-image translation task without access to paired data sets. Most re-

search into unsupervised image-to-image translation draws inspiration from CycleGANs25

using the cycle consistency constraint, research that has achieved impressive results. More

recent studies have improved upon CycleGANs and can translate images among multiple

domains. The research often operates under the assumption that latent codes can be de-

composed as content codes and style codes28;29. Translation thus exchanges style codes from
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different domains while keeping the original content codes. Style codes, however, are simply

sampled from a standard normal distribution, which leads to inferior translation results.

Moreover, these translations require training n(n − 1) generators and n discriminators to

learn to translate images among n domains, which is costly. In our study, I suggest a sim-

pler yet more effective approach. Our framework shares the assumption that style codes

are domain-dependent and content codes are domain-invariant. However, our approach uses

only one generator-discriminator pair and a mapping network, which learns the style codes

of different domains. I also used several effective techniques for encouraging more diverse

translated results. Extensive experiments showed that our framework is superior or compa-

rable to state-of-the-art (SOAT) baselines. To summarize, the novel contributions for this

part of work include

• A new I2I translation framework that is simplified yet more effective than existing

approaches and reduces network size and training time.

• A novel framework that consists of a mapping network to learn styles of different

domains, which leads to better translation results.

• Several regularization techniques to impose the assumption that content codes are

domain-invariant and style codes are diverse.

• Extensive experiments on publicly available data sets show that this framework is

superior or comparable to SOTA baselines.

3.1 Related Work

Generative adversarial networks. Ideally, generative models learn how data is dis-

tributed, thus allowing data synthesis from the learned distribution. Since the advent of

GANs70, generative models have achieved impressive results in tasks like image editing52;53
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and style transfer21. GANs try to learn the data distribution by approximating the similarity

of distributions between the training data and the fake data produced by the learned model.

GANs usually comprise a generator and a discriminator. The entire model learns by playing

a min-max game: the generator tries to fool the discriminator by gradually generating real-

istic data samples, and the discriminator, in turn, tries to distinguish real samples from fake

ones. GANs have been improved in various ways. To produce more realistic samples, an

architecture of stacked GANs has been proposed: the laplacian pyramid of GANs54; layered,

recursive GANs55; progressive growing GANs56; and style-based GANs20;21. Several stud-

ies have attempted to solve the instability training of GANs using energy-based GANs57,

Wasserstein GANs58, and boundary equilibrium GANs59. In this study, I used GANs with

improved techniques to learn the distribution of data and how to translate among different

domains.

Unsupervised image-to-image translation. Unsupervised image-to-image translation

takes images from one domain and translates them to another without paired data supervi-

sion. Much success in unsupervised image-to-image translation is due to the cycle consistency

constraint, proposed in three earlier research reports: CycleGANs25, DiscoGANs26, and Du-

alGANs27. To translate more than two domains, MUNIT28 and DRIT29 can be used. These

methods, however, naively sample style codes from a standard normal distribution, which

leads to inferior translation results. Moreover, they require training n(n− 1) generators and

n discriminators for translating images among n domains, which is computationally expen-

sive and time-consuming. Our method involved a simpler yet more effective approach that

required only one set of generator-discriminator. Recent systems like StarGAN230 and Mod-

ularGANs31 were developed for multimodal image-to-image translation to produce images

with the same content but different contexts. Inspired by StyleGANs20, I used a mapping

network to model style codes of different domains. Furthermore, I added several regulariza-

tion techniques to encourage diversity in translated results.
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3.2 Methods

3.2.1 Preliminaries

Let x be an image that belongs to one of many domains. Graph (a) in Figure 6.1 shows

an overview of our model. I began with a latent vector z sampled from a standard normal

distribution. z goes through a mapping network, which learns style codes s of a specific

domain, where m is a domain label and s = M(z,m). I furthermore used a content encoder

Ec to extract content codes c from image inputs. The decoder D takes content and style

codes to generate reconstructed images x′, which are then used by style encoder Es to

produce reconstructed style codes s′. I computed two L1 losses using the reconstructed

images and style codes. Finally, I used a multi-task discriminator to distinguish real images

from generated ones. During the translation phase, I kept the original content codes but used

the style codes of the target domains. Graph (b) of Figure 6.1 illustrates image translation

between two domains.

Figure 3.1: The structure of our framework. (a) shows how our framework learns and (b)
shows cross-domain translation within two domains.
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3.2.2 Training Objectives

In this section, I discuss the loss functions for learning in our framework.

Image reconstruction loss. After images are encoded to style and content codes, the

decoder maps the latent space back to the image space and reconstructs the image. Image

reconstruction loss is formulated as

Lxrecon = ‖D(Ec(x),M(z,m))− x‖1 , (3.1)

where m is the domain to which image x belongs.

Style code reconstruction loss. After encoding reconstructed images using the style

encoder, I obtained reconstructed style codes. I constructed the style code reconstruction

loss as follows:

Lsrecon = ‖s− Es(x′)‖1 , (3.2)

where x′ = D(Ec(x),M(z,m)) and x ∈ Xm.

Regularization of style and content codes. To further encourage domain-variant

style codes and domain-invariant content codes, I added regularizers to style and content

encoders. The style regularizer forces style codes of different domains to differ by minimizing

Lsregu, which is calculated as

Lsregu = − ‖D(cm, sm)−D(cm, sn)‖1

−‖D(cn, sm)−D(cn, sn)‖1 ,
(3.3)

where (cm, sm) = (Ec(xm), Es(xm)) and (cn, sn) = (Ec(xn), Es(xn)). cm and sm are content

and style codes of image xm ∈ Xm. cn and sn are content and style codes of image xn ∈ Xn.

The content regularizer encourages content codes of different domains to remain similar by
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minimizing Lcregu, which is formulated as

Lcregu = ‖D(cm, sm)−D(cn, sm)‖1

+ ‖D(cm, sn)−D(cn, sn)‖1 .
(3.4)

Inspired by StarGAN230, I calculated style diversity as

Lds = ‖Es(x1)− Es(x2)‖1 , (3.5)

where z1 and z2 are two random latent vectors; x1 = D(Ec(x),M(z1,m)), and x2 =

D(Ec(x),M(z2,m)).

Adversarial loss. GANs are used to match the distribution of translated results to real

image samples, to the point that the discriminator finds real and fake samples indistinguish-

able. I used two adversarial losses with one for learning latent-guided translation and the

other for reference-guided translation. Latent-guided translation refers to using the mapping

network to obtain target style codes, and reference-guided translation uses the style encoder

to extract style codes of target domains. The adversarial loss for learning the discriminator

Cm with latent-guided translation is formulated as

Lladv = E
z∼N(0,I),xn∼p(Xn)

[logCm(D(Ec(xn),M(z,m)))]

+ E
xm∼p(Xm)

[log(1− Cm(xm))],

(3.6)

and the adversarial loss for learning the discriminator Cm with reference-guided translation

is constructed as

Lradv = E
xm∼p(Xm),xn∼p(Xn)

[logCm(D(Ec(xn), Es(xm)))]

+ E
xm∼p(Xm)

[log(1− Cm(xm))],

(3.7)

where the discriminator Cm attempts to identify if images are from the domain m.
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Full objective. Our full objective is formulated as follows:

min
M,E,D

max
C

λ1L
x
recon + λ2L

s
recon + λ3(L

s
regu + Lcregu)

+ λ4(L
l
adv + Lradv)− λ5Lds,

(3.8)

where λ1 to λ5 are hyperparameters for each loss term.

3.3 Theoretical Analysis

I established a theoretical foundation for our framework. Specifically, minimizing the pro-

posed loss functions led to 1) reconstructed images with the same distribution as the orig-

inal image. Further, the encoder and decoder had reverse functions. 2) The content codes

matched across domains with the interpolators mapping the source style codes to target style

codes. And 3) the conditional distributions p(xn|xm) and p(xm|xn) were estimated with the

learned distribution p(xm→n|xm) and p(xn→m|xn). For ease of notation, I denoted the two

conditionals p(xm→n|xm) and p(xn→m|xn) as p(xmn|xm) and p(xnm|xn).

3.3.1 Proposition 1

When the image reconstruction loss is minimized, reconstructed images have the same dis-

tribution as the original image, and the encoder and decoder are reverse functions.

Proof: The image reconstruction loss functions are described in (4.1) and (4.2). When

the reconstruction loss is minimized, the reconstructed images look similar to the original

images, which is to say p(xm) = p(xreconm ) = p(xmnm).
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If I have p(xm) = p(xreconm ), then

p(xreconm ) = p(D(Ec(xm), Es(xm))) = p(xm).

Thus, the encoder and decoder are reverse functions, which is to say E = (D)−1.

3.3.2 Proposition 2

When the adversarial loss is minimized, the content codes match across domains, and the

interpolator can map the style codes from the source domain to the target domain.

Proof: When (4.8) is minimized, the translated image is indistinguishable from images in

the target domain, meaning p(xmn) = p(xn) and p(xnm) = p(xm). Thus, we have

p(D(cn, sn)) = p(xn)

= p(xmn)

= p(D(cm, sn)).

Thus, p(cn) = p(cm), or the content codes match across domains. When translating style

codes across domains, an interpolator guides the transition. Therefore, the proof can be

written

p(D(cn, sn)) = p(xn)

= p(xmn)

= p(D(cm, sm→n))

= p(D(cm, Imn(sm, sn)))
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since p(cn) = p(cm), then p(Imn(sm, sn))) = p(sn). Similarly, p(Inm(sm, sn))) = p(sm), which

proves that the interpolator can effectively map style codes from the source domain to the

target domain.

3.3.3 Proposition 3

When optimality is achieved, the conditional distributions p(xm|xn) and p(xn|xm) can be

estimated with p(xnm|xn) and p(xmn|xm).

Proof: If p(xmn|xm) = p(D(cm, sn)|xm), and since p(cn) = p(cm), we can write

p(xmn|xm) = p(D(cm, sn)|xm)

= p(D(cn, sn)|xm)

= p(xn|xm).

Similarly, p(xnm|xn) = p(xm|xn), meaning the conditional distributions p(xm|xn) and p(xn|xm)

can be estimated with the learned distribution p(xnm|xn) and p(xmn|xm) without having to

know the joint distribution, p(xm, xn).

Data sets. I evaluated our framework on CelebA-HQ56 and AFHQ30 data sets. As with

StarGAN230, I separated CelebA-HQ as domains of male and female and AFHQ as domains

of cat, dog, and wild. For a fair comparison, all images were trained with size 256× 256, the

largest resolution supported by the baselines.

Evaluation metrics. I evaluated visual quality using Frechét inception distance (FID)71

and the diversity of translated images with learned perceptual image patch similarity (LPIPS)72.

FID measures the discrepancy between two sets of images. I translated each test image in
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the source domain into a target domain using 10 reference images randomly sampled from

the test set of the target domain. I then calculated FID between the translated images and

test images in the target domain. I calculated FID for every pair of image domains (e.g., cat

↔ dog) and reported the average value. LPIPS measures the diversity of generated images

using the L1 distance between features extracted from the pretrained AlexNet4. For each

test image from a source domain, I generated 10 outputs of a target domain using 10 refer-

ence images randomly sampled from the test set of the target domain. I then computed the

average of the pairwise distances among all outputs produced from the same input, which

are 45 image pairs. Finally, I reported the average LPIPS values over all test images. Lower

FID values indicated the two sets of images have similar distributions. Higher LPIPS values

indicated higher diversity of generated images.

To evaluate visual quality of translation results, I used the Amazon Mechanical Turk

(AMT) to compare the results against the baselines based on user preferences. Given a

source image and a reference image, AMT workers selected the best transfer result among

all models.

3.4 Experiments

3.4.1 Data Sets

I used data sets similar to those used in previous research on unsupervised I2I translation.

As in previous research24;28;52, I used images of shoes and their edge map images generated

by73. With 100,000 images of shoes ↔ edges, 400 images of them were used for testing; the

rest were used as the training data set. Fig. 3.2 provides an example of such edge maps for

shoes and handbags.

The cats ↔ dogs data set comes from Huang28, which contains approximately 2,300
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Figure 3.2: Examples of shoe and handbag edges

Figure 3.3: Examples of cat and dog images

images of cats and dogs. We used 100 images of cats and 100 images of dogs for testing; the

rest were used for training. Fig. 3.3 shows an example of cat and dog images.

3.4.2 Baselines

I compared our framework to three baseline models developed in recent years. Our framework

is closely related to MUNIT28 and DRIT29, which I also used as baseline models. More recent

46



Figure 3.4: Examples of animal and human images

research on unsupervised image-to-image translation used StarGAN230;74–76, which achieves

impressive results and was another baseline model in our study.

Data sets and framework details. We evaluated our framework on CelebA-HQ56

and AFHQ30 data sets. As with StarGAN230, we also separated CelebA-HQ as domains

of male and female, and AFHQ as domains of cat, dog, and wild. For a fair comparison,

all images were trained with images 256 × 256, which is the largest resolution supported

by the baselines. The detailed architecture of our framework and training details are in

Supplementary information, and code will available upon publication.

Evaluation metrics. We evaluated the visual quality using Frech´t inception distance

(FID)71 and the diversity of translated images with learned perceptual image patch similarity

(LPIPS)72. Images generated by our framework are compared with the testing data set to

calculate FID and LPIPS. Lower FID values indicate that the two sets of images have more

similar distributions. Higher values of LPIPS indicate higher diversity of generated images.
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Models Performance (↑)
MUNIT 2.820 %
DRIT 9.050 %
StarGAN2 43.50 %
Ours 44.63 %

Table 3.1: Votes from ATM workers for most preferred style transfer results.

Models CelebA-HQ AFHQ
FID(↓) LPIPS (↑) FID(↓) LPIPS (↑)

MUNIT 31.4 0.363 41.5 0.511
DRIT 52.1 0.178 95.6 0.326
StarGAN2 13.7 0.452 16.2 0.450
Ours 17.5 0.459 19.9 0.476
Test data 14.8 – 12.9 –

Table 3.2: Quantitative comparison on latent-guided translation.

3.5 Results

In this section, we show the qualitative and quantitative results of the experiments. An

ablation study was used to evaluate the effectiveness of several key design choices.

Qualitative results. We used the AMT to compare our results against the baselines.

Given a source image and a reference image, AMT workers selected the best transfer result

among all models. All ten workers answered 60 questions about images. Table 3.1 shows our

method slightly outperformed StarGAN230 and exceeded MUNIT28 and DRIT29 by a large

margin.

Quantitative results. The latent-guided and reference-guided translations were similar

to StarGAN230. Figure 3.6 provides examples. We used FID to evaluate the similarity of

distributions and LPIPS to evaluate the diversity of generated images. As tables 3.2 and 3.3

show, our method and StarGAN230 performed similarly, and both outperformed MUNIT28

and DRIT29 by a large margin other than latent-guided LPIPS results of MUNIT28 on

AFHQ. StarGAN230 achieved the lowest FID for the both data sets, and our method achieved

the highest LPIPS among all models.
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Models CelebA-HQ AFHQ
FID(↓) LPIPS (↑) FID(↓) LPIPS (↑)

MUNIT 107.1 0.176 223.9 0.199
DRIT 53.3 0.311 114.8 0.156
StarGAN2 23.8 0.388 19.8 0.432
Ours 25.3 0.391 22.3 0.439
Test data 14.8 – 12.9 –

Table 3.3: Quantitative comparison on reference-guided translation.

Ablation studies To further validate effects of key design choices in our framework, we

carried out ablation studies on the AFHQ data set. The results are shown in Figure 3.5

and Table 3.4. The model without style and content regularizer but with noise injection was

used as the vanilla model. We can see that a style regularizer effectively increases diversity

in generated images.

Modules FID (↓) LPIPS (↑)
vanilla model 29.1 –
+ noise injection 27.6 0.407
+ content regularizer 23.8 0.414
+ style regularizer 22.3 0.439

Table 3.4: FID and LPIPS results of incrementally adding modules to our framework for
reference-guided translation on the AFHQ data set. The vanilla model does not report LPIPS
result as it is a deterministic model.

Figure 3.5: An example of reference-guided translation by incrementally adding modules

3.6 Conclusions

In this report, I presented a simpler yet more effective framework for multimodal unsu-

pervised image-to-image translation. Our model consisted of a mapping network and a

generator-discriminator pair only. Unlike MUNIT28 and DRIT29 that simply sample style
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codes from a standard normal distribution when translating, we used a mapping network to

learn style codes of different domains. To further encourage diversity in translated images,

we used style regularizations and injected Guassian noise in the decoder. The qualitative

and quantitative results show that our framework is superior or comparable to the SOAT

baselines in multimodal unsupervised image-to-image translation.
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(a) Examples of reference-guided translation.

(b) Examples of latent-guided translation.

Figure 3.6: Examples of image-to-image translation guided by reference images and latent
codes
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Chapter 4

Improve Unsupervised I2I with

Fine-grained Control on Latent Space

Image-to-image (I2I) translation refers to translating images from one domain to another

domain with different properties. An example is the task of turning images of cartoon

sketches into real-life graphs. Many tasks in computer vision can be posed as I2I translation,

such as image inpainting19, style and attribute transfer20;21, and super-resolution22. Paired

I2I transfer tasks require paired data sets that are costly to acquire, making such tasks

relatively easier to solve than unpaired I2I transfer tasks. Chen and Koltun translated

paired images of semantic map to photographic images using a regression approach23. Isola

et al. framed paired I2I translation tasks with conditional generative models24. Our work

addresses the more challenging unpaired I2I task, where no paired data sets are available.

Most research on unpaired I2I translation draws inspiration from CycleGANs using the cycle

consistency constraint25, which have achieved impressive results. These models, however,

often have little control over translation strength and can only provide a single translated

image as output. Furthermore, they often disentangle latent space into domain-invariant

(content codes) and domain-specific parts (style codes). When translating, content codes
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are kept while style codes are exchanged. Domain-specific information, however, might still

exist in content codes, which leads to unnatural translation results if that information is not

removed77.

In this research, the need for fine-grained control over latent space demonstrated the

inferior translation capability of previous research that depended solely on the cycle consis-

tency constraint or translated images by simply exchanging style codes. Fine-grained control

over latent space manifests in three aspects: 1) latent codes can be decomposed into content

and style, much like DRIT29 and MUNIT28; 2) an interpolator, which is a neural network,

can guide the transformation of style codes instead of simply exchanging one style code to

another; and 3) domain-specific information in content code is removed before translation

for better translation results. Much like DRIT and MUNIT, our framework assumed that

latent space can be decomposed into content space by the content encoder and style space

by the style encoder. Before decoding the latent codes to obtain translated results, redun-

dant domain-specific information in content codes is removed. Furthermore, another set

of modules, which we called the interpolator, smoothly guide the transition of style codes,

allowing us to generate intermediate images with different degrees of transformation. In the

end, our framework differentiated translated images using a discriminator. Extensive exper-

iments demonstrated that our method is superior or comparable to state-of-the-art (SOTA)

baselines in unpaired I2I translation. The novel contributions of this research are

• A new framework with an embedded interpolator can control translation strength and

generate smooth-looking translation results of intermediate states.

• New techniques can remove domain-specific information in content codes.

• A simplified framework architecture was based on MUNIT, reduced the size and train-

ing time, but achieved better translation performance.

• Extensive experiments on publicly available data sets showed that the framework is

superior or comparable to SOTA baselines.
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4.1 Related Work

Generative adversarial networks. Ideally, generative models learn how data is dis-

tributed, thus allowing data synthesis from the learned distribution. Since the advent of

GANs70, generative models have achieved impressive results in both image editing52 and

style transfer21. GANs try to learn the data distribution by approximating the similarity of

distributions between the training data and the fake data produced by the learned model.

GANs usually comprise a generator and a discriminator. The entire model learns by play-

ing a min-max game: the generator tries to fool the discriminator by gradually generating

realistic data samples, and the discriminator, in turn, tries to distinguish real samples from

fake ones. GANs have improved in various ways. To produce more realistic samples, an

architecture of stacked GANs has been proposed: the laplacian pyramid of GANs54; layered,

recursive GANs55; and style-based GANs20;21. Several studies have attempted to solve the

instability training of GANs using energy-based GANs57, Wasserstein GANs58, and bound-

ary equilibrium GANs59. In this study, I used GANs with improved techniques to learn the

distribution of image data and translate them to different domains.

Unpaired I2I translation. Unpaired I2I translation translates images from one do-

main to another without paired data supervision. Much success in unpaired I2I translation

is due to the cycle consistency constraint, proposed in earlier research: CycleGANs25, Disco-

GANs26, and DualGANs27. Recent systems like MUNIT28 and DRIT29 were developed to

perform multimodal I2I translation, which refers to producing images with the same content

but different contexts. For example, a winter scene could be translated into many different

summer scenes depending on weather or lighting. To translate into more than two domains,

StarGAN-V230 and ModularGANs31 were proposed. I2I translation methods using GANs

that rely only on cycle consistency constraints usually suffer from the issue of discreteness,

which refers to inability to continuously control the transformation strength. In this study, I

used an interpolator to guide the translation, which allowed us to generate visually appealing

intermediate translation results.
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Our framework is closely related to MUNIT in that latent space can be decomposed

into a style sub-space and a content sub-space. Our framework, however, differs from MU-

NIT in four aspects: 1. Instead of having to train n(n − 1) sets of encoder-decoder for

translating images between n domains, our framework consists of only one such set that

works for multi-domains; 2. Our framework does not impose a Gaussian prior distribution

for style codes, instead learning distributions during training; 3. Our framework removes

redundant domain-specific information in content codes before translation, thus generating

more natural-looking results; 4. Most unpaired I2I translation models that depend on cycle-

consistency loss cannot generate sequences of intermediate translation results. I used an

interpolator module that helped smoothly translate the latent codes of different domains

and produced visually satisfying intermediate translation results.

4.2 Methods

4.2.1 Preliminaries

Let xm ∈ Xm and xn ∈ Xn be two images from domain Xm and domain Xn. Our goal was to

estimate the conditional distributions p(xm|xn) and p(xn|xm) using the learned distribution

p(xn→m|xn) and p(xm→n|xm), given the marginal distribution of p(xm) and p(xn) but without

requiring access to the joint distribution of p(xm, xn). Figure 4.1 shows an overview of

our model. Our framework starts with an encoder E = (Es, Ec) that maps images from

image space to latent space, where Es is the style encoder and Ec is the content encoder.

The latent codes consist of style latent codes (sm, sn) and content latent codes (cm, cn),

where (cm, sm) = (Ec(xm), Es(xm)) and (cn, sn) = (Ec(xn), Es(xn)). After style codes are

obtained, an interpolator I helps transform the style codes across different domains. The

translated style codes sm→n and sn→m are obtained by calculating sm + α ∗ Imn(sn − sm)

and sn + α ∗ Inm(sm − sn), where α is the transformation strength. Style is injected into
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Figure 4.1: The structure of our framework: (a) shows within-domain image reconstruction,
and (b) shows key components of the decoder. The number of convolutional layers are more
than what the graph shows; (c) shows cross-domain translation.

the decoder by AdaIN78 operations. Before injecting the style of the target domain, I

removed domain-specific information by injecting the negative style of the same domain;

the strength of the negative style is learned during training. Inspired by StyleGAN20, I

introduced stochastic variation into our model by injecting noise into the decoder. After the

transformed style codes are obtained, the decoder D decodes the style and content codes back

to image space, thus generating translated images xmn and xnm, where xmn = D(cm, sm→n)

and xnm = D(cn, sn→m). Finally, the discriminator C tries to differentiate real images from

fake ones.

4.2.2 Loss Functions

In this section, I discuss the loss functions and the training algorithm of our framework.
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Image reconstruction loss. After images are encoded to style and content codes, the

decoder can map them back to the image space and reconstruct the image. Therefore, the

image reconstruction loss of xm is formulated as

Lxmrecon = ‖D(Ec(xm), Es(xm))− xm‖1 , (4.1)

and Lxnrecon is expressed similarly. After images are translated from one domain to another,

the images in the source domain can be reconstructed by inverting the process. For example,

xmn has the content of image xm and the style from domainXn. xmn is obtained by evaluating

D(cm, sn). Encoding xmn again produces (c′m, s
′
n), and by decoding D(c′m, sm), xm, which is

now denoted by xmnm, can be reconstructed. Thus, Lxmnmrecon is calculated as

Lxmnmrecon = ‖xmnm − xm‖1 = ‖D(Ec(xmn), Es(xm))− xm‖1 . (4.2)

Similarly, Lxnmnrecon = ‖xnmn − xn‖1. The reconstructed images should be consistent with the

semantics of the original images, so perceptual loss was penalized to minimize the semantic

difference:

Lxmperc = ‖Φ3(D(Ec(xm), Es(xm)))− Φ3(xm)‖2 , (4.3)

where Φ3 denotes the ReLU3 1 layer of a pretrained VGG network79. Perceptual loss

was similarly calculated for Lxnperc, L
xmnm
perc , and Lxnmnperc .

Latent code reconstruction loss. By encoding the translated images, I obtained a

new set of content and style codes. For example, encoding the translated image xmn produces
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(c′m, s
′
n). The latent code reconstruction loss was calculated as

Lcrecon = ‖c′m − cm‖1 ;Lsrecon = ‖s′n − sn‖1 . (4.4)

Interpolation loss. Given latent codes of two domains means latent codes can be

interpolated linearly. For example, sm + α ∗ (sn − sm) translates sm to sn under translation

strength α. This approach, however, does not guarantee smooth-looking results because the

translation path might not be linear. I used an interpolator to smoothly transition style

codes of different domains, calculated as sm + α ∗ Imn(sn − sm). α, a random value that

is uniformly sampled from 0 to 1, controls the translation strength. For domain labels,

however, I adopted a linear interpolation strategy. That is to say, I linearly interpolated the

domain labels using the same α and used the interpolated domain label as ground truth. The

intuition behind this is that linearly interpolated images should have linearly interpolated

labels, but linearly interpolated images are not guaranteed to be smooth-looking. Therefore,

an interpolator network is trained to guide the translation. The discriminator C is trained

to produce realistic fake images and also to predict domains of images. I used the binary

cross entropy (BCE) loss and adversarial loss jointly to train the interpolator. The BCE loss

function for the interpolator Imn is calculated as

LImn = BCE(C(xmn), gt domain), (4.5)

where xmn is a translated image via D(cm, sm + α ∗ Imn(sn − sm)) and gt domain is the

ground truth domain label, which is linearly interpolated via labelm + α ∗ (labeln − labelm).

LInm can be calculated similarly.

Regularizers on style and content codes. To further encourage style codes to remain
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domain-variant and content codes domain-invariant, I added regularizers on the style and

content codes. The style regularizer forces style codes of different domains to differ by

minimizing Lsregu, which is calculated as

Lsregu = −‖D(cm, sm)−D(cm, sn)‖1 − ‖D(cn, sm)−D(cn, sn)‖1 . (4.6)

The content regularizer encourages content codes of different domains to be similar by min-

imizing Lcregu, which is calculated as

Lcregu = ‖D(cm, sm)−D(cn, sm)‖1 + ‖D(cm, sn)−D(cn, sn)‖1 . (4.7)

Adversarial loss. GANs match the distribution of translated results to real image

samples, so the discriminator finds real and fake samples indistinguishable. The loss for

learning the discriminator C is calculated as

LxmnC = E
cm∼p(cm),sm→n∼p(sn)

[log(1− C(D(cm, sm→n)))] + E
xn∼p(Xn)

[logC(xn)], (4.8)

where the discriminator C tries to differentiate real images from Xn and translated images

xmn. LxnmC is obtained similarly.

Model training. We alternately trained our discriminator and the rest of the modules:

encoders, decoders, mapping networks, and the interpolator. The training procedure of our

framework is illustrated in Algorithm 1 using a convergence bound B that is empirically
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calibrated at 1,000,000.

Algorithm 1: Model Training

Result: style encoder E s , content encoder E c, interpolators Imn , I nm , decoder D ,

and βm , βn that control the strength of negative style injected for

removing domain dependent information.

n = 0;

while n < B do

Calculate LxmnC , LxnmC according to (4.8);

Update the discriminator C ;

Calculate Lxmrecon, L
xn
recon, L

xmnm
recon , L

xnmn
recon according to (4.1), (4.2);

Calculate Lxmperc, L
xn
perc, L

xmnm
perc , Lxnmnperc according to (4.3);

Calculate Lcrecon, L
s
recon according to (4.4);

Calculate LImn , LInm according to (4.5);

Calculate Lsregu, L
c
regu according to (6.4), (6.9);

Update the decoder D , the style encoder E s , the content encoder E c, βm , βn ,

and the interpolator Imn , I nm ;

n+ +;

end

4.3 Experiments

This section provides information about the data sets, baselines, and evaluation metrics that

we used to test our framework.

Data sets. As in previous research24;28;52, we used images of shoes and their edge map

images generated by73. There are 100,000 images of shoes ↔ edges, and of these images,

400 were used for testing; the rest were used for training. The cats ↔ dogs data set came

from28, which has approximately 2,300 images of cats and dogs. We retained 100 images of
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cats and 100 images of dogs for testing, using the rest for training.

Baselines. We compared our framework to three baseline models developed in recent

years. Our framework is closely related to DRIT and MUNIT, which we used as baseline

models. StarGAN-V230 was recently proposed and achieved SOTA results on unpaired I2I

translation. Therefore, we used StarGAN-V2 as another baseline in our study.

Evaluation metrics. We evaluated the visual quality using Frechét inception distance

(FID)71 and the diversity of translated images with learned perceptual image patch similarity

(LPIPS)72. FID measures the discrepancy between two sets of images. We translated each

test image in the source domain into a target domain using 10 reference images randomly

sampled from the test set of the target domain. We then calculated FID between the

translated images and test images in the target domain. We calculated FID for every pair

of image domains (e.g., cat ↔ dog) and reported the average value. LPIPS measured the

diversity of generated images using the L1 distance between features extracted from the

pretrained AlexNet4. For each test image from a source domain, we generated 10 outputs

of a target domain using 10 reference images randomly sampled from the test set of the

target domain. Then, we computed the average of the pairwise distances among all outputs

produced from the same input, or 45 image pairs. Finally, we reported the average of the

LPIPS values over all test images. Lower FID values indicate that the two sets of images

have similar distributions. Higher values of LPIPS indicate higher diversity of generated

images.

FID71 and the diversity of translated images using LPIPS72 are commonly used tp evalu-

ate I2I translation performance. FID measures the distribution similarity between translation

results and test set. LPIPS measures the diversity of generated images. Lower FID values

indicate that the two sets of images have similar distributions. Higher LPIPS values indicate

higher diversity of generated images.

61



Table 4.1: Votes from ATM workers for most preferred style transfer results.
Models Performance (↑)
MUNIT 13.22 %
DRIT 15.06 %
StarGAN-V2 35.11 %
Ours 36.61 %

4.4 Results

In this section, we provide the qualitative and quantitative results of the experiments. An

ablation study is also included for evaluating the effectiveness of several key design choices.

Qualitative results. Graph (a) of Figure 4.2 shows several example translation results

of different models. To evaluate visual quality of translation results, user preferences from

Amazon Mechanical Turk (AMT) compared our results against the baselines. Given a source

image and a reference image, we instructed AMT respondents to select the best transfer

result among all models. We asked 60 questions of all ten workers. As shown in Table 4.1,

our translation method slightly outperforms StarGAN-V230 and exceeded MUNIT28 and

DRIT29 by a large margin. Unlike the baselines, which suffered from the issue of discreteness

and could produce only one final translation image, our framework generated sequences

of intermediate translation results by interpolating style codes using different translation

strengths. Graph (b) in Figure 4.2 shows results of translating between the cat and dog

domains under different strengths of translation. Our framework used sm +α ∗ Imn(sn− sm)

during interpolation, which generated smooth-looking intermediate results. By default, other

baselines cannot produce intermediate translation results. We interpolated the style codes

linearly using sm + α ∗ (sn − sm), so we can see that StarGAN-V2 and MUNIT translation

results contained artifacts while the DRIT results differed only in lighting.

Quantitative results. The qualitative observations are confirmed by quantitative eval-

uations. As Table 4.2 shows, StarGAN-V2 achieved the lowest FID and highest LPIPS on

the cat2dog data set among all models, but our model results were comparable. Translated

images by our model on the edges2shoes have lower FID and higher LPIPS values than all
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Table 4.2: Quantitative evaluation of image translation using FID and LPIPS. Cat images
are translated to dog images, and edges are translated to shoe images.

Metric Data set DRIT MUNIT StarGAN-V2 Ours

FID (↓) cat2dog 148.87 122.04 18.81 21.53
FID (↓) edge2shoes 273.93 274.11 63.78 61.33
LPIPS (↑) cat2dog 0.251 0.263 0.355 0.341
LPIPS (↑) edge2shoes 0.108 0.110 0.114 0.126

Table 4.3: FID and LPIPS results of incrementally adding modules to our framework.
LPIPS values for the naive model are not reported as it is a deterministic model.

Modules FID (↓) LPIPS (↑)
naive model 103.30 —
+ noise injection 76.88 0.326
+ style regularization 59.21 0.329
+ content regularization 47.70 0.331
+ interpolators 30.45 0.333
+ domain-specific 21.53 0.341
information elimination

baselines.

Ablation studies To further validate effects of key loss functions and design choices

in our framework, we carried out ablation studies on the cat2dog data set. Let the model

without domain-specific information removal (βm , βn), interpolators, latent codes regulariz-

ers, and noise injection be the naive model. We incrementally added modules to the naive

model and calculated FID and LPIPS values. Table 4.3 shows the quantitative evaluations;

qualitative results are in Figure 4.3.

4.5 Conclusions

In this research report, I presented a new framework for unpaired I2I translation. Our frame-

work used fine-grained control over latent codes to achieve better translation results. We

show that removing redundant domain-specific information during cross-domain translation

63



Figure 4.2: Examples of translating results by our framework. (a) compares translation
results by different baselines; (b) shows examples of interpolation by all models.
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Figure 4.3: Ablation study of our framework, which shows examples of translating cats to
dogs by incrementally adding modules.

helped produce better results. We also show that rather than simply exchanging style codes,

an interpolator can guide the transformation to generate more visually appealing images,

which also allows us to produce intermediate translation results. The qualitative results and

quantitative evaluations show that our framework is superior or comparable to the SOTA

baselines in unpaired I2I translation.
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Chapter 5

Shape-aware Generative Adversarial

Networks for Attribute Transfer

Attribute transfer in vision refers to transferring some abstract elements of source images

to images in a target domain. For example, in human face attribute transfer, the task often

refers to transforming smiling to neutral faces, while the identity of each face is maintained.

Many approaches have been used for this task. However, many domains have only limited

access to paired data (that is the same person with different facial expressions), attribute

transfer mainly depends on cycle-consistency loss16. Several studies exploited mappings

among different domains under the constraint of cycle-consistency and achieved satisfying

results1;2;30. Fig 5.1 shows that StarGAN and ELEGANT can transfer human face attributes,

but their approach does not provide intermediate states from the source to target domain.

Another branch of research studies latent space interpolation, which interpolates between

two domains and thus generates a sequence of intermediate states between the source and

just one target state. This assumes attribute space is flat and linear. Convolutional Neural

Networks (ConvNets) have achieved great success in image classification in recent years4–6;80.

The last layer of ConvNets is usually a fully connected layer without activation functions,
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Figure 5.1: Examples of transferring human face attributes by StarGAN1 and ELEGANT2.
Figure is excerpted from HomoInterpGAN3.

which linearly maps learned features to class labels. Because the features are linearly sepa-

rable, one can transfer features simply. For example, let x and y be learned features of two

instances from two different domains. The transferred x can be obtained by moving it in the

direction of y. Intermediate states can also be obtained along the transition.

Although some successful attribute transfers have been demonstrated using cycle-consistency

loss and latent space interpolation, the process remains a challenge, especially in successfully

keeping the identity of source domain after transferring. Taking attribute transfer between

human faces as an example, many GANs-based models can add glasses to face pictures or

make non-smiling faces into smiling ones. This success partly depends on the fact that

human faces have similar shapes and features have similar positions on the face (nose and

eyes, for instance, have a relatively fixed position). Moreover, data sets like CelebA, are

usually preprocessed so key point positions are aligned and generate natural-looking results

for transfer images. In domains without this feature or domains with vastly different images,

the resulting transfer images can look fake and unnatural if the techniques mentioned above

are naively applied.

Thus, in this study, we used an example domain (a tomato leaf data set) that contains

healthy leaves and diseased leaves. We treated different types of leaves as different domains;

the goal was to transfer exemplars of healthy leaves to known categories of unhealthy leaves

while maintaining their original identity, which we deemed to be the shape (especially outer

contour) of the leaves. This is the novel contribution of this study, which generalized to
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other domains with varying shapes. Our novel contributions follow.

• We proposed a novel, shape-aware GANs model that can process multi-domain, multi-

modal attribute transfer while maintaining the image shape from the source domain.

• We proposed several strategies for stabilizing training of this model.

• Experiments showed that our model could generate more visually satisfying results than

recently proposed SOTA baseline models while maintaining the quality of translated

results.

5.1 Related Work

Image-to-Image Translation. Impressive results have been achieved in recent years in

image-to-image translation. Pix2pix24 produced high quality results with conditional GANs,

using adversarial loss and L1 loss to guide the learning of the model. To increase the

diversity of produced images, a noise term was added to an improved version of the pix2pix

model. Since L1 loss depends on paired data that is difficult to obtain, research has also

focused on unpaired image-to-image translation, for which CycleGAN16 and DiscoGAN26

were later developed. They use the cycle-consistency loss to map between two domains

while maintaining some key attributes. However, they can, at most, train two domains at a

time and are often applied to facial expressions. Moreover, naively applying cycle-consistency

loss does not guarantee production of natural-looking results when domains differ greatly

from one another and are internally diverse.

Latent Space Interpolation. One drawback of GANs that solely depends on cycle-

consistency loss is an inability to produce a sequence of intermediate images from the source

to target domain. Latent space interpolation builds on the fact that there is a flat feature

space81. Once the original image space is mapped onto a feature space, interpolation can be
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done by gradually moving the latent space of the source domain towards the target domain.

However, there are infinitely many ways of connecting two points in the latent space, so

finding the one that can produce smooth and natural-looking results is of great value. In-

stead of naively interpolating using a straight line connecting the two points in latent space,

Chen et al.3 used an artificial neural network (ANN) to learn the path and achieved visually

satisfying results.

Image Segmentation. One of first deep learning models for image segmentation used a

fully convolutional network (FCN)82, with only convolutional layers that can produce seg-

mentation maps that are the same size as input images. One of the drawbacks of FCN is that

it pays little attention to useful scene-level semantic context. To remedy this problem, deep

learning models that incorporated graphical models were created. Several learning frame-

works incorporate conditional random fields83–85. Markov Random Fields are representations

that are also commonly used to apply deep learning models to image segmentation [16]. An-

other branch of research on image segmentation used an encoder-decoder architecture. Some

early research was done by86, where the encoder used architecture similar to VGG-16 and the

decoder consisted of deconvolution and unpooling layers. The UNet87, initially developed

for medical image segmentation, is also commonly used. A UNet consists of down-sampling

and up-sampling steps, where the former extracts features by using 3 × 3 convolutions and

the latter reduces the number of feature maps while increasing the dimension. Features from

down-sampling are concatenated with those from up-sampling and finally 1× 1 convolution

generates the segmentation map.

5.2 Methods

Transferring attributes from one domain to a different one serves, without loss of generality,

as an example illustrating the proposed model. We will transfer attributes from domain X

to an example image in domain Y .
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Learning Encoder and Decoder. Images x are passed into an encoder (E) first,

resulting in an interpolated latent vector (V ) of fixed length, so Vx = E(x). The image

from the target domain Y also goes through the encoder, so Vy. Next, an ANN (ann)

helps guide the transition from Vx to Vy, and the interpolated latent vector is obtained by

VI = ann(Vx, Vy). Eventually, the decoder (D) generates the interpolated image by D(VI).

The loss for the encoder is

LE = −Ex∼X,y∼Y (ann(E(x), E(y))). (5.1)

To guide the learning of the decoder, real images are compared to reconstructed ones,

and reconstruction loss is formulated as

Lrecons = MSE(x,D(E(x))), LE,ann = EF∼Pr [D(F )]− EF̃∼Pr [D(F )]. (5.2)

Learning Critic. Much like WPGAN58, the loss function for learning the critic (D) is

formulated as

LD = EF∼Pr [D(F )]− EF̃∼Pr [D(F )] + λgpGP, (5.3)

where F̃ = ann(Fx, Fy) is the interpolated feature, Fx = E(x) and Fy = E(y) are extracted

features from the encoder (E). GP is the gradient penalty term and λ is defined as58 did.

Pf and Pr are distributions from fake and real feature samples. λgp is set to 10 for all

experiments in this study.

Learning Interpolator. After the encoder projects images into latent space, which is
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flat, interpolation can be done linearly as

f(Fx, Fy) = Fx + α(Fy − Fx), (5.4)

where α controls the interpolation strength.

Because many paths connect the two points in the latent space, naively interpolating

linearly might produce blurry images with many artifacts, so an ANN model had the best

transition from the two domains. Our interpolation method is formulated as

f(Fx, Fy) = Fx + a× α(Fy − Fx), (5.5)

where ann ia a learnable CNN.

Learning Shape. To preserve the identity of the source domain, our model incorporated

UNet, which outputs a binary map delineating the boundary of leaves, for calculating the

shape loss (Lshape), which is formulated as

Lshape = Dice(Sinterpolated, Sx), (5.6)

where Dice is the Dice loss88. Sinterpolated is the UNet output of interpolated image, and

Sx is the UNet output of source domain image.

Model Architecture and Training Algorithm. Figure 5.2 shows the proposed model.

Input images and target domain images were fed into E first, which produced respective
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features. The features were then piped into the interpolator, which guided the transition

from source to target domain and produced the interpolated feature. Features from target

domain and interpolated feature were processed by the critic, which calculated the LD and

LE. The decoder mapped features from source domain images to the original image space,

and then Lrecons was calculated by comparing the reconstructed image and original image. A

UNet was also trained to preserve the shape of interpolated images by calculating the Dice

loss (Lshape). The training procedure is shown in Algorithm ??.

Algorithm 2: Model Training, ncritic = 5

Data: Source domain images xi and target domian images yi, where i = 1, 2, ..., N

Result: encoder E , decoder D , interpolator I , and UNet U

initialization;

while not converged do

m = 0;

while m < ncritic do

Calculate LD and update D;

Calculate Lrecon and update D;

m+ +;

Calculate LE and update E and I;

Calculate Lshape and update U ;

5.3 Experiments and Results

We experimented using the PlantVillage tomato leaf data set. This data set contains healthy

leaves and diseased leaves, with diseases categorized as bacterial spot, early blight, late blight,

mold, septoria spot, spider mites, target spot, and yellow leaf. All images were resized to

128×128. We annotated the segmentation map of leaves for training the UNet module. The

baseline model used for comparison was HomoInterpGAN, which achieved impressive results
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Figure 5.2: Framework structure: the encoder E maps images of source domain and target
domain to their feature space. The interpolator I learns the path from source to target latent
space. The decoder D reconstructs the source image from feature space Fx and produces
interpolated images from interpolated features. The critic D learns how real the interpolated
features are. UNet U forces similarity in the shapes of our interpolated images and source
images.

in transferring human-face attributes.

Both our model and the baseline model can interpolate intermediate images from source

to target domains. Figure 5.3 shows the results, illustrating the interpolation from source

(healthy leaf) to three different target domains (three types of unhealthy leaves) under

incremental transition strength. Results show that both models can interpolate in latent

space and produce intermediate images from source to target domain. However, interpolation

results from HomoInterpGAN could not preserve the shape of source images. We observed

some ghosting effects, where the interpolation tries to copy the shape of target domain with
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Table 5.1: Test accuracy on data sets produced by different models
Model Accuracy (↑)
baseline(orginal test data) 97.33 %
MUNIT 73.32 %
HomoInterpGAN 95.02 %
StarGAN-V2 94.11 %
Ours 93.87 %

implausible results, as shown in row (a) with transition strengths 0.75 and 1. Row (c)

shows another example produced by HomoInterpGAN with transition strength 1 developing

another pointy tip, which seems to be inherited from the target leaf. HomoInterpGAN could

not preserve shape, which is most obvious in row (e) with transition strengths 0.75 and 1,

where the shape of source image was totally transformed into that of the target domain.

Image translation results showed that our model can better preserve the shape from the

source domain while constraining the results to attributes of the target domain, producing

natural-looking interpolation images.

Like the research in16;24;89, we trained a neural network (ResNet34) as a classifier to test

the quality of produced images after image-to-image translation. The trained classifier was

tested on the original test data set, and the test set accuracy is treated as the baseline. All

models were used to transform healthy leaves into unhealthy ones, and the produced images

were then classified. Table 5.1 shows the test set accuracy of the classifier trained on the

original data set and on images produced after image-to-image translation. Compared to

the baseline testing accuracy (approximately 97%), 95% of the HomoInterpGAN translated

images were correctly classified into corresponding categories, and nearly 94% of images

translated by our model were successfully identified. StarGAN-V2 performed slightly better

than ours, but MUNIT showed the worst results among all models. Although slightly lower

in test accuracy than HomoInterpGAN, our model produced images that were more visually

satisfying; that is to say, qualitative attributes from the target domain were successfully

transferred to the source domain and the shape of source images was preserved.
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sectionConclusion We created a new framework for unpaired image-to-image translation,

transferring attributes, and producing natural-looking intermediate results. Our model fea-

tures a UNet module that preserves the shape of translation results. In addition, our model

incorporates a neural network especially designed for learning the best path to transit in

the latent space. Results showed that both our model and the baseline model can transfer

attributes. However, in transforming images, the baseline model naively attempts to copy

the shape of target domains, and thus generates ghosting artifacts in the translated results.

By contrast, our approach can smoothly transfer attributes and produce more visually ap-

pealing results by preserving the shape of source domain without too much trade-off (about

1%) in the quality of translated results.
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Figure 5.3: Interpolation results from all models. The source image is the healthy leaf. The
target of (a) through (d) is an example with bacterial disease. The target in (e) through (f)
has septoria. Interpolation strength ranges from 0.25, 0.5, 0.75, to 1, as shown at the bottom
of the figure.
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Chapter 6

Achieve Instance-level Unsupervised

I2I with Self-supervised Learning

Image-to-image (I2I) translation refers to translating images from one domain to another

featuring different styles that are visually distinctive. An example is the task of turning

images of cartoon sketches into real-life photographs. Many tasks in computer vision can be

viewed as I2I translation, such as image inpainting19, style transfer as in StyleGAN221, and

super-resolution22. Supervised I2I translation tasks need paired data sets that are costly

to obtain, but such tasks are relatively easier to solve using supervised learning instead of

unsupervised. Under paired data supervised learning, I2I translation can be done using

regression23 or conditional generative models24. Our work addresses the unsupervised I2I

translation task, which is more challenging without access to paired data sets. Most research

on unsupervised I2I translation draws inspiration from CycleGAN25 using the cycle consis-

tency constraint, which has achieved impressive results. More recent studies on such models

as MUNIT28 and StarGAN230 have improved upon CycleGAN and can translate images

among multiple domains. This research, however, can introduce unwanted changes to both

objects of interest and the background. Our research used a simpler yet effective approach.
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Our framework consists of only one generator-discriminator pair and a mapping network,

enabling multimodal and multi-domain translation. Moreover, our framework learns atten-

tion maps through an attention module, which allows translating objects of interest while

leaving the background intact. Extensive experiments show that our framework is superior

or comparable to SOTA baselines. The contributions of our research can be summarized as

follows:

• A novel framework for unsupervised I2I translation with an attention mechanism allows

image translation at instance level.

• Our framework uses unsupervised learning for attention maps, which requires no seg-

mentation annotations. Our attention module could be used as a plug-and-play add-on

for existing pre-trained I2I translation frameworks, making them capable of learning

attention maps at lower cost than training an attention module and its generator from

scratch.

• Unlike previous research into such models as MUNIT and DRIT29 that require training

n(n−1) generators for translating images for n domains, our novel framework architec-

ture requires training only one generator-discriminator pair and achieves multimodal,

multi-domain I2I translation.

• Extensive experiments using publicly available data sets show that our framework is

superior to SOTA baselines.

6.1 Related Work

Generative adversarial networks. Ideally, generative models learn how data is dis-

tributed, thus allowing data synthesis from the learned distribution. Since the advent of

GANs70, generative models like StyleGAN2 have achieved impressive results in tasks like
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image editing52 and style transfer. GANs try to learn the data distribution by approximat-

ing the similarity of distributions between the training data and the fake data produced by

the learned model. GANs usually comprise a generator and a discriminator. The entire

model learns by playing a min-max game: the generator tries to fool the discriminator by

gradually generating realistic data samples, and the discriminator, in turn, tries to distin-

guish real samples from fake ones. GANs have improved in many ways. To produce more

realistic samples, an architecture of stacked GANs has been proposed: the laplacian pyramid

of GANs54; layered, recursive GANs55; and style-based GANs (StyleGAN and StyleGAN2).

Several studies have attempted to solve the instability training of GANs using energy-based

GANs57 and Wasserstein GANs58. In this study, we used GANs with their improved tech-

niques to learn the distribution of data and how to translate among different domains.

Unsupervised I2I translation. Unsupervised I2I translation takes images from one do-

main, translating them to another without paired data supervision. Much success in un-

supervised I2I translation is due to the cycle consistency constraint, proposed in earlier

research: CycleGAN, DiscoGAN26, and DualGAN27. To translate among more than two

domains, MUNIT and DRIT have been used. These methods, however, sample style codes

from a standard normal distribution, which leads to inferior translation results. Moreover,

they require training n(n− 1) generators and n discriminators for translating images among

n domains, which is computationally expensive and time-consuming. Our method proposes

a simpler yet more effective approach that requires only one generator-discriminator set. Re-

cent systems such as StarGAN2 and ModularGAN31 were developed to perform multimodal,

image-to-image translation to produce images with the same content but different contexts.

All the aforementioned methods, however, introduce undesired changes to the background

while translating images.

Attention learning. With human attention mechanism as inspiration, attention mecha-

nisms have been successfully applied to various computer vision and natural language pro-

cessing tasks, such as machine translation90, visual question answering91, and image and
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video captioning92. Attention mechanisms improve the performance of all these tasks by en-

couraging the model to focus on the most relevant parts of the input. To focus on the most

discriminative semantic part and retain the background of images during translation, atten-

tion mechanism was been introduced into I2I. ConstrastGAN93 takes a supervised approach

and uses segmentation mask annotations as extra input data. Our approach also learns

attention masks without using extra annotation, much like AttentionGAN94, ATAGAN95,

and AGGAN65, which add an attention module to each generator to locate the object of

interest in image-to-image translation tasks. Thus, the background can be excluded from

I2I translation. All these methods, however, can only translate between two domains at a

time. To remedy the drawbacks, we created a unified I2I translation framework with an

attention mechanism. Instead of having to train n(n − 1) generator-discriminator pairs for

learning to translate among n domains, our method requires training only one such pair.

Thus, our framework reduces training time and memory footprint with better or comparable

translations.

6.2 Methods

6.2.1 Preliminaries

Let x be an image belonging to one of many domains. Diagram (a) in Figure 6.1 shows an

overview of our model. We start from a latent vector z that is sampled from a standard

normal distribution. z goes through a mapping network, which learns style codes s of a

specific domain, where m is a domain label and s = M(z,m). Meanwhile, we use a content

encoder Ec to extract content codes c from image inputs. The decoder D takes content and

style codes to generate reconstructed images x′, which are then used by style encoder Es

to produce reconstructed style codes s′. We compute two L1 losses using the reconstructed

images and style codes. Finally, we use a multi-task discriminator to distinguish real images
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from generated ones. During the translation phase, we keep the same content codes but use

the style codes of a target domain. Attention maps are learned using the attention module.

Take translating a horse image xm to a zebra image as an example, as shown in diagram

(b) of Figure 6.1. The horse image is processed by the encoder, resulting in style codes sm

and content codes cm. In the meantime, the attention module extracts attention maps att

from the horse image. The style codes of the zebra image sn are exchanged for those of the

horse image. Then, the decoder uses the content codes cm and style codes sn to generate an

intermediate fake zebra image whose background contains unwanted changes. We incorporate

the attention map with the intermediate fake zebra image by att×D(cm, sn)+(1−att)×xm,

which results in the final fake zebra image. Note that we only show the attention branch

for translating horse to zebra because of space limitation. The other direction of translation

follows a similar process.

6.2.2 Framework Architecture

In this section, we outline the architecture of different modules in our framework.

Encoder. Our encoder has two sub-encoders: the style encoder and the content encoder.

Both start with a convolution layer. The content encoder consists of six residual blocks96.

All layers are downsampled by average pooling operation (except for the last two layers) and

are followed by instance normalization (IN)97. The style encoder also comprises six residual

blocks without any activation function except for the last residual block. Lastly, the style

encoder consists of a convolution layer with leaky ReLU and a reshape operation before

outputting style codes by way of the linear layer.

Mapping network. Style codes of domains are modelled by a mapping network, which

consists of eight linear layers with ReLU activation functions except for the last layer.

Decoder. The decoder maps latent codes, which consist of style codes and content
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Figure 6.1: The structure of our framework. (a) shows how our framework learns, and (b)
shows cross-domain translation within the horse and zebra domain. The attention branch of
translating zebra2horse is similar to horse2zebra, and thus is not shown.
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codes, to the original image space. To apply style to images of different domains, the style

codes are injected into the decoder by AdaIN78 coupled with residual blocks. The last layer

is a convolution layer that generates images as outputs.

Attention module. The attention module has an encoder-decoder architecture. The

encoder consists of three convolutional blocks, and the decoder has three convolutional layers

with a sigmoid activation function at the end that outputs the attention probability map.

Discriminator. The architecture of the discriminator is similar to the style encoder

except it has one more convolutional layer to predict domains.

6.2.3 Training Objectives

In this section, we discuss the loss functions for learning our framework.

Image reconstruction loss. After images are encoded to style and content codes, the

decoder maps the latent space back to the image space and reconstructs the image. Image

reconstruction loss is formulated as

Lxrecon = ‖D(Ec(x),M(z,m))− x‖1 , (6.1)

where m is the domain to which image x belongs.

Style code reconstruction loss. After encoding reconstructed images using the style

encoder, we can obtain reconstructed style codes. We constructed the style code reconstruc-

tion loss as follows:

83



Lsrecon = ‖s− Es(x′)‖1 , (6.2)

where x′ = D(Ec(x),M(z,m)), and x ∈ Xm.

Attention consistency loss. Images before and after translation should have the same

attention maps. Thus, the attention consistency loss is defined as

Latt = ‖att(xmn)− att(xm)‖1 , (6.3)

where xmn is the translated image, which is obtained by att × D(cm, sn) + (1 − att) × xm.

cm is the content information of xm, and sn is the style information of image xn.

Regularization on style and content codes. To further encourage style codes being

domain-variant and content codes being domain-invariant, we added regularizers to style

and content encoders. The style regularizer forces style codes of different domains to differ

by minimizing Lsregu, which is calculated as

Lsregu = −‖D(cm, sm)−D(cm, sn)‖1 − ‖D(cn, sm)−D(cn, sn)‖1 , (6.4)

where (cm, sm) = (Ec(xm), Es(xm)) and (cn, sn) = (Ec(xn), Es(xn)). cm and sm are content

and style codes of image xm ∈ Xm. cn and sn are content and style codes of image xn ∈ Xn.

The content regularizer encourages content codes of different domains to be similar by min-

imizing Lcregu, which is formulated as
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Lcregu = ‖D(cm, sm)−D(cn, sm)‖1 + ‖D(cm, sn)−D(cn, sn)‖1 . (6.5)

Inspired by StarGAN2, we calculated style diversity as

Lds = ‖Es(x1)− Es(x2)‖1 , (6.6)

where x1 = D(Ec(x),M(z1,m)), and x2 = D(Ec(x),M(z2,m)), and z1 and z2 are two random

latent vectors.

Adversarial loss. GANs were used to match the distribution of translated results to

real image samples, so the discriminator finds real and fake samples indistinguishable. We

used two adversarial losses with one for learning latent-guided translation and the other for

reference-guided translation. Latent-guided translation refers to using the mapping network

to obtain target style codes, and reference-guided translation uses the style encoder to extract

style codes of target domains. The adversarial loss for learning the discriminator Cm with

latent-guided translation is formulated as

Lladv = E
z∼N(0,I),xn∼p(Xn)

[logCm(D(Ec(xn),M(z,m)))] + E
xm∼p(Xm)

[log(1

−Cm(xm))],

(6.7)

and the adversarial loss for learning the discriminator Cm with reference-guided translation

is constructed as

Lradv = E
xm∼p(Xm),xn∼p(Xn)

[logCm(xnm)] + E
xm∼p(Xm)

[log(1− Cm(xm))], (6.8)
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where the discriminator Cm tries to identify if images are from the domain m, and xnm is

obtained by att×D(cn, sm) + (1− att)× xn.

Full objective. Our full objective is formulated as follows:

min
M,E,D

max
C

λ1L
x
recon + λ2L

s
recon + λ3(L

s
regu + Lcregu)

+λ4(L
l
adv + Lradv)− λ5Lds + λ6Latt,

(6.9)

where λ1 to λ6 are hyperparameters for each loss term.

Model training scheme. We found the model had difficulty in converging when the

generator and the attention module were trained simultaneously. Therefore, we first trained

the generator and the discriminator using 1e−4 as the learning rate for 100,000 iterations,

which is empirically calibrated. Then, we froze the parameters of the generator when training

the attention module for 30,000 iterations with the same learning rate. Lastly, we jointly

trained the entire framework for another 10,000 iterations using a smaller learning rate 5e−5.

6.3 Experiments

This section presents the data sets, baselines, and evaluation metrics.

Baselines and data set. We compared our framework to four baseline models de-

veloped in recent years. CycleGAN is pioneering unsupervised I2I, and used as a baseline

model. MUNIT and StarGAN2 achieve impressive results in unsupervised multimodal I2I

translation, making it ideal to compare to our framework. We also compared our approach

to AGGAN, a recent attention-based I2I translation framework.

We evaluated our framework on the horse2zebra, AFHQ, and map2aerial data sets. The
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horse2zebra data set contains images of horses and zebras, downloaded from ImageNet using

keywords wild horse and zebra. A total of 1,067 horse images and 1,334 zebra images were

used for training, with 120 horse images and 140 zebra images reserved for testing. The

AFHQ data set contains images of house cats, dogs, and wild animals (e.g., tigers, foxes,

and lions). As with StarGAN2, we divided the AFHQ data set into domains of cats, dogs,

and wild animals. The map2aerial data set was scraped from Google Maps, and images were

sampled from in and around New York City. All images are 256× 256.

Evaluation metrics. We evaluated the visual quality of translation using AMT, in

which user preferences determine the results of different models. Quantitative measures

without human participation, Structural Similarity Index (SSIM) and Peak Signal-to-Noise

Ratio (PSNR), were used as in Chen et al. in AttentionGAN and AGGAN.

6.4 Results and Discussion

This section provides the qualitative and quantitative results of the experiments. An ablation

study was also used to evaluate the effectiveness of several key design choices.

Qualitative results. We used AMT to compare our results against the baselines. Given

a source image and a reference image, we instructed AMT participants to select the best

translation among all models. We asked 50 questions of all ten participants. Table 6.1

shows our method outperformed all baseline models, especially MUNIT, CycleGAN, and

StarGAN2, which are not attention-based I2I translation frameworks. Like MUNIT and

StarGAN2, our model can perform latent-guided and reference-guided translation. Figure

6.2 (a) illustrates latent-guided translation, and Figure 6.3 shows I2I translations guided by

reference images from all models. Our model and AGGAN can both preserve the background

information, translating only the images of interest. CycleGAN and AGGAN can only

perform reference-guided translation, so their latent-guided translation results are not shown.
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Figure 6.2: (a) provides examples of latent-guided I2I translation results, and (b) compares
attention maps generated by our framework and AGGAN.

Models User Preference (↑)
CycleGAN 8.31 %
MUNIT 2.55 %
StarGAN2 3.13 %
AGGAN 40.93 %
Ours 45.08 %

Table 6.1: Votes from AMT participants for preferred translation results.

Figure 6.2 (b) offers two examples of attention maps from our model and AGGAN, showing

that our attention maps are more accurate than AGGAN. Given these results, we argue that

“undesired changes” requires a clear definition. Clearly, in translations, such as transferring

a map into an aerial photograph, we would assume the attention map is the entire image

(See the attention map in figure (b) of Figure 6.2). It may be more appropriate to apply

a separation of background from one domain from the background of another: horse2zebra

instead of map2aerial.

Quantitative results. Like MUNIT and StarGAN2, our model can perform latent-
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Figure 6.3: Examples of reference-guided I2I translation by different models.
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Figure 6.4: An example of reference-guided translation by incrementally adding modules.

Models horse2zebra zebra2horse
SSIM(↑) PSNR (↑) SSIM(↑) PSNR (↑)

CycleGAN 0.7313 21.96 0.8453 26.31
MUNIT 0.1176 14.89 0.3664 15.29
StarGAN2 0.3281 16.86 0.4729 19.43
AGGAN 0.9686 33.16 0.9843 43.02
Ours 0.9699 36.12 0.9851 44.11

Table 6.2: Quantitative comparison on reference-guided translation.

guided and reference-guided translation. We evaluated all models using SSIM and PSNR,

which require ground truth attention maps of images. As for AttentionGAN, we obtained

attention maps using the DeepLab semantic image segmentation model98 pretrained on

MSCOCO99 data set. Note that we provided only quantitative results on the horse2zebra

data set because the DeepLab model was not trained on the map2aerial data set, and no

ground truth attention maps were available for calculating SSIM and PSNR. Tables 6.2 and

6.3 show that our framework outperformed by a large margin all baseline models, especially

CycleGAN, MUNIT, and StarGAN2. Again, CycleGAN and AGGAN cannot perform latent-

guided translation. Therefore, quantitative results for these two models were not reported.

Models horse2zebra zebra2horse
SSIM(↑) PSNR (↑) SSIM(↑) PSNR (↑)

MUNIT 0.1925 11.66 0.3901 13.88
StarGAN2 0.3353 18.87 0.4953 19.92
Ours 0.9712 33.76 0.9857 43.14

Table 6.3: Quantitative comparison on latent-guided translation.
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Modules SSIM (↑) PSNR (↑)
naive model 0.3062 12.73
+ style, content regularizer 0.3511 19.04
+ attention masks 0.9699 36.12

Table 6.4: SSIM and PSNR results of incrementally adding modules to our framework for
reference-guided translation on the horse2zebra data set.

Ablation studies. To further validate the effects of key design choices in our framework,

we carried out ablation studies on the horse2zebra data set (see Table 6.4 and Figure 6.4).

Let the model without style, content regularizer, and attention module be the naive model.

We can see that adding attention greatly improved translation results.

6.5 Conclusions

In this research, we created a simple, yet effective, attention-based framework for unsuper-

vised I2I translation. Our framework not only translates objects of interest while leaving the

background unaltered, but also generates images for multiple domains simultaneously. Un-

like similar research on unsupervised I2I with an attention mechanism that requires ground

truth for learning attention maps, our approach uses unsupervised learning. The qualitative

and quantitative results show that our framework is superior to the SOTA baseline models.
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Chapter 7

Conclusions and Future Work

In this chapter, I present a review of claims in Section 7.1 and summarize my finding in

Section 7.2. In the end, I present my suggestions for future work in Section 7.3.

7.1 Review of Claims

Through the methodology chapters (3 to 6), user studies were conducted for qualitative

evaluation on results of models. The standard practice in the field of I2I is that survey

participants are asked to choose the model that produced the best translation result. Their

opinions are then summarized to show which model was superior. Further statistical analysis

might be needed to evaluate the statistical significance of such survey results. This practice,

which would improve the state of the field in terms of validation and reproducibility, would

involve both cross-validation image datasets and interannotator agreement.

In the discussion of autoencoders in Chapter 2, I mentioned that VAEs are able to

model internal attributes of data by means of learning series of normal distributions. The

learned attributes are implicit, meaning that it might be difficult to map learned attributes
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to the physical world. For example, hidden attribute a controls the strength of smiling.

Another use case is applying VAEs to hyperspectral images, which are commonly used data

in the field of remote sensing. There is little difference, conceptually, on applying VAEs on

hyperspectral images than regular RGBA images. Because inside of ConvNets, there are

potentially thousands of convolution layers, which can be thought of a hyperspectral image.

In practice, however, it might be difficult to deal with hyperspectral images because they

tend to be too large to fit in GPU VRAM, or they will be limited to train on a small batch

size.

Some methods proposed in this dissertation are use-case dependent. For example, in

Chapter 5, I proposed a shape-aware GAN framework to model what tomato leaves will look

like if they are 25%, 50%, or 75% unhealthy. Being able to perform partial translation might

be helpful for studying disease progression for the case of tomato leaves.

In Chapter 6, I employed an attention mechanism to separate foreground and background

objects. Such separation might make more sense for cases like horse2zebra than the case of

map2aerial, because we would like to apply the style of Google Maps to aerial photos in the

entire region rather than part of it. Another thing to be noted is that learning to separate

foreground and background objects might be harder for the horse2zebra case, because horses

and zebras appear different sizes and ConvNets are not scale-invariant. That means the

model needs to adapt to objects of different sizes. In contrast, the attention module simply

focuses on the entire region for the case of map2aerial.

7.2 Summary

This dissertation studies the problem of unsupervised I2I translation by using generative

models. I present the problem and related literature reviews in Chapter 1 and 2. In each of

Chapters 3 to 6, I show some drawbacks in existing methods and present ways to improve the
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shortcoming. I show by extensive experiments that my approaches surpass or achieve com-

parable performance than SOTA methods. This dissertation was organized in the following

logical order:

• Chapter 1 defines the problem of I2I translation and why it is of significance to study

it.

• Chapter 2 reviews related literature on I2I in detail, mainly focusing on VAEs and

GANs. I also pointed out the limitations of drawbacks of existing works, upon which

my methodology chapters are built.

• Studies in Chapter 3 is accepted for publication at International Journal of Machine

Learning and Computing. Chapter 3 proposes a simplified framework for I2I trans-

lation, but achieves better translation results. There are two biggest contributions.

First, there is no need to train n(n−1) generators and discriminators in order to learn

to translate among n domains. Second, adding a mapping network to predict general

style information of a domain in addition to sampling from a standard distribution.

• Chapter 4 is published at the 30th International Conference on Artificial Neural Net-

works (ICANN) 2021. Chapter 4 improves upon Chapter 3 by adding fine-grained

control over latent space. My findings suggest that domain-related information that

still exists in content codes, and translation results can be improved by excluding them.

Another contribution of Chapter 4 is adding a interpolator to guide the exchange of

style codes because the process might not be linear.

• Chapter 5 is published at the 13th International Conference on Machine Vision (ICMV)

2020. Chapter 3 and Chapter 4 lay the ground for Chapter 5 and 6, in which Chapter

5 introduces the idea of foreground-background separation, and how to perform such

separation in a semi-supervised fashion. I use an example of tomato leaves and add a

shape-regularization module (a UNet) to constrain the shape of leaves after translation.
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• Chapter 6 is under review for ICANN 2022. Chapter 6 proposes a framework that

inherit the ideas proposed in previous chapters, and introduces a totally unsupervised

framework for learning I2I translation and foreground-background separation.

7.3 Future Work

Given my findings as documented in Chapters 3 to 6, one direction of future work that I view

as most promising and worth while is to develop a standalone, one-suits-all model that learns

segmentation masks. This new model is able to utilize existing I2I translation frameworks

and learn foreground and background without retrain the generator. Furthermore, it can

be plugged into arbitrary I2I translation frameworks and learns segmentation at minimum

costs. Visual transforms have achieved some promising results. Another direction of future

research is to use visual transformers in the architecture of generators.
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