ILLEGIBLE
DOCUMENT

THE FOLLOWING
DOCUMENT(S) IS OF
POOR LEGIBILITY IN

THE ORIGINAL

THIS IS THE BEST
COPY AVAILABLE

ILLEGIBLE

THE FOLLOWING
DOCUMENT (S) IS
ILLEGIBLE DUE
TO THE
PRINTING ON
THE ORIGINAL
BEING CUT OFF

ILLEGIBLE

T'HIS BOOK CONTAINS
NUMEROUS PAGE
NUMBERS THAT ARE
ILLEGIBLE

THIS IS AS RECEIVED
FROM THE
CUSTOMER

INTEPP=-70N
DOCUMENTATION OF A STUDRENT, PESIGHED - INTERACTIVE |MTFPDRETED

bv

MICHAEL FRAMNK MITP|NME

B.B.A., St Bernadine of Siena College, 10F3%

MASTEP 'S REPOPT

submitted In partial fulfillment of the

requirements for the degree

MASTER 0OF SCIFMCE

Department of Computer Science

KANSAS STATF UMIVFRSITY
Manhattan, Kansas

1e75

Approved hy

CHAPLER 1
1.1
1.2
1.3

1.4

CHAPTER 2
2.1

2'2

CHAPIER 3
3.1
3.2
3.3

3.4

CHAPTER 4
4.1

4.2
CBAPIER S
5.1

5.2

ClHAPTER 6

LD
26T

R4 TAELE CF CCNTENTS
1975

Mmsq LNIERP-T700
C-a
Document

Introduction

General

Mctivation

Fegort or-janization

INTERP-7C0 fackqgrcund

Purgcse
Eresent arplications

Future enhancements

Lanquage dccunentation
Users guide

Cormand lanquage

Text editcr language

Erogramming language

Syntax rules
General

Farameter passing
Serpantic rules
General

Generalized data structures

Status of INTERP-700

EFAGE 1

Tada1

Lrpendix A

(pe]

Apprendix
Acpendix C
Arpendix L[

Arpendix E

Curient

Future enhancezents

Proyrar docurantation
Ganeral
Subrottine wodules
Editor
Ccrrard line enterpreter
Scarner
lcp dowr rarser
Eottor up parser
Stack
Feap
Tables
inter
Crerators
Utility routines
Errcr tfessayges
Comron Tata Llocks
Codes and Values
Taktles

Lessons Learned’

7]
]

PAGE 3
CEAFTER 1

INTRODUCTION

1.1 GENERAL: This report describes an interpreter which will be
referred tc as INTERE-700. It examines and i1llustrates features
of a high level programring language, much 1like APL, which is
syited to a spectrum cf users ranging from novice to experienced
rrogramrer, Emphasis 1is on documentation of IKTERF-700 as it
2xists tcday, but reference is made to future enhancements which
will increase the test and debug capatilities of the interpreter.
Emphasis is on two areas - language documentation; and progranm
dccumentation. [t should te noted, however, that IRTERP-700 is
not a cempletely <cperaticnal systen and 1is still 1in thé
development staje, In spite c¢f this, there are certain features

which are cperational in pretctype form.

1.2 MOTIVATICN: As programaing systems and prograrming

lanjuages evolve, there 1is an increasing shift towards the
utilizaticn of 1languages ky application programmers outside of
computer science., This trend is illustrated by the development
of prograrming languages such as BASIC, APL, and 'English like!
CCBOL. There are several proklems associated with this trend.
Host lanyguages are sc rigid, that it 1s impractical to introduce
neﬁ features without wmajor revisions, 1In addition, lanjyuages are
sufficiently difficuly tc learn that there 1is a reluctance to
atandon one language fcr ancther. Languages are not sufficiently
oriented toward ease-cf-use, and there 1is usually an excessive

'*learning overhcad!'! tarrier even Ltetween related languages. The

EAGE 4
purpose of INTERP-700 is to provide a language system which is
toth flexitle and pcrtable, with modifiable core lanjuage for
novice level programming, Wwith expressive features for the
experienced proqrammer, and with extensitility features fcr the
expert. INTEKP-700 is alsc designa2d to support a wide range of
dynaaic detugging aids. In addition to debugging, INTERP-700
should ke able to deal with other aids for progygram developrent

and verification.

1.3 REPORT ORGANIZATICN: 1his repcrt consists of 7 chapters,

each examining a difterent facet of the interpreter. Chapter 2
lcoks at the purposes of INTERE-700, toth present and future, and
touches on how this interpreter differs from others availabie.
Chapter 3 discusses the language documentatién, which includes a
users guide, and the three language sutsets of INTERP-700 - the
command language, the test editor language, and the prograrming
lanjuage. Chapter 4 discusses the syntax rules of the language
and includes a secticn cn hew parameter passing is accomplished.
Chapter 5 discussés the semantic rules and gives koth the data
structures used, and the languaqge restrictions. Chapter 6 looks
at the current status of INTERP-700, as well as future
arhancements envisioned. Chapter 7 discusses each major rodule

of the interpreter and descrites the purposes of each.

1.4 BACKGROUND OF INTERP-700: The ccncept for INTERP-700 was
initially proposed Ly Hankley and Wallentine. Their contention
was that there should ke a frcyramming language designed for a

spectrur of users which ercphasized three areas - the orientation

PAGE 5
of 1language design tc user convience and availability; the
efficiencies which can te achieved with information provided by
the user and/or the system; and the current software engineering
technolcgy used to suéport modular programming and to achieve
proqgram fportatkilitye. The concepts espoused were initially
presented as a class (rcject in the sunmer of '74 for course
CS-700 (Icanslater C[Cesign). The results of their efforts were
given to the‘ syamer '75 CS-7C0 course. This course was divided
into student groups tc develcr INTEKP-700. Each student group
independently designed a part cf the intergieter using a modular
Frogramming approach. Although general guidelines were prcvided
bty the instructor, inforzal cccrdination was the responsikility
of student groups whose mcocdules were to interface. Syntax and
sepantic rules were also developed independently as well as
various 1liwmits of languaye implementatich. In many cases,
ccerdination of effort was dcne c¢n a very superficial scale.
Testing of modules was to ke accomplished using a predefined data_
tase provided by the ipstructcr. Continued efforts will be nade

ty follow-on courses,

FAGE 6
CHABRTER 2

PUREOSE OF INTERP-7C0

2.1.1 TRANSPCRTABILITIY: There is a need in today's computer

technology for a conversational interpreter which is not tied to,
or designed specifically fer, a particular type systeon.
T4TERP-70C is intended to Lte a rortable system. Using FORTRAN IV
as its host languaygye, it should have the capability of being
easily 1laplemented ¢cn mcst corputer systems with very 1little

rrograrmning =ffort required fcr compatitility.

2.1.2 FCCULARITY: The trend today is toward develcping software
which is mcdular 1in design, wmaking revisions and enhancements a
reclatively simple task, rather than a major rédesign effcrt.
INTERP-700 is completely modular in design which, unlike APL, or
BASIC, allows systers prcgrasrars tc tailer 1t to unique user

requirements without altering its ltasic capatilities.

2.1.3 VIBTUAL MEMORY AFELICATICNS: 1INTERP-700 uses an address

translaticn table tc¢ locate data within memory. In a virtual
rachine the varioﬁs data structures addressed by the tranélation
table can reside 1in on-line storage devices until needed by the
user, freeing large areas of core memory. This can be done
wifhout changing its ftasic capabilities and would facilitate the
use of mini-computers to test-prove procedures without incurring
the costs associated with test and debug of programs on large

main frames.

2.1.3 CLYNAKIC TYPE CHECKING: INTERP—?OO'S usage of 'tag

architecture' allows corplete flexibility in defining data
structures, Dynamic checking of data types eliminates the
rrobability of fatal errors since type checking is done during
execution rather tham at ccmpile time. This allows the user to
make imrediate correcticns and to continue execution rather than
search pregram parts, make appropriate corrections, recorpile,

and reexecute,

2.1.5 CONMVERSATIONAL: INTIERE-700 is designed as an interactive
programming tool, which allows the user to test and debuy program

logic and code at the symbtolic level.

2.2 FUTUERE EHHANCEHENTS?

2.2.1 EXPERINENWTAL RESEARCH: 1In a university type environment,
or software developrent house, this type interpreter cculd
provide a relatively inexrensive and effective tool for

experimentinyg with compilerysinterpreter design alternatives,

2.2.2 CCLCZ GENERATICN: The interpreter could ke extended to
jenerate cutput code, allcwing for a conversion from a high level

language to machine executatle code.

PAGE 2

Intentionally left blank

CHAETER 3

LANGUAGZ DOCUNENTATIOCN

3.1 USLES GULDE: Like APL, INTERP-700 is designed for

int2ractive use, but with the addition of ccntrcl structures
which allows the orperatcr to flexibly influencg the flow of
processinij. The language allows extensive interacticn with
program ex=2cution, program variakles, execuation (activation)
records, and debugginy aids. It gives the user the capability of
teiny akle to do wmcre than merely run a érogram at a privaté
terminal. The user can also stop a program, display variables,
tables, and/or data structures, identify errors, dynamically
change the projram, and continue execution. If an error \is
discovered, processing automatically stops, the =xact 1location
and type of error 1is noted, «corrected, and processing again
Ccntinues, either fres the sawme location, or from a prior
location, depending upcn the error and user desires. To use
INTERP-700, the operator must become familiar with the three
language subsets used: the command languajge subset, the
programaing language subset itself, and the text editor language

Subset.

At il Aok Rk ok R ok ko ok e ook ok

* *
* TAELES 1-6 HERE *
* *

¥k ko A o o o e ok o ook ol A o ok e ok ke e e e ke ok

3.2 COMMAND LANGUAGE: all ccmmand lines beyin with the
character ')' followed by an appropriate keyword described in

tables 1 - 6. The kevword specifies the particular actien the

PAGE 10
user rejuires, or provides the user the altility tec accomplish
various tasks such as: place an object on disk for teaporary or
parmanent storage} retrievé én_object from a designated user's
disk space, erase an cbject- from his own disk space; 1list the
names of all ohjects on his disk space; ﬁr allow the user to
specify the name of his werking space, Each table contains both
ccumands which are presently available, and which should bhe

avalrlahle in the future.

3.3 T[EXT ECITCR LANGUAGE: fThe editor prograas which support

INTExP-70C provides the wus=r the capability of creating and
redifying a procedure from the terminal., With editor, the user
can append lines one after another in sequence, .insert lines
tetween lines already entercd, delete 1lines, resequence the line
rusbers into increments of, 100 after inserticns and deletions
have beep pade, and list either the new procedure or any single
line, Editor 1is called by entering the command word)EDIT
fellowed by the procedure name, When the edit node is initially
enterced, the editor will print out either <100> if the procedure
i5 keing entered for the first time, or <::> if the procedure

already exists.

3.3.1 ENTERING A NEWw PROCEDURE - After receiving the return code
<1b0), the user types in his line of text follecwed by a carriage
return. .The editor will respond with the next line number, in
this case <200>, and the user will enter another line of text.
This procedure is continued until the entire procedure is

entered, Each line 1is entered (appended) at the line nurber

PAGE 11

printed out by the editor.

3.3.2 LEAVING EDITOF - To leave the editor, the user enters the

edit command <Q after the last return code.

3.3.3 MOLIFICATIONS - kecdifying the procedure can be

acconplished using the text editor commands in table 7.

ke ndd d b bk hokk Rk koo ko ok Rk ok

* *
* TAELE 7 HERE *
* *

hkkhh ok diok ko kdok ok ke Rk ok

ook ok ko ok ok Rk kR R AR R %

* *
* YIGURE 1 HERE *
* * -

sedmkkokok bk ko kokk ok ok ko

3.4 PRCGHAMMING LANGUAGE: The programming language used by

INTERP-700 consists of two parts: control grammar, and
expression grammar, The expression grammar is verv similar £o
AFL, The language 1is designed for interactive usage and |is
generally constructed as illustrated in figure 1. GLtach procedure
consists ¢f a header and a body. Keywords PROC...ENDPROC delimit
the procedure, The header is ccmprised of a keyword PROC and an
id, followed by an optional arqument (s), fcllowed by
declaraticns. The body of the procedure consists cf one or nmore
stateménts, and a keywcrd ENDFROC. Aadditional features such as
scope rules, 1ules for parameter passing, data structures, and
RALLOL mMessages are contained is suksequent paragraphs, chapters,

or appendices.

PAGE 12

khrk e bbbk ok kb hok kR k

* »*
¥ TAELE 8 EBERE *
* %*

e ok g 3 o o ok ok ok ok ok o s sk ok ek ke

3.4.1 CONTHOL GRAMMAR - The various statement forms of the
centrol jrammar are contained in table 8. Hetasymbols are

dnafined later,

3.4.2 EXERESSICY GRAKYAR - I expressions can ke either

arithnetic or logical in nature., Precedence for operators within
expressicns is estatlished by the use of paranthesis. Unlike
other lanjuages such as FORTRAN, INTERP-700 expressions are
evaluated from right to left with no distinction made between
operaticons.% Specific exarples of' subexpressions in INTERP-700
are contained in taktle 9, Type and attribute checking and
ccnversion is handled similar to APL. Exprressions can be
arbitrarily long except that they must te written all within a

single physical line,

ok k kR kkkk kR ek bRk kR Rk kR kK
FIGURE 2 HERE

FIGURE 3 HERE

* o % o

*
*
]
%
* -
dehgkg ke k ko ko ok hokkkhkokg k%

* For the first experimental implementation, operators are
executed in a right-tc-left order, but subexpression (each
within their own parenthesis, including indexing
expressions) are evaluated starting with the leftmost
subexpression., That is, a left-to-right scan is used, but
with right-tc-left rrecedence of nperators with
subexpressions.,

PAGE 13
J.4.,3 CEERATCRS - Cperators may be of type scalar, boolean, or
character_string. They =may also be defined by the user if
preceeded by a '3' (ex: ¥add). Specific operators defined by the
systen afe illustrated in figure 2. BRinary orerators, by type

and results, are illustrated in figure 3.

PAGE 14

—— v — e i ———— T T 4 T o ——— T T o~

I !
| PBROC id <argument> Yxcader |
] Declarations |
] Statarents (1 or amore);Eody i

J

| ENDERGC |

figure 1

procedure format

|Symbalj Definiticn | Argument type |
| <== | Assiynrent | All types i
o+	Additicn	- Number, number array
-	Saktraction	MNumber, nuaber array
=	Egual	All types
I £] Less or equal	Any types	
1 2	Greater or equal	Any types i
AN	ANLC	Boolean, Bgcol arrcay
Vv	OEF	Boolean, Bool array
'*I'"	Ccncatenation	Character string
figure 2

oreratcr specifications

PAGE 15

— ——— e — — i . . —

| Oparators | Iype operation | Result type |
| K== | <ary1> <op> <any2> 1 <any2> i
| +,-,{-— | <scalar> <op> <scalar> | <scalar>x* l
| <, >,= | <scalar> <op> <scalar> | <boolean> I
| A,V,= | <kcolean> <op> <boolean> | <boolean> }
| $CAT | <string> <op> <string> | <striny> i
I {eda= | {char> <op> <char> | <boolean> = |
+,-	-<acray> <op> <array>	<array>*%*
+.,~	<secalar> <op> <array>	<Karray>
+,-	<array> <op> <scarar>	<array>

- —— ——— T ———— - — T ———— T ——— e M —— T — i —

| * Mixed mode opsrations on scalars that result |
i * ip scalars will always result in real scalers]

i *¥ Arrays must be conformed., |

figqure 3

sample binary ops by type and result type

) CN

) OFF

) SUSEEND*#

) RESUNE*%

PAGE

Table 1

Command Language Logyging Cormands

Used as the first command of the wecrk session
once ccrnunication has been established bhe-
tween the terminal and the interpreter, If
not used as the first command, the user will

be =sc¢ rotified.

Used as the last coamand of.the work session
prior to LOGCFF, If user attempts to log cff
the terminal without this command being used
first, the LCG command will be treated as a
part of the interpreter language and an error
message will be returned indicating improper

command.

Allows user to end work session and store data
in the active workspace in order to continue
processing at a later time without starting
from the reginning.

Used in conjunction with) SUSPEND. Allows user
to continue a work session which had been pre-~
viously suspended. Work session will continue

from the point processing was suspended.

o ——————— T —— i — —————

¥¥ future enhancement

16

) RUN <name>

JEDLIT <nanme>

) EARSE <name> -

PAGE
Table 2

Command Larguaye Execution Commands

Specities that a particular process is to be
executed. <name> can ke either a functicn or

procedure which has teen defined by the user.

- Used to invoke the text editor for the func-
tion defined as <named>. #ith this command
the user can enter a new proceduresfunction,

or affect some change to an existing function

or prccedure using the language defined in the

text editor lanquage subset.

termine whether semantic actions are required,

As abcve, <name> is a procedure or function.

Causes INTERE-700 to build code for <name>.

code had previously teen generated, it will be

over written by new code.

17

Used to determine the syntax validity or to de-

If

PAGE 18

Tatle 3

Coamzand Language Library Corpands

LIB -
)COPY -
<namelist>
) DRCE B
<parelist>

} LOAD <name> =

) SAVE -

<namnelist>

Used to rrint the directory of all saved objects
such as the names of the weorik spaces,

gylebals, and procedures/functions.

The ckject defined by <namelistd> will be
ccpied intc the current workspace, Command
does not differentiate ketuween procedures,

functicns, or objects.

Erases, or deletes, the object defined by <named>
which bas been saved. As with)COPY, objects,
functicns, and procedures are handled
identically. (eq9.,)DROP Ohject will

erase an existing file called 'Object'.
Future applications will also allow the
WwCcrk space ID <WSID> to be loaded, ie.,

tc replace the current workspace.,

Used to save an object which has been created,

JHSTD <name>

PAGE 19
Used tc display the current work spacoe nare,
<pame> is an optional parameter. Futurc
enhancements will allow the weorkspace id to Lbe

altered ty the value defined as <nanad>.

)FNS

) VAGS

) HELD*#

) LIST

<namelist>#*x*

) VALUES

PAGE 20

Table 4

Comanand Language Display Cormands

-

Alloss the user to print a list of all functionmns
and procedures previously defined, and which exist

in the workspace.

Allows the user to print a list of all glcbals
previcusly defined, and which exist in the work-

space.

Prcvides the user both syntatic and semantic
information atout structures within the language
for which the user needs assistance. May be
fcllcwed by an opticnal parameter <arg>. If
<arg> is not used, the user will be provided a
listing of all language functions available,

If <ary> is used, help will be provided for the

argurent specified,

Provides a listing of the named procedures which

exists in the workspace.

Provides the user with a list of glcbal para-

<namelist>** meters with their currently assigned values.

*% Future enhancerent

PAGE 21

Table 5

Cormmand Lanqgunaje Environment Control Commands

) EOE

) STACK

) CLESTK

) CLEAR

) DIGITS <number>*%*

Allows the user to delete the top
activation record froa the stack.
Used primarily after an error has
tecn detected and the user wishes
tc resume processing at a previous
point to determine the validity cof

the correction.

Allows the user to display the names’
cf activation records on the stack
Feginning with the last activaticn
record put in the stack, sequencing

through to the first activation record.

Allows the user to reset the stack
pcinters to zero, deleting all activa-
ticn records with respective arguments

from the stack.

Allows the user to reset the stack and
heap pointers to their respective

initial values,

Sets the maximum number of digits which

is printed, or changes the number of

JAICTH <number>*%

JLINY <number>%*

) CHAR%*

) HENCE#%

PAGE 22
significant digits disgplayed to thea

value defined as <number>.

Sets the width (nurcber of characters) on
the printed page. Usually 60 for narrow

raper, and 120 for wide paper.

Sets the maximum number of lines to.he

listed on the printed page,

Spaecifies the character representation
E P

to be ASCI, APL, or EBCDIC.

Allows the user to change the name of °

standard functions.

s e —————— — . —

**¥*Future enhancement

PAGE 23

Table 6

Command Language Debug Commands

YTRACE <func> VARS¥**

) TRACE <func> LINES¥x

) HOTRACE <funcrx%

) BREAKPT <func> VALS**

JBREAKPT<funcO>LIRES**

Allows the user to print the value of
a global parameter each time it is

used with the specified function <func>.

Allows the user tc trace the progress
of a function <func> at specific

lines of code within a procedure.

Used to turn off the traces set by the
above TRACE commands. If <funct> is not
specified, all tracing is turned off,
Similar to the TRACE except that when

a parameter is reférenced, control

is returned to the user. Provides

the user a debuy capability to

exercise various opticns such as

listing values of variables.

Similar to the BREAKPT<func>LINES
command except that control is returned
to the user when specified lines are

oncountered.

*xFuture enhancement

PAGE 24

) NOBREAKPT <funcr#** - Used to turn off the LUR%YAXPT options
listed above. If <funct> is not
specified, all breakpoints are

turned cff.

PAGE 25
Table 7

Text Editor - Procedure Fodiflers
<I line_number text_string - Inserts a line, The line number may be any
integer number less than the largzest line
number which was previously entered, but may
not be the same as any line previously entered.
Editor will return a line number with a value
100 greater than the last line in the proce-

dure., text _string is the data to be inserted.

{D line_number , - Used to delete the line number specified.

Yhen line is deleted, editor will respond with

LA IR I

{R - Used to resequence the line numbers into
multiples of 100, Vhen executed, editor will

respond with Z13d,

{A - Used to append a line when the next line number
is not known., Editor will respond with the
next line number in the procédure (eg. ,47000),
User then enters the line as he did when entering

a new procedure,

{1ine_number text_string - Used to append a line when the next line
number is known, User enters the line as he

did when entering a new procedure

PACE 26

£L - Used to list the entire procedure. When listing

is complete, cditor will print <{::.

/L line number - Used to 1list the line specified. Uhen the

-

listing is complete, editor will print <::».

{qQ - Terminate editing.

PAGE 27
Table 8
Statement Forms

(Part of the Flow_of Control Grammar)

L: statement * " L is a statement label delimited by and :.

E - An arithmetic expression which will be
evaluated by the bottom-up parser. Specific

definitions of E are contained in Table 9,

GO TO L - Transfers control of processing to the

address specified by the value L,

CALL id (arglist) - Used similar to a subroutine call in FCRTRAN,

| (arglist) is an op£iona1 parameter and consists
of one or more identifiers, integers, or
expresslons, If more than one argument is
used they must be separated by commas., ex.,

CALL A(X,Y), or just CALL A.

If B then statelist FI ~ OSpecifies that the logical expression E is to
be evaluated, If true, THEKN perform the
sequence of statements defined as statelist,

If false, end IF statement (FI),

If E THEN statelist ELSE - ©Similar to IF above except that if false ELSE
statelist FI statement is performed. FI delimits end of
statement.

* - Lower case used to represent metasymbols, except for E and L,

WHILE E DO stzatelist

ENDWHILE

RETURN

PAGE 28

Similar to PL/1, Specifies iterative pro-
cessing as long as E is true. VYhen E is

false ENDWHILE,

Returns control to the point of invoeation.
Similar to use of RETUHN in FCRTRAN sub-

routines,

Table 9
Subt-expression

(Part of the Express

txanples

ion Grammar)

Exaeple

PAGE 29

—— o T ———— R R T e T o b o —] S e A L S D e e e i i e P e S ——

| Simple identifier |

| Value |

| Expression in parentheses |
| Unary operator exprassion |
| Binary operator expression |
] Function reference |

| Indexed expressicn |

A, AB

'*string', vector, 1,
7;3, true

(AB)

+AB‘ *7. 3' -'true

AB + 7.3, truec = false

AB(3,J1IH)

ABL7:31, (A+B) 1.3}

PAGE 390
CHAEPTER 4

SYNTIAX RULES

4.1 GENEFAL: This section assumes that the reader is faarilar
with BNF#* notation, and 1s used herein to define the 1legal
sentential formats rteccygnized as the grammar of the language.
The INTERP-700 grammar ccnsists of toth control sentences and
expression startoments, The general, or atstract, forms of the
language corposition are centained in table 10.

Rk B B d kh ke E Rk A r kbR kkEX

* ¥
* TAELE 10 HERE *
* %

, R L2 T T T
4.2 PARAMETER PASSING: Initially discussed as <scope> in table

10. All programming lanjuages, in one manner or another, are
ccncerned with passing paranmeters to various «called procedures,
or subreoutines. The general format for INTERP-700 contains the
keyword PROC, followed by an identifier <id>, followed by the
list of paraaeters to Le passed. Parameters are declared
irmediately focllowing the PROC statement (see figure 7). IN
parameters are values vpassed by the calling program into the
called procedure. OUI paraneters are values passed back to the
calling program by the called procedure. ACCESS rarameters are
used to pass values in and out of the called procedure. If no
parametars are declared, the default will be for LOCAL parameters
to be assuned.

4.3 LOCAL VARIABLES: LOCAL variables are those used strictly
within that procedure and cannot be passed. In addition to

* Bacnus HNaur FcrIn

PAGE 31
these, there are other gethcds for accessing variables to be used
within procedures. A variatle «c¢an be declared as a JSLOBAL,
Although not yet 1implerented, another method will exist for
passing parameter values. If a variable is declared as EXPORT in
a procedure, it can then be treated as a variable accessible to
any procedure which 1is called (directly or indirectly) from the
procedure wnich declared the variable as EXPORT. In order to
access the variable declared as RXPORT, the procedure using the
same variable must declare it as EXTERNAL. Tnis initiates a
search Fkack through tho calling procedufe chain until the

variable 1is located and value assigned.

PAGE 32
Tatle 10

INTERE-700 Syntax Grammarcr

{procdef>

s:= <fLcader><ktcdy>
<header> t:= PROCKid><nizelist>* ; <{opt>**x%
<namelist> rr1= (Kid>%¥*)
<badly> 1:= <statelist>; ENDPROC
<opt> 1= <sccped <id>**®
{scope> 1= [N|OUT|GLOBAL1ACCE551EXTERNAL}EKFO&TILOCAL

<{statelist> - <state> <tail>=*

<tail> 11= ; <cstate>

{state> 1= LOL3>* L5t

<st> 1:= <E>|Statement forms as illustrated in Table 8
<E> ::= Expressions as illustrated in rable 9,

<>L:o 1= »<id>:

NOTE: Separating semicolcns (;) may be deleted at the end cof a

physical line, 1ie., ; €0l may be replaced by eol.

—— i e ——————— ——— —— ———

* - Can be one or null.
¥ - cne or more, separated by commas (eX., A,Aiccccaa,R)
¥%% -~ Z0I'0 O HMOLE occurances

PAGE 33
CHAPTER 5

SEMANTIC RULES

5.1 GENERAL: This chapter looks at the generalized data

structures used within INTZRP-700, and discusses the various
language restrictions. Each data structure discussed is
illustrated in tablular fcrm at the end of the chapter as fiqgures

4 through 10.

5.2 GENERALLZED DATA STRUCTUR(S: All source programs, tokens,

generated code, svambel tatles, and all stored arrays and strings
can ke fcund in a data =structure known as .the HEAP. Execution
data is contained in a data structure known as the STACK, The
user can obtain relevent information pertaining to stored

procedures ry examining each cf these structures.

5.2.1 HEAP - The HEAP is the main storage area for INTEZRP-700,
and is accessed by all subroutines. The various components of

the HEAF are listed Lkelow.

L RSS2SR R 2N 2

*
* FIGURE 4 HERE *
* *

He 3 3 % e % ok e e e e e ok ok e ke ok

Sede 1s1 ACCRESS TRANSLATION TABLE (ADTRAN) - The first data

structure within the HEAP (see figqure 4). The ADTRAN consists of
numerous pointers to the varicus d&ta areas contained within the
heap. The first four wcrds of the ADTRAW contains the ADTRAN

head which defines the size of +the ADTRAN, and the amount of

PAGE 34
srace uscd. The fifth word of the ADTRAN is the index of the
word immediately preceeding the procedure_table. The sixth word
of the ADTIRAN is the index of the word immediately preceeding the
global_table, The seventh word 1is a pointer back to the
beyinning of the ADT®AJd. The last word of the ADTRAN contains
either the location «c¢f additicnal free space available, or a -1
to indicate no additional free space exists. The second last
word of the;ﬂDTHAN pcints to locations within the ADTRAN which
are free, All other wecrds «of the ADTRAN are used to point to

other data structures within the HEAP.

T TR TSI I

3= #
* FIGURE 5 HERE *
* *

Ekckokok gkl %k ko

5.2.1.2 PRCCEDURE_TABLE (ERCC_TAB) - Serves as an index to the

various ccmponents of procedures defined by the user. TIhe header
for the Froc_Tab is similar to the header for all remaining data-
structures in the HEAE. The first word of the headér is a unique
tag which 1identifies the type data structure. The second word
indicates the amount of space allocated for that data structure,
and the third word indicates how much space has been usz2d. The
fourih word of the header is a backward link tc the position in
the ADTRAN where the particular data structure can be found.
This facilitates the changing of pointer values during conapaction
or reallocation of space, The remainder of the Proc_Tab consists
of a variabkle number cf fixed length(PRCLEN) entries. Figure 5
contains the names (with offset codas) of the various index

tields,

PAGE 35

Mk kknkkk kR ko bk k%

* *
* FIGURE o6 HERE *
% *

T I T TR R R LT g

5.2.1.3 TOKEN TABLE - Cne for each procedure or function which

has been scanped. Ccntains the tokens, by line, gencerated oy the
scanrner for a procedure, Tokens are stored ty line ccrresponding
to the source text line nunter. The first four words cf the
token takle is the hear header, and is similar to that described
in para 5.2.1.2. The token tabkle consists aof a token table
header (ICK), and a wvariatle numhef of token line header
(TOK.LI4E) and token line (TCK.LINE.TOKEN) combinations. Figure
6 contains the names (with offset codes) of the virious fields

within the token table.

Bggokokokkk ok bk F kg kokdkok

* *
* FIGURE 7 HERE *
* %

Bk ddkdkkrkdd bk krkkkrkk

5.2.1.4 TEXT TABLE - Cne for each procedure or function which
has Lkeen created wusing the edit process, Contains the symbolic
text generated by-the text editor for each procedure. Fhe first
four words of the text takble is the heap header, and is similar
to that described in para 5.2.1.2. The text table consists of a
taﬁle header (TEXT), and a variable numker of text 1line header
{TEXT.HEACER) and text line (TEXT.LINE) combinations. Figure 7
contains the names (with offset <codes) of the various fields
within the text table.

52.1.5 SYMBOL TABLE - One for each procedure or function which

PAGE 36
has been scanned., It is a list of all_names in the module, with
status information fcr tracing by name, for scope of variatles
(LOCAL, 1IN parameters, OUT parameters, names of procedures,
global, or access), generated by the parsers. Tha first four
words of the symbol talle is the heap header, and 1is similar to
that described in gpara 5.2.1.2. Figure 8 contains the names
(with offset codes) of the various fields within the symbol

table.

RERRN XX R FERFRFRE &k

% *
* FIGURE 8 HERE =*
* *

Rk kR ks kR kR

5.2. 1.6 GICBAL TABLE - Contains a list of all glcbhal variatles

which have been assiqgned values and which have not yet been
erased. The data structure fcr the global table is exactly like
that of the symbol talkle (Fiyure 8) except for the tag code in

the heap header.

Bk ek b o b ok ok kofek ook ok

* %
* FIGURE 9 IHERE *
* *

gk kokdkokk ok kkkkk &k

5.2.1.7 COLDE TABLE - Cne for each prccedure or function which

has been successfully grarsced., Contains the code, by 1line,
generated by INTERE-7CC for that procedure. Code is stored by
line corresponding to the source text line number. The first
four words of the ccde table is the heap header, and is similar

to that described in para 5.2.1.2. The code table consists of a

PAGE 137
variakle number of <c¢cde 1line header (CCCE), andi code line
{CCD=.LIN:) ccembinations, Figure 9 contains the names of the

various fields within the corde takle.

5.2.2 STACK — The stack is used principally for execution of

code generated by varicus subroutine modules. The primary record
of the stack .is the activation record (AR) which consists of the
AR header, and a copy of the syabol table far the procedure beind
executed, The AR keeps track of where execution is taking place,
which facilitates dideutification of the precise location of
execution errors, when the AR i1s Puilt, the symbol table for
that procedure is appended to the AR header. The results of
operaticns performed by the o;eratpr routines is appended to the
stack as temporaries. When the executing procedure calls another
procedure, arquments to be used by the new procedure arz appendad
to the stack either as values or as references to the calling AR.
Next, the number of argys is stacked, and then the AR for the.
called procedure is pushed on the stack. Figure 10 contains the
names (With offset ccdes) of various fields in the AR. ARSYM is
an offset which by-passes the AR header. hccess to any field

within the stacked symhol tatle can be achieved by referencing

STACK(LAR+ARSYM+SYMNAK+Index).

R 22 EEER SRR S R 2

e *
¥ FIGURE 10 HERE #*
* *

SRkt I EF R R R R

5.3 LANGUAGE RESTRICTIOHS: The implementation of the scanner

module impose restrictions on the syntax of the language. The

PAGE 38
language restrictions are listed belouw.
5.3.1 SYXECL LENGTH - all synlkols are restricted tec a total
length of eijht characters. Longer names are truncated.
5.3.2 XEYWCRDS - KLYWOEDS are reserved words and they are
restricted to those words idcntified and listed in the keyword
tatle (see appendix D). Only the £first four characters are
stored in the tables. &Words ray be added to the table, but will
necessitate podification of the tatles.
5.3.3 CCFrMAND LAWGUAGE WCRLS ~ Command langquaqe words are
restricted to those identified and listed in the comamand language
table, Command language words are reserved words in the ccntext
of a beginning ')', ey., ') commandword’'. {see appendix D).
Again, only the first 4 characters are stored., Words may be
added to the table, kut will rejuire rmodificaticn of the tables,
5.3.4 CCrEAND LANGUAGE LINES - The first character of all
ccrmand language lines gust be a closing parenthesis,
5.3.9 CEFERATCRS - Operators pnrust be.cne of those characters
identified as an operatcer in the initialization data for the
progran, or if previously undefined, a character or series of
characters not to_exceed seven characters, preceeded by a $.
5.3.6 STRINGS - All strings must be delimited by quotation
MACKS. Input strings may te any length and contain any
comtinaticn of <characters that may be included on one physical
program line,
5.3.7 LLiE CCNTINUATICN - Expressions must ke contained on a
single physical line. Statements of the control qgranmar may be
spaced cver several lines. ﬂultiple logical lines may be written

on the sare physical line separated by ';°'.

PAGE 39
5.3.8 REAL VALUES - All real values mu;t contain a decimal
roint. =sxponential numblers are of form realESCD, where S is the
cxfonent sign, and LL represents one or two digits. Magnitude of
reals 1is limited by the particular machine implemeptation of
FCRTRAN,
5.3.4 LINE LENGTH - A4 =sipjle line of source text may aot contain
more than a total of 64 characters,
343.10 S:LEARATIONS - All identifiers, keywords, comxmand lanquaqé
words, values, or strings nmust be separated by either an
oporator, separator, a klank, or a string of blanks.
5.3.11 CHARACTERS - Characters are limited to those of the
character code table (See appendix D) used to initialize the
character table of the scanner module.
5.3.12 ECIT COMMAND WCHDS - All commands to the text editor nust
ke preceeded by <.
5.3.13 TEXT EDITOR EBESIRICTICNS:
5.3.13.1 No terminal entry is allowed on the same line with <Q,
<A, or <R except a carriage return.
5.3.13.2 A space naust be present between <I and the line number;
and between the line nuaber and text string.
5.3.13.3 & space pust ke present between <L and the line number.
5.3.13.4 A space must he present between <L and the line number
if reguesting a single line, or tLte entirely tlank followinj L if
the entire procedure list is requested.
5.3.13.5 If a specific line number is being entered, a space

must be present between <line_number and text_string,

PAGE 40
Figure 4

ACTRAK Data Structure with Free Block Structure

ADTRAN = address translation table (sample length = 50)

header
- | 50 _50 7
f -----------
/ 1
\Cllnked list of free logical addresses
{12 18/ 19 V20
1flmlJmi-m [-=mmmm
,‘;_;a | &/
flrst freec
logica address
or -1 for no
free blocks
=I=1=151 T 11l :
allocated block "i" fo
PRCTAB (Procedure text (TXT), or toIrens
table block) (T0i), or code (COD),
or some array object in
memory
[1 16}
GLETAB (Global table
block)

. first free block
b :

linked list of free blocks

i1 | space | » |
£ - last free block
11 | spaceAl -1]

PAGE 41

Figure 5
Procedure Symbol Table

PRCTAB = Procedure Table

"Used size is (HPLEN + n,PRCLLN)

header
| l I 51
PRCLEN = length of procedure entry
- B A
%] | g 1] | nrocedure
1z I‘ ’\ T [/ / / j -
is relative
index for
any parti-
cular entry
PRCHLY - length of PACCOD - logical address of code
name in characters block
PRCUAM - name of PRCSYH - logical address of
procedure symbol table block
PRCSTA - status field - PRCTOK - logical address of token

block

PRCTXT - logical address of text
block

eg., typical name is given as HEAP(ahsolu‘te_address + pindex + PR(.‘.EAH)

PAGE 42
Firure 6

Token Table

header
kﬁ
1
2 TOr = 1. N
top |bot [nlin | <~——— TOKILY (or TOKHLIK) Same form as
N TOXBQT text block
TOKTOP

TCLLO (or TOXLEUN) ..lnum is the line number
TOFLK ., flk is relative index within this
block for the next line

vf/”—"———__— TOKHNU .. num is the number of tokens in this
line

-—

| Inuniflk |num Typical line of tokens;

there are nlin of these,

line consists of num tokens

plus the 3 word header (3 x (num+ 1)
) words in all

. RL““‘--——~—- char_loc - number of the corresponding first

character within the source line (for
sach reference).
index or value - index for classes which refer
to table value for integer, real, &
. token classes
(class code (0 thru 9) lensth of string for
C string classes,

- e o e wm am o= em

- e am e e
.

/TOKOFF/ TOKTOP, TOKBOT, TOKNLN, TOKLNO, TOKFLK, TOKNUM are offsets for
accessing subfields within the token block,
eg., HEAP(absolute address + line relative index + TOKLNO) gives
a line number,

Figure 7
Text Table
header
|
top ! bot Inlin
TXTTCP \ l\TJ{TB{LN (or TXTNLIE) nlin - lines of
TXTBOT text all with
y— TETLEO (or TXTLWUK) .. lnum is line nr same format
/| 1num} £1% | b1k | tok | nst] ste | len {&=var lenrth-MN<&len characters
I

A

TXTFLK TXTLIN - Tirst word of source
text cT
TFIBLK - relative inded
within the block of
the Llock of the next
(FLX) or previous (BLK)
text line

TATLEY (or TXTLLEW) - LiN
characters in the text line

TATSTA - status flass (not used)
TXTHST - nesting level, will be

set by the top-down parser
(not used)

FLK = forward link
BLK = backward link

TXITOX = flag to indicate if
line has been scanned
FLK = 0 for last line 0 = line rot scanned (set
by ZDITOR)
1 = line has been scanned
k (set by SCANNER)
B

OT is relative index of last line entry in the text block (not
necessarily the physical last line in the block)

BLK = 0 for first line

TOP is relative index of the first line entry in the text block (not
netessarily the physically first line in the block)

Figure 8

Symbtol Table/ Glotal Table

header ()
' "Used" size is (HPLEN + n.SYMLEN
A

{ [| <—(Jogical address = 6 for GLETAB)

SYHLEN = lenst o.+. symbol entry

SN

_____\

n symbol cntries

nindex - relative inde: "‘Yi-ZVAL - value subfield for
for any particular scalars or logical address
synbol entry for non-scalars
SYMNLYN - lenzth of name VSYNTYP - type of value associated
in characters with synmbol
SYMNAM - name of symbol SYHMSCP (or SYKSCOP) - scope of
symbol (such as ;lobal, local,
SYKSTA - status subfields access, vte) (CUT, LABEL,
(not used) PROU, cte)

NOTE: SYMTYP and SYMVAL are not usually set at compile time.

/SYE-IOFF/ SYMKNLIN, OSYMNAM, SYHSTA, STMSCP, SYHTYP, SYHVAL are offsets
for accessing subfields.
ey }ﬁ:lAP(absolute_address + nindex + SYIIUAM) is typical
symbol nanme

PAGE 45

Figure 9
Code Table
header
T e
i | |
M
L]
]
LINE|LEO | <=——— line header form
1 line is op code for new line
| line ... is line number
{
0P |index|
CQOD= i
{
eode for I
one op |index| arg irdex loe J
source n
. code code
line !
1
‘ s
oo |index|] argl index loe ars? index loc |
code code code

NOTE: Code for a typical source line consists of a line header
followed by a number of variable length instructions, each
with an operation subfield and either zero, one, or two
operand subfields.

Figure 10
Stack
SYH = o
Top of Stack AR ¥E._ length of ar header

N

1 l]

code for instruction bteins
executed
ARLIN - current suorce linc number
ARLEN - total length of the a.r.
ARTAG - tas subfield

(calling a. r.)
copy of symbol table

| |]
/(T RARTIST - relative index in thel

\

tas lindex Jr temporary values

LP | 1 | |
(1ast 1 B . ¢;\\\fi_’
ar) | NRARHAM - a,r, name (same as name

in the symbol table)
ARFLY - length of name in characters

(called a.r.)

ARSYY - Symbol table offset

PAGL 46

activation record
consists of
header plus copy
of symbol table

ﬁl arpument linkage from calliny a,r.

LARG | L IJ-

ARRET - relative
index for
previous a,r.

erz:ﬂ) - pindex

ARLCCD - lozieal
address of the
code

PAGE - 47
CHAETER 6

INTERP-7CC STATUS AND EXTENSIONS

6.1 CURRENT STATUS: Of the twelve major modules designed and

programmed by the sumper '75 C5-700 course, only the Editor,
Heap, Symktecl_Table, and Errorgrint routines function properly.
These routines have keern tested and debugged to operate in
accordance with program specifications, The CL1, Scanner, anad
Top-De.n Farser are tkasically operalle, but srall errors have
keen found during testinj, The status of the Stack, Inter, and
Operators have not yet underycne rigerous testing. Each set of
ncdule routines appeared to operate satisfactorily separately, it
is yet to ke determiped whether they will properly-interact with
each other during integration testinj. The Filer and ELottom-Up
Parser routines do not function according to specifications.
Initial indications are that the Bottom- Up Parser will have to
bte extensively modified, and that the Filer routines will have to
be completely redone. 1nconsistancies have Lkeen resolved and all
naming errors have tLteen eliminated by reducing the length of

namnes used,

6.2 FUTUIE EXTENSIONS: Enhanceuents to INTERE-700 fall within
three arcas - direct 1language extensions; user 1interface
exfensions; and a variety of unrelated areas titled
miscellanecus,

6.2.1 CLCIRECT LANGUAGE EXTENSIONS:

.2.1,1 Impleama=nt various APL array operators.

6.2.1.2 Incorpnrate the link tc all FORTRAN library functions.

PAGE 48
6.2.1.3 Implement *'tuples! (ie., allew dynamic 'ragjyed! arrcays
with mixed type elemncnts),
6.2.1.4 Implement structures - allow indexing by nanme
qualification - reguires modification of syastol table.
6.2.1.5 Support conposit objocts, so that referance to an ohject
also provides reference tc all sub-objects,
6.2.17.6 Implement control statements such as:; *'continue lcop nt,
'quit loop n', 'case', 'quit case n'
6.2.1.7 Tmplement integer nurbering of control structures.
6.2.1.8 Irplement a dynaric scope rule for ‘'external' variables,
6.2.1.9 Extend 1,0 facilitios to use FORTHAN's fornat
statements,
6.2.1.10 Inplement a ?'pure! right—to-left expression scan to
match AFL.
6.2.1.11 Support a link to allcw calls to user's FORTRAN (or
other) sutprograns,
6e2.1.12 Implement an 'assertion' facility to ke used as a run.

time chack.

b.2.2 USER INTERFACE EXTENSICHNS:

6.2.2.1 Incorporate a simple MACRO facility into the systen
(ie., pass tokens directly to and from the racro prccessor).
6.2.2.2 Ioplement reccgnitionp of user input nuskbering of control
structures (as while n ..do,.end loop n).

6.2.2.3 Inmplement a nestingy level count and a 'reformated!
listing (like NEATER, tut not a pre processor).

6.2.2.4 Implement a 'root! name recognition {(eq., use short

roots of identifiers for input where not ambiquous - rejquires

modified symbol table search).

h.2.2.5 Support a 'graghics text editor' - editing usiany a CRT
and *‘cross hairs' fcr line and character selection, overtyping
corrections, 'menu! selection,

6.2.2.6 Iarlement overstrike characters in the line recognizer.
6.2.2.7 Provide a 'HUELP'" feature - command cues, vocabulary
cxplanations, etc.

Bred i) Supéort debugiing trace and treakpoint features by line,
Ly variakle, and by decisicn point.

6.2.2.9 Support a 'usage rcniter' which records behavior of
user's progrars (such as types of wvariables, max size of arrays,

frequency of execution of paths and mcdules).

6.2.3 FKISCELLANEQOUS:

6.2.3.1 (Advanced)post-coampiler: allcw user to *'fix?! attributes
in symbol tahble as current (or user defined) type and size; and
compile ap object prograr frcm the ccde version of the original
vrogram ({ej., eliminate the dynamic type checking)..

6.2,3.2 Incorgorate scftware mcnitors to measure the performance
of INTERP-700; report data such as: size of objects, heap
fraymentation, 1interpreter overhead (size and speed), address
translaticn overhead, overhead for dynamic checking, costs for
scan, parse, execution, etc,

6.2.3.3 Add assertions ard more detailed specifications fot
mcdules and provide an informal proof of key modules.

6.2.3.4 Add facility tc create, parse, and execute code objects

under program control.

PAGE 50
CHAPTER 7

EFROGRAM DCCUMENTATION

7.1 GENEERAL: INTERE-7C0 programs are modular in design,

expecting certain inputs and returning an expected ranjge of
outputs, No subroutine generates fatal errors. Errors noted are
passad tack through the calling chain to the user for correction.
To maintain flexibility, the use of internally Adefined ccnstants
nave been avolded within individual subroutines, To accomplish
this flexikility, displaceamert 1indices for each of the data
structures described in chapter S5 have teen defined. These
displacerent codes and present assigned values are contained in
appendix C, Access tc particular locations within the vatiéus
data structures is oktained ty adding the displacement value to
the Leginning logical address c¢f the structure being referenced.
In addition, some data within INTERE-700 1is passed via common
data blocks. Appendix E contains the various commcn data blocks
which #4111 ke referenced in subroutine modules. Since IHTERP-700
is modvlar, other fparts uof the interpreter are referenced by
subroutine calls, All sutroutine calls are listed by major

module for the subroutines which comprise that module.

7.2 OSUBRCUTINE MOCDULES:

7.2.1 EDITOR:

7.2+.1.1 FUNCTLION = The editor module controls the text editing
of INTERP~-700. It rprovides the uwser with the capability of
creatiny and modifying procedures from the terminal, Editor

subroutines request storagye areas from the Iieap. records the

PAGE 51
lojical address of the text object in the Prccedure_Table;
Informaticn to the ECIT subroutines ccass in 2 forms. First, the
editor rcdule i5 called bty the Driver module, with the index of
the procednre the wuser wishes to edit, The second input to the
editor is in the form of input from the user through the input
terminal. The input ray be in the form of editor coamands, ot
meraly lines of program text.
7e2.1.2 CALLING FORMS: Calling forms are divided into three
catajories - Calls ¢ty other modules; calls to subroutines
intarnal to thz editor routines; and calis ky the editcr to
nodules outside of the editcr redule.
7.2.1.2.1 CALLS FROM C1HER MCDULES: CALL EDIT (PINDEX, ERROR) -
Ferforms the functions descrited in para 7.2.1.1. (For dotailed
and high level flow charts see CS-700 class notes).

Input parareter is:
FLNDEX - The index in the procedure_table of the
procedure to ke edited.
Output parareter is:
ERRCR - Indicates whether call was successful by
passing back a zero. If other than zero, error
detected,
7e2.1.2.2 CALLS TO INTERNAL SUEBROUTINES:
7.2.1,2.2.1 CALL SKAN (INTZXT, NCHARS, INTXC, LNNUM, KCODE,
EDTERR) - This subroutine scans an intext string which has Leen
identified as an EDIT cormand. The sukroutine checks to insure
that the conmand is in fact 1legyal; that the format 1is correct;
and vhen appropriate, will identify 1line numkters asscciated with

the commands. It further identifies and returns a pointer to the

PAGE 52
first character of ‘the input string (which follows thc command)
a5 well as assigns a ccrmand cecde, kcode, to identify the type of
command, I[If Lequﬁred, appropriate error codes ray ke returned.
Input paramcters are:

INTEXT - Ingput text string from subhroutine TTYIO.
NCEBARS - Defiped above.

Cutput parameters are:

LNNU# - I'he number of lines as appropriate.

KCODE -~ Tdentifies the type of command as described
later.

ECTERR - Indicates whether internal calls are

successful Lty returning zero,
722.1.2.2.2 CALL OVEWET (INT:XT, NCHARS, TXTBAS, PIROPN, LHUUY,
I3TXC, NUMWLS, EDTERR) - This subroutine provides the <cole for
effectively linking the preceeding and £following lines of an old
line to a newly input line of the same line nurber as the cld.
This causes the old line tc be bypassed and the new input line to
be put in its place.
Input parameters are:

INTEXT, NCHARS, LNENUM, INTXC — Defined above.

TATEAS - Base address of text.

FTROEN - The real address of space just pricr to the

first open stace,
Qutput parameters arae:

EDTERR - Defined abcve,

MUMWDS - The nusber of words (passed through, but not

used in suktroutine).

7.2.%.2.2.3 CALL SEARCH (TXTEAS, LNNUM, FLAG, PTLNFD, FLIVK,

PAGE 53}
BLINK, EDTEBR) = This subroutine provides for 2 types of searches
through the line numbers c¢f the procedure beinqg edited. First it
will search to match one of the existing line nuwmbers with an
input line number. Second, it‘ will 1look for the first 1line
nuimter which 1is larjer than the input 1line number. In either
case 1t will return a pointer to the 1line fquni. If 1input
FLAG=0, the search will te for a line number egual to LYNUM and
return an efror code if not found. If the input FLAG=1, the
search will be tor the first line number in sequence which is
greater than the.LﬁHUH. 1f no such line-is fcund, or a liné
nunber is found equal to LNNUE, an error code is retnurned.
Input parameters are:

TYXTEAS, LNNUK, TLAG - Defined atkove.

Cutput paraseters ara:

PTLNFD The pointer to the identified line.
FLINX = The forward linkt of the line.
ELIKK - The btackward link of the line.

EDTERR - Defiped atcve.
7.2.1.2.2.4 CALL LIST (TXTBAS, KCODE, LNNUM, RETCOL, EDTERR) -
Subroutine LIST provides for a listing of a single line of the
program text when KCCC: = 10, or for a corplete 1listing when
KCODE = 4, 4Yhen KCODE is 10, the line to be listed is input as
LNNUN,
Input parameters are:

TXTEAS, LANU¥®, KCCDE - pDefined above.
Qutput parareters are:

RETCOD - Indicates the successful completion of a

command operaticn if zeroc.

EDTERR - Defined abcve.
Ta2.1.242.5 CALL DELETE (IXTRBAS, LYNNUN, x£TCCD, EDTEXX) - This
subroutine conducts the 1linking and delinking tc effectively
byrass a 1line of text which has previously teen entered in the
text obiject.
Tnput parareters are:

TXTEAS, Li¥NUF - Cefined atove.
Cutput paraméters are:

RETCUD, EDTERk - Defined abcva.

T.2,1.2,2.6 CALL SPACE (INTEXT, NCHAKS, INTXC, LIXT, NJudDS,
"ETROEN, TATEAS, ERRCR) - This subroutine determines the number of
Words reguired to add the current text line and its header torthe
ifeap. It ccmpares the nurter needed with the number availatle.
If there 1is sufficient space in 'Heap it returns tc the calling
subroutine. If more srace 1is nzcded, it requests an additional
50 words from Heap.

Input parameters are:

INTEXT, NCHARS, INTLZC - Defined above.

LTXT - The index tc the real address of the text

object.
Output parareters are:

JU¥WDS, PTECEN, TXTEAS, ERRCR - Defined atove.
Jel2.1.2.2.7 CALL AFEFeML (INPELT, NCHARS, INTXC, LANNUM, ITYPE,
KCODE, PIROPH, TXTBAS, LTXT, RETCOD, ERRCR, EDTERR) - PHLS
subroutine adds lines to the text otject in the Heap. It handles
three ditfferent types (KCCLCES = 1,8,9). If the operator enterad
only '<A' he wishes tc aprend a line but doesn't know the current

last line number, Append returns the 1line number at which the

PAGE 55
line is tc be entered., Append also adds lines with comaands of
the form <200 CALL E(2)' and of the form 'CALL BE(2)'. The latar
one being wused after the 1line numter has Leen returned by the
'<A' cormand or the user is entering a new procedure.

Input parancters are:

INTEXT, HCEARS, INTAC, LNNU¥, and KCOCEZ - Definad

aktove,
Cutput parameters are:

PITROPYM, TYXTEAS, LTXT, RETCOD, ERXROR, EDLERR - Defined

akove,
742.1.2.2.8 CALL INSERT (INTEXT, NCHARS, LNNUM, TXTBAS, PTROPN,
RETCCD, ESRCR, EDTEEER, INTXC) - This subroutine inserts ;ines
which the wuser wishes tc add after he has beqgun to create a
procedure, The line insertad can ke tefore the first 1lin»? or
betwean any other two lines,
Tnput parazeters are:

INTEXT, NCEARS, LNNUM, and INTXC - Defined abave.
Input/0utput parameters:

TXTBAS5, PTROFY - Defired above.
Output parameters are:

ZRROR, RETCOL, and ECTIERR - Defined atove.
7.2.1.2.2.9 CALL PACK (LNTEALT, NCHARS, INTAC, NUMWDS, PTROPN,
TXTBAS, ELTERK) - This subrcntine packs the line of text into
the text object 1in Heap following the line header, If the text
starts at the beyinning of a word in the intext array, PACK will
pack the text one word at a time. If the text doasn't start at
the Leginning of a werd, FACK uses subroutines GETCHR and PBUTCHR

to get and put the text in Hcap one character at a time. PACK

"2
-
)
=
J
[=a}

updates tho pointer to the next open space.
Input pararcters are:

INTEA{T, NCHARS, INTXC, and NUMWDS - Defined above,
InputysQutput parameters aros

PTRCPN, and TATEAS - LCefined above,
Cutput parameter is:

EGTERR - Defined abcve.
Tels 1,2.2.,10C CALL RESE¢ (T4IBAS, RETCOD, EDTESE) = This
subroutine starts with the first line and then, fcllowing the
torward links, traces thrcugh the entire program and converts the
line nuzters to consecutive rultiples of 100 starting with 100
and continuing to the numkter of 1lines in . the prccedure being
edited,
Input parameter is:

TXTBAS - Defined ahcve,
Output parareters are:

RETCCD, and ELCTERR - Eefined ahove,
7.2.1.,2.2.117 CALL ECERPR (ECTERR) - This sutroutine prints error
messajes to the wuser and returns control to the point where the
user can reenter the line which produced the error. The errors
handled by EDERTR are cnly those which are generated within the
editor medule, All other errors, thos2 passed into editor by
other modules, are returned to the translator driver.
Tnput parameter is:

EDTERR - Defined abcve,
Qutput parameters: None.
7.2.1.,2.3 CALLS TO OTHZR ¥ODULES: Editor routines call the

followiny external mcdules: PBRCTAB; GET; EXBAND; TTYTIO,

PAGE 57
7.2.1.3 COUFON BLOCKS: Blocks of common data used by the editor
and 1t3s suhroutines are - HEAP; HPOFF; P2RCOFF; and TXTOFF, The

ccntents c¢f each common block can ke found in appendix B.

7.2.2 CCFMAND LINE INI:RERETER (CLI):

7e2.241 FUNCTION - CLTI interprets input command lines, ODriver
will recognize the first character *)' and calls CiLI. CLI will
in turn call MCVTOK and GETYCKX to translate the comgand line
tnkans, CLI verifies the syntax of the coamand 1line and
determines what further action is reyguired. If it is deternined
that the command line rejuires either ON, OFF, RUN, PARSE, or
ECIT acticn, control will be returned to driver tor disposition.
[f the cormand line pertains to any other implermented fanction of
the interpreter, CLI will call the appropriaté wrodule to coazplete
the processing. 1In either case notification will ke provided to
driver of the dispositicn. In the case where driver controls the
action, a numeric code corresponding to the reguired action will
Ea returned to driver as a key to its requirements. In the case
where some other module controls the action, that modnle will
raturn a status code to CLI indicating either success or failure.
CLI will then return that code to driver. Should CLI detect an
errol during its processing, 1t call will be nade to ERRPRT =odule
to output an appropriate error message and a failure code
retnrned to Ariver. #rrers can result from syntax or reference
to a pcnivplemented function, CLI will also generate error
M253A.Jes ﬁnder certain circuastances when calls to modnles STACK
and BEAF result in errors during their processing as well as

raturn the error code tc driver.

PAGE 58
7+2.2.2 CALLING FOR¥S: Sanmce fcrmat as used for Editor.
leleZe2s1 CALLS FROY CTHER HZCDULES: CALL CLT (PINCEX1, DPIUQDEX2,
CLA35) - [his is usually a call from the Driver and porforus the
function described in paragraph 7.2.2.1.
Input parareter is:
EL¥DEX1 - An index into the procedure table which
provides the location in the Heap of the cozeand line
text and tckens. i
Dutpat faraszater 1is:
FINDEX2 - An index into the procedﬁre_table
corresponding to a procedure to ke edited, parsed, or
run.
CLASS - Is the class of activity which is required to
complate precessing of the command 1line after it has
been interpreted by the CLI. Class 1s also used to
return a status indication to the Driver when sone
cther module bhas been called to complete the
processing, Class would also te wused to return a
status indicator showing an errcr to the driver if
either CLI, or one of the called modules detects an
error in the comnrand line during processing,
Te2+2.2.2 CALLS TO INTLENAL SUBLKOUTINZS: NGNE; but developnent
of ag in line lersion was keing rewritten at the time of this
cirpork,
Te20da2.3 CALLS TO EXTLENAL HOLULES: The CLI calls the

fcllowing external modules: FILER; PRCPRT; GLBPRT; PRCSCH

PRCLEL; GLBSCH; HPCLR; CLASTK; POP; STACK; and ERRPRT.

PAGE 59

7.2.2.3 CONMECN BLOCKS: CLI uses the common data block HEAP.

7T«2.3 SCAMNER:

7.2.3.1 TFUNCTION: Scans text and builds an internal recorid for
each line. Characters of a source text are evaluated Ly line,
and program words and <cyankols are constructed copnsisting of
identifiers, key or couaranrd worés, numbers, opa2rators, and
iaparators, A three word tcxen table cousisting of a class
: ‘entifier, index or value, and a pointer to the fivst character
of the word or symbol iun the line of text is then associated with
cach legal word or syrktol, Fach source text line which is free
from =rror is marked as having keen scanned .and tokens are stcred .
in a designated area Ly line corresgonding to the source text
line nuakter. The procesé of scanning the source text may be
interrurted by the user by depressing the ATIN key on tha
terminal. When all lines have been scanned and errors are
2ncountered, a nessage ccrresponding to the tyrpe <¢f error, text
line, and starting character of where the error was dotected is
printed, and contrcl returned to user. If no errors ara
encountarad, a token rerresentation of the source text is

available for further processing.

7T.2.3.2 CALLING FORMS: gSame forwmat as for Editor,

7.2.3.2.1 CALLS FROY OIHER XCDULES: SCAN (INDEXE, EXERR) - This
subroutine verforms the fanctions 1n paragraph 7.2.3.1, For
ardditional information ccncerning. this sukroutine module see
Rasters Report done by Jares Jaones Cctober-November 1975,

Input parascter is:

PAGE 00
TNLEXP - Displacerment index from H-oap header area wheare
the procedure syrknl takle is locatod
Output paraceter is:
ZXERR - Error information is set to error print for
each line as error found.
T.2.3.2.2 CALLS TO INTERHAL SUBROUTINESS
7.2.3.2.2.1 CALL LNSCAN (ERARFLG, LINUSE, TXIDTL, L, *) - This
sukroutine géts the character in a line of text and puts them in
a line stack, It then checks the character 2ajainst the CTAE
Table, If it 1is a separator or an operator; numher, ar string,
subroutine FCAM is called., If not an identifisr, subrcutince
TABLE is called to check fcr kej:ord or command languaye. If an
identifier of undefined operator, SYMIAB 1is called for an index.
The subroutipe will assign a class index and nuzber of the first
charicter of synbol ip the line of taxt, or classify the line as
an error, and place the line nunmber, the nuxbher of the first
character of the symkol that caused the error, and the error code
in the error stack for output.
Input parareter is:
TA7DTL - The text displacement to this line from the
text start address in the text.
Output parameters ares
ERRFLG - Indicates that an error was found in the line
of text.
LINUSE = The numter of words of storage in the token
arca of Heap the line of tokens will nced.
L - The index to the open row in SYMST used to

hold token data passed to the subroutinc SCAN.

PAGE 61

* - Formatted, unconditional return.
7.2.3.2.2.2 CALL TABLF (SYML, CLASS, INDEX, *) - This sulbroutine
determines it an identifier is a keyword or Command Language
werd, Sélection of talle is kased on CL flag set in sukrocutirne
SCa¥,., If true, CLTAB is used; if false, KWWORD is used. Table
s2arch 1is rade based cn the number of characters in the 1id,
Table comparison is made on only the first four characters cf the
id,
Input paranmeter is:

SYML - Thke lenyth of the symbol.
Gutput parareters are:

CLASS - The class associated with the token which

defines whether token is keyword, <c<omrmand language

werd, or nct tound.

INDEX = Identifies the keyword or comrand langjuaje

word in the table.

* - Defiped abcve,
7.2.3.2,2.,3 CALL LINFIN (IXTDTL, RESCAN, TCKLPT, *) - This
subroutine is called when a line of text has Lbeen added to
process text that already has been scanned, or when a line of
text has teen edited, It alsc compares the text line with all
the token lines wuntil it finds a match where the line 1is tao be
added, then changes the line pointers to add the new line.
Input paramcters are:

TXTLTL - Cefined akave,

TOKLPT - The line tcken pointer.
Input/Output parameter is:

DIESCAN - Indicates whether the text has been scanned

PAGE b2
before, and whether this 1is an edit, addition, or
delction of tae text line.

Qutput parameter is:
* - LCefined akove.
T.2.3.2.2.4 CALL FORM (CHARNU, SYML, TCHAR, ERCODE, INDEX,
CLASS5, CODE, NFC, #*) - This subroutine checks the character
identificd by CUHARNU in the 1line stack of progras text, and
doterainas its class and index, if possikle, els2 it builds
identifiers and calls PUTCHR tc pack the identifier.
Tnpuet parameter 1s:
TCHAR - The total number of characters in the line of
text
Ingut/Output parameter is:
CHARNU - Tho nunber of the charactef in tha line of
text.
Cutput parameters are:
SYML, IHDEX, CLASS, and % - Defined above.
ERCODE - If ncn zerc, an etror has been detaected,
CCDE - Idertiiies the symlol as a string, runber, id,
keyword, command langiaqge word, or undefined operatcer,
NFC - The nurber of the line of the first symbol.
7.2.3.2.2.5 CALL NUMPAC (NFC, LENGTH, VALYE, ERCUDE, *) - This

subroutine packs the numter rejguested by the character starting

at locaticn NFC of an array into one sord. Ceteralnes whether
the numter is real or integer, If integer, tne subroutine

returns to the calling routine as a-normal return with the nunber
represented by variable VALUE, If +the number is real, the

sukroutine returns tc the <calling routine at a point where

RYALUER, which 1is the wvariahle holding the real wvilue, can be
pass2d to a real varialble of the callinyg toutine, 1f a character
cannot te recojnized, an ERCCLCE is given and return is made to
the area of the calliny rcutine where errors are haniled.
Input paraagters are:

NEC - Defined ateve,

LENGTH - Length cf svabol passed into subroutine.,
Cutput parawmeters ares

VALUE - Detines the returning numier as a real or

integer,

ERCCDE, and *% - Lafined atove.
7.2.3.2.2.6 CALL SEFRCR - This sutroutine is called if the error-
flag was true, Thie subreutine takes data from each row of the
error stack and puts itrin correct form to call error grint.
This is dcne for «ach errcr conditicn by line nuzber found in the
text, All input and cgutput fparameters are pass~d through common
blocks,
7.2.3.2.2.7 CALL REAL (X, ¥, *) - This subroutine rplaces recal
values in the token index =toraje area for a number that has been
scanned as a real number, Y is input, X and * are cutputs.
7+2.3.2.3 CALLS TO EXTEZGENAL MOTULES: The scanner calls the
following external mcdnles: GET; CETCHER; SYM¥TAR; PUTCHH; EXPAND;

STha{; and EBRERT.

7.2.3.3 COXMCH BLOCKS: Flocks of comimon data used by the
scanner and 1its subroutinres are: | HEAP; HECFF; TXTOFF; TOXKOFF;

and SCANER.

PAGE ol
7.2.3.4 ARNDTYIONAL TCATIA: To function properly, the scanner must
make nse of special talbles not coamacn to other acdules, thesa
takles are: the Character Tatkle; the Keyword Table; and the
Command Language Keywerd 1Table, The layout of these tables can
be found in Appendix L. For detailed information concerning the
use and meaning of the scanner tables see the Easters Repcrt by

James Jenes October-idNcveskter 1975,

7.Z2.4% TOP DOWN PARSEH:

7.2.4.1 FUNCTION: The primary function of the TID Parssr is to
parse the tokens as they arpear in the token table. These tokens
were nlaced into the tabkle by the scanner module, The TD Parser -
will parse the tokens to determine if there are semantic actions
reguired and to determiné syrtax. The code table is the area
where the ccde i3 stcred as a result of parsing of the tokens in
the token table., It is initielized Ly the CDGEYI routine called
from the driver before the TLC Parse routine is called. Code will
ke qenerated as the token table is parsed. When an cxpression is
ancountered ir the tcken rececrd, the Bottom Up Parser will be
called to parse the expression, When scope informaticn is
encountered in the parse cf the token table, this information
will be wplaced into the symhkol table by the TD Carsar. Scope
information includes the following: procedure names,
input/output arguments, nases c¢f called procedures, localyglcbal

variables, and labels,

7.2.4.2 CALLING FORNS: Same fcrmat as with Cditor dodule.

7.2.4,2.1 CALLS FROM CTHER MCLCULES: CALL TDPAR (PINDEX, PRTCOD)

PAGE 65
- Designed to perform the functions descrited in paragraph
7.2.4.,1. Fcr flow charts see C5-700 class notes cyo Dr Hankley.
Tnput parancter is:
FLNDEZX - Cisplacenent incdex froa the Heap header areca
where the prccedure syabol table can be found.
Cutput parameter is:
FHTCCD - Return code which indicates whether parse was
successful, Hon=z2rc oquils error.
T.2.4,2.2 CALLS TO TAIERNAL SUBROUTINES:
7.2.4.2.2.1 CALL KCVICR (REIPCCI, *, #*)- - This subrcutine is used
tc move the token pointer that points to the token record, and to
generate the reguired call to the CDGEl subroutin2 which will
qenerate the line numker code as a new line is ercountered.
Input parareters: None.
Output parareters ares
RETCCD - Indicates whether the last tecken feor a line
has been encountered, and is used ty the BU Parser to
deteraine the erd of the line.
*, * - Branch labels for cases (1) - that the last
token in the token tahle has Lteen enccuntered, and
cases(zf - that the space in the Heap has been
exceeded,
T.2.4.2.2,2 CALL GETIOK (CFFEeT, TOKVECTCR, LINENO, RCODE, &1) -
This sukroutine obtains a threce-word token and glaces it in the
token vector,
Input parameter 1is:
OFFSET - Specifies Low many tokens ahead to look (e.g.,

zero indicates that the current token is to be

PAGL 066
cktained). A ncn-zera offset allows lookahead without
moving the token pointer. LooXxahcad ray re porforroed
cnly #ithin a single line.

Cutput parareters are:
RCCDE = Set to one of the token cktained is the last
token of the line. RCODE i3 3 and the &1 exit is taken
if the speciried tcken dcees not exist within the
cuf:cnt line., BCODE is 4 and the &1 exit is taken if
the offset is neqative,
LINENO - The current line nuzber is returned for use in
diagnostic mcssages.
TOKVECTOR - “Le address of the token.
1.2.4.2,2.3 CALL CDGEY (HWORDS, CTODZIVECTCR, RCCDE, &1) - This
subroutine jenerates a specified nunter of words of c¢ode in the
ccde hleck.
Input paraccters are:
N#CRDS == [Cisignates the nurber of worés to ba
gencrated.
CODEYECTOR - The vectcr containing the code values.
Output parameters are:
RCODE - will ke zero unless there is insufficient
storajge in HEAP tc centain the code block in which case
it will be one and the 1 exit will Lo taken, Lf
NWORDS is nct pecsitive, RCOCE will ke 2 and the &1 exit
return will nct be taken,
7.2.4.2.4 CALLS TO EXLTERNAL MOLULES: The TD Parser and its
subroutines call the following external modules: STAX; BUPAR:

CLGEN; MOVTOK; and GETIOK.

PAGE b7
7.2.4,3 COFFCN BLOCKS: Elocks of common data used by the TD

Parser and its subroutines are: HEAP; and HECFF.

7.2.0.4 .AEDITIOHAL DATA: Tn scme circumstances the TD Parser ié
ra2gquirad to look ahead to doatermine the validity c¢f input data.
To illustrate - the fcrm (id,id4*) can continue tor the maximur
lepyth of the line, Ihe parse pust look ahead to determine if id
is ftollowad by a comma., If it 1is, a parse is made fcr another
identifier. ALf not, the parser 1looks for a clesing parenthosis.
To determine code valility the module is written to check the
formats illustrated in 7Takle 10. 1In additicn, when code is
Jenerated, the TC Farser refcerences a table of code tags

(Appendix D).

7.2.3 PBOTIOM UDP PARSER:

7.2.5.1 FURCTICN: Tne EU Parser uses a weak operator precadence
alqorithm, witan a left tc right scan, but with a right to left
precedence of operators. If the parse 15 successful, ccde is
stored in the code tatle. If the parse is not successiul, an
Brror messaje 1s gernerated with a pointer to the exact location

in the string where the error occurred.

7e2e5.2 CALLING FORVS:
7.2.9.2.1 CALLS FR0M CTIHER MCDULES:
7+2.342.2 CALLS TO INTLENAL SUBRQUTINES:

7.2,%.2.3 CALLS TO EXTZRNAL FODULES: BU Parser calls the

¥ = Ogne Or more

PAGE 68

focllowing modules: MCVTCK; GETTCK; CDGEN; and ERRPRT.
Te2a5:3 COKMCH BLOCES: BEEAP,

7.2.5.4 ACDITIONAL DATA: The BU Parser uses an operator

precaedence ratrix,

TeZ2.0 STACK:

7.2.6.1 FUNCTICN: The STACK is a vector of n entrias, where n
is the maximum space allocated to the stack. The functions
performed are designed to be irndependent, and will rospond in the
sape manner rejardless of th2 calling module. The stack supperts
the following functicns: Push an item on the stack; Pop an itemn
frem the stack; Clear éhe =tack; Print the npames of all
Activation records (ALk) in the stack; and find an arjument in the

stack. (See CS-700 class nctes for tlow charts).

7+2.6.2 CALLING FCRHMS:
7.2.6,2.1 CALLS FROM CTiIXR MCLDULES:
7.2.6,2.1.1 CALL CLESTK (ICOLE) - This subroutine is used to
initialize the stack pcinters to zero., Used gprincipally by the
Criver via CLI.
input parcaneters: None
Oufput parareter is:
. ICODE - Indicates whether operation was successful.
Non zero indicates error.
7.2.6.2.1.2 CALL PUSH (MNWORDS, VECT, ICODE)/CALL PUSHAR (PINDEX,

ICCD&) - This subroutine will push either an activation record,

PAGE b9

on the stack.
Input paranseter is:

PINDEL - Detrined abcve.

NWORDS - The nuwber of words to be pushed,

VECT — The vector to be pushed on the stack.
Cutput parageters are:

TCODE - D=tined abcve,
7.2.6.2.1T.3 CALL POE (HwWC4LCS, VHCT, ICODE)/POPAR (ICOD&) - This
sukrouatine perforas the inversce of PUSH or PUSHAR type of pop to
te performed will be identified by the walue of the IDS.
Input parameter 1is:

ILS - Defined akove,
Gutput parareters are:

ICODE - Defined akove,

CCEnCH BLOCK VECTCR I0 - Defined atove.
7.2.6.2,1.4 CALL SFIND (0¥, ICODE) - This subroutine will
s2arch the argument list preceeding the current activation record
for the argyurent defined ty NUX, and return its value and tag
caode to the callinj prcyraz via vector I0.
Input parareter is:

HUM - Defined acove.
Cutput parameters are:

ICODE - Defined above.

VECTOR 10 - Defined above,
7e2.042.1.5 CALL SDISF (ICCDE) - This sutroutine will display
the name of the activaticn records on the stack teginning with
the last activation record fpushed on the stack, No input is

expected and output parameter ICODE has been defined,

PAGE 70

T.2.0.2.2 CALLS TO INTERKAL SURROUTINES: NOXNE.

7.2.6.2.3 CALLS TC =XTERNAL MCLULES: The only call to outside

modules is performed by PCP- when FREE is called.

7.2.0.3 COMNMON BLOCKS: Llocks of common data us=d by the stack
subroutines are: HEAE; COLES; SIACK; PRCOFF; SYIMOFF; UPOFF;:

AQCFY; STKPFTS; and STKARG.

7.2.7.1 FUNCTION: HEAP is the main storage area for the entire

INTEEP-700. Each module will reguest storage in the heap and
when Tfinished free the space. 4When a module needs rore area than
it has already requested, a call 1is made to increase its
allocatad space, If additional space cannot ke fcuand, the Heap
rocutines will compact all available space within the iHeap and

A

aygain trcy to fulfill the call fecr space,

7.2.7.2 CALLING FORHS:
7.2.7.2.1 CALLS FROM CIHER KCLULES:
7.2.7.2.1.1 CALL GEI (SIZE, TYPE, LAD, RCODE) - This subroutine
i1s used to obtain space in the Heap.
lnput paraaeters are:
SIZE - The amcunt of space requested.
TYPE - The tygpe of information to be stored,
Cutput parameters are:
LAD - The lcyical address cof where the storaye is

lccated in the Heap.

PAGE 71
RCODE - Tndicates whether call was successful., don
zero indicates error.
TulnTol vl el CALL FREE (LADDR, RCODE) - This subroutine frees the
space nc lonqger needed in the Heap.
Input parameter 1is:
LADDR - Logical adidress of area to be fread,
Nutput paraceter 1is:
RCOLY - TLefined above.
7.2.7.2.1.3 CALL HPCLR {Cecde) — This subroutine clears and
initiilizes the Heap.
Input paraveter: HNone
pQutput parareter is:
CCDE — Same as KCCCE ahbove,
7.2.7.2.1,4 CALL EXEANL (SIZE, LALZR, CODE) -~ This subroutine
nsed when a module needs rcre area than it has already requested.
Input parameters are:
S1ZE, and LALTIR - Cefined atove.
Output parameter is:
CCDE - Definecd akove.
Te2.7.242 CALLS TO INTERNAL SUBROUTINES:
7.2.7.2.2.1 CALL COMPAC (CODF) - This subroutine moves all
objects up to make one enlarged free cbject in the Hesap area.
Input paramcters: HNone
gutput paraveter is:
- CCDE - Defined atove.
Te2e7.2.2.2 CALL GIMAIN (SMIN, S¥AX, ABS, RCODE) - This
sutroutine obtains the space in the HEAP requested in the GET

C']ll -

PAGE 72

Input parameters are:

SHMIN - Size of the 4area rojuasted plus 4,

SHAX - Size of the area requested plus 204 plus 4.
Cutput pakameters are:

ABS - Abksolute address of the block in the EEAP.

fCCDE -~ Defined akove,
7e2.7.2.243 CALL FRXaI4 (IA) - This sukroutine frees the space
in tne HEAP as regquested ty subroutine FREE.
Input paraseter is:

IA - The atsnlute address in the Heap of the space to

be freed.

7.2.7.2.3 CALLS TO EXTILRNAL {ODULES: NONE

7.2.7.3 COMEO¥ BLOCXS: 1he feap routines uses the tollowing

common data areas: BEAE; HPOFE; and CODES.

7.2.7.4 ACDITIONAL TALA: Cata is stored in the Heap using tags
to indicate the meaningy cf the data followinjg. See Appandix C

for ths values of code tags.

7+2+8 TABRLES:

7.2.8.1 FUNCTION: The Takle rodule sets up and maintains three

takles - the procedure syzibol table; the symbol table; and the
7lolkal table. In addition, Tatle subioutines will search
Afrpropriate tatles for calling routines and return the relative
index of the 1identifier scuqht. They will also delete table

entries no longer needed,

PAGE 73

Te2.8.2 CALLIHNG FORHMS:
7.7 3.2.1 CALLS FRO® CrHLR MCLULES:
TJoeZatla2-.1.1 CALL PRCIAD (LEN, NAME, EIN, RET) - Givan the langth
and nama, this subroutine scarches the procedure syrbol table for
a procedure, If found, the location is returned through PIN. If
the name is not found, it is added to the 1list of proceadures, and
a synbol table is initialized for 1t, The address of the now
entry is then returned in EIN,
Input parareters are:

LEN = The lenqgth in characters of the variable name.

NAME — The name given to the procedurc.
Qutput pqraneters are:

FIN - The location of an entry relative to the start

of the table.

RET - Errcr return. idon zero indicates an errotr.
7.2.8.2.1.2 CALL SYHIAB {PIN, LEN, MAME, NIN, KRET) ~ Given the
longth and name, this subroutine searches the symbol table for an
identifier, If found, the location 1is returned through NIN. If
the name is not found, it is added to the list, and the relative
location is returned via NIN.

Input pararcters are:

PIN, LEN, NAME - BDefined above,
Qutput paramaeters ares:

#1l¥ - Location of the identifier relative to the

tegyinning cf the syrhcl table.

RET - Defined atave.
7.2.3.2.1.3 CALL GLELEL (GIW, RET) - Given the relativa address

of the entry in the takle this subroutine deletes that entry. It

also r=2locates entries to eliminate empty Spaces between entries.
Input paraxcter is:
GIN - Location of the glolkal relative to the beginning
of the glokal tatle.
Quetput parareter is:
RET - Dofined atove.
Ta2.3.2.1.4 CALL PRCLFL (FIK, RET) - Given the felative iddress
of the entrf in the tatle, this subroutine delcetes tnat entry.
It also releocates entries to eliminate empty spaces between
entries.
Input parareter is:
EIN - Defined altove.
Cutput parareter is:
RET - Defined akcve.
TeZoeBa2+.1.5 CALL PRCPRI (RET) = This subroutine prints out a
list of procedure names lccated in the procedure tatle.
Input paraneter: MNone.
Output rparareter is:
RET - Defined atove,
7.2.3.2.1.0 CALL GLEFRT (RET) - This subroutine prints out a
list of j5lotal names lccated in the glotal table.
Input parameter: None.
Cutput parameter is:
RET — Defined atcve.
Te2.8.2.2 CALLS TO TWIGENAL SUBHOUTINES/FUNCTICHNS:
7.2.8.2.2.1 FUNCTION STREC (LEN, NAM, LEN1, HNAM1) - Tests tor
equality cf strings stcred in ¥AM and NAM1 respectively.

Input parameters are:

PAGE 75

LE¥ - Lenyth in characters of the string NAM.
NAM - First string.

_LeR1 - Length of the second string.
NAM1 — The second string.

Output parameter: Functicn is defined as logical, therefore
cithoer a .true. or .talse., is returned to calling rcutino,
7.2.8.2.2.2 CALL STGHASG (LEY, N¥aM, LEH1, NAaM1) - San2 parareter
ceanings as in STREQ. The values of LEN and NAM are transfered
tc LeN1 and NAMI. That is, LEN and NAM are input parameters, and
LENT and ¥A¥1 are output.

7.2.8,3 CALLS TO EXIERHAL NODULES: The table module and its
sukroutines call the fcllcwing 3 EXFAND; GET; FHEE; GLBSCH; and

S¥MSCH.

7.2.8.4 COKXCN DLOCKS: The takle module utilizes the follewing
cowmon tleccks of data: HEAP; DEBUG; PRCOFF; HEFGFF; CCLES; and

SYMCFF.

7.2.3 INTER:

7.2.9.1 FUNCTION: <The INIER mcdule is responsible for executing
the code generated.by the other modules. 1t determines the type
of operater and calls either the stack or operator routires. [t
handles all branchiny ccde and links arguments between caller and
called procedures, It places an argument list on the stack for
subroutine and function calls. It causes execution (activation)
racords te te built and glaced on the stack, and keeps track of
where execution 1is taking place, In addition, errors deatected

duringy execution are relayed to an error print routine for

PAGE 76

correction bty the user,

TaZe9.2 CALLING FORHMS:
7.2.9.2.i CALLS FROM CTHFR HCDULFES: CALL INTErR (INDEX, LE) -
This subroutine checks the opcode and branches to the appropriate
sabroutine., It 1is callad ky thae ©Driver with 4n index into the
deap.
Input parameter 1is:
INDEX - An index intc the Heap wha2re the procedure
syabol table can ke found.
Qutput paraseter is:
IE - Return ccde. If non zero, an error has bepn
detected,
Ta2aYa2.2 CALLS TO IHTERNAL SUBIROUTINES:

T.2.9.2.2.1 CALL ARGLSI (*, *, K, II&IP, IE, INLEX) - This

suproutine places the argqument on the stack. Arguments are
stacked in the order fcund with the name being stacked as thae
first argument.
Input parameters are:

¥, # = The first is the normal return, the second is

the error return,
K - Address of the instruction counter.
ITRLIE - Absclute address in the Heap.
TUDEX ~ Defined ahove,
Gutput parameter is:
IE - Defined above,
NEB: Vectar TB 1is used to pass the arjuments to the stack, and

vector IC is usad by the stack to pass the top of the stack hack

TAGE 77

tc the inter subroutines.
7.2.9.2.2.2 CALL BXAYCH (%, %, M, IT4IpP, IYDEX, IE) - This
sukrontine handles thke braonching found in the code.
Input paramoters are:

¥, %, ITkIP, INLEL - Defined above.

N - Ipnstructior ccunter,

IC - Vector usced to determine location in stack whare

laét activation reccrd hejins.
Cutrut parameter 1is:

IE - Defined alkove,
Te2s9.2.2.3 CALL ERRINT (*, I, I, J, TUDEX) - This subroutine
sets error numbers and krancin=s to ERRPTR to print thanm,
Input paramcters are:

* - Return location.

IE - Defined abcva,

Inputsoutput parameters are:

I - Character in code which caused tha error.
J - Line number on which errcr was detected,
INDEX =~ Defined akove.

7.2.9.2.2.4 CALL IMNARGY (*, *, L, ITRIP, INDEX, IE) - This
surroutipe hapdles the inprut arjument linkage,

Input parineters are:

LA - Defined ahkcve.
L - Lccaticn of instruction counter,
ITRIF - Defined akove,

INDEX Cefined akove.

Output parareter is:

1E cefined above,

Tudaladaul

PAGE 78

CALL INLIC (*, *, T, ITKIP, INDEX, IE) — This

subhroitine stacks indices on the stack.

Input parareters arc:

*,

I

Io

¥, LTRIF, INLEX - Detined aktcve.
- Locatior of instruction counter.

- Defined atcve,

Output parareters are:

LE
IE

PsdeFadadub

- Defined abavi,
- Vectcr detfined above.

CALL QUTIALS (%, *, L, ITRIP, INDEX, IE) - This

subroutine hardles the ouatput arjument linkage,

Input parapmeters are:

L

L

I0

*, ITRLF, 1i8CkX - Cafined atove.
- Location 1n activation record hzader for triples,

= Vecter trem stack with desired aryument.

Qutput parareter is:

IE

762.9.2.2.7

- D2fined atove,

CALL RE'IRN (*, %, IHDEX, I, L, IE) - This subroutine

EcpsS the Lkottom activation reccrd on the stack.

Input parameters ares:

of

%, INDEX - Detfined above.

- Instructicn ccunter,

- Location in activation record of the triples.

- Vectcr rrcs stack which has location cf beginning

activaticn reccrd.

Cutput parameter is:

IE

Ta2eHea2:2.8

— Defiped abnvo.

CALL SCAL (%, *, ITRIP, INDEX, IE) - This subroutine

PAGE 79
pushes the next activaticn record on the stacs for the next
procedure to pe executcd,

Input paracetors are:

*, ¥, TTRIP, INDEX =~ Defined above.
IO - Vvectcr defined above,

Cutput parancters ares

IE - Defined atgve.

IE - Vector defined abov=,
7.2.9.2.3 CALLS TO EXTEZRNAL MOCULES: Ylodule INTER and its
subroutines «c¢alls tne <following rouatines: PUSH; POP; KERRPRT;

SEIND; GET; STAX; LIANE; INX;-READEH; WRITER; CFEX; ERCSCH.

7.2.9.3 CO#X0N BLOCKS: _The followirj commen hlocks of data are
used by LNTER and its subroutines: PRCOFF; SYNOFF; HPOFF; ALROFF;

CCDES; STACK; STKARG; STKFETS; and HERP,

7.2.9.4 ADDITIONAL CATA: The INTER module is the prime user of

code tays. These tays can be fcund in Appendix C.

7.2.,10 OPE4ATORS: NOTE - This module presently under ravision,

7-.2.10.1 PFUNCTLICN: The operator module is atle to perform the

followin:g operations: itxecution of triples frcm the stack when
called Ly INTER; Check type of obijects and arrays for
cecapatability; Perfora type conversion when appropriate; Perform
arithmetic functions of addition, subtraction, multiplication,
and division; Perform relaticnal functions and stack appropriate
Buolcan value; Pertora string functions o©of replacenment and

ccncatenation; Ferform array functions; Performs assignment

PAGE 30
furction, terporary steorage in the stack and perranent storage in
taoe leap; and Provides fecrmat free input and output on a limited

tasis.

T.2.10.2 CALLIING FORKES:

7.2.10.2.17 CALLS FRCKH CTHER FKOLULES:

7.2.10.2.1.1_ OPER (TIIRIP, I3, *, I2PT) - This subroutine is
called by INTER to perform tinary oporations. OPZR handles all
reterences to activaticn records and _passes a reditied
instracticn triple free c¢f these references to the various
operators via the vector CLFUF. Operators return results to OPZR
where error checking occurs and result is placed cn the stack.
Input pararcters are:

ITRIF - Aksolute address of code triple to be

executed,

* - Raturn pointer,

12PT - Pointer to keginning of activaticn record.
IB - Ccrrcn vector used to push and pop aryuments

from stack.
Output paracter is:

IE - Retura code. Non-z2ro indicates an error.
7.2.10.2.1.2 CALL LWRITE (*, ITRIP, IE, IAPT) - This subroutine
allows the outputting cf a single variable. IWRITE is called by
THTEX, TIWRITE calls the data ccnversion routine RFiTCH to nandle
real wvalued argquments, Real matrices are linited tc 100
elemants.

Input pararceters are:

% - Return location,

el
=
o]
™
&
—

ITR1I? - Absolute address in the leap.

IAPT - An index into the Heap where the procedure

symbol table car be fcund.
Output parameter is:

TE - Defined atove,
7.2.10.2.1.3 CALL IREADL (*, ITkIP, IE, TAPT) — This subroutine
411l read a single variatle having either scalar type or scalar
vector tyre., IREAD calls FKEAD, which returns the 1lojical
address to a striny of tokens., The wvarialkle tyre and name is
ropped from the stack. I8EAT will call GET to acquire space for
censtructien of vectcers.
Input parazeters are:

%, LTR1P; LAET - Cefined akove,
Cutput parageter 1is:

IE - b2fined akcve,
7.2.10.2.2 CALLS TCO IBPzKRNAL SUBROUTINES:
7.2.10.2.2.1 CALL ECUAL - This sutkroutine is not very well
documented, There are nc paramceters listed for the subroutine,
and neither the listing nor CS-700 notes indicate its precise
purposa2, It apparently uses a common data item CDBUF for inputs,
Type checking 13 done tc determine whether triple 1is integer,
integer oarray, real, real array, or character string, Since
paraseters are not declared, this sukbroutine viclates davelcopment
fules,
7.2.10,2,2.2 CALL GIHH - This subroutine is similar in structure
and lack of precise dccurentation -as EQUAL. No parameters are
listed, and the C5-70C notes and program listing 1indicate the

sime type checking as for EQUAL is being determinad. Also

PAGE 32
vinlates Jdeveloprent rules,
7.2.10.2.2.3 CALL LSTHANW - This subrcutine similar to EQUAL and
GIHN. Yo documentaticn, nc param2ters, and uses the same general
coding structure as eCuAL and GTHN. Also viclates dsvelopment
rules,
7.2.10.2.2.4 CALL PLUS (¥) - This subkroutine performs binary
addition on scalars, 1intejers and reals, and maﬁrix addition on
integar and feal arrays., FLUS is called bty the O0OPER #odule and
receives arguments in the vecter CDBUF.
Input/Output parameters arce apparently passeﬁ throujh common
blocks of data.
Ontpur parareter is:

¥ - Return location,

7.2,10.2,2.5 CALL FIRUS (*) - This subroutine performs binary
suktracticn on scalars, integer and reals, and matrix subtraction
on integer and real arrays. MNINUS 1is <called by the OPER
subroutine and receives arqguments via the vector CDBUF. Results
are returned to OPER at the lccation defined as *. |
T.2.10.2.2.6 CALL READD (X, ¥, 2) - This subroutine adds two
values together (X and Y) and returns the real result Z.
7.2.10.2.2.7 <CALL RESUE (X, Y, Z) - This sutroutine subtracts ¥
from X and returns the real roesult in 7Z,
Te2.10.2.2.8 CALL RESTICR (X, Y) - This subroutine assigns Y the
real value of X.
7.2.10,2,2,9 CALL RFETCH (£, ¥Y) - This subroutine assijyns 4% the
rzal value of Y,
7.2.10.2.2.10 CALL ASSG (*) - This subroutine is dccumentad only

in cod2, which makes it extremely difficult to determine the

PAGE 83
pnrpose of the subroutine, As with other sulroutines 1in this
module, CLBUF 1is used tc rass pararaters irnto and out of the
subroutine,
7.2,10.2.2.11 CALL ANC (*) - This sutroutine perforss a logical
.AND, function of twc teelean variables. The arguments arce
passed 1in the vectcr CDBUF, and are returned to the calling
routine thouyk the location in *,

T.2.1042.3 CALLS TO tXIERNAL FCDULES: OPER and its subroutines
call the following subrcutines: GETCHR; GLBTAB; FUSH; FlEE; GET;

ECF; and FREAD.

7.2.10.3 CC¥MCN BLOCKS: Elocks of comron data used by this
mcdule are: HEAP; STnGFf; ARYQOFF; CCDES; OFRCOM; LCCS; HPOéF;

STACK; STKPTS; SYIOFF; AHRCFF; and STKARG,

7.2.11 UTILITY ROUTLINES:
7.2.11.1 SUEBRCUTINE EUYTCER {STaNG, NCHAR, CHAR) - This
sukroutine packs a c¢ne byte logical character into the byte
specified.
Input parameters are:

NCHAR - The numker cf characters.

CHAR - The characters to be packed,
Cutput parameter is:

SIRXNG - The results cf tha packing operation.

7e2.11.2 SUBROUTINE GEICHR (STI&NG,- NCHAR, ARG3) - This
subroutine gets a one kyte loygyical character from the string and

character number passed into the sukroutine as input parameters.

PAGE B4

The character 1is rignt justitied in the ountput word ARG3. The
other threa hytes (chiaracters) are set to blanks.
7.2.11.3 SUBROUTINg TITYIC (OUTSTR, LENOUT, INSTR, LENIN) - This
subroutine is a ZAL sutroutine used for general I/0 te the
terminal. For detailed information on its use se2 the User's
Guide fcr the Computer Science Graphics Package, running under
VE/370: Crs=*,
Input paraneters are:

QUTSTR - The ustring of EBCDIC characters to be sent to

the terminal,

LENCUT — The nurier of characters to send. 1If .LE. to

0 no output is sent, therefcre no write.
Cutput pararcter is:

INSTRE - AR area in core into which a string of

characters read from the terminal is to be placed.
Inpatoutput jparameter is:

LENIN - The nusker of characters requested. If .LE,

to 0, no read will le issued,

7.2.11.4 SUBROUTINE HEBRT - This sukroutine prints the sysbol
tikle and auy block frcm licap. Interaction is between the

subroutine and user via the terminal.,

7.2.11.5 SULEOUT1NE CEERT (L) - This subroutine is called by
HPPRT and prints any blcck from the Heap. I is the input
parameter which defines where in Heap the data to be printed can

Gary Anderson, User's Guide fcr the Compnter Science Gra

e e e it e —_—— ===

Packaqge running under ¥¥/370: CHS, Kansas State UnEvgrsity,

PAGE 85

ke found.

7.2.11.6 IHTEGER FUNCTION TAS (I) - This function returns the
character representation for code tac numkers. 1 is the input

paraneter, and is the tagy code which is to be decoded.

7.2.11.7 SUBROUTINE EdkPuT (CIND, LIN, CHAR, HMLEN, MES53, RCOLCE
- this subroutine does the error message printing fecr 14¥TERP-700.
Each sukrcutine or module which detects an error, sends a messaje
iine to ke printed by this routine.
Input parameters are:

PIND - Disiplacement index from Heap header area where

the procadure symkol takle is located.

LIN - The 1ine nusker where the errcr was detocted.
CHAR - The charagter number in the line which is in
2IEOL.

MLEN - The numler cf characters in the wessaje.

MES55 = The message text,

Ccutput parapeter is:
RCODE - Indicates whether call was successful by

returning a zero, Non-zero indicates error.

PAGE 36
APTENDTX A
ERROR MUSSAGES

A.1 GENEWAL: One of the kasic features of INTERP-700 is the
notificagion provided to the used when an errcr is encountered,
A mes3ajge 1s printed cn the ccusole with an indication ©f where
the error cccurred, Preceessing is halted and control returned to
the user for error coirrection. Error messages currently printed
are 1llustrated Dbelow. BParenthesis following error aessaje
indicates the module wnich caused the error aessajge to be
ceinted,
A.T1.1 ARGUMENT DOES HOT EAILIST (Inter) — An attempt was nade by
the interpreter routipres to find an argument put on the stack.
The arygument number reguested was greater than the nusber of
arguments in the stack. SysStem error, See system programner.
M.1.2 AXGUKENT HOT AN TDENTIFIER (TD Parser) - Self explanatory.
Sae figure 1 for correct procedure format. Correct and reenter.
A.1.3 ATTENPT TQ BOE NCHELLSTAWT ACTIVATION RZCORD (Inter) - An
attempt was made to delete an activation record which should have
been on the s*ack, FEut wasntt, System error. S5ce systen
PrOYramEar.)
A.1.4 ADTEMPT TO POP NCNEXISTANT ELEFKENT (Inter) - An attempt
was made toc retrieve an argurment which should have been in the
stack, but wasn't, System error. See system programmer.
A.i.j ECCLEAY VALUEZ NCT FCUNL ON TOP OF STACK (inter) - An
attespt was made to retrieve a bcolean value which should have
heen on top of tha stack, but wasn't., System error. Ses systen
programmer.

A.1.b CLTI. APPAREZNT ERROX FRCM SCAN REINEUT COMD LIHE (CLI) -

PAGE 87
verify spelling of keywcrd or determine if keyword used is 1legal,
Caorrect and reenter,

A.1.7 CLI. HBAP ¥AS ALGLACY CLEAR. IF QPERATOR STILL JISHLS TO
CLEAR THE STACK, ENTER CLaSTK COXNHAND. (CLT) - Hey word 'CLEAR!
used when heap was alre&ﬁ?lcleared. Stack should also be empty
if +this condition exists, tut may requirc separate <clearing
action for new procegsing to kegin.

A.,1.8 CLI, SO VARTABLE Oa FUNCTION TC BE DISPLAYED (CLI) - User .
attempted to display a variatle or function that has not been
defined, Verify precedure. Nust input variable or function
tefore it can be disglayed.

A.1.9 CLI. STACK EMFIY NCTHING TO DISPLAY (CLI) - Atteapted to
display list of activiation records on stack when none existed.
Re2check ccde to detersine if activation record should have teen
out on stack., Continue processing,

A.7.10 CLI. STACK EHETY MOTHING TQ PQP (CLIY - Call made by the
user to delete last activaticn record put on stack when none
exists, YNon-fatal erroi, recheck code to determine .if activationr
record should have been put on stack. Continue processing.
4,7.11 CHD LINE ERROR. ARGUX¥ENTS KCI ALLOWED (CLI) - User
listed an argument with a xeyword which does not contain
arguaents, Delete argument used, reenter command.

A.1.12 C¥D LINE ERRCh,. iNPUT CONMND KOT IMPLEMENTuD, TRY AGAIHN
{CLTI) - User attcampted to rerform some action which will exist in
future, &®eview current 1ist of valid commands,

A.1.13 CCHML LIYVE EFFCE. FIRST CHARACTER MUST BE *)"' (CLI) - All
command line keywords amust be prececeded by closing parenthesis.

Correct and reenter.

PAGE 386
A.1.14 COAD LIYE EBROR. ILLFGAL ARGUMENT (CLI) - User entered
an argumz:mt not recoynizakle by interpreter, Correct and
recuter,
A.1.15> CCH®C LLiNE EFrCF. 1XPUT COKNMD NOT IN LANGUAGE (CLI) -
Self explanatory. Correct and reenter.
A 1,16 CCHAL LINF ER20R. TO00 MAYY ARGUMENTS - ONLY ONE ALLUWED
(CLI)- Self explanatcry, Correct and reenter,
A.1.17 deleted.
A.T.14 throuudh A.71.24 deleted.
A.1.25 DOMATH ZRROR (TNTER) - An attempt was made to perform an
illeyal cperation., (ex: ,=-1; or 1+'B' will result in Jdomain
error), ¢Correct and reenter.
A.1.20 EZIT FCRMAT ERRCR —-A CARBRIAGE RETURY HMUST IHNEDIATELY
FOLLOW Q, R, GR A COFXANDS, {ZDITCR) - Thesa are standalone
coemands and should have nothing following ¢n line, itetype
cecrrect coamand.
A.1.27 EDIT FORMAT ERROR - HUST HAVE BLANK FOLLOWING EDIT
COomn¥aND LETTEk. (£DIICR) - User failed to leavs space follcwingr
edit command character, thercsfore not recoqnized by editor.
Correct and retype.
A.1.28 EDIT FOHMAT EKACR -IHCOIRECT COMMAND SYMBOL; ¥NOT A LEGAL
CCMMAND LN EDIT. (EDIICR) - Self explanatory. Verify legal edit
cormmands, correct and reonter.
A.1.29 ERROR IN LINE HUNBER - ONLY INTEGER LINE HUMBERS ARE
ALLCAED, (EDITOR) Self =2xzplanatory. Correct and reentor,
A.1.30 EXFRESSION SYNTAX ERRCR (PARSER VIA INTE?R) - Usaer should
never see this wmessage. Errer should have reen detected before

execution, Check expression gqrammar, correct and reenter.

PAGE 89
Notity system projramrers that possible problem exists within
parser routines, |
A.1.31 FILIRST WCRD CGF ARGLIST NOT UGNICUE ARGLIST 1D (INTER) -
Batfore a new activaticn reccrd is put on the stack, the argunents
fer the new activaticn record and a2 tag to define thoe nunbher of
argunents should have been put on the stack, Lbut wasn't., Systen
error. See systen pregrasmer.
A.1.32 deleted,
A.1.37 TidAF FULL (HEAEF V1A INTER) - An attempt was nmade to
obtain sypace from the hean, none cxisted. Reallocate additicnal
Space.
A.1.38 IIIEGAL CHAR (EU FARSER) — Illegal arithretic expression. .
See Table 9, Correct and reenter,
A.1.35 TLLEGAL CHAR&CIﬁé {SCANNER) — Characters are liritad to
those of the character code tarle, Correct and reénter.
A.1.36 IILEGAL EDIT CCHHANL (ZCITOR VIA L¥TER) - An cdit
commrand, cther than tuncse defined for the editor, was resjuested.
Error should have been detected by the editor roatines. Corréét
cemwand, <continue. processing, notify system programamsers that
rossible problem exists within editor routines.
A.1.37 ILLEGAL LOGICAL AEDRESS (HEAP VIA INTER) - An atteapt was
made to delete data inp a lcgical address in the heap, but address
referance was eapty, ESystem error - see system prcyramaer,
A.1.38 ILLEGAL VALUE (SCANNER vIA INTER) - User should never seec
this messaje. =Zrror should have been detected tefore execution.
Verify value is legal entry, correct and reenter. Notify system
pregramaers that possitle prolkleam exists within scanner rtoutines.

8.7.39 through A.1.41 deleted.

PAGE 90
A.T.42 HSTRUCT;ON NCT 1¥PLEMENTED (TD PARSER) - Notifies the
user that although the instruction may be syntactically correct,
the necessary code has rot been dovelcped and cannot be executed,
A.1.43 z-uvaun EXAPRESSION (TL BARSER) - Printed by top down
parser when error is ncted by hettom up parser. Ses Tabhle 9 for
correct arithmetic expressions., Correct and reenter.
A.1.44 deleted.
A.1.45 INVALID KEYWCSL (ILC PARSER) - Keyword used either
misspalled or incorrect, See kayword tabla Appendix) for valid
fseywourds. Correct and reentor.
A.1.46 ISVALID OPERALCX CCCE (OPERATOR VIA INTER) - An illegal
operator ccde was used, S5ze figure 2 for prop=2r op codes,
corract and reenter,
A.1.47 LABEL 1S NOP AN ICENTIFIER (I'C PARSOR) - 3Self
explanatory. Correct and reenter.
A.1.48 LINE NUHBEL NOT FOUND ., (FDITCR) - User tricd to list a
specific line number which doos not exist. sither ratype a
current line number, or list oantire procedure to verify line
numbers.
A.T.49 LINE MUMBER ALREALY EXISTS. (EDITOR) - User tried to
insert or input a duplicate line nuaber, Retvpe line Wwith an
arijyinal line number.
A.1.,50 RISFLACED PRCC STATENENT (TD PARSER) - Self explanatory.
Sce tigure 1 for correct prcceccdure format., Correct an raenter.
A.1.51 AILSSIHG COLON (ID PARSER) - Self explanatory. Corroct
and reenter,
A.1.92 AISSING COMHA Cu« PAREHTHESIS (TD PARSER) - Self

explanatory. Correct and reenter,

PAGE 91
Aela23 HMISSIHG ELSE STATEMENT (TD BARSER) - Part of IF
statement. See Table 8 fer corract format. Correct and reenter.,
A.1.534% HISSING END ERCC (IC FARSER) - Must appear at end of
pracedure, See fijure 1 for correct procedure format, Corract
and reenter,
A.1.95 HTSSIKG END STATEMENT (ID PARSER) - Part of eithoer case
or EuGIN statement., Sce Table 8 for correct forasat. Correct and
Leepter.
A.1.,56 HISSING BNDWHILE STADFZELT (TD PARSER) - Part of while
statcment, See Table 8 fcr ccrrect fecrmat. Correct and reenter.
A.l.97 EISSING FL STATEKzNT (TL PARSER) - Fart of IF statamant,
Sec Table 6 for correct format. Correct and reernter.
A.1.53 HTSSING PROCEDUWE IDJSHTIFIER (TD FARSER) - Identifier
rust follcw 'PROC' tc define the - name of the procedurn, Seo
figure 1 for correct procedure format. Correct and recnter.
A.1.59 MISSING PROCECURE STATENENT (ID PARISER) - Self
explanatory. Each procadu:é nmust begin witn a4 procedure.
statement., See fiqure 1 for correct procedure format. Correct
and reenter.,
A.1.60 HMISSING SEPERATER (TD PARSER) -~ Self explanatory. See
Aypendix D for legal separateors, Correct and reenter,
Aol.61 FISSING THEN STATEMLENT (TD PARSER) - Part ot IF
stataement, See Table 8 for correct format, Correct and rzenter,
A.1,62 HNO CLOSING QUOTE CN STRING (SCANNER) - All strings must
ke delimited by quote rarks. Correct and recenter,
A.1,63 through A.1.68 deleted.
A.1.69 FRCCEDURE NAEE NOT IN FROCELURE SYMBOL TABLEZ (INTER) - An

attenpt was made to 1list or search for a nane which did not

PAGE 92
exist, Verify name and reentcer.
A.1.70 deleted,
Aelos71 SEACE NCT AVAILABLE (IC PARSER) - An unsuccessful attempt
was made to jet space, allcecation should be increased.
A.1.72 SIACK OVERFLOw (SIACK VIA INTER) - An atteanpt was made to
pet data in the stack, Ltut no space availatle, I=allocate
additional space. |
A.1.71 SI&I#G LENGTHS LIMITED 10 80 CHARS FCR COHDARE (TABLES) -
As isplemonted, wuwser should never sce this wessage because of
scanner lisitations. conpcataenation of strings could result in
laryer chkaracter striprys. For coaparison, character strin s may
not exceed 50 characters.
A.1.74 SYE TCC FANY CEAaR (SCANNER) - Syaktol lerngth i3 restricted
to eijht characters, Ccrrect and reenter,
AL1.75 SYNTAX BERUROR (EU BARSYHU) - Tlleqgal arithmetic expression.
S2e Tabl2 9 for correct formats., Correct and reenter.
A<1.706 through A.1.80 deleted.
4,1.81 VALUE ERIOR (INTILE) - An attempt was made to assign a
variable which had not kteen jiven a value., (2x. A <= 1; C <~ A +
B - Assignment of B will result in value error. Assign value and

reenter.

PAGE 93

APEENDTIX B

INTERP-700 CONHON AREAS

GEJNERAL STRUCTURES:

/HEAB/NHEAP, HEAP (2000)

/STACK/KSTACK,

STACK (100)

(G*FSETS ForR SUBFIZLDS CF STRUCTURES PLUS RECORD LeENGTHS:

/PRCCFF/PRCNLY,
PRCSTA, SRCLEN
JSTNCFFR/STHNLY,
SYNLEN
/HECFF/HETAG,
/ARCFF/AKSYH,
ARRZL, ARTAG,
/BAEYCFF/ARYRYNK,
/STROFF/STRLEY,
/TXTCFE/TXTTOP,
TXITOK, TXINST,
/TCKCFF/TCKTOP,
/CODES/TPLUS,
1EC, INE,
IBRFI, IBRI,
INDX, IREAD,
iTUP, ITEXP,
IACTEN, IAR,
STACK ARGUMENTS:
/STKETS/LAR,

/STKARG/IB(2),

HHESEAC,
i

A

ARPIND

I¥INUS,
ITRUE,
ICALL,
IWRIT,
[VAR,

ILCC,

PRCHAN,

SYWNAM, SY

JLEN, ARNLE

ARYDIx, AR
ST4NG

PXTEOT, ‘TX
TXILLN, TX

tGHKECT,

LEALSE,

oy

.IHLUJ,
INULL,
ISYH,

IGLB, I

STKTCP

I0(2), CODE

EICTXT,

P51z,

TLIN,
TCKILN,

IHULT,

ERCICK, PRCSYM, ERCCOD,

nsCP, SYHTYP, SYMVAL, SYNSTA,

HPLAD, HPOBJ, ADTRAN

N, ARNAM, ARLIN, AKINST, ARLCOD,

YLEN, ARYSTR

INLN, TXTLNO, TXTFLK, TXTBLK,

TXTSTA
TOKLNO, TOKFLK, TOXKNUM

IbIV, IASG, IGT, ILT, ILE, IGE,

INOT, IRRT, IBRF, IBR, IBRTI,

IRETN, INARG, IOTARG, NUMARG, IND,

Is, IRS, IBS, ISA, IRA, ICS, IEA,

IT0K, I1COR, ITXT, IPRC, LGLBT3,

NAM, ILAB, IACC, I&X1, ILP

PAGE 94
CCHHONLY USED INGICES FOR THZ $SYSLINE MODULE:
/SYSCFF/SPIND, SLTaT, SLICK, SLSYM.
CCEMCN FCFR SCANNER:
/SCANER/CTAB (255,3), KWIAB(10,7), CLTAB(10,7), LINST(o4),
SYM5T(15,3), ER&XSI(64,3), SYM(2), TXTLAD, TOKLAD, DPINDEX,

ERFCHR, CLFLAG, EGRCEAS, ERRCP, RVALUE{13), NELT

PrRCTOR
DRCSTH
PRCCUD
ERCS LA
PICLEN

ARCFF

ARSYN
ARLEWN
ARHNLEN
ARNAM
ARLLN
ARINST
AXLCCD
ARRET
ARIAG
ARPISED

IEFLUS
THINUS
1HULT
ICIV
TASG
1671
ILT
ILE
IGE
I:C
IHE
ITRUE
IEALSE
I3CT

1 |
o ERS RS S y BN < T T G G s |

C @~ NN -

[PVl 8 |

APEENDIX C

DISFLACEMENT CODES & VALUES

SYHCEFE

———

SYUNLN
SYNNAY
SINSCE
SYHTYP
SYHVAL
SYNSTA
SYMLEN

LATCEE

TATTOE
TXTBOT
TAPNLN
TXTLNGQ
TKTFLK
TATBLK
TXYTOK
TLTNST
TXTLLN
TXTLIN
TXTSTA

IBRT
IBRF
IBR
IBRTI
IBHFI
1BRI
ICALL
IARG
IkETN
INARG
TOTARS
NUMARG
IND
INDX

T 00~ 45 L B0 b = O

N E SO NN

1¢0
1¢1
1C2
1C3
1C4
1G5
1C6
1C7
1G8
ic9
110
IRR
112
113

HPTAG =
HESPAC -
HEhLZT =
HELAD -
HEOBJ =
ADTRAN -

ZOKOEE

TOLTOP -
TOKEQT =
TOKNLY -
TOKLNO -
TOKFLK -
TOKHNUH -

CODES

IREAD -
TWRTIT -
ITNULL -
Is -
IRS -
IBS e
ISA -
IRA -
ICS§ -
IBA -
ITuPp -
ITEMP -
IVAR -
IS5YM -

W =~ O

114
115
116
200
201
202
203
204
205
206
207
208
209

250

—— e

ARYRRK -
ARYBIH -
AJYLEN -
ARYSTRHR -

STI0EF

STRLEN -
STRXG -

ITCK -
LCOD =
ITXT =
IPRC -
IGL2iB -
IADTRN -
IAR -
ILGC -
IGLB -
INAK =
ILAB -
IACC -
IEXT -
IXp =

-] O

o

251
232
253
254
255
256
251
300
301
302
303
304
305
306

PAGE 95

C.? GENERAL - This agyperdix ccntains the local data structures
used in THNTERP-700 nct discuscsed elsewhere such as those usad in
the scanner module, Tha initialization data wused in these
structures 1is dynamic and may be changed or added to as the
lanjuaje interpreter rrcyrams are expanded, &ndified, or
trarsported to different cnvircnrents,

9.2 CHABACTER TABLZ (2%5,3) ARRAY - This taltle is initialized
accerding to the machine code character translation table
selected for use with the intervreter program. <The size of the-
arcay was determined ty the machine decimal represantation of
chairacters as batwecn deéiaal 1 and 255. E&ntry intc the table is
tased on the nmachine decimal representation ot the charactar
koinyg scanned,

I.2.1 Column once - designates the character as a letter or

]

numrber, a scparator or operator, or a bklank. One = tlank, two

Sseparatcr or operator, three = letter or number.

L.2.2 Coluan two - designates the character as a letter, nuaber,
%, , operator, or separator, Zcro = blank, one = letter, two =
numb2r, three = $, four = , six = opcratecr, and seven =
suparator, DB.2.3 Cclupn three - designates the index number of

sepacators and operators for 1se by other amodules of the
interpreter program. Scparators and operators are npumbered
consacutively as they are enccuntered by type in row order of the

character translation tarkle.

PAGE 97

|

i

DECINMAL LOCATION

-

EBCDIC CHARACTERS

Ownlrn S INOND
01.1-227)4r)03010.4r)?00906111|1?0891.IIIOGOnUOOOGO00000\000000

OO0 DD DN\DWOWD O I=MNWD [=0=\D\0W O DNUO\O\O\D IO ??66?/0401111]]]11‘ﬁu1!11']-'1-1]1.!

e AT AL O = AN A AL QLA 00 A A A NA—A NN AN 31..)..37)7)7)7)7)?)7../]_...J_..J?J?)Zﬁ?u)?)./)

Q =

: -

Ch umn -— —

Ny (7] (@]

O~ " —] N |

t TAD LNC0 N O v (U v (A MY LD T ON O v A M -FF LA TCD LI DeC) (VO == A MY
C TN L0 N D v O v O N oI LAWD [00001112¢25222223ﬂ)53?535#é4h#5555
1lnf??ﬁf??80U999901A799%11l_.|1l¢|1.l.|._.l....l..l.11]111]1]111111]11]11111

]
[

a] 4 e 2 4 A

- H §

z : g 3 3 .

ne .<(+lab...4¢.*)..._.._./.o SR IA N, S ®= 12 B G2 0 D6 0H PN E 2O 2O

PAGE 98

CHARACTER TABLE ARRAY (CONT)

ol

DECIMAL LOCATION

EBCDIC CHARACTER

€D
O.UOooooooﬁvolnnuooooooooo..lo.loa.looOOOOOOOOIOPUPJOGnUnUGGO?_GOOG

DO 1I.1|4|1l._l.1,.-1l¢|071111111110‘1006O?.l-_..l-.lil.1|clal.qI-anr..Urv1.“1111!1!1-.»060222

=0 I\ PN I IAMUEA NI e O MR PN NN = (] = Q] = A MMM MY NN Y =] o FANMYMMIMINYN MY = (] = NN

%5 o) oy Y M)
— e aJ (§V] o N
1 |] 1. 1 E 1 [
=7 =1\ ../ r../rO? uguasjgu-r)fonfnogoiaru.s D D00 N v O M- UND D0 LN ECIND =AY B PO D O =0
CMOLDWDVNOWLVVLLVLVN-ONCOOGTOMO R OO O OO O O v v = v = = == = A A 0 CJ O N SAMMNMN MMM T
.I.I1_.111-.!]1]11.1!1111!1;1-2222222222222222222222-&222.&2?_?_2222
-
[}
iM ‘.n\. . Iw..u -l.—.m !m Imm n””..m- l\m -”
5 G 3> EXNmNAdmOARRORHOR S DM IR ROoAPR B A DI HI] ..A...Z.mrnb012

CHARACTER TAELE ARRAY (CONT) PACE 99

EECDIC CHARACTER DECIMAL LOCATION L 2 3
3 245 3 2 0
i akdy 3 2 0
? i 3 2 0
40 3-2 0
7 247 5 2 o
O 248 3 2 0
9 21}9 3 2 0
| N 250 2 6 21
olan 251 - 255 1 0 o

PAGE 100
L.3 KEYWOxD TABLE (13,7) AkRAY - This table i1s initialized with
the designated x=2y words of the lanquage to pe 1intorpreted,
words are placed in taltle colurns Lased on the numher of letters

in each wcrd, Only the ftirst four letters of any word are placed

in the tatle. Comparisons against the takle are rade by
subtracting ona fron the total naumber of letters to be
scrutinized in order to select the proper table coluan. The

first four letters of the indentifier are then coaparad ajainst
all entries in the column selected in the table., Index nuabers
are tased on column nuater fcllowed ty row number of ~matched
comparisons,

KEYWORL TABLE ISITIALIZATION DATA

Coulmn 1 2 3 g 5) 7
Row 1 EC sND CASH FEGL ACCE ENDP EHDW
2 TE our I SHE FALS EXPT 0 EXTE
3 IN Q £XdTl HHILE GLOB Q0 0
4 FI 0] GCT1O C RET 8] 0
5 C C ERQGC G 0O 0 0]
6 0 c w=ZaAD 0 4] 0 0
7 C C THEH C 0 0 0
8 Q O IRUE Cc O 4] 8]
9 C c culr G 0 0 0
10 0 0 CALL Cc 0] C 0

PAGE 101
D.4 COWAAND LANGUAGR 1AELE (10,7) AR3AY - This table is
initialized with the designated comaand lanquage words of the
lanjuaje to ke ihterpreted. dcrds are placed in table columns
tased on the number cf letters in each word. Cnly the first four
lattars of any word are placed in the table. Ccmparisons against
the table are made Lty subttracting one from the tctal nuabar of
letters in the identifier to be scrutinized in order to selact
the prover table column., Tha first four letters of the
identifier are then compared against all entries in the colunn
selected in the table. Index numbers-are based on the coluan

number follcwed by the row nutber of amatched comparisons,

COKEAND LANGUAGE IABLE TNITIALIZATTON ‘DATA

Column 1 2 3 4 5 6 7
RCW 1 CN ris CEAR CLEA DIGI BRea 0
2) LIB CCBY ERAS RESY NOTH 0
3 c OFF CKOE HENC VALU SUsP 0
] o] POP FDIT LINE CLRS (8] 0
5 C RUN HeLE PARS 0 0 0
6 Q VAR LIST STAC 0 0 0
7 C 0 LCAE TRAC 0 0 0
8 G 0 SAVE WipT 0 G 0
9 Cc 0 VARS 0 (8] 0 0
10 0 0 WSID 0 0 0 4]

D.9 OPEHATCR CODES - The following are format examrles of
variouas operations perferred by INTERE-700.

D.5.1 Branches - Consist of two words., The first word is the
ccde name for the tEtranch, e,q., I38%I for kranch indirect; the
second wofd is the index intc triples on direct branches or the
index into the symbol table for indirect tranches.

D.%.2 Argurents - Ccnsist of five words. The first word is the

ccde for the type arjument; the second word is the source index;

PAGE 102
The third w#word is the operand code; The fourth word is the index
in the syrbol takle or a valu-; and the fifth word is the source
index for the character in tho current line of source code.
D.3.3 1Index - Cousists of five words, The first word is the
code for indx; ‘the second word is the nuster of indices; the
tiaird werd is the operand ccle; the fourth word is the index in
the symbkol table or a value; and the fifth werd is the source
index, |
L.5.4 Tndicies - Consist cf tive words, The first word is tha
cede for an indicie; the seccend word is thé source indax for the
indicie cadeg; therthird word is the operand colde; the fourth
werd is the index in the symltol tatle or a value; ané the fifth
word is the source index cf the operand code.
LC.5.5 Call - Consist of five words, The first word is the code
feor 4 cally the second word is the nuaber of arguments for the
call; the third word is the «c¢perand code; tha fourth word is
the index to th2 routine in the symbcl table; and the fifth word
is its socurce index.
D.5.6 Feturn — Consist of two words. The first word is the code
for IRETH; and the secccrl word is its source index.
D.5.7 1Inary - Consist ot five words. The first word is the code
for inarqgs; the second word is null; the third word 1is its
orerand ccde; the fcurth werd is the index 1into the symbol
takle; and the fifth werd is its sourcé index,
L.5.8 Cutarg - Same as inarq except that the first word is the
code for ontargs.
£.5.9 Iread - Consist of two wcrds. The first word is the code

for Tread; the second word iz the pumber of arguuments.

PAGE 103
C.5.9 TIwrite - Same as Iread except that the first word is the

code for Lwrito,

PAGE 104

D.6 The following takle summarizes the code used by INIEZRP-700:

NAME - NR ARGS CoDE SOURCE INDEX
branching 0 IERI nindex

IBRF rel index in code

18R rel index in code
return U TRETN char_loc
noet 1 IKGT char_lac
rush argquaent 1 TAxG char_loc
push_ar=call 1 ICAL nr of args including

namne of called nod

link_arg 1 INARG null
P_link_arg 1 CUTARSG nall
subscript i N char_loc
array_value 1 ING¥ nr of indices
nrray_raf 1 nona " nr of indices
road i T3EAD nr of arys
Wwrilte 1 I4RITE nr of args
indexed crar 1 none char_loc
assignment 2 IASG char_loc
arithmetic ops 2 IBLUS,; char_loc

IHINUS,

I#ULT,

1LV
relationals 2 IGT,ILT, char_loc

ILE, IGE

IEQ,INE
legical 2 I3y, INOT char_1loc
tewporary terp null null
scalar constant type_tag vilue char_loc
ncn_scalar const tygpe_tag logical_ char_loc

address
viriable var nindex char_loc
string_constant strinyg_ length char_loc

constant

DAGE 105

; ~rr T
APPSO N E

LEoRoiits (P Eaptien

.1 1t is difficuls to docuninnt sorcone olse's prosican vhien
nresented with only code listinzgs. In ©is circinaszance, 1t

Decones necessary to goncrale assuaptions ahous vhai is aanponing

-

within the procran, Swould

7 -

the assunptlens prowe o ke fa3lso,

k1

1o Jdncmentation bocones useless., strons arinens could bho
aade thar it niche be easior and more cos: aflactive o resrozran
an-! document new code radhier tan spend the tihiwe rejulred to
research and stuly prozran code hefore locuneniinz, A He
cormlexicy of existing code incgreases, this arswent becones rmore
valiidd,

.2 Tiore appeared to be a direct relationshin hetunen those
mdules vhicdh wore vell docuniented, and thosa vhildr appear to
Tahetlon accordlise to specificaiiang, The wodules thich are
currently operational are the 5nne rodules which are well
Jdocumented.,

F.3 iHhen no other docuneniation existed, coments within Dhe

~

prosram code nade the task of documentation rmuch esasier.

.o Docdamentation Is sEI11 a tiresome and borings tasly, but one

hish is so necessary if awy type of malntenance s to he

performed at o later time. Documenting vhile developing prosram
losic would appear to be a iauch botter way to zo. Tie task of

7 ing tometier properly develoned docurentation would decrease
tht total time and effort reguired Tor a complete final paclare.
E.5 9One of the most important lessons cane from the

devaelopiental work on the interpreter. Tiere has to bo one

nerson or anency

quallity concral.

resnonsible for nanagerial Jdirection oand/er

i

subroutines srow like

quality control there

are bheing followed.

thout
Lopsy ,

is no

direction, prosrans, nwdules, or
sonetines withous purpose, idiout

assurance that nanaserial directions

BIRLTIOGRAPILY
PRIMARY SOURCES

Class Notes. Compilition of work done by CS286-700 Computer Science course,
summer session, Kansas State University, 1975.

General discussions with James Jones, graduate studeut, Kansas State
University, 1975,

General discussions with William Hankley, Associate Professor, Computer
Science Department, Kansas State University, 1975.

INTERP-7N0:
DOCUMENTATION OF A STUDRENT DPESIGNEDR INTERACTIVE |[MTFPPRETFP

by

MICHAEL FRANK MITR]OME

B.B.A., St Bernadine nf Siena College, 1053

AN ABSTRACT NF A MASTEP'S PFPNPT

submitted in partial fulfi11lment of the

requirements for the degree

MASTER NF <=CI|EMCE

NDepartment of Computer Sclence

KANSAS STATE UMIVEPS|TV
Manhattan, Kansas

1975

PROPOSAL: To provlide a standardlzed docunent of an
Interactive fInterpreter desipgned and Inplerented ky the

students of CS 28R=700 conurses,

PURPOSE: Tihls report describes an Interoreter which vi11 bn
refarred to as IHTRERP=77n0, It exanines and 1l1luctrates
features of a hizsh Jlevel nproszrareing langvage, muck 1lke
APL, which s sulted to™ spectrum of nsars ranglneg fron
novice to experienced prorramver, Cophasts Is on
docurentation of IHTORP=-700" as” 1t exlsts torlay, hut
referonce 1s made tn future enhoncements wﬁtch will increase
.. the test and dehyc énpahllltiﬂs o tha interpreter,
Emphasis Is en tun areas = lanruare docurmentatlon; and

prosrarm docurentation,

REPORT ORGAMIZATIOH: This recert censists of 7 chapters,

each exanlnlnz a different facet of the Interpreter,

Chanter 2 looks at the purpnses of JHITEPP=700, hnth nresent
and future, and touches nn hew this Interpreter A1cfars from
others avai]ahle. .Chﬂﬁtof 3 discusses the }anﬂuage
documentation, vhich includes a users rulde, and the three
langsuase subsets of |[HTERP=700, Chapter & discusses the
syntax rules of the languarze, and inclwles o section on how
parameter passing Is accoriplistied, Chapter 5§ Hjscussns the
semaﬁtic rules and glyes both the data structures used, and
the languarne restrictlons, Chapter © looks at the current
status of [INTERP=700, as well as future ecnh:ancemrnts

envisioned, Chapter -7 «dlscussns each rmjor rmedule of

INTERP=-700, describes the purposes of each, and Includes
Tnput and output parameters and thelr mraninee vhere

feaslible,

