
THE INVERSION INTEGRAL OF THE LAPLACE TRANSFORM

by

CHARLES E. CALE

B. S., Washburn University, 1962

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Mathematics

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1965

Approved by:

/

Major Professor



(^ %V{% TABLE OF CONTENTS

C i*

ii

THE LAPLACE TRANSFORI'/I AND THE OPERATIONAL CALCULUS 1

THE THEORY OF THE LAPLACE TRANSFORI-I AND ITS INVERSION
INTEGRAL ^

Definitions, Theorems and Notation S

Proof of the Fourier Integral Theorem 12

Properties of the Laplace Transform 22

The Evaluation of the Inversion Integral 31

CONCLUDING REI^iARKS 39

ACKNO'yvTEDGMENTS 40

REFERENCES 41



THE LAPLACE TRANSFORi'5 AND THE OPERATIONAL CALCULUS

The Laplace transform is an integral transformation

or operator that transforms a large class of functions,

rf(t)l t>0, into a class of functions, Jf(s)>, over the

complex field. The form of the transform is given by

oo

(1.1) X {^^4 ^f
^"'^^^^^ dt = F(s),7j[s]>x^

v;here^[sj denotes the real part of s and x^ is a real

constant, the value of which depends upon the order

properties of f(t).l It will be shovm that the Laplace

integral v/ill converge when the inequality is satisfied.

The function

(1.2) f(t) = X''{f(4

is said to be the inverse Laplace transform of F(s),

It is unique to the extent that tv/o functions having the

same transform may differ only at isolated points. The

purpose of this paper is to obtain the inversion integral

as the general expression for the inverse transform.

The Laplace transform is the basis of the modern

operational calculus which is a system for solving certain

iThere are other forms of the Laplace transform given
in the Mterat^ure such as: the p-multiplied Laplace trans-
form [ly , fill , [12] > and the bilateral or two sided
Laplace transform [9] , [l3)

,
]l4j

, ll5l .



classes of ordinary and partial differential equations,

and integrodifferential equations and evaluating improper

integrals. These classes include many equations of phys-

ical interest. The man credited vn.th the invention of the

operational calculus was Oliver Heaviside, an electrical

engineer. The operational calculus presented by Heaviside

did not involve the use of the Laplace transform, but he

did indicate later that his operators could be obtained by

its use [13, p. D . Heaviside presented his operational

calculus v.'ithout proof or sufficient indication as to how

his "ingenious" methods could be put on a sound mathematical

basis. This v/as characteristic of Heaviside v;hose approach

to mathematics was pragmatic or intuitive. He expressed

in his writing the feeling that rigorous proofs were not

only time consuming, but silly: "The best possible of all

proofs is to set out a fact descriptively so that it can

be seen to be a fact" [l, p. 20?) • He asserted that mathe-

maticians deliberately complicated things by inventing

difficulties. Another interesting quotation given by Berg

li, p. 20^ is "Physics is above mathematics and the slave

must be trained to suit the master's convenience." These

out of context comments probably overstate Heaviside 's

viev;s but they represent an attitude that generated con-

siderable antagonism toward him and his work. Unfortunately,

this antagonism and Heaviside 's deficiencies in mathematical

rigor were probably responsible for the quarter of a century



delay in the wide acceptance of the operational calculus.

It was only after others had developed the theory with rigor

that the system came into wide usage.

It vjas about 1916 before T. J. I 'A. Bromwich succeeded

in breaching the mathematical obscurity of Heaviside's tech-

niques. This prominent mathematican introduced the use of

contoiiT integration in the complex plane into the problem.

Bromwich not only added rigor, but greatly extended the

applicability of the system [2, p. xiv-xv] [l3, p. 4) •

J. R. Carson introduced the p-raultiplied Laplace transform

.CO

(p) = p
I

e-P^ f(t) dt

into the theory in 1926. This v;ork contained mathematical

deficiencies that were somewhat corrected by van der Pol

in 1929, [2, p. xv) . It is interesting to note that

van der Pol |l3, p. 4] credits P. Levy with the derivation

of a form of the inversion integral. This resulted in the

synthesis of the Laplace transform approach v;ith the v;ork

of Bromv;ich.

About this same time G. Doetsch was doing much of the

same v;ork; according to Carslaw and Jaeger, it v/as he who

first recognized the great significance of the inversion

integral and presented the theory of the operational cal-

culus in its present form [2, p. xvij ,

To demonstrate briefly the operational methods and

relate these to conventional techniques in solving



differential equations, a relatively simple differential

equation v^ith associated initial conditions vrill be con-

sidered:

(1.3-a} ^ + 3 ^ + 2 ^ = sin t,

dt^ dt^ dt

(1.3-b) y(0) = y»{0) = y"(0) = 0.

The method of undetermined coefficients will be used to

solve this system. The complementary solution is

(1.4) yc = ^1 " ^2 ®"^ "^ ^3
®"^^

and a particular solution is of the form

y = A cos t + B sin t.
P

After substituting this into equation 1,3 -a and solving

for A and B it may be shovm that

(1.5) y?
~

To ^°^ ^ 1^ ^^^ *•

Thus the general solution is given by

(1.6) y = Yc + yp
=

Cn + Co e""^ + Co e"2^ - _1 cos t ^ sin t.
^ 10 10

To obtain the final solution one must apply the initial

conditions to equation 1.6 and its first two derivatives,

then solve the equations simultaneously to evaluate the



arbitrary constants. Thus, the solution is

(1.7) y = - ^ cos t - 1^ sin t -
I

e-"^ + ^ e-2t.

This example was chosen for its simplicity but it should

suffice to recall to the reader the tedium encountered in the

use of the conventional methods that are usually a part of

a first course in differential equations. V/ith this thought

in mind again consider equation 1.3-a, This time multiply

each term by e"^^ dt and formally integrate over the range

zero to infinity without considering what properties must

be attributed to y for these integrals to exist. Then,

(l.g) I e-sty"»(t) dt + 3
I

e-styn(t) dt

00 CO

+21 e-styt(t) dt =
I

e-s* sin t dt.

Let u = e"^"^ and dv = y"'(t) or y"(t) or y'(t) dt,

successively, then on integrating by parts, there results

e-s* y(t) dt - ]7s^+ 3s + 2) y(0)

+ (s + 3) y'(0) + y"(oT| = L_ .

s^ + 1

Utilizing equation 1.3-b, equation 1.9 becomes

(s3 + 3s2 + 2s) j
e-st y(t) dt = i

—

K s2 .

1



or fo

(1.10)
I

e-^^ y(t) dt

(s2 + l)(s)(s2 + 3s + 2)

The differential equation and its associated initial

conditions have now been transformed into an integral equa-

tion. This would be of little interest unless a means

could be found for solving such equations in a direct and

simple manner. Note that if the right hand side is decom-

posed into partial fractions then,

(1.11)
I

e-st y(t) dt

- 1-

lols^ + 1/ lols^ + 1

If this result is compared with the solution obtained .

previously, a correspondence betv;een the tv;o sets of co-

efficients in equations 1.11 and 1.7 is noted. Finally

if equation 1.7 is multiplied through by e"^''' and inte-

grated the result is equation 1.11, The technique just

given is essentially the method of the Laplace transform.

As presented here it would seem to be of little advantage,

but once a relatively small number of transforms are cata-

logued and theorems of composition are established this

method becomes a powerful tool. In practice transform

tables v/ould have been used to write

s^Y(s) -r 33^Y(s) + 2sY(s) = L

s^ + 1



immediately from equations 1.3-a and 1.3-b, This then

would be solved for Y(s) and the result decomposed by

partial fractions to obtain

-1 v/.^ = 1 -/'-If s_2y(t) =^-1 Y(s) = - 1-dL"
10 Is^ +

2 (sj 2 |j . 1^

.^ ^x-\ 1

10 L^
+

?^

The solution is then obtained from tables,

y(t) = - L_ cos t - ^ sin t + i - i e-'t + L_ e"^*.

10 10 2 2 10

The linearity property of the Laplace transform, used

above, follows directly from the linearity of integration.

The tedium of the partial fraction decomposition is reduced

by formal techniques that are developed in such treatments

as Churchill 3, pp. 57-6? . Admittedly, the presentation

here was oversimplified; such important questions as the

existence of transforms and inverse transforms were com-

pletely disregarded. Some of these questions mil be

ansv/ered in terms of theorems in the development of the

inversion integral in the next section.
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THE THEORY OF THE LAPLACE TRANSFORI^ AND ITS INVERSION INTEGRAL

The theory of the Laplace transform and its inversion

integral vail be developed using a form of the Fourier

integral theorem as a basis. Thus, the first major con-

cern will be proving that theorem. The proof will require

some definitions and theorems which will be stated with-

out proof.

Definitions, Theorems and Notation

The notation a,b will denote the closed interval

from a to b and (a,b) will denote the open interval.

Similarly {a,b and [a,b) will be used for intervals open

on one end and closed on the other. Right hand and left

hand limits at any point a will be written as f (a + 0)

and f(a - 0) respectively. If <^ri( ^ ~ 1>2,..., N is a

class of nxombars, Max I An) will signify a number of the

set which is greater than or equal to all the other mem-

bers of the set; similarly Min A^ will indicate a

number of the set that is less than or equal to all other

members of the set. Unless otherwise indicated the

functions and variables in the following definitions and

theorems will be real.

Definition 2.1.1. The function f (x) is piecewise

continuous on a finite closed interval [a,b if it is



bounded and is discontinuous at only a finite number of

isolated points. The notation f(x) is PC will be used to

indicate that the function f{x) is piecevd.se continuous

in every finite interval.

It follows from the definition that PC functions will

have left and right hand limits at all points and that each

of the discontinuities may be enclosed in a sufficiently

small interval such that the sum of their lengths may be

made arbitrarily small. With the aid of the following

definition a less restricted class of functions may be

defined.

Definition 2.1.2 . The function f(x) is of order g(x)

as X tends to a if there exists a finite number M such that

f(x) ^M|g(x)

throughout some neighborhood of a. This will be expressed

by the following notation: f{x) = g(x) .

Definition 2.1.3 . The function f (x) is almost piece-

wise continuous on the closed interval a,b if it is piece-

wise continuous except for singularities at a finite number

of points <Xj^|, k = 1,2,...,N, where f(x) = Mx - x^| "^ ,

n<l as X tends to Xj^. The notation, f(x) is APC v;ill

indicate that the function f(x) is almost piecewise con-

tinuous on every finite interval.

This class will admit functions with certain infinite

discontinuities that ara integrable in any finite interval
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since the order property guarantees the convergence of such

improper integrals.

The follov;ing theorem is referred to as Cauchy»s prin-

ciole for the convergence of improper integrals.
''

CO

Theorem 2.1.1. a) The integral f f (x) dx converges

if and only if for every €> there exists an X such that

f(x) dx
'A

<€ when A, A» >X.

b) If f (x) has a singular point at x = c then the integral
.c

f{x) dx, a< c converges if and only if for every £ >

there exists a 0> such that
r

f(x) dx <€ when 0< c - cKg .

/

Definition 2.1.4 » The principal value of the integral
» CO f°°
] f(x) dx, denoted PYJ f(x) dx, is defined as

f .

J-A

(x) dx

if that limit exists.

In the proof of the Fourier integral theorem it will be

necessary to reverse the order of integration of iterated

integrals with infinite limits and certain alloviable discon-

tinuities. The necessary justification will be found in

the next two theorems. Since these theorems involve the

concept of uniform convergence, it will be defined before

stating the theoreras.

Definition 2.1.5 . The integral f f (x,y) dx converges
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uniformly with respect to y at the upper limit, for y in

the interval c^y^d, if for every €> there exists an

X( € ) independent of y such that

I
f(x,y) dx <€ for A, iV> X

and for all y in c,dl .

Theorera 2.1.2 . If f (x,y) is APC for x and y in the

respective intervals a-$x<b and c-<y<:d except possibly

/
For proof see LePage

at a finite number of isolated points, then

dy
I

f (x,y) dx =
I

dx I f (x,y) dy.

^, pp. 242-46J.

Theorem 2.1.3 . If i'{x,y) is APC in x and y except

for at most a finite number of points in every finite

rectangle in the xy-plane and if the integral I f (x,y) dx
•'a

converges uniformly with respect to y at the upper limit,

for y in c,dj , then

I
dy

I
f(x,y) dx = I dx I f(x,y) dy.

For proof see LePage 9, pp. 246-49 .

Although the following theorem is not used in the

Ja Jq

proof of the Fourier integral theorem it v/ill be needed

later. It is given here because of its similarity to the

two theorems just given.

Theorem 2.1.4 . If f(x,z), z complex, is APC in x for

a fixed z and continuous in z for each x where the function
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is defined and if I f(x,z) dx is uniformly convergent v/ith

respect to z at the upper limit for z on the curve C, then

I
dz

I
f(x,z) dx =

I
dx

I
f(x,z) dz.

For proof see LePage [9, pp. 249-5o|

,

The V/eierstrass test for uniform convergence of improper

integrals is given by the following theorem.

Theorem 2.1.5, If M(x) is a positive function such that

f(x,z) <" M(x) for all z in a region R, z complex, and if
<• CO /• CO

I M(x) dx exists then the integral J f(x,z) dx converges
J3. J a.

uniformly with respect to z at the upper limit for all z in R.

The Lipschitz conditions v/ill be needed in the statement

of the Fourier integral theorem 9, p. 271I

.

Definition 2.1.6 . The function f (x) satisfies the

Lipschitz conditions of order o( for u in the interval 0, <$j

if there exist numbers Kn , Kg, ^-,, and o(^ such that

f(t - u) - f{t - 0)

and

f(t + u) + f(t + 0)| ;$ K u'^^^

when <$ u<: J and OC = Min
[^, ^ of^ .

Proof of the Fourier Integral Theorem

The first steps in the proof of the Fourier integral

theorem will be the proofs of two lemmas v;hich together are
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a weakened form of the Rieraann-Lebesgue theorem for trigo-

nometric integrals.

Lemma 2.2.1 . If f(x) is PC on |_a,b| then.

and

lim
.| f (x) sin yx dx =

lim I f(x) cos yx dx = 0.

/.

Proof . Since f(x) is PC, for any €> one can define

g(x) =

Ao a< x< X,

Xn < X < Xp

^N-l ^N-1 < ^ < ^

where the <L> k = 0,1,2,..., N - 1 are constants such that

h

|f(x) - g{x)
I

dx < i-.

i 2

Now consider the difference.

f(x) sin yx dx g(x) sin yx dx

ill [f(x) - glxT] Sin yx dx ^ I |f(x) - g(x) dx<^.
2

Hence

f{x) sin yx dx <^ ^ +
I

I
g(x) sin yx dx

where

I

N

g(x) sin yx dx
/.

ki-i

k = I

ij^
I

sin yx dx
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N N

A COS yxi^ - cos YX\z+2.

k

K = /

^
M \

K =

+ COS yxk
dl

2NM^ M = Max \~\A:J\ .

< € .Thus, if lyl > !iM, then 2NM<| and j f (x) sin yx dx
' ' €

ly|
^ Ja

Since one can replace sin yx by cos yx without affecting

the validity of the proof and since € can be made arbitrarily

small the lemma has been proven.

The next lemma will generalize the results just obtained.

Lemma 2.2.2 . If f(x) is APC for all x and if / |f(x)|dx

exists, then

lim j f (x) sin yx dx = a>

and

lim
\y\->-<x>

f{x) cos yx dx = a>0.

Proof . Since J~ |f (x)| dx exists, if x^ is a singular

point of f (x) then there exist three numbers X^, X^ and X^

such that X, < x^< X-< X and
1 o 2 j>

K
and

I
CO

f(x) sin yx dx

f(x) sin yx dx

< j
' rf(x)idx<i

/I 00

|f(x)|dx<i.

By lemma 2.2.1 there exist y and y such that

f (x) sin yx dx <
I

^°=^ M > I^il
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and

Hence

where
J
f

2

CO

f(x) sin yx dx

f(x) sin yx dx

< 1 for lyl > ly2|
4

< € for >

Vo = ^^^^ [ji' ^a]

The second statement of the lemma may be proven in a similar

manner by replacing sin yx by cos yx; thus the proof is com-

plete.

The following form of the Fourier integral theorem will

be used.

Theorem 2.2.1. If f(t) is APC and satisfies the Lipschitz

conditions of order o<> at points where f(t) is finite and if

/CO
I

f(t) dt converges, then

(2.2.1) -^(iy) = I f(t) e'^^ dt

'-CD

converges uniformly with respect to y at the infinite limits,

thus defining the function ^(iy) for all real y. Also,

yt dy
fco

^(iy) e^

at all points where f(t) is finite.

Proof. Consider

>00

f(.) e-^y^ dt
•CO

00 GO

^ g |f(t) e-iy^|dt ^ I |f(t)|dt.
^-00 •'-CD
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The uniform convergence follows from Theorem 2.1.5. Sub-

stitute the right side of equation 2.2,1 into the integral

in equation 2,2,2, then

PV f ^(iy) e^y^ dy = lim f e^^^ dy f fC^) e'^^^ df

A ftoo

- lim r dyf f('r^) e^y^^--^^ d<
J-A J-00

Theorem 2.1,3 applies since the integral in equation 2.2,1

is uniformly convergent, hence

yf ^{±y) e^y^ dy = lim f f{^) d^f e^^^-'^^^ dyPV .

W-co

= lim
I

f«) dY
A-*-* J-oo

I
cos (t --f ) y dy + i

I
sin (t -< ) y dyj

•/-A J-A J

fCT) si^ ("- -^) ^ d<
t -r

too

= 2

Make the change of variable u ='T^ - t, considering t constant,

then /oo /too

^(iy) e^y^ dy = 2 lim j f(u + t) sinjii ^^^

Nov; for any t for v;hich f(t - 0) and f(t + 0) exist choose a

^ ^ t , then

2 j f (u + t) sinjoi du = l3_(A,t) + l2(A,t) + I^CAjt)
J-eo U

v;here ^^

I.(A,t) = 2
I

f(u + t) sin Au ^^
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l2(A,t) =21 f(u + t) silLAu ^^
J-S u

I (A,t) = 2 1 f(u + t) ^llU^du.
^S u

By lemma 2.2.2 I^(A,t) and I^(A,t) will vanish as A increases

without bound.

Therefore, ^

Pv| :^(iy) e^y^ dy

I

r f (u + t) ^iTLiu ^^ +
1

f(^ + t) sin_Au
^lu

im r r(t - u) ^HLiii du +
I

f (t + u) ^i2.-^ du .

**LJo U Jo 1* J

2 lim

= 2 lim
A

Thus

(2.2.3) PV
I

-^(iy) e^^ dy
'-0O

s

= 2 lim r [f (t + u) + f (t - u]] sin_iii du.

Jo ^

Nov; consider

CO

2ff(t + 0) + fit - 0)
I

sin_w ^^ =rf\£{t + 0) + f{t - 0)\ .

o

Also

I Sin w d^ = lij^
I

sin_w ^^ = -^^^ I sin Au ^^^

o w A-^«>J<, w A-*-<»Jo u

Hence

(2.2.4) 2[£(t + 0) + f(t - oT] 1
sm V7 dw

o w

= lim 2
I

ff (t + 0) + f (t - 0]]
sin_Au ^^^

Jo u
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Now consider,

liir ^ I f(t + U) + f(t ~ U )

I u
sin Au du

S
f(t + 0) -^ f(t - ) sin Au du

u J
or

(2.2.5) lim <^ I
f(t ^ u) - f(t ^ 0) 3.^ A^ ^^

A-*-co U

/
f(t - u) - f(t - 0) sin Au du

u

which is the difference of the right members of equations 2.2,4

and 2.2.3. Since f(t) satisfies the Lipschitz conditions cK > 0,

then

/.

S

f(t + u) - f(t + 0) du
u

< / K u^-'du = I2J '

and.

/
f(t - u) - f(t - 0)

u
du

'
-'du =^

<l v° ^:

Since these integrals exist lemma 2.2.2 applies to the integrals

in 2.2.5. Thus the expression 2.2.5 vanishes in the limit as

A increases v;ithout bound.

Hence,

PV

/CO
:^(iy) e^y^ dy = tT [f(t + 0) + f(t - 0)\

00
'

or
1 00

f(t ^ 0) -^ f(t - 0) = JL_ PV
I ^ (iy) e"^ dy

2lf •f-CD
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at values of t for vxhich f(t) is finite, and

(2.2.5)
/• CO

f(t) = -I-
P7 I

^(iy) e^y^ dy,
27r j_oo

where f(t) is continuous. This completes the proof of the

Fourier integral theorem.

The fimction -^(iy) will be referred to as the Fourier

transform of f(t) and equation 2.2.5 as its inversion formula.

The next question to be considered is that of uniqueness. It

follov;s from the \miqueness of integration that each function

f(t) satisfying the conditions of theorem 2.2,1 will have a

unique transform. Conversely, the inversion is unique as

qualified by the following theorem.

Theorem 2.2.2 . If ^(iy) is any function for which an

inversion exists, then any two functions f]_ and f^ for which

-^(iy) is the Fourier transform are related by the equation

f3_(t) = f2(t) + N(t) where
|

N(t) dt = 0.

Proof . The functions f^(t) and f (t) have the same

transform, hence by theorem 2.2.1

f.^(t + 0) + f.^(t - ) ^ foCt + 0) + f9(t -
)

2 2

at all finite points of f(t). Hence at all continuous points

f^(t) = f^Ct).
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Since f-j_(t) and ^2^^^ ^^^ ^^^ they may differ only at a

countable number of isolated points; denote these as

ftA 31 = 1,2,3,.... Hence, f-^lt) = f2(t) + N(t) where

0, t ?^ tn

N(t) =

fT ( t ) - f^ ( t ) , t = t„
1 n 2 n ' ^

N(t) is zero except at a countable number of points, thus

N(t) dt = 0.

CD

The proof is complete,

Nov^ consider the function f{t) such that f(t) =0 for

t < 0, Recall that in the introduction the Laplace transform

v^as defined as having the form

F(s) =1 f{t) e"^^ dt =
I

[f(t) e'^'^J e"^^^ dt

Jo V-CD

if s = X + iy,

-xt
But this last expression is the Fourier transform of f(t) e •

If the Fourier inversion formula is formally applied on the

assumption that the f{t) e~ satisfies the conditions of

theorem 2.2.1, then

f(t) e-^^ = Alim I F{s) e^^ dy

or

f(t) = _1 lira I F(s) e^^ dy
2Tf AfCD 7
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where s = x + iy. Now consider the contour integral

F{s) e^^ ds

fC

where C is the vertical line at some fixed abscissa x v/hich

is traversed from y = -A to y = A. If A is increased with-

out bound, this path sometimes is referred to as the Bromwich

contour. This integral may be written

F(s) e^^ ds =1 F(s) e^^ (idy).

'-A

Hence
^

(2.3.1) f(t) = lim-^j F(s) e^^ dy.St

.. - I

A-*-00 2ff
= lim _J^ I F(s) e^^ ds.

This last expression is the inversion integral of the Laplace

transform. Although the form of the sought after inversion

has been obtained it would be of little value with only the

limited material thus far presented. It is, in fact, ambig-

uous unless a means is provided for specifing the value to

be assigned to x. One v;ould have little hope of finding a

unique f(t) from a given F{s), even if he v/ere assured of its

existence. The additional information necessary to implement

the use of the inversion formula will be obtained by investi-

gating the properties of the Laplace transform in terms of the

theory of functions of a complex variable.
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Properties of the Laplace Transform

The first property of the Laplace transform to be inves-

tigated v;ill be its convergence. If the conditions of

theorem 2.2.1 are to be satisfied then the integral

''^"
J "f(t) e-st dt - P [f(t) e-^] e-^yt ^,

nust converge absolutely. For a given f(t) this integral may

converge for sorae values of s and not for others. The form of

the expression on the right side of equation 2.3.1 suggests an

examination of the class of functions of exponential order.

This leads to the following theorem.

Theorem 2.3.1 . If f (t) is APC and [_e^otJ ^^^^ ^^le

integral j f(t) e"^''^ dt, s = x + iy, converges absolutely

for X > Xq and uniformly v/ith respect to x and y at the upper

limit for x ^ x.^ > x .

Proof . Note that '

ao /» CO

f(t) e-^^l dt = j f(t)| e"^^ dt.

X 'o

To

Since f(t) is APC, the integral j |f(t)|e"^ dt exists for any

finite T . Also, f(t) is |_e-^^ ; hence there is a number M

such that |f(t) e"^^ -^ M e""^^"^"^^. From this it follov;s that

lim
t->a>

•(t)| e"^ = for x>x .

This implies that for every 6^ > there is a T such that

|f(t)|e-^2^< €^ for x^<X2<x and t >T .
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Hence ^ -o

(2.3.2) \ |f(t)fe-^ dt =
I

|f(t)

Jr. JT„

Q-^t^ e"^-^"^2^^ dt

v^here |
^-(x-Xgjt ^t exists for x>X2. Thus

"o

J
(fCt) e-s^ldt ^ J

|f(t) e-^^[dt

<x>

+ £^
I

e-(^-^2^^ dt.

Since both integrals in the right hand member have been shovm

to exist the absolute convergence has been proven. Nov/ choose

X , such that x^x > x > x . Then from equation 2.3.2

/,:

CQ /• w /• OD

f(t) -^ dt< 6J e-(^-^2)^ dt<€,| e-(^/ " ^^^^ dt,

T. Jr,
o " O "^ O

This last expression on the right is independent of x or y and

the uniform convergence follows from theorem 2.1,5. The proof

is complete.

Corollary 2.3.1 . If f (t) is APC and is identically zero

for t>T , where T is any positive number, then F(s) con-

verges for all s.

Unless otherwise indicated the remainder of this paper

will be restricted to APC functions of exponential order v/here

the function is identically zero for t<0.
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Theorem 2.3.1 has established a half-plane of uniform

convergence for functions of exponential order. The value x^

given in theorem 2.3.1 v/hich fixes the boundary of the region

of convergence of the Laplace integral is called the abscissa

of converpcence and the vertical line through x that forms the
"^ o

boundary is the axis of convergence.

The next question to be considered is the uniform con-

vergence at allowable singular points of f(t).

Theorem 2.3.2 . If f(t) is APC and if t^ is a singular

point, then f^^fCt) e"^"^ dt converges uniformly with respect

to s at t, for s in any right half-plane.

Proof . The function f(t) is APC thus the integral

f(t)|dt

exists where S, and S2^are arbitrarily small numbers. If x is

any real number, then

|f(t) i^,|t dt ^eMi^k'-^zU |f(t) dt

also converges. If x^x. then,

f(t) e-st| = f(t)|e-^^ f(t)'|el'^'l^.

Hence

|f(t)|e-^^ dt^e'^'f^^^-*-^^^! |f(t) dt.

Therefore, the uniform convergence for x ^ x^ -follovrs from

theorem 2.1.5. But x.^ was any real n\amber, thus the theorem

is proven.
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The theorems just given have established a region of con-

vergence for the Laplace integral in the complex plane for a

large class of functions. The function

f» 00

F(s) =
j f(t) e"^* dt for x > x^ if s = x + iy

will now be investigated with respect to the theory of func-

tions of a complex variable for s in the region of convergence

of the Laplace integral.

Definition 2.3.1 . A function f(s), s complex, is holo-

morphic at a point if it is differentiable throughout some

neighborhood of that point. The function is holomorphic in a

domain if it is holomorphic at each point of the domain. If a

function is holomorphic in any region of the complex plane,

then that function and its analytic continuation will be refer-

red to as an analytic function.

Definition 2.3.2 . A function f{s) is a real function of

a complex variable if it is real when s is real. The nota-

tions T^fs] and ^fslv/ill denote the real and imaginary parts

of the variable s, respectively. The follovdng two theorems

v/ill be given v/ithout proof.

Theorem 2.3.3 . (Cauchy's Theorem) If f(s), s = x + iy,

is holomorphic throughout a simply connected domain D, then

for every simple closed rectifiable oriented contour C lying

on the interior of D

f(s) ds = 0.

C

For proof see I 7, pp. l63-6Sj,
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Theorem 2.3.4 . (Morera's Theorem) If a function f(s)

is continuous throughout a simply connected domain D and if

for every closed rectifiable contour C interior to D

' f(s) ds = 0,

then f(s) is holomorphic throughout the interior of D, For

proof see p7, pp. ISS-S9I

.

These two theorems v/ill now be used to prove the fol-

lowing theorem.

Theorem 2.3.5 . The Laplace transform of f{t),

F(s) =
I

f(t) e"^^ dt for x>x where s = x + iy,

is holomorphic interior to the region of convergence of the

integral.

Proof . Consider any simple closed rectifiable positively

oriented curve C in the region of convergence of the integral.

Then

4) F(s) ds =1 dsj f(t) e-st dt.

The conditions of theorem 2.1.4 are satisfied, hence the order

of integration may be reversed. Then, by theorem 2.3.3

CD

F(s) ds =
I

f(t) dt 1 e-st ds =

since e"^ is an entire function. Since g* F(s) ds = 0, it

follov;s from theorem 2.3.4 that F{s) is holomorphic throughout

the interior of the region of convergence of the Laplace inte-

gral. The proof is complete.
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The first consequence of theorem 2.3.5 is that the func-

tion obtained from integrating the Laplace integral may exist

outside the region of convergence of the integral. Since it

has been shox-m that the integral defines a holoraorphic func-

tion within its region of convergence it follov;s that it may-

be possible to continue analytically the function to the

entire plane or to a natural boundary. The function F(s) will

henceforth denote the analytic function defined by the Laplace

integral and its analytic continuation. The function obtained

by integrating the Laplace integral will be a global defini-

tion of F(s). It follov/s from the proof of theorem 2,3.1 that

the Laplace integral must fail to exist at s = x^ on the axis

of convergence. Hence, there will be a singular point of F(s)

on this axis. Also any vertical line with x = x^ and x > x

V7ill lie to the right of all singular points of F(s).

The next consequence of theorem 2.3.5 is given in the

form of a theorem.

Theorem 2.3.6 . If f(t) is a real function of t and if

F(s) is a single valued function, then F(s) is a real valued

function of the complex variable s.

Proof . Let s = x + iy and consider J f(t) e"^^ dt

which converges and is holomorphic in the half-plane where

x> Xq. The functions f(t) and e~^^ are real, hence the inte-

grand is real for s = x, x > x . Therefore, the integral is

real for s on the x axis beyond the abscissa of convergence.

The proof of the theorem follows from the reflection principle;
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The reflection principle . If a fimction f(s) is holo-

morphic in some domain that is symmetric to the real axis

and if f(x) is real whenever x is a point on that segment

then f(s) = f(s) which implies that f(s) is a real function

of the complex variable s. For referrence see |3, p.
265J ,

The utility of this theorem is derived from the perma-

nence of forms. The Laplace integral may be evaluated by

treating s as a real variable to obtain results that are

valid when the real variable is replaced by a complex variable.

This result is due to a theorem from the theory of functions

of a complex variable v^hich states that the form of any func-

tion in its domain of holoraorphy is uniquely determined by its

values along any curve or in any sub-domain.

The questions concerning the inversion integral that were

previously noted on page 21 will be ansv;ered for APC functions

of exponential order by the next theorem and its corollary.

Theorem 2.3.7 « If F(s) is any real function of the com-

plex variable s = x + iy that is holomorphic in a half-plane

x> X and if F(s) is s-k
, k > 0, then

x + iA

f(t) = 1 lim } F(s) e^^ ds
A ->CO

is independent of x for x> x^.

Proof . Let ^ and y, be two real numbers such that

XQ<'y < y, ' Let /^ be a real number, then consider the rec-

tangle in the complex plane with vertices at ^+ i^ ,
7'- i ^>

y, - 1^ ard. 0^+ ift . Let the contoixr C be the perimeter of
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this rectangle traversed in a counter-clockv^ise direction.

According to theorem 2.3.3

/,
F(s) e^^ ds = 0.

J
F(r. iy) e^^'^y^^ dy . ['^ F(x - i^ ) e^^'^^^^ dx

I
F{7,+ iy) e^'^'-iy)^ dy -^ I F(x + ig ) e^^"*"^^ ^^ dx = 0.

Nov; consider

(2.3.3)
r

I
F(x + ig ) e

(x+i^)t
dx.

Since F(s) is I s"^
, k>0, then F(s) ^ _iL. Hence,

F(s) e^^l < eflji where M is a constant.

Thus, y

r F(x-^ i^) e^^-'^^)^ dx
Jy.

/ H I Xt J4-^3 e dx
H

Hence,

lim

Similarly,

Hence,

F(x + ift) e^^'-i^)^

I
F{x - i^ )

e^^-i^)^ dx = 0.

t^

dx = 0.

g

im f FCyi iy) e^'^-'iy)^ dy = lim f
^

F( l^ + iy) ^^%^^l')^ dy.lim
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Or equivalently
^^^.^

lira J
F(s) e^^ ds = lim j F(s) e^^ els

Vv'here these are the line integrals over the vertical lines

through 7 and 7,. Since 7 and 7 are any tv;o values of x satis-

fying the condition x<0^<'); the theorem is proved.

Corollary 2.3.7 . If F(s) is the Laplace transform of the

APC function f(t) which is |_e^°^ ,
then

F(s) e^^ ds

?A

is independent of x for x>Xq.

Proof. The function f(t) is APC and |_e^^J, hence by

theorem 2.3.1 the integral

/.

CD '•«

f(t) e-st dt =
J I

f(t)le-^ dt
'o

exists for x>x , Now write,
o

F(x + iy) =
I

f(t) 6-^^ cos yt dt +-^| f(t) e"^ sin yt dt.

By lemma 2.2.2,

lim F(x + iy) = for x>x .

Now consider the same integral that was considered in theorem

2.3.7. Thus, for any €^>0, Max [^F(x + iyi] < €, for

Xq< y^ x^O^ ifjyl is sufficiently large. Considering the

exr>ression 2.3.3,

I
F(x + i^ ) e^^""^^)^ dx < €^ I

e^ dx < €
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for sufficiently large |y|. The remainder of the proof of the

corollary is identical with that of the theorem.

Thus the preceding theorems and the above corollary have

removed the ambiguity in the formal development given for the

inversion integral

X + A

—L. lim f F(s) e^^ ds = f (t)
,

2Tfx Jx-?A

X>X^

for functions whose transforms are of order s""^, k> and for

transforms of APC functions of exponential order. The unique-

ness of the inversion as specified will follow directly from

theorem 2.2,2. That is, tv;o functions having the same Laplace

transform may differ at most by a null function.

The Evaluation of the Inversion Integral

It will nov; be shovm that certain functions F(s) may be

inverted by using the residue theorem to evaluate the inversion

integral. First, some notation v;ill be given, A curve in the

complex plane v;ill be designated by

C:
I

s|s = /^(t), a4t^ h> .

This is read: C is the set of points determined by the contin-

uous function /^(t) as t varies from a to b. The variable t is

real and the order of the end points v;ill denote the orientation,

that is, the initial and terminal points.

As an example
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:{s|s-Re- |L,^,-I^}

is the semicircle in the positive half-plane of radius R that

is centered at the origin; it is traversed in the clockwise

direction. Let s,^ be a point and C be a ciirve in the complex

plane, then define

d Is,, C~j = Min \~\\ - sM , s on C.

Thus it is the absolute "distance" from the point s, to the

nearest point on the curve.

Now consider,

f(t) = —L- lim
I

F(s) e^^ ds, s = X + iy
277-1 A^-^Vy^r^A^

where F(s) is holomorphic in the half plane x>Xq. Assume

that all singular points <s-^> k = 1,2,3,... of F(s) and hence

of F{s) e^^, are isolated poles and on or to the left of

X = X . If x-2_> X is a constant then all \\> must be to the

left of

Xi- {_ ^h = x-^_ + iy, -An^y<A^ .

The indices may be assigned to the poles such that d Sj^, ^
4 ^

I ^k+lJ ^n\ ^^^ L^^k K l^ ^k+1 •
'^^°'^'^ define an infinite

sequence of contours
j Cj^^ n = 1,2,3,... such that

^n ~ ^j »

^n = ^^S(s^ -
^^i)

-^d
'^(f ) = R(^) = A^; d[^^,C^ > € > 0,]}.
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Thus C and T form a closed contour with singular points
n n

is, > k = 1,2,3,..., n in its interior. It is also to be re-

quired that

lim f F(s) e^"^ ds = 0.

Next, consider the residue theorem.

Theorera 2.4.1 . Let C be a simple, closed, rectifiable,

oriented curve and let f(s) be a function that is holomorphic

at all points on this contour and its interior except for a

finite number of isolated singular points
-^
s^> k = 1,2,3, ...N,

Then, Jl
1Lf f(s) ds= 2 ^^^P' \]2rf:

k= I

where Res Ff , sH is the residue of f at s^. For a proof

see 7, pp. 241-42 ,

If this theorem is applied to a function F(s) e^^ which sat-

isfies the preceding requirements then,

i- J F{s) e^^ ds = -i-f
I

F(s) e^^ ds + I F(s) e^^ dsj

2rf±JC 2nf±\Jc^ Jy

N

Res [f(s) e^*, sJ

.

k= I

If one lets n increase v;ithout bound then,

i- I F(s) eSt ds = -1— lim | F(s) e^"^ ds
2'rrijy^ 2'rf±A,-^<-J^_.^^
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N

= \ Res I^F(s) e^^, sj .

'

If the niimber of singular points of F(s) is finite then

N

f(t) = y Res Qf(s) e^^, sH

.

If there is an infinite number of singular points, each con-

tour of the infinite sequence of contours will contain at

most a finite n-omber .of poles not contained in those of lov/er

index. This leads to an infinite series of residues. If

this series converges then f(t) exists and is equal to the

sum of the series.

The technique, that v^as just outlined, will be demon-

strated for the class of rational functions for which the

degree of the numerator is less than that of the denominator.

In this v;ay, a form of the Heaviside expansion theorem v/ill

be developed.

Let C of the previous discussion be composed of the four

contours

C^ : |"s|s = X + iR^, x^>.x>0j

^n,--
{sls=R,ei^^,<^,<7r}

%'• {s|s = R,e^^7r.<^.<3^}

C^ :

I
s

I

s = X + iR^, < X < x^J> ,

Let the contour just given be the C in the following lemma.



35

Q
then

Lemma 3.4.1 . If F(s) is PJJl as s becomes infinite,

r
lim P F(s) e^^ ds = for k>0 and t>0.

Proof. From the proof of theorem 2.3.7 it follows that

lim F(s) e^t ds = lim | F(s) e^^ ds = 0.

By hypothesis F(s) < _M_ where M is a constant.

Hence

Jc,
F(s) e^^ ds ^ f |F(s)

.xt dskMnH e^^«^°^^)^ de
' n J-n/^

since Ids = R d© and x = R cos 6 on the contour C ,

n n ng

But cos = - sin(9 - —
)

; therefore,
2

F(s) e^^ ds < M R'
n Jo

g-R,t sin© ^0 ^

Also,

F(s) eSt ds ^ M R^"^!

,srr/^

rf

ji^t cose ^Q

= M R1-k r
^

e^'>^
sine de = M R-"-"^

.^
3-R;,t sin e ^e .

This is true since.

Cos © = sin( e - l2l) and sin(-0) = - sin©
2
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But since sin > 1± for ^ Q ^ I^ then,
'

« "/.
^

g-R^t sin© ^Q ^ ''^n""/""^'
e"*^^''de

Therefore,

lira

X.
F(s) e^^ ds

MtT /p-R„t - 1)/ lirf

2tR
{ e-^n

n

<

—

r2tR^

= lim F(s) e^^ ds

'Cn,

= lira ^—rr -

R^o. 2tR^

for k>0 and t>0. Hence,

lim

L
F(s) e^^ ds = 0.

This proves the lemraa.

Recall that any rational function may be expressed as

the quotient of two polynomials. By the fundaraental theorem

of algebra

F{s) = PM. =

Q(s)

P(s)
N

r
,
ra,

TT(3 - ^^r^

The singular points of F(s) e^^ will be the points -ss (», Let

s„ be the singular point of greatest absolute value, hence

all
-^

s > will be enclosed in the circle s = R e"^ where

R> r = s„L Outside of the region, F(s) will be bounded

since the degree of Q(s) is greater than the degree of P(s);
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in fact, there is an M such that F(s) ^ Jl., Thus lemma
)si

3.4.1 applies. Applying the residue theorem it follows that

N

.,., ^_. , F(s) e^^ ds = ^ Res pis) e^^, sj

k =

where

Res rF(s) e^^, sj

d
m^-l

K-i>= Ss"""
ra. -1

ni.

TT(--Sk)
m^

k=l

for t > and x^ > ^ ^3-7] where sis the pole with

real component. If m = 1, then

maximum

Re s r^Cs) eS^ si = eS;<t ^ . ^ ( s - s^,) P(s)

Q(s)

s.t

ds
Tr(s- s.) ^' ^\^

thus if M = 1 for all k, then

N

f(t) =y ^^^"^
^^"1^^

, for.t>0.

k= I

Q' (sj^)

The following form of the Heaviside expansion theorem

has been proven.

Theorem 3.4.2 . Let F(s) = LiM. be a rational function
Q(s)
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where the degree of P(s) is less than the degree of Q(s) and

if Q(s) has no repeated factors then

N

= > ^ ..

;f"'0'(s)l =Y e^xt PIM= f(t), t>0^ ^ -> Z~. Q'(sk)
k= 1

where the ^s,.^ are the coordinates of the singular points

of F(s).
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CONCLUDING RMARKS

The Laplace transform has been treated as a special case

of the exponential form of the Fourier integral. . From this

point of view the properties of the Laplace transform may be

derived from those of the Fourier transform. The Fourier

integral theorem expresses a dual relationship between a class

of object functions and their transform images. It was from

the Fourier inversion formula that the complex form of the

inversion integral of the Laplace transform was then derived.

The Laplace transform was constructed by replacing the object

function of the Fourier transform by a new object function

multiplied by an exponential convergence factor e"^^ where x

is a real variable. This choice not only broadened the scope

of the transform process to include all real APC functions of

exponential order but lead naturally into the introduction of

the theory of functions of a complex variable. The utiliza-

tion of this latter theory not only made it possible to es-

tablish conditions of uniqueness for the inversion integral

but also provided a practical approach to its evaluation in

terms of the calculus of residues. Finally, the Heaviside

expansion theorem was derived as an example. Aside from its

utility in demonstrating the theory, this example v/as chosen

because of its historical value. A form of this theorem was

the basis of the original operational calculus and Keaviside's

failure to place it on a rigorous base was the source of the

controversy noted earlier.
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The central purpose of the paper is to outline the

mathematical development of the inversion integral of the

Laplace transform. An attempt is made in the introduction

to place the subject matter in context by defining the

Laplace transform and by giving a brief historical devel-

opment of the operational calculus. Also, a simple ex-

ample is given to relate the modern operational approach

to the solution of differential equations by classical

methods.

The theory of the Laplace transform and its inversion

integral is approached via the exponential form of the

Fourier integral theorem. It is proven for absolutely inte-

grable almost piecev/ise continuous fxmctions. The Laplace

transform was constructed by replacing the object function

in the Fourier transform with f{t) e""^^ where f(t) = 0, t<0.

Thus, the Laplace transform is given as

^|f(t)j = I f(t) e-^^ e-iy* dt =
I

f(t) e-^^ dt = F(s)

where s = x + iy is a complex variable. The inversion inte-

gral is formally derived by substituting into the inversion

formula of the Fourier integral as follows:

f(t) e-^ = -i- PV / F(x + iy) e^^^ dy
277-

where F(s) is the function to be inverted. By considering

X as a constant and choosing as a contour the vertical line

s = X, one obtains
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F(s) e^^ dt

iA

as the inversion integral. This formal procedure introduces

ambiguity in terms of what values of x should be used in

evaluating the contour integral.

To remove this ambiguity the convergence of the Laplace

integral is investigated. It is found that if f(t) is of

exponential order Xq that the Laplace integral will converge

for x>Xq. It is also found that the Laplace transform F(s)

is a holoraorphic function in the region of convergence of

the integral. It is then shown that if F(s) is of order s~
,

k> or if F(s) is the Laplace transform of an almost piece-

wise continuous function of exponential order x^, the value

of the inversion integral is independent of x for x>Xq,

Thus the ambiguity is removed for this class of functions. A

theorem is developed for the evaluation of the inversion inte-

gral by the calculus of residues. The Heaviside expansion

theorem is developed to demonstrate the use of these techniques.


